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Abstract

In this paper a set of previous general results for the development of B–series for a broad
class of stochastic differential equations has been collected. The applicability of these
results is demonstrated by the derivation of B–series for non-autonomous semi-linear
SDEs and exponential Runge-Kutta methods applied to this class of SDEs, which is a
significant generalization of existing theory on such methods.
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1. Introduction

The idea of B–series, as described here, is simply about describing the solution of a
differential equation (or approximating numerical scheme) as a formal series in time (or
in the step size), allowing then to represent the local error, i.e. the difference between the
exact solution and the numerical approximation after one time step, as a B-series as well
and thereby easily analyse the order of convergence of the numerical scheme. These series
were initially derived for ordinary differential equations (ODEs) by Butcher [8], and the
idea was further extended by Hairer and Wanner in [15], see [14] and references therein.
Owren and Munthe-Kaas have both given several contributions to the development of
B–series, in particular in the context of geometrical integration, see [22, 4, 26, 9, 24, 23].
B–series for stochastic differential equations (SDEs) have been developed in different
contexts by several authors, [5, 7, 6, 19, 18, 27, 28]. A rather general framework for
developing B–series for SDEs was developed and extended in [10, 12, 1]. This approach
is independent on whether the SDE is Itô or Stratonovich and whether weak or strong
convergence is considered.
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The aim of this paper is to collect the main tools from this approach, which is done
in section Section 2, and then apply the theory to non-autonomous semi-linear SDEs and
a class of exponential Runge–Kutta (ERK) methods. A similar work has very recently
been published by Yang et.al. [31], however, their results only apply to Stratonovich
SDEs with a commutative linear part. The results which will be presented in the current
paper do not have these limitations.

The outline is as follows: The main ideas and results on stochastic B–series for au-
tonomous SDEs are presented in Section 2. In Section 3 these are used for a generalisa-
tion to non-autonomous SDEs, and non-autonomous semi-linear SDEs are discussed in
Section 4.

2. Stochastic B–series: Definitions and main results

In this section the basic definitions and results to be used in the later sections are
summarised.

Consider a system of stochastic partitioned differential equations with Q partitions
and M diffusion terms that potentially are split,

X(q)(t) = x
(q)
0 +

M∑

m=0

∫ t

0

(
Rm,q∑

r=1

g(q,r)m (X(1)(s), X(2)(s), . . . , X(Q)(s))
)
⋆ dWm(s) (1)

for q = 1, . . . , Q, for which we will also use the abbreviated form

dX(q)(t) =

M∑

m=0

(
Rm,q∑

r=1

g(q,r)m (X(1)(t), X(2)(t), . . . , X(Q)(t))
)
⋆ dWm(t), X(q)(0) = x

(q)
0 .

(2)
To simplify the notation the deterministic terms are represented by m = 0, such that
dW0(s) = ds, while Wm, m = 1, . . . ,M , denote one-dimensional and pairwise indepen-
dent Wiener processes. The integrals w.r.t. the Wiener processes are interpreted as either
Itô integrals, ⋆dWm(s) = dWm(s), or Stratonovich integrals, ⋆dWm(s) = ◦dWm(s). We

also define the vector of initial values, x0 = [x
(1)
0

⊤
, x

(2)
0

⊤
, . . . , x

(Q)
0

⊤
]⊤. Furthermore, we

assume that the coefficients g
(q,r)
m : Rd1 × . . . × R

dQ → R
dq are sufficiently smooth, and

that the conditions of the existence and uniqueness theorem [25] are satisfied. The sys-
tems are considered to be autonomous. If Rm,q = 1 for m = 0, . . . ,M and q = 1, . . . , Q
then the splitting is horizontal, if Q = 1 the splitting is vertical, see [3]. In those cases,
the corresponding indices may be omitted.

Example 1. Consider the equation system

ṙ = v,

v̇ = fd(r, t)− α(t)v + fs(r, t)β(t)

which describes the evolution of a particle with unit mass, coordinate r(t) and velocity
v(t). The particle is affected by three forces: an external force fd(t, r), a time-dependent
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friction force α(t) ≥ 0 and a thermal white noise term with a time and space dependent
intensity. This can be rewritten as a proper SDE of the form (2),

d

(
R(t)
V (t)

)

︸ ︷︷ ︸

X(1)(t)

=

(
0

fd(R(t), t)

)

︸ ︷︷ ︸

g
(1,1)
0

dt+

(
V (t)

−α(t)V (t)

)

︸ ︷︷ ︸

g
(1,2)
0

dt+

(
0

fs(R(t), V (t), t)

)

︸ ︷︷ ︸

g
(1,1)
1

dW1(t) (3a)

d t
︸︷︷︸

X(2)(t)

= 1
︸︷︷︸

g
(2,1)
0

dt. (3b)

This is of course only one of many possible splittings of this problem, but it is the one
which will be used for demonstration purposes throughout this paper. Other splittings
have been discussed in [1], Example 1.1.

