
Computers and Chemical Engineering 176 (2023) 108282

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Data-driven derivative-free trust-region model-based method for resource
allocation problems
Joakim R. Andersen a,∗, Lars Imsland a, Alexey Pavlov b

a Department of Engineering Cybernetics, Norwegian University of Science and Technology, O. S. Bragstads Plass 2D, Trondheim, 7034, Norway
b Department of Geoscience and Petroleum, Norwegian University of Science and Technology, S. P. Andersens veg 15a, Trondheim, 7031, Norway

A R T I C L E I N F O

Keywords:
Resource allocation problem
Derivative-free trust-region method
Data-driven optimization
Problem structure exploitation

A B S T R A C T

Allocating a limited available resource between a set of units is a problem that arises in several application
areas. We propose an online derivative-free trust-region model-based method to tackle a fairly general version
of the resource allocation problem where units may be turned on or off. The units are considered as black
boxes which may only be evaluated given that all the other units are evaluated simultaneously, and no
gradient information is available. This method was inspired by an industrial problem and emphasis is put
on both providing feasible points during the optimization and on not incurring additional increase in cost
while searching for the optimum. The latter cannot be guaranteed, but the algorithm allows for automatic or
manual ranking of the different units to attempt to reduce negative impact on the cost. The algorithm was
applied to a case study from the petroleum industry where fast convergence was observed.
1. Introduction

The resource allocation problem is concerned with optimally allo-
cating a limited available resource between a set of units to minimize
(or maximize) a cost (or reward) function. This type of problem arises
in different application areas such as queuing control, computer re-
source allocation, apportionment, load distribution, portfolio selection
and production planning (Katoh et al., 2013). Several different varia-
tions of the resource allocation problem exists. The formulation studied
in this work is mathematically formulated as:

min
𝐮,𝐳

𝑓 (𝐮) =
𝑛𝑢
∑

𝑖=1
𝑓𝑖(𝑢𝑖) (1a)

s.t.
𝑛𝑢
∑

𝑖=1
𝑢𝑖 = 𝑢max (1b)

𝑧𝑖𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑧𝑖𝑢𝑖 (1c)

𝑢𝑖 ∈ R (1d)

𝑧𝑖 ∈ {0, 1} (1e)

where 𝑢max is the available resource, 𝑢𝑖 is the amount of resource
allocated to unit 𝑖, and 𝑓𝑖(𝑢𝑖) is the cost of allocating 𝑢𝑖 to unit 𝑖. Bold no-
tation is used for vectors: 𝐮 = [𝑢1, 𝑢2,… , 𝑢𝑛𝑢]

⊤ and 𝐳 = [𝑧1, 𝑧2,… , 𝑧𝑛𝑢]
⊤.

If all 𝑧𝑖 = 1, then this would be a standard problem formulation, as
found in Katoh et al. (2013). The binary variables allow for turning on

∗ Corresponding author.
E-mail addresses: joakim.r.andersen@ntnu.no (J.R. Andersen), lars.imsland@ntnu.no (L. Imsland), alexey.pavlov@ntnu.no (A. Pavlov).

and off units if necessary to achieve a better cost. Throughout this work,
we assume that the 𝑓𝑖’s are convex, and thus also 𝑓 . Should the 𝑓𝑖’s
be non-convex, we rely on the generally accepted, though not proved,
statement that derivative-free methods typically have the ability to find
good local minima due to their relative crudeness, see Conn et al.
(2009). Moreover, we assume the following characterizes 𝑓𝑖:

(i) the 𝑓𝑖’s are unknown functions, and can only be evaluated and
no gradient information is available,

(ii) 𝑓𝑗 can only be evaluated if all the other 𝑓𝑖’s are evaluated
simultaneously,

(iii) all the constraints must be satisfied to perform an evaluation,
and

(iv) evaluating 𝑓 is costly.

The reason for the latter, in addition to the actual cost of measurement,
could be that evaluating 𝑓 involves a change of operation point with
potential loss of revenue, and also, if there are underlying dynamics,
that reaching a new steady-state after changing the allocation may be
a slow process. The term true function is used to refer to the unknown
cost function 𝑓 (𝐮). In this work, the resource allocation problem is
formulated as a minimization problem where the objective function is a
metric of the cost of allocating the resource. If the true function is the
revenue of allocating the resources instead of the cost, the objective
function should simply be multiplied by −1 to achieve a maximization
problem.
vailable online 4 May 2023
098-1354/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.compchemeng.2023.108282
Received 19 August 2022; Received in revised form 29 December 2022; Accepted 2
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

9 April 2023

https://www.elsevier.com/locate/cace
http://www.elsevier.com/locate/cace
mailto:joakim.r.andersen@ntnu.no
mailto:lars.imsland@ntnu.no
mailto:alexey.pavlov@ntnu.no
https://doi.org/10.1016/j.compchemeng.2023.108282
https://doi.org/10.1016/j.compchemeng.2023.108282
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2023.108282&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

e
(
t
t
m
e
c
i

h
b
2
i
a
s
t
i
p
t
p
t
p
n
g
t
p
h

d
t

c
t

t

𝛥
i

We propose a customized derivative-free trust-region model-based
method to solve the problem (1) taking the characteristics (i)–(iii) into
account. In addition, consideration (iv) is dealt with by introducing
logic to try to reduce the negative impact on the cost.

In derivative-free trust-region model-based optimization it is, typ-
ically, assumed that the to-be-optimized function, or true function, is
unknown. This function can be seen as a black box as it may only
be evaluated, and no gradient information is available. A standard
approach in these methods is to build a first or second order polyno-
mial model of the true function using the gathered evaluations. This
surrogate model is trusted within some trust-region typically defined by
a center point and a trust-region radius. The surrogate model of the cost is
minimized within the trust-region, and the true function is evaluated at
this point. Assuming that the prediction of the model is good, the point
is accepted as the new center point and the process is repeated. If the
model prediction is bad, steps must be taken to improve the surrogate
model.

The most distinct feature of the proposed algorithm is that it has
as many trust-region radii and models as there are units. Each unit
is treated individually when it comes to modeling. Furthermore, the
algorithm only provides feasible point with respect to the constraints
of the problem (1).

To the best of the authors’ knowledge, this is the first work to explic-
itly tackle the resource allocation problem with a (tailored) derivative-
free trust-region model-based method. In addition, no previous liter-
ature on applying a derivative-free trust-region method on resource
allocation problems, nor on such problems with units being consid-
ered black boxes, were found. Of course, there is a significant body
of literature on more general black box optimization formulations,
including Conn et al. (2009), Powell (1994, 2009), Bajaj et al. (2018),
Bajaj and Hasan (2019).

The proposed algorithm is applied to an example coming from the
oil and gas industry. The goal is to distribute the available lift gas
(the resource) between different wells (the units) to maximize the oil
production (the revenue). The example is detailed in Section 4. This
problem has been studied in several papers, see e.g., Krishnamoorthy
t al. (2016a,b), Peixoto et al. (2015), Rashid (2010), Rashid et al.
2012) and the references therein. Differently from these, we focus on
he setup where there is no available model of the relationship between
he allocated resources and the resulting costs. I.e., the wells, or units,
ay be viewed as black boxes. Further, only steady-states are consid-

red and no interactions between the wells (through the reservoir) are
onsidered. Moreover, the decision of closing and opening wells are
ncluded. The resulting algorithm is a data-driven optimization method.

The task of distributing available lift gas to optimize oil production
ave been previously tackled by derivative-free trust-region model-
ased methods (Giuliani et al., 2013; Giuliani and Camponogara,
015b,a). These papers consider a similar setup to (1), i.e., the min-
mization of a function subject to linear constraints, except for Giuliani
nd Camponogara (2015a) which in addition handles nonlinear con-
traints. Further, they are not considering the option of measuring
he output of each unit independently. Problem structure is exploited
n Giuliani and Camponogara (2015b) to reduce the amount of required
oints to build a quadratic model. Our proposed method differs from
he previous approaches (Giuliani et al., 2013; Giuliani and Cam-
onogara, 2015b,a) in several aspects. First, we include the decision of
urning on and off units. Second, the method will only provide feasible
oints to evaluate. The constraints are satisfied both when finding a
ew potential best point, and when points are found to improve the
eometry to construct new models. Third, the assumed availability of
he individual output of each unit allows for further exploitation of
roblem structure. The latter is the reason why the suggested approach
as as many trust-region radii and models as there are units.

In the context of the gas lift optimization problem, we propose a
ecomposition of the gas lift performance curve commonly used in
2

he distribution of the available lift gas. The decomposition allows for
efficient exploitation of the available data. To the best of the authors’
knowledge, this decomposition has not previously been used to exploit
data in such a manner.

This paper is structured as follows. In Section 2, the algorithm is
developed and detailed. In Section 3, an extension to the algorithm is
presented that exploits unused degrees of freedom to attempt reducing
negative impact on the cost. In Section 4, the motivational example
is detailed, and the algorithm is applied to a small example. Further-
more, the section contains details on the proposed decomposition. In
Section 5, several aspects of the algorithm is investigated by using
different parameters of the algorithm and different instantiations of the
motivational example. In Section 6, a discussion on the algorithm is
provided. Finally, in Section 7 a conclusion is provided.

2. Theory

In this section, the proposed algorithm will be presented. It starts
by introducing all the different parts of the algorithm before they are
assembled into a complete algorithm at the end. The different buildings
blocks of the proposed derivative-free trust-region model-based method
are inspired by the framework presented in Conn et al. (2009). The
method differs from this framework in several ways, which will be
highlighted and discussed as each building block is presented.

2.1. Surrogate modeling

The suggested algorithm was tailored for a setup where the quality
of the input–output relationships of the units were prone to measure-
ment errors and measurements are few. In a noise free environment,
quadratic surrogate models would typically allow for faster conver-
gence. However, we use linear models to mitigate the impact of the
noise. Furthermore, the typical samples would be rather close to each
other making the extrapolation capabilities of a higher order polyno-
mial inferior. Each unit 𝑖 will have its own linear surrogate model 𝐹𝑖 of
the true input-to-cost relationship 𝑓𝑖

𝐹𝑖(𝑢𝑖) = 𝑎𝑖𝑢𝑖 + 𝑏𝑖 (2)

where the parameters 𝑎𝑖 and 𝑏𝑖 are chosen such that 𝐹𝑖 either match the
ollected evaluated points, or minimizes the squared prediction error at
hese points if regression is used.

It is important to take care of the spread, or geometry, of the points
hat are used for finding the parameters 𝑎𝑖 and 𝑏𝑖. For example, say

there are two points used for creating the linear model. First, if the two
points lie on top of each other, any line through the point would be a
perfect interpolation, but it is clearly of no use. Second, assume there is
a trust-region radius of 1010 centered at the origin. Two points located
at 𝑢𝑖 = 0 and 𝑢𝑖 = 1 will have a very small chance of capturing any
valuable information of the true function over the entire trust-region,
unless it happens to be linear and noise free. With these two examples
in mind, the following geometry requirement rules are proposed.

