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We show that any sequence (xn)n∈N ⊆ [0, 1] that has Poisso-
nian correlations of k – th order is uniformly distributed, also 
providing a quantitative description of this phenomenon. Ad-
ditionally, we extend connections between metric correlations 
and additive energy, already known for pair correlations, to 
higher orders. Furthermore, we examine how the property of 
Poissonian k – th correlations is reflected in the asymptotic 
size of the moments of the function F (t, s, N) = #{n � N :
‖xn − t‖ � s/(2N)}, t ∈ [0, 1].
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. The main results

Let (xn)n∈N ⊆ [0, 1] be a sequence and k � 2 be an integer. Given a compactly 
supported test function f : Rk−1 → [0, ∞) we define the k – th order correlation function
of the sequence (xn)n∈N with respect to f to be
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Rk(f,N) = 1
N

∑
i1,...,ik�N

distinct

f (N((xi1 − xi2)), N((xi1 − xi3)), . . . , N((xi1 − xik))) . (1)

Here ( (x) ) denotes the signed distance of x from the origin modulo 1 (see Section 1.4 for 
a proper definition).

We say that the sequence (xn)n∈N has Poissonian k – th order correlations if

lim
N→∞

Rk(f,N) =
ˆ

Rk−1

f(x) dx for any f ∈ Cc(Rk−1). (2)

A discussion on equivalent definitions of Poissonian correlations appearing in the litera-
ture can be found in Appendix A. There we explain that a sequence has Poissonian k – th 
order correlations if and only if (2) holds for any f which is the characteristic function 
of some rectangle in Rk−1.

Having Poissonian k – th order correlations can be viewed as a pseudo-randomness 
property of the sequence (xn)n∈N in the following sense: when (Yn)n∈N is a sequence 
of independent, uniformly distributed random variables in [0, 1], then almost surely, the 
sequence (Yn(ω))n∈N has Poissonian k – th order correlations (see Appendix B for a 
proof).

The k – th order correlations of a sequence are a local asymptotic statistics of the gaps 
of a sequence. Another closely related statistics is the asymptotic gap distribution of the 
sequence [13]. It is known that when a sequence has Poissonian correlations of all orders 
k � 2, then the asymptotic distribution of its gaps is also Poissonian; a proof can be 
found in [13, Appendix A].

The term Poissonian comes from the fact that (2) is in accordance with the almost 
sure statistical behaviour of gaps between random points coming from a Poisson process. 
Originally, the motivation for studying the gap statistics of point sequences came from 
theoretical physics, where the Berry –Tabor conjecture predicts that the spacings of the 
energy eigenvalues of generic integrable quantum systems follow the Poissonian model 
(see [16] for a survey in mathematical language). For some quantum systems the sequence 
of energy eigenvalues follows a simple arithmetic formula, but establishing the correla-
tions to be Poissonian is usually a very substantial challenge (that often becomes more 
and more difficult as the order of the correlations increases). For some contributions 
concerning sequences of cognisable physical origin see for example [9,17,23]. However, 
the subject has also gained significant interest on a purely mathematical level, where 
the correlations of general sequences of arithmetic origin were studied; see for example 
[2,3,20]. Most results only concern the case of correlations of order k = 2 (known as 
pair correlations), while correlations of higher order are combinatorially and analytically 
more difficult to study and often out of reach; among the relatively few results in that 
direction are [22] and [27].
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A topic of particular interest has been the connection of Poissonian pair correlations 
with uniform distribution properties. Recall that a sequence (xn)n∈N ⊆ [0, 1] is called 
uniformly distributed if for any 0 � a < b � 1 we have

lim
N→∞

1
N

#{n � N : a � xn � b} = b− a.

To be more specific, it has been shown that when a sequence has Poissonian pair corre-
lations it is also uniformly distributed.

Theorem A. Let (xn)n∈N ⊆ [0, 1] be a sequence. If (xn)n∈N has Poissonian pair correla-
tions, then (xn)n∈N is uniformly distributed.

Theorem A was proved independently by Aistleitner, Lachmann and Pausinger [1]
and by Grepstad and Larcher [8]. Additional proofs were given later by Steinerberger 
in [24] and, in a much more general setup, by Marklof [15]. These four proofs are all 
essentially different.

The authors of [1] also prove a quantitative version of Theorem A that is interesting 
in its own right. Before we present this version of Theorem A, recall that a function 
G : [0, 1] → R is called an asymptotic distribution function of a sequence (xn)n∈N ⊆ [0, 1]
if there exists a strictly increasing sequence of integers (Nj)j∈N such that

G(x) = lim
j→∞

1
Nj

#{n � Nj : 0 � xn � x}, 0 � x � 1. (3)

By the Helly selection principle, every sequence (xn)n∈N ⊆ [0, 1] has at least one asymp-
totic distribution function (see e.g. [11, Ch. 1, Thm. 7.1]). Whenever G : [0, 1] → R is 
the unique asymptotic distribution function of the sequence (xn)n∈N , that is, whenever

G(x) = lim
N→∞

1
N

#{n � N : 0 � xn � x}

holds for all x ∈ [0, 1], we will simply refer to it as the asymptotic distribution function 
of (xn)n∈N .

The quantitative version of Theorem A is the following statement.

Theorem B. Assume that the sequence (xn)n∈N ⊆ [0, 1] has the unique asymptotic distri-
bution function G : [0, 1] → R. Assume also that there is a function F : [0,∞) → [0,∞]
such that

F (s) = lim
N→∞

1
N

#
{
k �= � � N : ‖xk − x�‖ � s

N

}
, s > 0.

Then the following hold:

(i) If G is not absolutely continuous, then F (s) = ∞ for all s > 0.
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(ii) If G is absolutely continuous, then

lim sup
s→∞

F (s)
2s �

1ˆ

0

g(x)2 dx

where g is the density function of the corresponding measure (that is, g = G′ almost 
everywhere).

As a main result of this paper, we prove that Theorem A can be generalised to 
sequences with Poissonian correlations of order k � 2: having Poissonian correlations of 
any order k � 2 is a stronger property than uniform distribution.

Theorem 1.1. If the sequence (xn)n∈N ⊆ [0, 1] has Poissonian k – correlations for some 
k � 2, then it is uniformly distributed.

In fact, with a little more effort than in the proof of Theorem 1.1 we are able to prove 
a stronger result that can be viewed as a generalisation of Theorem B in the context of 
k – th order correlations. In what follows, for s > 0 we shall write Rk(s, N) = Rk(fs, N)
where fs is the test function fs = 1[−s,s]k−1 .

Theorem 1.2. Let (xn)n∈N ⊆ [0, 1], G : [0, 1] → R be an asymptotic distribution function 
of (xn)n∈N and (Nj)j∈N be a sequence as in (3). Then the following hold:

(i) If G is not absolutely continuous, then lim
j→∞

Rk(s, Nj) = ∞ for all s > 0.
(ii) If G is absolutely continuous, then

lim sup
s→∞

lim sup
j→∞

Rk(s,Nj)

(2s)k−1 �
1ˆ

0

g(x)k dx, (4)

where g is the density function of the corresponding measure.

To see why Theorem 1.2 is indeed a stronger version of Theorem 1.1, observe that if 
(xn)n∈N has Poissonian k – th correlations but is not uniformly distributed, it will have 
an asymptotic distribution function G whose density function g is not constantly equal 
to 1 (the existence of g follows from (i) of Theorem 1.2). Therefore 

´ 1
0 g(x)kdx > 1 and 

(4) leads to a contradiction.
The reader might spot two subtle differences between Theorem B and its gener-

alisation, Theorem 1.2. First, in Theorem 1.2 we assume that G is an asymptotic 
distribution function of (xn)n∈N , not necessarily unique as in Theorem B. Second, we 
do not require that the limit limN→∞ Rk(s, N) exists, but instead, we work with the 
term lim supj→∞ Rk(s, Nj). The additional assumptions in Theorem B are not essential, 
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and the proof in [1] can be easily modified under the slightly weaker hypotheses of The-
orem 1.2. These minor modifications also make Theorem B an actually stronger result 
than Theorem A.

In the proof of both Theorems 1.1 and 1.2, we shall make use of several variants of the 
correlation function Rk(f, N) that was defined in (1). To be more specific, given some 
scales s1, s2, . . . , sk−1 > 0 we define the correlation function Rk(s1, . . . , sk−1, N) by

Rk(s1, . . . , sk−1, N) = 1
N

#
{
i1, . . . , ik � N

ij �= i� ∀j �= �
: ‖xi1 − xir+1‖ � sr

N
(1 � r < k)

}
(5)

(where ‖x‖ denotes the distance of x ∈ R to its nearest integer). Since we can write 
Rk(s1, . . . , sk−1, N) as Rk(1B, N) where B is the rectangle [−s1, s1] ×. . .×[−sk−1, sk−1], 
it follows from (2) and an approximation argument that sequences with Poissonian k – th 
correlations also satisfy

lim
N→∞

Rk(s1, . . . , sk−1, N) = (2s1) · · · (2sk−1) for all s1, . . . , sk−1 > 0

(see also Appendix A for a discussion).
Furthermore, we define the correlation function R∗

k(s1, . . . , sk−1, N) by

R∗
k(s1, . . . , sk−1, N) = 1

N
#
{
i1, . . . , ik � N : ‖xi1 − xir+1‖ � sr

N
(1 � r < k)

}
. (6)

That is, in the definition of R∗
k(s1, . . . , sk−1, N) we allow indices to be equal. We will 

also make use of the appropriate averages of Rk and R∗
k defined as

Ck(s1, . . . , sk−1, N) =
¨

. . .

ˆ

B(s1,...,sk−1)

Rk(σ1, . . . , σk−1, N) dσ1dσ2 . . .dσk−1

and

C∗
k(s1, . . . , sk−1, N) =

¨
. . .

ˆ

B(s1,...,sk−1)

R∗
k(σ1, . . . , σk−1, N) dσ1dσ2 . . .dσk−1,

where B(s1, . . . , sk−1) denotes the rectangle [0, s1] × [0, s2] × . . .× [0, sk−1]. Finally, when 
the scales s1, . . . , sk−1 are all equal to s > 0 we write for simplicity

Rk(s,N) = Rk(s, . . . , s,N), R∗
k(s,N) = R∗

k(s, . . . , s,N),

Ck(s,N) = Ck(s, . . . , s,N), C∗
k(s,N) = C∗

k(s, . . . , s,N).

