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Abstract

A new class of alloys was proposed in 2004, with its distinction derived from its high
configurational entropy. In the original paper, they gave credit to this entropy term in
stabilizing the alloy, and thus they named the alloys High-Entropy Alloys (HEAs). In
the last 20 years, attention has grown around these remarkable alloys and their qualities,
but with it a growing critical viewpoint has amassed against their seemingly simplified
postulation.
This thesis briefly discusses the creation of individual HEAs and thermodynamics of com-
plex crystal structures, though its focus remains on the stabilization effect that the entropy
term has on the alloys, with different models to calculate it.
As is shown, the ideal configurational entropy is a far too simple model to be able to
consistently predict phase stability for HEAs. The excess entropy terms that have been
proposed to be relevant are vibrational, electronic, magnetic, and deviation in the config-
urational entropy.
Data shown in this thesis indicates that vibrational and non-ideal configurational are the
most important among these, each potentially contributing a deviation of around 20%
from the ideal entropy. Calculating these parameters are computationally challenging,
however, and this paper suggests using machine learning to predict future stable HEAs
until better models are made.

Sammendrag
En ny kategori av legeringer ble foreslått i 2004, med sin distinksjon om at de har høy konfig-
urasjonell entropi. I den opprinnelige artikkelen pekte forfatterne på nettopp nettopp denne
entropi-termen som stabiliserings-mekanismen til legeringene, og de kalte dem derfor for høy-
entropiske legeringer (HEAs, fra High-Entropy Alloys).
Denne oppgaven vil diskutere termodynamikken bak HEAs, og de ulike modellene for å kvan-
tisere dette, samt stabiliseringseffekten som entropien har på legeringene.
Det blir vist at den ideelle konfigurasjonelle entropien er en altfor enkel modell til å konsekvent
kunne forutsi fasestabilitet hos HEAs. De overflødige entropi-termene som er relevante å ta med
er foreslått å være vibrasjonell, elektronisk, magnetisk, og avvik i den ideelle konfigurasjonelle
entropien.
Denne oppgaven framlegger data som indikerer at den vibrasjonelle og ikke-ideelle konfig-
urasjonelle entropien er viktigst blandt disse, samt at hver av disse kan bidra til å gi rundt
20% avvik fra den ideelle entropien. Å beregne disse parametrene viser seg dog å være utfor-
drene, og derfor anbefaler denne oppgaven å se videre på maskinlæring for å forutsi fremtidige
HEAs, frem til bedre modeller blir fremstilt.
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1 Introduction
The ever-lasting effect of new knowledge will forever outweigh the more temporary impact of
political revolutions or economic trends. One of the most driving fields of science, with this
respect, has been that of metallurgy. The discovery of new materials may happen accidentally
— like the discovery of steel —, or conscientiously — like the tin bronze that initiated the
bronze age. [1] At times, these revelations have even been so important as to give its name to
the whole era they initiated.

With todays greater understanding of material sciences, it is easier to create alloys with specific
qualities for intended purposes. This, in effect, makes metallurgic progress track our devel-
opments, instead of the other way around. The booming aircraft industry in the 1900s, for
instance, gave rise to a number of aluminium alloys with increasing yield strength (see figure
1.1). Similarly today, the green industries and information technology drives the metallurgic
field in search of novel materials with specific qualities. One contender for these necessities is
High-Entropy Alloys (HEAs).

Figure 1.1: Aluminium alloys introduced in aircraft, plotted against its yield strength.
Adapted from Polmear. [2]

The field of HEAs is fairly young. The exact term was first properly described in 2004. [3;4] Since
then, the number of publications regarding HEAs has steadily risen each year (see figure 1.2).

