
Detection of Batch Activities from Event Logs

Niels Martina,b,c,∗, Luise Pufahld,e,∗, Felix Mannhardtf,g

aResearch Foundation Flanders (FWO), Egmontstraat 5, 1000 Brussel, Belgium
bHasselt University, Research group Business Informatics, Martelarenlaan 42, 3500

Hasselt, Belgium
cVrije Universiteit Brussel, Data Analytics Laboratory, Pleinlaan 2, 1050 Brussel,

Belgium
dHPI, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

eSBE, Technische Universitaet Berlin, Einsteinufer 17, 10587 Berlin, Germany
fSINTEF Digital, Department of Technology Management, Postboks 4760 Torgarden,

7465 Trondheim, Norway
gNTNU, Department of Computer Science, 7491 Trondheim, Norway

Abstract

Organizations carry out a variety of business processes in order to serve their
clients. Usually supported by information technology and systems, process
execution data is logged in an event log. Process mining uses this event
log to discover the process’ control-flow, its performance, information about
the resources, etc. A common assumption is that the cases are executed
independently of each other. However, batch work – the collective execution
of cases for specific activities – is a common phenomenon in operational
processes to save costs or time. Existing research has mainly focused on
discovering individual batch tasks. However, beyond this narrow setting,
batch processing may consist of the execution of several linked tasks. In this
work, we present a novel algorithm which can also detect parallel, sequential
and concurrent batching over several connected tasks, i.e., subprocesses. The
proposed algorithm is evaluated on synthetic logs generated by a business
process simulator, as well as on a real-world log obtained from a hospital’s
digital whiteboard system. The evaluation shows that batch processing at
the subprocess level can be reliably detected.

∗Corresponding authors
Email addresses: niels.martin@uhasselt.be (Niels Martin),

luise.pufahl@hpi.de (Luise Pufahl), felix.mannhardt@sintef.no (Felix Mannhardt)

Preprint submitted to Information Systems June 14, 2024

https://www.sciencedirect.com/science/article/abs/pii/S0306437920301071?via%3Dihub

Keywords: Business Process, Batch Activity, Batch Processing, Discovery,
Process Mining, Batch Mining

1. Introduction1

In providing products or services to customers or clients, organizations2

carry out a variety of business processes. A business process consists of a set3

of activities which are executed in an organizational and technical environ-4

ment to reach a certain business goal [1]. The enactment of business processes5

is usually supported by a so-called process-aware information system (PAIS)6

(e.g. an Enterprise Resource Planning System or a Hospital Information Sys-7

tem), where process execution data is registered in an event log [2]. Process8

mining as a research discipline deploys this type of data to provide insights9

into the nature of a business process to, e.g., discover a process model.10

A common assumption in process mining is that cases, also called pro-11

cess instances, are executed independently from each other. However, batch12

processing is commonly applied to reduce cost or save time by collectively13

handling several process instances in a group at specific activities in a busi-14

ness process [3]. Especially in operations research, batching of products or15

customers is well discussed [4, 5]: in an effort to reduce the set-up or exe-16

cution cost of physical resources, specific types of products are scheduled in17

batches on a machine, or customers at a service desk are combined in batches18

before starting a service. Also, process participants, who get assigned tasks19

for execution and can organize their work on their own, tend to handle their20

work in batches [6]. For instance, usually a set of invoices is collected first21

before they are checked instead of approving each one individually.22

Although event logs are a valuable information source to identify batch23

behavior, the detection of so-called batch activities in event logs was discussed24

by only few works, such as [6, 7, 8, 9]. It enables companies to identify existing25

batching behavior and identify opportunities to integrate batch processing26

in a more structured way. Batch processing can occur as parallel batching27

(also referred to as simultaneous batching) where several items are processed28

simultaneously (e.g., blood tubes being tested by a laboratory machine), or29

sequential batching where the cases are still processed individually but, by30

batching a set, setup time/cost can be reduced (e.g., processing a set of in-31

voices one after the other). Martin et al. [6] additionally consider concurrent32

batch work, which can be observed when a resource starts working on a task33

2

Input to advanced process analytics

Novel BAMA
algorithm

For each event:

- Case Id

- Task

- Timestamp

- Transaction type:

start or complete

- Resource

Event Log

For each task in a case:

- Case Id

- Task

- Start Time

- Completion Time

- Resource

Task Log
Input Output

For each task in a case:

- Case Id

...

- Task-Resource Batch ID

- Task-Resource Batch Type

- Subprocess Batch ID

- Subprocess Batch Type

Batch-enriched
Task Log

No batching
Case-based sequential
Case-based concurrent
Task-based sequential
Task-based concurrent
parallel

100

Resource
Batching
Behavior

PAIS

Figure 1: Input and result of the novel BAMA algorithm.

and, while executing it, also starts another task instance in parallel. So far,34

the focus of literature on batch mining in the process mining field was situ-35

ated on discovering single batch tasks only, providing only a limited view on36

batch work. Pufahl and Weske [3] observed that batch processing operations37

can span not only over one task, but also over several connected ones.38

In this paper, we present the novel Batch Activity Mining Algorithm39

(BAMA) which expands existing research by detecting different types of40

batch activities. It extends the algorithm proposed in Martin et al. [6],41

where batching behavior is identified at the level of individual tasks, to the42

more general notion of a batch activity. In BAMA, a batch activity can be43

either non-decomposable (i.e. a task) or can have internal behavior (i.e. a44

subprocess), and for both of them parallel, sequential, or concurrent behavior45

could be detected.46

Thereby, we also consider that different types of batch behavior can be47

applied during a subprocess. In case of subprocesses, sequential batching can48

occur in two versions [10]:49

• with a task-based orientation (i.e., cases are executed for each task in50

a subprocess in a sequential fashion) or,51

• with a case-based orientation (i.e., first a case needs to finish all tasks52

of a subprocess before the next case of a batch can be started).53

A similar distinction is made for concurrent batching. Human resources can54

apply these types of batch behavior for a set of cases to ease their work.55

Each staff member might apply his/her own strategy for specific tasks. The56

concrete batch execution of activities is often recorded in a PAIS, showing57

the potential of the proposed batch mining algorithm.58

As shown in Figure 1, the novel BAMA takes as input – as other process59

mining techniques – an event log deduced from a PAIS. Each row represents60

3

an event expressing, for instance, the start or completion of a task. BAMA61

transforms the event log into a task log, where one row contains all times-62

tamps for one task execution. The task log is used for batch mining purposes.63

The output of BAMA is a batch-enriched task log, a task log to which batch-64

ing information is added. For each task executed for a specific case, i.e. for65

each task instance, it highlights whether it belongs to a batch by providing66

the batch ID and the type of batch behavior. The algorithm provides this at67

a task level (i.e., task-resource) and at a subprocess level. By its ability to68

detect both batch tasks and batch subprocesses, BAMA provides organiza-69

tions with rich data-driven insights in batching behavior. This can be used70

for advanced analytics, e.g., the occurrences of different batching behavior71

for specific tasks can be analyzed. In this paper, the algorithm is formally72

described, based on which a prototypical implementation is developed. Be-73

sides an evaluation of the algorithm’s effectiveness using synthetic data, this74

work also uses real-life data to illustrate how the algorithm’s output can help75

practitioners to learn more about batching in their business process.76

The remainder of this paper is structured as follows. Section 2 presents77

the related work. After providing the preliminaries on batch processing in78

Section 3, BAMA is introduced in Section 4. In Section 5, the algorithm’s79

effectiveness is evaluated using artificial logs. Moreover, it is applied to a80

real-world event log obtained from a hospital’s digital whiteboard system.81

The paper ends with a discussion in Section 6 and a conclusion in Section 7.82

2. Related Work83

Batch processing has been studied in various research fields. This section84

provides an overview of prior work related to (i) batch processing in oper-85

ations management/research, (ii) batch activity modeling, and (iii) batch86

mining.87

Batch processing in operations management/research. Batch processing is a88

highly relevant topic in operations management/research to save costs or89

time by processing or transporting identical jobs in batches, or by utilizing90

the same machine/tool set-up [11]. In the following, we do not aim to provide91

an exhaustive literature study, but highlight some of the research topics.92

The order batching problem, which focuses on grouping orders in batches,93

is heavily studied in the warehousing context [12, 13, 14, 15]. To this end,94

optimization techniques such as integer programming [14, 15] or tabu search95

4

[13] are used. Research on this topic is also conducted in other sectors such96

as the transportation [16, 17, 18] and the steel sector [19].97

The scheduling of jobs in batches is also intensively studied as shown98

in review papers, such as [20, 21]. Typically, two types of batching are99

distinguished: serial batching (i.e. similar jobs are scheduled together to save100

setup costs, but they are still executed in sequence) and parallel batching (i.e.101

batches of jobs which can be executed at the same time).102

Furthermore, operations research offers methods to study the queue of a103

batch service (i.e., a service which can handle a group of customers or jobs104

in parallel, such as a rollercoaster) to determine, for instance, the expected105

waiting time or the expected service time [5]. Thereby, different optimization106

policies are proposed. Consider, for instance, the threshold rule, which states107

that a batch is started when the length of the queue is equal or greater108

than a given threshold and the server is free [22]. Several studies (e.g.,109

[23]) investigate how to determine the optimal threshold, and the resulting110

expected waiting time under varying assumptions.111

Batch activity modeling. In the business process management field, several112

approaches were recently developed to capture and specify batch work in113

business process models [10, 24, 25]: Pufahl et al. [10, 26] suggest the batch114

activity as a new type of activity with a set of configuration parameters to set115

up batch processing for specific activities at design time. The configuration116

includes an activation rule, a maximum capacity, and the type of processing117

- parallel vs. sequential. The batch activity can be either a simple task or118

an activity with internal behavior (i.e. a subprocess). The performance119

evaluation of such batch activities is studied in [27]. Natschläger et al. [24]120

propose a so-called compound activity for which the optimization goal and121

the constraints need to be defined to enable batching. Pflug and Rinderle-Ma122

[25] focus on sequential batching and provide an algorithm to rearrange cases123

into similar batches which can be processed faster by resources as a way to124

organize work for activities with long queues.125

Batch mining. To have more insights in unknown batching behavior in busi-126

ness processes, process mining techniques were developed [6, 7, 8, 9, 28].127

These techniques use event logs and try to detect tasks for which resources128

perform their work in batches. Whereas Wen et al. [7] assume that process129

execution data is recorded at the level of a batch, Liu et al. [9], Nakatumba130

[8] and Martin et al. [6] use the common event log format in which events131

5

are recorded at the level of individual cases. Liu et al. [9] use an event log132

to mine association rules for a staff member to recommend work items for133

batching, which have been executed collectively in the past. Nakatumba [8]134

and Martin et al. [6] propose algorithms to retrieve batching behavior from135

an event log. Nakatumba [8] discovers a batch when a time gap of more than136

one hour is present between groups of activity instances. This work was137

extended by Martin et al. [6] by providing an algorithm to detect different138

types of batch work from a log, and providing performance indicators, such139

as the size of a batch, waiting time and duration of instances in a batch.140

Martin et al. [6] not only differentiate between parallel and sequential141

batch processing, but also consider concurrent batching as it occurs in prac-142

tice that resources work on different instances in a partially overlapping time-143

frame, which could be considered as unstructured batch behavior. To distin-144

guish between sequential batching and regular queue handling, Martin et al.145

[6] assume that all cases need to be present in the queue before the resource146

starts processing a batch. When the arrival of a case at a task is recorded,147

as is the case in a Q-log in the queue mining field [29], this information can148

be immediately retrieved from the data.149

Different from prior works, Weber et al. [30] provide a pre-processing step150

to an existing process discovery algorithm to identify subprocesses in which151

multiple instances are initiated in parallel, but executed independently. The152

latter holds, for instance, when several reviews are initiated and handled for153

one paper submission. Traditionally, these types of subprocesses are called154

multi-instance activities [31]. Multi-instance activities allow for running sev-155

eral instances of the same activity to handle several sub-items of one process156

instance. These instances might be executed independently of each other157

and not necessary by the same resource.158

Besides batch mining and multi-instance initiation, other works, such159

as [32, 33], consider a broader spectrum of relations between instances, which160

were also called instance-spanning constraints [34]. Whereas Senderovich161

et al. [32] use inter-case dependencies to improve the quality of process pre-162

dictions with a special focus on case priorities, Winter et al. [33] provide a163

technique to detect different kinds of instance-spanning constraints from a164

given event log to analyze a process regarding compliance issues. As the fo-165

cus is on compliance analysis, different batching behaviors are not analyzed166

in depth, which is the goal of our work.167

So far, the focus of batch mining algorithms was only on detecting single168

batch tasks [6, 7, 8, 9] or batching logic at the level of a single task [28].169

6

Figure 2: BPMN process diagram of running example 1 - a simplified laboratory process.
Using the terminology that will be introduced in Section 3.2, the following batch processing
types are included: BA 1 - sequential task-based batching, BA 2 - parallel batching, BA 3 -
sequential case-based batching.

However, batching is often also done over several linked activities, i.e. in170

subprocesses, which can also have complex behavior, such as parallel activ-171

ities. Given this research gap, this paper presents an algorithm which can172

detect batch behavior at both the task and subprocess level.173

3. Preliminaries174

The algorithm presented in this paper automatically detects batch activi-175

ties from an event log. Before proceeding to the outline of the algorithm, this176

section outlines some preliminary concepts: Section 3.1 introduces the notion177

of a batch activity, Section 3.2 presents an overview of the batch processing178

types, and Section 3.3 provides an introduction to event logs.179

3.1. Batch activity180

Batch processing is an organization of work in which a resource bundles181

cases such that they can be processed as a group [3, 6]. A batch activity is182

a task or a subprocess in which batching behavior is present. We define a183

batch subprocess as a set of connected tasks for which cases are processed in184

batches and all cases stay in the same batch for all subprocess tasks.185

To illustrate the notion of a batch activity, two running examples are186

introduced. The process models, annotated with the resource responsible to187

perform a task, are visualized as BPMN process diagrams in Figures 2 and188

3.189

7

Figure 3: BPMN process diagram of running example 2 - a simplified patient admission
process. Using the terminology that will be introduced in Section 3.2, the following batch
processing types are included: BA 4 - concurrent task-based batching, BA 5 - concurrent
case-based batching, BA 6 - parallel batching.