2.1.1. Geometry requirement — interpolation
Let 𝑢𝑖,cp be the current center point of the model for unit 𝑖, and let

𝑖 denote its trust-region radius. The set 𝐔𝑖 = {𝑢𝑖,cp, 𝑢𝑖,1}, of length 𝑛𝑖,
s deemed poised (or suitable) for interpolation if:

(i) At least one 𝑗 ∈ [1,… , 𝑛𝑖 − 1] satisfies

|𝑢𝑖,cp − 𝑢𝑖,𝑗 | ≥
1
2
𝛥𝑖 (3)

(ii) All 𝑗 ∈ [1,… , 𝑛𝑖 − 1] satisfies

|𝑢𝑖,cp − 𝑢𝑖,𝑗 | ≤ 𝑟𝛥𝑖 (4)

(iii) All 𝑗 ∈ [0,… , 𝑛𝑖 − 1] satisfies
𝑢𝑖 ≤ 𝑢𝑖,𝑗 ≤ �̄�𝑖 (5)

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
The 𝑟 ≥ 1 in (4) is a scaling factor which allows for more reuse of
points and is a trick borrowed from Conn et al. (2009). Condition (i)
guarantees spread of the points, (ii) guarantees the points are within the
(possibly extended) trust-region, and (iii) guarantees the points used for
modeling is feasible with respect to the bounds of the unit.

2.1.2. Geometry requirement — regression
In the case when the cardinality of 𝑖 is greater than two, 𝑛𝑖 > 2,

the model making process may be done through least squares regression
instead of interpolation. Let 𝑖,all be the set of (all) previously evaluated
points. Further, let 𝑖 be the subset of 𝑖,all which contains all the
points that satisfies conditions (ii)–(iii). Next, the 𝑖 is split into two
sets: 0

𝑖 = {𝑢𝑖,𝑗 ∈ 𝑈𝑖 ∶ |𝑢𝑖,cp − 𝑢𝑖,𝑗 | < 1
2𝛥𝑖} and 1

𝑖 = {𝑢𝑖,𝑗 ∈ 𝑈𝑖 ∶
|𝑢𝑖,cp − 𝑢𝑖,𝑗 | ≥

1
2𝛥𝑖}. If 1

𝑖 is a non-empty set, 𝑖 is deemed poised (or
suitable) for regression.

This classification of poisedness for regression is aligned with the
one in Conn et al. (2009): A set of bounded (and moderate) amount
of points will be poised for regression if a subset is poised for in-
terpolation. It may have a worse ‘‘poisedness’’, but only by a scaling
factor.

2.1.3. Filtering
If there is a large imbalance in the cardinalities, the smallest may

end up having close to no influence. A solution could be to set a cap
on the cardinality of the sets 0

𝑖 and 1
𝑖 . That is, instead of adding

all points satisfying the aforementioned requirement when making 0
𝑖

and 1
𝑖 , only select up to the 𝑛max newest.

To avoid that restricting the cardinality results in only identical
points, which could be the case if the unit is not altered for several
iterations, a filtering method should be applied. If the applied filtering
method is based on merging the new point with older points, then care
must be taken to avoid unwanted effects of the merging. E.g., if a new
point is found to satisfy Conditions (i)–(iii), we must ensure that the
merged point also satisfies the criteria.

2.1.4. Geometry requirement for units turned off
The optimization problem that should be solved in (1) includes the

binary variables to turn on and off units. To respect consideration (iv),
evaluating 𝑓 is costly, the geometry requirement is not imposed for
units which are off at the current operation point.

2.2. Geometry improvement

So far, it has been discussed requirements on the sets of points
used for interpolation (and regression). If these requirements are not
satisfied, the algorithm must prioritize creating such sets of points
before continuing looking for the optimum.

Finding the required set of new 𝑢𝑖’s to evaluate is not a trivial task
due to the interconnection between the units given by the availability
of the shared resource (1b). E.g., if one unit needs more resource,
one or more of the other units must be allocated less. However, these
units have their own lower bounds on the resource requirement (1c).
An idea could be to always decrease the use of resource, as then no
resource needs to be ‘‘borrowed’’ from another unit. However, the
unused resource must be allocated somewhere and the issue of where
to route it without hitting the upper bounds arises.

Some terminology and notation will be introduced next. A unit that
does not need a new point to pass the geometry requirement is referred
to as a neutral unit and the index 𝑘 will be used for these units. Similarly
for a unit that needs a point, we will use the term lacking unit and index
𝑗. Finally, index 𝑖 is used when it concerns all the units regardless of
the geometry requirement.

The new point to improve geometry will be found by solving an
optimization problem. Finding a point 𝑢𝑗 that satisfies conditions (i)–
(ii) for a single unit may be formulated as three constraints using the
two binary variables 𝑥𝑗,𝑙 and 𝑥𝑗,𝑟:

𝑢 ≥ (𝑢 − 𝛥)𝑥 + (𝑢 + 0.5𝛥 + 𝛥)𝑥 (6a)
3

𝑗 𝑗,cp 𝑗 𝑗,𝑙 𝑗,cp 𝑗 = 𝑗,𝑟
Fig. 1. The feasible areas for the wells that needs new points are shown in gray.

𝑢𝑗 ≤ (𝑢𝑗,cp − 0.5𝛥𝑗 − 𝛥=)𝑥𝑗,𝑙 + (𝑢𝑗,cp + 𝛥𝑗)𝑥𝑗,𝑟 (6b)

𝑥𝑗,𝑙 + 𝑥𝑗,𝑟 = 𝑧𝑗 (6c)

The subscript 𝑙 and 𝑟 refer to ‘‘left’’ and ‘‘right’’, respectively. The 𝑧𝑗
will be set to one for these units, but is included to keep the notation
similar to what will be presented later. Notice that the 𝛥= is included to
avoid that the new point will be merged back into the area 𝑢𝑗,cp ±0.5𝛥𝑗
if a filtering method based on merging is applied. The feasible areas for
𝑢𝑗 with 𝑢𝑗,cp = 0 is shown as the shaded gray areas in Fig. 1.

In addition to the new constraints above, the constraint on the lower
and upper limit (1c) must be imposed. To help the solver, the on/off
variable 𝑧𝑖 may be manually set to 1 for the units that need a new
geometry improving point.

It should perhaps be noted that finding a single point, a 𝐮, that
provides all the necessary points may be infeasible. Furthermore, it may
be infeasible to find such a point even with only one lacking and one
neutral unit. E.g., assume there are two units: 100 ≤ 𝑢1 ≤ 200, and
2 ≤ 𝑢2 ≤ 4 with a current operating point of 𝑢1 = 100 and 𝑢2 = 2,
and that unit 2 needs another point. Considering that unit 1 is also
at its lower limit, we need to shut unit 1, but then there is too much
resource to be distributed. Hence, this problem is infeasible by problem
definition. This type of infeasibility is hereafter referred to as problem
infeasibility. Nonetheless, this type of ‘‘problem infeasibility’’ was never
encountered in the case study and it is less likely when the amount
of units increases. Furthermore, it could be argued that (i) such input
problems should be avoided by the user, or (ii) the algorithm could exit
with the current operation point as the solution when it occurs.

The resulting optimization, or feasibility, problem for improving the
geometry is a Mixed-Integer Linear Program (MILP):

min
𝐮,𝐳,𝐱

0 (7a)

s.t.
𝑛𝑢
∑

𝑖=1
𝑢𝑖 = 𝑢max (7b)

𝑢𝑗 ≥ (𝑢𝑗,cp − 𝛥𝑗)𝑥𝑗,𝑙

+ (𝑢𝑗,cp + 0.5𝛥𝑗 + 𝛥=)𝑥𝑗,𝑟 (7c)
𝑢𝑗 ≤ (𝑢𝑗,cp − 0.5𝛥𝑗 − 𝛥=)𝑥𝑗,𝑙

+ (𝑢𝑗,cp + 𝛥𝑗)𝑥𝑗,𝑟 (7d)

𝑥𝑗,𝑙 + 𝑥𝑗,𝑟 = 𝑧𝑗 (7e)

𝑧𝑖𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑧𝑖𝑢𝑖 (7f)

𝑢𝑖 ∈ R (7g)

𝑧𝑗 = 1 (7h)

𝑧𝑖 ∈ {0, 1} (7i)

𝑥𝑗,𝑙 , 𝑥𝑗,𝑟 ∈ {0, 1} (7j)

As mentioned above, the task of finding a single point satisfying (7c)
and (7d) for all the lacking units may be infeasible. Provided that the
‘‘problem infeasibility’’ is not the issue, several evaluations of the true
function would be required. Let be the set of all the 𝑗 indices, i.e.,
it contains the indices of all the lacking units. One could, for example,
solve (7) two times where the set is split into two (equally large) sets

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

a

𝐮

A
m
s
i
o
o
o

2

m
o
t

𝜌

W
v

a
u
p
w
o
e
(
l

2

s
a
m
T

f
u
o
o

∇

∇

w

a
a
i
∇
a
a
t

 = 0 ∪ 1. If one (or both) fails, repeat the branching process until
feasibility is reached in all branches. For each branching, the required
amount of lacking units that receives a new point is decreased and,
thus, the optimization problem becomes less constrained.

There may be several 𝐮, 𝐳 and 𝐱 that satisfies the constraints in
(7). In Section 3, these unused degrees of freedom will be exploited
to try to minimize the increase in cost while performing a geometry
improvement step.

2.3. Solving the subproblem

When all units have enough points to create a decent model, it is
time to look for a new operation point that should further minimize 𝑓 .
This problem is referred to as the subproblem in trust-region literature.
Let 𝐹𝑖 be the (linear) surrogate model of 𝑓𝑖. The subproblem is given
s

+, 𝐳+ = argmin
𝐮,𝐳

𝐹 (𝐮) =
𝑛𝑢
∑

𝑖=1
𝐹𝑖(𝑢𝑖) (8a)

s.t.
𝑛𝑢
∑

𝑖=1
𝑢𝑖 = 𝑢max (8b)

𝑢𝑖 ≥ 𝑧𝑖(𝑢𝑖,cp − 𝛥𝑖) (8c)

𝑢𝑖 ≤ 𝑧𝑖(𝑢𝑖,cp + 𝛥𝑖) (8d)

𝑧𝑖𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑧𝑖𝑢𝑖 (8e)

𝑢𝑖 ∈ R (8f)

𝑧𝑖 ∈ {0, 1} (8g)

s opposed to the standard derivative-free trust-region methods, we
ay employ an off-the-shelf Mixed-Integer Linear Program (MILP)

olver to solve the subproblem. A standard method for finding 𝐮+
s to only take a single step that provides sufficient decrease of the
bjective function, see Conn et al. (2009) for details. If the solution
f the subproblem yields a better value of 𝑓 , then it is used as the next
peration point.

