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Abstract
Wedefine aReal version of smoothDeligne cohomology formanifoldswith involutionwhich
interpolates between equivariant sheaf cohomology and smooth imaginary-valued forms.Our
main result is a classification of Real line bundles with Real connection on manifolds with
involution.
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1 Introduction

In [2] Atiyah introduced Real vector bundles, which are complex vector bundles on a space
X with involution equipped with an antilinear conjugation map. The K -theory of Real bun-
dles generalizes both orthogonal KO-theory, ordinary complex K -theory and self-conjugate
K SC-theory. Real vector bundles play an important role in mathematical physics. A recent
example is given by the result of de Nittis and Gomi in [10] that topological insulators are
classified by isomorphism classes of Real line bundles over spheres and tori equipped with
certain natural involutions. Indeed, the study of line bundles with connection, and their higher
form generalisations in terms of gerbes, has long played an important role in mathematical
physics and string theory. For example, in quantum field theory the choice of a connection
on certain line bundles plays a role in defining partition functions. Specifically, gauge invari-
ance often requires the partition function to be a section of a line bundle over the space of
structures under consideration. This space is usually interpreted as a Jacobian of some form
(see, e.g., [25] for more details). Differential cohomology has also lately become a vital tool

B Gereon Quick
gereon.quick@ntnu.no

Peter Marius Flydal
petermf@live.no

Eirik Eik Svanes
eirik.e.svanes@uis.no

1 Department of Mathematical Sciences, NTNU, Trondheim, Norway

2 Department of Mathematics and Physics, Universitet i Stavanger, Stavanger, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40306-024-00538-4&domain=pdf


P. M. Flydal et al.

in understanding Dirac quantization and anomalies, particularly with regards to higher form
symmetries and gerbes (see, e.g., [1, 8, 20] with the references therein). A mathematical
exploration of such structures and all their variants is hence warranted.

As for ordinary bundles, the differential geometry of a Real vector bundle E can be
studied using Real connections on E . This motivates the construction of a Real differential
refinement of integral equivariant cohomology. This construction and its application to the
study of Real line bundles are the purpose of this paper. In the future we hope that this will
help to provide a classification of Real vector bundles together with a Real connection on
manifolds with an involution, similar to the classification of bundles with a connection on
smooth or complex manifolds via Deligne cohomology as in [13]. An important example
of a Real connection is provided by the Berry connection which may be viewed as a link
between quantum mechanics and topology as formulated in [3] and [23] (see also [6]). The
Grassmann–Berry connection on the Bloch bundle has also been studied in [10, Section II
D].

In the present paper we begin this analysis with a study of the low degrees of a Real
differential cohomology theory and the case of Real line bundleswith a Real connection. Now
we briefly summarise ourmain result. LetC2 denote the cyclic group of order 2. Let (M, τ ) be
a manifold with involution and let H∗(M,C2;F) denote C2-equivariant sheaf cohomology
with coefficients in the C2-sheaf F . Let Ek(M) denote invariant smooth imaginary valued
forms on M and let Ek

0 (M) denote the subgroup of closed integral imaginary-valued forms.

Theorem 1.1 Let (M, τ ) be a manifold with involution. For every q, p ≥ 0, there are coho-
mology groups Hq

D,R(M;Z(p)), which we call Real smooth Deligne cohomology, such that

H p
D,R(M;Z(p)) fits into a short exact sequence

0 → E p−1(M)/E p−1
0 (M) → H p

D,R(M;Z(p)) → H p(M,C2; iZ) → 0.

For p = 2, this sequence is isomorphic to

0 →

⎧
⎪⎪⎨

⎪⎪⎩

isom. classes of
Real connections
on the bundle
M ×U (1)

⎫
⎪⎪⎬

⎪⎪⎭

→

⎧
⎪⎪⎨

⎪⎪⎩

isom. classes of
Real line bundles
wi th Real
connection over M

⎫
⎪⎪⎬

⎪⎪⎭

→

⎧
⎪⎪⎨

⎪⎪⎩

isom. classes
of Real
line bundles
over M

⎫
⎪⎪⎬

⎪⎪⎭

→ 0,

wherewe considerU (1)with theC2-actiongivenby complex conjugationand equip M×U (1)
with the C2-action induced by each factor. For q < p, there is a natural short exact sequence
of the form

0 → Hq−1(M,C2; iR)/Hq−1(M,C2; iZ)free → Hq
D,R(M;Z(p)) → Hq (M,C2; iZ)tors → 0.