Partitioned systems appear naturally in many situations, e.g. for Hamiltonian prob-
lems. Note that (2) also covers the case of matrix-valued SDEs, in which case X(q) would
correspond to column q of the solution.

In this paper, horizontal splitting will be used to derive B–series for non-autonomous
problems, vertical splitting will be used for semi-linear problems.

The main idea is to express the exact solutions X(q)(h) as B–series B(q)(φ, x0;h):

B(q)(φ, x0;h) =
∑

τ∈Tq

α(τ) · φ(τ)(h) · F (τ)(x0),

where Tq is the set of shaped, colored, rooted trees as defined below. The terms α(τ) are
combinatoric terms. The elementary weight functions φ(τ)(h) are stochastic integrals
or random variables, and F (τ)(x0) are the elementary differentials. To simplify the
presentation, we assume that all elementary differentials exist and all considered B–series
converge. Otherwise, one has to consider truncated B-series and discuss the remainder
term [27].

The following theory on partitioned SDEs is taken from [1], where also all proofs can
be found.

Definition 1 (Trees and combinatorial coefficients). The set of shaped, rooted trees

T = T1 ∪ T2 ∪ · · · ∪ TQ

where

Tq,m = Tq,0,m ∪ Tq,1,m ∪ · · · ∪ Tq,Rm,q,m and Tq = {∅q} ∪ Tq,0 ∪ Tq,1 ∪ · · · ∪ Tq,M

for q = 1, . . . , Q and m = 0, . . . ,M is recursively defined as follows for r = 1, . . . , Rm,q:

1. The graph •q,r,m with only one vertex of shape (q, r) and color m belongs to Tq,r,m.
2. If τ1, τ2, . . . , τκ ∈ T \ {∅1, . . . , ∅Q}, then also [τ1, τ2, . . . , τκ]q,r,m ∈ Tq,r,m, where

[τ1, τ2, . . . , τκ]q,r,m denotes the tree formed by joining the subtrees τ1, τ2, . . . , τκ each
by a single branch to a common root of shape (q, r) and color m.

Further, we define α(τ) as

α(∅q) = 1, α(•q,r,m) = 1, α(τ = [τ1, . . . , τκ]q,r,m) =
1

v1!v2! . . . vK !

κ∏

k=1

α(τk),

where v1, v2, . . . , vK count equal trees among τ1, τ2, . . . , τκ.
3



In addition to the bracket notation used in Definition 1, rooted trees can be illustrated
as graphs, see Example 2, where vertices •q,r,0 with color m = 0 are represented as black
nodes (so-called deterministic nodes) with indices q, r, while vertices •q,r,m with color
m > 0 are represented by white nodes (so-called stochastic nodes) with indices q, r,m.

Definition 2 (Elementary differentials). For a tree τ ∈ T the elementary differential is
a mapping F (τ): R

d1 × . . .× R
dQ → R

d defined recursively by

1. F (∅q)(x0) = x
(q)
0 ,

2. F (•q,r,m)(x0) = g
(q,r)
m (x0),

3. if τ = [τ1, τ2, . . . , τκ]q,r,m ∈ Tq,r,m, then

F (τ)(x0) = (Dτg
(q,r)
m )(x0)(F (τ1)(x0), F (τ2)(x0), . . . , F (τκ)(x0))

where Dτ = ∂κ

∂x(q1)...∂x(qκ) for (qk, rk) being the shape of τk, k = 1, . . . , κ.

Fundamental for this work is the following lemma which says that if some functions
V (q)(h) can be written as a B-series, then f(V (1)(h), . . . , V (Q)(h)) can also be written as
a B-series. This is a trivial extension of the lemma found in [10].