We note that the definition of Rk(s, N) here agrees with the definition given right before 
Theorem 1.2.



M. Hauke, A. Zafeiropoulos / Journal of Number Theory 243 (2023) 202–240 207
1.2. Some consequences of the main results

In the course of the proofs of the stated theorems, we examine the relations between 
the correlation functions of different orders for a given sequence. These relations enable us 
to prove that when a sequence (xn)n∈N fails to have Poissonian k – th order correlations 
in a very strong sense, then it will also not have Poissonian correlations of any higher 
order.

Theorem 1.3. Let (xn)n∈N ⊆ [0, 1] be a sequence and assume that for some scales 
s1, . . . , sk−1 > 0 the k – th order correlation function Rk(s1, . . . , sk−1, N) satisfies

lim sup
N→∞

Rk(s1, . . . , sk−1, N) = ∞.

Then the sequence (xn)n∈N does not have Poissonian p – th order correlations for any 
p � k.

Theorem 1.3 is one of the key ingredients we will use to derive new results on the 
metric theory of Poissonian correlations: an increasing sequence A = (an)n∈N ⊆ N is 
fixed, and we study the Lebesgue measure of x ∈ [0, 1] such that the sequence (anx)n∈N
has Poissonian correlations. As with the correlations of fixed sequences, most of the 
metric results to date are concerned with the k = 2 case.

In the metric setup, the authors of [2] have established several statements on the 
connection of Poissonian correlations with the notion of additive energy. Recall that the 
additive energy of a finite set A is defined as

E(A) = #{a, b, c, d ∈ A : a + b = c + d}

(see [25, Chapter 2] for more details). Writing AN = (an)n�N for the set of the first 
N elements of A, Aistleitner, Larcher & Lewko [2] proved that whenever E(AN ) =
O(N3−ε), N → ∞ for some ε > 0, then the sequence (anx)n∈N has Poissonian pair 
correlations for almost all x ∈ [0, 1]. Examining to what extent this bound on the additive 
energy is optimal, Bourgain [2, Appendix] showed that if E(AN ) = Ω(N3), N → ∞ then 
(anx)n∈N does not have Poissonian pair correlations for all x in a subset of [0, 1] of 
positive Lebesgue measure, while on the other hand there exists a sequence A = (an) ⊆
N with E(AN ) = o(N3), N → ∞ such that (anx)n∈N does not have Poissonian pair 
correlations for almost all x ∈ [0, 1].

In the present paper, we are able to deduce an analogue of the first – mentioned result 
of Bourgain, proving that when the additive energy of A is of maximal order of magni-
tude, then the sequence (anx)n∈N fails to have Poissonian triple correlations (i.e. of order 
k = 3) for Lebesgue almost all x. Further, as mentioned previously, we use Theorem 1.3
to generalise the second –mentioned result of Bourgain for k – th order correlations.
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Theorem 1.4. (i) There exists a set A = (an)∞n=1 ⊆ N with additive energy E(AN ) =
o(N3), N → ∞ such that for Lebesgue almost all x ∈ [0, 1] the sequence (anx)∞n=1 does 
not have Poissonian correlations of any order k � 2.

(ii) Let A = (anx)n∈N ⊆ N be a sequence such that E(AN) = Ω(N3) as N → ∞. 
Then for all x in a set of positive Lebesgue measure, (anx)n∈N does not have Poissonian 
triple correlations.

1.3. Poissonian correlations and the number of points in small intervals

As a final result of this paper, we seek to exhibit a connection of the property of 
Poissonian k – th correlations with the number of elements of a sequence in sufficiently 
small intervals. More formally, given s > 0 and N � 1 we define

F (t, s,N) = #
{
n � N : ‖xn − t‖ � s

2N

}
, 0 � t � 1. (7)

Heuristically, if t is seen as a random variable uniformly distributed in [0, 1], then 
F (t) = F (t, s, N) can be viewed as the number of points of the sequence (xn)n∈N in a 
random interval of length s/N .

Our purpose is to establish a link between the property of Poissonian k – th correlations 
and the asymptotic size of the k – th moment of F (t, s, N). For the k = 2 case, it is already 
known that a sequence (xn)n∈N has Poissonian pair correlations if and only if

lim
N→∞

1ˆ

0

F (t, s,N)2 dt = s2 + s for all s > 0.

This is shown in [14] and also implicitly in [9, Thm 3(i)]. Regarding correlations of higher 
orders, some relevant results are shown in [26] for the triple correlations of sequences of 
the form (n2α)n∈N and for values of the length s > 0 that lie in a range that depends 
on N .

We hereby consider both the k – th moment of F (t, s, N) as well as its k – th factorial 
moment. To be more specific, given s > 0, N � 1 and k � 2 we set

Ik(s,N) =
1ˆ

0

F (t, s,N)(F (t, s,N) − 1) · · · (F (t, s,N) − (k − 1)) dt,

I∗k(s,N) =
1ˆ

0

F (t, s,N)k dt.

(8)

We prove that the property of Poissonian correlations of k – th order is reflected in the 
asymptotic behaviour of Ik(s, N) and I∗k(s, N).
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Theorem 1.5. Let k � 2 and Ik(s, N), I∗k(s, N) be as in (8). Assume the sequence (xn)n∈N
has Poissonian k – th correlations. Then the following statements hold:
(i) lim

N→∞
Ik(s, N) = sk for all s > 0.

(ii) lim sup
N→∞

I∗k(s, N) = sk + Ok(sk−1), s → ∞.

(iii) If, in addition, (xn)n∈N has Poissonian � – correlations for all � � k, then

lim
N→∞

I∗k(s,N) = sk + ck,k−1s
k−1 + . . . + ck,1s, (9)

where ck,i, i = 1, . . . , k − 1 denote the Stirling numbers of the second kind.

Theorem 1.5 provides further evidence for the connection between sequences with 
Poissonian correlations on the one hand, and random variables that follow the Poisson 
distribution on the other. It is known [19] that the k – th factorial moment of a random 
variable following the Poisson distribution with parameter s > 0 is equal to sk, while its 
k – th moment is equal to the polynomial on the right – hand side of (9) (this is called 
the Bell polynomial of degree k, see also [5]).

1.4. Notation

Given two functions f, g : (0, ∞) → R, we write f(t) = O(g(t)), t → ∞, f(t) =
o(g(t)), t → ∞ and f(t) = Ω(g(t)), t → ∞ when

lim sup
t→∞

|f(t)|
|g(t)| < ∞, lim

t→∞
f(t)
g(t) = 0 or lim sup

t→∞

f(t)
g(t) > 0

respectively. Any dependence of the value of the limsup above on potential parameters 
is denoted by the appropriate subscripts in the O – symbol. Given a real number x ∈ R, 
we write {x} for the fractional part of x, ‖x‖ = min{|x − k| : k ∈ N} for the distance of 
x from its nearest integer, and

((x)) =
{
{x}, if 0 � {x} � 1

2

{x} − 1, if 1
2 < {x} < 1

for the signed distance of x from the origin modulo 1. Further, we use the symbol { · }+

for the function

{x}+ =
{
x, if x � 0
0, if x < 0.

Throughout the paper, we shall implicitly consider the unit interval [0, 1] equipped with 
the topology induced by ‖ · ‖ because we deal with distribution of sequences modulo 1. 
This is homeomorphic to the interval [0, 1) with the same topology, so for convenience, 
we will work interchangingly with [0, 1] and [0, 1).
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We use the standard notation e(x) = e2πix. We also write B(x0, r) = {x ∈ [0, 1] :
‖x −x0‖ � r} for the interval with centre x0 and length 2r modulo 1. The characteristic 
function of a set A is denoted by 1A.

1.5. Directions for further research

We end this introductory part with some interesting questions that would shed more 
light on the properties of sequences with Poissonian correlations of k – th order.

• In Theorem 1.1 we proved that when a sequence (xn)n∈N has Poissonian k – th 
correlations it is uniformly distributed, but we do not know whether the correlations of 
orders m < k also follow the Poissonian model. Are Poissonian correlations of order k+1
a property stronger than Poissonian correlations of order k? In other words, does any 
sequence (xn)n∈N with Poissonian k – th correlations also have Poissonian correlations 
of all orders 2 � m < k?

• We would like to know if some partial converse to Theorem 1.5 is true. Is it true, 
for example, that whenever (9) holds, the sequence (xn)n∈N has Poissonian correlations 
of all orders up to k?

2. Properties of the functions Rk, R∗
k

In the present section we prove several properties of the functions Rk and R∗
k defined 

in the introduction that will be used later in the proof of the main results.

We start by proving the inequality that will be the key ingredient in the proof of 
Proposition 2.2.

Lemma 2.1. Let m � 1. For any M � 1 and for all non-negative real numbers 
x1, x2, . . . , xM � 0 we have

(xm+1
1 + xm+1

2 + . . . + xm+1
M ) � 1

M
(x1 + x2 + . . . + xM )(xm

1 + xm
2 + . . . + xm

M ). (10)

Proof. Applying the Hölder inequality with exponents p = m + 1 and q = (m + 1)/m to 
the M–tuples (x1, . . . , xM ) and (1, . . . , 1) we get

x1 + x2 + . . . + xM �
(
xm+1

1 + . . . + xm+1
M

) 1
m+1 M

m
m+1 , (11)

while the Hölder inequality with the same exponents applied to the M–tuples (1, . . . , 1)
and (xm

1 , . . . , xm
M ) yields

xm
1 + xm

2 + . . . + xm
M �

(
xm+1

1 + . . . + xm+1
M

) m
m+1 M

1
m+1 . (12)

Multiplying (11) and (12), we obtain (10). �
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The following proposition provides a relation between correlation functions of different 
orders. This result will later have a key role in the proof of both Theorems 1.1 and 1.2, 
while it straightforwardly implies Theorem 1.3.

Proposition 2.2. Let (xn)n∈N ⊆ [0, 1] be a sequence and m � 2. There exists a constant 
sm > 0 such that for any s > sm, the inequality

Rm

(s
3 , N

)
� 6

s
Rm+1(s,N) (13)

holds for all N � N0(s, m). Moreover, the values of the constants sm and N0 are inde-
pendent of the sequence (xn)n∈N .

Proof. We partition the unit interval into pieces of size approximately s/N and count 
points in each interval: we set

K = K(s,N) =
⌈
N

s

⌉

and for 0 � � � K − 1 we define

y� = y�(s,N) = #
{

1 � i � N : xi ∈
[
�s
N , (�+1)s

N

)
∩ [0, 1]

}
.

