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ABSTRACT  

A novel evaluation study of the most appropriate round function for nearest neighbor image interpolation is presented. 

Evaluated rounding functions are selected among the five rounding rules defined by the Institute of Electrical and 

Electronics Engineers IEEE 754-2008 standard. Both full- and no-reference image quality assessment metrics are used to 

evaluate the influence of rounding functions on nearest neighbor interpolation image quality. The concept of the number 

of occurrences is used to determine the percentage of achieved occurrences – which is also equivalent to the sample 

proportion percentage used to calculate the margin of error. Inferential statistical analysis is used to deduce from a small 

number of images and draw a conclusion of the performance of each rounding function on a big number of images. 

Experimental results are provided to demonstrate with 95% confidence the minimum performance percentage of the 

most appropriate rounding function. 

Keywords: nearest neighbor interpolation, number of occurrences, inferential statistics, rounding functions. 

1. INTRODUCTION  

Interpolation is a widely used method, in many fields and applications, to construct a new data value within the range of 

a set of known data [1],[2],[3],[4],[5],[6],[23]. In the video and/or dynamic imaging, if the interpolation method becomes 

too computationally inefficient or time-consuming, it may lead to the jerky appearance of images. In image upscaling or 

resolution enhancement, if the interpolation method is not accurate enough, it may result in heavy error propagation or 

visual artefacts, particularly at the edges of upscaled or enlarged image objects. Visual artefacts - such as aliasing/jaggy, 

blurring, and edge-halo artefacts - are important contributors to the loss of image interpolation quality. Such artefacts 

become more easily visible when the scaling ratio is significantly increased, thus significantly reducing the image 

interpolation quality, which ideally should not have to be the case. In digital zoom, one of the advantages of image 

upscaling is the possibility to get a closer view of objects in small-sized images and/or videos [7],[8],[9],[10], without 

the need for a mechanical device of lens elements such as the one used in optical zoom. Many works on image 

interpolation reported new strategies for the minimization of visual artefacts, at specific scaling ratios. Those strategies 

can be classified into adaptive [11],[12],[13] and non-adaptive [14],[15],[16] as well as, very recently, into non-extra 

pixel and extra pixel categories [21]. The nearest-neighbor (NN) image algorithm belongs to the non-extra pixel category 

and its performance depends entirely on the accuracy or precision of the selected or used rounding function. The 

computational simplicity of such a rounding function gives the NN algorithm its main advantage of being the fastest and 

crispest image-edge productive among other/existing image interpolation algorithms [3],[5],[15]. The disadvantage of 

using the nearest-neighbor algorithm for image interpolation is the production of upscaled images with the most jagged-

edges among other well-known algorithms [5]. Such a disadvantage is mainly linked to the loss of precision of a given 

rounding function used to round-off any scaled coordinates of non-integer type [21]. There exist many rounding 

functions and rules which can round-off a non-integer output to an integer output. The IEEE 754-2008 standard defined 

five rounding rules [17]. Here, rounding-off or rounding a non-integer means transforming some non-integer quantity 

from a greater precision to lesser precision [22]. In NN image interpolation, such a lesser precision has a direct effect on 

which pixel to pick from the source image and copy in the destination or upscaled image. Therefore, in the attempt to 

answer the question of the most appropriate rounding function that, from its imprecision, yields the least error 

propagation damages on the NN image interpolation quality, the author evaluates different rounding functions using 

image quality assessment metrics, the number of occurrences and inferential statistical analysis. The rest of the paper is 

organized as follows: Part 2 recaps the scaling, the rounding rules, and the nearest-neighbor interpolation algorithm. Part 

3 gives the example of coordinates translation and pixel replication in NN interpolation. Part 4 presents the experimental 

results and discussions. The conclusion is given in Part 5. 



 

 
 

 

 

2. SCALING, ROUNDING FUNCTIONS AND NEAREST NEIGHBOR INTERPOLATION 

a) Scaling 

Referring to the widely known straight-line equation Eq.1, when x gets multiplied by m, it is called a scaling by a factor 

m [32]. When b is added to the product 𝑚 𝑥, it is called a shift by an amount b. Here, m and b are constants, and the 

linear function takes a number x as input and returns the number 𝑚 𝑥 + 𝑏 as output [32].  