In the original paper of 2004, Yeh et al. defined HEAs as

those [alloys] composed of five or more principal elements in equimolar ratios [...]
with the concentration of each element being between 35 and 5 at.-%. [4]

This, albeit contradictory, definition was made to broaden the field from the easily defined
equimolar part. A typical way of crafting new HEAs is then to start with a known stable com-
pound, and gradually adding or subtracting one element at a time, Because there practically
speaking are an infinite amount of possible HEAs made in this way, they have the potential
of having many different properties; notably superconductivity, irradiation and corrosion resis-
tance, yield strength, thermal stability, and hydrogenation capability. [6–8] This makes HEAs

1
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Figure 1.2: Number of publications related to high-entropy alloys from 2004 until 2015. Reused with permis-
sion from Yeh. [5]

suitable in use for a number of important industries and needs, such as in nuclear plants, solar
cells, hydrogen storage, etc. [9–11]

In order to predict the properties of a crafted alloy, one needs good calculable theoretical mod-
els. There are a number of theorized effects of HEA structures that give them the possibility
to carry the aforementioned properties. These are the high mixing entropy, the severe lattice
distortion, the cocktail effects, and sluggish diffusion. [3] While the modellation of each of these
deserves a discussion, this thesis will focus on the mixing entropy.

The entropy effect is the distinctive property of HEAs, and is even included in the formal
definition in some later theses. [12] It is then essential to have a proper physical model for it,
not only to affirm the identity of the material, but to also be able to predict the phase stabilities
and properties of different compositions.

A number of such models have been proposed, with varying degrees of complexity. [3] The
problem herein stems from the complexity of the material itself. It has numerous different
interpretations, and physicists and chemists attempt to find out which contributions to the
entropy term are necessary, and which ones to scrap.

Potential condidates are the configurational, vibrational, magnetic, and electronic contribu-
tions. We shall take a look at each of these individually, compare their magnitudes, and
hopefully separate the useful from the superfluous. We do this by first studying the theory
behind HEAs, and some useful thermodynamics, before discussing some useful data obtained
from previous studies.

2
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2 Theory

2.1 High-Entropy Alloys
The formal definition of a high entropy alloys is disputed. As mentioned above, it was in-
troduced as a composition of more than 4 different elements i, with the molar fraction xi

as 0.05 < xi < 0.35. However, more recently, another proposed definition has become more
popular. This defines HEAs as materials with ∆S > 1.6R, where R is the molar gas constant
R = 8.3145 m2 kg s−2 K−1 mol−1 [12], and ∆S is the difference in entropy from mixing the
components in the alloy.

The high mixing entropy stems from the increased multiplicity in the crystal when adding each
element. As the entropy stabilization effect is dependent on temperature one would expect the
alloys to have a high thermal stability [9;13], as is shown for many HEAs. We shall see in the
following subsection how this can be calculated.

In addition to this condition, one can include the constraint that the material has to be single-
phase, solid solution (SS). This, simply coming from the fact that this is usually the wanted
phase for the material. The common alternative is that the alloy transitions to an intermetallic
(IM), where there is ordering within the solid.

HEAs typically fit the models of body-centered cubic (BCC), face-centered cubic (FCC), or
sometimes hexagonally close-packed (HCP). [14]. An important presumption in the materials
is that no particular configurational regularity exists within the lattice, something that in fact
can be observed. [15]

2.2 Thermodynamics
In Gibbs free energy-model we assume constant temperature and pressure, to define the fol-
lowing thermodynamic relation:

G = H − TS (2.1)

Here, H is enthalpy, T is the absolute temperature, S represents the entropy, and G is the
Gibbs free energy. In the common case of minimizing G, one finds the state of which the system
is most leninent towards. Therefore, it is common practice to use the following relation,

∆G = G2 −G1 = ∆H − T∆S, (2.2)

where the ∆ represents difference of some property after a given change in the system. If G
then should be lowered for a spontaneous change in the system, it is equivalent to saying that
∆G should be negative. The absolute temperature in eqn. (2.2) is always positive, so a positive
change in entropy for a given change is favourable for it to occur spontaneously.

The spontaneity comes in play when the alloy is finished casting, and starts cooling. Gradually,
the entropy term will have less impact because of the sinking temperature. This can often give
rise to separate phases within the alloy, and avoiding this is ultimately the goal. [3] To explain
this, the terms enthalpy and entropy will need elaboration, as they are ubiquitous in the
following discussion.

Entropy is the degree of multiplicity in a system, as defined by Boltzmann and Gibbs, through
Boltzmann’s law:

S = k lnW (2.3)

Where k is the Boltzmann constant k = 1.38065 · 10−23 m2 kg s−2 K−1, and W is the mul-
tiplicity of the system, meaning the numbers of possible microstates it has (see e.g Dill and
Bromberg [16]).