.4. Trust-region radius update

Different from the standard approach in derivative-free trust-region
ethods, several surrogate models are in use. Each unit will have its

wn surrogate model and trust-region radius. Let 𝑢+𝑖 be the point where
he model prediction quality 𝜌𝑖 should be evaluated:

𝑖 =
𝑓𝑖(𝑢𝑖,cp) − 𝑓𝑖(𝑢+𝑖)

𝐹𝑖(𝑢𝑖,cp) − 𝐹𝑖(𝑢+𝑖)
(9)

The trust-region radius for unit 𝑖 is updated according to:

𝛥𝑖 ←←←

{

𝛥𝑖 if 𝜌𝑖 ≥ 𝜂1
max(𝛾𝛥𝑖, 𝛥𝑖,min) else

(10)

with 0 < 𝛾 < 1. In words, if the model prediction quality is deemed
good, the radius is kept fixed, otherwise it is reduced.

The functionality for turning on/off units and using a surrogate
model for each unit introduces some additional scenarios that must be
dealt with. If either,

• the unit is off at the next point (i.e., 𝑧+𝑖 = 0), or
• the unit has never been on, or
• the resource allocation remains the same for the unit, i.e., 𝑢𝑖,cp =
𝑢+𝑖

then do not calculate 𝜌𝑖 and skip updating the trust-region radius.
Finally, it should perhaps be noted that despite the sets of points

used to create the 𝐹𝑖’s are all deemed poised, the prediction quality may
still be bad. The poisedness only guarantee a certain amount of spread
in the points. The aim is that the spread should help getting points that
capture valuable information that can be used for modeling. However,
there is no (strong) guarantee on the resulting prediction quality.
4

a

2.5. Acceptance of new point

A point 𝐮+ found while solving (8) will be accepted as the new
operation point as long as:
𝑓 (𝐮op) − 𝑓 (𝐮+)
𝐹 (𝐮op) − 𝐹 (𝐮+)

> 0 (11)

hich means that as along as the new point has a lower true function
alue, it will be accepted as the new operation point.

Notice that the subscript ‘‘op’’ is used to refer to the operation point,
nd it should not be confused with the center point of the model. Each
nit, will have its own model center point. If the unit is on, the center
oint will be the last solution of (8). If the unit is off, its center point
ill be the last solution of (8) when it was on, i.e., its 𝑧𝑖 was 1. The term
peration point is used for the point that is currently the best 𝐮+ point
ncountered. This means that 𝐮op will always satisfy the constraints of
1), whereas 𝐮cp may not. The individual 𝑢𝑖,cp will satisfy the upper and
ower input constraints for that unit.

.6. Criticality step

Another building block for the trust-region method is the criticality
tep. It ensures a relationship between the size of the trust-region radius
nd a measurement of stationarity (Conn et al., 2009). Its task is to
ake the models more accurate when this measure is close to zero.
his will drive the trust-region radius towards zero.

The criticality step presented in Conn et al. (2009) is intended
or the minimization of a function without any constraints. In the
nconstrained case, the measure of stationarity is the gradient of the
bjective function. For the constrained case, we should use the gradient
f the Lagrangian instead:

𝐮(𝐮, 𝐳, 𝜆,𝝁) =

⎡

⎢

⎢

⎢

⎢

⎣

∇𝑢1
∇𝑢2
⋮

∇𝑢𝑛𝑢

⎤

⎥

⎥

⎥

⎥

⎦

(12)

𝑢𝑖 = ∇𝑢𝑖𝐹 (𝐮) + 𝜆 − 𝜇
𝑖
+ 𝜇𝑖 (13)

here

(𝐮, 𝐳, 𝜆,𝝁) = 𝐹 (𝐮) + 𝜆

(𝑛𝑢
∑

𝑖=1
𝑢𝑖 − 𝑢max

)

+
𝑛𝑢
∑

𝑖=1

[

𝜇
𝑖
(𝑧𝑖𝑢𝑖 − 𝑢𝑖) + 𝜇𝑖(𝑢𝑖 − 𝑧𝑖𝑢𝑖)

]

Notice that the constraints limiting the search area to the trust-region
(8c) and (8d) are not included. If they were, the gradient of the
Lagrangian would simply be zero each time at the optimum of (8).

Using the Lagrangian instead of the objective function introduces
several issues which will be discussed next.

The first issue will be illustrated by a small example. Consider that
there are two units, and that the current operation point is far away
from the lower and upper bounds of each unit. Then we have

∇𝑢1 = ∇𝑢1𝐹1(𝐮) + 𝜆

∇𝑢2 = ∇𝑢2𝐹2(𝐮) + 𝜆

where the bounds are left out for simplicity. The 𝜆 will receive its value
based upon the two equations above. Further, assume that the model
prediction quality has been found to be good for one unit (𝜌1 = 1)
nd bad for the other (𝜌2 = 10−4). As the underlying functions 𝑓𝑖’s are
ssumed to be convex, it is fair to say that a low prediction quality
ndicates a bad gradient prediction too. If one of the two gradients
𝑢1𝐹1(𝐮) and ∇𝑢2𝐹2(𝐮) are incorrect, then the quality, or usefulness, of
ll the elements of the gradient of the Lagrangian is at stake as they
re all intertwined through the 𝜆 multiplier. To deal with this issue,
he gradient of the Lagrangian is only evaluated whenever 𝜌𝑖 ≥ 𝜂1 for

ll the considered units (as explained in Section 2.4).

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

a
l
t
t

s
s
b
o
t
r
p
i

t
i
t
t
i
t
z
o
(
s
i

𝛥

w
m
s

b
F
t
q
o
c
c

c
e
t
r
h

c
a
1
t

1
1
1
1
1

Another issue when going from the gradient of objective function
to the gradient of the Lagrangian is where to evaluate the gradient.
In Conn et al. (2009), the gradient of the model is evaluated at the
center point of the model, or the operation point in our setting. The
Lagrange multipliers in (13) complicate this choice. The multipliers
that satisfies the First Order Necessary Conditions (FONC) of optimal-
ity (Nocedal and Wright, 2006) are only available at a local optimum.
However, the current operation point will rarely (or never) be such a
point. Once the operation points for the unit models are moved, so
will (most likely) the solution of (8), even though none of the 𝐹𝑖’s
re updated. The reason for the change is due to the application of
inear models combined with that the operation point is moved, and
hus also the trust-regions. As a consequence, finding the gradient of
he Lagrangian at the current operation point is (close to) impossible.

If the norm of the gradient of the Lagrangian was evaluated at the
olution of (8) before the operation point is moved, then this point
atisfies the FONC, and the multipliers are available. Despite this not
eing the gradient at the operation point, it will be used as the measure
f stationarity. If the norm of this gradient is small, it indicates that
he gradient’s elements are close to zero without considering the trust-
egion bounds. And in this case, we are indeed close to a stationary
oint (of the model) and a reduction of the trust-region radii are
n-order to ‘‘zoom in’’ on the true function.

Another complicating factor of implementing the criticality step for
he constrained case is a result of the previous issues. The criticality step
n Conn et al. (2009) is an iterative procedure which terminates when
here is a satisfactory relationship between the norm of the gradient and
he trust-region radius: 𝛥 ≤ 𝜇𝑐‖𝑔‖, where 𝑔 is the model gradient and 𝜇𝑐
s a tuning parameter. This iterative procedure will be exited as long as
he norm of the gradient of the true function at the center point is not
ero. Roughly explained, each iteration of the criticality step consists
f (i) reducing the radius (𝛥 ← 𝜔𝑐𝛥, 𝜔𝑐 ∈ (0, 1)), (ii) making sure the
new) set of points are poised in the new region, (iii) creating the new
urrogate model with gradient �̃�, and finally (iv) check if its gradient
s satisfactory. When the procedure exits, the final radius is chosen as

= min(max(𝛥, 𝛽𝑐‖�̃�‖), 𝛥0) (14)

here 𝛥0 is the radius when entering the criticality step. The constants
ust satisfy 𝜇𝑐 > 𝛽𝑐 > 0. The final radius 𝛥 of the criticality step is

elected as the radius in the range [𝛥, 𝛥0] closest to 𝛽𝑐‖�̃�‖, which helps
avoiding that the radius is reduced too much.

Such an iterative procedure is not feasible for our setup due to the
first issues. The infeasibility will be illustrated through an example.
Assume that the radius was reduced because the gradient was found
too small compared to the radius: 𝛥 ← 𝜔𝑐𝛥, 𝜔𝑐 ∈ (0, 1). Next step would
e to create (potentially new) sets of points that are deemed poised.
urther, the surrogate models are made, the subproblem is solved and
he true function is evaluated at the solution. Now, if the prediction
uality was not satisfied for all the considered units, then the gradient
f the Lagrangian could not be evaluated. Without this gradient, the
riticality step cannot continue, and thus the iterative setup of the
riticality step in Conn et al. (2009) is not feasible.

To deal with this, we suggest a single pass approach which tries to
opy the most important feature of the original criticality step in Conn
t al. (2009). More specifically, the radii are reduced if at least one of
he elements of the gradient is too small compared to the corresponding
adius. The proposed criticality step consists of only one pass, and is
ereafter referred to it as the criticality substep. The substep is given in

Algorithm 1 .
This criticality substep will result in the radii (potentially) decreas-

ing faster towards zero, and maybe even too fast. As opposed to the
trust-region selection in (14), we simply get 𝛥 = 𝛥 = 𝜔𝑐𝛥0 which would
orrespond to setting 𝛽𝑐 = 0. As alluded to in (10), we have introduced
𝛥min, which also will be used in the criticality step, see Algorithm

. This hard limit will avoid that the algorithm gets stuck due to the
5

rust-region radii going too fast to zero.
Algorithm 1 Criticality substep
Parameters: 𝜇𝑐 > 0, 0 < 𝜔𝑐 < 1, 𝚫min
1: procedure Criticality(𝚫, , 𝐳op, 𝐮+, 𝐳+, 𝜆+, 𝜇+, 𝜇+)
2: Require: All 𝑈𝑖’s are deemed poised for interpolation (or regression).
3: Calculate ∇𝐮 in (12) at the solution.
4: reduce = False
5: for 𝑖 = 1, 2,… , 𝑛𝑢 do
6: if 𝑧+𝑖 == 1 and 𝜇𝑐

|

|

|

∇𝐮𝑖
|

|

|

< 𝛥𝑖 then
7: reduce = True
8: end if
9: end for

10: if reduce then
11: for 𝑖 = 1, 2,… , 𝑛𝑢 do
12: if 𝑧+𝑖 == 1 and 𝜇𝑐

|

|

|

∇𝐮𝑖
|

|

|

< 𝛥𝑖 then
13: 𝛥𝑖 ← max(𝜔𝑐𝛥𝑖, 𝛥𝑖,min)
4: end if
5: end for
6: end if
7: return 𝚫
8: end procedure

The setup of having several units, trust-region radii and models
allows for some design choices. Specifically, if one element of the
gradient is zero, the corresponding unit’s radius or all radii could be
decreased. The latter has shown to result in better performance. This
is further illustrated and discussed in Section 5.2. This choice is not
without its challenges. The more aggressive reduction of the radii may
indeed hinder fast convergence. However, this may also be the case
for either approach, and will be both problem specific and rely on the
chosen parameters. For example, starting with small trust-region radii,
and/or having strong contraction parameters (i.e., 𝜔𝑐 ≈ 0 and 𝛾 ≈ 0),
will all result in the radii hitting the 𝛥min quickly.

