
Circle Attention: Forecasting network traffic
by learning interpretable spatial relationships

from intersecting circles

Abstract. Accurately forecasting traffic in telecommunication networks
is essential for operators to efficiently allocate resources, provide better
services, and save energy. We propose Circle Attention, a novel spatial
attention mechanism for telecom traffic forecasting, which directly models
the area of effect of neighboring cell towers. Cell towers typically point
in three different geographical directions, called sectors. Circle Atten-
tion models the relationships between sectors of neighboring cell towers
by assigning a circle with learnable parameters to each sector, which
are: the azimuth of the sector, the distance from the cell tower to the
center of the circle, and the radius of the circle. To model the effects
of neighboring time series, we compute attention weights based on the
intersection of circles relative to their area. These attention weights serve
as multiplicative gating parameters for the neighboring time series, allow-
ing our model to focus on the most important time series when making
predictions. The circle parameters are learned automatically through
back-propagation, with the only signal available being the errors made in
the traffic forecasting of each sector. To validate the effectiveness of our
approach, we train a Transformer to forecast the number of attempted
calls to sectors in the Copenhagen area, and show that Circle Attention
outperforms the baseline methods of including either all or none of the
neighboring time series. Furthermore, we perform an ablation study to
investigate the importance of the three learnable parameters of the circles,
and show that performance deteriorates if any of the parameters are
kept fixed. Our method has practical implications for telecommunication
operators, as it can provide more accurate and interpretable models for
forecasting network traffic, allowing for better resource allocation and
improved service provision.
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1 Introduction

Accurately predicting mobile traffic is crucial for effective network management,
resource allocation, and to optimize energy consumption. Nonetheless, it is a
challenging task to achieve precise traffic predictions due to the complex spatial-
temporal correlations involved. Telecommunication networks are designed to
handle a massive number of users concurrently. Whenever required, additional
capacity is provided by constructing more radio towers or upgrading existing
ones. However, maintaining continuous power supply to these towers is inefficient
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due to the fluctuating traffic load. Hence, precise prediction of future traffic
can significantly reduce costs and improve energy efficiency. Telecommunications
towers typically have antennas pointing in three different geographical directions,
which are called sectors. Each sector has multiple cells that correspond to different
frequencies and communication technologies (i.e., 2G, 3G, 4G). These cells can
be divided into two groups: those belonging to the coverage layer and those
belonging to the capacity layer. Cells in the coverage layer must remain powered
on at all times to meet critical infrastructure requirements, such as for emergency
service calls. In contrast, cells within the capacity layer can be switched off during
periods of low demand, which is desirable from an energy savings perspective.
However, turning off cells during periods of high demand can lead to service
disruptions for customers, which is undesirable from the perspective of customer
satisfaction. Accurately forecasting the traffic can allow the telecom operator
to switch off cells in the capacity layer during periods of low demand. It is
thus essential to be able to capture the spatial relations between the towers in
order to understand beforehand how power saving on one tower would affect the
neighboring ones.

Several previous attempts have been made to concurrently model the intricate
spatial and temporal interdependencies between multiple radio towers. Deep
learning methods have also been utilized, primarily employing Recurrent Neural
Networks (RNNs) to model the temporal relationships and Convolutional Neural
Networks (CNNs) or Graph Convolutional Networks (GCNs) [7] to capture
the spatial relationships [13,1,2,6]. However, all of these techniques depend on
constructing graphs manually, by using certain measures of correlation between
the time series of various towers. We propose a method that models the spatial
relationship between sectors of towers automatically and end-to-end, as part of the
training process of a neural network. To the best of our knowledge, our approach
is the first to learn spatial relationships in this way instead of predefining them.

Our method, called Circle Attention, first assigns a circle with learnable
parameters to each sector. Then, the spatial relationship between sectors is
modeled by the area of intersection between circles. The method does not depend
on any specific network architecture, rather it is a general method for modeling
spatial relationships. Circle Attention has several desirable properties. First, by
employing a geometric design, our approach provides an interpretable way for
experts to verify the plausibility of the modeled effects by plotting the learned
circles on a map. Second, circular areas of effects are also somewhat plausible
from a physical perspective. Consequently, it might be possible to infer true
physical properties of the world, given a strong enough learning signal. Third, the
area of intersection between two circles is relatively easy to compute, compared to
other plausible geometric shapes. Each step of the computation is differentiable,
which allows for end-to-end learning with back-propagation.