In a solution with r components, each with Ni number of particles out of a total of N , the
increase in entropy from mixing said components together can then be calculated: First, one
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assumes that the particles occupy discrete points on a lattice. If we assume that the lattice is
filled in the case of condensed matter, it would contain the same indistinguishable particle on
every point. In other words, the configurational multiplicity of pure solids is 1, meaning the
entropy (from eqn. (2.3)) is 0. If one were to mix said solids together, the multiplicity would
have to be calculated:

W =

r∏
i=1

N !

Ni!
(2.4)

This is based on the N ! number of ways the particles can be distributed on the lattice. The
denominator takes into account that the particles from each component are indistinguishable
amongst themselves, and each component with Ni particles can be arranged in Ni! ways that
are indistinguishable. For the logarithm of the multiplicity, we get:

lnW = ln

r∏
i=1

N !

Ni!
= lnN !−

r∑
i=1

lnNi! (2.5)

As N is typically large, on the scale of Avogadro’s number, using Stirling’s approximation(see
figure 2.1), that for large N , lnN ! ≈ N lnN −N , is valid:

lnW ≈ N lnN −
r∑

i=1

Ni lnNi (2.6)

Further, one can exploit that
r∑

i=1

Ni = N :

lnW ≈
r∑

i=1

Ni lnN −Ni lnNi =

r∑
i=1

Ni ln
N

Ni
= −

r∑
i=1

Ni ln
Ni

N
(2.7)

When the starting substrates then are all pure, i.e S1 = 0, the ∆Smix is only dependent on the
finished product.

∆Smix = k

(
−

r∑
i=1

Ni ln
Ni

N

)
(2.8)

Or, more commonly:

∆Smix = −nR

r∑
i=1

xi lnxi, (2.9)

where n is moles of particle i. This model, in addition to using the Stirling’s approximation
(see figure 2.1), assumes ideal behaviour of the solution, which comes with certain assertions.

The vibrational entropy is a component of the total entropy that emerges if one includes the
vibrational motion within systems. For a molecule, this can mean the harmonically approxi-
mated oscillations within different bonds, and for metallics it can include the multiplicity of
possible phonon-waves within the material.

To possibly calculate, some new variables are introduced, Helmholtz free energy F , internal
energy U , and the partition function Q.

F = U − TS (2.10)

F = −kT lnQ (2.11)

There are now two methods of solving for the entropy; Either by combining eqn. (2.10) with
eqn. (2.11) to get eqn. (2.12) or by differentiating F with respect to temperature (assuming
U is not temperature-dependent):

S = k lnQ+
U

T
(2.12)

4
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(a) From N = 1 to N = 15 (b) From N = 1 to N = 1000

Figure 2.1: Stirling’s approximation, lnN ! ≈ N lnN , plotted together with the exact solution, showing the
validity of the approximation for large N .

S = −
(
∂F

∂T

)
(2.13)

The partition function is the sum of the probabilities of a system being in a possible state:

Q =

t∑
j

e−
Ej
kT (2.14)

Here, the energy of a given state j is represented by Ej , with t being the number of possible
states for a molecule. If the system then has multiple energy-dependencies, we can write

Q =

t∑
j

e−
E1j+E2j

kT

Q =

t∑
j

(
e−

E1j
kT e−

E2j
kT

)
Q = q1q2 (2.15)

The partition function can be further divided into different energy contributors, and these can
both represent other particles, or other energy states. Quantum mechanics makes the following
contributions calculable and typically used.

Q = qtranslationqvibrationqrotationqelectronic (2.16)

This implies that one can separately calculate each contribution to the Helmholtz energy, and
thus the entropy, if one can define and calculate its partition function.

F = −kT ln (qtranslationqvibrationqrotationqelectronic) (2.17)

The most important takeaways from these for our purposes: [17]

Fvib = −kT ln qvib (2.18)

Felec = −kT ln qelec (2.19)

Finding accurate partition functions for large systems proves complicated, however. For ex-
ample, a common way to calculate the vibrational partition function is to use the density of
states of phonons. An example of a simpler method could be to use the Einstein model for
solids.