Observe that

Rm+1(s,N) � 1
N

K−1∑
�=0

y�(y� − 1) . . . (y� −m)

= 1
N

K−1∑
�=0

(
ym+1
� − cmym� + cm−1y

m−1
� − . . . + (−1)mc1y�

)
(14)

with ci ∈ N.
First, we consider the case when m is odd. Since y0 + y1 + . . .+ yK−1 = N , applying 

inequality (10) to (14) we obtain

Rm+1(s,N) � 1
N

K−1∑
�=0

[(NK − cm)ym� + (NK cm−1 − cm−2)ym−2
� + . . . + (NK c2 − c1)y�].

Note that for any ε > 0, we find that for N sufficiently large 
N

K
� (1 − ε)s and therefore

Rm+1(s,N) � 1
N

K−1∑
�=0

[((1 − ε)s− cm)ym� + ((1 − ε)scm−1 − cm−2)ym−2
� + . . .

+ ((1 − ε)sc2 − c1)y�].
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Similarly, for m even, we have

Rm+1(s,N) � 1
N

K−1∑
�=0

[((1 − ε)s− cm)ym� + ((1 − ε)scm−1 − cm−2)ym−2
� + . . .

+ ((1 − ε)sc3 − c2)y2
� + c1y�].

Now let ε > 0 be small enough such that s(1 − ε) > sm := 2 max{ci : 1 � i � m}. Then 
all non – leading terms are positive and hence we can estimate

Rm+1(s,N) � 1
N

K−1∑
�=0

((1 − ε)s− cm)ym� � s

2 · 1
N

K−1∑
�=0

ym� ,

which implies that

1
N

K−1∑
�=0

yml � 2Rm+1(s,N)
s

· (15)

We now seek an upper bound for Rm( s3 , N). For each 0 � � � K − 1 consider the sets

A� =
[
s�

N
,
s(� + 1)

N

)
, A′

� = A� + s

3N , A′′
� = A� + 2s

3N

(where we understand the intervals modulo 1). Here we have essentially defined three 
different partitions of the unit interval: the partition (A�)K−1

�=0 we employed previously, 
and the partitions (A′

�)
K−1
�=0 and (A′′

� )K−1
�=0 that we get by shifting the intervals of the first 

partition by s/3N and 2s/3N respectively. Writing y′�, y
′′
� for the number of points xi in 

A′
� and A′′

� respectively, it is straightforward to show that an analogue of (15) holds for 
(y′�)

K−1
�=0 and (y′′� )K−1

�=0 .
At this point, we need to employ the following Lemma, the proof of which we postpone 

for later in the text.

Lemma 2.3. If the m – tuple (xi1 , . . . , xim) contributes something to the sum Rm( s3 , N), 
then there exists some 0 � � � K − 1 such that the points xi1 , xi2 , . . . , xim belong all to 
A� or to A′

� or to A′′
� .

Using Lemma 2.3 we finally obtain

Rm

(s
3 , N

)
� 1
N

K−1∑
�=0

y�(y� − 1) . . . (y� − (m− 1)) + 1
N

K−1∑
�=0

y′�(y′� − 1) . . . (y′� − (m− 1))

+ 1
N

K−1∑
y′′� (y′′� − 1) . . . (y′′� − (m− 1))
�=0
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� 1
N

K−1∑
�=0

(
ym� + (y′�)m + (y′′� )m

)
� 6

s
Rm+1(s,N). �

We now provide the proof of Lemma 2.3.

Proof of Lemma 2.3. Since the m – tuple (xi1 , . . . , xim) contributes to Rm( s3 , N), we have 
for all j, k = 1, 2, . . . , m that

‖xij − xik‖ � ‖xij − xi1‖ + ‖xi1 − xik‖ � 2s
3N · (16)

For each 0 � � � K − 1 the set A� can be written as a disjoint union

A� = (A� ∩A′
�−1) 
 (A′

� ∩A′′
�−1) 
 (A� ∩A′′

� ) (17)

where the three disjoint sets A�∩A′
�−1, A

′
�∩A′′

�−1 and A�∩A′′
� appearing are consecutive 

disjoint intervals of length s/3N .
We may assume without loss of generality that the points xi2 , xi3 , . . . , xim are in 

increasing order; that is, the signed distances of differences of consecutive terms are 
( (xin+1 − xin) ) � 0 for n = 2, . . . , m − 1.

We consider two different cases regarding the relative position of xi1 with respect to 
xi2 . If ( (xi2−xi1) ) � 0, let 0 � � � K−1 be such that xi1 ∈ A�. Then xi1 lies in one of the 
three sets in the disjoint union in (17); assume without loss of generality xi1 ∈ A�∩A′

�−1. 
Since ‖xi1 − xim‖ � 2s/(3N) by (16) and the points xi1 , xi2 , . . . , xim are in increasing 
order, they will all lie in A′

� ∩ A′′
�−1 or A� ∩ A′′

� , and therefore they will all lie in A�. 
Similarly, we see that if xi1 ∈ A′

� ∩ A′′
�−1 then all points lie in A′

� while if xi1 ∈ A� ∩ A′′
�

then they will all lie inside A′′
� . If ( (xi1 − xi2) ) > 0, we repeat the same argument with 

the point xi2 in the place of xi1 . The lemma is now proved. �
Remark. Proposition 2.2 provides an inequality involving the correlation functions 
Rk( s3 , N) and Rk+1(s, N) only for values of the scale s > 0 that are large enough. This 
is not a restriction that comes from the method of proof followed, but rather a genuine 
obstruction, as can be seen by the following example. Define the sequence (xn)n∈N by

xn = 1
2m
(
2
⌈
k
2
⌉
− 1
)

whenever n = 2m + k, m � 0 and 1 � k � 2m.

That is, x1 = x2 = 0, x3 = x4 = 1
2 , x5 = x6 = 1

4 , x7 = x8 = 3
4 etc. Then for the choice 

of the scale s < 2 and for every integer of the form N = 2m we have

R2(s,N) = 1 but R3(s,N) = 0.

Using similar arguments we can define sequences for which Rm(s, N) = 1 and 
Rm+1(s, N) = 0 for some given s > 0 and for infinitely many N � 1. The upshot is 
that we cannot obtain an analogue of (13) that holds for all values of s > 0.
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The next proposition connects the size of Rk(s1, . . . , sk−1, N) with the size of 
R∗

k(s1, . . . , sk−1, N) when the scales s1, . . . , sk−1 are written in decreasing order.

Proposition 2.4. Let s1 � s2 � . . . � sk−1 > 0. Defining R1(s, N) = 1 for all s > 0 and 
N � 1, we have

R∗
k(s1, . . . , sk−1, N) � Rk(s1, . . . , sk−1, N) +

k−1∑
m=1

bmRm(s1, . . . , sm−1, N),

where b1, . . . , bk−1 ∈ N are constants depending only on k.

Proof. Observe that if a k – tuple (i1, i2, . . . , ik) consists of distinct indices i1, . . . , ik � N

then its contribution to R∗
k(s1, . . . , sk−1, N) defined in (6) is the same as its contribution 

to Rk(s1, . . . , sk−1, N), however the situation is different when the indices i1, . . . , ik are 
not pairwise distinct.

Any k – tuple i = (i1, i2, . . . , ik) gives rise to a uniquely determined partition Pi =
{J1, J2, . . . , Jm} of [k] = {1, 2, . . . , k} (where m � k) such that the following properties 
hold:

(i) ij = i� ⇔ (j, � ∈ Jt for some t � m)
(ii) min Ji < min Ji+1, i = 1, . . . , m − 1.

Conversely, given a partition P = {J1, J2, . . . , Jm} of [k] with the property that min Jt <

min Jt+1 for t = 1, 2, . . . , m − 1, we define the correlation counting function RP
k =

RP
k (s1, . . . , sk−1, N) by

RP
k = # 1

N

{
i ∈ [N ]k,Pi = P : ‖xi1 − xi2‖ � s1

N
, . . . , ‖xi1 − xik‖ � sk−1

N

}
.

That is, RP
k is the variant of Rk that counts correlations only over indices i1, . . . , ik � N

with partition Pi equal to P.
Now if for a fixed partition P as above we set

jr = min Jr, r = 1, 2, . . . ,m

then we have that jr � r. Write Jr = {t1 < t2 < . . . < ts} for one of the sets comprising 
P. In view of the hypothesis that s1 � s2 � . . . � sk−1, the inequalities

‖xi1 − xit�
‖ � st�−1

N
, � = 1, . . . , s

appearing in the definition of RP
k , altogether imply that

‖xi1 − xit ‖ � st�−1 � st1−1 = sjr−1 � sr−1
, � = 1, . . . , s.
� N N N N
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Thus for the fixed partition P = {J1, . . . , Jm} as above, we have

RP
k (s1, . . . , sk−1, N) � Rm(s1, . . . , sm−1, N).

Finally, for the counting function R∗
k, summing over all possible partitions P of [k] we 

deduce that

R∗
k(s1, . . . , sk−1, N) =

∑
P

RP
k (s1, . . . , sk−1, N)

=
∑

P:|P|=k

RP
k (s1, . . . , sk−1, N) +

∑
1�m�k−1
P:|P|=m

RP
k (s1, . . . , sk−1, N)

� Rk(s1, . . . , sk−1, N) +
k−1∑
m=1

bmRm(s1, . . . , sm−1, N),

with bm ∈ N, m = 1, . . . , k − 1. �
Remark. (i) Proposition 2.4 uses a combinatorial argument to derive a relation between 
the pair correlation function Rk and R∗

k, which is the corresponding sum over not nec-
essarily distinct indices. A similar argument can be found in [21, Chapter 4].

(ii) The constants ci = ci(m) appearing in the proof of Proposition 2.2 are the un-
signed Stirling numbers of the first kind and the numbers bi = bi(k) from Proposition 2.4
are the Stirling numbers of the second kind. This can be easily seen from (14) and the 
definition of the bi as the number of partitions of [k] into i nonempty subsets, respectively 
(see [4] for more details).