3.1.1. Running example 1: A laboratory process190

The first running example relates to the simplified process that a blood191

sample follows at a hospital laboratory (Figure 2). When a blood sample is192

received by the secretary, it is registered and prepared for the analysis by a193

lab assistant. Afterwards, the actual analysis is conducted by a laboratory194

device. Depending on whether or not warnings are raised during the analysis,195

a lab technician studies either the detailed results or the summary results.196

After studying the results, a report is prepared.197

Figure 2 shows that three batch activities are present: one consisting of198

a single task (BA 2) and two batch subprocesses (BA 1, BA 3). Besides199

differences in the number of tasks involved, the batch activities also vary200

in terms of the type of batching behavior. In the batch activity consisting201

of task ‘Analyze sample’ (BA 2), multiple samples can be processed by the202

laboratory device simultaneously. In contrast, in BA 1, the lab assistant203

waits until a number of samples is waiting to be processed as this saves setup204

time. Once several samples are available, the lab assistant registers them one205

after the other, after which the same group of samples are prepared one at206

the time. In last batch activity, BA 3, the lab technician will also handle207

samples in groups. She studies the (detailed or summarized) results and208

prepares a report for a particular sample and then immediately proceeds to209

the next sample.210

3.1.2. Running example 2: A patient admission process211

The second running example focuses on a simplified patient admission212

process at a hospital unit (Figure 3). When a patient arrives, a registra-213

tion form needs to be completed, after which the admission documents are214

8

created. Afterwards, a drug allergy form is completed and a blood test is215

performed, followed by the collection of all documents in the patient’s file.216

When a number of blood samples have been collected, the samples are pre-217

processed using a specialized device and sent to the laboratory for further218

examination.219

As shown in Figure 3, three batch subprocesses (BA 4, BA 5, BA 6) are220

present. BA 4 contains tasks ‘Complete registration form’ and ‘Create ad-221

mission documents’. While a particular patient is filling out the registration222

form, the secretary can already start registering another patient. Afterwards,223

while the admission files are being printed, the secretary can already compile224

the required documents for the next patient. The next batch subprocess, BA225

5, consists of tasks ‘Complete drug allergy form’ and ‘Perform blood test’.226

While the patient is filling out a drug allergy form, the nurse already starts227

performing the blood test for this patient. Only after several blood samples228

are available, BA 6 is executed. This involves preprocessing multiple blood229

samples simultaneously, after which all samples are sent to the laboratory at230

once for additional analyses.231

From these running examples, it follows that several types of batching232

behavior can be distinguished, which will be introduced in the next subsec-233

tion.234

3.2. Batch processing types235

BAMA will distinguish five types of batch processing. These differ ac-236

cording to two dimensions: (i) the time relationship between batched cases,237

and (ii) the task- or case-based orientation of a batch. With respect to the238

time relationship between the execution of tasks on batched cases, a distinc-239

tion is made between parallel, sequential and concurrent batching. This is240

consistent with Martin et al. [6], where batching behavior is considered at241

the level of individual tasks. However, as our algorithm is more generic and242

also considers batch detection at the level of a subprocess, an additional dis-243

tinction is made between task-based batching and case-based batching [10].244

While work is organized around tasks in the former (i.e. the same task is245

executed for a group of cases before switching to another task), the latter246

centers around cases (i.e. several tasks are performed for a particular case247

before switching to another case). When both dimensions are taken into248

account, five types of batching behavior can be distinguished. Figure 4 il-249

lustrates these batch processing types considering three tasks (A, B, C) and250

three batched cases (c1, c2, c3).251

9

Figure 4: Batch processing types

• Parallel batching. In parallel batching, a set of cases is processed252

at exactly the same time for one or multiple consecutive tasks. For253

each task, all cases are processed by the same resource. In Figure 4, a254

resource first performs task A on cases 1, 2 and 3 simultaneously, and255

does the same for tasks B and C. The task ‘Analyze sample’ in Figure 2256

(BA 2) also processes several cases in parallel. In Figure 3, BA 6 is an257

example of two connected activities where parallel batching prevails.258

• Sequential task-based batching. In sequential batching, a resource259

handles a group of cases (almost) immediately after each other to save260

set-up time/costs (e.g., the time required to get familiar with a type261

of task). In an effort to differentiate sequential batching from regular262

queue handling, a set of cases can only form a sequential batch when263

all of them are available for the resource before it starts processing264

the batch. In sequential task-based batching, a task will be performed265

on a set of cases sequentially, after which other tasks will sequentially266

be performed to that same set of cases. As with parallel batching, all267

cases are processed by the same resource for a particular task. Figure 4268

shows that task A is performed on the three cases sequentially, which269

is immediately followed by task B and, finally, task C. Batch activity270

BA 1 in Figure 2 is an example of sequential task-based batching.271

10

• Sequential case-based batching. In sequential case-based batching,272

a resource will perform a series of tasks sequentially for a particular273

case, and will (almost) immediately perform this same task sequence274

for other cases. In Figure 4, it is illustrated that tasks A, B and C are275

first performed for case 1 first, followed by case 2 and case 3. Batch276

activity BA 3 in Figure 2 exemplifies sequential case-based batching277

behavior.278

• Concurrent task-based batching. When concurrent batching pre-279

vails, there is a partial overlap in time between the execution of tasks280

on a case. This implies that a resource can start executing a new task281

on a case before the current task is finished, or that a new case can282

be started while the current one has not fully been processed. In con-283

current task-based batching, a task is performed for all batched cases,284

followed by the other tasks, with the characterizing partial time over-285

laps being present. For each task, all cases are processed by the same286

resource. Concurrent task-based batching is illustrated in Figure 4,287

where work is organized around tasks A, B and C. In Figure 3, BA288

4 provides an example of concurrent task-based batching: while the289

patient is filling out the registration form, the secretary can already290

start the registration of another patient. Similarly, while the admission291

documents for one patient are being printed, the secretary can already292

start creating the admission documents for another patient.293

• Concurrent case-based batching. When concurrent case-based294

batching prevails, the batch is organized around cases, implying that295

the tasks in the batch activity are performed on a particular case be-296

fore proceeding to the next case. As shown in Figure 4, the partial297

overlap in time between task instances is present both within a case298

and between cases. Concurrent case-based batching is also illustrated299

by BA 5 in Figure 3 because a nurse can start performing a blood test300

for a patient while this patient is completing a drug allergy form.301

Four remarks need to be made with respect to the batch processing types302

outlined above. Firstly, no task-based and case-based variant of parallel303

batching is specified. Parallel batching implies that a resource can perform304

a specific task on a set of cases simultaneously. From this, it follows that305

it is, by definition, task-oriented. When parallel batching would imply that306

11

one resource performs several tasks during exactly the same timeframe, these307

tasks would, in fact, constitute a single task.308

Secondly, the requirements regarding resource involvement differ depend-309

ing on the batch processing type under consideration. For parallel batching310

and sequential/concurrent task-based batching, all instances of a particular311

task have to be executed by the same resource. The requirements are more312

strict for sequential/concurrent case-based batching as all batched task in-313

stances need to be executed by the same resource. For all batch processing314

types, it holds the resource cannot be linked to instances which are not part315

of a batch while the resource is processing that batch.316

Thirdly, for case-based batching, the time relation between task instances317

associated to a particular case is dominant to distinguish between sequential318

and concurrent case-based batching. Consider, for example that a concurrent319

relationship holds for task instances for a particular case, but the cases in the320

batch are handled sequentially. Under these circumstances, the batch will be321

considered as a concurrent case-based batch.322

Finally, in batch subprocesses, the parallel, sequential or concurrent rela-323

tionship between batched instances might differ across tasks (for task-based324

batching) or across cases (for case-based batching). For instance, a task of325

a task-based batch subprocess can be executed in parallel and another task326

in a sequential way. Similarly, the task instances included in a case-based327

batch subprocess might be executed sequentially for one case and concur-328

rently for another case. In such situations, the detected batch subprocess329

will be labeled as a hybrid task-based or case-based batch subprocess. Hy-330

brid batching is not included as an autonomous batch processing type as331

it merely consists of a combination of different types of batching behavior332

within a batch subprocess.333

3.3. Event log334

An event log is the data source that BAMA will use. It contains process335

execution information originating from a PAIS [2]. An event log is composed336

of a series of events reflecting, e.g., the start or completion of an activity.337

An excerpt of the event log from the laboratory process shown Figure 2 is338

represented in Table 1. The first line indicates that lab assistant Zoe started339

the task ‘Register sample’ for sample 9845 on January, 14th at 11:22:33. She340

completed this task at 11:26:04, as shown in the second line.341

The example provided in Table 1 outlines the minimal event log require-342

ments to apply the algorithm presented in this paper. The event log should343

12

Table 1: Illustration of event log structure (running example 1)

case id timestamp task transaction type resource
...

9845 14/01/2019 11:22:33 Register sample start Lab assistant Zoe
9845 14/01/2019 11:26:04 Register sample complete Lab assistant Zoe
9852 14/01/2019 11:26:04 Register sample start Lab assistant Zoe
9852 14/01/2019 11:30:21 Register sample complete Lab assistant Zoe
9845 14/01/2019 11:30:21 Prepare sample start Lab assistant Nick
9893 14/01/2019 11:36:17 Receive sample start Secretary Sarah
9845 14/01/2019 11:37:58 Prepare sample complete Lab assistant Nick
9852 14/01/2019 11:37:58 Prepare sample start Lab assistant Nick
9893 14/01/2019 11:38:12 Receive sample complete Secretary Sarah
9852 14/01/2019 11:46:11 Prepare sample complete Lab assistant Nick

...

be an ordered set of events related to a particular case and task. Moreover,344

the timestamp, resource and transaction type needs to be recorded for each345

event. Two transaction types are assumed to be registered: the start and346

the completion of a task, both transitions of the XES-lifecycle extension [35].347

Each start event should have a corresponding complete event with the same348

resource being associated to both events.349

Organizations usually have multiple resources being able to execute the350

same task. Hence, resource information is needed to identify which resource351

has worked on a group of of cases for this task. If resource information is352

absent and multiple resources perform the same task for different cases, this353

is parallel processing of cases and not batching behavior. The start and end354

time of a task are relevant for identifying the types of batch behavior. With355

only one timestamp for a task, parallel, sequential and concurrent behavior356

are not distinguishable.357

The aforementioned event log requirements will be formalized below.358

Throughout the paper, we generally use upper case letters for sets and lower359

case letters for elements of sets. So, if C denotes the set of case identifiers,360

we use c ∈ C for a specific case identifier. Table 2 summarizes the key361

mathematical notation which will be used in the paper.362

Definition 1 (Event log requirements). Let C be a set of case identifiers.363

Let L be a set of task labels. Let R be a set of resource identifiers. An event364

log E contains a set of events e. Each event e is represented as tuple of365

attributes e = (c, t, r, τ, ϕ) with:366

• c ∈ C represents the case identifier,367

13

Table 2: Summary of mathematical notation

Symbol Description
E/e Set of events / event
C/c Set of case identifiers / case
L/l Set (element) of task labels / task
R/r Set (element) of resource identifiers / resource
R+ Set of positive real numbers
τ Timestamp attribute of an event
ϕ Transaction type

#a(e) Function returning the value of attribute a of event e
Estart Set of events with transaction type start

Ecomplete Set of events with transaction type complete
T Set of task instance (Task log)
Tex Set of extended task instances (Extended task log)

τarrival Timestamp attribute of the task instance’s arrival
τstart Timestamp attribute of the task instance’s start

τcomplete Timestamp attribute of the task instance’s completion
χ Set of task labels
Tχ Subset of an extended task log having task labels χ
φ Set of case identifiers
Tφ Subset of an extended task log having case identifiers φ
Tbe Set of batch-enriched task instances (Batch-enriched task log)

• l ∈ L is the task label,368

• r ∈ R represents the resource identifier,369

• τ ∈ R+ reflects the timestamp, and370

• ϕ ∈ {start, complete} refers to the transaction type.371

We use the notation #a(e) to access the value for attribute a for event e.372

Moreover, every start event should have an accompanying complete event.373

In formal terms, let Estart = {e ∈ E | #ϕ = start} and Ecomplete = {e ∈374

E | #ϕ = complete} be a partition of event log E. Then, there exists a375

bijective function ω : Estart → Ecomplete, such that ∀e ∈ Estart : #c(e) =376

#c(ω(e)) ∧#l(e) = #l(ω(e)) ∧#r(e) = #r(ω(e)) ∧#τ (e) ≤ #τ (ω(e)).377

4. Batch Activity Mining Algorithm378

This section outlines the Batch Activity Mining Algorithm (BAMA),379

which automatically identifies batching behavior in an event log, both at380

the task and the subprocess level. Section 4.1 provides a general overview381

of the algorithm, after which its key steps are outlined in more detail in382

Sections 4.2- 4.6. The prototypical implementation is briefly discussed in383

14

Section 4.7. Section 4.8 provides some pointers on how the output of BAMA384

can be used to gain a rich understanding in batching behavior.385

4.1. General overview386

BAMA aims to identify batching behavior at two distinct levels: (i) at387

the level of individual tasks and (ii) at the level of subprocesses. As shown388

in Figure 5, an event log is used as an input. This event log is converted to a389

task log by mapping start events to their corresponding completion events.390

The task log is used for batch identification purposes.391

To achieve BAMA’s goals, three phases can be distinguished in the al-392

gorithm. In the first phase, the task log is extended with batch formation393

insights at the task-resource level, i.e. batches consisting of task instances of394

a particular task executed by a particular resource. For instance: when sev-395

eral blood samples are analyzed by ‘Device KN93’ simultaneously, a parallel396

batch is formed at the task-resource level for task-resource combination ‘An-397

alyze sample’ - ‘Device KN93’. For this phase of the algorithm, the algorithm398

presented in Martin et al. [6] is used.399

While the first phase of the algorithm focuses on the identification of400

batching behavior at the level of individual tasks, the other two phases tar-401

get the discovery of batch subprocesses. To this end, the extended task402

log is split into two subsets using the batch insights at the task-resource403

level: subset 1 containing candidates for a parallel or task-based sequen-404

tial/concurrent batch subprocess, and subset 2 with candidates for a case-405

based sequential/concurrent batch subprocess. The former is used as input406

for batch subprocess discovery in the second phase of the algorithm and the407

latter in the third phase.408

Merging the outcomes of the second and third phase generates a batch-409

enriched task log. Compared to the original task log, a batch-enriched task410

log contains four additional columns providing batching information: two411

columns highlighting whether the task instance is part of a batch at the412

task-resource level (one column carrying a batch identifier and another one413

containing the batch type), and two columns reflecting its membership of a414

batch subprocess (again, a batch identifier column and batch type column are415

added). These columns enable analysts to retrieve rich insights in batching416

behavior starting from real-life process execution data.417

15

Figure 5: Overview of the Batch Activity Mining Algorithm (BAMA)