5
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In the Einstein model, one assumes that each atom vibrates independently, in all three direc-
tions. [18] This means that for N particles in the system, there will be a total number of 3N −6
vibrational modes ≈ 3N for purposes with large N, such as ours. One can then calculate the
energy for each vibrational mode, considering only nearest-neighbour interactions.

Using harmonic oscillator for quantum vibrations, and the sum of a geometric series, the
vibrational partition function for a diatomic becomes

qvib =
e−

hv
2kT

1− e−
hv
kT

(2.20)

h being Planck’s constant, and

v =
1

2π

√
kc
µ

(2.21)

kc is here the spring constant in the chemical bonds, or the vibrational mode, and µ is the
reduced mass of the two particles. In Einsteins model, we then have 3N such partition functions,
and the total vibrational partition function for the solid will be:

Qvib =

3N∏
i=1

qvibi (2.22)

Combining this with eqn. (2.18) yields the following:

Fvib = −kT ln

3N∏
i=1

qvibi

Fvib = −kT

3N∑
i=1

ln
e−

hvi
2kT

1− e−
hvi
kT

Fvib =
h

2

3N∑
i=1

vi + kT

3N∑
i=1

ln
(
1− e−

hvi
kT

)
(2.23)

The final expression can then be used to find the vibrational entropy, by eqn. (2.13):

Svib = −
(
δF

δT

)
= k

3N∑
i=1

 hvie
−hvi

kT

kT
(
1− e−

hvi
kT

) − ln
(
1− e−

hvi
kT

)
Now applying Bragg-Williams approximation, for an r-component equiatomic solid:

Svib = k
6N

r(r + 1)

r(r+1)
2r∑
i=1

 hvie
−hvi

kT

kT
(
1− e−

hvi
kT

) − ln
(
1− e−

hvi
kT

) (2.24)

The last equation is exploiting that there are a possible number of r(r+1)
2 different nearest-

neighbour bonds in the solid. Using Bragg-Williams approximation, this would mean that
there would be an average of 6N

r(r+1) units of that bond in the solid. Summing these up should
then yield the total contribution from all modes.

In both configurational and vibrational entropy calculations there are now models introduced
that both apply the Bragg-Williams approximation. What this approximation means, in prin-
ciple, is that the mixing would happen in the same way as mixing r boxes of identical balls,
but with r different colors. At any location of this mixture, one would expect the probability
of finding a ball of a given color to be given solely by the fraction of that colors’ presence in the

6
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mixture. This is the Bragg-Williams approximation, which approximates a solution by saying
the probability of finding any particle at a given matrix point is simply given by its number
density. [16]

What this approximation disregards, then, is all unique properties of said particles that give
them a site preference within the matrix, such as electron-affinity, size or otherwise shape,
particle interactions, etc. A detailed model for entropy in HEAs will include these in the
calculation.

One way of doing this is to use Monte Carlo simulations. If so, one first assumes a structure
of the system. This structure, with all its particles, is then reorganized in a computer in a
step-wise manner, based on probabilities. The probabilities of, say a switch of the configuration
of two atoms, is calculated based on an energy change of the two states. Equilibrium is then
obtained when the number of changes back and forth is equal.

This does not mean that the probability of a change must be 0.5 at equilibrium, but rather, it
can be represented by the following equation:

nipi→j = njpj→i (2.25)

where i and j are two different states, and p is the probability of some change of state. [19]
When reaching a state that satisfies this condition for all possible changes, the system is in
equilibrium. At that point, measurements can be made to calculate the realistic configurational
entropy, along with other values. [20] The ideal configurational analogy to this would be to set
p = 1/z for all p, where z is the number of possible state changes, meaning they are all just as
likely.

The way Monte Carlo simulations can deviate from this ideality, however, is to base the prob-
abilities on parameters of already acquired data about the particles, p = e−

∆E
kT . Here, ∆E

represents the difference in energy between the final state and the initial state. [17] The choice of
parameters and their effect on the energy levels — and thus the probabilities of state changes —
is then left up for discussion. Another analogy to the ideal configurational entropy in this case
would be that the change of energy for any given state change would be 0, making all p = 1.

3 Discussion
There is yet to be a model that satisfactorily predicts the formation of single phase HEAs. [21]
The problem stems from the very nature of HEAs, namely its complexity.