Corollary 2.5. Let (xn)n∈N ⊆ [0, 1] be an arbitrary sequence. For all s > 0 large enough 
we have

Rk(s,N) � R∗
k(s,N) � Rk(s,N) + Ok

(
1
s
Rk(3ks,N)

)
, N → ∞ (18)

If (xn)n∈N has Poissonian k – th correlations, we have for s sufficiently large

R∗
k(s,N) = (2s)k−1 + O(sk−2), N → ∞. (19)

Proof. (19) follows immediately from (18) under the assumption of Poissonian k – th 
correlations. Also, the first inequality of (18) is obvious. For the second inequality of (18), 
we use Proposition 2.2 and monotonicity of Rk(s, N) in s to deduce that for 1 � i � k−1,

Ri(s,N) �i,k
1

sk−i
Rk(3k−is,N) � 1

s
Rk(3ks,N), N → ∞

for all s > 0 sufficiently large. Using Proposition 2.4, the result follows. �



216 M. Hauke, A. Zafeiropoulos / Journal of Number Theory 243 (2023) 202–240
Corollary 2.5 shows us that for s large enough, we can work with R∗
k instead of Rk. 

The function R∗
k satisfies the following inequalities that will be used in the proofs of 

Theorems 1.1 and 1.2.

Proposition 2.6. (i) For any s > 0 and N � 1,

R∗
2(s,N)k−1 � R∗

k(s,N). (20)

(ii) Let s1, s2, . . . , sk−1 > 0 and N � 1. Then

R∗
k(s1, . . . , sk−1, N)k−1 � R∗

k(s1, N)R∗
k(s2, N) · · ·R∗

k(sk−1, N). (21)

Proof. For any s > 0 and N � 1 we define

zi(s,N) = #
{
j � N : ‖xi − xj‖ � s

N

}
, i � N.

Under this notation, we observe that for k � 2 and s1, s2, . . . , sk−1 > 0 we have

R∗
k(s1, . . . , sk−1, N) = 1

N

∑
i�N

zi(s1, N) · . . . · zi(sk−1, N). (22)

For (20), an application of the Hölder inequality with p = k− 1 and q = (k− 1)/(k− 2)
gives

R∗
2(s,N)k−1 =

( 1
N

∑
i�N

zi(s,N)
)k−1

� 1
N

∑
i�N

zi(s,N)k−1 = R∗
k(s,N).

Applying the Hölder inequality with exponents pi = k − 1, (1 � i � k − 1) to (22) we 
obtain (21). �
3. Proof of Theorem 1.1

Here we prove that sequences with Poissonian correlations of k – th order are uniformly 
distributed. We argue as in the proof of [1, Theorem 2]: if the sequence (xn)n∈N is not 
uniformly distributed, then there exists some a ∈ (0, 1) such that relation lim

N→∞
1
N #{n �

N : xi ∈ [0, a]} = a fails, and by the Bolzano –Weierstrass theorem there exists a 
sequence (Nj)∞j=1 and a number b �= a such that

lim
j→∞

1
Nj

#{n � Nj : xi ∈ [0, a]} = b.

We need the following lemma, which tells us that under the assumption of Poissonian cor-
relations of k – th order, the proportion of points in a ball with sufficiently fast shrinking 
radius has to be asymptotically zero.
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Lemma 3.1. Let k � 2. If (xn)n∈N is a sequence with Poissonian k – th correlations and 
t ∈ [0, 1], then for any s > 0 we have

lim
N→∞

1
N

#
{
n � N : ‖xn − t‖ � s

2N

}
= 0.

Proof. Assume for contradiction that there exist t ∈ [0, 1], s > 0 and η > 0 such that

1
N

#
{
n � N : ‖xn − t‖ � s

2N

}
� η for inf. many N � 1.

For such values of N � 1 we have

Rk(s,N) � 1
N

ηN · (ηN − 1) · . . . · (ηN − (k − 1))

= ηkNk−1 + O(Nk−2), N → ∞,

which contradicts the assumption of Poissonian k – th correlations. �
We can now apply Lemma 3.1 with t = a and t = 0 to deduce that for ε > 0 small 

enough, we have

1
Nj

#
{
n � Nj : s

2Nj
� xn � a− s

2Nj

}
= 1

Nj
#{n � Nj : xi ∈ [0, a]}

− 1
Nj

#
{
n � Nj : 0 � xn <

s

2Nj

}

− 1
Nj

#
{
n � Nj : a− s

2Nj
< xn � a

}
� b− ε

and also

1
Nj

#
{
n � Nj : a + s

2Nj
� xn � 1 − s

2Nj

}
� 1 − b− ε

for all j � 1 sufficiently large.
For these values of j, if F (t, s, N) is the function defined in (7), we see that

aˆ

0

F (t, s,Nj) dt =
aˆ

0

∑
n�N

1B(xn,
s

2N )(t) dt =
∑
n�N

λ
(
B(xn,

s

2N ) ∩ [0, a]
)

� s

Nj
#
{
n � Nj : s

2Nj
� xn � a− s

2Nj

}
� s(b− ε)

and similarly
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1ˆ

a

F (t, s,Nj)dt � s(1 − b− ε).

Applying the Cauchy – Schwarz inequality we deduce that

1ˆ

0

F (t, s,Nj)2 dt =
aˆ

0

F (t, s,Nj)2 dt +
1ˆ

a

F (t, s,Nj)2 dt

� 1
a

⎛
⎝ aˆ

0

F (t, s,Nj) dt

⎞
⎠

2

+ 1
1 − a

⎛
⎝ 1ˆ

a

F (t, s,Nj) dt

⎞
⎠

2

� s2

a
(b− ε)2 + s2

1 − a
(1 − b− ε)2.

Since a �= b, if we choose ε > 0 small enough we have

(b− ε)2

a
+ (1 − b− ε)2

1 − a
= 1 + δ for some δ > 0

and therefore

1ˆ

0

F (t, s,Nj)2 dt � (1 + δ)s2 (23)

for all j � 1 large enough. At this point, we present a simple fact that connects the 
correlation functions R∗

2(s, N) with the function F (t, s, N).

Lemma 3.2. For any s > 0, we have

1ˆ

0

F (t, s,N)2 dt =
sˆ

0

R∗
2(σ,N) dσ. (24)

Proof. By definition of F (t, s, N), we see that

1ˆ

0

F (t, s,N)2 dt =
∑

m,n�N

λ
(
B(xm,

s

2N ) ∩B(xn,
s

2N )
)

=
∑

m,n�N

{ s

N
− ‖xm − xn‖

}+
,

while the definition of R∗
2(s, N) gives

sˆ
R∗

2(σ,N) dσ =
sˆ 1
N

∑
m,n�N

1[N‖xm−xn‖,∞)(σ) dσ = 1
N

∑
m,n�N

{
s−N‖xm − xn‖

}+
0 0
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and these two terms on the right – hand sides of the equations above are clearly equal. �
Combining (23) with (24) we get

sˆ

0

R∗
2(σ,Nj) dσ � (1 + δ)s2, (25)

and in turn using (25) with (20) and (19) we see that

(1 + δ)s2 �
sˆ

0

R∗
2(σ,Nj) dσ �

sˆ

0

R∗
k(σ,Nj)

1
k−1 dσ = s2 + O(s), j → ∞

which is a contradiction for values of s which are sufficiently large.

4. Proof of Theorem 1.2

In this section we present the proof of Theorem 1.2, which generalises Theorem B in 
the context of k – th order correlations. We first present the properties of the correlation 
functions Ck(s, N) and C∗

k(s, N) that we use in the proof and then continue with the 
proof itself.

4.1. The functions Ck, C∗
k

For convenience, when N � 1 and 1 � i, j � N we write

λN (s; i, j) = λ
(
B
(
xi,

s

2N
)
∩B

(
xj ,

s

2N
))

. (26)

As shown in the following proposition, the values of Ck and C∗
k can be expressed explicitly 

in terms of the numbers λN (s; i, j).

Proposition 4.1. The functions Ck, C∗
k satisfy

Ck(s1, . . . , sk−1, N) = Nk−2
∑

i1,...,ik�N
distinct

λN (s1; i1, i2)λN (s2; i1, i3) . . . λN (sk−1; i1, ik)

and

C∗
k(s1, . . . , sk−1, N) = Nk−2

∑
i1,...,ik�N

λN (s1; i1, i2)λN (s2; i1, i3) . . . λN (sk−1; i1, ik).

Proof. Note that for any i, j � N and s > 0,

sˆ
1[0, σN

](‖xi − xj‖) dσ = {s−N‖xi − xj‖}+ = NλN (s; i, j).

0
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Therefore,

C∗
k(s1, . . . , sk−1, N) =

s1ˆ

0

s2ˆ

0

· · ·
sk−1ˆ

0

R∗
k(σ1, . . . , σk−1, N) dσ1dσ2 . . .dσk−1

= 1
N

∑
i1,...,ik�N

k−1∏
j=1

sjˆ

0

1[0, σN
](‖x1 − xj+1‖) dσ

= 1
N

∑
i1,...,ik�N

k−1∏
j=1

NλN (sj ; i1, ij+1)

= Nk−2
∑

i1,...,ik�N

λN (s1; i1, i2)λN (s2; i1, i3) . . . λN (sk−1; i1, ik).

The proof follows similarly for Ck(s1, . . . , sk−1, N). �
The next proposition gives a lower bound for the size of C∗

k . For convenience, when 
we deal with λN (s; i, j) as in (26) and the value of s > 0 is clear from the context, we 
suppress the dependence on s and simply write λN (i, j).

Proposition 4.2. Let (xn)n∈N ⊆ [0, 1] be a sequence. For any s > 0,

C∗
k(s,N) � s2(k−1) for all N � 1.

Proof. By Proposition 4.1, we have

C∗
k(s,N) = Nk−2

∑
i1,...,ik�N

λN (i1, i2)λN (i1, i3) . . . λN (i1, ik).

Using the Hölder inequality with p = (k − 1)/(k − 2) and q = k − 1, we get

C∗
2 (s,N)k−1 =

( ∑
i1,i2�N

λN (i1, i2)
)k−1

� Nk−2
N∑

i1=1

(
N∑

i2=1
λN (i1, i2)

)k−1

= C∗
k(s,N).