The group H2
D,R(M;Z(3)) is in bijection with the set of isomorphism classes of Real line

bundles with flat Real connection.

We note that similar cohomology theories have been developed previously. In [15]
Gomi constructs equivariant smooth Deligne cohomology in greater generality, but does
not consider the applications to Real bundles with Real connection. In [10] de Nittis and
Gomi classify Real vector bundles on manifolds with involution in low dimensions using
H2(M,C2; iZ). We hope that the groups H p

D,R(M;Z(p)) will help to explore the mixed

case when H2(M,C2; iZ) has both a free and a torsion part (see [10, Remark 3.18]). In [11]
dos Santos and Lima-Filho develop an equivariant Deligne cohomology theory using Bre-
don cohomology. In even degrees, however, the choice of action on the coefficients does not
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seem suitable for the classification of Real bundles. In [16] Grady and Sati construct twisted
Deligne cohomology using classifying stacks which fits into a differential cohomology dia-
mond and may be used to obtain similar classification results. In [5] variations of the Deligne
complex we study occur without taking the C2-action into account. In [12] and [18, 19] it is
shown that higher cohomological degrees of equivariant integral cohomology classify Real
bundle gerbes. The connection between gerbes and Deligne cohomology (see [4, Chapter V])
raises the question whether the Real Deligne cohomology proposed in the present paper may
be applied to the study of Real gerbes with Real connective structure and curving. We have
not explored this question further. Overall, we believe that there are significant differences
to the existing literature and that the present paper adds a new perspective.

2 Manifolds with Involution and Real Bundles

Let C2 denote the cyclic group of order 2. We recall the definition and basic properties of
C2-spaces and Real bundles.

Definition 2.1 AC2-space, or an involutive space, is a topological space X with a self-inverse
homeomorphism τ : X → X .We call aC2-space (M, τ ) aC2-manifold ifM is a paracompact
smooth finite-dimensional manifold without boundary and τ is smooth. We will often just
write M for (M, τ ). A morphism between C2-manifolds (M, τ ) and (N , σ ) is a smooth map
f : M → N that commutes with the involutions, i.e., f ◦ τ = σ ◦ f . We denote the category
of C2-manifolds by ManC2 .

Examples of compact C2-manifolds are given by compact subspaces of CN closed under
complex conjugation using the conjugation as involution, as for example U (n) for N = n2;
in particular, the unit circle U (1) with complex conjugation. Other important classes of
examples are given by the n-dimensional spheres Sn with the antipodal involution, and tori
consisting of products of copies ofU (1) and Sn . We now recall the definition of Real bundles
over C2-spaces from [2, p. 368]:

Definition 2.2 Let (M, τ ) be a C2-manifold. A Real vector bundle over (M, τ ) is a complex
vector bundle π : E → M over M such that E is a C2-manifold (E, σ ) such that the
projection π : E → M commutes with the involutions, π ◦ σ = τ ◦ π , and the restriction of
σ to Ex → Eτ(x) is C-anti-linear, i.e., σ(λe) = λσ(e) in Eτ(x) for every e ∈ Ex and λ ∈ C.

The following result is a consequence of [9, Proposition 4.10] (see also [10, §2]).

Proposition 2.3 Let (M, τ ) ∈ ManC2 be compact and let (E, σ ) be a Real bundle over
(M, τ ), with projection map π : E → M. Then (E, σ ) is equivariantly locally trivial, i.e.,
for every p ∈ M, there exists a τ -invariant neighborhood U of p and an equivariant home-
omorphism h : π−1(U ) → U × C

n where the product bundle U × C
n → U is endowed

with the Real structure given by complex conjugation on C
n. Moreover, if p = τ(p), the

neighborhood U can be chosen to be connected. If p �= τ(p), U can be chosen as the union
of two disjoint open sets U := U ′ ∪ τ(U ′) with p ∈ U ′.

Remark 2.4 Proposition 2.3 implies that every (M, τ ) has a trivializing cover {Ui }i∈I such
that everyUi is connected, by splitting sets of the formUi = U ′

i ∪τ(U ′
i ) into their components

if necessary. We then get an induced action of the involution τ on the index set I in the
following way: For every i ∈ I , we have τ(Ui ) = Uj (where j = i is possible), and we
define τ(i) := j .
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Definition 2.5 Let (M, τ ) be aC2-manifold. A cover U = {Ui }i∈I of M is called aC2-cover,
or an equivariant cover, if everyUi ∈ U satisfies τ(Ui ) ∈ U . AC2-cover is said to bewithout
fixed points if the induced action on the indexing set is free.