As Troparevsky et al. points out, one should for instance calculate every combination of compo-
nents and their individual phase stability, in order to accurately compare their competitiveness
with SS phase of the HEA. [22] This, of course, is an unrealistic prospect, and approximative
models must be made, the problem being that with every simplification of each parameter, the
predictions lose their accuracy.

The foremost discussion should be to what degree entropy needs to be weighted. From
eqn. (2.1), we know that entropy may be in competition with enthalpy in deciding whether a
state is stable. If either entropy or temperature is low enough, enthalpy would be the domi-
nant decider. In this case, entropy calculation could be neglected, and nothing but the mixing
enthalpy would have to be calculated, as is the case with most other alloys.

An important point is made on this by Miracle and Senkov, who emphasizes that systems
with large negative enthalpy values of SS phase are likely to have just as large for the IM
phase. [3] Calculations of mixing enthalpy for HEAs typically lies between +5 kJmol−1 and
−20 kJmol−1 (see table 3.1). [23;24] This can be compared to the ideal configurational entropy
for an equiatomic alloy with r components using eqn. (2.9):

∆Smix

n
= −Rr

1

r
ln

1

r
= 8.314 ln r JK−1mol−1 (3.1)

7
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With r between 4 and 8, and temperatures ranging from 100K to 1500K, this free energy con-
tribution is between 1.15 kJmol−1 and 25.9 kJmol−1. While it should be acknowledged that
the real configurational entropy most likely will yield lower values than this ideal version, it is
still in the same scale as the mixing enthalpy, and can not be ignored.

Table 3.1: Examples of calculated values of ∆Hmix for various HEAs, at temperatures around 1700K adapted
from Yang and Zhang, with calculated ideal entropy of mixing. [23]

Alloy Structure ∆Hmix [kJmol−1] 1700K·∆Sideal[kJmol−1]
CoCrFeNiAl BCC -12,32 22.75

CoCrFeNiCuAl3 BCC -10.56 23.57
CoCrFeNiCu0.5Al BCC -7.93 24.96

CoCrFeNiCu FCC 3.20 22.75
Ti0.5CoCrFeNiCu FCC -3.70 24.96

CoFeNiCuV FCC -1.78 22.75

Secondly, one should determine which entropy-terms need to be included, based on their mag-
nitudes. Ideal configurational entropy is calculated from eqn. (2.9). Beyond this, Wang et al.
found the excess entropy contribution to be 0.9R and 0.7R at 300K for equiatomic NiCoFeCr
and NiCoCr, respectively. [25] This is compared to their ideal configurational entropies of 1.39R
and 1.10R. The differences here suggests that the excess entropy is imperative to include, and
the following question becomes what constitutes the excess entropy.

S = Sideal + Sexcess (3.2)

The possible contributers are the deviation between real and ideal configurational entropy,
or vibrational, electronic, or magnetic entropy. To find the deviation between real and ideal
configurational entropy, an atomistic Monte Carlo simulation can be used.

Liu et al. found with this method a lattice constant for CoCrFeNi that were 0.2% off the
experimental value, meaning the final modelled structure could very well be realistic. With
the same model and alloy, they calculated a configurational entropy of 1.329R at temperature
1373K. This is remarkably close to, about 4% less than, the ideal configurational entropy. [20]
This means in principle that each atom within the structure should have a very close to equal
chance of having any other atom next to it (see figure 3.1).

In the same article, Liu et al. models the effect of changing mixing enthalpy and atomic size
differences. They created 4 hypothetical alloys, each created by replacing one of the atoms
in CoCrFeNi with a fictional atom Me. They then adjusted the values for the size difference,
measured as δ (where δ < 0 or δ > 0 respectively indicates a reduction or increase in atomic
size from the original atom), for one set of simulations, and adjusted the mixing enthalpy for
another set. The results shown in figure 3.2 tell the story of how these parameters affect the
true configurational entropy of alloys.

The curves in figure 3.2a all clearly indicate some ideal size difference where the entropy is
close to that of the ideal configurational entropy, i.e S/Sideal ≈ 1.0. An argument for this
is that large atomic size differences would distort the lattice, and cause some atoms to have
preferences for specific lattice sites. this creates a certain regularity in the alloy, which serves
to decrease the entropy.