Lemma 1. If V (q)(h) = B(q)(φ, x0;h), q = 1, . . . , Q, are some B-series with φ(∅q) ≡ 1
and f ∈ C∞(Rd1×. . .×R

dQ ,Rd), then f(V (1)(h), . . . , V (Q)(h)) can be written as a formal
series of the form

f(V (1)(h), . . . , V (Q)(h)) =
∑

u∈Uf

β(u) · ψφ(u)(h) ·G(u)(x0) (4)

where

1. Uf is a set of trees derived from T, by

(a) •f ∈ Uf ,
(b) if τ1, τ2, . . . , τκ ∈ T \ {∅1, . . . , ∅Q}, then [τ1, τ2, . . . , τκ]f ∈ Uf .

2. G(•f )(x0) = f(x0) and

G(τ = [τ1, τ2, . . . , τκ]f )(x0) = (Dτf)(x0)(F (τ1)(x0), . . . , F (τκ)(x0)),

where Dτ is defined in analogy to Definition 2.

3. β(•f ) = 1 and

β([τ1, τ2, . . . , τκ]f ) =
1

v1!v2! · · · vK !

κ∏

k=1

α(τk),

where v1, v2, . . . , vK count equal trees among τ1, τ2, . . . , τκ.

4. ψφ(•f )(h)=1 and ψφ([τ1, τ2, . . . , τκ]f )(h) =
∏κ

k=1 φ(τk)(h).

By the use of this lemma, the following result was proved in [1].
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Theorem 1. The exact solutions X(q)(h) of (1), q = 1, . . . , Q, can be written as B-series
B(q)(ϕ, x0;h) with

ϕ(∅q)(h)=1, ϕ(•q,r,m)(h) =

∫ h

0

dWm(s) =Wm(h),

ϕ([τ1, τ2, . . . , τκ]q,r,m)(h) =

∫ h

0

κ∏

j=1

ϕ(τj(s)) ⋆ dWm(s),

for all [τ1, τ2, . . . , τκ]q,r,m ∈ Tq,m, r = 1, . . . , Rm,q, q = 1, . . . , Q, m = 0, 1, . . . ,M.

Theorem 1 represents the solution of (1) as B-series. By also deriving a B-series rep-
resentation of the numerical approximation, one can represent the local error, i.e. their
difference, as well as B-series. Comparing the weight functions in the B-series repre-
sentation of the exact solution and numerical approximation allows thus to analyze the
(strong or mean-square) consistency of a numerical method. For weak approximations,
where function evaluations of the exact solution and numerical approximation need to
be compared, additionally Lemma 1 is used.

To characterize the contribution of (the weight function of) a tree to the order of the
error, the following definition is needed.

Definition 3 (Tree order). The order ρ of a tree τ ∈ T is defined by

ρ(∅q) = 1, ρ(•q,r,m) =

{

1 for m = 0,
1
2 otherwise,

ρ([τ1, τ2, . . . , τκ]q,r,m) =

κ∑

k=1

ρ(τk) +

{

1 for m = 0,
1
2 otherwise.

Example 2. Let

τ = 12

21111

1112

2121

= [[[•22,1,0]1,2,0, •1,1,0]1,1,1, •2,1,0]1,2,0,

in which vertices •q,r,0 with color m = 0 are represented as black nodes with indices q, r,
while vertices •q,r,1 with color m = 1 are represented by white nodes with indices q, r, 1.
The corresponding terms are

α(τ) = 1/2,

ρ(τ)= 6
1

2
,

F (τ) = D1,2g
(1,2)
0

(

D1,1g
(1,1)
1

(

D2,2g
(1,2)
0

(
g
(2,1)
0 , g

(2,1)
0

)
, g

(1,1)
0

)

, g
(2,1)
0

)

,

ϕ(τ) =

∫ h

0

∫ s1

0

∫ s2

0

s23ds3s2 ⋆ dW1(s2)s1ds1=
1

3

∫ h

0

∫ s1

0

s42 ⋆ dW1(s2)s1ds1
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where Dij = ∂2

∂x(i)∂x(j) . How the elementary differentials would look like for the SDE
introduced in Example 1 is presented in Appendix A (the weight function ϕ(τ) and coef-
ficient α only depend on the tree, not on the concrete SDE).

Stochastic B–series evaluated in a B–series can (similar to the deterministic case) be
written as a B–series. This result is useful for the construction of implicit Taylor methods
(see e. g. [17, 29, 21, 11, 12]), splitting methods and composition methods. Note that for
implicit methods, it might be necessary to use truncated random variables to ensure the
solvability of the implicit equations, see [21].