To evaluate the usefulness of our method, we learn to forecast the number
of attempted cell phone calls to telecommunication towers in the Copenhagen
area. We use a Transformer [10] as the baseline model for our experiments, and
investigate whether the use of Circle Attention improves the model’s forecasting
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performance. However, Circle Attention is not a replacement for regular attention
over time, as it works exclusively in the spatial domain, and not in the temporal
domain.

Overall, the proposed method offers a customizable, interpretable, and com-
putationally efficient way to model the spatial relationships between towers, and
has the potential to infer physical properties of the world. The major contribu-
tions of this work can be summarized as follows. Firstly, the proposed Circle
Attention method is a novel approach that models the spatial relationships
between telecommunication towers using the area of intersecting circles. The
method offers a customizable and interpretable way to model these relationships,
which is important for understanding the complex spatial dependencies in cell
phone traffic. Secondly, we show that Circle Attention improves accuracy on
the task of forecasting cell phone traffic. Lastly, we perform ablation studies to
investigate the importance of the different components of the proposed method.
Understanding the importance of these components is important for potential
further improvements of Circle Attention and other similar methods in the future.

The contributions of this paper provide insights into the effectiveness of
modeling spatial relationships in cell phone traffic data and offer a novel approach
that can be applied to other spatial data prediction tasks. The proposed method
has the potential to infer physical properties of the world and can be utilized in
various applications in the telecommunication industry.

The work in this paper was done using proprietary data, which cannot be
made publicly available. We also cannot share code related to processing of data
or other data specific details. However, we have made a public implementation
of our proposed method available online1.

2 Related Work

Network traffic prediction has been an active research topic for quite some time.
Traditional approaches for modeling traffic patterns involve either statistical
time series methods [9,16], or statistical learning methods [14,5]. However, these
approaches either treat base stations independently or rely on manually designed
features to capture spatio-temporal correlations, and therefore do not fully account
for the spatial dependencies and interrelationships between base stations.

Recent advances in deep learning have opened up promising avenues for
modeling spatial relations using both grid-based and tower/cell-based approaches
[13,6,4,2,15]. For modeling spatial relations, both GCNs [2,6] and CNNs [13,1]
have been adopted, while RNNs have been used primarily for capturing tem-
poral connections. A popular approach has consisted in combining the “spatial”
models with the “temporal” models by constructing a graph capturing spatial
relationships, and then replacing matrix multiplications in RNN-based models
with matrix convolutions with respect to this graph. Many studies have utilized
static graphs, constructed based on topological information or overall correlations
1 A public implementation is available at https://anonymous.4open.science/r/

Circle-Attention-435A/.

https://anonymous.4open.science/r/Circle-Attention-435A/
https://anonymous.4open.science/r/Circle-Attention-435A/
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between time series patterns [6,4,2,1]. However, recent research has explored the
use of dynamic graphs [6,8]. GRUs and LSTMs have been widely adopted for mo-
bile traffic forecasting, but their inability to capture long temporal relationships
has led researchers to augment hourly input windows with corresponding daily
and/or weekly patterns [2]. Another approach involves training hourly, daily, and
weekly models in parallel, and then concatenating their outputs [15]. To address
the limitations of RNNs, researchers have explored alternative approaches such
as Transformer [10] architectures. Liu et al. [8] were the first to use a Trans-
former to forecast mobile network traffic, incorporating the spatial component
to achieve superior results compared to state-of-the-art methods. The authors’
approach models spatial relations using a dynamic correlation matrix between
time series windows of grids, similar to graph-based techniques. In contrast,
our method focuses on learning the interactions between neighboring sectors
directly during model training, which allows us to capture more fine-grained
spatial dependencies.

3 Method

3.1 Problem definition

In this work we focus on forecasting the Key Performance Indicator (KPI)
associated with the number of attempted calls to cell towers in the Copenhagen
area. A tower is a critical part of telecommunication networks, providing wireless
communication services to millions of people. Their performance is essential
for ensuring reliable service to end-users. Each tower has up to three sectors,
which can be thought of as a grouping of antennas and cells pointing in the
same direction. Different sectors are associated with different geographical areas
around the towers. Figure 1 illustrates the concepts of sectors and towers.