2.7. The complete algorithm

All the required building blocks of the algorithm have been detailed
in the previous sections. The only extension that is missing is how to
exploit the unused degrees of freedom while finding geometry improve-
ment points. The presentation is postponed to after this section. The
complete derivative-free trust-region model-based approach is given in
Algorithm 2. A flowchart of the algorithm is shown in Fig. 2.

The algorithm is inspired by the framework presented in Conn et al.
(2009), and specifically Algorithm 10.1. They differ in the following
aspects.

• First, the way poisedness is checked and improved is different. In
this paper, emphasis is put on not disturbing the to-be-optimized
process more than necessary when poisedness needs to be im-
proved, see Section 3. Such considerations are not made in Conn
et al. (2009).

• Second, the constrained optimization problem (1) introduces the
need of looking at the gradient of the Lagrangian instead of the
objective function in the criticality step.

• Third, the integer variables 𝑧𝑖’s introduce additional design
choices.

• Fourth, each unit is modeled individually with its own trust-
region radius, whereas they use only one model.

• Fifth, due to the poisedness being checked and improved in the
beginning of the while loop in Algorithm 2, the remaining part
of the algorithm concerning the poisedness property is simplified
compared to Algorithm 10.1 in Conn et al. (2009).

• Sixth, all radii will be reduced if (i) the solution of the subproblem
was not better than the current 𝐮op, and (ii) none of the radii has
been reduced during the current iteration of the algorithm. This
ensures that the radii will decrease towards 𝛥min whenever the
algorithm may get stuck. More explicitly, if all sets are deemed

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

g
s
o
d
t
t
a
t
u
t

3

a
p
b
t
r

a
i
a

3

i

Fig. 2. A visual flowchart for Algorithm 2. The gray boxes are where the true function is evaluated.
poised, all model prediction qualities satisfy the criterion, and the
norm of the gradient of the Lagrangian is sufficiently large, but
the solution of the subproblem is worse (or equally good) as the
one at 𝐮op, then all the radii are reduced.

Deciding a termination criterion that consistently provides both a
ood final solution and avoiding unnecessarily many perturbation is not
traightforward. The easiest criterion is to stop after a certain amount
f true function evaluations. This could be a valid choice if the user
ecides that a certain amount of time should be used for improving
he performance. Then by knowing how long it takes to perform one
rue function evaluation, one may calculate how many evaluations are
vailable. Another option could be to track the relative improvement of
he solutions of (8). Then, once the trust-region radii (for the considered
nits) are all at their corresponding minima, one could terminate once
he experienced improvement is below some threshold.

. Geometry improvement: Unused degrees of freedom

The optimization formulation in (7), assuming it is feasible, provides
geometry improvement point for all the units that require such a

oint. Depending upon how many units need a new point, there might
e several degrees of freedom left in the optimization. Put differently,
here are may be many different 𝐮 vectors that will satisfy the geometry
equirement. This freedom will be exploited next.

We emphasize that nothing of what is added from here on out will
ctually restrict the feasible area. In other words, if (7) is feasible, so
s the to-be-presented problem. The extensions suggested next could be
ltered to fit the specific application.

.1. Minimize change

When performing a geometry improvement step, it could be tempt-
ng to keep the objective function as in (1a), but where the 𝑓𝑖’s were

replaced by their linearized counterpart. This way, the true function
would be (attempted) minimized while obtaining the required points.
However, it is important to remember that the reason new points are
required is because the unit models are not to be trusted.

Before presenting the suggested objective function, we highlight the
6

difference between operation point and center point. The operation
Algorithm 2 Derivative-free trust-region optimization method for
resource allocation problems
Input: Operation point (𝐮op, 𝐳op), and center-point 𝐮cp. Trust-region radii pa-

rameters 𝚫, 𝚫min, and 𝑟. Trust-region radii update parameters 0 < 𝛾 < 1
and 0 < 𝜂1 < 1. Criticality step parameters 𝜇𝑐 > 0 and 0 < 𝜔𝑐 < 1

Require: 𝐮op is feasible
Require: Either all units have a model, or all units are on 𝑧𝑖 = 1
1: while not converged do
2: 𝚫𝑝 ← 𝚫
3: Check if all 𝑖’s are deemed poised according to definition in Section

2.1.1 (or 2.1.2)
4: If any units need more points, solve e.g., (7) or (32), and evaluate the

true function
5: Find (𝐮+, 𝐳+, 𝜆+, 𝜇+, 𝜇+) by solving the subproblem (8)
6: Evaluate the true function
7: Calculate all considered units’ 𝜌𝑖’s in (9)
8: if All calculated 𝜌𝑖’s ≥ 𝜂1 then
9: 𝚫 = Criticality(𝚫, , 𝐳op, 𝐮+, 𝐳+, 𝜆+, 𝜇+, 𝜇+)

10: else
11: for 𝑖 = 1, 2,… , 𝑛𝑢 do
12: if 𝜌𝑖 < 𝜂1 then
13: 𝛥𝑖 ← max(𝛾𝛥𝑖, 𝛥𝑖,min)
14: end if
15: end for
16: end if
17: if 𝑓 (𝐮+) < 𝑓 (𝐮op) then
18: 𝐮op ← 𝐮+
19: 𝐳op ← 𝐳+
20: else
21: if 𝚫 == 𝚫𝑝 then
22: for 𝑖 = 1, 2,… , 𝑛𝑢 do
23: 𝛥𝑖 ← max(𝛾𝛥𝑖, 𝛥𝑖,min)
24: end for
25: end if
26: end if
27: Add 𝐮+ to the set all.
28: end while

point and the center point for a unit will be the same if the unit is
on. If a unit is off, its operation point is 0, but its center point will be
kept as the last non-zero operation point.

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

s
m

𝑧

𝑃

w
i

𝑣

𝑣

𝑣

T

𝑣

𝑣

w
t

a

𝑃

a
a
v
g

c
m
a
o

𝑊

s

𝑊

w
h
u

p
o
t
l
i
a

𝑤

3

u
p
o

𝑃

c
a

𝑖

We suggest to minimize the normalized squared distance from the
operation point:

𝑃𝑢
∑

𝑖∈on

(

𝑢𝑖 − 𝑢𝑖,op

𝑢𝑖 − 𝑢𝑖

)2

(15)

where on is the set of indices of the units that are on at the current
operation point, and 𝑃𝑢 is a scaling parameter used for prioritizing
different objectives later on. A squared distance would be indiffer-
ent to 𝑢𝑖 increasing or decreasing. However, there could be available
information that would give preference to either increase or decrease.

3.2. Priority to increase/decrease

The following extension allows for prioritized exploration directions
for both the lacking units and the neutral units. Let 𝑘 be an index of
a neutral unit, i.e., one that does not need a new point. The binary
variable 𝑥𝑘,𝑙 will be 1 if 𝑢𝑘 ≤ 𝑢𝑘,cp and 𝑥𝑘,𝑟 = 1 if 𝑢𝑘 ≥ 𝑢𝑘,cp. This is
imilar to the use of the 𝑥𝑗,𝑙 ’s and 𝑥𝑗,𝑟’s in (7). The constraints below
ust be added to (7)

𝑢𝑘 ≥ 𝑢𝑘,cp𝑥𝑘,𝑟 + 𝑢𝑘𝑥𝑘,𝑙 (16a)

𝑢𝑘 ≤ 𝑢𝑘,cp𝑥𝑘,𝑙 + 𝑢𝑘𝑥𝑘,𝑟 (16b)

𝑘 = 𝑥𝑘,𝑙 + 𝑥𝑘,𝑟 (16c)

In addition, the objective function should be extended with:

𝑙,𝑟

𝑛𝑢
∑

𝑖=1
𝑥𝑖,𝑙 ⋅ 𝑣𝑖,𝑙 + 𝑥𝑖,𝑟 ⋅ 𝑣𝑖,𝑟 (17)

here the 𝑣𝑖,𝑙 ’s and 𝑣𝑖,𝑟’s are the scalars giving priority to changing 𝑢𝑖
n either direction:

𝑖,𝑙 < 0 and 𝑣𝑖,𝑟 = 0 if prioritize to decrease 𝑢𝑖 (18)

𝑖,𝑙 = 0 and 𝑣𝑖,𝑟 = 0 if no preference (19)

𝑖,𝑙 = 0 and 𝑣𝑖,𝑟 < 0 if prioritize to increase 𝑢𝑖 (20)

he 𝑣𝑖,𝑙 ’s and 𝑣𝑖,𝑟’s for the neutral units could for example be chosen as:

𝑘,𝑙 = −1, 𝑣𝑘,𝑟 = 0 if |𝑎𝑘| ≤ 10−4 or 𝑎𝑘 > 0 (21a)

𝑘,𝑙 = 0, 𝑣𝑘,𝑟 = −1 else (21b)

here 𝑎𝑘 refers to the slope parameter in the linear model Eq. (2). For
he lacking units, it is less obvious how to choose 𝑣𝑗,𝑙 ’s and 𝑣𝑗,𝑟’s. If no

knowledge is available, set them to 0.
With these two extensions, it will be prioritized to stay as close as

possible to the operation point and the exploration directions can be
prioritized. Next up, an extension to prioritize which neutral unit to
pertub will be presented.

3.3. Prioritize which neutral unit to alter

When some units need additional points to make a good linear
model, other units must be perturbed too. Ideally, the resource should
be distributed only between the units that need changes, but such
redistribution of the resource may not always be sufficient. There may
be some units that one consider as prioritized as they have an low
associated cost, and these should not be altered unless it is necessary.
This mindset is perhaps more intuitive in the maximization setting
where one would not like to alter units that gives a high revenue.