4.2. Convert to task log418

The input of the algorithm is an event log, of which the minimal require-419

ments were outlined in Section 3.3. As the detection of batching behavior420

requires studying the time relationship between task instances, the event log421

needs to be converted to a task log. In a task log, each row represents a task422

instance, i.e. the execution of a particular task by a particular resource in a423

particular case.424

To convert the event log to a task log, each start event is mapped to425

its corresponding completion event, where the latter refers to the complete426

event which is linked to the same case, activity and resource. For instance:427

the first and second line in Table 1 will occur as a single line in the task log.428

When multiple start and complete events are recorded for a particular task-429

resource-case combination, the first occurring start event will iteratively be430

mapped to the first occurring unmapped completion event. For more complex431

mappings, techniques such as the one described by Baier et al. [36] can be432

used. The task log created from the event log excerpt in Table 1 is shown in433

Table 3.434

Definition 2 (Task log). Let E represent an event log and let T be a task435

log. To convert E into T , a mapping function m1 is applied. Function m1 :436

E → T maps the events in E to task instances in task log T . This is achieved437

by mapping start events es ∈ Estart to their corresponding complete events438

ω(es) ∈ Ecomplete to combine start and completion times. Consequently, T439

consists of a set of task instances t. Each task instance t is represented as440

16

Table 3: Illustration of task log structure (running example 1)

case id task resource τstart τcomplete
...

9845 Register sample Lab assistant Zoe 14/01/2019 11:22:33 14/01/2019 11:26:04
9852 Register sample Lab assistant Zoe 14/01/2019 11:26:04 14/01/2019 11:30:21
9845 Prepare sample Lab assistant Nick 14/01/2019 11:30:21 14/01/2019 11:37:58
9893 Receive sample Secretary Sarah 14/01/2019 11:36:17 14/01/2019 11:38:12
9852 Prepare sample Lab assistant Nick 14/01/2019 11:37:58 14/01/2019 11:46:11

...

a tuple of attributes t = (c, l, r, τstart, τcomplete), where τstart refers to the start441

time, and τcomplete is the completion time.442

4.3. Phase 1: detect batches at the task-resource level443

The algorithm’s first phase focuses on the detection of batching behavior444

at the task-resource level, i.e. on identifying groups of task instances which445

are processed as a batch at a particular task by a particular resource. This446

task-resource level is purposefully selected as it conveys valuable insights in447

the way in which a specific resource executes a task.448

Besides the useful information it offers in itself, batching behavior at the449

task-resource level is also a prerequisite for the presence of some types of450

batch subprocesses. From the outline of the batch processing types in Sec-451

tion 3.2, it follows that parallel and task-based sequential/concurrent batch452

subprocesses require that batching behavior is detected at the task-resource453

level. To this end, the first phase of BAMA involves detecting parallel (par),454

sequential (seq) or concurrent (conc) batches at the task-resource level.455

To detect batches at the task-resource level, the algorithm presented in456

Martin et al. [6] is used. This algorithm will group task instances for which a457

batching relationship holds by marking these instances with the same batch458

number. The parallel, sequential or concurrent character of the batch is also459

added.460

As follows from the description of sequential batching in Section 3.2, the461

arrival time of a case at a task is used to distinguish between sequential462

batching and regular queue handling. Consequently, each task instance in463

the task log needs to be enriched with the arrival time (i.e. the time at which464

a task instance is enabled). The arrival time differs from the start time of a465

task instance when queues are formed because of limited resources to perform466

a particular task. In a Q-log, which is an event log containing queue-related467

17

Figure 6: Illustration of concurrent batching at the task-resource level

events such as queue arrival events [29], arrival times are explicitly recorded468

in the event log. Hence, they can just be included when the event log is469

converted to a task log and no further efforts are required. When, instead,470

arrival times are unknown, they can be imputed using a suitable heuristic.471

For example, the task arrival time of a case can be approximated by the end472

of its preceding task. This requires insights in the process control-flow, which473

can be gathered from the event log using an existing control-flow discovery474

algorithm. As control-flow discovery is beyond the scope of this paper, the475

reader is referred to, e.g., van der Aalst [2], De Weerdt et al. [37], and Augusto476

et al. [38] for more background on this topic.477

When batches are detected at the task-resource level, these task instances478

are candidates to be part of a parallel or task-based sequential/concurrent479

batch subprocess (cf. phase 2 of the algorithm). Conversely, task instances480

which are not batched at the task-resource level are candidates to be part481

of a case-based sequential/concurrent batch subprocess (cf. phase 3 of the482

algorithm). The latter follows from the observation that case-based batching483

does not require batching behavior at the task-resource level, as shown at484

the right side of Figure 4. However, detected concurrent and sequential485

batches at the task-resource level are also included as candidates for case-486

based batch subprocesses. To illustrate why this is the case, consider the487

illustrations of a concurrent case-based batch subprocess in Figure 6 and488

Figure 7 (where all instances are performed by the same resource). Due to489

the strong time overlap between the instances, the two instances of task A490

form a concurrent batch at the task-resource level in Figure 6 and a sequential491

batch in Figure 7. A similar remark holds for the two instances of task B.492

These simple illustrations show why concurrent and sequential batches at493

the task-resource level are also candidates to be part of a case-based batch494

subprocess.495

From what said, it follows that the first phase of the algorithm involves496

extending the task log with three columns: the task arrival time, a task-497

18

Figure 7: Illustration of sequential batching at the task-resource level

resource batch identifier and a task-resource batch type. When extending498

the task log in Table 3, the log in Table 4 is obtained. Table 4 shows that499

two sequential batches are detected at the task-resource level: batch 138500

containing two instances of task ‘Register sample’ and batch 374 consisting501

of two instances of the task ‘Prepare sample’.502

Definition 3 (Extended task log). Let T represent a task log and let Tex be503

an extended task log. To convert T into Tex, two functions m2 and m3 are504

sequentially applied:505

• m2 : T → T ′ adds the arrival time τarrival for each task instance. In506

case the arrival times are recorded in the event log, m2 can be merged507

with m1 in Definition 2.508

• m3 : T ′ → Tex assigns a task-resource batch identifier btr,id and a task-509

resource batch type btr,t to all task instances t ∈ T ′ with btr,id ∈ N and510

btr,t ∈ {par, seq, conc}. The values of btr,id and btr,t are shared among511

the task instances t which are part of the same batch at the task-resource512

level 1.513

After the application of m2 and m3, the extended task log Tex consists of a514

set of batched task instances tb. Each batched task instance is represented as515

a tuple of attributes tb = (c, l, r, τarrival, τstart, τcomplete, btr,id, btr,t).516

4.4. Phase 2: detect parallel and task-based sequential/concurrent batch sub-517

processes518

Using the task instances which are batched at the task-resource level as an519

input (cf. subset 1 in Figure 5), the second phase involves detecting parallel520

and task-based sequential/concurrent batch subprocesses.521

1The application of function m3 involves the use of the method defined by Martin et
al. [6] to identify batches at the task-resource level.

19

Table 4: Illustration of extended task log structure (running example 1)
c
a
se

id

ta
sk

r
e
so

u
r
c
e

τ a
r
r
iv
a
l

τ s
ta
r
t

τ c
o
m
p
le
te

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

id

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

ty
p
e

...
9845 Register

sample
Lab assistant
Zoe

14/01/2019
10:17:38

14/01/2019
11:22:33

14/01/2019
11:26:04

138 seq

9852 Register
sample

Lab assistant
Zoe

14/01/2019
10:32:44

14/01/2019
11:26:04

14/01/2019
11:30:21

138 seq

9845 Prepare
sample

Lab assistant
Nick

14/01/2019
11:26:04

14/01/2019
11:30:21

14/01/2019
11:37:58

374 seq

9893 Receive
sample

Secretary
Sarah

14/01/2019
11:30:21

14/01/2019
11:36:17

14/01/2019
11:38:12

- -

9852 Prepare
sample

Lab assistant
Nick

14/01/2019
11:14:17

14/01/2019
11:37:58

14/01/2019
11:46:11

374 seq

...

To identify these subprocesses, two conditions need to be verified. Firstly,522

it is checked whether there are different batches at the task-resource level523

having exactly the same composition in terms of cases. For instance, in524

Table 4, the detected batches for ‘Register sample’ - ‘Lab assistant Zoe’ and525

‘Prepare sample’ - ‘Lab assistant Nick’ contain the same cases 9845 and526

9852. Secondly, when such batches are present, it is verified whether, for527

each case, these tasks immediately follow each other (i.e. that no other tasks528

have been executed in between). When both conditions are fulfilled, a batch529

subprocess has been detected. All task instances included in the subprocess530

will be marked with the same batch subprocess identifier.531

To determine whether the detected batch subprocess is a parallel or task-532

based sequential/concurrent batch subprocess, the batch types at the task-533

resource level are taken into consideration. When all tasks included in a534

batch subprocess are executed as a parallel batch, the batch subprocess type535

will be parallel. Similarly, when all included tasks are executed as a sequen-536

tial or concurrent batch, the batch subprocess type will be sequential and537

concurrent, respectively. In case a combination of batch types is present538

at the task-resource level, e.g. one task is executed in parallel and another539

20

one sequential, the batch subprocess will be referred to as a hybrid batch540

subprocess.541

With respect to sequential batching at the task-resource level, Martin542

et al. [6] allow for a time gap between the end of a particular task instance543

and the start of the next one. A non-zero time gap can accommodate, e.g.,544

for some set-up time required between cases in practical applications [6]. In545

the detection of sequential task-based subprocesses, a similar time gap can546

be defined. The time gap expresses the maximal tolerable time period that547

can elapse between the end of the last task instance of a particular task in548

the subprocess and the start of the first instance at the next task. Note that549

the requirement that no other tasks can be executed in this time period still550

holds. An appropriate value for the time gap is context-specific and, hence,551

requires domain knowledge. The event log can support domain experts by552

providing insights in the time gaps prevailing in reality.553

We now formally define the different batch subprocess types. First, re-554

quirements common for all task-based batch subprocess types are identi-555

fied. Then, we define parallel batching and sequential/concurrent task-based556

batching. To clarify the definitions, an illustration for each task-based batch-557

ing type is provided, based on the running examples introduced earlier. For558

each batching type, both its footprint in the batch-enriched task log and a559

visualization is included.560

Definition 4 (Base task-based batch conditions). Let χ ⊆ L represent a set561

of task labels. The base batch conditions common to all task-based batch types562

that a set of task instances Tχ ⊆ Tex needs to fulfill are:563

1. all task instances refer to task labels in χ, i.e., ∀t∈Tχ#l(t) ∈ χ;564

2. the same number2 and at least two instances for each task label are
recorded, i.e.:

∀l1,l2∈χ(|{t ∈ Tχ | #l(t) = l1}| = |{t ∈ Tχ | #l(t) = l2}| ≥ 2);

3. given 1 ≤ k ≤ n−1 and the sequence of task instances 〈t1, . . . , tk, . . . , tn〉 ∈
T ∗χ with #τstart(tk) ≤ #τstart(tk+1) and tk 6= tk+1 all task instances with

2Note that we simplify the definition by restricting subprocesses to not repeat individual
tasks. However, this limitation can be lifted by a suitable renaming of the task labels such
that each repetition is uniquely labeled.

21

the same task label are started before proceeding to task instances with
another task label:

#l(tk) 6= #l(tk+1) =⇒ ∀k+1≤j≤n(#l(tj) 6= #l(tk))

4. the same set of cases is involved in the batch, i.e.:

∀l1,l2∈χ({c ∈ C | ∃t ∈ Tχ : #c(t) = c ∧#l(t) = l1}
= {c ∈ C | ∃t ∈ Tχ : #c(t) = c ∧#l(t) = l2});

5. the same resource executes tasks with the same task label in the full565

batch, i.e.,566

∀ta,tb∈Tχ(#l(ta) = #l(tb) =⇒ #r(ta) = #r(tb)).

Definition 5 (Parallel batch). Let χ ⊆ L represent a set of task labels. A567

parallel batch is composed of a set of task instances Tχ ⊆ Tex fulfilling the568

base task-based batch conditions (cf. Definition 4) and for all task instances569

ta, tb ∈ Tχ the following additional conditions hold:570

1. tasks with the same label are performed in parallel:

#l(ta) = #l(tb) ⇐⇒ #τstart(ta) = #τstart(tb)

∧ #τcomplete(ta) = #τcomplete(tb);

2. tasks with different labels are non-overlapping:

#l(ta) 6= #l(tb) ⇐⇒ #τcomplete(ta) < #τstart(tb));

3. no other task instance performed by the same resource, which is not in-
cluded in the parallel batch, can be started or completed when processing
the batched instances, i.e., given:

Tr = {t ∈ (Tex \ Tχ) | ∃ta,tb∈Tχ
(
#r(ta) = #r(t) = #r(tb)

∧ (#τstart(ta) ≤ #τstart(t) ≤ #τcomplete(tb)

∨#τstart(ta) ≤ #τcomplete(t) ≤ #τcomplete(tb))
)
}

we require Tr = ∅.571

22

An illustration of a parallel batch subprocess within the context of run-572

ning example 2 is provided in Table 5 and visualized in Figure 8. The parallel573

batch subprocess consists of cases 9072 and 9080. First, these cases are pro-574

cessed in a parallel batch at task ‘Preprocess blood sample’. Afterwards, task575

‘Send blood sample’ is executed in these same cases as a parallel batch. As576

‘Preprocess blood sample’ and ‘Send blood sample’ immediately follow each577

other for both cases which indicates that a parallel batch subprocess is de-578

tected.579

Definition 6 (Sequential task-based batch). Let χ ⊆ L represent a set of580

task labels. A sequential task-based batch is composed of a set of task instances581

Tχ ⊆ Tex fulfilling the base task-based batch conditions (cf. Definition 4) and582

additionally the following conditions:583

1. for all t ∈ Tχ the arrival time of the instance cannot be later than the584

start time of the first instance for that particular task in the batch, i.e.,585

for all tx ∈ Tχ : (#l(tx) = #l(t)) =⇒ #τarrival(t) ≤ #τstart(tx);586

2. for 1 ≤ k ≤ n−1 and the sequence3 of task instances 〈t1, . . . , tk, . . . , tn〉 ∈587

T ∗χ with #τstart(tk) < #τstart(tk+1) the following conditions cumulatively588

hold:589

• task instances referring to the same label are at most separated by
a time gap γ, i.e.:

#l(tk) = #l(tk+1) =⇒ (#τstart(tk+1)−#τcomplete(tk)) ∈ [0, γ]

with γ ≥ 0,

• the time gap between the completion of the last instance for a
particular task in χ and the start of the first instance of the next
task in χ cannot exceed the tolerated time gap θ, i.e.:

#l(tk) 6= #l(tk+1) =⇒ (#τstart(tk+1)−#τcomplete(tk)) ∈ [0, θ]

with θ ≥ 0.