Remark 2.6 We can turn a C2-cover into a cover without fixed points by adding double
occurrences of the sets Ui fixed by the involution τ .

Definition 2.7 Let (M, τ ) be a C2-manifold. An equivariant partition of unity of (M, τ ) is
an ordinary partition of unity {φi }i∈I , subordinate to an equivariant cover U = {Ui }I , and
such that every function φi : Ui → R satisfies

φi ◦ τ = φτ(i).

Remark 2.8 If {θi }i∈I is an ordinary partition of unity subordinate to an equivariant cover,
we can turn {θi }i∈I into an equivariant partition by setting

φi (p) := 1

2
(θi (p) + θi (τ (p))).

Remark 2.9 Let (M, τ ) ∈ ManC2 be compact and E → M be a Real vector bundle. As
explained in [9, Remark 4.11], by taking an equivariant trivializing cover and by patching
together using equivariant partitions of unity we can equip E with a Hermitian metric which
is compatible with τ . By [10, Corollary 2.7] the set of isomorphism classes of Real vector
bundles of dimension n over (M, τ ) is in a natural one-to-one correspondence with the set of
isomorphism classes of Real principal U (n)-bundles. Hence results on Real vector bundles
may be translated to similar statements on Real principal U (n)-bundles. We have chosen to
work mostly with the former in this paper.

Definition 2.10 Let (E, σ ) be a Real vector bundle over (M, τ ), and let Γ (E) denote its
space of sections. There is an induced involution σΓ on Γ (E) given by

σΓ (s) := σ ◦ s ◦ τ for s ∈ Γ (E).

A fixed point of the action σΓ is called a Real section of E .

Let (M, τ ) ∈ ManC2 and let Ak(M,C) denote the space of complex-valued smooth k-
forms overM . For a Real vector bundle (E, σ ) over (M, τ ), we define the space of differential
k-forms with value in E as

Ak(M, E) := Γ (E) ⊗A0(M,C) Ak(M,C)

with involution, denoted by σk : Ak(M, E) → Ak(M, E), given by

σk(s ⊗ ω) := (σ ◦ s ◦ τ) ⊗ (τ ∗(ω)).

An ordinary connection on the underlying bundle E is a differential operator

∇ : Γ (E) = A0(M, E) → A1(M, E)

which satisfies the Leibniz rule. The involutions σ0 and σ1 on 0- and 1-forms, respectively,
induce an involution σ̃ on the space of connections by setting

σ̃ (∇) := σ1 ◦ ∇ ◦ σ0.

Following [10] we can now define the notion of a Real connection as follows:
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Definition 2.11 Let (M, τ ) be a C2-manifold and (E, σ ) a Real vector bundle on (M, τ ). A
connection ∇ on E is called a Real connection if ∇ = σ̃ (∇), i.e., if

∇ ◦ σ0 = σ1 ◦ ∇.

Remark 2.12 Let (E, σ ) be a Real bundle and let ∇ be an ordinary connection on E . Then
∇ induces a Real connection ∇′ on (E, σ ) defined by

∇′ := 1

2
(∇ + σ̃ (∇)).

Since ordinary connections form an affine space (see, e.g., [10, Remark B.3]), ∇′ is a con-
nection on E . Since every bundle admits a connection, we see that every Real vector bundle
admits a Real connection.

3 Equivariant Sheaves and Čech Hypercohomology

We first recall the definition of C2-equivariant sheaves from [17] and then discuss the corre-
sponding sheaf and Čech cohomology.

Definition 3.1 Let (M, τ ) be a C2-manifold. A C2-sheaf of abelian groups, or C2-sheaf for
short, (F, σ ) on (M, τ ) is a sheaf of abelian groups F on M together with an isomorphism
of sheaves σ : F → τ ∗F such that τ ∗(σ ) = σ−1.

Let F be a C2-sheaf, and (M, τ ) ∈ ManC2 . There is an induced action σΓ on the global
sections Γ (M,F) given by

σΓ (s)(x) = σ(s(τ (x))) ∀x ∈ M .