On the other hand, if F (t, s, N) is the function defined in (7), by Lemma 3.2 we have

C∗
2 (s,N) =

sˆ

0

R∗
2(σ,N)dσ =

1ˆ

0

F (t, s,N)2dt �

⎛
⎝ 1ˆ

0

F (t, s,N)dt

⎞
⎠

2

= s2,

which implies that for any N � 1 we have C∗
k(s, N) � s2(k−1). �
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For the proof of Theorem 1.2, we need to introduce a localised version of the correlation 
functions C∗

k(s, N). For any s > 0 and any interval A ⊆ [0, 1) we define the quantity

C∗
k(A; s,N) := Nk−2

∑
i1,...,ik�N

xi1 ,...,xik
∈A

λN (i1, i2)λN (i1, i3) . . . λN (i1, ik). (27)

In view of Proposition 4.1, one can think of C∗
k(A; s, N) as a restriction of C∗

k(s, N) on 
A. We intend to use the obvious fact that for any partition (Aj)Mj=1 of the unit interval 
we have

C∗
k(s,N) �

M∑
j=1

C∗
k(Aj ; s,N). (28)

The following proposition generalises Proposition 4.2 for the localised versions of the 
C∗

k(s, N) in the context of Theorem 1.2.

Proposition 4.3. Let G : [0, 1] → R be an asymptotic distribution function of (xn)n∈N
and (Nj)j∈N be a sequence as in (3). Let k � 2, A ⊆ [0, 1] be an interval, a := λ(A) be 
its Lebesgue measure and b := μG(A) be its Riemann – Stieltjes measure with respect to 
G. Then for all s > 0 we have

lim inf
j→∞

C∗
k(A, s,Nj) �

bk

ak−1 s
2(k−1).

Proof. Let s > 0 arbitrary and assume without loss of generality that A = [0, a]. Let 
(xrn)∞n=1 denote the subsequence of (xn)∞n=1 consisting of all terms that lie in [0, a] and 
define the sequence (zn)n∈N by

zn = 1
a
xrn , n � 1.

We wish to establish a relation between C∗
k([0, a], s, N) defined in (27) and the correlation 

counting function C∗
k(s, N) relevant to the sequence (zn)n∈N . Since we need to specify to 

which sequence the counting function refers to, from now on we write C∗
k((zn)n∈N , s, N)

for the function C∗
k that refers to (zn)n∈N , and when we do not state which sequence 

the correlation function C∗
k refers to, it will be understood that it refers to (xn)n∈N .

We define

KN = #{i � N : xi ∈ [0, a]}, N � 1.

Let ε > 0. By the definitions of a and b, there exists J � 1 such that for all j � J ,

(b− ε)Nj < #{i � Nj : xi ∈ [0, a]} < (b + ε)Nj . (29)
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Then for any s > 0 we have

C∗
k ([0, a], s,Nj) = Nk−2

j

∑
i1,...,ik�Nj

xi1 ,...,xik
�a

∏
2�p�k

λ
(
B
(
xi1 ,

s

2Nj

)
∩B

(
xip ,

s

2Nj

))

= Nk−2
j

∑
i1,...,ik�KNj

∏
2�p�k

λ
(
B
(
azi1 ,

s

2Nj

)
∩B

(
azip ,

s

2Nj

))
.

(30)

At this point, we notice that when Nj is sufficiently large, the measure of the intersections 
appearing in the right-hand side of (30) is

λ
(
B
(
azi1 ,

s

2Nj

)
∩B

(
azip ,

s

2Nj

))
= aλ

(
B
(
zi1 ,

s

2aNj

)
∩B

(
zip ,

s

2aNj

))
(29)
� aλ

(
B
(
zi1 ,

s(b− ε)
2aKNj

)
∩B

(
zip ,

s(b− ε)
2aKNj

))
.

Inserting this into (30) gives

C∗
k ([0, a], s,Nj) � Nk−2

j

∑
i1,...,ik�KNj

ak−1
∏

2�p�k

λ
(
B
(
zi1 ,

s(b− ε)
2aKNj

)
∩B

(
zip ,

s(b− ε)
2aKNj

))

= ak−1N
k−2
j

Kk−2
Nj

· C∗
k

(
(zn)n∈N ; s(b− ε)a−1,KNj

)
(29)
� ak−1

(b + ε)k−2C
∗
k

(
(zn)n∈N ; s(b− ε)a−1,KNj

)
.

We now use Proposition 4.2 for C∗
k

(
(zn)n∈N ; (b − ε)sa−1, KNj

)
to deduce that

C∗
k ([0, a], s,Nj) �

ak−1

(b + ε)k−2 · (b− ε)2(k−1)

a2(k−1) s2(k−1)

for all j � J . Since ε > 0 can be chosen arbitrarily small, this finally implies

lim inf
j→∞

C∗
k ([0, a], s,Nj) �

bk

ak−1 s
2(k−1). �

4.2. Proof of Theorem 1.2

For each r � 1 we define the intervals

Br,i =
[ i

,
i + 1)

, 0 � i � 2r − 1. (31)
2r 2r
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Applying Proposition 4.3 and (28) to the partition (Br,i)2
r−1

i=0 , we deduce that for any 
s > 0

lim infj→∞ C∗
k(s,Nj)

s2(k−1) �
2r−1∑
i=0

2r(k−1)
(
G
( i + 1

2r
)
−G

( i

2r
))k

. (32)

We now consider two cases regarding the function G.
(i) If G is not absolutely continuous, there exists a fixed ε > 0 such that for any δ > 0, 
there exist M = Mδ ∈ N many pairwise disjoint intervals I1, . . . , IM ⊆ (0, 1) with 
Ij = (aj , bj), j = 1, . . . , M such that

M∑
j=1

(bj − aj) <
δ

2 ,
M∑
j=1

(G(bj) −G(aj)) > ε.

For r ∈ N, we define

aj,r = 2raj�
2r , bj,r = �2rbj�

2r , Ij,r = (aj,r, bj,r).

In other words, Ij,r is the smallest interval of the form (m
2r , n2r ) with m, n ∈ N that 

contains Ij . We choose r = r(δ) � 1 large enough so that the intervals Ij,r, j = 1, . . . , M
are still pairwise disjoint, contained in (0, 1) and also 2r > 4M/δ. We then have

M∑
j=1

(bj,r − aj,r) �
M∑
j=1

(
bj − aj + 2

2r

)
<

δ

2 + δ

2 = δ. (33)

Let Jr,δ ⊆ {0, . . . , 2r − 1} be the index set such that

⋃
i∈Jr,δ

Br,i =
M⋃
j=1

Ij,r.

Using (33), we see that

|Jr,δ| < 2rδ. (34)

Additionally, since G is non-decreasing, we still have

∑
i∈Jr,δ

(
G
( i + 1

2r
)
−G

( i

2r
))

> ε. (35)

Combining (32) with (35), applying the Hölder inequality in the form 
(∑

i∈J xi

)k �
|J |k−1∑

i∈J xk
i and using (34) we obtain
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lim infj→∞ C∗
k(s,Nj)

s2(k−1) � 2r(k−1)
∑

i∈Jr,δ

(
G
( i + 1

2r
)
−G

( i

2r
))k

� 2r(k−1)

|Jr,δ|k−1

( ∑
i∈Jr,δ

(
G
( i + 1

2r
)
−G

( i

2r
)))k

� εk

δk−1 ·

As ε > 0 is fixed and δ > 0 can be chosen arbitrarily small, we obtain that for any s > 0, 
lim infj→∞ C∗

k(s, Nj) = ∞, or equivalently limj→∞ C∗
k(s, Nj) = ∞. By monotonicity of 

R∗
k, this immediately implies that also limj→∞ R∗

k(s, Nj) = ∞.
We will now show that limj→∞ Rk(s, N) = ∞. Letting zi = zi(s, N) be as in the proof 

of Proposition 2.6, for all m < k and N � 1 we have

Rm(s,N) = 1
N

∑
i�N

(zi − 1)(zi − 2) · . . . · (zi − (m− 1))

= 1
N

∑
i�N,zi�k

(zi − 1) · . . . · (zi − (m− 1))

+ 1
N

∑
i�N,zi<k

(zi − 1) · . . . · (zi − (m− 1))

� 1
N

∑
i�N,zi�k

(zi − 1) · . . . · (zi − (m− 1)) + km

� Rk(s,N) + km.

Together with Proposition 2.4, this gives

R∗
k(s,N) � (1 + bk−1 + . . . + b1)Rk(s,N) +

k−1∑
m=1

bmkm. (36)

Since limj→∞ R∗
k(s, Nj) = ∞, (36) immediately shows that also

lim
j→∞

Rk(s,Nj) = ∞,

as required.
(ii) We now consider the case when G is absolutely continuous, and write g for the 
function as in the hypothesis of Theorem 1.2. We follow the method used in [1] to prove 
Theorem B. We first assume that gk is integrable. For each r � 1, let Fr be the σ – algebra 
generated by the intervals Br,i, 0 � i � 2r − 1 defined in (31). By the hypothesis, for 
any r � 1 and i = 0, 1, . . . , 2r − 1 we have

lim
j→∞

1
Nj

#{n � Nj : xn ∈ Br,i} = G
( i + 1

2r
)
−G

( i

2r
)

=
ˆ

g(x)dx.

Br,i
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Inequality (32) implies that for any s > 0

lim infj→∞ C∗
k(s,Nj)

s2(k−1) �
2r−1∑
i=0

2r(k−1)

⎛
⎜⎝ ˆ

Br,i

g(x)dx

⎞
⎟⎠

k

=
1ˆ

0

E[g|Fr](x)kdx.

(Here the function E [g|Fr] is the conditional expectation of g with respect to the 
σ – algebra Fr, for the definition we refer to [6, p. 121].) At this point, we observe that 
Fr ⊆ Fr+1 for all r � 1 and the σ – algebra generated by 

∞⋃
r=1

Fr is the Borel σ – algebra 

on [0, 1]. Since g has a finite k – th moment, we can apply the martingale convergence 
theorem [6, Thm 5.5] to deduce

lim
r→∞

1ˆ

0

E[g|Fr](x)kdx =
1ˆ

0

g(x)k dx,

so we obtain

lim infj→∞ C∗
k(s,Nj)

s2(k−1) �
1ˆ

0

g(x)k dx. (37)

Applying Proposition 2.6, we see that

lim inf
j→∞

C∗
k(s,Nj) � lim sup

j→∞

ˆ

[0,s]k−1

R∗
k(t1, . . . , tk−1, Nj) dt1 . . .dtk−1

� lim sup
j→∞

ˆ

[0,s]k−1

R∗
k(t1, Nj)

1
k−1 · · ·R∗

k(tk−1, Nj)
1

k−1 dt1 . . .dtk−1

(38)

= lim sup
j→∞

⎛
⎝ sˆ

0

R∗
k(t,Nj)1/(k−1) dt

⎞
⎠

k−1

.