Fig. 1. Two telecommunication towers, each with three associated sectors. The cells
with red coloring belong to the capacity layer, and the cells with blue coloring belong
to the coverage layer.
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For each sector, a number of KPIs are measured and recorded as time series
data. The KPIs include measurements such as the number of attempted calls,
the number of successful calls, the call duration, and data usage. The main focus
of this work is to forecast the KPI that counts the number of attempted calls
to a sector of a tower. Forecasting this KPI is crucial for understanding the
performance of the telecommunication network, as it provides insights into the
traffic demand and usage patterns for different sectors. This task is important
for ensuring that the telecommunication network is operating efficiently and
providing reliable service to users.

We have a total of Ntowers = 510 towers in our dataset, each with its antennas
assigned to one of three sectors. (In reality some towers have less than three sectors,
but for ease of explanation, and without loss of generality, we will consider all
towers to have three sectors.) We will use the index variable a ∈ {1, . . . , 3·Ntowers}
to refer to sector number a. Each sector a originates from a tower at a geographical
location given by a coordinate pair (xtower

a , ytower
a ). Moreover, each sector a

points in an azimuth direction αa ∈ [0, 2π), measuring the clockwise angle from
north.

The dataset contains time series that are sampled at hourly frequency. A time
step t is defined as t ∈ {1, . . . , T}, where T is the total number of hours in the
dataset. We use a dataset consisting of 410 days, so T is 410 · 24 = 9840. We
denote by za the time series associated with sector a. Another subscript is used
to denote a time index, such that za,t is the number of attempted calls within
hour t for sector a.

The neighborhood of a sector a is chosen to be the Nneighbors = 16 sectors with
the smallest Euclidean distance between their associated towers, including the
sector a itself. In the next section we specify a method for modeling relationship
between neighboring sectors, by associating each sector with a circle.

3.2 Circle Attention

Circle Attention models the relationship between neighboring sectors by asso-
ciating a circle with each sector. The strength of the relationship between two
sectors is given by the intersection of the areas of the circles, relative to the area
of the circles. Figure 2 provides a graphical illustration of the formula for the
intersection of two circles.

The area of intersection between two circles can be found adding two circular
segments, which are defined by the line going through the two points of intersection
of the circles. These are the purple areas of Figure 2. The area of a circular
segment can be found by first finding the areas of two associated geometrical
objects. First, find the area of the isosceles triangle formed by the center of the
circle and the two intersection points. These triangles are shown in Figure 2 with
hatched filling. Second, find the area of the associated circular sector, which
is exactly identical to the area covered by both the circular segment and the
isosceles triangle. This area is easily computed by using the inverse cosine function
on the vertex angle of the triangle. Now we can define the area of the circular
segment as the area of the circular sector, minus the area of the isosceles triangle.
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Fig. 2. Left: The intersection between two circles is given by the sum of two circular
segments, shown here as the two purple areas to either side of the vertical line. The area
of a circular segment is equal to the area of a circular sector (not shown), minus the
area of an isosceles triangle (shown with hatched filling). The area of a circular sector
is a proportion of the total area of the circle, which is given by the angles indicated in
dark blue and dark red. Right: The line of intersection is “behind” the center of the
blue circle, but the same method applies, except that the area of the blue triangle is
instead added to the area of the circular sector (of the blue angle).

Note that this approach generalizes to the case where the line of intersection is
“behind” the center of the circle (i.e. the right sub-figure of Figure 2), by instead
adding the area of the isosceles triangle to the area of the sector.

We model the relationships between sectors by associating a circle with each
sector. Each sector a has a parameter Ra ∈ R+ determining the radius of the
circle, a length La ∈ R+ determining the distance between the coordinates of the
tower and the center of the circle, and an azimuth angle αa. As the length and
radius are only allowed to take positive values, we learn the logarithm of these
parameters instead of modeling the values directly. We are able to learn these
parameters by back-propagation by using the exponential function, similarly to
how variances are typically parametrized in variational methods. The log-values
are initialized from normal distributions:

log(Ra) ∼ N (µR, σ2
R) (1)

log(La) ∼ N (µL, σ2
L), (2)

where N (·, ·) represents the normal distribution. Consequently, the initial values
of the radius and the length form a log-normal distribution. We set µR = µL = 0,
and σ2

R = σ2
L = 0.12, which means that the initial circles have an expected length

and radius of ca. 1 km. The azimuth αa is also learnable, but is initialized from the
value recorded in the dataset. Using the coordinates of the tower (xtower

a , ytower
a ),

the length La, and the azimuth αa, we can determine the coordinates of the
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center of the circle for sector a:

xcircle
a = xtower

a + La sin αa (3)
ycircle

a = ytower
a + La cos αa (4)

We now describe the steps to find the area of intersection between two circles,
each associated with a sector. Let a be the index of the first sector, and b be the
index of the second sector. The first step is to compute the Euclidean distance
between the centers of the circles. Additionally, a small ϵ is added to avoid
numerical issues due to divisions by zero in later computations.