Let
Γ C2(M,F) := Γ (M,F)C2 = {s ∈ Γ (M,F)|s = σΓ (s)}

denote the space of sections that are fixed by this action.

Example 3.2 We will consider two main examples: the locally constant sheaves with values
in U (1) ⊂ C, and the locally constant sheaf iZ ⊂ C, with the C2-action in both cases being
given by complex conjugation inherited from C. We will often denote the action on these
modules by z �→ z.

By [17, §5.1], the category of C2-sheaves has enough injectives. Hence, as in [17, §5.2],
we may define the equivariant sheaf cohomology of (M, τ ) ∈ ManC2 with coefficients in a
C2-sheaf F as the right derived functor of the equivariant global sections functor Γ C2 , i.e.,

H∗(M,C2;F) := R∗Γ C2(M,F).

Remark 3.3 For (M, τ ) ∈ ManC2 and an abelian C2-sheaf F , let H∗
C2

(X;F) denote the
Borel cohomology with twisted coefficients as defined in [24, §6] (see also [12, Definition
3.19]). Following [24, §6] there is a natural isomorphism

H∗
C2

(X;F) ∼= H∗(M,C2;F).

Example 3.4 Let iZ be the locally constant C2-sheaf with values in iZ and involution given
by complex conjugation. Following Remark 3.3, the group H∗(M,C2; iZ) is isomorphic to
equivariant Borel cohomology with twistedZ-coefficients. The latter cohomology is denoted
by H∗

C2
(M,Z(1)) in [10]. By [21], H2

C2
(M,Z(1)) classifies Real line bundles over (M, τ )

(see also [9, 5.1] and [22, §1]).
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Example 3.5 Assume that M is compact. By [10], there is a natural isomorphism of groups

H1(M,C2; iZ) ∼= [M,U (1)]C2 ,

where the right-hand group denotes C2-homotopy classes of Real maps from M to the unit
circle U (1). We recall that C2-homotopy differs from ordinary homotopy in general. For
example, the antipodal map a : U (1) → U (1) is homotopic to the identity as ordinary maps.
As C2-maps, however, with involution given by conjugation, a is not C2-homotopic to the
identity.

As for ordinary sheaf cohomology, equivariant sheaf cohomology can in many cases be
computed via a Čech construction, which we call equivariant Čech cohomology and now
recall from [17, §5.5]. Let (M, τ ) be a fixed C2-manifold, and let U be a C2-cover without
fixed points. Let (F, σ ) be a C2-sheaf on (M, τ ). We consider the space of equivariant Čech
cochains

Č p(U,F) := {
ω ∈ C p(U,F) | σ(ωτ(i0),...,τ (i p) ◦ τ) = ωi0,...,i p

}
,

where C p(U,F) is the ordinary Čech complex. The coboundary maps ∂ are inherited from
the ordinary case, since the coboundary of an equivariant cochain is equivariant. The equiv-
ariant Čech cohomology of M with respect to the C2-cover U and coefficients in F is the
cohomology of the complex Č∗(U,F), i.e.,

Ȟ
k(U,C2;F) :=

ker
(
∂ : Čk(U,F) → Čk+1(U,F)

)

Im
(
∂ : Čk−1(U,F) → Čk(U,F)

) .

We note that the category of C2-covers of (M, τ ) forms a directed set. By taking the direct
limit of the equivariant Čech cohomologies over allC2-covers, wemay therefore define Čech
cohomology groups as follows:

Definition 3.6 Let (M, τ ) ∈ ManC2 and let F be a C2-sheaf on (M, τ ). We define the
equivariant Čech cohomology of (M, τ ) with coefficients in F as

Ȟ
∗(M,C2;F) := colim

U
Ȟ

k(U,C2;F),

where the direct limit is taken over all C2-covers U of M .

Proposition 3.7 For a C2-manifold (M, τ ) and an abelian C2-sheaf F on M, equivariant
Čech cohomology computes equivariant sheaf cohomology, i.e., we have a natural isomor-
phism

H∗(M,C2;F) ∼= Ȟ
∗(M,C2;F).