We will first prove that

lim sup
s→∞

lim supj→∞ R∗
k(s,Nj)

(2s)k−1 �
1ˆ

0

g(x)k dx (39)

and prove the same with Rk in place of R∗
k later. Assume for contradiction that there 

exists an ε > 0 and some S0 = S0(ε) ∈ N such that for all s > S0,
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lim sup
j→∞

R∗
k(s,Nj) < (2s)k−1

⎛
⎝ 1ˆ

0

g(x)k dx− ε

⎞
⎠ . (40)

Raising both sides in (40) to the power of 1/(k − 1) and integrating, we see that for all 
s > S0 we have

sˆ

0

lim sup
j→∞

R∗
k(σ,Nj)

1
k−1 dσ =

sˆ

S0

lim sup
j→∞

R∗
k(σ,Nj)

1
k−1 dσ + O(1)

� s2

⎛
⎝ 1ˆ

0

g(x)k dx− ε

⎞
⎠

1
k−1

+ O(1). (41)

The O(1) term here comes from the fact that lim supj→∞ R∗
k(σ, Nj) is bounded in the 

range (0, S0]. Combining (37), (38) and (41) and applying the reverse Fatou Lemma, we 
obtain

s2

⎛
⎝ 1ˆ

0

g(x)k dx

⎞
⎠

1
k−1

� lim inf
j→∞

C∗
k(s,Nj)

1
k−1

� lim sup
j→∞

sˆ

0

R∗
k(σ,Nj)1/(k−1) dσ

�
sˆ

0

lim sup
j→∞

R∗
k(σ,Nj)1/(k−1) dσ

� s2

⎛
⎝ 1ˆ

0

g(x)k dx− ε

⎞
⎠

1
k−1

+ O(1),

a contradiction when s → ∞.
To prove (39) with Rk instead of R∗

k, we argue as follows: assume for contradiction 
that

lim sup
s→∞

lim supj→∞ Rk(s,Nj)
(2s)k−1 <

1ˆ

0

g(x)k dx. (42)

Combining (39) with (42), we deduce that there exists some δ > 0 such that

lim sup
s→∞

lim supj→∞(R∗
k(s,Nj) −Rk(s,N))
(2s)k−1 � δ

1ˆ
g(x)k dx.
0
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In view of (18), this implies that

lim sup
s→∞

1
s

lim supj→∞ Rk(3ks,Nj)
(2s)k−1 � M

1ˆ

0

g(x)k dx,

where the constant M > 0 depends on k; a contradiction to (42).
If g does not have a finite k – th moment, we approximate g by truncations

g�(x) :=
{
g(x), if g(x) � �

0, if g(x) > �.

We can apply the arguments from above to show that for any � ∈ N,

lim sup
s→∞

lim supj→∞ Rk(s,Nj)
(2s)k−1 �

1ˆ

0

g�(x)k dx.

Since 
´ 1
0 g�(x)k dx can be made arbitrarily large, the result follows.

5. Proof of Theorems 1.3 and 1.4

The proof of Theorem 1.3 follows straightforwardly from Proposition 2.2. Assume 
s1, . . . , sk−1 > 0 are such that

lim sup
N→∞

Rk(s1, . . . , sk−1, N) = ∞.

If p > k, then by (13) for any s large enough with respect to k and s1, . . . , sk−1 we have 
lim supN→∞ Rp(s, N) = ∞. Therefore the sequence (xn)n∈N cannot have Poissonian 
correlations of order p.

Turning to Theorem 1.4, statement (i) follows by Bourgain’s construction in [2, Ap-
pendix] of a subset A = (an)n∈N of the positive integers such that E(AN ) = o(N3), N →
∞ and for almost all x ∈ [0, 1] the sequence (anx)n∈N satisfies

lim sup
N→∞

R2(1, N) = ∞.

By Theorem 1.3, for almost all x ∈ [0, 1] the sequence (anx)∞n=1 does not have Poissonian 
correlations of any order k � 2.

For statement (ii), within the context of Theorem 1.4 we write Rk(s, N, x) for the 
k – th correlation function Rk(s, N) of the sequence (anx)n∈N . Also given any finite set 
A, we write

T (A) := #{(a, b, c) ∈ A3 : a− b = b− c �= 0}.
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We shall make use of a result in additive combinatorics, which states that whenever 
the additive energy of a set A is E(A) � κ1|A|3 then T (A) � κ2|A|2; the constant κ2 > 0
only depends on κ1 > 0. (see e.g. [18, Theorem 6.1]).

Therefore the assumption of Theorem 1.4 implies that

T (AN ) � cN2 for infinitely many N � 1,

where c > 0 is a constant.
Let (i, j, k) ∈ A3

N be a 3 – term arithmetic progression with distance d � 1. Then we 
have ‖jα− iα‖ � s

N and ‖kα− jα‖ � s
N if and only if ‖dα‖ � s

N , which happens for α
on a set of measure 2s/N , independent of the value of d � 1. Observe that for infinitely 
many values of N � 1, we have

1ˆ

0

R3(s,N, α) dα =
∑

i,j,k∈AN
distinct

1ˆ

0

1
N

1[‖jα−iα‖� s
N ,‖kα−jα‖� s

N ](α) dα

� 1
N

∑
(i,j,k) is a

non-trivial 3-AP

2s
N

= 2sT (AN )
N2 � 2sc.

For s sufficiently small, we have 2sc > 4s2, so

lim sup
N→∞

1ˆ

0

R3(s,N, α) dα > 4s2.

By the reverse Fatou Lemma,

lim sup
N→∞

1ˆ

0

R3(s,N, α) dα �
1ˆ

0

lim sup
N→∞

R3(s,N, α) dα

which implies that there must be a set Ω ⊆ [0, 1] with positive Lebesgue measure such 
that for α ∈ Ω,

lim sup
N→∞

R3(s,N, α) > 4s2.

6. Proof of Theorem 1.5

In the proof of Theorem 1.5 we make use of the test functions g(k)
s : Rk−1 → R defined 

for every k � 2 and s > 0 by

g(k)
s (y1, . . . , yk−1) :=

{
s− max {yi}+ − max {−yi}+

}+
.

1�i<k 1�i<k
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Then g(k)
s ∈ Cc(Rk−1). The importance of the test functions g(k)

s is seen from the fol-
lowing lemma. For convenience, when s > 0 and N � 1 are fixed, given an index i � N

we write Bi = B
(
xi, 

s

2N
)
.

Lemma 6.1. Let s > 0, N � 4s be fixed. Consider the points x1, x2, . . . , xk ∈ [0, 1], where 
2 � k � N . Then

λ
( k⋂

j=1
Bj

)
= g(k)

s (N((x1 − x2)), . . . , N((x1 − xk))) . (43)

Proof. Let xi1 and xi2 be the first and last point modulo 1, that is, ( (xi − xi1) ) � 0 and 
( (xi2 − xi) ) � 0 for all 1 � i � k, i �= i1, i2. Then

λ
( k⋂

j=1
Bj

)
= λ(Bi1 ∩Bi2) =

{ s

N
− ‖xi1 − xi2‖

}+

=
{

s

N
− max

1�m,n�k
((xm − xn))

}+

and it remains to prove that

{
s

N
− max

1�m,n�k
((xm − xn))

}+

= g(k)
s (N((x1 − x2)), . . . , N((x1 − xk))) . (44)

We only need to show this for points x1, . . . , xk such that ‖x1 − x�‖ � s
N � 1

4 for all 
2 � � � k – otherwise both sides of (44) are zero. For such points we have

((x� − xj)) = ((x� − x1)) + ((x1 − xj)) for all 1 � �, j � k. (45)

We further assume without loss of generality that the points x2, . . . , xk are in increas-
ing order, that is, ( (xn+1 − xn) ) � 0 for n = 2, . . . , k − 1. We first consider the case in 
which x1 is between x2 and xk, i.e. ( (x1 − x2) ) > 0 and ( (xk − x1) ) > 0. Then

max
1�m,n�k

((xm − xn)) = ((xk − x2))
(45)= ((xk − x1)) + ((x1 − x2))

= max
2�n�k

{−((x1 − xn))}+ + max
2�n�k

{((x1 − xn))}+,

which proves (44). The proof is similar in all other cases regarding the relative position 
of x1 with respect to x2, . . . , xk. �

In order to employ the test functions g(k)
s to deduce information for Poissonian k – th 

order correlations, we first need to determine their integrals.
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Lemma 6.2. For any k � 2 and s > 0, we have
ˆ

Rk−1

g(k)
s (y1, . . . , yk−1) dy1 . . .dyk−1 = sk. (46)

Proof. Clearly supp(g(k)
s ) ⊆ [−s, s]k−1. We partition the set [−s, s]k−1 as follows: for 

each � = 0, 1, . . . , k − 1 and each subset A ⊆ [k − 1] with |A| = � we define

D�(A) = {(y1, . . . , yk−1) ∈ [−s, s]k−1 : yi � 0 ⇐⇒ i ∈ A}.

Then

ˆ
g(k)
s (y1, . . . , yk−1) dy1 . . .dyk−1 =

k−1∑
�=0

∑
A⊆[k−1]
|A|=�

ˆ

D�(A)

g(k)
s (y1, . . . , yk−1) dy1 . . .dyk−1.

Consider first the set A0 = {1, . . . , �}. Then we can write

D�(A0) =
⋃

1�i��
�<j<k

D�(A0, i, j)

where for each 1 � i � � and � < j < k we define

D�(A0, i, j) =
{

(y1, . . . , yk−1) ∈ D�(A0) : yi = max
1�r��

yr, yj = min
�<r<k

yr

}
.

The sets D�(A0, i, j) are almost pairwise disjoint (their intersections are sets of zero 
(k−1) – dimensional Lebesgue measure). On the set D�(A0, 1, k−1) we have for 1 � � <
k − 1 that

g(k−1)
s (y1, . . . , yk−1) = s− y1 + yk−1.

Thus

ˆ

D�(A0,1,k−1)

g(k)
s =

sˆ

0

0ˆ

−(s−y1)

¨

[0,y1]�−1×[yk−1,0]k−�−2

(s− y1 + yk−1) dy2 . . .dyk−2dyk−1dy1

=
sˆ

0

0ˆ

−(s−y1)

(−1)k−�−2y�−1
1 yk−�−2

k−1 (s− y1 + yk−1) dyk−1dy1

=
sˆ
(−1)k−�−2x�−1(s− x)

0ˆ
yk−�−2 dydx
0 −(s−x)
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+
sˆ

0

(−1)k−�−2x�−1
0ˆ

−(s−x)

yk−�−1 dy

=
( 1
k − �− 1 − 1

k − �

) sˆ

0

x�−1(s− x)k−� dx.