The mixing enthalpy is a good indication of how likely the constituents of the alloy is to bind
together. A high mixing enthalpy can make it less likely for atoms to interact with other
components, making it separate. A too negative mixing enthalpy, on the other hand, can make

8
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Figure 3.1: a) A representative structure of equiatomic CoCrFeNi. b) Probability of first-nearest neighbour
being the given atoms. Reused with permission from Liu et al. [20]

(a) Ratio of measured and ideal configurational, as a
function of size difference δ.

(b) Ratio of measured and ideal configurational entropy, as
a function of mixing enthalpy

Figure 3.2: Variation in ratio between measured and ideal configurational entropy, as functions of size differ-
ence(a) and mixing enthalpy(b). Calculations done from atomistic Monte Carlo simulations for 4
hypothetical alloys, reused with permission from Liu et al. [20]

some atoms interact too strongly, creating intermetallics, and reducing the overall entropy. [23]
This result is also well depicted in the simulation of Liu et al (see figure 3.2b).

Another thing Monte Carlo simulations vividly demonstrates, is the dependency of W on tem-
perature. When the temperature is high, the multiplicity of the system increases, because an
increasing amount of states become accessible. This is something that the ideal configurational
entropy fails to acknowledge. [26]

According to Miracle and Senkov, the vibrational entropy is dominant in the total entropy of
the HEAs (see figure 3.3a). However, they argue, it is equally dominant in the IM phase of
the alloys they calculated for, meaning that its stabilization-effect on the SS-phase would be
limited. [3]

Others, on the other hand, can be cited in saying that the vibrational entropy of mixing is
crucial. Gao et al. predicts a positive value of this parameter for one alloy, and a negative for
another. [28] These are plotted by Gao et al. in another article (see figure 3.4) together with a
third alloy that has a neutral mixing entropy of vibration. [27]

9
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(a) Vibrational entropy together with the ideal configura-
tional entropy, reused with permission from
Gao et al. [27]

(b) Vibrational entropy, approximated using Einstein’s
model

Figure 3.3: Vibrational entropy plotted for temperature ranging from 1K to 1500K.

Although the average mixing entropy of vibration for possible HEAs might then be close to
0, the variation in each individual case could very well be the deciding factor in creating the
stable SS phase. This fact has been known in binary alloy-crafting for some time. Already in
2002, van de Walle and Ceder published vibrational entropy differences on the scale of 0.1 and
0.2 R, both theoretical and experimental, and concluded that it has dramatic impact on the
phase stability predictions of binary alloys. [29]

Knowing, then, that vibrational mixing entropy is a generally important parameter for phase
stability in alloys, a pressing question becomes whether or not the vibrational mixing entropy
increases with increasing the number of components. If so, it would have to be incorporated into
the identity of HEAs who is at present solely characterized by its configurational component.
After all, the vibrational entropy of the materials in figure 3.4(a,b) would be about 20% of the
ideal configurational at room temperature; clearly substantial amounts.

Körmann et al. found an increase of Svib with increasing the number of equimolar components r
for one set of materials. [30] They explained this phenomenon, however, not as as a consequence
of having more components r, but as a consequence of the increased volume of the alloy from
its gradually distorted lattice — something which is known to increase the vibrational entropy.
Indeed, for another set of alloys with more stable volume, the vibrational entropy was equally
stable.

The simple Einstein model also supports that the number of components r does not directly
impact the vibrational entropy, in the same way it does for configurational. If one looks at
eqn. (2.24), one finds that increasing r does not impact the scale of the entropy. Rather, a
change would come from introducing a new element with different force constants or masses.

Körmann et al. also commented on the effect of the newly added components’ mass, claiming
that decreasing the average mass of the alloy would increase the vibrational entropy. This can
also be supported by the Einstein model, which is made clear when derivating the entropy with
respects to vi:

∂Svib

∂vi
= − h2

kT 2

6N

r(r + 1)

r(r+1)
2∑

i=1

e−
hvi
kT(

1− e−
hvi
kT

)2 (3.3)

Eqn. (3.3) shows that the change of vibrational entropy with respects to change in vi is negative
for all possible values of vi and T . This means that an average increase in spring constant kc
or, notably, a decrease in average reduced mass µ (see eqn. 2.21), increases the entropy.