Let ST (τ) be the set of all possible subtrees of τ together with the corresponding
remainder multiset ω, that is, for each τ ∈ T \ {∅1, . . . , ∅Q} we have

ST (•q,r,m) = {(∅q, {•q,r,m}), (•q,r,m, {∅q})},

ST (τ = [τ1, . . . , τκ]q,r,m) = {(ϑ, ω) : ϑ = [ϑ1, . . . , ϑκ]q,r,m, ω = {ω1, . . . , ωκ},

(ϑi, ωi) ∈ ST (τi), i = 1, . . . , κ} ∪ (∅, {τ}).

We also have to take care of possible equal terms in the formula presented below. This
is done as follows: For a given triple (τ, ϑ, ω) write first ϑ = [ϑ1, . . . , ϑκϑ

]q,r,m =
[ϑ̄v11 , . . . , ϑ̄

vK
K ]q,r,m, where the latter only expresses that ϑ is composed by K different

nonempty trees, each appearing vi times, hence
∑K

i=1 vi = κϑ. Let τ = [τ1, . . . , τκ]q,r,m.
For i = 1, . . . ,K, each ϑ̄i is a subtree of some of the τj ’s, with corresponding remainder
multisets ωj. Assume that there are exactly pi different such triples (τ̄ik, ϑ̄i, ω̄ik) each
appearing exactly vik times so that

∑pi

k=1 vik = vi. Finally, let δ̄k ∈ ω be the distinct
trees with multiplicity sk, k = 1, . . . , p0, of the remainder multiset which are directly
connected to the root of τ . Then, τ can be written as

τ = [δ̄s11 , . . . , δ̄
sp0
p0 , τ̄

v11
11 , . . . , τ̄

v1p1
1p1

, . . . , τ̄vK1

K1 , . . . , τ̄
vKpK

KpK
]q,r,m = [τ̄R1

1 , . . . , τ̄RV

V ]q,r,m, (5)

where the rightmost expression above indicates that τ is composed by V different trees
τ̄1, . . . , τ̄V , with τ̄i appearing Ri times, i = 1, . . . , V .

With these definitions, we can state the following theorem, whose proof is similar to
the one for the nonpartitioned case given in [12], see also [11]:

Theorem 2 (Composition of B–series). Let φx(∅q) ≡ 1 for q = 1, . . . , Q. Then for
q = 1, . . . , Q, the B–series B(q)(φy, ·;h) evaluated at

B(φx, x0;h) := [B(1)(φx, x0;h)
⊤, . . . , B(Q)(φx, x0;h)

⊤]⊤

is again a B–series,

B(q)(φy , B(φx, x0;h);h) = B(q)(φx ◦ φy , x0;h),

where

(φx ◦ φy) (τ) =
∑

(ϑ,ω)∈ST (τ)

γ(τ, ϑ, ω)

(

φy(ϑ)
∏

δ∈ω

φx(δ)

)

with γ(∅q, ∅q, {∅q}) = 1 and

γ(τ, ϑ, ω) =
R1! · · ·RV !

s1! · · · sp0 !v11! · · · vKpK !

κϑ∏

i=1

γ(τi, ϑi, ωi).

for τ 6= ∅q.
6



Finally, the following lemma, proved in [11], is the key to derive B–series for expo-
nential integrators for SDEs in Section 4.

Lemma 2. If φx(∅q) ≡ 0 for q = 1, . . . , Q, then we have for q = 1, . . . , Q

∂2B
(q)(φy , x0;h)B(φx, x0;h) = B(q)(φx ∗ φy , x0;h),

where the bi-linear operator ∗ is given by

(φx ∗ φy)(τ) =







0 if τ = ∅,
∑

(ϑ,{δ})∈SP (τ)

γ(τ, ϑ, {δ}) · φy(ϑ)φx(δ) otherwise, (6)

with
SP (τ) = {(ϑ, ω) ∈ ST (τ) : ω contains exactly one element δ}.

Example 3. Consider the tree τ from Example 2,

τ = 12

21111

1112

2121

.

Then

SP (τ) =

{(

∅1, {τ}

)

,

(

12

21
,

{

111

1112

2121

})

,

(

12

111

1112

2121

,

{

21

})

,

(

12

21111

12

2121

,

{

11

})

,

(

12

21111

1112

21

,

{

21

})

,

(

12

21111

11

,

{

12

2121 })}

,

which will be further used in Example 6.