Proof This follows from [17, Theorem 5.5.6] using that C2 acts via homeomorphisms and
the fact that the quotient M/C2 is paracompact. For the latter, we note that we can lift every
cover of M/C2 to M , and that this preserves local finiteness, since C2 is a finite group. ��

Now let F∗ be a complex of C2-sheaves on (M, τ ) of the form

F∗ = . . . −→ 0 −→ F0 −→ F1 −→ F2 −→ . . .

with non-trivial sheaves only in non-negative degrees. LetU be aC2-cover ofM .We construct
a double complex Č∗,∗(U,F∗) by taking the Čech complexes vertically in each degree of
the complex F∗, i.e.,

Č p,q(U,F∗) = Čq(U,F p).
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The vertical differentials ∂∗ are induced by the equivariant Čech complexes in each degree.
We obtain horizontal maps d∗ induced by the maps in the complex F∗. The total complex
T ∗ of the double complex Č∗,∗(U,F∗) is given in degree k by

T k(U,F∗) :=
⊕

i+ j=k

Či, j (U,F∗), di, jT := ∂ i + (−1)id j .

We can then define the equivariant Čech hypercohomology of M with coefficients inF∗ with
respect to the cover U to be the cohomology of this complex, and denote it by

Ȟ
∗(U,C2;F∗) := H∗(T ∗(U,F∗)).

Definition 3.8 With the above notation, the equivariant Čech hypercohomology of (M, τ )

with coefficients in F∗ is defined as

Ȟ
∗(M,C2;F∗) := colim

U
Ȟ

∗(U,C2;F∗),

where the colimit is taken over all C2-covers of (M, τ ).

4 A Real Deligne Complex

Let (M, τ ) be aC2-manifold and letAk := iAk
R
denote the sheaf of smooth imaginary-valued

k-forms on M . We consider Ak
as a C2-sheaf with the involution being given by complex

conjugation. The usual de Rham differential d turns A∗
into a complex of C2-sheaves. We

let A∗≤p
denote the truncation at p:

A∗≤p =
(
A0 d−→ A1 d−→ . . .

d−→ Ap → 0 → . . .
)

.

Let ι : iZ → A0
denote the natural inclusion. In analogy to usual Deligne cohomology (see,

for example, [4, Chapter I.5]), we define the pthReal Deligne complex, denoted byZD,R(p),
as

iZ −→ A0 −→ A1 −→ · · · −→ Ap−1 −→ 0,

where iZ is placed in degree 0. It is a complex of abelian C2-sheaves. Now we define a
version of Real Deligne cohomology as follows:

Definition 4.1 Let M = (M, τ ) ∈ ManC2 and p ≥ 0 be an integer. The pth Real Deligne
cohomology of M is defined as the equivariant Čech hypercohomology

H∗
D,R(M;Z(p)) := Ȟ

∗(M,C2;ZD,R(p)).

Example 4.2 For p = 0, it follows from the definition and Proposition 3.7 that we have a
natural isomorphism

H∗
D,R(M;Z(0)) ∼= H∗(M,C2; iZ).

For p ≥ 1 we have the following lemma:

Lemma 4.3 Let M = (M, τ ) ∈ ManC2 and p ≥ 1 be an integer. Let U(1) denote the sheaf
of smooth functions with values in the group U (1) with C2-action given by conjugation. Let
U(1)p denote the following complex of C2-sheaves on M

U(1)p : 0 → U(1)
d log−−→ A1 d−→ A2 d−→ · · · d−→ Ap−1 → 0.
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There is a natural isomorphism of cohomology groups

H∗
D,R(M;Z(p)) = Ȟ

∗−1(M,C2;U(1)p).

Proof We have the quasi-isomorphism of complexes of C2-sheaves

0 iZ A0 d

exp(2π−)

A1 d

·2π

A2

id

d · · · d Ap−1

id

0

0 0 U(1)
d log A1 d A2 d · · · d Ap−1

0.

SinceU(1) is placed in degree 1 in the bottom complex, the above quasi-isomorphism induced
the desired isomorphism. ��
Theorem 4.4 Let (M, τ ) be a C2-manifold. The group of isomorphism classes of Real line
bundles with Real connection is isomorphic to the group H2

D,R(M;Z(2)).

Proof By Lemma 4.3, we have the following isomorphism for p = 2:

H∗
D,R(M;Z(2)) ∼= Ȟ

∗−1
(
M,C2;U(1) → A1

)
.