One view in the HEA field seems to be that the electronic entropy of mixing is truly negligable,
i.e only the electronic ground state is occupied. [27] Meanwhile, the magnetic entropy seems to
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Figure 3.4: Vibrational and electronic entropy of mixing by temperature (a-c), with their Helmholtz free
energy contribution by temperature (d-f), reused with permission from Gao et al. [27]

be up for discussion when the HEAs contain elements with magnetic properties. Wang et al.
claims that for NiCoFeCr, magnetic entropy would be dominant among the excess entropy
terms in the range 300K to 1000K. [25] This is, albeit, an alloy containing three ferromagnetic
materials, Ni, Co and Fe, but it is certainly notable, and should motivate elaboration for
different alloys. There are more than one way of quantifying it, but one is by using the
following expression:

∆Smag =

∫ B1

B0

(
∂M

∂T

)
B,p

dB (3.4)

where M is the magnetization of the alloy, and B is the strength of the electric field applied on
the alloy. [31] This can then be measured experimentally, by measuring changes in magnetization
for different T and B.

There are other methods of predictions besides the ones discussed above, that deserve men-
tioning.

Density Functional Theory (DFT) is currently the standard for predicting thermodynamic
properties and phase stability in HEAs. This method uses state functionals of electrons within
systems to calculate parameters for the entire system. It is, unfortunately, not only too com-
putationally demanding to be explained further here, but also to be used in large scale in the
HEA field. [32] One exciting prospect is utilizing machine learning to calculate the vibrational
entropy. Manzoor and Aidhy used machine learning to predict Svib following another predic-
tion of the force constants ci within HEAs. First taking 96 hours to computationally calculate
their parameters with DFT as reference points, they later found well matching force constants
and vibrational entropy for HEAs in a matter of seconds. [32]
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The HEA field is already semi-empirically based, with trial and error as a method of ultimately
finding a good prediction-model for stable phases. While a computer’s machine learning might
not be as romantic as the mechanistic approach, it might be wise in this case to follow Manzoor
and Aidhy’s idea, which have already given good results. [32] From there, one can instead move
backwards, and build a theory that matches the numbers.

4 Conclusion
20 years has past since Yeh et al. published their first article explicitly defining HEAs. What
may have seemed at the time a simple definition and mechanic has since then been increasingly
complex, with more parameters, terms, suggested mechanics, and semi-empirical equations
being launched each year, to better predict the phase stability of the exciting alloys.

It has been shown that the entropy, in particular, is a complex subject in the field. The ideal
solution approximation gives an alluringly simple calculation for the configurational entropy.
While we have shown that this term indeed is dominating the total entropy in the system, the
excess term is too large to leave out.

In systems that has temperature T < 1000K, large absolute mixing enthalpy, or substantial
atomic size difference, especially, the configurational entropy will be much lower than what the
ideal approximation predicts. A better approach then would be to simulate the system using
Monte Carlo simulations.

For high temperatures, Wang et al. considers the magnetic entropy to be the dominant term
in the excess entropy. [25] Their measuring was only for one intentional set of alloys, however,
and this should be looked at further for other alloys.

Another discovery is the change in vibrational entropy that can arise when mixing the compo-
nents. Data indicates that its magnitude can be up to 20% of the ideal configurational, and
can either contribute to stabilize the SS phase, or induce separation to IMs. Whether this is
solely from size and mass changes in the system, or if it is some intrinsic effect in adding more
components is still up for debate.

The Einstein model of solids was introduced, as an example of a simplified model for one
of the entropy terms, namely the vibrational. This model gave no indications of any direct
correlations between number of equimolar components and the vibrational entropy of the solids,
something that Körmann et al.’s data supported. [30]

Regardless, these terms, namely the configurational and vibrational components, are the domi-
nant factors when calculating the entropy of HEAs, and serves as equally important predictors
of phase stability with the mixing enthalpy. [20] For now, the models of calculating these excess
entropy terms are too computationally demanding for it to be used in large scale search of
new stable HEAs. This thesis therefore recommends further look into machine learning as
a possible method of prediction, and in time when more data is acquired, better theoretical
models can be made.
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