3We denote with X∗ the set of all sequences over set X. Moreover, we assume in the
remainder of this paper that it is possible to obtain a totally ordered sequence of events
performed by a single resource. If this is not fulfilled, the event logs can be pre-processed
based on a secondary order criteria e.g., the completion time.

23

Table 5: Illustration of a parallel batch subprocess (running example 2)
c
a
se

id

ta
sk

r
e
so

u
r
c
e

τ a
r
r
iv
a
l

τ s
ta
r
t

τ c
o
m
p
le
te

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

id

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

ty
p
e

b
a
tc
h

su
b
p
r
o
c
e
ss

id

b
a
tc
h

su
b
p
r
o
c
e
ss

ty
p
e

...
9072 Preprocess

blood
sample

Device TB04 10/01/2019
12:28:02

10/01/2019
13:03:17

10/01/2019
13:07:52

52 par 8 par

9080 Preprocess
blood
sample

Device TB04 10/01/2019
12:35:02

10/01/2019
13:03:17

10/01/2019
13:07:52

52 par 8 par

...
9072 Send blood

sample
Nurse Sue 10/01/2019

11:07:52
10/01/2019
13:13:24

10/01/2019
13:17:04

59 par 8 par

9080 Send blood
sample

Nurse Sue 10/01/2019
11:07:52

10/01/2019
13:13:24

10/01/2019
13:17:04

59 par 8 par

...

Figure 8: Visualization of a parallel batch subprocess (running example 2)

3. no other task instance performed by the same resource, which is not
included in the sequential task-based batch, can be started or completed
when processing the batched instances, i.e., given:

Tr = {t ∈ (Tex \ Tχ) | ∃ta,tb∈Tχ
(
#r(ta) = #r(t) = #r(tb)

∧ (#τstart(ta) ≤ #τstart(t) ≤ #τcomplete(tb)

∨#τstart(ta) ≤ #τcomplete(t) ≤ #τcomplete(tb))
)
}

24

we require Tr = ∅.590

As illustrated in Table 6 and visualized in Figure 9, a sequential task-591

based batch subprocess is detected for the task instances included in Table 4592

(related to running example 1). More specifically, the batches with task-593

resource batch identifier 138 and 374 fulfill the conditions of a task-based594

sequential batch process as they both consist of the same cases 9845 and595

9852, and the tasks immediately follow each other for both cases. Because596

both tasks are sequential batches at the task-resource level, the task-based597

subprocess is marked as a task-based sequential batch subprocess.598

Definition 7 (Concurrent task-based batch). Let χ ⊆ L represent a set599

of task labels. A concurrent task-based batch is composed of a set of task600

instances Tχ ⊆ Tex fulfilling the base task-based batch conditions (cf. Defini-601

tion 4) and additionally the following conditions:602

1. given 1 ≤ k ≤ n−1 and the sequence of task instances 〈t1, . . . , tk, . . . , tn〉 ∈
T ∗χ with #τstart(tk) ≤ #τstart(tk+1) and tk 6= tk+1 subsequent task in-
stances are performed concurrently, i.e.:

#τstart(tk) ≤ #τstart(tk+1) < #τcomplete(tk)

∧
(
#τstart(tk) 6= #τstart(tk+1) ∨

#τcomplete(tk) 6= #τcomplete(tk+1)
)

2. no other task instance performed by the same resource, which is not
included in the concurrent task-based batch, can be started or completed
when processing the batched instances, i.e., given:

Tr = {t ∈ (Tex \ Tχ) | ∃ta,tb∈Tχ
(
#r(ta) = #r(t) = #r(tb)

∧ (#τstart(ta) ≤ #τstart(t) ≤ #τcomplete(tb)

∨#τstart(ta) ≤ #τcomplete(t) ≤ #τcomplete(tb))
)
}

we require Tr = ∅.603

An example of a concurrent task-based batch in the patient admission604

process (running example 2) is presented in Table 7 and Figure 10. At605

the task-resource level, the instances of both ‘Complete registration form’606

and ‘Create admission documents’ partially overlap in time. Consequently,607

these instances form concurrent batches at the task-resource level (with task-608

resource batch identifier 36 for ‘Complete registration form’ and 42 for ‘Create609

25

Table 6: Illustration of a sequential task-based batch subprocess (running example 1)
c
a
se

id

ta
sk

r
e
so

u
r
c
e

τ a
r
r
iv
a
l

τ s
ta
r
t

τ c
o
m
p
le
te

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

id

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

ty
p
e

b
a
tc
h

su
b
p
r
o
c
e
ss

id

b
a
tc
h

su
b
p
r
o
c
e
ss

ty
p
e

...
9845 Register

sample
Lab assistant
Zoe

14/01/2019
10:17:38

14/01/2019
11:22:33

14/01/2019
11:26:04

138 seq 38 seq task-
based

9852 Register
sample

Lab assistant
Zoe

14/01/2019
10:32:44

14/01/2019
11:26:04

14/01/2019
11:30:21

138 seq 38 seq task-
based

...
9845 Prepare

sample
Lab assistant
Nick

14/01/2019
11:26:04

14/01/2019
11:30:23

14/01/2019
11:37:58

374 seq 38 seq task-
based

9852 Prepare
sample

Lab assistant
Nick

14/01/2019
11:14:17

14/01/2019
11:37:58

14/01/2019
11:46:11

374 seq 38 seq task-
based

...

Figure 9: Visualization of a sequential task-based batch subprocess (running example 1)

admission documents’). As these tasks immediately follow each other for610

both cases, a concurrent task-based batch subprocess is present.611

In summary, phase 2 of the algorithm can identify sets of task instances612

fulfilling the conditions of either parallel or task-based sequential/concurrent613

batch subprocesses. Two columns are added in this phase: a batch subpro-614

cess identifier and a batch subprocess type. In the output, task instances615

belonging to a batch subprocess will share the same batch subprocess iden-616

tifier.617

26

Table 7: Illustration of a concurrent task-based batch subprocess (running example 2)
c
a
se

id

ta
sk

r
e
so

u
r
c
e

τ a
r
r
iv
a
l

τ s
ta
r
t

τ c
o
m
p
le
te

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

id

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

ty
p
e

b
a
tc
h

su
b
p
r
o
c
e
ss

id

b
a
tc
h

su
b
p
r
o
c
e
ss

ty
p
e

...
9097 Complete

registration
form

Secretary
Mark

10/01/2019
11:12:18

10/01/2019
11:12:18

10/01/2019
11:19:54

36 conc 4 conc task-
based

9098 Complete
registration
form

Secretary
Mark

10/01/2019
11:16:04

10/01/2019
11:16:04

10/01/2019
11:23:31

36 conc 4 conc task-
based

9097 Create
admission
documents

Secretary
Mark

10/01/2019
11:19:54

10/01/2019
11:23:31

10/01/2019
11:28:19

42 conc 4 conc task-
based

9098 Create
admission
documents

Secretary
Mark

10/01/2019
11:23:31

10/01/2019
11:26:48

10/01/2019
11:32:08

42 conc 4 conc task-
based

...

Figure 10: Visualization of a concurrent task-based batch subprocess (running example 2)

4.5. Phase 3: detect case-based sequential/concurrent batch subprocesses618

The algorithm’s third phase aims to detect case-based sequential or con-619

current batch subprocesses. To this end, for the reasons outlined earlier, it620

uses the task instances which are not part of a task-resource batch or which621

are included in a concurrent or sequential task-resource batch (cf. subset 2622

in Figure 5). Regarding the inclusion of instances in a concurrent/sequential623

batch at the task-resource level, it should be noted that instances included in624

27

a concurrent/sequential task-based batch subprocess are removed from sub-625

set 2 after phase 2. This avoids that task instances will be duplicated in the626

merged batch-enriched task log after phase 3.627

To identify case-based batching behavior for a particular set of connected628

tasks (i.e. a task subsequence representing a potential subprocess), three629

steps are taken. Firstly, within-case batching is checked, which focuses on630

the presence of a batching relationship between task instances of one partic-631

ular case. To illustrate this, consider Table 8, where the subsequence ‘Study632

summary results’ - ‘Prepare report’ is considered. As shown in Figure 4,633

sequential/concurrent case-based batching requires that a batching relation-634

ship is present between the execution of different tasks in a particular case.635

This holds for case 9969 in Table 8, where a sequential relationship holds636

between the execution of ‘Study summary results’ and ‘Prepare report’. The637

same holds for case 9974.638

Secondly, when within-case batching is detected, the involved task in-639

stances related to a particular case are replaced by a single aggregated in-640

stance. This is a preparatory step for the third step of case-based subprocess641

detection. The arrival and start timestamp of this aggregated instance cor-642

respond to the earliest arrival and start timestamp of the included instances.643

For the complete timestamp, the aggregated instance will take the latest com-644

plete timestamp of the included instances. For example: the aggregated task645

for case 9969 will have 13:45:17 as arrival time, 15:22:47 as start time and646

15:57:54 as completion time. For case 9974, the arrival, start and completion647

time correspond to 13:58:17, 15:57:54 and 16:28:57, respectively.648

Finally, the third and last step uses the aggregated instances to determine649

whether between-case batching is present. Between-case batching determines650

whether a batching relationship also holds between the aggregated instances651

created in the second step (representing batches at the level of specific cases).652

To this end, similar sequential/concurrent time relationships are detected as653

the ones used for batch detection at the task-resource level. When between-654

case batching is also detected, a case-based batch subprocess is identified. In655

Table 8, a sequential relationship holds for the aggregated instances of cases656

9969 and 9974. Hence, a case-based sequential batch subprocess is found,657

which is highlighted by adding a shared batch subprocess identifier. The658

batch subprocess is also visualized in Figure 11.659

The aforementioned three steps make it possible to determine whether660

case-based batching prevails for one particular task subsequence. However,661

a multitude of task subsequences can be present in the input file for phase662

28

Table 8: Illustration of a sequential case-based batch subprocess (running example 1)
c
a
se

id

ta
sk

r
e
so

u
r
c
e

τ a
r
r
iv
a
l

τ s
ta
r
t

τ c
o
m
p
le
te

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

id

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

ty
p
e

b
a
tc
h

su
b
p
r
o
c
e
ss

id

b
a
tc
h

su
b
p
r
o
c
e
ss

ty
p
e

...
9969 Study

summary
results

Lab technician
June

14/01/2019
13:45:17

14/01/2019
15:22:47

14/01/2019
15:41:08

- - 61 seq case-
based

9969 Prepare re-
port

Lab technician
June

14/01/2019
15:41:08

14/01/2019
15:41:08

14/01/2019
15:57:54

- - 61 seq case-
based

9974 Study
summary
results

Lab technician
June

14/01/2019
13:58:17

14/01/2019
15:57:54

14/01/2019
16:11:12

- - 61 seq case-
based

9974 Prepare re-
port

Lab technician
June

14/01/2019
16:11:12

14/01/2019
16:11:12

14/01/2019
16:28:57

- - 61 seq case-
based

...