We now make use of the identity

1ˆ

0

xn−1(1 − x)m−1 dx = 1
m

(
m + n− 1

n− 1

)−1

, m, n � 1

(see for example [7, p. 908, 910]) to deduce that

ˆ

D�(A0,1,k−1)

g(k)
s = 1

(k − �)(k − �− 1)�

(
k

k − �

)−1

sk.

Using a symmetry argument, one sees that the integral of g(k)
s has the same value on 

any of the sets of the form D�(A0, i, j). Since there exist �(k − � − 1) such sets, we have

ˆ

D�(A0)

g(k)
s = 1

k − �

(
k

k − �

)−1

= 1
k

(
k − 1
�

)−1

sk. (47)

Another symmetry argument now shows that the value of the integral on any set D�(A)
where A ⊂ [k− 1] has � elements is the same as on the right hand side of (47). We have 
proved this for � = 1, . . . , k−2, but the same result also holds when � = 0 or k−1. Since 
there exist precisely 

(
k−1
�

)
such subsets of [k − 1], we have

ˆ

D�

g(k)
s = sk

k
·

Finally, summing over the k possible values of the index � we deduce (46). �
Armed with Lemma 6.1, we can proceed to the proof of Theorem 1.5.

Proof of Theorem 1.5. (i) Fix some s > 0 and N � 1. A counting argument gives that 
for any 0 � t � 1 such that F (t, s, N) � k,

F (t, s,N)(F (t, s,N) − 1) . . . (F (t, s,N) − (k − 1)) =
∑

i1,...,ik�N

1( k⋂
j=1

Bij

)(t). (48)
distinct
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Note that this equality also holds when F (t, s, N) < k: since F is integer – valued, both 
sides of (48) are then equal to 0. Integrating with respect to t we get

Ik(s,N) =
∑

i1,...,ik�N
distinct

λ
( k⋂

j=1
Bij

) (43)= 1
N

∑
i1,...,ik�N

distinct

g(k)
s (N((xi1 − xi2)), . . . , N((xi1 − xik)))

Since we assumed that (xn)n∈N has Poissonian k – th correlations, it follows from 
Lemma 6.2 that lim

N→∞
Ik(s, N) = sk.

(ii) Using the well-known formula for Stirling numbers of the second kind

k∑
j=1

ck,jx(x− 1) · · · (x− (j − 1)) = xk

(see e.g. [4, Chap. 5.3]), we can write

I∗k(s,N) =
1ˆ

0

F (t, s,N)k dt =
∑

i1,...,ik�N
distinct

λ
( k⋂

j=1
Bxij

)
+

+ ck,k−1
∑

i1,...,ik−1�N
distinct

λ
( k−1⋂

j=1
Bxij

)
+ . . .

+ ck,1
∑
i1�N

λ(Bxi1
).

In view of (43), this implies that

I∗k(s,N) = Rk(g(k)
s , N) + ck,k−1Rk−1(g(k−1)

s , N) + . . . (49)

+ ck,1R2(g(2)
s , N).

The main term in (49) is Rk(g(k)
s , N) = Ik(s, N), and we have shown in (i) that 

Ik(s, N) → sk, N → ∞. For � < k, we see that g(�)
s � s1[−s,s]�−1 which implies by 

monotonicity of R�(·, N) that

R�(g(�)
s , N) � sR�(s,N).

By Proposition 2.2, since (xn)n∈N has Poissonian k – th correlations we have

lim sup
N→∞

R�(s,N) = Ok(s�−1), s → ∞.

Combining (49) with these remarks, we see that
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lim sup
N→∞

I∗k(s,N) = sk + Ok(sk−1), s → ∞.

(iii) Since (xn)n∈N has Poissonian � – correlations for all 2 � � � k, by definition 
lim

N→∞
R�(g(�)

s , N) = s�. Therefore in that case, (49) implies that

lim
N→∞

I∗k(s,N) = sk + ck,k−1s
k−1 + . . . + ck,1s. �
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Appendix A. Equivalent definitions of Poissonian correlations

We discuss the different definitions of Poissonian k – th order correlations appearing 
in the literature.

The reader who is already familiar with the notion of Poissonian correlations might 
compare the definition given in (2) with another common definition, where in the cor-
relation function Rk(g, N) the differences ( (xi1 − xi2) ), ( (xi2 − xi3) ), . . . , ( (xik−1 − xik) )
appear instead of the differences ( (xi1 − xi2) ), ( (xi1 − xi3) ) . . . ( (xi1 − xik) ) as in (1). This 
is the definition used, for example, in the papers [12,13] that deal with the k – th level 
correlations of quadratic residues modulo some integer Q � 1.

Here we explain that these two definitions are equivalent.

Proposition A. Let (xn)n∈N ⊆ [0, 1] be a sequence. The following are equivalent:
(i) The sequence (xn)n∈N has Poissonian k – th order correlations.
(ii) For all test functions g ∈ Cc(Rk−1) we have

lim
N→∞

1
N

∑
i1,...,ik�N

distinct

g
(
N((xi1 − xi2)), N((xi2 − xi3)), . . . , N((xik−1 − xik))

)
=

ˆ

Rk−1

g(x) dx.

(iii) For all rectangles B = [a1, b1] × [a2, b2] × . . .× [ak−1, bk−1], bi > ai, 1 � i � k − 1, 
we have

lim
N→∞

Rk(1B , N) = λ(B)

where λ denotes the (k − 1) – dimensional Lebesgue measure.
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Proof. The proof of the equivalence of (i) and (iii) uses a standard approximation argu-
ment from analysis and is omitted. We show (i) ⇒ (ii), the direction (ii) ⇒ (i) can be 
proven in a similar fashion. Let g ∈ Cc(Rk−1) be an arbitrary test function, and define 
f : Rk−1 → R via

f(x1, x2, . . . , xk−1) = g(x1, x2 − x1, x3 − x2, . . . , xk−1 − xk−2).

This definition implies that f ∈ Cc(Rk−1),
ˆ

Rk−1

f(x) dx =
ˆ

Rk−1

g(x) dx, (50)

and furthermore

g(x1, x2, . . . , xk−1) = f (x1, x1 + x2, . . . , x1 + x2 + . . . + xk−1) . (51)

Now when N � 1 is so large that supp(f) ⊆
[−N

2k , N
2k
]k−1 and in addition

f
(
N((xi1 − xi2)), N((xi2 − xi3)), . . . , N((xik−1 − xik))

)
�= 0,

then for all � � k we have ‖xi�−1 − xi�‖ � 1
2k . Hence

‖xi1 − xi2‖ + ‖xi2 − xi3‖ + . . . + ‖xi�−1 − xi�‖ � 1
2

and thus

((xi1 − xi2)) + ((xi2 − xi3)) + . . . + ((xi�−1 − xi�)) = ((xi1 − xi�)). (52)

Using these considerations, we get

1
N

∑
i1,...,ik�N

distinct

g
(
N((xi1 − xi2)), N((xi2 − xi3)), . . . , N((xik−1 − xik))

)

(51)= 1
N

∑
i1,...,ik�N

distinct

f
(
N((xi1 − xi2)), N(((xi1 − xi2)) + ((xi2 − xi3))) , . . .

)

(52)= 1
N

∑
i1,...,ik�N

distinct

f (N((xi1 − xi2)), N((xi1 − xi3)), . . . , N((xi1 − xik))) = Rk(f,N).

Combining this with (50), we see that under the hypothesis that the sequence has Pois-
sonian k – th correlations, statement (ii) is true. As noted, the implication
(ii) ⇒ (i) can be shown in a similar way. �
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At this point, we should also mention that for the specific case k = 2, sequences are 
usually defined to have Poissonian pair correlations when

lim
N→∞

R2(s,N) = 2s for all s > 0, (53)

where R2(s, N) is the correlation function as in (5). We have already explained why a 
sequence with Poissonian pair correlations automatically satisfies (53), but it turns out 
that condition (53) is actually equivalent to (2) when k = 2. Indeed, assume (xn)n∈N is 
a sequence such that (53) holds. For the test function 1[0,s] (that is, the characteristic 
function of the interval [0, s]) we have

R2(1[0,s], N) = 1
2R2(s,N) + 1

N
#
{
i �= j � N : xi = xj

}
. (54)

Since

0 � 1
N

#{i �= j � N : xi = xj} � R2(ε,N) for any ε > 0,

the assumption on (xn)n∈N implies that the rightmost term in (54) tends to 0. By this, 
we deduce that limN→∞ R2(1[0,s], N) = s for all s > 0 and it follows that for any b > a

we have limN→∞ R2(1[a,b], N) = b − a. In view of Proposition A (iii), relation (2) holds 
for k = 2.

We also note that this equivalence cannot be generalised for correlations of higher 
orders. The reason is that when k � 3, we cannot employ the symmetry argument to 
deduce a generalisation of (54), i.e. for the rectangle B = [0, s1] × . . .× [0, sk−1], it does 
not hold in general that

Rk(1B , N) =
(1

2

)k−1
Rk(s1, . . . , sk−1, N).

Appendix B. The k – th order correlations of random sequences are almost surely 
Poissonian

We establish a fact that was alluded to in the introduction: whenever (Yn)n∈N is a 
sequence of independent and uniformly distributed random variables in [0, 1], then for 
all k � 2 the sequence (Yn(ω))n∈N almost surely has Poissonian correlations of k – th 
order. The method of proof we use is a standard mean – variance argument that appears 
very often in the relevant literature. We refer the reader to [10] for a proof in higher 
dimensions when k = 2.

Indeed, given such a sequence (Yn)n∈N and ar < br (1 � r < k), let

Rk(ω,N) = 1 #
{
i1, . . . , ik � N

: ar � Yi1(ω) − Yir+1(ω) � br (1 � r < k)
}
.

N ij �= i� ∀j �= � N N
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According to Proposition A it suffices to show that Rk(ω, N) → (b1−a1) · · · (bk−1−ak−1)
as N → ∞ almost surely.