Da,b =
√

(xcircle
a − xcircle

b )2 + (ycircle
a − ycircle

b )2 + ϵ (5)

Second, compute the triangle segment lengths V :

Va,b =
D2

a,b + R2
a − R2

b

2Da,b
(6)

To avoid numerical issues when the circles for a and b do not intersect, we have
to ensure that each segment length is bounded by the radius of its circle. Next,
we ensure that the absolute value of the segment length is bounded by the radius
of its circle, minus a small ϵ′, such that the gradients of later computations stay
well-defined.

Ṽa,b =


−Ra + ϵ′ if Va,b ≤ −Ra + ϵ′,

Ra − ϵ′ if Va,b ≥ Ra − ϵ′,

Va,b otherwise
(7)

Now we can safely compute circular sectors S and signed triangle areas T :

Sa,b = R2
a arccos

( Ṽa,b

Ra

)
(8)

Ta,b = Ṽa,b

√
R2

a − Ṽ 2
a,b (9)

Finally, we compute the intersection by adding the areas of the two circular
segments. The areas of the circular segments are found by subtracting the area
of a signed triangle from the area of a circular sector:

Ia,b = (Sa,b − Ta,b) + (Sb,a − Tb,a) (10)

In order to ensure numerical stability, we do an additional masking step to cover
the case where circle a is completely inside circle b. In this case the intersection
is equal to the area of the circle:

Ĩa,b =
{

Aa = πR2
a if Da,b + Ra ≤ Rb,

Ia,b otherwise
(11)
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While Ĩa,b should equal Ia,b also in the case when the circles overlap due to the
masking performed in Equation 7, we consistently find that using Ĩa,b leads to
better performance. We hypothesize that this is due to numerical instabilities
during training resulting from small numerical values of the distance Da,b between
overlapping circles. Alternatively, this might be due to differences in the gradient
computations between the case when the boundaries of the circles meet at a
tangent point, and the case when the boundaries of the circles are overlapping
but not tangent.

We can now define the intersection score or Intersection over Area (IoA) for
a circle a relative to circle b:

IoAa,b = Ĩa,b

Aa
(12)

The intersection scores are used to create an input matrix X, with shape
Twindow × Nfeatures = 64 × 40. The matrix consists of four stacked sub-matrices,
corresponding to different types of input features, such that:

X =
[
X(neighbors) | X(IoA) | X(location) | X(time)] (13)

The first type of feature is the neighboring time series, masked by intersection
scores. The neighborhood of a sector a is defined by the function neighbor(a, i),
which returns the sector index of the ith closest sector, as measured by the
Euclidean distance between the towers of the sectors. A sector a is its own
first neighbor, i.e. neighbor(a, 1) = a. The size of the neighborhood is defined
by a fixed hyper-parameter Nneighbors = 16. The circle intersection attention
mechanism is implemented by multiplying the time series of the neighboring
sectors by their intersection score. In other words, for a sector to be forecasted
a, column number i ∈ {1, . . . , Nneighbors} of the matrix X(neighbors) is the time
series for sector b = neighbor(a, i), multiplied by the intersection score between
a and b:

X
(neighbors)
i = z̃b · IoAa,b (14)

Here, z̃b is defined as the time series zb divided by its maximum value in the train-
ing set. Second, we include the intersection scores directly, without multiplying
with its associated time series. The primary motivation for this choice was to give
the model a more reliable way to update the parameters of the circle, regardless
of the values of the time series z̃b. The intersection scores do not depend on time,
so we extend the scores such that they form a constant sequence. Using the same
notation as previously, this is:

X
(IoA)
i = IoAa,b (15)

Third, we include a location feature based on the coordinates of the cell tower.
The location feature is the coordinate pair (xtower

a , ytower
a ), with a suitable

normalization applied to ensure an approx. standard normal distribution of
values:

X(location) =
[
(xtower

a − mx)/sx

(ytower
a − my)/sy

]T

, (16)
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where mx, my, sx, sy are fixed scaling parameters. Because the location does not
vary in time, we extend these values such that they are constant for all time
steps. Fourth, we include seasonal encodings of time, which consists of 3 pairs of
sine/cosine encoded seasonal features: hour of day, day of the week, and day of
the year:

X(time) =


sin(2π · HourOfDay / 24 )
cos(2π · HourOfDay / 24 )
sin(2π · DayOfWeek / 7 )
cos(2π · DayOfWeek / 7 )
sin(2π · DayOfYear / 365 )
cos(2π · DayOfYear / 365 )



T

(17)

3.3 Transformer model

As our forecasting model, we use an autoregressive decoder-only Transformer [10].
More specifically, we use a recently proposed Transformer variant, called the PI-
Transformer [3]. The main benefit of the PI-Transformer is the use of Persistence
Initialization, which ensures that the initial forecasts are equal to that of a
simple persistence model. This is done by adding a skip connection and a gating
parameter γ. Because the PI-Transformer assumes time series with only one
feature (i.e. univariate inputs), we need to modify the definition of the inputs to
the first layer of the PI-Transformer. In order to transform our input matrix X
to the required shape for the Transformer model, we use a weight matrix Win of
shape Nfeatures × dmodel:

X0 = XWin (18)

X0 is then used as the input to the first Transformer layer, which produces an
output X1, and so on, until the output of the final layer; XN . The output of the
final layer is projected to a univariate series by a weight matrix Wout of shape
dmodel × 1. This output is then multiplied by the gating parameter γ and added
to the value for the previous time step, such that the (max-scaled) forecast for
zb,t+1 becomes:

ˆ̃zb,t+1 = z̃b,t + γ ·
(
XN Wout

)
(19)

4 Experimental Settings

This section describes our approach to windowing, sampling of windows, validation
and test sets, optimization, and model hyperparameters. We consider telecom
data from multiple cell tower antennas in the area of Copenhagen, where some
towers and/or sectors may not be operational at time t = 1. For those sectors,
we consider the time series to start at the first non-zero value. Time series with
more than 50% missing or zero values are excluded from the dataset. The data
is sampled on an hourly frequency, and we chose to set the forecasting horizon
size to be 24 hours. To evaluate the performance of our proposed model, we split
the data into training, validation, and test sets in time. The test and validation
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sets each cover a period of 7 days. In other words, values of the test set are
given by time indices in the range t ∈ {Tval + 1, . . . , T}, where Tval = T − 7 · 24.
Similarly, the values of the validation set are given by time indices in the range
t ∈ {Ttrain + 1, . . . , Tval}, where Ttrain = Tval − 7 · 24. Finally, the values of the
training set are given by indices in the range t ∈ {1, . . . , Ttrain}. To handle the
large amount of data in our dataset, we use a windowing technique where we
split the time series into windows of total size Twindow = 64. For the training set,
we use a stride of 1 to generate training windows, while for the validation and
test set, a stride of 24 is used. The model is trained using teacher forcing [11].
The last 24 entries of each window are used as both inputs and targets to be
learned with teacher forcing, while the first 40 entries serve only as inputs. For
the test set, forecasts within a 24-hour window are generated auto-regressively.
This means that it is necessary to forecast the values of all sectors for a single
time step, before the next time step can be generated.

To ensure that the training data is representative of the overall population of
sectors, we first sample sectors from the training data with uniform probability,
and then sample a window within that sector’s time series with conditional
uniform probability. This is done in order to balance the dataset, by compensating
for the fact that some sectors have fewer valid windows (because they started
recording data at a later time than the initial time t = 1).

We use the Mean Absolute Error (MAE) in the max-scaled space as the
loss function. However, we report performance metrics in the original scale.
Optimization was done using the Lamb [12] optimizer, with bias correction,
gradient clipping for norms greater than 10, and otherwise default parameters.
A training epoch is defined to consist of 128 training batches, with each batch
containing 1024 randomly sampled windows. We use an early stopping strategy
to dynamically stop training if the validation loss does not improve within 8
training epochs.

Our Transformer model consists of 4 layers, each with 4 attention heads. We
set dmodel = 64 and dfeedforward = 256, which results in a total of around 200,000
learnable parameters within the Transformer model.