We will now show that Ȟ1(M,C2;U(1) → A1
) is isomorphic to the group of isomorphism

classes of RealU (1)-bundles with Real connection. The computation is similar to arguments
in [4, §2.2]. Let (L,∇) be a pair consisting of a RealU (1)-bundle L and a Real connection∇.
We can represent the pair (L,∇) on a trivializing C2-cover V = {Vi } as (si , Ai ), where si are
Real sections and Ai local Real connection 1-forms. Note that, since the si are equivariant,

we have s = (si )i∈I ∈ Č0(V;A0
). For each i, j we form the section gi j = ∂(s) = si

s j
∈

Γ (Vi j ,U (1)), where ∂ denotes the Čech coboundary operator and Vi j = Vi
⋂

Vj . The
sections gi j are equivariant, since conjugation commutes with taking fractions for complex
numbers, and they satisfy the cocycle condition. Hence the gi j induce an equivariant Čech
cocycle g ∈ Č1(V,U (1)). Next, we define the 1-form ωi = ∇(si )

si
on every open set Vi .

Since the connection is Hermitian, we know by [4, 2.2.16] that each ωi is a purely imaginary

1-form. Hence they induce an element ω ∈ Č0(V;A1
). Moreover, on each intersection Vi j ,

we have

ωi − ω j = ∇(si )

si
− ∇(s j )

s j

= ∇(gi j s j )

gi j s j
− ∇(g ji si )

g ji si

= gi j∇(s j ) + d gi j ⊗ s j
gi j s j

− g ji∇(si ) + d g ji ⊗ si
g ji si

= −
(∇(si )

si
− ∇(s j )

s j

)

+ 2d gi j
1

gi j
.

Combining the top and bottom equalities we get ωi − ω j = d log(gi j ) on Vi j . Thus (g, ω)

defines an element of the first equivariant Čech hypercohomology of the complex of sheaves

U(1) → A1
, i.e., (g, ω) ∈ Ȟ

∗(V;U(1) → A1
). It is straight-forward to show that the

class of (g, ω) is independent of the section used to represent the line bundle L . Hence we
have a well-defined map from the set of isomorphism classes of Real line bundles with Real
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connection that are trivializable over the cover V to Ȟ
1(V;U(1) → A1

). Taking the direct

limit of these maps over all C2-covers we get a map to Ȟ
1(M,C2;U(1) → A1

). It is clear
from the construction that (L,∇)+ (L ′,∇′) = (L ⊗ L ′,∇ +∇′) is sent to the sum of classes
(g, ω) + (g′, ω′), i.e., the map we constructed is a homomorphism of groups. Surjectivity
and injectivity of the map follow in the same way as in [4, Proof of Theorem 2.2.11]. ��
Proposition 4.5 Let (M, τ ) be a C2-manifold. The group of isomorphism classes of Real line
bundles with flat Real connection is isomorphic to the group H2

D,R(M;Z(p)) for all p > 2.

Proof First we assume p = 3. By Lemma 4.3 we have the isomorphism

H∗
D,R(M;Z(3)) ∼= Ȟ

∗−1
(
M,C2;U(1) → A1 → A2

)
.

We note that in degree ∗ = 2 the elements of the Čech hypercohomology group

Ȟ
1
(
M,C2;U(1) → A1 → A2

)

are given by pairs (g, ω) as in the proof of Theorem 4.4 with the added requirement that
dωi = 0 on every open set Ui . After identifying such a pair with a Real bundle with a Real
connection, this extra requirement corresponds to flatness of the Real connection, i.e., that
the curvature of the connection is zero, where the curvature of a Real connection is defined
in the same way as for ordinary connections. For p > 2, we can use the same argument
as for the case p = 3 by observing that the respective Deligne complexes coincide in low
degrees. ��

5 Computing Real Deligne Cohomology

For every p, the complex ZD,R(p) sits in the short exact sequence of C2-sheaves

0 −→ A∗≤p−1[−1] −→ ZD,R(p) −→ iZ −→ 0. (5.1)

Let f : M → M/C2 denote the canonical projection. Following [17, §5.1], for every k, the

sheaf f∗Ak = (Ak
)C2 onM/C2 is defined as the sheafwhose sections on an openU ⊂ M/C2

are given by the C2-invariant elements of Ak
( f −1(U )), i.e.,

(
Ak

)C2
(U ) = Ak

( f −1(U ))C2 .

To simplify the notation we denote the space of global sections of (Ak
)C2 by the action by

Ek(M) :=
(
Ak

)C2
(M) =

{
ω ∈ Ak

(M) | τ ∗(ω) = ω
}

.