For general SDEs, the number of terms in the B–series is rather overwhelming, so
whenever applied to a particular class of SDEs, the main issue is to identify all trees for
which the elementary differentials automatically become zero, and remove those from the
definition of trees for this class. This idea was demonstrated for several problems in [1]
and will again be applied here.
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3. Non-autonomous SDEs

B-series are usually expressed for autonomous versions of the equations, with the
assumption, which also will be used here, that a non-autonomous system easily can be
converted to an autonomous one. This is of particular interest in the rather common
case of SDEs with additive but time-dependent noise, for example:

dX(t) = g0(X(t))dt+

M∑

m=1

gm(t) ⋆ dWm(t). (7)

In this section, we will derive B–series for SDEs for which also some or all of the
Wiener processes are allowed to enter explicitly into the coefficient functions,

dX(t) =

M∑

m=0

Rm∑

r=1

g(r)m

(
X(t),W (t)

)
⋆ dWm(t), X(0) = x0, (8)

where W (t) = [W0(t),W1(t), . . . ,Wl(t)]
⊤ with l ≤ m and we allow for vertical splitting.

Example 4 (Lawson - or the integrating factor method). Consider the semi-linear equa-
tion

dX(t) =

M∑

m=0

(
AmX(t) + gm(X(t)

)
⋆ dWm(t) (9)

with constant, commutative linear terms, that is

[Am1 , Am2 ] = Am1Am2 −Am2Am1 = 0, m1,m2 = 1, . . . ,M.

Using the Lawson transformation

V (t) = e−L(t)X(t), L(t) =
(
A0 − γ⋆

M∑

m=1

A2
m)t+

M∑

m=1

AmWm(t)

with γ⋆ = 1/2 in the Itô case and γ⋆ =0 in the Stratonovich case, the transformed system
becomes

dV (t) =

M∑

m=0

ĝm(V (t),W (t)) ⋆ dWm(t), ĝm(x,W (t)) = e−L(t)gm(eL(t)x)

which is a non-autonomous SDE of the form (8). See [13] and references therein.

Following the well known approach from ODEs, let X̃(m+2)(t) =Wm(t), m = 0, . . . , l,
such that the SDE can be written as a horizontal (and vertical) split system:

dX̃(1)(t) =

M∑

m=0

Rm∑

r=1

g(1,r)m (X̃(t)) ⋆ dWm(t), X̃(1)(0) = x0,

dX̃(2)(t) = g
(2,1)
0 (X̃(t)) ⋆ dW0(t) = 1 · dW0(t), X̃(2)(0) = t0,

...
...

dX̃(l+2)(t) = g
(l+2,1)
l (X̃(t)) ⋆ dWl(t) = 1 · dWl(t), X̃(l+2)(0) =Wl(t0),

8



where X̃(t) = [X(t + t0)
⊤,W0(t + t0), . . . ,Wl(t + t0)]

⊤ and g
(1,r)
m = g

(r)
m . To simplify

the notation, we will in the following write •r,m instead of •1,r,m, and denote the nodes
corresponding to the Wi’s by •Wi or also simply •t in case of i = 0. For their elemen-
tary differentials it holds that F (•Wi)(X(t)) = 1, and all further differentials of these
are 0, and their corresponding trees can be omitted from the set of trees. With these
considerations we conclude:

Corollary 1. The solution X(t) of (8) can be written as a B–series for which:

1. The set of trees T is defined by

∅ ∈ T and •r,m ∈ T,

τ = [τ1, . . . , τκ]r,m ∈ T for all τ1, . . . , τκ ∈ T ∪ {•W0 , . . . , •WM },

where r = 1, . . . , Rm, m = 0, . . . ,M .

2. The elementary differentials are given by

F (•r,m)(x̃0) = g(r)m (x̃0), F (•Wm)(x̃0) = 1,

F (τ = [τ1, τ2, · · · , τκ]r,m)(x̃0) =
(

Dτg
(r)
m (x̃0)

)

(F (τ1)(x̃0), . . . , F (τκ)(x̃0)) .

4. Semi-linear SDEs and exponential integrators

Semi-linear problems have over the years been given quite some attention, and several
exponential methods have been developed both for ODEs and SDEs to exploit the special
structure of such systems. B–series for semi-linear ODEs have been discussed e.g. in
[4, 16]. This has been extended to exponential integrators in [2] and more recently in
[31].

Consider a semi-linear non-autonomous SDE of the form

dX(t) = A(t)X(t)dt +

M∑

m=0

gm(X(t), t) ⋆ dWm(t). (10)

Example 5. The SDE presented in Example 1 can be written in this form:

d

(
R(t)
V (t)

)

=

(
0 1
0 −α(t)

)

︸ ︷︷ ︸

A(t)

(
R(t)
V (t)

)

+

(
0

fd(R(t), t)

)

︸ ︷︷ ︸
g0

dt+

(
0

fs(R(t), V (t), t)

)

︸ ︷︷ ︸
g1

dW1(t).