5 Results and Discussion

5.1 Experiment 1: Baseline comparison

In this section we present a comparison of Transformer models with Circle
Attention (CA) relative to two baseline Transformer models, on the task of
network traffic forecasting. The two baseline Transformer models are called “All
neighbors”, which has X

(neighbors)
i = 1 for all neighbors, and “Self only”, which

has X
(neighbors)
i = 0 for all neighbors except the sector to be forecasted (i.e.

itself). In addition, we also compare against a Transformer which uses Circle
Attention, but without using the intersection scores directly as features, i.e. with
Equation 15 replaced by X

(IoA)
i = 0. We perform 101 repeated experiments for

each of the four model types. Table 1 contains the median MAE scores on the
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Table 1. Median MAE test set scores of 101 repeated experiments. We also include the
naïve predictor as a simple baseline to give some context regarding the magnitude of the
numbers provided. S refers to the seasonality of the naïve predictor, such that S = 24
is the model that always predicts the value from the current hour of the previous day,
and S = 1 is the model that always predicts the value from the previous hour. Note
that Naïve with S = 1 has access to more information than the Transformer models, as
these generate forecasts of the entire horizon auto-regressively, and therefore cannot
similarly use the true previous values in their forecast.

Naïve Naïve All Self CA CA
S = 24 S = 1 neighbors only w/o feat. w/ feat.

Median MAE 23.68 19.48 15.59 15.14 15.04 14.49

test set for each model type. We also include the scores of simple naïve predictors
to give additional context. Figure 3 shows box-plots of MAE scores on the test
set, and Figure 4 shows loss curves for the training and validation sets.

The models using the Circle Attention (CA) with intersection scores as features
clearly outperform the three other methods on the test set. However, models
using CA without the intersection scores as features only perform marginally
better than the “Self only” baseline. We hypothesize that having access to the
intersection scores directly as features results in more stable gradients for the
circle parameters. This might be due to the amount of variation within the time
series of our dataset. (The gating of the time series by the intersection scores
means that the circle parameter gradients are proportional on the values of the
time series in the case where the intersection scores are not included as features.)

All neighbors Self only CA w/o feat. CA w/ feat.

Input features

14

15

16

17

T
es

t
se

t
M

A
E

Fig. 3. Box-plot of MAE scores on the test set for the four model types of Experiment
1. Each box represents 101 repeated experiments.
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Fig. 4. Loss curves for the four model types of Experiment 1. Each curve represents
the average loss of 101 repeated experiments, and the shaded regions represent the
standard deviation. Please note that the plot has a survivorship bias due to the training
process being stopped if the validation loss does not decrease for 8 consecutive epochs.

Interestingly, the loss curves in Figure 4 show a clear difference in both training
and validation loss for the four methods. The models with Circle Attention achieve
lower loss values than the two baselines, and having access to the intersection
scores as features is also clearly beneficial for training. Interestingly, the “All
neighbors” baseline achieves lower loss values than “Self only” baseline, while
performing worse on the test set. This can likely be explained by the differences
in how the forecasts are generated for the training and validation sets, versus the
test set. For the validation set, teacher forcing is used to generate a full horizon
of one-step predictions in one model evaluation. In contrast, the forecasts on
the test set are generated auto-regressively, by iteratively feeding the previous
forecasts as inputs, including forecasts of neighboring sectors. It is well known
that such auto-regressive forecasts typically accumulate errors as the forecasting
horizon increases. Consequently, it seems likely that the “All neighbors” baseline
accumulates errors to a greater degree than the other models, which do not rely
as heavily on the neighboring forecasts. This can be seen as a form of overfitting,
as the model might learn multiple spurious relationships from neighboring sectors
far away, which could instead be replaced with a single relationship with a nearby
sector. In this context Circle Attention can be seen as a way to provide inductive
bias regarding which neighbors are likely to contain useful information.