For k = 0, E0(M) = C∞
R (M, iR) is the group of smooth Real imaginary-valued functions.

We note that E∗(M) forms a cochain complex with differential d : Ek(M) → Ek+1(M)

induced by the differential in A∗
(M). We then write E p−1/dE p−2(M) for the quotient

E p−1(M)/dE p−2(M). The following result computes the cohomology of A∗≤p−1[−1]:
Proposition 5.1 For (M, τ ) ∈ ManC2 , there are isomorphisms

Ȟ
j
(
M,C2;A∗≤p−1

)
=

⎧
⎪⎨

⎪⎩

H j (M,C2; iR), j < p − 1,

E p−1/dE p−2(M), j = p − 1,

0, j > p − 1.
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Proof By [17, Corollary 1 of Theorem 5.3.1] we know that H∗(M,C2;Ak
) is isomorphic to

H∗(M/C2, (Ak
)C2). Using partitions of unity and a geodesically convex cover, it follows that

the sheaf (Ak
)C2 is flasque and hence acyclic. The assertion now follows from an equivariant

version of de Rham’s theorem as in [14, Theorem 2.2] and the definition of Ek(M). ��

Proposition 5.1 implies that sequence (5.1) induces a long exact sequence of the form

· · · H p−2(M,C2; iR) H p−1
D,R(M;Z(p)) H p−1(M,C2; iZ)

E p−1/dE p−2(M) H p
D,R(M;Z(p)) H p(M,C2; iZ)

0 H p+1
D,R(M;Z(p)) H p+1(M,C2; iZ) · · ·

In degrees q > p we obtain an isomorphism Hq
D,R(M,Z(p)) ∼= Hq(M,C2; iZ). The

cases of degree q ≤ p, however, are more interesting. First we consider q < p. We note, as
in [4], that the connecting morphism

δ : H∗(M,C2; iZ) → H∗+1(M,C2; iR)

includes integral imaginary forms into the group of all imaginary-valued forms. The con-
necting morphism δ kills torsion and its image in H∗+1(M,C2; iR) is the free part of
H∗(M,C2; iZ). This shows the following result:

Proposition 5.2 For every q < p, we have the following exact sequence

0 → Hq−1(M,C2; iR)/Hq−1(M,C2; iZ)free → Hq
D,R(M;Z(p)) → Hq (M,C2; iZ)tors → 0,

where the subscript free denotes the free part and tors the torsion part of the respective
groups. ��

Remark 5.3 For q = 2 and p = 3, we get the short exact sequence

0 → H1(M,C2; iR)/H1(M,C2; iZ)free → H2
D,R(M;Z(3)) → H2(M,C2; iZ)tors → 0.

In [10, §3] the torsion and free parts of H2(M,C2; iZ) are used to classify Real line bundles.
We are optimistic that the above short exact sequence may help to shed new light on the
mixed case discussed in [10, Remark 3.18].

Nowwe look at the case p = q . The connectingmorphism is the inclusion of closed imag-
inary integral forms into the group E p−1/dE p−2(M). We write E p−1

0 (M) for the subgroup of

E p−1
cl (M) generated by closed forms with integral imaginary period and coboundaries. We

then deduce from the long exact sequence and Proposition 5.1 the following result:

Theorem 5.4 For every p, we have the following exact sequence

0 → E p−1/E p−1
0 (M) → H p

D,R(M;Z(p)) → H p(M,C2; iZ) → 0. (5.2)
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6 Classification of Real Line Bundles with Connection

For p = 1, the group E0
0 (M) equals the group of Real smooth functions on M with val-

ues in iZ. We denote the latter group by C∞
R (M, iZ). By [10] we have H1(M,C2; iZ) ∼=

[M,U (1)]C2 if M is compact. By Lemma 4.3, we have

H1
D,R(M,Z(1)) ∼= H0(M,C2;U(1)).

The group H0(M;C2;U(1)) consists of smooth Real functions from M to U (1), which we
denote as C∞

R (M,U (1)). Hence, for p = 1 and M compact, we can rewrite sequence (5.2)
as

0 → C∞
R (M, iR)/C∞

R (M, iZ) → C∞
R (M,U (1)) → [M,U (1)]C2 → 0.