A new set of binary variables will be used to impose this prioritiza-
tion. Let 𝑤𝑖 be a binary variable to indicate if a unit 𝑖 is allowed (𝑤𝑖 = 1)
to be altered or not (𝑤𝑖 = 0).

𝑢𝑖 ≤ (𝑧𝑖 −𝑤𝑖)𝑢𝑖,op +𝑤𝑖𝑢𝑖 (22)

𝑢 ≥ (𝑧 −𝑤)𝑢 +𝑤 𝑢 (23)
7

𝑖 𝑖 𝑖 𝑖,op 𝑖 𝑖
𝑤𝑖 ≤ 𝑧𝑖 (24)

with 𝑖 ∈ on, and where subscript ‘‘op’’ refers to the current operation
point. The equations above will only be imposed for units that are
currently on (𝑧𝑖,op = 1). Turning off a unit (𝑧𝑖 = 0) does not count
s altering, and such changes will be handles later.

The objective function then needs to be extended with

𝑤
∑

𝑖∈on

𝑤𝑖𝑊𝑖 (25)

nd 𝐖 = [𝑊1,𝑊2,… ,𝑊𝑛𝑢]
⊤ is a vector with non-negative elements

nd contains the prioritization weight for perturbing the units. A lower
alue means it is more acceptable to perturb it. A value of 0 should be
iven to the lacking units.

Deciding the remaining 𝑊𝑖’s is up to the user of the method. It
ould be based on application/engineering knowledge, or some kind of
easurement of ‘‘importance’’. One idea could be to take an inverted

verage over all previously gathered points (𝑈𝑖,all), including those
utside the trust-region for the neutral units:

𝑖,avg = 1
𝑛𝑖

𝑛𝑖
∑

𝑗=1

1
𝑖,all[𝑗]

(26)

where 𝑖,all is an ordered set containing the measured value 𝑓𝑖(𝑢𝑖,𝑗) for
each element 𝑢𝑖,𝑗 ∈ 𝑖,all. Further, the 𝐖𝑖,avg should be shifted and
caled to obtain non-negative elements:

𝑖,shifted ← 𝑊𝑖,avg + |min(0,𝐖avg)| + 1 (27)

𝑊𝑖 ←
𝑊𝑖,shifted

max(𝐖shifted) − min(𝐖shifted)
(28)

here the +1 is added to ensure that the weight for the neutral units is
igher than 0, 𝑊𝑘 > 0, and thus more costly to alter than the lacking
nits (𝑊𝑗 = 0).

One last set of constraints is added to (7) to obtain the desired
rioritized altering. Let be an ordered set of 𝑛𝑢 indices of the units
rdered according to an ascending importance. I.e., it is most acceptable
o perturb the unit whose index is found at first element of . Further,
et be a one-to-one mapping from unit 𝑖 to its corresponding index
n . The inverse mapping (from priority index to unit index) is given
s −1

−1(𝑛𝑢) ≤ 𝑤−1(𝑛𝑢−1) ≤ … ≤ 𝑤−1(1) (29)

.4. Prioritize to not change on/off status

Depending upon the application area, it may be costly and/or
ndesirable to turn on/off units simply to get geometry improvement
oints. To penalize closing a unit, the following can be added to the
bjective function:

𝑧
∑

𝑖∈on

−𝑧𝑖 (30)

For the units which are currently off, a similar penalization scheme
an be used. However, a preferred turning on order can be imposed by
dding the single extension:
∑

∈off

(𝑃𝑧 + 𝑃𝑤(1 −𝑊𝑖))𝑧𝑖 (31)

where (1 −𝑊𝑖) is used because a value of 𝑊𝑖 closer to one indicates it
is a unit which is believed to have a low associated cost.

3.5. Geometry improvement — summary

An optimization problem with all the aforementioned extensions is
now presented.

min
𝐮,𝐳,𝐱,𝐰

𝑃𝑢
∑

(

𝑢𝑖 − 𝑢𝑖,op

𝑢 − 𝑢

)2
𝑖∈on 𝑖 𝑖

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

w
a
c
p

c
t
t

T
a
d
𝑣
f
t
n
l
o

4

o
a
T
p
a
t
s

t
c
o
o
o

c
o
a
p

h
i
w
i
b
f
d

i
l
p
r
a

a
m
c

L
t
s
r
s
n

p
l
t
t
o
t
t

s
i
d
t
r
c
i
t

+ 𝑃𝑙,𝑟

𝑛𝑢
∑

𝑖=1
𝑥𝑖,𝑙𝑣𝑖,𝑙 + 𝑥𝑖,𝑟𝑣𝑖,𝑟

+
∑

𝑖∈on

(

𝑃𝑤𝑤𝑖𝑊𝑖 − 𝑃𝑧𝑧𝑖
)

+
∑

𝑖∈off

(𝑃𝑧 + 𝑃𝑤(1 −𝑊𝑖))𝑧𝑖 (32a)

s.t.
𝑛𝑢
∑

𝑖=1
𝑢𝑖 = 𝑢max (32b)

𝑢𝑖𝑧𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑖𝑧𝑖 (32c)
𝑢𝑗 ≥ 𝑢𝑗𝑧𝑗 + (𝑢𝑗,cp − 𝛥𝑗 − 𝑢𝑗)𝑥𝑗,𝑙

+ (𝑢𝑗,cp + 0.5𝛥𝑗 + 𝛥= − 𝑢𝑗)𝑥𝑗,𝑟 (32d)

𝑢𝑗 ≤ 𝑢𝑗𝑧𝑗 + (𝑢𝑗,cp + 𝛥𝑗 − 𝑢𝑗)𝑥𝑗,𝑟

+ (𝑢𝑗,cp − 0.5𝛥𝑗 − 𝛥= − 𝑢𝑗)𝑥𝑗,𝑙 (32e)

𝑥𝑗,𝑙 + 𝑥𝑗,𝑟 = 𝑧𝑗 (32f)

𝑢𝑘 ≥ 𝑢𝑘,cp𝑥𝑘,𝑟 + 𝑢𝑘𝑥𝑘,𝑙 (32g)

𝑢𝑘 ≤ 𝑢𝑘,cp𝑥𝑘,𝑙 + 𝑢𝑘𝑥𝑘,𝑟 (32h)

𝑥𝑘,𝑙 + 𝑥𝑘,𝑟 = 𝑧𝑘 (32i)
𝑤−1(𝑛𝑢) ≤ 𝑤−1(𝑛𝑢−1)

≤ … ≤ 𝑤−1(1) (32j)

𝑢𝑖 ≥ 𝑤𝑖𝑢𝑖 + (𝑧𝑖 −𝑤𝑖)𝑢𝑖,op, ∀𝑖 ∈ on (32k)

𝑢𝑖 ≤ 𝑤𝑖𝑢𝑖 + (𝑧𝑖 −𝑤𝑖)𝑢𝑖,op, ∀𝑖 ∈ on (32l)

𝑤𝑖 ≤ 𝑧𝑖, ∀𝑖 ∈ on (32m)

𝑢𝑖 ∈ R (32n)

𝑧𝑗 = 1 (32o)

𝑧𝑖 ∈ {0, 1} On/Off (32p)
𝑥𝑖,𝑙 , 𝑥𝑖,𝑟 ∈ {0, 1} Preferred

perturbation

direction (32q)
𝑤𝑖 ∈ {0, 1} Preferred

perturbation

order (32r)

here indices 𝑖, 𝑗 and 𝑘 indicate it concerns all units, lacking units,
nd neutral units, respectively, unless otherwise explicitly stated. In
ontrast to (7), which was a MILP, the new geometry improvement
roblem is a Mixed-Integer Quadratic Program.

The scaling parameters, or prioritization parameters, 𝑃 ’s, in (32a)
an be used to give priority to the different extensions. The prioritiza-
ion order could depend upon the application area. We suggest to use
he following decreasing order of importance:

1. Do not alter the on/off status (unless necessary).
2. Alter the neutral units in (inverse) order of importance.
3. The perturbation direction.
4. Stay as close as possible to the current operation point

o obtain this behavior, the 𝑃 ’s are selected as follows. Both 𝑃𝑢 and 𝑃𝑙,𝑟
re set to 1. Considering that the first term of (32a) is indifferent to the
irection, it is not in conflict with the second term. We assume that the
’s are selected according to (21), which ensures that the two first terms
or a single unit is in the range [−1, 0]. 𝑃𝑤 must be selected large enough
o ensure that perturbing left/right will not be more advantageous than
ot perturbing at all, 𝑃𝑤 = 𝑛𝑢 + 1. Finally, 𝑃𝑧 must be sufficiently
arge such that opening/closing one unit cannot lead to an improved
bjective function, 𝑃 = 𝑛 (𝑛 + 1).
8

𝑧 𝑢 𝑢
. Application study — gas lift allocation

This section starts by first explaining the motivational example
f this work. Thereafter, a decomposition of a specific curve which
llows for utilization of the available sensor data will be introduced.
o the best of the authors’ knowledge, this decomposition has not
reviously been used to exploit data in such a manner. The suggested
lgorithm will be applied to a small simulated version of the motiva-
ional example. Problems of larger sizes will be tackled in the next
ection.

This work was motivated by a part of the Daily Production Op-
imization (DPO) challenge in the oil and gas industry. The DPO is
oncerned with optimally utilizing the available resources while still
beying system and operational constraints. The study consists of a set
f wells producing to a separator. The wells produce fluids comprised
f oil, gas and water.

Initially, the pressure inside the reservoir below the seabed is, typi-
ally, sufficiently high to drive the flow of hydrocarbons to the surface
n its own. As fluids are drained, the reservoir pressure decreases and
t some point it is too low to maintain an economically beneficial
roduction.

One method to increase production when the reservoir pressure
as decreased, is to inject gas into the wellbore. The gas, or lift gas,
s mixed with the fluids coming from the reservoir, and this mixture
ill achieve a lower density, and, thus, the production of fluids will

ncrease. However, there is a limit on how much gas may be injected
efore the production actually starts to decrease. This is due to that the
riction of the mixture will increase faster than the mass of the mixture
ecreases.

Each well may have a limitation on the lower bound on the gas lift
njection rate. A well may exhibit unstable behavior, e.g. slugging, if too
ittle gas is injected. In addition, an upper limit may exist. A well may
roduce sand (from the reservoir) if the pressure difference between the
eservoir and the wellbore is too large. In this work, these constraints
re given as bounds on the gas lift injection rates.

Distributing the available lift gas between the wells can be seen as
resource allocation problem on the form (1). The resource, or lift gas,
ust be allocated between the wells, or units. In addition, the natural

hoice of opening or shutting wells is considered.
A standard method of approaching this problem is to create a Gas

ift Performance Curve (GLPC) for each well. This concave curve gives
he relationship between the gas lift rate and the oil production in
teady-state conditions for the well. If these curves were available and
eliable, they should be used and the resource allocation problem is
traight forward. However, the focus of this example is when they are
ot available.