Figure 11: Visualization of a sequential case-based batch subprocess (running example 1)

3. Without loss of generality, two methods to identify candidate task subse-663

quences are proposed, which are (1) enumeration and (2) sequence mining.664

For each of these candidates, case-based batch detection will be performed665

following the three steps outlined above.666

When enumeration is used, all potential task subsequences prevailing in667

the input subset for BAMA’s phase 3 are considered. This involves subse-668

quences of all orders (i.e. number of tasks), going from two tasks to the length669

of a trace included in the input subset. To avoid that very rare subsequences670

29

also need to be checked for batching behavior, a threshold can be specified671

expressing the minimal occurrence frequency of a subsequence. Moreover,672

a filtering mechanism is integrated to avoid that higher-order subsequences673

are unnecessarily checked. Higher-order subsequences containing a particu-674

lar lower-order subsequence will not be checked when within-case batching675

is absent for this lower-order subsequence. The filtering mechanism builds676

upon the idea that within-case batching is a prerequisite for the detection677

of a case-based batch subprocess. Suppose, for example, that no within-case678

batching is detected for a task subsequence A - B. This implies that, for679

none of the cases in the input log, a batching relation exists for the case’s680

instances related to tasks A and B. Hence, a case-based batch containing681

instances of A and B will not exist. Consequently, higher-order subsequences682

containing A - B such as A - B - C should not be checked as the prerequisite683

for case-based batching is not fulfilled for A - B.684

Besides enumeration, existing sequence mining methods can also be used685

to identify candidate case-based subprocesses. In the implementation, the686

SPADE algorithm introduced by Zaki [39] has been incorporated. SPADE687

looks for frequent tasks sequences taking into account a user-defined min-688

imum support level. The implementation of BAMA hard-codes a SPADE689

parameter to ensure that only tasks that immediately follow each other are690

taken into consideration.691

We now formally define the different batch subprocess types for case-based692

batching. First, requirements common for all case-based batch subprocess693

types are identified. Then, we define sequential, and concurrent case-based694

batching. Illustrations are provided to clarify the definitions, consisting of695

an example footprint in the batch-enriched task log and a visualization.696

Definition 8 (Base case-based batch conditions). Let ψ ⊆ C represent a set697

of case identifiers. The base batch conditions common to all case-based batch698

types that a set of task instances Tψ ⊆ Tex needs to fulfill are:699

1. all task instances refer to case identifiers in ψ, i.e., ∀t∈Tψ#c(t) ∈ ψ;700

2. given 1 ≤ k ≤ n−1 and the sequence of task instances 〈t1, . . . , tk, . . . , tn〉 ∈
T ∗ψ with #τstart(tk) ≤ #τstart(tk+1) and tk 6= tk+1 all task instances with
the same case identifier are started before proceeding to task instances
with another case identifier:

#c(tk) 6= #c(tk+1) =⇒ ∀k+1≤j≤n(#c(tj) 6= #c(tk))

30

3. the same number and at least two instances for each case identifier are
recorded:

∀c1,c2∈ψ(|{t ∈ Tψ | #c(t) = c1}| = |{t ∈ Tψ | #c(t) = c2}| ≥ 2);

4. the same set of task labels is involved in the batch:

∀c1,c2∈ψ({l ∈ L | ∃t ∈ Tψ : #l(t) = l ∧#c(t) = c1}
= {l ∈ L | ∃t ∈ Tψ : #l(t) = l ∧#c(t) = c2});

5. the same resource executed the full batch, i.e., ∀ta,tb∈Tψ(#r(ta) = #r(tb)).701

Definition 9 (Sequential case-based batch). Let ψ ⊆ C represent a set702

of case identifiers. A sequential case-based batch is composed of a set of703

task instances Tψ ⊆ Tex fulfilling the base case-based batch conditions (cf.704

Definition 8) and additionally the following conditions:705

1. for 1 ≤ k ≤ n−1 and the sequence of task instances 〈t1, . . . , tk, . . . , tn〉 ∈706

T ∗ψ with #τstart(tk) < #τstart(tk+1) the following conditions cumulatively707

hold:708

• task instances referring to the same case identifier are at most
separated by a time gap γ:

#c(tk) = #c(tk+1) =⇒ (#τstart(tk+1)−#τcomplete(tk)) ∈ [0, γ]

with γ ≥ 0,

• the time gap between the completion of the last instance for a
particular case identifier in ψ and the start of the first instance of
the next case identifier in ψ cannot exceed the tolerated time gap
θ:

#c(tk) 6= #c(tk+1) =⇒ (#τstart(tk+1)−#τcomplete(tk)) ∈ [0, θ]

with θ ≥ 0.

2. no other task instance performed by the same resource, which is not
included in the sequential case-based batch, can be started or completed
when processing the batched instances:

Tr = {t ∈ (Tex \ Tψ) | ∃ta,tb∈Tψ
(
#r(ta) = #r(t) = #r(tb)

∧ (#τstart(ta) ≤ #τstart(t) ≤ #τcomplete(tb)

∨#τstart(ta) ≤ #τcomplete(t) ≤ #τcomplete(tb))
)
}

we require Tr = ∅.709

31

An illustration of a sequential case-based batch was already provided in710

Table 8 and Figure 11 within the context of running example 1. Tasks ‘Study711

summary results’ and ‘Prepare report’ are performed first for case 9969 in712

a sequential way, and afterwards for case 9974. Moreover, the relationship713

between the task instances of cases 9969 and 9974 also has a sequential714

character. Consequently, a sequential case-based batch is detected.715

Definition 10 (Concurrent case-based batch). Let ψ ⊆ C represent a set716

of case identifiers. A concurrent case-based batch is composed of a set of717

task instances Tψ ⊆ Tex fulfilling the base case-based batch conditions (cf.718

Definition 8) and additionally the following conditions:719

1. given 1 ≤ k ≤ n−1 and the sequence of task instances 〈t1, . . . , tk, . . . , tn〉 ∈
T ∗ψ with #τstart(tk) ≤ #τstart(tk+1) and tk 6= tk+1 subsequent task in-
stances are performed concurrently, but not perfectly in parallel:

#τstart(tk) ≤ #τstart(tk+1) < #τcomplete(tk)

∧
(
#τstart(tk) 6= #τstart(tk+1) ∨

#τcomplete(tk) 6= #τcomplete(tk+1)
)

2. no other task instance performed by the same resource, which is not
included in the sequential case-based batch, can be started or completed
when processing the batched instances;

Tr = {t ∈ (Tex \ Tψ) | ∃ta,tb∈Tψ
(
#r(ta) = #r(t) = #r(tb)

∧ (#τstart(ta) ≤ #τstart(t) ≤ #τcomplete(tb)

∨#τstart(ta) ≤ #τcomplete(t) ≤ #τcomplete(tb))
)
}

we require Tr = ∅.720

To illustrate this last type of batch activity, consider Table 9 and Fig-721

ure 12, which are derived from running example 2. For case 9123, tasks722

‘Complete drug allergy form and ‘Perform blood test’ are performed concur-723

rently. The same holds for case 9124. When aggregating both instances at724

the case level, a concurrent relationship even exists between the cases due to725

the time overlap between ‘Perform blood test’ for case 9123 and ‘Complete726

drug allergy form’ for case 9124. Hence, a concurrent case-based subprocess727

is detected.728

32

Table 9: Illustration of a concurrent case-based batch subprocess (running example 2)
c
a
se

id

ta
sk

r
e
so

u
r
c
e

τ a
r
r
iv
a
l

τ s
ta
r
t

τ c
o
m
p
le
te

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

id

ta
sk

-r
e
so

u
r
c
e
b
a
tc
h

ty
p
e

b
a
tc
h

su
b
p
r
o
c
e
ss

id

b
a
tc
h

su
b
p
r
o
c
e
ss

ty
p
e

...
9123 Complete

drug al-
lergy form

Nurse Kate 10/01/2019
15:02:41

10/01/2019
15:21:18

10/01/2019
15:33:09

- - 21 conc case-
based

9123 Perform
blood test

Nurse Kate 10/01/2019
15:02:41

10/01/2019
15:31:30

10/01/2019
15:37:14

- - 21 conc case-
based

...
9124 Complete

drug al-
lergy form

Nurse Kate 10/01/2019
15:26:01

10/01/2019
15:35:24

10/01/2019
15:44:55

- - 21 conc case-
based

9124 Perform
blood test

Nurse Kate 10/01/2019
15:26:01

10/01/2019
15:41:32

10/01/2019
15:48:09

- - 21 conc case-
based

...

Figure 12: Visualization of a concurrent case-based batch subprocess (running example 2)

In summary, phase 3 of the algorithm will group task instances which ful-729

33

fill the requirements of a case-based sequential/concurrent batch subprocess.730

This will be expressed in the output by assigning a shared batch subpro-731

cess identifier to these instances. As a consequence, phase 3 will not add732

new columns, but will complete the columns added in phase 2 (batch sub-733

process identifier and batch subprocess type) with information on detected734

case-based batch subprocesses.735

4.6. Batch-enriched task log creation736

The output of BAMA is a batch-enriched task log, having a structure as737

exemplified in Tables 5-9. It is obtained by merging the outputs of phases738

2 and 3 of the algorithm. Compared to the task log, the batch-enriched739

task log will contain four additional columns conveying batching information:740

the task-resource batch identifier, the task-resource batch type, the batch741

subprocess identifier, and the batch subprocess type. Hence, when applicable,742

the algorithm will have grouped task instances in batches at the task-resource743

level and identified batch subprocesses.744

Definition 11 (Batch-enriched task log). Let Tex represent an extended task745

log and let Tbe be a batch-enriched task log. To transform Tex to Tbe, two746

mapping functions m4 and m5 are sequentially applied:747

• m4 : Tex → T ′ex assigns a batch subprocess identifier bs,i and a batch748

subprocess type bs,t, with bs,i ∈ N and bs,t ∈ {par, seq task-based, conc749

task-based}. The values of bs,i and bs,t are shared among the task in-750

stances i which are part of the same parallel batch subprocess or sequen-751

tial/concurrent task-based batch subprocess.752

• m5 : T ′ex → Tbe assigns a batch subprocess identifier bs,i and a batch753

subprocess type bs,t, with bs,i ∈ N and bs,t ∈ {seq case-based, conc case-754

based}. The values of bs,i and bs,t are shared among the task instances755

i which are part of the same sequential/concurrent case-based batch756

subprocess.757

After the application of m4 and m5, the batch-enriched task log Tbe consists of758

a set of batched task instances t′b = (c, t, r, τarrival, τstart, τcomplete, btr,i, btr,t, bs,i,759

bs,t).760

34

4.7. Implementation761

A prototypical implementation of BAMA has been developed in R4 and762

is publicly available at https://github.com/nielsmartin/bama or https:763

//doi.org/10.5281/zenodo.3653952. R is a programming language provid-764

ing extensive functionalities for data manipulation and statistical analysis.765

The key packages that are used are dplyr5 for data manipulations and sum-766

marisations, lubridate6 to work with timestamps and reshape to convert767

the event log to a task log. When applying sequence mining during case-768

based batch detection, the implementation of the SPADE algorithm in the769

arulesSequences7 package is used.770

In order to use the implementation, an event log is required. This event771

log should take the form of a data frame, which is a rectangular data table for-772

mat in R in which columns contain variables and rows represent observations773

[40]. When an event log is available in the XES-format8, it can be converted774

to the correct input format by leveraging the R-package xesreadR9, which is775

part of the bupaR suite supporting process analysis in R [41].776

Once the event log has been imported, a helper function is available to777

convert the event log to a task log. Afterwards, batch identification can be778

initiated. An integrated function enables the detection of batching behavior779

at both the task-resource and subprocess level. This function must be pa-780

rameterized by the user. The following parameters need to be specified to781

support the identification of batching behavior at the task-resource level:782

• For sequential batch detection: a list containing the maximal tolerated783

time gaps between consecutive task instances. Each entry represents784

the time gap related to a particular task as, e.g., setup times might785

differ across tasks. A helper function is available to create this list.786

• For sequential batch detection: a boolean indicating whether the event787

log contains the arrival time of a case at a task. When available, the788

arrival time is used to distinguish between sequential batching behavior789

and regular queue handling.790

4https://www.r-project.org
5https://CRAN.R-project.org/package=dplyr
6https://CRAN.R-project.org/package=lubridate
7https://CRAN.R-project.org/package=arulesSequences
8XES is an XML-based standard for the exchange of event logs [2].
9https://CRAN.R-project.org/package=xesreadR

35

https://github.com/nielsmartin/bama
https://doi.org/10.5281/zenodo.3653952
https://doi.org/10.5281/zenodo.3653952
https://doi.org/10.5281/zenodo.3653952
https://www.r-project.org
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=lubridate
https://CRAN.R-project.org/package=arulesSequences
https://CRAN.R-project.org/package=xesreadR

• A boolean indicating whether timestamps are expressed numerically,791

instead of in a date-time format.792

• The format of the timestamps in the event log (e.g. yyyy-mm-dd793

hh:mm:ss).794

The following parameters need to be specified for the detection of sequen-795

tial/concurrent case-based batch subprocesses:796

• An entry reflecting the way in which subsequences were generated, i.e.797

by means of enumeration or using sequence mining.798

• A list containing the subsequences for which case-based sequential or799

concurrent batch subprocesses need to be detected. Helper functions800

are developed to create this list using enumeration or sequence mining801

using the SPADE algorithm.802

• For sequential case-based batch detection: a maximal tolerated time803

gap between consecutive instances associated to a particular case (i.e.804

used to detect within-case batching).805

• For sequential case-based batch detection: a maximal tolerated time806

gap between the (aggregated) within-case batches across consecutive807

cases (i.e. used to detect between-case batching).808

4.8. Metrics and visualizations809

As follows from Section 4.6, the outcome of BAMA is a batch-enriched810

task log, which is a task log containing four additional columns with batch-811

ing information. As real-life task logs typically contain a large number of812

entries, a manual inspection of the batch-enriched task log is infeasible. Con-813

sequently, it is important that the batching information in the batch-enriched814

task log is presented in a concise and intuitive way in order to gain a rich un-815

derstanding in batching behavior. While a detailed overview on this matter816

is beyond the scope of this paper, the remainder of this subsection provides817

some pointers regarding (i) the potential of batching behavior metrics, and818

(ii) potential visualizations based on a batch-enriched task log.819

A first way to convey batching insights in a concise way is the development820

of batching behavior metrics. The authors have discussed metrics for batch821

activities in previous works [6, 27]. A relevant metric is, for instance, the822

number of occurred batch activities as a percentage of the total number823

36

of occurrences of the task(s). This allows insights into the actual usage824

of batching for certain tasks and subprocesses. Another metric can relate825

to the average or median batch size, providing insights in the number of826

cases which are typically included in a batch. Batching is usually applied827

to save time and costs, such that the average or median execution time828

and related costs of the batches can be compared to task executions which829

are not batched. When several resources can perform a particular batch830

activity, metrics can be calculated in general (i.e. disregarding the distinction831

between resources), or can be expressed at the level of individual resources.832

Positioning metrics at the resource level enables to analyze whether batching833

behavior is concentrated amongst a limited number of resources.834

Besides numeric batching behavior metrics, the batch-enriched task log835

can also be used to visualize batching behavior. Graphs can take the metrics836

as a starting point and, e.g., show how the instances of a particular task837

are divided over the batch types. This can show the analyst how prevalent838

batching behavior is for a particular task. The evolution of particular metrics839

over time can also be visualized, which highlights whether batching behavior840

is related to particular times of day or days of the week. When considering841

a longer time horizon, it can also be observed whether batching behavior842

evolves over time. Next to graphs taking metrics as a starting point, the843

batching information in the batch-enriched task log can be projected on844

a Dotted Chart, in which the dots of batched task instances are colored,845

while non-batched instances are grey. Some examples of visualizations will846

be included in the evaluation of the proposed algorithm using real-life data847

(Section 5.2).848

The batch-enriched task log can also be leveraged as an input for a visual849

analysis tool for batching behavior. Such a tool would enable an analyst to850

start from a high-level overview of batching behavior and interactively drill-851

down to study a specific batch or resource. Other features of such a tool852

could include the benchmark of resources, or the comparison between the853

characteristics of batched task instances and task instances which are not854

batched.855

5. Evaluation856

To evaluate BAMA, a twofold approach is followed: an evaluation using857

synthetic event logs and an evaluation using a real-life log. Both types of858

evaluation serve different goals. In Section 5.1, synthetic event logs are used859