                                                                                   𝑦 = 𝑚 𝑥 + 𝑏                                                                                   (1) 

In digital image processing, scaling image from original or input size to a new or output size requires translating from 

original image coordinate system to a new coordinate system according to the chosen factor or scaling ratio. A solution 

to this simple mathematical problem of scaling is to proceed as follows: “the point that lies n percent along the original 

coordinate axis lies at m percent point along the new coordinate axis”. For example, the image pixel or point that lies 

halfway along the original or source image axis corresponds to the pixel that lies halfway along the new or destination 

image axis [21]. Given a particular pixel coordinate on the destination axis it is possible to find the corresponding pixel 

coordinate or point on the source axis. This can be done by finding the proportion of the point along the destination 

image axis. The proportion of that destination point can be found by dividing it by the length of that destination axis and 

multiplying the result by the length of the source image axis (see Figure 1). The linear scaling Eq. 2 shows how the 

correspondence between pixel coordinates can be achieved for NN image interpolation - where the 𝑠𝑟𝑐𝐿𝑒𝑛𝑔𝑡ℎ is a 

variable representing the length of the source image, the 𝑑𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ is a variable representing the length of the 

destination image, the scaling ratio 𝑑𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ/𝑠𝑟𝑐𝐿𝑒𝑛𝑔𝑡ℎ is the constant of proportionality (that plays the same role as 

the factor m in Eq. 1.), the 𝑠𝑟𝑐𝐶𝑜𝑜𝑟𝑑 is a variable representing the source pixel coordinates and the 𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑 is a 

variable representing the destination pixel coordinates. 

                                                                         
𝑠𝑟𝑐𝐶𝑜𝑜𝑟𝑑

𝑠𝑟𝑐𝐿𝑒𝑛𝑔𝑡ℎ
=

𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑

𝑑𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ
                                                                  (2) 

Note that the 𝑠𝑟𝑐𝐶𝑜𝑜𝑟𝑑 and 𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑 are conventionally expected to be of integer type quantities. To ensure this is 

respected when Eq. 2 outputs coordinates of non-integer type, rounding operation is required and must be performed to 

meet the digital format requirement and enable translation from one coordinate system to another.  

b) Rounding functions 

Round-off or rounding functions transform a non-integer quantity from a greater precision to lesser precision [22]. In 

NN interpolation algorithm, rounding functions allow creating integers and/or converting scaled coordinates of non-

integer type to integer type coordinates. Table 1 shows five rounding rules defined by the Institute of Electrical and 

Electronics Engineers (IEEE) 754-2008 standard as well as Maxfield’s diagram [17],[22]. The scope of this work 

encompasses three of five namely floor, ceil, and round with the main objective to evaluate their effects on NN image 

interpolation quality. As can be seen in Table 1, floor means rounding towards minus infinity, ceil means rounding 

towards plus infinity, and round means rounding to the nearest integer if a non-integer has a tie or if it is a half-integer 

round to the nearest integer away from zero.  

Table 1: Five rounding rules defined by the IEEE 754-2008 standard 

 

RULES 

EXAMPLES OF HALF-INTEGERS 

+11.5 +12.5 -11.5 -12.5 

round to nearest, ties/half-integers to even +12.0 +12.0 -12.0 -12.0 

round to nearest, ties/half-integers away from zero (round) +12.0 +13.0 -12.0 -13.0 

round toward 0 (fix) +11.0 +12.0 -11.0 -12.0 

round toward +∞ (ceil) -12.0 -13.0 -11.0 -12.0 

round toward −∞ (floor) +11.0 +12.0 -12.0 -13.0 

 

c) Nearest neighbor interpolation 
The nearest-neighbor interpolation, also known as zero-order interpolation, is the lowest level of computational 

complexity pixel replication method which is widely used in many applications [3], [5], [21], [36]. The NN interpolation 

algorithm is based on the linear scaling equation (Eq. 2) and rounding functions to achieve image interpolation 

operations, in digital zooming. Here, Eq. 2 allows scaling a given input image coordinates to a desired new image 



 

 
 

 

 

coordinates according to the selected scaling ratio. A chosen rounding function is subsequently used to round off any 

non-integer scaled coordinates. As an example, assume that the 𝐷𝑚 represents the destination image and 𝑆𝑚 represents 

the source image. Referring to Eq. 2, as well as properties of interpolation presented in [36], the output equation of the 

NN algorithm is written as shown by Eq.3. 