We proceed to the calculation of the expectation and variance of Rk(·, N) viewed as a 
random variable on [0, 1]. This will be done in several steps. In the estimates that follow, 
the implicit constants in the asymptotic notations depend on the scales a1, . . . , bk−1.
Step 1: We claim that for any m � 1 and for any distinct indices i1, i2, . . . , im, � 1 the 
differences

Δ1 = Yi1 − Yi2 , Δ2 = Yi1 − Yi3 , . . . Δm+1 = Yi1 − Yim+2

are independent. For convenience, we only show this when m = 1 and for the random 
variables

Δ1 = Y1 − Y2 and Δ2 = Y1 − Y3

(the proof is similar for any other choice of indices and for any m � 2). Writing fX for 
the probability density function of a random variable X : [0, 1] → R, we need to show 
that

fΔ1,Δ2(x1, x2) = fΔ1(x1)fΔ2(x2) for all x1, x2 ∈ [0, 1]. (55)

Note that in our context, addition and subtraction of the random variables is always 
understood modulo 1. Thus for all i ∈ N we have fYi

(y) = 1, 0 � y � 1 and the density 
functions of the differences Δ1, Δ2 are

fΔ1(δ) =
1ˆ

0

fY1(y)fY2(δ + y)dy = 1

and similarly fΔ2(δ) = 1, for all δ ∈ [0, 1]. We start from the left – hand side of (55): the 
theorem of total probability and the independence of {Y1, Y2, Y3} imply that

fΔ1,Δ2(x1, x2) =
1ˆ

0

fΔ1,Δ2|Y1(x1, x2|y)dy =
1ˆ

0

fΔ1,Δ2,Y1(x1, x2, y)
fY1(y)

dy

=
1ˆ

0

fΔ1,Δ2,Y1(x1, x2, y)dy =
1ˆ

0

fy−Y2(x1)fy−Y3(x2)dy = 1.

Step 2: We now claim that whenever each of the sets I = {i1, . . . , im} and J =
{j1, . . . , jn} consists of pairwise distinct indices and #(I ∩ J) � 1, then the differences 
Yi1−Yi2 , Yi1−Yi3 , . . . , Yi1−Yim , Yj1−Yj2 , . . . , Yj1−Yjn are independent random variables. 
It follows by the previous step that the random variables Yi1−Yi2 , Yi1 −Yi3 , . . . , Yi1 −Yim

are independent, and so are Yj1 − Yj2 , . . . , Yj1 − Yjn . If the sets I, J are disjoint, all of 
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these random variables are immediately independent, so we deal with the case when 
#(I ∩ J) = 1. We need to distinguish the following cases:
Case 1: i1 = j1. In this case, independence follows immediately from Step 1.
Case 2: i1 = j� or j1 = i� with � � 2: Then we can assume without loss of generality 
that i1 = j2. The random variables we are looking at are

Yj1 − Yjn , Yj1 − Yjn−1 , . . . , Yj1 − Yj2 = Yj1 − Yi1 , Yi1 − Yi2 , . . . , Yi1 − Yim ,

and these are independent by an argument similar to the one used in Step 1.
Case 3: ir = j� with r, � � 2: Then we assume without loss of generality i2 = j2 and we 
are in a similar situation as in Case 2.
Step 3: Given k distinct indices i1, . . . , ik � N , we write

Xi1,...,ik = 1[ a1
N �Yi1−Yi2�

b1
N ] · · ·1[ ak−1

N �Yi1−Yik
� bk−1

N ].

We calculate the covariance Cov(Xi1,...,ik , Xj1,...,jk), where i1, . . . , ik � N and j1, . . . ,
jk � N both consist of distinct indices. As seen above, when #{i1, . . . , ik} ∩{j1, . . . , jk} �
1 the variables Xi1,...,ik and Xj1,...,jk are independent and thus the covariance in question 
is 0. We need to bound the covariance of Xi1,...,ik , Xj1,...,jk when

#{i1, . . . , ik} ∩ {j1, . . . , jk} = � � 2. (56)

If (i1, . . . , ik), (j1, . . . , jk) fulfil (56), then

Cov(Xi1,...,ik , Xj1,...,jk) = E
[(
Xi1,...,ik − E[Xi1,...,ik ]

)(
Xj1,...,jk − E[Xj1,...,jk ]

)]
� E

[
Xi1,...,ik ·Xj1,...,jk

]
= E

[
1[ a1

N �Yi1−Yi2�
b1
N ] · · ·1[ ak−1

N �Yj1−Yjk
� bk−1

N ]

]
. (57)

To find an upper bound for the right – hand side, we take a maximal subset J̃ ⊂
{j2, . . . , jk} such that #{i1, . . . , ik} ∩ ({j1} ∪ J̃) � 1. By the discussion in Step 2, this 
gives rise to 2(k − 1) − (� − 1) independent random variables among the factors in the 
integral in (57), each of them having expectation O

( 1
N

)
. The remaining differences ap-

pearing in (57) might not be independent, but can be trivially bounded from above by 
1 since they are characteristic functions. We therefore conclude that

Cov(Xi1,...,ik , Xj1,...,jk) = O
( 1
N2(k−1)−(�−1)

)
·

Step 4: We fix a value of � � 2 and we estimate
∑

i1,...,ik�N
j1,...,jk�N

distinct

Cov(Xi1,...,ik , Xj1,...,jk).
#{i1,...,ik}∩{j1,...,jk}=�
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We count how many choices of the sets {i1, . . . , ik} and {j1, . . . , jk} there exist such that 
(56) holds. From a fixed set {i1, . . . , ik} we can choose � elements that will be in the 
intersection with {j1, . . . , jk} in 

(
k
�

)
ways. The remaining k − � elements of {j1, . . . , jk}

can be chosen in O(Nk−�) ways. Since the set {i1, . . . , ik} can be chosen in Ok(Nk)
ways, we deduce that the different choices of the sets {i1, . . . , ik} and {j1, . . . , jk} with 
precisely � common elements are Ok,�(N2k−�). Combining with Step 3, we obtain

∑
i1,...,ik�N
j1,...,jk�N

distinct
#{i1,...,ik}∩{j1,...,jk}=�

Cov(Xi1,...,ik , Xj1,...,jk) = Ok,�

(
N2k−� 1

N2(k−1)−(�−1)

)
= Ok,�(N).

(58)
Step 5: We are finally in place to calculate the expectation and variance of Rk(·, N). The 
expectation is

E[Rk(·, N)] = 1
N

∑
i1,...,ik�N

distinct

E
[
1[ a1

N �Yi1−Yi2�
b1
N ] · · ·1[ ak−1

N �Yi1−Yik
� bk−1

N ]

]

= 1
N

∑
i1,...,ik�N

distinct

E
[
1[ a1

N �Yi1−Yi2�
b1
N ]
]
· · ·E

[
1[ ak−1

N �Yi1−Yik
� bk−1

N ]

]

= (a1 − b1) · · · (ak−1 − bk−1) + O
( 1
N

)
, N → ∞

because (Yn)n∈N are independent (here we used the result from Step 1). For the variance 
we have

Var[Rk(·, N)] = 1
N2

k∑
�=0

∑
i1,...,ik�N
j1,...,jk�N

distinct, (i1,...,ik) 
=(j1,...,jk)
#{i1,...,ik}∩{j1,...,jk}=�

Cov(Xi1,...,ik , Xj1,...,jk)

+ 1
N2

∑
i1,...,ik�N

distinct

Var[1[ a1
N �Yi1−Yi2�

b1
N ] · · ·1[ ak−1

N �Yi1−Yik
� bk−1

N ]]. (59)

In the first sum appearing in (59), the terms corresponding to � = 0 or 1 are equal to 0. 
Applying (58) for the terms corresponding to 2 � � � k in (59), we obtain

Var[Rk(·, N)] = 1
N2

∑
i1,...,ik�N

distinct

Var[1[ a1
N �Yi1−Yi2�

b1
N ] · · ·1[ ak−1

N �Yi1−Yik
� bk−1

N ]] + O( 1
N

).

Since
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1
N2

∑
i1,...,ik�N

distinct

Var[1[ a1
N �Yi1−Yi2�

b1
N ] · · ·1[ ak−1

N �Yi1−Yik
� bk−1

N ]]

= 1
N2

∑
i1,...,ik�N

distinct

(
E[1[ a1

N �Yi1−Yi2�
b1
N ] · · ·1[ ak−1

N �Yi1−Yik
� bk−1

N ]]−

E[1[ a1
N �Yi1−Yi2�

b1
N ] · · ·1[ ak−1

N �Yi1−Yik
� bk−1

N ]]
2
)

= 1
N2

∑
i1,...,ik�N

distinct

(a1 − b1
N

· . . . · ak−1 − bk−1

N
−

k−1∏
r=1

(ar − br
N

)2)

= Ok

( 1
N

)
,

we deduce that

Var[Rk(·, N)] = Ok

( 1
N

)
, N → ∞.

Consider now the sequence Nm = m1+γ�, m � 1 where γ > 0. Fix ε > 0 and let 
AN = {ω ∈ [0, 1] : |Rk(ω, N) −E[Rk(·, N)]| � ε}, N � 1. By Chebyshev’s inequality, the 
Lebesgue measure of AN satisfies λ(AN ) = O(1/N), N → ∞. Then the Borel – Cantelli 
lemma implies that

λ
(
lim sup
m→∞

ANm

)
= 0,

and since ε > 0 was arbitrarily chosen, we conclude that for almost all ω ∈ [0, 1] we 
have lim

m→∞
Rk(ω, Nm) = (b1 − a1) · · · (bk−1 − ak−1). The fact that Rk(·, Nm) converges 

almost surely to this limit for any choice of the scalars follows by an intersection over a 
countable dense set of (a1, . . . , bk−1).

It remains to prove that for the same values of ω, Rk(ω, N) will converge to the value 
(b1 − a1) · · · (bk−1 − ak−1) for any choice of a1, . . . , bk−1. This will follow from the fact 
that when Nm � N < Nm+1 we have

1
N

∑
i1,...,ik�Nm

distinct

1[ a1
Nm

Nm
N �Yi1−Yi2�

b1
Nm

Nm
N ](ω) · · ·1[ ak−1

Nm

Nm
N �Yi1−Yik

� bk−1
Nm

Nm
N ](ω)

� Rk(ω,N)

� 1
N

∑
i1,...,ik�Nm+1

distinct

1[ a1Nm+1
Nm+1N �Yi1−Yi2�

b1Nm+1
Nm+1N ](ω) · · ·1[ ak−1Nm+1

Nm+1N �Yi1−Yik
� bk−1Nm+1

Nm+1N ](ω)

and the fact that Nm/Nm+1 → 1 as m → ∞.
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