37

to evaluate the algorithm’s ability to rediscover known batches. Because it860

is known which task instances belonged to a batch in (simulated) reality,861

synthetic logs make it possible to demonstrate the effectiveness of BAMA862

to correctly detect batching behavior when it is present. Afterwards, in863

Section 5.2, the algorithm is applied to a real-life event log. To this end,864

historic data from a digital whiteboard system deployed in a surgical ward865

of a university hospital in Norway is used. Besides demonstrating BAMA’s866

applicability within a real-life setting, the insights that it can generate in867

such a real-life context are also highlighted.868

5.1. Experiments with synthetic event logs869

5.1.1. Experimental design870

The goal of the evaluation using synthetic data is to determine whether871

the algorithm can rediscover known batches solely using an event log. To this872

end, synthetic event logs are created by simulating a BPMN process diagram873

using the extendable and open-source BPMN process simulator Scylla [42].874

Nine distinct models with varying degrees of complexity are included, as875

shown in Figure 13. We generated different variants of batch subprocesses876

(i) with a linear behavior (i.e., consisting of several tasks connected sequen-877

tially) including also a process model with two batch subprocesses (cf. #3878

in Figure 13), (ii) with parallel behavior through an AND gateway, (iii) with879

a choice through a XOR gateway, and (iv) with a combination of AND and880

XOR gateways.881

For each process diagram, a separate event log is generated for each882

batch processing type, i.e. parallel, sequential/concurrent task-based, and883

sequential/concurrent case-based batching. As a consequence, 45 distinct884

event logs are generated. The number of simulated process instances per885

event log is set to 1,000. All synthetic event logs are publicly available886

at https://github.com/nielsmartin/bama or at https://doi.org/10.887

5281/zenodo.3653952.888

For each synthetic event log, BAMA is applied using a maximum al-889

lowed time gap for sequential batching of zero seconds. Changing this value890

would have no impact on the results as the synthetic data originates from891

a simulated environment in which each task or batch activity has dedicated892

resources. Regarding the method to generate subsequences as candidates for893

case-based batching, enumeration is selected.894

It should be stressed that, before feeding the event log to the algorithm,895

all information reflecting how batches are formed according to the simula-896

38

https://github.com/nielsmartin/bama
https://doi.org/10.5281/zenodo.3653952
https://doi.org/10.5281/zenodo.3653952
https://doi.org/10.5281/zenodo.3653952

 Batch Activity

 Batch Activity

 Batch Activity Batch Activity 2

 Batch Activity

 Batch Activity

 Batch Activity

 Batch Activity

 Batch Activity

 Batch Activity

A B C D E F G H

A B C D E F G H

A B C D E HF G

Batch activity with linear behavior
1

2

3

A
B

C
D E F G H

Batch activity with XOR gateway
6

A
C

D
E F G H

7

B

A
B

C
D E F G H

Batch activity with AND gateway
4

A
C

D
E F G H

5

B

A E

D

F G H

Batch activity with both gateways
8

A F G H

9

C

B

E

D

C

B

Figure 13: BPMN process diagrams used for the generation of synthetic event logs

tor’s batching logic is removed. Using this event log, completely agnostic897

of the batches present in reality, the algorithm detects batches following the898

procedure outlined in Section 4.899

To evaluate the algorithm’s performance, the detected batches are com-900

pared to the batches created during the simulation. The simulated environ-901

ment enables us to know which task instances are grouped together in a batch902

according to the simulator’s batching logic. Hence, the algorithm should be903

able to identify these batches from the synthetic log, providing a basis to eval-904

uate whether the algorithm can identify different types of batching behavior905

when we know that the input data contains such batching behavior. For per-906

formance evaluation purposes, a task instance is considered to be incorrectly907

assigned when it either (i) is included in a batch of the correct type, but in908

a composition with instances different from the composition created by the909

simulator’s batching logic, or (ii) is included in a wrong type of batch. Note910

that the first criterion is rather rigorous as the composition of discovered911

batches has to be completely correct. For instance: when BAMA rediscovers912

a batch for all but one instance, the entire batch will be considered to be913

incorrectly assigned.914

5.1.2. Results915

The use of synthetic data enables a direct comparison of the task instances916

which are batched by the batching logic embedded in the simulator on the one917

39

hand, and task instances which are batched according to BAMA’s output.918

To quantify the degree to which BAMA can correctly rediscover batches in919

synthetic data, the following three key output measures are calculated for920

each synthetic event log:921

• The percentage of correctly rediscovered batched instances.922

This measure represents the percentage of task instances which are923

batched according to the simulator’s batching logic which BAMA cor-924

rectly rediscovers. In other words, this measure represents the percent-925

age of task instances batched according to the simulator’s batching926

logic, which are correctly marked as part of the correct batch by the927

algorithm.928

• The percentage of correctly rediscovered instances. This mea-929

sure represents the percentage of task instances for which BAMA de-930

tects the correct batching behavior. Differently from the previous out-931

put measure, this measure also takes into account task instances which932

are not batched according to the simulator’s batching logic. As a con-933

sequence, this measure considers all task instances, while the previous934

measure focused on task instances which were batched according to the935

simulator’s batching logic.936

• The percentage of instances which are not batched according937

to the simulator’s batching logic, but which are reported as938

part of a sequential batch by BAMA. This measure focuses on939

task instances which are not explicitly batched according to the sim-940

ulator’s batching logic. Despite the fact that these instances are not941

purposefully batched by the simulator, a sequential batching pattern942

might still be present because handling long queues can fulfill the re-943

quirements for sequential batching10. To quantify the extent to which944

this phenomenon is present, this measure highlights the percentage of945

instances which are not batched according to the simulator’s batching946

logic, but for which BAMA indicates that sequential batching occurs.947

10Suppose that a large number of cases is waiting to be processed by a particular resource
at a particular task. In that case, a group of queuing cases might be present at the task
before the resource starts to process the first case in this group. As a consequence, under
these conditions, sequential batching can be detected.

40

Table 10: Summary statistics on the output measures (excluding diagram #6)

output measure mean sd median min max
% of correctly rediscovered batched instances 100.00 0.00 100.00 100.00 100.00
% of correctly rediscovered instances 90.12 2.65 90.97 83.33 91.67
% of instances not batched according to the
simulator’s batching logic reported as part of
sequential batch

16.19 6.84 13.49 11.21 33.33

Batch identification on all 45 synthetic event log is executed on a standard948

laptop computer. The average runtime was well below 10 seconds. The949

detailed results for each synthetic log are included in Table A.11 in Appendix950

A. From these results, it follows that the algorithm will correctly rediscover all951

batching behavior which is introduced according to the simulator’s batching952

logic. The only exception is process diagram #6, where the batch subprocess953

is not rediscovered as the model consists of two tasks in an XOR-construct.954

As either activity B or C will be observed in a trace, the algorithm will not955

discover that both tasks are part of a batch subprocess. This observation956

will be revisited in the discussion (Section 6).957

When disregarding diagram #6, which is a clear outlier in terms of perfor-958

mance, Table 10 provides summary statistics on the three output measures.959

The table shows that all task instances which the simulator batches accord-960

ing to its batching logic are correctly rediscovered by the algorithm (100%961

rediscovery). When instances which are not batched according to the simu-962

lator’s batching logic are also taken into account, the algorithm classifies, on963

average, 90.12% of the instances correctly. Given the fact that all instances964

that the simulator batches according to its batching logic are correctly re-965

discovered, this last result indicates that BAMA reports some task instances966

which are not batched by the simulator as being part of a batch. This is967

supported by the last output measure in Table 10: on average 16.19% of the968

instances which are not batched according to the simulator’s batching logic969

are marked as being part of a sequential batch by BAMA. This latter obser-970

vation explains the entire deviation between the designed batching behavior971

in the simulator and our algorithm’s output.972

From what said, the following two observations follow: (i) all batched973

task instances are correctly rediscovered for all process diagrams besides di-974

agram #6, and (ii) the identified batch behavior is not correctly discovered975

for all task instances because BAMA detects sequential batching behavior976

which is not introduced according to the simulator’s batching logic. These977

41

observations will be discussed in Section 6.978

As highlighted in the experimental design, enumeration was used as the979

method to generate subsequences which are candidate for case-based batch-980

ing. For the sake of completeness, it should be noted that rerunning all981

experiments with sequence mining as a subsequence identification method982

generated identical results. Differences in terms of runtime were minimal983

and remained, on average, well below 10 seconds for each synthetic log using984

a standard laptop computer.985

5.2. Discovering Batch Activities in Usage of a Hospital Ward986

BAMA is also applied to a real-life event log obtained from a digital987

whiteboard system that is deployed in a surgical ward of an university hospi-988

tal in Norway. The event log has been subject to a previous study in which989

higher level activities were recognized from the low-level events recording990

every change in the system [43]. The event log is a good candidate for eval-991

uating BAMA as it is expected to contain some batching behavior in how992

information is entered for patients. Indeed, batching behavior was already993

presumed in Mannhardt et al. [43] albeit solely based on a preliminary visual994

analysis using a Dotted Chart [44]. Specifically, the hypothesis regarding995

batching was that nurses would often only use the whiteboard to update996

certain information around the times of a shift change.997

The whiteboard system was introduced as a light-weight support system998

for coordination and collaboration among nurses and is meant to support the999

daily work of nurses in the hospital [46]. Figure 14 shows the main screen of1000

the whiteboard in which each row corresponds to all the information entered1001

for a single patient. Each patient is assigned to a responsible nurse and that1002

nurse can update information for that patient in the whiteboard, e.g., the1003

planned treatment, necessary reports, or the planned discharge date. Next1004

to medical information, the whiteboard is also linked to a call signal system,1005

which records when patients raise an alarm or nurses attend the patient in1006

their room. Finally, the whiteboard system also records when the responsible1007

nurse for a patient changes. Thus, resource information is available for all1008

events.1009

5.2.1. Experimental design1010

We obtained an event log with 8,487 cases tracking the updates made1011

on the whiteboard system for individual patients. In total, there are 298,6361012

events recorded. The events are recorded at fine granularity, i.e. every change1013

42

Figure 14: Whiteboard system used in the hospital as described in [45]. Each row contains
information about a patient can be updated directly through a touch screen interface. The
event log of the system contains events for all the updates made grouped by patient. Note
that some entries are purposefully blurred for anonymization purposes.

of a cell in the whiteboard yields an event, and carries only a single times-1014

tamp as payload. We used the abstraction method and patterns described1015

in Mannhardt et al. [43] to derive a high-level event log with 6,455 cases11
1016

and 70,936 instances of 14 distinct activities that have a defined start and1017

completion timestamp. The activities refer to:1018

• pre-announcement, registration, and transfer of the patient;1019

• five different usage patterns of the nurse call signal system;1020

• updates of treatment and diagnosis information as well as generic re-1021

ports on the patient;1022

• handover between nurses.1023

Further details on the semantics of all activities are provided in Mannhardt1024

et al. [43].1025

11For some cases the abstraction method did result in empty traces as no activity was
recognized. These cases were filtered out.

43

BAMA is applied to the prepared event log. We used SPADE to iden-1026

tify frequent subsequences as exhaustively computing all subsequences took1027

about 10 minutes and returned more than 130,000 subsequences, which would1028

result in a very long computation time when applying BAMA. By varying1029

the minimum support level parameter between 0.005 and 0.4, we investigated1030

the trade-off on the frequency of detected case-based batching and found 0.011031

to be giving the best result within a computation time of 3 minutes. The1032

tolerated time gap parameters of BAMA were set to 3 minutes based on the1033

domain knowledge that some activities may incur additional work beyond1034

what is captured in the timeframe between the start and complete time of1035

an activity instance. Again, we investigated the impact of the parameter by1036

varying it from 30 seconds to 12 minutes. As expected, more batch behavior1037

is detected when increasing the parameter value. BAMA detects 15.7% more1038

batching when using 12 minutes compared to 30 seconds. Finally, in absence1039

of more precise information in the event log, we assumed the arrival time of1040

tasks to be 5 minutes before their start.1041

30

14

9

114 69

137

427

496

4264

4586

15080

3

12

2883

39

1763

2014

4638

4

56

586122

466

184

4563

1569

2097

574

1176

45

833

239

20

31

4243

75

7

1262

2

739
Announcement

31

Diagnose
582

Discharge
4760

End

Handover
19286

News
3

Nurse Call - Assist
12

Nurse Call - Normal
2898

Nurse Call - Nurse
3779

Nurse Call - Quick
4666

Nurse Call - Shift
703

Registration
5419

Report
252

Start

Transfer
82

Treatment
1947

Figure 15: Process map discovered with Flexible Heuristics Miner (FHM) on the white-
board event log showing the main activities supported by the whiteboard system.