                                     𝐷𝑚(𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑(𝑐), 𝑑𝑒𝑠𝑡𝐶𝑜𝑜𝑟𝑑(𝑟)) = 𝑆𝑚(⌈𝑠𝑟𝑐𝐶𝑜𝑜𝑟𝑑(𝑐)⌉, ⌈𝑠𝑟𝑐𝐶𝑜𝑜𝑟𝑑(𝑟)⌉)                          (3) 

where 𝑠𝑟𝑐𝐶𝑜𝑜𝑟𝑑(. ) = 𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑(. ) ∗ (
𝑠𝑟𝑐𝐿𝑒𝑛𝑔𝑡ℎ

𝑑𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ
), (c) indicates the column direction, (r) indicates the row direction, and 

⌈. ⌉ denotes the rounding to the nearest integer. 

3. EXAMPLE OF COORDINATES TRANSLATION AND PIXEL REPLICATION IN NN 

Figure 1 shows an example of the source and destination images with the coordinate and length information. As can be 

seen, the source image has four coordinates or indices, namely 1, 2, 3, 4, and its length equals four. The destination 

image has seven coordinates, namely 1, 2, 3, 4, 5, 6, 7, and its length equals seven. Since the source and destination 

images are not equal in lengths, the source image pixels are insufficient to fill in or complete the remaining (or empty) 

locations in the destination image.  

 
Figure 1: Example showing the source and destination images 

It is, therefore, necessary to use the linear scaling Eq. 2 to find all coordinates correspondences and rounding them off to 

be able to approximate the missing pixels to fill in all empty locations in the destination image. Unlike other 

interpolation algorithms, the nearest neighbor algorithm does not create extra-pixels to find those additional pixels to use 

in the destination image21. Note that extra-pixels are pixels that do not belong to the source image21. Table 2 gives a 

numerical example showing how linear scaling and rounding operations generate the missing pixels in NN interpolation. 

As can be seen, the first column represents the destination coordinates. The second column represents the output of Eq.2 

with its variables. The third column contains linearly calculated source coordinates (of both integer and non-integer 

types). The fourth, fifth, and sixth columns show the rounded values or integers obtained using the floor, ceil, and round 

functions, respectively.  

Table 2: Linear scaling and rounding  

𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑 equation 2 calculated 𝑠𝑟𝑐𝐶𝑜𝑜𝑟𝑑 floor ceil round 

1 1 x (4/7) 0.57 0 1 1 

2 2 x (4/7) 1.14 1 2 1 

3 3 x (4/7) 1.71 1 2 2 

4 4 x (4/7) 2.28 2 3 2 

5 5 x (4/7) 2.85 2 3 3 

6 6 x (4/7) 3.42 3 4 3 

7 7 x (4/7) 4 4 4 4 

Here, depending on the rounding function of choice, it is possible to copy the source image pixel color or gray level from 

its specific source coordinate to the corresponding pixel coordinate in the destination image (see Figure 2) - by simply 

matching the source integers with the destination integers and filling in the destination image with the relevant source 

pixel colors. For example, if 𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑 = 4, and 𝑐𝑒𝑖𝑙 = 3 (i.e., if ceil function is selected), the pixel color to copy to the 



 

 
 

 

 

‘empty’ destination coordinate 4 will be the pixel color found at the source image strip coordinate 3. Therefore, the color 

to copy to 𝑑𝑠𝑡𝐶𝑜𝑜𝑟𝑑 = 4 is the blue color (i.e., 4(3) blue= ). 

 

Figure 2: Image strip of length = 4 upscaled to length =7  

It is important to note that, here, while using the floor function, one destination strip coordinate became invalid since 

there was no coordinate equal to zero number in the source image (this was only due to MATLAB indexing). However, 

using the ceil function, all destination strip coordinates were valid and matched with their corresponding coordinates in 

the source image. The same when the round function was used. Again, it is important to note that, in all three cases 

presented, the gray levels or colors were copied differently due to different rounding methods exhibiting different 

precisions in this approximation direction. In this context, the author in [33] proposed the analytic method, residual 

power series, that accomplished the task of approximations directly with less computational complexity without being 

affected by computation round off errors. Due to all these advantages, the proposed method in [33] will be thoroughly 

investigated for the extension to other applications in the author’s future works. 