The following class of exponential integrators is considered:

Hi = Zi0(A; tn, h)Yn +

M∑

m=0

s∑

j=1

Z
(m)
ij (A; tn, h)gm(Hj , tn + cjh), i = 1, . . . , s, (11a)

Yn+1 = z0(A; tn, h)Yn +

M∑

m=0

s∑

i=1

z
(m)
i (A; tn, h)gm(Hi, tn + cih). (11b)
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The Magnus type methods proposed by Yang et al. [30] for noncommutative SDEs (9)
belong to this class of exponential integrators. For these methods, construction of the
random coefficients is discussed in [20].

Yang et al. [31] derived B–series for the exact and numerical solution of this problem,
given that the matrix function A(t) is commutative, by expanding exponentials of the

form e
∫ tn+h
tn

A(s)ds. In the following, it will be demonstrated how these series can be
derived significantly simpler by the theory derived above, and without the assumptions
on commutativity of A(t).

Let us start with discussing the B–series for the exact solution of (10). This is
already a non-autonomous, vertically split system, so the results of Section 3 hold. Let
•m represent gm, m = 0, 1, . . . ,M , •A represent the term A(t)X(t) that is linear with
respect to X(t) and •t be the node corresponding to t. Clearly, the term A(t)X can only
be differentiated once with respect to X , thus F (τ = [τ1, . . . , τκ]A) = 0 whenever there
is more than one τk ∈ ∪M

m=0Tm ∪ TA, that is, a node •A can have maximum one child
which is not in Tt. The following result is thus a consequence of Corollary 1.

Corollary 2. The solution X(t) of (10) can be written as a B-series where

1. The set of trees T = Tg ∪ TA is defined by

•m ∈ Tg for m = 0, . . . ,M and •A ∈ TA,

τ = [τ1, . . . , τκ]m ∈ Tg for all m = 0, . . . ,M if τ1, τ2, . . . , τκ ∈ T ∪ {•t},

τ = [τ1, •
κ−1
t ]A ∈ TA if τ1 ∈ T ∪ {•t}.

2. The elementary differentials are given by

F (•m)(x0, t0) = gm(x0, t0), F (•A)(x0, t0) = A(t0)x0, F (•t)(x0, t0) = 1,

F (τ = [τ1, τ2, · · · , τκ]m)(x0, t0) = (Dτgm(x0, t0))
(
F (τ1)(x0, t0), . . . , F (τκ)(x0, t0)

)
,

F
(
τ = [τ1, •

κ−1
t ]A

)
(x0, t0) =

{

A(κ)(t0) · x0 if τ1 = •t,

A(κ−1)(t0) · F (τ1)(x0, t0) otherwise.

We will now move our attention to the B–series of the exponential RK–method given
in (11). In the case of a constant A, the coefficients are usually represented as some kind
of functions of Ah or approximations of those, and the order conditions are found by the
series expansions of these functions. In the present case, with a time-dependent A, we

will assume that the coefficients Z
(m)
ij , i = 1, . . . , s, j = 0, . . . , s, and z

(m)
i , i = 0, . . . , s,

can be written in terms of a B–series

Z(A; t0, h)x0 =
∑

τ∈T̄A

α(τ) · Z(τ)(h) · F (τ)(x0, t0) = B(Z, x0, t0;h) (12)

where T̄A ⊂ T is the subset of T consisting of trees with no •m nodes, m = 0, . . . ,M .

Theorem 3. Assume that the method coefficients Zi0(A; t0, h), Z
(m)
ij (A; t0, h), z0(A; t0, h)

and z
(m)
i (A; t0, h) all can be written as B–series of the form (12), with Zi0(∅) = z0(∅) ≡

10



1.Then the stage values Hi and the numerical solution after one step Yi can both be
written as B–series

Hi = B(Φi, x0, t0;h), i = 1, . . . , s, Y1 = B(Φ, x0, t0;h),

where trees and elementary differentials are defined in Corollary 2 and with

Φi(∅)(h) = Φ(∅)(h) = 1,

Φi(•m)(h) =
s∑

j=1

Z
(m)
ij (∅)(h), Φi(•t)(h) = cih, i = 1, . . . , s,

Φ(•m)(h) =

s∑

i=1

z
(m)
i (∅)(h),

Φi(τ)(h) =

{

Zi0(τ)(h) if τ ∈ T̄A,
∑s

j=1 Z
(m)
ij (ϑ)(h) ·

∏κ

k=1 Φj(τk)(h) otherwise,

Φ(τ)(h) =

{

z0(τ)(h) if τ ∈ T̄A,
∑s

i=1 z
(m)
i (ϑ)(h) ·

∏κ

k=1 Φi(τk)(h) otherwise,

where (ϑ, {δ}) is the only non-zero element of SP (τ) for which ϑ ∈ T̄A and δ = [τ1, . . . , τκ]m ∈
Tg.