44

Figure 15 gives an overview of the process behavior for all completed1042

cases, i.e., those starting with either ‘Registration’ or ‘Announcement’ and1043

ending with ‘Discharge’ or ‘Transfer. The process map shows causal depen-1044

dencies discovered with the Flexible Heuristics Miner (FHM) together with1045

projected frequencies from the event log. As expected there is little struc-1046

ture since most of the activities can be performed in any order. Some of1047

the activities can be repeated such as ‘Handover’, ‘Nurse Call - Nurse’ and1048

‘Nurse Call - Shift’, as well as activities which update patient information1049

such as ‘Diagnose’ and ‘Treatment. The former three activities are initiated1050

by the nurse, who visits the patient’s room without a request from the pa-1051

tient. Finally, both ‘Registration’ and ‘Discharge’ are repeated, which can1052

be attributed to technical issues as the source system duplicates these events.1053

5.2.2. Results1054

The BAMA algorithm detected 30,530 task instances that were batched1055

in the digital whiteboard system. The execution time was about 3 minutes1056

on a standard laptop computer. Figure 16 shows an overview of the relative1057

frequencies with which batching behavior is detected for the different activ-1058

ities. This overview includes both batched instances at the task-resource1059

level, which could already be detected by the state-of-the-art technique de-1060

scribed in Martin et al. [6], as well as batch subprocesses, which are the core1061

contribution of this work.1062

The most frequent task related to batching behavior is ‘Handover’. This1063

is not surprising as handover of work normally takes place at the end of a1064

shift and the change in responsibility for each patient is registered on the1065

whiteboard. So, it is to be expected that this task is executed by nurses as a1066

sequential batch. Beyond this obvious batching behavior, BAMA identified1067

batching behavior in more than 20% of the task instances for the activities1068

‘Report’, ‘Treatment’, ‘Diagnose’, and ‘Discharge’ as well as two types of1069

interactions with the call signal system: ‘Nurse Call - Shift’ and ‘Nurse Call1070

- Nurse’. In the latter two tasks, nurses use the call signal to indicate their1071

position in the ward.1072

These results partially confirm the batching hypothesis that was formu-1073

lated in Myrstad [45]. However, in contrast to the basic analysis with a Dot-1074

ted Chart visualization in Myrstad [45], the application of BAMA accurately1075

quantifies the amount of batching behavior, which is less than expected.1076

Next, we looked at the batching behavior at the subprocess level that1077

was identified by BAMA. Figure 17 shows how frequently a task appears to1078

45

0.00

0.25

0.50

0.75

1.00

Han
do

ve
r

Rep
or

t

Tr
ea

tm
en

t

Nur
se

 C
all

 −
 S

hif
t

Diag
no

se

Disc
ha

rg
e

Nur
se

 C
all

 −
 N

ur
se

Reg
ist

ra
tio

n

Nur
se

 C
all

 −
 Q

uic
k

Nur
se

 C
all

 −
 N

or
m

al

Ann
ou

nc
em

en
t

New
s

Nur
se

 C
all

 −
 A

ss
ist

Tra
ns

fer

Activity

R
el

at
iv

e
fr

eq
ue

nc
y

of
 b

at
ch

in
g

Batch type
No batching
Sequential (task−resource)
Concurrent (task−resource)
Task−based seq. (subprocess)
Task−based conc. (subprocess)
Case−based seq. (subprocess)
Parallel batching

(a)

0.00

0.25

0.50

0.75

1.00

Han
do

ve
r

Rep
or

t

Tr
ea

tm
en

t

Nur
se

 C
all

 −
 S

hif
t

Diag
no

se

Disc
ha

rg
e

Nur
se

 C
all

 −
 N

ur
se

Reg
ist

ra
tio

n

Nur
se

 C
all

 −
 Q

uic
k

Nur
se

 C
all

 −
 N

or
m

al

Activity

R
el

at
iv

e
fr

eq
ue

nc
y

of
 b

at
ch

in
g

Batch type
Sequential (task−resource)
Concurrent (task−resource)
Task−based seq. (subprocess)
Task−based conc. (subprocess)
Case−based seq. (subprocess)
Parallel batching

(b)

Figure 16: Distribution of the batch types (cf. Figure 4) identified for task instances.
In (a), instances for which no batching behavior is detected are included (No batching).
These instances are excluded in (b).

46

0.00

0.25

0.50

0.75

1.00

Rep
or

t

Nur
se

 C
all

 −
 N

ur
se

Reg
ist

ra
tio

n

Nur
se

 C
all

 −
 N

or
m

al

Nur
se

 C
all

 −
 Q

uic
k

Tr
ea

tm
en

t

Disc
ha

rg
e

Diag
no

se

Nur
se

 C
all

 −
 S

hif
t

Han
do

ve
r

Activity

R
el

at
iv

e
fr

eq
ue

nc
y

of
 s

ub
pr

oc
es

s
ba

tc
hi

ng

Batch type
Non−decomposable batching
Task−based seq. (subprocess)
Case−based seq. (subprocess)

Figure 17: Distribution of type of batching at the subprocess level compared based on the
overall batching.

be batched in a subprocess in relation to the overall batching behavior that1079

was identified for that task, i.e., the number of activity instances in sub-1080

process batching compared to the overall number of instances performed in1081

batches. Overall, subprocess batching was observed infrequently in the event1082

log. For example, in about 12% of the cases, the tasks ‘Nurse Call - Normal’1083

and ‘Report’ were identified as being part of sequential subprocess batching.1084

Concurrent subprocess batching is almost entirely absent, which is to be ex-1085

pected since there is normally only one nurse responsible for the patients on1086

a ward. We did not discover parallel batch subprocesses. In total, BAMA1087

discovered 1,220 task instances that were executed in subprocess batching1088

out of which 1,194 instances were part of task-based batch subprocesses and1089

26 were part of case-based batch subprocesses.1090

In Figure 18, we grouped the detected batch subprocesses by the tasks1091

involved and indicate their ordering with the symbol ‘→’ to investigate the1092

batching behavior in more detail. Most of the subprocesses include the task1093

‘Handover’ batched together with tasks ‘Discharge’, ‘Treatment’, ‘Nurse Call1094

- Nurse’, ‘Report’, and ‘Registration’. Whereas batching of the ‘Handover’1095

task is to be expected, entering information about the treatment for patients1096

(‘Treatment’) or entering information in the report field of the whiteboard1097

(‘Report’) does not necessarily need to be batched. The whiteboard is sup-1098

posed to be used continuously during the shift to always have the latest1099

information available. However, as already investigated in Myrstad [45], it is1100

often only entered afterwards.1101

47

0

50

100

150

Han
do

 −
>

Disc
h

Han
do

 −
>

Tr
ea

t

Tr
ea

t −
>

Han
do

Reg
is

−>
 H

an
do

Han
do

 −
>

Rep
or

Rep
or

 −
>

Han
do

Han
do

 −
>

NC−N
u

Diag
n

−>
 H

an
do

Han
do

 −
>

NC−Q
u

Han
do

 −
>

Diag
n

Han
do

 −
>

Reg
is

NC−N
u

−>
 H

an
do

Tr
ea

t −
>

Rep
or

Diag
n

−>
 Tr

ea
t

Reg
is

−>
 D

iag
n

Han
do

 −
>

Tr
ea

t −
>

Diag
n

NC−N
u

−>
 Tr

ea
t

NC−Q
u

−>
 H

an
do

Reg
is

−>
 N

C−N
u

Rep
or

 −
>

Tr
ea

t

Diag
n

−>
 H

an
do

 −
>

Tr
ea

t

NC−N
u

−>
 H

an
do

 −
>

Tr
ea

t

NC−N
u

−>
 R

ep
or

Tr
ea

t −
>

NC−N
u

−>
 H

an
do

Activities in subprocess

N
um

be
r

of
 b

at
ch

ed
 e

xe
cu

tio
ns

Batch type
Task−based seq. (subprocess)
Case−based seq. (subprocess)

Figure 18: Frequency of individual subprocesses that are detected to be executed in batches
and appear more than 10 times in the event log.

We further investigate some of the batching behavior using a Dotted1102

Chart analysis for specific working days. Figure 19 shows three exemplary1103

time periods on which batching behavior at the subprocess level is visible.1104

Each row (y-axis) corresponds to a distinct case being handled and the x-axis1105

shows calendar time with each vertical line indicating a 12 hour period. We1106

highlighted the start timestamps of task executions that are part of sequential1107

task-based batch subprocesses. For example, Figure 19a shows an example1108

of how the handover of a shift and the update of the treatment information1109

is batched together for three patients. In Figure 19b, there are two handover1110

task executions registered followed by a discharge for two patients. Moreover,1111

in another batch two sequential executions of using the call signal system1112

(‘Nurse Call - Nurse’ and ‘Nurse Call - Quick’) are registered. Figure 19c1113

shows again a batch consisting of instances of ‘Handover’ and ‘Discharge’.1114

6. Discussion1115

6.1. Analysis of findings1116

From the evaluation using synthetic data, it follows that the algorithm1117

can correctly rediscover all batches for all but one of the considered BPMN1118

process diagrams. This shows that BAMA can identify batch tasks and1119

batch subprocesses when these are present. The BPMN diagram for which1120

the algorithm does not retrieve the correct batch subprocess is model #61121

(cf. Figure 13). The batch subprocess included in this model consists of two1122

48

● ●

● ●

●●

●●

● ●

Handover Treatment

Handover TreatmentDiagnose
Handover

DiagnoseHandover

Handover Treatment

Time

C
as

es

(a)

●● ●

●● ●

●● ●●

Discharge

HandoverHandover

Discharge

Handover Handover

Nurse Call − Nurse

Nurse Call − Nurse

Nurse Call − Quick

Nurse Call − Quick

Time

C
as

es

(b)

●●

●●

DischargeHandover

DischargeHandover

Time

C
as

es

(c)

Figure 19: Dotted chart of events recorded in the observation ward with those events
highlighted that have been detected by BAMA as task-based subprocesses within the
course of a single day. All batch subprocesses are sequential, i.e., the task instances did
not occur in parallel, which is not visible due to the coarse time scale. The exact time is
not revealed for privacy reasons.

49

tasks in an XOR-construct. Consequently, either task B or task C will be1123

executed for a batch. Hence, the algorithm will identify batching behavior at1124

the task-resource level for B or C instead of a batch subprocess consisting of1125

B and C. To circumvent this limitation, BAMA’s output can be projected on1126

a process model generated using an existing control-flow discovery algorithm.1127

This will highlight the relationship between these batch tasks and, hence, the1128

fact that a batch subprocess is formed.1129

Another observation from the evaluation using synthetic data is that1130

BAMA detects more batching behavior than the batches which were pur-1131

posefully introduced by the simulator. More specifically, some task instances1132

which are not batched according to the simulator’s batching logic are marked1133

by BAMA as part of a sequential batch (at the task-resource level). Even1134

though this behavior is not introduced by the simulator’s batching logic, it1135

presents valid batching behavior as long queues which are sequentially pro-1136

cessed can fulfill the criteria for sequential batching. In particular, sequential1137

batching requires that a group of cases is queuing for the resource at a task1138

before this resource starts processing the first case within this group. When1139

queues are long, this condition can be fulfilled. Against this background, the1140

detection of sequential batching behavior by BAMA does not constitute a1141

performance issue of the algorithm.1142

The application of the algorithm on real-life data shows that BAMA iden-1143

tifies batching both at the task-resource level and at the subprocess level.1144

Overall, the application of BAMA generated more profound insights into1145

batching behavior than previous analyses of the same data with standard1146

methods, such as a Dotted Chart analysis. In particular, BAMA can be1147

used to exactly quantify the fraction of batch executions for certain parts1148

of the process. Compared to the previous analysis in Mannhardt et al. [43]1149

and Myrstad [45], batching of certain subprocesses (e.g., ‘Report’ followed1150

by ‘Handover’) was confirmed, but at a lower frequency than expected. The1151

generated insights provides support to the hospital to investigate the op-1152

erational use of the whiteboard system. For instance: the observation that1153

particular reporting tasks are batched together with handover tasks indicates1154

that the whiteboard is not always used continuously during the shift.1155

While the synthetic logs and the real-life log in Section 5 originate from a1156

single process, BAMA can also identify batching behavior in a multi-process1157

context. This is due to the fact that the algorithm focuses on how resources1158

perform tasks. Consequently, when tasks of several processes are included in1159

the event log, BAMA can also detect batch subprocesses containing tasks of1160

50

different processes.1161

6.2. Limitations1162

Besides the contributions of this paper, its limitations also need to be1163

recognized. Firstly, the algorithm will identify a batch subprocess solely1164

consisting of a set of tasks in an XOR-construct as batching behavior at the1165

task-resource level. As outlined above, this limitation can be circumvented1166

by projecting the algorithm’s output on the output of a control-flow discovery1167

algorithm.1168

Secondly, the algorithm imposes some requirements on the event log used1169

as an input. Foremost, the start and completion of a task instance need to be1170

recorded, which might not be the case in particular real-life event logs. When1171

events are recorded at a fine granularity, this issue can be tackled by applying1172

abstraction methods, as discussed in the real-life data evaluation. Besides1173

start and completion times, the arrival time of a case at an activity is used1174

to distinguish sequential batching from regular queue handling. However, it1175

should be noted that the absence of an arrival time or a suitable proxy does1176

not impede the application of BAMA. When the arrival time is not available,1177

the conditions for sequential batching are less stringent as the requirement1178

that all cases need to be present before the processing of a batch starts cannot1179

be enforced.1180

Finally, the algorithm centers around the identification of batching behav-1181

ior, but does not focus on the operational effects of such behavior. However,1182

the algorithm identifies a wide variety of batching behavior, both at the1183

task-resource level and at the subprocess level. This provides a solid basis1184

to investigate why particular cases are batched and whether this is desirable1185

from a performance perspective.1186

7. Conclusion1187

This paper presents the Batch Activity Mining Algorithm (BAMA), which1188

is a novel algorithm to automatically detect batching behavior from an event1189

log. It extends prior research on this matter by enabling the discovery of1190

both batch tasks and batch subprocesses. The evaluation, both on synthetic1191

and real-life data, demonstrates the algorithm’s ability to identify batches1192

in an event log. BAMA’s output provides organizations with quantitative1193

insights in the occurrence of a wide variety of batching behaviors. Compared1194

to a mere visual analysis, e.g. using Dotted Charts, the presented algorithm1195

51

provides a more structured approach to identify batching behavior. Batching1196

can have a positive impact (e.g. a reduction in the number of setups), as well1197

as a negative impact (e.g. an increase in waiting times for some cases) on1198

the performance of a process. The algorithm offers detailed insights into the1199

recorded batch behavior and can be helpful to explain the observed process1200

duration in more detail. As the algorithm focuses on the relation between1201

tasks and resources, it could also detect batch behavior over multiple pro-1202

cesses if tasks of the different processes are included in one event log.1203

Building upon the work presented in this paper, several interesting di-1204

rections for future research can be distinguished. Firstly, BAMA can be1205

extended with a set of aggregated metrics and visualization functions. Cur-1206

rently, the algorithm focuses on the identification of batch tasks and sub-1207

processes. Taking this output as a starting point, future developments could1208

create a framework to, e.g., interactively analyze batching behavior. Some1209

pointers were already included in Section 4.8. Secondly, future work can link1210

the identified batches to its operational effects (e.g. its impact on waiting1211

times from a customer’s perspective) to determine whether a particular type1212

of batching behavior is desirable from the organizational perspective. More-1213

over, the organization could determine whether particular persons or teams1214

are more inclined to exhibit batching behavior. Finally, it is worthwhile to1215

investigate whether inductive batching insights can be embedded in a predic-1216

tive process monitoring framework. This would imply that knowledge about1217

batching behavior from the past would be used as one of the predictors to1218

estimate, e.g., the remaining time required to finish a case.1219

Acknowledgement. We would like to thank Leon Bein (Master student at1220

Hasso Plattner Institute) for extending the simulator Scylla and for support-1221

ing the generation of the syntactic event logs. We would also like to sincerely1222

thank the reviewers for their constructive feedback during the review process.1223