4. EXPERIMENTAL EVALUATIONS  

a) Evaluation methods:  
i. Image quality assessment (IQA): The selected full- and no reference IQA metrics are Mean Squared Error 

(MSE) [5], Structural Similarity Index (SSIM) [29], and Blind/Referenceless Image Spatial Quality Evaluator 

(BRISQUE) [27], Naturalness Image Quality Evaluator (NIQE) [28], respectively. Here, the reason is that, for 

digital image zooming, where the pursuit for image interpolation quality is the main concern, the metrics that 

specifically consider the image structures, smallest differences between estimations and realities, and similarity 

to natural scenes are appropriate. Note that, the lower MSE, BRISQUE, and NIQE scores mean generally the 

better image quality - and the higher SSIM score means generally the better image quality [18],[19],[20]. For 

graphical presentation purposes, the SSIM, NIQE, BRISQUE, MSE scores were rescaled to the intervals [0.6, 

1.4], [2.5, 3.0], [4.0, 4.6], [5.4 and 6.01], respectively. 

ii. Inferential statistical analysis: Inferential statistics refers to methods, that rely on probability theory and 

distributions to predict population values based on sample data [24], which are classified as either parametric or 

nonparametric [25]. Nonparametric statistics are most used for variables at the nominal or ordinal level of 

measurement. More information on nonparametric statistics is provided in [25]. Parametric statistics are the 

most common approach to inferential statistical analysis. Inferential statistical analysis infers properties of a 

population, for example by testing hypotheses and deriving estimates [24], [34]. In this work, it is used to 

deduce from a small number of images and draw a conclusion of the behavior of each rounding function on a 

big number of images [24],[25],[26]. For example, in this work, where there is a great need to infer 

performance about a big number of images based on a small sample of images - these statistics become a guess. 

In this way, guessing will contain some degree of potential error. Such an error is called the margin of error 

(MOE) and it shows how much the difference (between the actual and estimated quantity) probably is, either 

side of the correct figure [35]. The MOE can be calculated using the following (Eq. 4 or) Eq. 5, where z is the z-

score associated with a level of confidence (for a confidence level of 95%, z = 1.96 as shown in [26], [31]), p is 

the sample proportion percentage, n is the sample size, N is the population size.  

 

                                                                                   𝑀𝑂𝐸 =
𝑧∗√𝑝∗(1−𝑝)

√𝑛
                                                                         (4) 



 

 
 

 

 

                                                                                    𝑀𝑂𝐸 =
𝑧∗√𝑝∗(1−𝑝)

√
(𝑁−1)∗𝑛

𝑁−𝑛

                                                                       (5) 

Here, note that the smaller the MEO, the more confidence one may have that the results will be representative 

of the number of occurrences. 

iii. The number of occurrences: To quantify how each rounding function outperformed or underperformed among 

others, in all cases analyzed, the method of tracking the number a given rounding function occurred with the 

highest scores is introduced. The number tracked and quantified is referred to as the “number of occurrences”. 

Here, the number of occurrences is directly proportional to the number of test images, the number of IQA 

metrics, and the number of scaling ratios. The number of occurrences is divided into two categories, namely: 

the number of targeted occurrences and the number of achieved occurrences. The number of targeted 

occurrences is the maximum number of times that each rounding function can reach the highest scores. The 

number of achieved occurrences is the number of times that each rounding function reached the highest scores. 

 

b) Dataset: 
The dataset, containing 10 test images, was downloaded from the USC-SIPI Image Database [30]. Given that it was 

necessary to extensively evaluate rounding functions using grayscale images of different sizes, scaling ratios varying 

from two to five were used. The Microsoft picture manager was used to scale the downloaded 10 test grayscale images 

to match the following sizes: 128 x 128 to 256 x 256, 170 x 170 to 510 x 510, 128 x 128 to 512 x 512 and 102 x 102 to 

510 x 510. Figure 3 shows the caption-labeled 10 test images used in the experimental part. Note that only the IMAGE-9 

(5.3.01) was cropped from its original image size of 1024 x 1024 to the size 512 x 512 using MATLAB’s imcrop 

function. Also, MATLAB-r2019 is the main simulation software used to evaluate different rounding functions and 

generate the results. 

 

c) Results and discussions:  
Figure 3 shows 10 samples of test images of the size 512 x 512, each. Other sample resized images are not included in 

this paper. All the results obtained during the rounding function evaluations are graphically presented in Figure 4, Figure 

5, Figure 6, Figure 7, and Figure 8. As can be seen, it may seem unclear to readers to know which rounding function 

achieved the highest scores, mainly, due to the rescaling strategy adopted for graphical representation purposes. 