The gatherable data for each well can be split into two categories;
roduction data and test-separator data. The production data are col-
ected from sensors attached to that specific well and can be read any
ime. For our setup, that includes the downhole pressure gauge and
he gas lift rate sensor. There is typically no rate sensor attached to the
utput of each well which is why the second set of data is acquired. The
est-separator data is only available when the considered well is routed
o a test-separator. For our setup, the relevant data is the oil rate.

An offshore oil field typically has many wells, but only one test-
eparator. In addition, letting a well produce to the test-separator
nvariably implies a cost of lost production. Therefore, test-separator
ata may be old, and only a few steady-state measuring points are
aken. Also, in many fields well production may be off-design with
espect to test-separator instrumentation, which implies significant un-
ertainties in test-separator measurements. Taken together, these issues
mply that getting more than first-order (linear) information from
est-separator data is a challenge.

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
Fig. 3. Illustration of the suggested splitting of the GLPC.
4.1. Gas lift performance curve decomposition

We suggest to decompose the GLPC into two curves. One curve
relates the gas lift rate to the downhole pressure, and another which
relates the downhole pressure to the oil rate, see the illustration in
Fig. 3.

This decomposition allows for an exploitation of the two different
categories of data. The first curve will only be updated based on data
collected from the test-separator analysis. As mentioned above, due to
the challenges with the test-separator measurements, this first curve
will be linear. In addition, the true relationship between the downhole
pressure and the oil rate is typically close to linear for a large range of
pressures.

The real advantage of this decomposition surfaces when the second
curve is considered. This curve, which relates the gas lift rate to the
downhole pressure, can be updated based on data collected during
production as both these measurements are available. The relationship
between gas lift rate and downhole pressure may better be modeled
by a quadratic equation. However, the extrapolation capabilities of a
quadratic model, or any polynomials of degree 2 or higher, may be
unreliable. Thus, a linear model is chosen for both curves. To deal with
the inaccuracy of the assumed linear relationship between gas lift rate
and downhole pressure, the presented trust-region framework will be
applied.

4.2. Setup information

This section contains details on the setup and parameters. The setup
given here is used in the subsequent examples unless otherwise stated.

The true linear relationship between the downhole pressure and the
oil rate for each well is assumed measured perfectly. Introducing sig-
nificant errors in these measurements would make for a more realistic
case. However, the proposed algorithm will only find good solutions to
the extent that the given set of relationships reflects reality. Moreover,
the comparison of the results of the algorithm with the optimal solution
becomes clearer when these relationships are modeled correctly. It is
not expected that the algorithm will converge to a local solution if
the downhole pressures versus the oil rates are modeled incorrectly.
These relationships can be thought of some kind of ranking between
the different wells.

In order to focus on the core of the algorithm, and not on e.g.
filtering, no noise is introduced in the measurements. The modeled
linear relationship between the gas lift rate and the downhole pressure
for each well is found using the linear least squares regression method
lsq_linear in Python’s Scipy. Only two points for each well are used
to create the models: center point plus one more.
9

Table 1
The default parameters
used for the algorithm.

Parameter Value

𝜂1 0.1

𝛾 0.7

𝜔𝑐 0.7

𝜇𝑐 109

𝚫0 2000

𝚫= 0.0

𝚫min 50.0

𝑟 1.0

The parameters used in the algorithm are given in Table 1.
The optimization problems (8) and (32) are formulated using CasADi

(Andersson et al., 2019), and solved with the Mixed-Integer Nonlinear
Program (MINLP) solver BONMIN (Bonami et al., 2008).1 The com-
putational study was carried out on Dell XPS 15 9570 with Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz.

The algorithm is initialized with, or started from, the current opera-
tion point, which is the natural choice. The available lift gas throughout
subsequent iterations of the algorithm is given as the sum of the
applied gas lift rates at the initial operation point. Experience shows
that solving the geometry improvement optimization problem (32)
with many units requiring new points can be a time consuming task.
Applying a better solver and/or take advantage of high performance
computing could ease this task. However, to circumvent this waiting
time, a limit on the amount of lacking units for each time (32) is solved
is imposed and set to 10. If, for any reason, the solver cannot find a
solution to (32), then that set of lacking units is split in two and the
formulation is solved twice with the easier problem. This splitting may
happen as many times as is required.

Throughout the entire application study the curves and points re-
ferred to as ‘‘optimal’’ or ‘‘optimum’’ are found by using BONMIN on
the problem with all the correct Gas Lift Performance Curves (GLPCs)
available. I.e., the underlying problem is formulated as in (1) with the

1 Unfortunately, the Lagrange multipliers required for evaluating the gra-
dient (12) is not available directly from BONMIN. To overcome this, the
subproblem (8) is first solved with BONMIN, then it is solved again with the
Nonlinear Program (NLP) solver IPOPT (Wächter and Biegler, 2006) keeping
the binary variables fixed.

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
Fig. 4. The GLPCs for the four wells case study in Section 4.3. Notice that Well 1 is shut at the optimum and therefore does not have a star marker. Each set of equally colored
plus symbols shows the start point for one case.
𝑓𝑖’s available, and solved by an off-the-shelf solver. This is in contrast to
the proposed algorithm, which was designed to only have noisy samples
of the GLPCs (the 𝑓𝑖’s) available.

The termination criterion of Algorithm 2 is set as a threshold on true
function evaluations. At the end of each iteration of the algorithm, it
checks if the true function has been evaluated equally or more times
than this threshold.

4.2.1. Consequences of using two linear models
As a result of decomposing the gas lift performance curve into two

curves, each unit will have two linear models associated to it. One
which relates the gas lift rate to the oil rate (through the downhole
pressure),

𝑄𝑖(𝑢𝑖) = 𝛼𝑖𝑃𝑖(𝑢𝑖) + 𝛽𝑖 (33)

where 𝑃𝑖(𝑢𝑖) is the second linear model relating the gas lift rate to the
downhole pressure

𝑃𝑖(𝑢𝑖) = 𝑎𝑖𝑢𝑖 + 𝑏𝑖 (34)

The parameters of (33) remains fixed, whereas those in (34) are up-
dated by the algorithm. In the theory section, only one linear model
where used. The tuple (𝑢𝑖, 𝑄𝑖) is used in most steps, except when the
model prediction quality is calculated in (9). The model prediction
quality requires a comparison between the predicted and measured
values, thus, the tuple (𝑢𝑖, 𝑃𝑖) is used for this.

The algorithm is presented as a minimization method. The goal is
to maximize the (estimated) oil rate, thus, (33) must be multiplied
by negative one in the objective function (8) such that the oil rate is
maximized and not minimized.

4.3. Results for a four well case

A small example consisting of four wells, or units, is presented. This
allows for easier illustration of how each well behaves. In this four well
10
example, we investigate how the algorithm evolves as a function of the
number of true function evaluations. Four different starting operation
points are considered. For all starting points, the total available lift gas
are the same.

The four GLPCs and the four sets of starting points are shown in
Fig. 4. For example, the starting points for Starting point 1 may be
found as all the red marks in the four subplots. The optimum is the
same for all different initial conditions. The lower and upper bounds
for the wells are available in Fig. 4 as the minimum and maximum
x-values for the curves. There is no marker for the optimum for Well 1
as this well is shut at the optimum.

It is emphasized that the concave GLPCs are unknown to the opti-
mizer and they may only be evaluated.

The evolution of the total oil rate, gas lift rates, and trust-region
radii are shown in Fig. 5, Fig. 6, and Fig. 7, respectively. In almost all
cases, the trust-region radii have reached the lower limit 𝛥min for the
wells that are open, see Fig. 7.

In Fig. 5, it can be seen that the algorithm has more or less reached
the (local) optimum in less than 15 evaluations of the true functions.
For Starting point 1, 3 and 4, the optimum found by the algorithm is
the same as the one found by BONMIN. For Starting point 2, we can
see that the algorithm does not reach the optimum. Looking at Fig. 6,
it can be seen that the algorithm converges to a point where one of
the wells are closed. The proposed algorithm is not a global algorithm,
and converging to a local optimum is expected behavior. Nonetheless,
for the given set of open wells, the found solution is indeed a local
optimum. The dotted line in Fig. 5 is found by BONMIN when the
binary variables are fixed. In this case, the solutions found by BONMIN
and the algorithm coincide.

For all the different starting points, no wells were ever closed for
the reason of improving the geometry of other wells.

Computers and Chemical Engineering 176 (2023) 108282

11

J.R. Andersen et al.

Fig. 5. The evolution of the total oil rate for the four wells case study in Section 4.3. The ‘‘Greedy’’ points are points found solving the subproblem. The ‘‘Geometry’’ points are
points found to improve the geometry.

Fig. 6. The evolution of the gas lift rates for the four wells case study in Section 4.3.

Computers and Chemical Engineering 176 (2023) 108282

12

J.R. Andersen et al.

Fig. 7. The evolution of the trust-region radii for the four wells case study in Section 4.3.

Fig. 8. The GLPCs for all the wells used in Section 5.1.

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

t
f
H
s
B
a
f
s
a

f
n
n

s
w

5

b
t
t
t
a
c

w
i
t
b
u
a
o
o
u

e
𝜟

r

Table 2
Amount of available lift gas for the scenarios with an increasing number of wells
in Section 5.1. All numbers are in Sm3/h.

N = 10 N = 20 N = 30 N = 60

Starting point 1 33524 72172 105982 200805
Starting point 2 43524 92172 135982 260805
Starting point 3 61974 126422 188682 363555

N = 80 N = 100

Starting point 1 1268271 335670
Starting point 2 2348271 435670
Starting point 3 3485271 606920

5. Investigating properties of the algorithm

In this section, different aspects of the algorithm will be analyzed.
The examples in this section will be different instantiations of the
motivational example presented in the previous section.

This section is structured as follows. First, the algorithm is applied
to several setups with an increasing number of wells to see how the
algorithm performs. Second, an algorithmic design choice made in the
theory section is justified through examples. Third, the importance
of the minimum trust-region radius 𝛥min parameter is illustrated by
examples. Fourth, parameters of the algorithm related to the radii are
discussed. Fifth, the importance of the starting point, for a certain
amount of lift gas, is investigated.

5.1. Complexity: Increasing the number of wells

In this section, we will see how the algorithm performs when the
number of wells, or units, increases. Six different scenarios will be
considered: 10, 20, 30, 60, 80 and 100 wells. The GLPCs for the wells
are shown in Fig. 8. The GLPCs themselves are not too interesting, but
are included to illustrate that the wells are all represented by different
concave functions. Further, the lower and upper bounds on the gas lift
rates are also visible in the figure.