Nowwe assume p = 2. By [22], the group H2(M,C2; iZ) classifies isomorphism classes
of Real line bundles. By Theorem 4.4, elements in H2

D,R(M;Z(2)) correspond bijectively
to isomorphism classes of Real line bundles with Real connection over M . The following
result provides an interpretation of the group E1/E1

0 (M), where we consider M ×U (1) as a
Real space with the induced C2-action on the product.

Proposition 6.1 There is a bijection between the group E1/E1
0 (M) and the set of isomorphism

classes of connections on the trivial bundle M ×U (1).

Proof We consider the following short exact sequence of complexes of C2-sheaves:

0 iZ

ι

0 0

0 A0 d

exp(2π−)

A1

·2π

0

0 U(1)
d log A1

0.

(6.1)

Taking equivariant hypercohomology induces a long exact sequence. Using Proposition 5.1
for the second row we get the exact sequence

H1(M,C2; iZ)
ι1−→ E1/dE0(M) → H1

(
M,C2;U(1)) → A1

)
α1−→ H2(M,C2; iZ) → 0,

where α∗ denotes the connecting homomorphism. Exactness implies that there is an isomor-
phism

Coker
(
ι1

) ∼= ker
(
α1) , (6.2)

where ι denotes the upper morphism of complexes in (6.1). We already know that there is an
isomorphism

Coker
(
ι1

) ∼= E1/E1
0 (M).

By Lemma 4.3 and Theorem 4.4 we can identify elements in H1(M,C2;U(1)) → A1
) with

isomorphism classes of Real line bundles with Real connection, and elements in the group
H2(M,C2; iZ) with isomorphism classes of Real line bundles. Using these identifications,
we see that the map α1 sends a Real line bundle with Real connection to the underlying
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Real line bundle. Hence the kernel of α1 corresponds to the isomorphism classes of Real
connections on the trivial bundle M ×U (1). Thus isomorphism (6.2) can be rewritten as

E1/E1
0 (M) =

{
isomorphism classes of Real
connections onM ×U (1)

}

.

��
Summarising this discussion we have proven the following result which is an analog of

[13, p. 162] for Real smooth Deligne cohomology:

Theorem 6.2 Let (M, τ ) be aC2-manifold. There is an isomorphism of short exact sequences
between

0 E1/E1
0 (M) H2

D,R(M;Z(2)) H2(M,C2; iZ) 0

and

0 →

⎧
⎪⎪⎨

⎪⎪⎩

isom. classes of
Real connections
on the bundle
M ×U (1)

⎫
⎪⎪⎬

⎪⎪⎭

→

⎧
⎪⎪⎨

⎪⎪⎩

isom. classes of
Real line bundles
wi th Real
connection over M

⎫
⎪⎪⎬

⎪⎪⎭

→

⎧
⎪⎪⎨

⎪⎪⎩

isom. classes
of Real
line bundles
over M

⎫
⎪⎪⎬

⎪⎪⎭

→ 0.

We end this paper with the following remarks which motivate our choice of a definition
of Real Deligne cohomology groups:

Remark 6.3 As for smooth Deligne cohomology the groups H p
D,R(M;Z(q)) are most inter-

esting in the cases p = q . By Example 4.2 we have

H0
D,R(M;Z(0)) ∼= H0(M,C2; iZ),

and by setting p = 1 in Lemma 4.3, we get

H1
D,R(M;Z(1)) ∼= Ȟ

0(M,C2;U(1)) ∼= H0(M;C2;U(1)),

where the second isomorphism follows from Proposition 3.7. Hence, together with our
main result on H2

D,R(M;Z(2)) in Theorem 6.2, we obtain identifications of the groups

H p
D,R(M;Z(qp) for p = 0, 1, 2 analogous to the identifications of Deligne cohomology

groups for p = q in [7, §1.4]. We therefore believe that the groups H p
D,R(M;Z(q)) of

Definition 4.1 deserve to be called Real Deligne cohomology groups.

Remark 6.4 We have not explored further geometric interpretations of the groups H p
D,R(M;

Z(q)), yet. We note, however, that for q = p = 3 we obtain the short exact sequence

0 → E2/E2
0 (M) → H3

D,R(M;Z(3)) → H3(M,C2; iZ) → 0.

By [18], the group H3(M,C2; iZ) classifies stable isomorphism classes of Real bundle
gerbes. We therefore expect that H3

D,R(M;Z(3)) classifies stable isomorphism classes of
Real bundle gerbes with Real connective structure and curving similar to [4, Chapter V].
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