Therefore, the number of times the highest scores was achieved by C (i.e., ceil function), F (i.e., floor function), and R 

(i.e., round function) is presented in Table 3, Table 4, Table 5, Table 6, and Table 7. Referring to these tables and based 

on the number of test images, IQA metrics, and scaling ratios, each rounding function has a chance of achieving the 

number of targeted occurrences per image that is equal to 16. In other words, the best rounding function should ideally 

occur 16 times per image. 

 

                
IMAGE-1 (4.2.07)                IMAGE-2 (4.2.06)                    IMAGE-3 (house)                  IMAGE-4 (5.2.08)                   IMAGE-5 (4.1.05) 

     
IMAGE-6 (4.2.03)             IMAGE-7 (boat.512)            IMAGE-8 (5.2.10)                 IMAGE-9 (5.3.01)             IMAGE-10 (4.2.05) 

Figure 3: Downloaded sample/test grayscale images 



 

 
 

 

 

 

    
Figure 4: IMAGE-1 (4.2.07) and IMAGE-2 (4.2.06).  

 

   
Figure 5: IMAGE-3 (house) and IMAGE-4 (5.2.08).  

 

 

   
Figure 6: IMAGE-5 (4.1.05) and IMAGE-6 (4.2.03).  



 

 
 

 

 

 

 

   
Figure 7: IMAGE-7 (boat.512) and IMAGE-8 (5.2.10).  

 

However, the results presented in Table 3, Table 4, Table 5, Table 6, and Table 7 show that none of the rounding 

function achieved the maximum number of occurrences per image. Also, all rounding functions did not tie 

simultaneously in every examined situation. Despite that, the ceil function gives the impression of being repeated more 

times than other rounding functions.  In other words, the number of occurrences of the ceil function looks to be much 

higher than that of the other two rounding functions. However, this statement is not enough to draw a conclusion based 

on observation, because some may raise concerns saying that this cannot be accurate enough to lead to an acceptable (or 

generalizable) conclusion, especially when a smaller number of sample images was only used. In the effort to alleviate 

such concerns, the analysis of the number of occurrences based on the number of achieved occurrences over the number 

of targeted occurrences is presented in Table 8. 

  

   
Figure 8: IMAGE-9 (5.3.01) and IMAGE-10 (4.2.05). 

Table 3: F = 7 times, C = 27 times, R = 10 times 

IMAGE 1 & 2 ratio = 2 ratio = 3 ratio = 4 ratio = 5 ratio = 2 ratio = 3 ratio = 4 ratio = 5 

MSE C & R C C C C & R C C C 

BRISQUE F & C F & C & R R C F & C F & C & R F & C & R C 

NIQE F R C C F C C R 

SSIM C & R C C C C & R C C C 



 

 
 

 

 

As mentioned earlier, each rounding function has a chance of achieving 16 targeted occurrences per image. Now, doing 

the number of occurrence analysis, on all 10 sample test images, each of the three rounding functions had a chance of 

achieving 160 targeted occurrences. Table 3, Table 4, Table 5, Table 6, and Table 7 show that none of the 3 rounding 

functions achieved that number of targeted occurrences. 

 
Table 4: F = 6 times, C = 25 times, R = 12 times 

IMAGE 3 & 4 ratio = 2 ratio = 3 ratio = 4 ratio = 5 ratio = 2 ratio = 3 ratio = 4 ratio = 5 

MSE C & R C C C C & R C C C 

BRISQUE F R C R F & C & R F & C & R F & C & R C 

NIQE C & R R C R F C C F 

SSIM C & R C C C C & R C C C 

 

Table 5: F = 7 times, C = 24 times, R = 11 times 

IMAGE 5 & 6 ratio = 2 ratio = 3 ratio = 4 ratio = 5 ratio = 2 ratio = 3 ratio = 4 ratio = 5 

MSE C & R C C C C & R C C C 

BRISQUE F F F F F F & C & R F & C & R R 

NIQE  C & R C C R C & R R C C 

SSIM C & R C C C C & R C C C 

 

However, in these 10 images, Table 8 shows that the ceil, round, and floor function respectively achieved 78.75 %, 35%, 

and 22.5% of the number of targeted occurrences at the MOE = ± 0 %. Here, the MEO = ±0 % because, the population 

size (N) is equal to the sample size (n) and equal to 160 (i.e., the number of targeted occurrences in all 10 test images 

presented in Figure 3) - which makes the proportion of percentage (p) equal to 100%. Again, in the effort to alleviate the 

concern of just drawing a conclusion based on a small number of images, it is still important to statistically produce 

results showing how each rounding function would have performed if a bigger number of images were used. In this way, 

let us consider the number of images varying from 50 to 50 000 images and find the percentage of the number of 

targeted occurrences, the ceil, round, and floor functions can achieve with the level of confidence equals to 95%. 