For each set of wells, three different starting points are considered.
As opposed to before, the total available lift gas varies for each starting
point, see Table 2.

The evolution of the total oil rate for the scenarios with 10, 20 and
30 wells are shown in Fig. 9. E.g., the first row of subplots are the
hree different starting points for the case with 10 wells. A similar plot
or the scenarios with 60, 80 and 100 wells are available in Fig. 10.
owever, due to the complexity of solving the underlying MINLP for

uch an high amount of wells, the optimal oil rate lines calculated by
ONMIN are not included. Nonetheless, it illustrates how the proposed
lgorithm increases in number of required true function evaluations
or an increasing amount of units before convergence is reached. The
cenarios with 10, 20 and 30 wells already have illustrated that the
lgorithm converges to good local optima.

In both of these two plots, we can see the required number of
unction evaluations to reach convergence is increased with a higher
umber of wells. However, the increase does not appear to be expo-
ential.

The time taken to run the algorithm for all three starting points are
hown in Fig. 11. The computational time clearly grows exponentially
ith an increasing amount of wells.

.2. Criticality substep design choice justification

It was mentioned in Section 2.6 that a design choice was taken
ased upon experience. More specifically, it was decided to reduce all
he radii in case that at least one of the radii was too large compared
o the corresponding gradient element. The other design option was
o only reduce the corresponding radius. In the following comparison,
third option is included: Skip the criticality substep altogether. This

orresponds to setting the 𝜇𝑐 parameter to ∞. The three options are
13

summarized below: t
• Option 1: Reduce all the radii if at least one element of the gra-
dient of the Lagrangian is small compared to the corresponding
radius.

• Option 2: Only reduce the radius for a unit if the corresponding
element of the gradient of the Lagrangian is small compared to
its radius.

• Option 3: Skip the criticality substep altogether.

A setup with 10 wells are used in this comparison. The evolution of
the total oil rate is shown in Fig. 12 where each row of subplots presents
one of the three options, and the columns are different starting points.
It is evident that Option 2 is an inferior option for all the three starting
points compared to Option 1. The performance of Option 3 is closer to
the one obtained in Option 1. However, Option 1 is superior.

The reason why Option 3 is exhibiting a slower convergence than
Option 1 may be explained as follows. In Option 3, all the radii will
only be reduced when the if-test at line 21 of Algorithm 2 is true. I.e.,
all the radii are reduced when all the model prediction qualities are
deemed satisfied and the solution of the subproblem did not provide a
better value of the true function. In contrast, Option 1 will in addition
reduce all the radii if one of the relationships between the gradient
elements and the radii are unsatisfactory regardless of the value of the
true function.

5.3. Importance of the minimum radii parameter

A key parameter of Algorithm 2 regarding convergence of the
algorithm is 𝜟min. In this section we will illustrate two different aspects
of this parameter. From one aspect, a smaller value of 𝜟min is beneficial,

hereas the other aspects advocates a larger value. To illustrate its
mpact on the performance of the algorithm, the setup used in Sec-
ion 4.3 with the second set of starting points (Starting point 2) will
e used. Recall that the algorithm converged with a sub-optimal set of
nits being on/off for that case. This is acceptable as it is not a global
lgorithm. In the examples below, the algorithm also converges to sub-
ptimal sets with regards to the binary variables. For each example, the
ptimal gas lift rates with respect to the final set of binary variables are
sed as the dotted lines in the figures.

The parameters used for the following examples are found in Table 1
xcept for the initial radii 𝜟0 ∈ {500, 2000} and the minimum radii
min ∈ {0, 50, 200}.

In the first example, the initial start radii are set to 2000. The
resulting evolution of the gas lift rates and the total oil rate for the
three different minimum radii values are plotted in Fig. 13 and Fig. 14,
respectively. Both figures show that a smaller value of 𝜟min yields a
more desirable response. A higher value of the parameter results in a
zigzagging response of the gas lift rates, see Fig. 13. As a result of this
alternating response around the optimal actions, the resulting total oil
rates is negatively impacted, see Fig. 14. A tempting conclusion from
this small example is to set 𝜟min = 0. In the next example we will
illustrate why this is discouraged.

In the second example, the initial start radii are set to 500, and the
same types of plots are available in Figs. 15 and 16. It becomes evident
why setting 𝜟0 to zero is discouraged. The algorithm converges to a
point, but it is not a (local) optimum. The radii are going too fast to zero
which then hinder the algorithm to move further in the solution space.
When the minimum radii is increased to 50 and 200, the responses are
as expected. The algorithm converges towards the (local) optimum. The
larger 𝜟min gives a faster response, but also ends with more zigzagging
around the optimum.

These two examples have illustrated the importance of the 𝜟min
egarding safeguarding against unwanted convergence, or stopping, of

he algorithm due to the 𝜟 approaching zero.

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
Fig. 9. The evolution of the total oil rate for the setups with 10, 20 and 30 wells. The ‘‘Greedy’’ points are points found solving the subproblem. The ‘‘Geometry’’ points are
points found to improve the geometry. The available gas is different for each starting point.
5.4. Parameters impacting the evolution of the radii

The examples in Section 5.3 made it evident that the 𝜟min parameter
is of high importance regarding the behavior and convergence of the
algorithm. In this section, we will discuss some of the other parameters
of the algorithm and how they impact the radii and its convergence.
The example with starting radii of 500, and 𝛥min = 0 in the previous
section is used as a base case. The algorithm did not converge to a local
optimum in the base case, and we will here show how the choices of
other parameters will impact the evolution of the radii.

The two most obvious parameters that will directly impact the radii
are the contraction factors: 𝛾 and 𝜔𝑐 . Setting these parameters closer to
one will ensure that the radii are reduced slower. On the other hand,
a lower value will result in a more aggressive reduction of the radii. In
the first column of subplots in Fig. 17, the evolution of the oil rate
and the radii are shown for the case with high contraction factors,
𝛾 = 𝜔𝑐 = 0.95. As opposed to the base case, the algorithm converges
to the local optimum as the radii does not reach zero before the local
optimum is approached.

Another parameter is the threshold on what is considered a suf-
ficient model prediction: 𝜂1. The result of tuning this parameter is
less obvious. If the value is almost one, then most predictions will be
deemed unsatisfactory. This means that the corresponding radii will
14
be reduced. However, because one or more predictions are bad, then
neither the criticality substep nor the ‘‘reduce all’’ functionality at line
21 of the algorithm will happen. The evolution with 𝜂1 = 0.999 is
shown in the second column in Fig. 17. Compared to the base case,
the algorithm reaches closer to the local optimum, but also here it is
stopped by the radii going to zero.

Yet another parameter that could help slowing down the reduction
of the radii is the 𝜇𝑐 . By setting this parameter high enough, the crit-
icality substep will never happen. However, as we saw in Section 5.2,
the additional reduction resulting from this step did result in better
performance. Nonetheless, with a high enough value of 𝜇𝑐 , one or more
radii will only be reduced if (i) a model predicts badly, or (ii) all models
predicts well and there was no improvement in the true function. The
evolution with 𝜇𝑐 set to its default value squared is shown in the third
column in Fig. 17. In this case, the local optimum is reached. The
radii are kept constant for several iterations whilst the algorithm keeps
improving the value of the true function.

5.5. Randomized starting points

In this section, we will quantitatively investigate if the starting point
is of importance regarding experienced convergence.

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
Fig. 10. The evolution of the total oil rate for the setups with 60, 80 and 100 wells. The ‘‘Greedy’’ points are points found solving the subproblem. The ‘‘Geometry’’ points are
points found to improve the geometry. The available gas is different for each starting point.
Fig. 11. The computational time to solve 75 evaluations of the algorithm for three
different starting points with an increasing number of wells.
15
A setup with 10 wells, and a 100 randomized starting points are
used. All of the starting points have the same amount of available lift
gas. For all starting points, the available lift gas is given as the sum
of all the minimum gas lift rates multiplied by 1.2. Each well gets its
minimum gas lift rate, and the remaining 20% is uniformly randomly
divided between the 10 wells. The assigned initial gas lift rates were
observed to always be below the upper limits for all wells.

The results are provided in Figs. 18 and 19. For each starting point,
we checked the obtained best greedy point at several checkpoints.
The checkpoints were set to 10, 15 and 25 evaluations of the true
function. By ‘‘best greedy point’’ it is meant the best point observed so
far amongst the points that were found by solving the subproblem (8),
i.e., ignoring the geometry improvement points. Two metrics to discuss
convergence are used. First, in Fig. 18, the total oil production of the
best point is compared to the one found by solving the same problem
with BONMIN. In this metric, a point is counted as successful if it has
99% or more of the total oil rate found by BONMIN. Second, in Fig. 19,
the z variable of the best points are considered. In this metric, a point
is counted as successful if it has the same z-vector as the one found by
BONMIN.

As we can see in the two figures, in 99 out of the 100 different
starting point, the algorithm converges to a point very close to the point

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
Fig. 12. The evolution of the total oil rate for the setup with 10 wells in Section 5.2. The ‘‘Greedy’’ points are points found solving the subproblem. The ‘‘Geometry’’ points are
points found to improve the geometry. The available gas is different for each starting point.
Fig. 13. The evolution of the gas lift rates for different minimum radii values and with starting radii set to 𝜟0 = 2000.
found by BONMIN. In only 1 case does the algorithm converge to a
solution with an incorrect z-variable, see Fig. 19.
16
The reason why the first metric uses a comparison percentage less
than 100, is that the algorithm is not expected to converge exactly

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
Fig. 14. The evolution of the total oil rate for different minimum radii values and with starting radii set to 𝜟0 = 2000. The ‘‘Greedy’’ points are points found solving the subproblem.
The ‘‘Geometry’’ points are points found to improve the geometry.
Fig. 15. The evolution of the gas lift rates for different minimum radii values and with starting radii set to 𝜟0 = 500.
Fig. 16. The evolution of the total oil rate for different minimum radii values and with starting radii set to 𝜟0 = 500. The ‘‘Greedy’’ points are points found solving the subproblem.
The ‘‘Geometry’’ points are points found to improve the geometry.
to the (local) optimum. This is due to the 𝛥min parameter, and the
zigzagging behavior that follows from it, see the rightmost plot in
Fig. 13.

6. Discussion

The proposed algorithm has been designed to tackle a resource
allocation problem where the most challenging obstacle was that the
relationship between the allocated resource and the corresponding cost
of a unit was unknown. The lack of models motivated the use of a data-
driven derivative-free method. In the previous section, it was illustrated
by examples that the algorithm converges to local optima. In 99 out of
17
100 cases when considering different starting points, the final vector
of binary variables were the same as the presumably globally optimal
solution found by BONMIN. However, the algorithm is not designed
to be a global optimizer, and converging to a local solution is expected
behavior. Moreover, when the binary variable vector, 𝐳, was kept fixed,
the algorithm converged to the local optimum in all cases.