Appendix A. Detailed output measures of the evaluation on syn-1224

thetic data1225

1. Process diagram #1: simple var1 - one batch activity with two tasks1226

2. Process diagram #2: simple var2 - one batch activity with four tasks1227

3. Process diagram #3: simple var3 - two batch activities, each consisting1228

of two tasks1229

4. Process diagram #4: AND var 1 - one batch activity with two tasks1230

52

5. Process diagram #5: AND var 2 - one batch activity with three tasks1231

6. Process diagram #6: XOR var 1 - one batch activity with two tasks in1232

XOR construct1233

7. Process diagram #7: XOR var 2 - one batch activity with one ‘fixed’1234

task and two tasks in XOR construct1235

8. Process diagram #8: MIX var 1 - one batch activity with AND followed1236

by XOR in one branch1237

9. Process diagram #9: MIX var 2 - one batch activity with one ‘fixed’1238

task, followed by an AND with an XOR in one branch1239

53

Table A.11: Detailed output measures of evaluation on synthetic data

log
num-
ber

process
dia-
gram

batch
pro-
cess-
ing
type*

% of correctly redis-
covered batched in-
stances

% of correctly redis-
covered instances

% of instances not
batched according
to the simulator’s
batching logic re-
ported as seq.
batch

1 1 par. 100.00 91.52 11.31
2 1 s.t.b. 100.00 91.49 11.34
3 1 s.c.b. 100.00 91.59 11.21
4 1 c.t.b. 100.00 91.49 11.34
5 1 c.c.b. 100.00 91.59 11.21
6 2 par. 100.00 91.67 16.67
7 2 s.t.b. 100.00 91.67 16.67
8 2 s.c.b. 100.00 91.67 16.67
9 2 c.t.b. 100.00 91.67 16.67
10 2 c.c.b. 100.00 91.67 16.67
11 3 par. 100.00 83.33 33.33
12 3 s.t.b. 100.00 83.33 33.33
13 3 s.c.b. 100.00 83.33 33.33
14 3 c.t.b. 100.00 83.33 33.33
15 3 c.c.b. 100.00 83.33 33.33
16 4 par. 100.00 91.47 11.38
17 4 s.t.b. 100.00 91.59 11.21
18 4 s.c.b. 100.00 91.54 11.28
19 4 c.t.b. 100.00 91.59 11.21
20 4 c.c.b. 100.00 91.54 11.28
21 5 par. 100.00 91.59 13.45
22 5 s.t.b. 100.00 91.57 13.49
23 5 s.c.b. 100.00 91.57 13.49
24 5 c.t.b. 100.00 91.57 13.49
25 5 c.c.b. 100.00 91.57 13.49
26 6 par. 0.00 76.05 11.28
27 6 s.t.b. 0.00 76.02 11.31
28 6 s.c.b. 0.00 76.16 11.14
29 6 c.t.b. 0.00 76.02 11.31
30 6 c.c.b. 0.00 76.16 11.14
31 7 par. 100.00 90.25 13.65
32 7 s.t.b. 100.00 90.36 13.49
33 7 s.c.b. 100.00 90.39 13.45
34 7 c.t.b. 100.00 90.36 13.49
35 7 c.c.b. 100.00 90.39 13.45
36 8 par. 100.00 90.48 13.33
37 8 s.t.b. 100.00 90.48 13.33
38 8 s.c.b. 100.00 90.48 13.33
39 8 c.t.b. 100.00 90.48 13.33
40 8 c.c.b. 100.00 90.48 13.33
41 9 par. 100.00 90.48 16.67
42 9 s.t.b. 100.00 90.48 16.67
43 9 s.c.b. 100.00 90.48 16.67
44 9 c.t.b. 100.00 90.48 16.67
45 9 c.c.b. 100.00 90.48 16.67

* par.: parallel, s.t.b.: sequential task-based, s.c.b.: sequential case-based,
c.t.b.: concurrent task-based, c.c.b.: concurrent case-based

54

[1] M. Weske, Business process management: concepts, languages, archi-1240

tectures, Springer-Verlag Berlin Heidelberg, 2012.1241

[2] W. M. P. van der Aalst, Process mining: data science in action, Springer,1242

Heidelberg, 2016.1243

[3] L. Pufahl, M. Weske, Requirements framework for batch processing in1244

business processes, Lecture Notes in Business Information Processing1245

287 (2017) 85–100.1246

[4] C. N. Potts, M. Y. Kovalyov, Scheduling with batching: a review,1247

European journal of operational research 120 (2000) 228–249.1248

[5] J. Medhi, Stochastic models in queueing theory, Academic Press, 2002.1249

[6] N. Martin, M. Swennen, B. Depaire, M. Jans, A. Caris, K. Vanhoof,1250

Retrieving batch organisation of work insights from event logs, Decision1251

Support Systems 100 (2017) 119–128.1252

[7] Y. Wen, Z. Chen, J. Liu, J. Chen, Mining batch processing workflow1253

models from event logs, Concurrency and Computation: Practice and1254

Experience 25 (2013) 1928–1942.1255

[8] J. Nakatumba, Resource-aware business process management: analysis1256

and support, Ph.D. thesis, Eindhoven University of Technology, 2013.1257

[9] Y. Liu, L. Zhang, J. Wang, Mining workflow event log to facilitate par-1258

allel work item sharing among human resources, International Journal1259

of Computer Integrated Manufacturing 24 (2011) 864–877.1260

[10] L. Pufahl, A. Meyer, M. Weske, Batch regions: process instance syn-1261

chronization based on data, Proceedings of the 2014 IEEE International1262

Enterprise Distributed Object Computing Conference (2014) 150–159.1263

[11] N. Slack, S. Chambers, R. Johnston, Operations and process manage-1264

ment: principles and practice for strategic impact, Pearson Education,1265

2009.1266

[12] S. Henn, S. Koch, G. Wäscher, Order batching in order picking ware-1267

houses: a survey of solution approaches, Springer, 2012.1268

55

[13] S. Henn, G. Wäscher, Tabu search heuristics for the order batching prob-1269

lem in manual order picking systems, European Journal of Operational1270

Research 222 (2012) 484–494.1271

[14] S. Hong, A. L. Johnson, B. A. Peters, Batch picking in narrow-aisle1272

order picking systems with consideration for picker blocking, European1273

Journal of Operational Research 221 (2012) 557–570.1274

[15] S. Hong, Y. Kim, A route-selecting order batching model with the S-1275

shape routes in a parallel-aisle order picking system, European Journal1276

of Operational Research 257 (2017) 185–196.1277

[16] J. K. Higginson, J. H. Bookbinder, Policy recommendations for a1278

shipment-consolidation program, Journal of Business Logistics 151279

(1994).1280

[17] S. Cetinkaya, J. H. Bookbinder, Stochastic models for the dispatch of1281

consolidated shipments, Transportation Research Part B: Methodolog-1282

ical 37 (2003) 747–768.1283

[18] F. Mutlu, S. i. l. Cetinkaya, J. H. Bookbinder, An analytical model for1284

computing the optimal time-and-quantity-based policy for consolidated1285

shipments, IIE Transactions 42 (2010) 367–377.1286

[19] L. Tang, G. Wang, Decision support system for the batching problems1287

of steelmaking and continuous-casting production, Omega 36 (2008)1288

976–991.1289

[20] C. N. Potts, M. Y. Kovalyov, Scheduling with batching: a review,1290

European Journal of Operational Research 120 (2000) 228–249.1291

[21] M. Mathirajan, A. I. Sivakumar, A literature review, classification and1292

simple meta-analysis on scheduling of batch processors in semiconductor,1293

The International Journal of Advanced Manufacturing Technology 291294

(2006) 990–1001.1295

[22] M. F. Neuts, A general class of bulk queues with Poisson input, The1296

Annals of Mathematical Statistics 38 (1967) 759–770.1297

[23] K. Sikdar, U. C. Gupta, Analytic and numerical aspects of batch ser-1298

vice queues with single vacation, Computers & Operations Research 321299

(2005) 943–966.1300

56

[24] C. Natschläger, A. Bögl, V. Geist, M. Biró, Optimizing resource uti-1301

lization by combining activities across process instances, in: EuroSPI,1302

Springer, pp. 155–167.1303

[25] J. Pflug, S. Rinderle-Ma, Application of dynamic instance queuing to ac-1304

tivity sequences in cooperative business process scenarios, International1305

Journal of Cooperative Information Systems (2016) 1650002.1306

[26] L. Pufahl, M. Weske, Batch activity: enhancing business process mod-1307

eling and enactment with batch processing, Computing (2019) 1–25.1308

[27] L. Pufahl, E. Bazhenova, M. Weske, Evaluating the performance of a1309

batch activity in process models, Lecture Notes in Business Information1310

Processing 202 (2014) 277–290.1311

[28] N. Martin, A. Solti, J. Mendling, B. Depaire, A. Caris, Mining batch1312

activation rules from event logs, IEEE Transactions on Services Com-1313

puting (2019).1314

[29] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, Queue min-1315

ing: predicting delays in service processes, Lecture Notes in Computer1316

Science 8484 (2014) 42–57.1317

[30] I. Weber, M. Farshchi, J. Mendling, J.-G. Schneider, Mining processes1318

with multi-instantiation, in: Proceedings of the 30th Annual ACM1319

Symposium on Applied Computing, pp. 1231–1237.1320

[31] OMG, Notation BPMN version 2.0, OMG Specification, Object Man-1321

agement Group (2011).1322

[32] A. Senderovich, C. Di Francescomarino, C. Ghidini, K. Jorbina, F. M.1323

Maggi, Intra and inter-case features in predictive process monitoring: A1324

tale of two dimensions, in: International Conference on Business Process1325

Management, Springer, pp. 306–323.1326

[33] K. Winter, F. Stertz, S. Rinderle-Ma, Discovering instance and process1327

spanning constraints from process execution logs, Information Systems1328

89 (2020) 101484.1329

[34] W. Fdhila, M. Gall, S. Rinderle-Ma, J. Mangler, C. Indiono, Classifica-1330

tion and formalization of instance-spanning constraints in process-driven1331

57

applications, in: International Conference on Business Process Manage-1332

ment, Springer, pp. 348–364.1333

[35] C. W. Günther, H. M. W. Verbeek, XES standard definition, Technical1334

report, Eindhoven Unversity of Technology, Eindhoven, The Nether-1335

lands, 2014.1336

[36] T. Baier, J. Mendling, M. Weske, Bridging abstraction layers in process1337

mining, Information Systems 46 (2014) 123–139.1338

[37] J. De Weerdt, M. De Backer, J. Vanthienen, B. Baesens, A multi-1339

dimensional quality assessment of state-of-the-art process discovery al-1340

gorithms using real-life event logs, Information Systems 37 (2012) 654–1341

676.1342

[38] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi, A. Mar-1343

rella, M. Mecella, A. Soo, Automated discovery of process models from1344

event logs: review and benchmark, IEEE Transactions on Knowledge1345

and Data Engineering 31 (2018) 686–705.1346

[39] M. J. Zaki, Spade: an efficient algorithm for mining frequent sequences,1347

Machine learning 42 (2001) 31–60.1348

[40] H. Wickham, G. Grolemund, R for data science: import, tidy, transform,1349

visualize, and model data, O’Reilly, Sebastopol, 2017.1350

[41] G. Janssenswillen, B. Depaire, M. Swennen, M. Jans, K. Vanhoof, bu-1351

par: enabling reproducible business process analysis, Knowledge-Based1352

Systems 163 (2019) 927–930.1353

[42] L. Pufahl, T. Y. Wong, M. Weske, Design of an extensible BPMN1354

process simulator, Lecture Notes in Business Information Processing1355

308 (2017) 782–795.1356

[43] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst,1357

P. J. Toussaint, From low-level events to activities - a pattern-based1358

approach, Lecture Notes in Computer Science 9850 (2016) 125–141.1359

[44] M. Song, W. M. P. van der Aalst, Supporting process mining by showing1360

events at a glance, in: Proceedings of the 17th Annual Workshop on1361

Information Technologies and Systems, pp. 139–145.1362

58

[45] I. A. Myrstad, Prosessstøtte i sengetun, Master’s thesis, NTNU, 2017.1363

[46] M. R. Halvorsen, H. O. Austad, A. D. Landmark, D. Ausen, I. Svag̊ard,1364

T. Tomasevic, T. Trondsen, Redesigning work with a lightweight ap-1365

proach to coordination technology, CIN: Computers, Informatics, Nurs-1366

ing 37 (2019) 124–132.1367

59

	Introduction
	Related Work
	Preliminaries
	Batch activity
	Running example 1: A laboratory process
	Running example 2: A patient admission process

	Batch processing types
	Event log

	Batch Activity Mining Algorithm
	General overview
	Convert to task log
	Phase 1: detect batches at the task-resource level
	Phase 2: detect parallel and task-based sequential/concurrent batch subprocesses
	Phase 3: detect case-based sequential/concurrent batch subprocesses
	Batch-enriched task log creation
	Implementation
	Metrics and visualizations

	Evaluation
	Experiments with synthetic event logs
	Experimental design
	Results

	Discovering Batch Activities in Usage of a Hospital Ward
	Experimental design
	Results

	Discussion
	Analysis of findings
	Limitations

	Conclusion
	Detailed output measures of the evaluation on synthetic data