Example 6. Let

τ = [[[•2t ]A, •0]1, •t]A = A

t1

0A

tt

,

in which the stochastic node with color m = 1 is represented by a white node with index
1, the deterministic ones with shape 0 or t are represented by black nodes with the shape
as index, and the deterministic nodes with shape A are represented by red nodes with
index A. This is the same tree as presented in Example 2, where the mapping of the
corresponding node indices is given by 110 → 0, 111 → 1, 120 → A and 210 → t.
The elementary differential F (τ) can in this case be directly derived from Corollary 2,
F (τ) = ȦDτ1g1

(
Ä·, g0

)
where τ1 = [[•2t ]A, •0]1, Ȧ = dA/dt and Ä = d2A/dt2. The

weight function for the exact solution ϕ(τ) has not changed from Example 2,

ϕ(τ) =
1

3

∫ h

0

∫ s1

0

s42 ⋆ dW1(s2)s1ds1,

and the numerical weight function can be derived from Theorem 3 by noting that according
to Example 3, the only element (ϑ, {δ}) in SP (τ) with ϑ ∈ T̄A and δ ∈ Tg is given by

(ϑ, {δ}) =

(

12

21
,

{

111

1112

2121

})

=

(

A

t

,

{

1

0A

tt

})

:

Φ(τ) =

s∑

i=1

z
(1)
i ([•t]A) · Φi([•

2
t ]A) · Φi(•0) =

s∑

i,j=1

z
(1)
i ([•t]A) · Zi0([•

2
t ]A) · Z

(0)
ij (∅).

11



Proof of Theorem 3. From Lemma 1 the following can be deduced if φ(∅) ≡ 1:

gm(B(φ, x0, t0;h), t0 + ch) = B(ψ
(m)
φ , x0, t0;h)

where

ψ
(m)
φ (τ)(h) =

{∏κ
k=1 φ(τk)(h) if τ = [τ1, . . . , τκ]m,

0 otherwise

with the definition φ(•t) = ch. Further, by (12), Z(A; t0, h) = ∂2B(Z, x0, t0;h), so
Lemma 2 applies to Z(A; t0, h)gm(B(φ, x0, t0;h), t0 + ch).

Assuming that Hi = B(Φi, x0, t0;h) and Y1 = B(Φ, x0, t0;h), the method (11) can be
written in terms of B–series

B(Φi, x0, t0;h) = B(Zi,0, x0, t0;h) +

M∑

m=0

s∑

j=1

∂2B(Z
(m)
ij , x0, t0;h) ·B(ψ

(m)
Φj

, x0, t0;h),

B(Φ, x0, t0;h) = B(z0, x0, t0;h) +

M∑

m=0

s∑

i=1

∂2B(z
(m)
i , x0, t0;h) ·B(ψ

(m)
Φi

, x0, t0;h).

Now, by comparing term by term and applying Lemma 2, the statement of the theo-
rem follows by induction over the height of the trees, starting with the induction hypoth-
esis Φ(∅) = Φi(∅) ≡ 1. In addition, since each •A-node can have maximum one •m-node
as root of a child tree, for each τ ∈ T there is maximum one non-zero element (ϑ, {δ})
in SP (τ) with ϑ ∈ T̄A and δ ∈ Tg.

We will conclude the paper with an example from Yang et.al. [31], in which low
order terms are found and mean square convergence of order 1 for Stratonovich SDEs is
proved. We do not intend to reproduce their results, but we will only use this example
as a demonstration on how our theory can be applied.

Example 7. Given a semi-linear Stratonovich SDE with one-dimensional noise:

dX = A(t)X(t)dt + g0(X(t), t)dt+ g1(X(t), t) ◦ dW.