An attractive feature of the algorithm is that it seems the number
of required evaluations of the true function is moderate, and does not
grow exponentially with the number of units. A hidden cost when
looking at the convergence time, is the time taken to solve all the
optimization formulations within the algorithm. The geometry im-
provement optimization formulation (32) is a Mixed Integer Nonlinear

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.
Fig. 17. The behavioral differences of the algorithm due to selected changes of the default parameters. The applied parameters are the default ones given in Table 1, except for
those noted in the titles of the subplots and the starting radii which were set to 500 for all three cases.
Fig. 18. The blue bars indicate the number of instances where the best greedy point
found were no worse than 1% of the point found by bonmin. The 𝑥 value specifies the
checkpoints in evaluations. The orange bars are the opposite of the blue.

Fig. 19. The blue bars indicate the number of instances where the z value correspond-
ing to the best greedy point found were the same as the one found by bonmin. The 𝑥
value specifies the checkpoints in evaluations. The orange bars are the opposite of the
blue.
18
Program (MINLP) which is a complicated problem structure to solve.
Nonetheless, in this work the true function evaluations are considered
to be the most time consuming task. In the case study, after a set of
gas lift rates are imposed, it is required to wait for a steady-state of the
system before measurements may be taken. The transition time from a
steady-state to the next is expected to be in the range of several hours.
The increase in computational time is an expected result as a MINLP
solver typically exhibits such a phenomenon. Nonetheless, we only
need to solve either the geometry improvement optimization problem
or the subproblem once before the inputs are applied to the system.

A disadvantage of this tailored algorithm is that a proof along the
lines of Conn et al. (2009) to show global convergence to first-order
critical points does no longer apply as the proposed method deviates
from the framework in Conn et al. (2009). The major differences being
the single pass criticality substep, as explained in Section 2.6, the
required minimum trust-region radii parameter 𝜟min to avoid the radii
going to zero, and the use of several trust-region radii and models.
These changes are not aligned with the framework of Conn et al.
(2009), and thus, the proof of convergence cannot be applied. Nonethe-
less, the proposed method contains the same type of building blocks as
the one in Conn et al. (2009). Furthermore, global convergence was
experienced in all examples.

A final advantage of the method is that it only evaluates the true
function at points that are feasible with respect to the underlying
problem (1). This is the case as the constraints are imposed at all times
when any new point is selected.

7. Conclusion

We proposed a derivative-free trust-region model-based algorithm
to tackle a resource allocation problem with some specific charac-
teristics that were inspired by a real world problem. The algorithm
converged to local optima in all the compared cases.

In addition, we proposed a decomposition of the gas lift perfor-
mance curve to exploit available sensor data. Furthermore, we illus-
trated how this decomposition can be combined with the suggested
algorithm.

Computers and Chemical Engineering 176 (2023) 108282J.R. Andersen et al.

V

CRediT authorship contribution statement

Joakim R. Andersen: Conceptualization, Methodology, Software,
alidation, Writing – original draft, Visualization. Lars Imsland: Con-

ceptualization, Writing – review & editing, Supervision. Alexey Pavlov:
Conceptualization, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This research is a part of BRU21 – NTNU Research and Innovation
Program on Digital and Automation Solutions for the Oil and Gas
Industry (www.ntnu.edu/bru21).

Partial financial support from Wintershall Dea Norge AS is acknowl-
edged. They had no involvement regarding content nor writing of this
article.

We acknowledge Mammad Mirzayev for stimulating discussions on
the industrial task that inspired this work.

References

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M., 2019. CasADi – A
software framework for nonlinear optimization and optimal control. Math. Program.
Comput. 11 (1), 1–36. http://dx.doi.org/10.1007/s12532-018-0139-4.

Bajaj, I., Hasan, M.F., 2019. UNIPOPT: Univariate projection-based optimization with-
out derivatives. Comput. Chem. Eng. 127, 71–87. http://dx.doi.org/10.1016/j.
compchemeng.2019.05.008.

Bajaj, I., Iyer, S.S., Faruque Hasan, M., 2018. A trust region-based two phase algorithm
for constrained black-box and grey-box optimization with infeasible initial point.
Comput. Chem. Eng. 116, 306–321. http://dx.doi.org/10.1016/j.compchemeng.
2017.12.011.
19
Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D.,
Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A., 2008. An algorithmic
framework for convex mixed integer nonlinear programs. Discret. Optim. 5 (2),
186–204, In Memory of George B. Dantzig. http://dx.doi.org/10.1016/j.disopt.
2006.10.011.

Conn, A.R., Scheinberg, K., Vicente, L.N., 2009. Introduction to Derivative-Free
Optimization. SIAM, http://dx.doi.org/10.1137/1.9780898718768.

Giuliani, C.M., Camponogara, E., 2015a. Derivative-free methods applied to daily
production optimization of gas-lifted oil fields. Comput. Chem. Eng. 75, 60–64.
http://dx.doi.org/10.1016/j.compchemeng.2015.01.014.

Giuliani, C.M., Camponogara, E., 2015b. Derivative-free optimization with use of
problem structure: Applications to oil production. In: 2015 IEEE Int. Conf. Autom.
Sci. Eng. CASE, pp. 764–768. http://dx.doi.org/10.1109/CoASE.2015.7294173.

Giuliani, C.M., Camponogara, E., Plucenio, A., 2013. A computational analysis of
nondifferentiable optimization: Applications to production maximization in gas-
lifted oil fields. In: 2013 IEEE Int. Conf. Autom. Sci. Eng. CASE, pp. 286–291.
http://dx.doi.org/10.1109/CoASE.2013.6653975.

Katoh, N., Shioura, A., Ibaraki, T., 2013. Resource allocation problems. In: Handbook
of Combinatorial Optimization. Springer New York, New York, NY, pp. 2897–2988.
http://dx.doi.org/10.1007/978-1-4419-7997-1_44.

Krishnamoorthy, D., Foss, B., Skogestad, S., 2016a. Real-time optimization under
uncertainty applied to a gas lifted well network. Processes 4 (4), http://dx.doi.
org/10.3390/pr4040052.

Krishnamoorthy, D., Pavlov, A., Li, Q., 2016b. Robust extremum seeking control
with application to gas lifted oil wells. IFAC-PapersOnLine 49 (13), 205–210.
http://dx.doi.org/10.1016/j.ifacol.2016.07.952, 12th IFAC Workshop Adapt. Learn.
Control Signal Process. (ALCOSP) 2016.

Nocedal, J., Wright, S.J., 2006. Numerical Optimization. Springer New York, New York,
NY, http://dx.doi.org/10.1007/978-0-387-40065-5.

Peixoto, A.J., Pereira-Dias, D., Xaud, A.F., Secchi, A.R., 2015. Modelling and extremum
seeking control of gas lifted oil wells. In: 2nd IFAC Workshop Autom. Control
Offshore Oil Gas Prod. (OOGP) 2015. IFAC-PapersOnLine 48 (6), 21–26. http:
//dx.doi.org/10.1016/j.ifacol.2015.08.004.

Powell, M.J., 1994. A direct search optimization method that models the objective
and constraint functions by linear interpolation. In: Advances in Optimization and
Numerical Analysis. Springer, pp. 51–67.

Powell, M.J., 2009. The BOBYQA algorithm for bound constrained optimization
without derivatives. Cambridge NA Report NA2009/06, University of Cambridge,
Cambridge 26.

Rashid, K., 2010. Optimal allocation procedure for gas-lift optimization. Ind. Eng. Chem.
Res. 49 (5), 2286–2294. http://dx.doi.org/10.1021/ie900867r.

Rashid, K., Bailey, W.J., Couet, B., 2012. A survey of methods for gas-lift optimization.
Model. Simul. Eng. 2012, 16. http://dx.doi.org/10.1155/2012/516807.

Wächter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106 (1),
25–57. http://dx.doi.org/10.1007/s10107-004-0559-y.

http://www.ntnu.edu/bru21
http://dx.doi.org/10.1007/s12532-018-0139-4
http://dx.doi.org/10.1016/j.compchemeng.2019.05.008
http://dx.doi.org/10.1016/j.compchemeng.2019.05.008
http://dx.doi.org/10.1016/j.compchemeng.2019.05.008
http://dx.doi.org/10.1016/j.compchemeng.2017.12.011
http://dx.doi.org/10.1016/j.compchemeng.2017.12.011
http://dx.doi.org/10.1016/j.compchemeng.2017.12.011
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1137/1.9780898718768
http://dx.doi.org/10.1016/j.compchemeng.2015.01.014
http://dx.doi.org/10.1109/CoASE.2015.7294173
http://dx.doi.org/10.1109/CoASE.2013.6653975
http://dx.doi.org/10.1007/978-1-4419-7997-1_44
http://dx.doi.org/10.3390/pr4040052
http://dx.doi.org/10.3390/pr4040052
http://dx.doi.org/10.3390/pr4040052
http://dx.doi.org/10.1016/j.ifacol.2016.07.952
http://dx.doi.org/10.1007/978-0-387-40065-5
http://dx.doi.org/10.1016/j.ifacol.2015.08.004
http://dx.doi.org/10.1016/j.ifacol.2015.08.004
http://dx.doi.org/10.1016/j.ifacol.2015.08.004
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb14
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb14
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb14
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb14
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb14
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb15
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb15
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb15
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb15
http://refhub.elsevier.com/S0098-1354(23)00152-7/sb15
http://dx.doi.org/10.1021/ie900867r
http://dx.doi.org/10.1155/2012/516807
http://dx.doi.org/10.1007/s10107-004-0559-y

	Data-driven derivative-free trust-region model-based method for resource allocation problems
	Introduction
	Theory
	Surrogate modeling
	Geometry requirement — Interpolation
	Geometry requirement — Regression
	Filtering
	Geometry requirement for units turned off

	Geometry improvement
	Solving the subproblem
	Trust-region radius update
	Acceptance of new point
	Criticality step
	The complete algorithm

	Geometry improvement: Unused degrees of freedom
	Minimize change
	Priority to increase/decrease
	Prioritize which neutral unit to alter
	Prioritize to not change on/off status
	Geometry improvement — summary

	Application study — Gas lift allocation
	Gas Lift Performance Curve Decomposition
	Setup information
	Consequences of using two linear models

	Results for a four well case

	Investigating properties of the algorithm
	Complexity: Increasing the number of wells
	Criticality substep design choice justification
	Importance of the minimum radii parameter
	Parameters impacting the evolution of the radii
	Randomized starting points

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