From the box-plot in Figure 3, it is clear that the “Self only” baseline has
a significantly lower amount of variance in test set performance than the other
models. This is further indication that an auto-regressive forecasting procedure
can result in large accumulation of errors when neighboring forecasts are included
as inputs to the model. However, the improved performance of the models with
CA shows that having access to neighboring sectors also has the potential to
improve auto-regressive forecasts, despite the additional error accumulated. In
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Fig. 5. Box-plot of MAE scores on the test set for the 8 ablation settings of Experiment
2. We label the boxes by a binary code, where 1 corresponds to “learnable”, and 0
corresponds to “fixed”. The ordering of the code is: radius, length, azimuth. Each box
represents 101 repeated experiments. The gray box (i.e. where all three parameter types
are learnable) is identical to the red box of Figure 3 (i.e. the box labeled “CA w/ feat.”).

other words, there seems to be trade-off between access to additional information
at training time, and increased accumulation of errors at test time.

5.2 Experiment 2: Ablation Study of Circle Parameters

In this section we present an ablation study on the effect of the three circle
parameter types; the azimuth α, the length L, and the radius R. We perform the
ablation by keeping the values of each of parameter type fixed (i.e. not learned).
While we showed in the previous experiment that CA performs better than
baselines which include all or none of the neighboring sectors, it is not clear that
learning of all the circle parameters is required. The baselines of the previous
experiment represent the extremes of possible effective neighborhood sizes, and
models with CA fall somewhere in between these two extremes (one way to
mathematically define the effective neighborhood size could be by the sum of the
intersection scores of each neighborhood). Hence, it is not clear from the previous
experiment that learning of the parameters is necessary, as it might be the case
that simply having an effective neighborhood between the extremes would be
enough. Furthermore, as the azimuth values are initialized directly from values
recorded in the dataset, the model should be able to perform at a similar level
regardless of whether this parameter is learned or not.

To investigate the importance of learning of the parameters, we test all the
23 = 8 combinations of learned and fixed parameters, by performing 101 repeated
experiments for each combination. Figure 5 shows the box-plots of the test scores
of this experiment. As can be seen from the figure, learning of the parameters
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appears to be critical for good forecasting performance, as learning improves
performance for each of the three parameter types. However, as expected, the
radius and the length are of greater importance than the azimuth, which was
already initialized to the value recorded in the dataset. Interestingly, the model
which has all circle parameters fixed performs better than the “All neighbors”
baseline of the previous experiment, which indicates that simply reducing the
effective neighborhood size is beneficial.

6 Conclusion

In this paper, we propose Circle Attention (CA), a general method to model
the spatial relationships between telecommunication towers, and for improving
forecasting accuracy on the task of cell phone traffic prediction. The proposed
method uses the area of intersecting circles to model spatial relationships and
learns the circle parameters end-to-end through back-propagation. We compare
the performance of two versions of the CA method with two strong baseline
Transformer models and conduct ablation studies to investigate the importance
of the circle parameters. The experiments show that the models using Circle
Attention outperform the other models on the test set. Additionally, the ablation
studies demonstrate that learning of the circle parameters is critical for good
forecasting performance, with radius and length being of greater importance
than azimuth. Overall, our paper presents a novel approach to forecasting cell
phone traffic, and contributes to advancing the understanding of how spatial
relationships can be effectively modeled for improved forecasting accuracy in
the domain of telecommunication data. We suggest several potential directions
for further work. First, the concept could be extended to three dimensions by
modeling the height of towers and pitch of cell antennas. Second, the idea could
be extended to include variations due to temporal dynamics. Third, regularization
terms could be added to constrain the circles to realistic ranges of values. Finally,
a variational probabilistic approach could be used to improve interpretability
and estimate uncertainty.
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7 Ethical Statement

This research project focuses on forecasting telecom network traffic by analyzing
one key performance indicator (KPI) aggregated per sector. Specifically, we
examine the number of attempted calls made in each sector. To protect the
privacy, security, and confidentiality of the data and the individuals whose data
were used, we conducted this research project in compliance with ethical guidelines
and standards.

The data we used for this project were collected at the radio tower level and
do not include any personal information about the users. Instead, the data only
represent the current load of the tower. We collected data in accordance with the
legal and regulatory requirements of the relevant data protection agencies. We
obtained informed and written consent from the telecommunications provider
to use the data for this research project, ensuring that our use of the data was
aligned with their terms of service and privacy policy.

Our proposed method aims to restrict the use of radio towers whenever they
are underused, thereby reducing energy emissions. This method has no ethical
impact apart from giving the telecommunications provider guidance on how to
reduce their environmental impact.

We also emphasize the importance of ethical considerations in machine learning
research. By conducting research in an ethical and responsible manner, researchers
can ensure that the use of data and machine learning methods is beneficial to
societal progress.
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