The following exponential midpoint rule was proposed by Yang et.al. [31]:

H1 = e
∫ tn+h/2
tn

A(s)dsx0 +
h

2
g0(H1, tn +

h

2
) +

∆Wn

2
g1(H1, tn +

h

2
),

Yn+1 = e
∫ tn+h
tn

A(s)dsx0 + e
∫ tn+h
tn+h/2

A(s)ds(
hg0(H1, tn +

h

2
) + ∆Wng1(H1, tn +

h

2
)
)
,

12



where ∆Wn =W (tn+1)−W (tn). Thus s = 1 and c1 = 1/2. The method coefficients are

Z10(A; tn, h) = e
∫

tn+h/2
tn

A(s)ds

= I +
h

2
An +

h2

8
(Ȧn +A2

n) +
h3

48

(
Än +

3

2
(ȦnAn +AnȦn) +A3

n

)
+ . . . ,

Z
(0)
11 (A; tn, h) =

h

2
, Z

(1)
11 =

∆Wn

2
,

z0(A; tn, h) = e
∫

tn+h
tn

A(s)ds

= I + hAn +
h2

2
(Ȧn +A2

n) +
h3

6

(
Än +

3

2
(ȦnAn +AnȦn) +A3

n

)
+ . . . ,

z
(0)
1 (A; tn, h) = e

∫ tn+h
tn+h/2

A(s)ds
h = hI +

h2

2
An +

h3

8
(3Ȧn +A2

n) + . . . ,

z
(1)
1 (A; tn, h) = e

∫ tn+h
tn+h/2

A(s)ds
∆WnI = ∆Wn +

h∆Wn

2
An +

h2∆Wn

8
(3Ȧn +A2

n) + . . . ,

where An = A(tn), Ȧn = Ȧ(tn), Än = Ä(tn).
It is clear that all method coefficients can be written as B–series of the form (12) and

fulfill the conditions required in Theorem 3.
This can now be used to find the weight function Φ(τ)(h) in Example 6. As s = 1 and

z
(1)
1 ([•t]A) = 3h2∆Wn/8, Z

(0)
11 (∅) = h/2, Z10([•2t ]A) = h3/48 we get Φ(τ) = 3h6∆W/768.

Clearly Φ(τ) 6= ϕ(τ), so the order condition related to this particular tree is not satisfied,
which could also not be expected, as the order of the tree is 6.5.

Note that although only SDEs with a commutative linear term are considered in [31],
the above shows that this result also holds for the noncommutative case, as the Lie-bracket
ȦA − AȦ is a term of order O(h3) and will thus have no effect on the order for a first
order method.

Appendix A. Example 2 applied to the SDE in Example 1

We will here provide the details on how the result presented in Example 2 for the
elementary differential looks like more concrete for the SDE introduced in Example 1.
The partitioned SDE in Example 1 is of the form

dX(1) = g
(1,1)
0 (X(1), X(2))dt+ g

(1,2)
0 (X(1), X(2))dt+ g

(1,1)
1 (X(1), X(2))dW1(t)

dX(2) = g
(2,1)
0 (X(1), X(2))dt

with

X(1) =

(
R
V

)

, X(2) = t.

The elementary differential F (τ) is then step by step developed, starting with

F ( 11 ) = g
(1,1)
0 =

(
0

fd(R, t)

)

, F ( 12 ) = g
(1,2)
0 =

(
V

−α(t)V

)

,

F ( 111 ) = g
(1,1)
1 =

(
0

fs(R, V, t)

)

, F ( 21 ) = g
(2,1)
0 = 1.

13



From Definition 2 we derive

F ( 12

2121

) =

(
0

−α̈V

)

, F ( 111

1112

2121

) =

(
0

∂2fs
∂V 2 · (−α̈V ) · fd

)

,

and finally for the tree

τ = 12

21111

1112

2121

of Example 2

F (τ) =

(
0

−α̇ · ∂2fs
∂V 2 · (−α̈V ) · fd

)

.

We notice that in the case when fs only depends on the position R, the elementary
differential for this tree is 0, thus even if the order condition is not satisfied for this
particular tree, it will still not contribute to the total error.
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Algorithms, 88(4):1641–1665, 2021.

[31] Guoguo Yang, Kevin Burrage, Yoshio Komori, and Xiaohua Ding. A new class of structure-
preserving stochastic exponential Runge-Kutta integrators for stochastic differential equations. BIT,
62(4):1591–1623, 2022.

15


	Introduction
	Stochastic B–series: Definitions and main results
	Non-autonomous SDEs
	Semi-linear SDEs and exponential integrators 
	Example 2 applied to the SDE in Example 1