 
Table 6: F = 9 times, C = 26 times, R = 12 times 

IMAGE 7 & 8 ratio = 2 ratio = 3 ratio = 4 ratio = 5 ratio = 2 ratio = 3 ratio = 4 ratio = 5 

MSE C & R C C C C & R C C C 

BRISQUE F & C F & C & R C R F & C F & C & R F & C & R R 

NIQE C & R F C F C & R F C F & R 

SSIM C & R C C C C & R C C C 

 
Table 7: F = 7 times, C = 24 times, R = 11 times 

IMAGE 9 & 10 ratio = 2 ratio = 3 ratio = 4 ratio = 5 ratio = 2 ratio = 3 ratio = 4 ratio = 5 

MSE C & R C C C C & R C C C 

BRISQUE  F & C F & C & R F & C & R C F R C F 

NIQE C & R F C R F R C R 

SSIM C & R C C C C & R C C C 

 

Table 8: The number of occurrences  

Functions Number of test images Achieved / Targeted occurrences Achieved occurrences in % MOE 

ceil (C) 10 126/160  78.75% ± 0 % 

round (R) 10 56/160 35% ± 0 % 

floor (F) 10 36/160 22.5% ± 0 % 

 

Here, the sample size (n) equals 160 (i.e., the total number of targeted occurrences in all 10 test images) for all rounding 

functions, the population size (N) changes from 800 to 800 000 targeted occurrences (corresponding to 50 to 50 000 

images), the confidence level equals to 95 %, z-score equals to 1.96, and the MOE is obtained using Eq.5. Referring to 

results presented in Table 9, it can be concluded with 95% confidence that the ceil, round, and floor functions can 



 

 
 

 

 

respectively achieve at least 72.412 %, 27.61 %, and 16.03 % of the number of targeted occurrences in 50 to 50 000 test 

images – thus confirming that the ceil function can achieve better performance than other rounding functions on a big 

number of images. It is important to note that the sample proportion percentage (p) is calculated using achieved 

occurrences and targeted occurrences of each rounding function, as shown in Table 8. And, here, the proportion 

percentage is equal to the percentage of achieved occurrences shown in Table 8. 

 
Table 9: Performance of ceil, round, and floor functions 

Number of test images Targeted occurrences ceil ± MOE round ± MOE  floor ± MOE  

10 160 78.75 % ± 0 % 35% ± 0 % 22.5 % ± 0 % 

50 800 78.75 % ± 5.673 % 35% ± 6.615 % 22.5 % ± 5.791 % 

500 8,000 78.75 % ± 6.275 % 35% ± 7.317 % 22.5 % ± 6.406 % 

5,000 80,000 78.75 % ± 6.332 % 35% ± 7.383 % 22.5 % ± 6.464 % 

50,000 800,000 78.75 % ± 6.338 % 35% ± 7.39 % 22.5 % ± 6.47 % 

 

5. CONCLUSION  

In this study, the ceil, floor, and round functions were selected and evaluated in nearest neighbor image interpolation. 

Studying the influence of rounding functions on nearest neighbor image interpolation quality encompasses the 

contribution and novelty of this paper. Demonstrations and/or descriptions were provided focusing on the linear scaling 

equation, the rounding functions, the coordinates translation, and pixel replication. The IQA metrics, the number of test 

images, the number of scaling ratios were used to develop and implement the concept of the number of occurrences. The 

number of occurrences-based experiments concluded that the ceil, round, and floor functions achieved 78.75 %, 35 %, 

and 22.5 % of the number of targeted occurrences in 10 test images. Inferential statistics-based experiments concluded 

with 95% confidence that the ceil, round, and floor functions can respectively achieve at least 72.412 %, 27.61 %, and 

16.03 % of the number of targeted occurrences in 50 to 50 000 test images – thus making the ceil function the most 

appropriate rounding function for nearest-neighbor interpolation purposes.  
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