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A B S T R A C T   

Climate change and urbanization put stress on urban stormwater systems, triggering hydraulic overloading and 
urban flooding increase. Low Impact Development (LID) techniques have a high potential to mitigate their 
impacts. This study investigates the consequences of climate change and urbanization on the urban runoff in the 
Risvollan catchment in Trondheim, Norway, and the effects of LID implementation and the influence of LID 
spatial distributions on their performance. A SWMM model of Risvollan was implemented, along with different 
scenarios of urbanization and climate change. The performance of various spatial distributions of LID in
frastructures in the catchment was investigated, using the outflow volume and the peak runoff at the outfall as 
indicators. The rainfall event-based simulation results confirmed the negative effects of urbanization and climate 
change on urban runoff. These effects were partially mitigated by a homogenous LID implementation. The 
different spatial distributions of LID had little impact on volume reduction but targeting the most downstream 
zones of the model was more efficient in reducing the peaks at the catchment’s outlet. These findings confirm 
that the spatial configuration of LID might be a determinant parameter towards an efficient design of LID 
infrastructure in urban settings, depending on the local stakes and criteria of urban water management.   

1. Introduction 

In Norway, rainfall intensity and amount are expected to increase in 
the future due to climate change (Sorteberg et al., 2018). On the other 
hand, urbanization alters runoff formation by sealing permeable sur
faces, thus limiting infiltration and evaporation of water (Shuster et al., 
2005) and increasing stormwater runoff. The combined effect of climate 
change and rapid urbanization will increase the volume and intensity of 
stormwater in the future. Consequently, many stormwater management 
systems are at risk of increased overflow frequency, with the associated 
urban flooding and sewage overflow (Skougaard Kaspersen et al., 2017), 
which will have significant economic (Zhou et al., 2012), health (Han & 
He, 2021) and environmental (Semadeni-Davies et al., 2008) 
consequences. 

In the last few decades, low-impact development (LID) in
frastructures have been regarded as sustainable stormwater solutions 
that mitigate climate change and rapid urbanization. LID techniques 
increase permeability and vegetation cover of urban catchments, which 
enhance evapotranspiration and infiltration and reduce the amount of 

stormwater runoff flowing to the drainage network (Eckart et al., 2017). 
Among the LID infrastructures, green roofs and permeable pavements 
have the potential to reduce stormwater volumes permanently. Addi
tionally, they attenuate and delay the drainage outflows due to water’s 
temporal storage and routing, which is beneficial for stormwater 
management. 

For green roofs, volume reduction due to evapotranspiration was 
found to vary between 11 and 59 % of the annual precipitation in cold 
and wet climatic regions (Bengtsson et al., 2005; Johannessen et al., 
2018; Stovin, 2010). Furthermore, green roofs were found to attenuate 
drainage outflows by 59–90 % (Johannessen et al., 2018; Palla et al., 
2011; Stovin et al., 2012). These are significant figures for stormwater 
management, considering that building roofs account for up to 50 % of 
impervious areas in densely urbanized catchments (Dunnett & Kings
bury, 2004). On the other hand, permeable pavements provide high 
volume reduction due to infiltration (Drake et al., 2013). Significant 
volume reduction can also be obtained even when permeable pavements 
are constructed over soils with low permeability (Dreelin et al., 2006). 
Furthermore, permeable pavements were found to detain the drainage 
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flow effectively with an average peak reduction of around 80 % (Bras
well et al., 2018; Winston et al., 2018) and average peak delay between 
15 mins to 4 h (Fassman & Blackbourn, 2010; Støvring et al., 2018). 

Numerous studies have investigated the catchment-scale imple
mentation of LID infrastructure to identify the density of LID measures 
needed to achieve desirable hydrological performances. For instance, 
Palla & Gnecco (2015) concluded that at least 5 % of impervious sur
faces should be converted into LID measures to obtain noticeable hy
drological benefits at the catchment scale. Hamouz et al. (2020) stated 

that retrofitting 11 % of the building with green roofs would substan
tially reduce the maximum flow at the catchment outlet. Hernes et al. 
(2020) presented the effect of different LID densities on the resulting 
combined sewer overflow at the catchment outlet. Skaugen et al. (2020) 
concluded that for their study case, an urban catchment with 500 
houses, 60 rain gardens (unit area of 10 m2) are needed to reduce the 
peak flow by 10 %. 

Recently, the spatial configuration of LID measures in urban catch
ments has been regarded as an impactful parameter for the efficiency of 

Fig. 1. A) Orthophoto of Risvollan catchment (© Statens kartverk, Geovekst and Trondheim municipality). B) Digital elevation model of Risvollan. C) Land use of 
Risvollan. D) Sewer network of Risvollan. E) Catchment zones for LID implementation scenarios. 
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stormwater management at the catchment scale (Giacomoni & Joseph, 
2017). However, only a few studies have been found to investigate this 
topic. For instance, Yao et al. (2020) examined different spatial con
figurations of green roofs and found that retrofitting roofs directly 
connected to the drainage network achieves higher hydrological bene
fits. Likewise, Liang et al. (2020) concluded that a higher peak reduction 
could be achieved at the catchment outlet by implementing LID mea
sures in areas directly connected to the drainage network. Hou et al. 
(2020) found that placing LID measures near areas sensitive to flooding 
and pollution is the most cost-effective strategy. Similarly, Ercolani et al. 
(2018) recommend placing LID measures near portions of the drainage 
network that are prone to overflowing. Giacomoni & Joseph (2017) 
found placing LID measures at the downstream portion of the catchment 
to yield better peak reduction at the outlet while placing LID measures at 
the upstream reduces the surface flooding at the downstream areas. 

Hydrological models are essential tools for studies that aim to eval
uate LID implementation scenarios at the catchment scale. The EPA’s 
Storm Water Management Model (SWMM) is perhaps the most common 
tool for these studies. However, most of these studies applied SWMM 
catchment models without calibration (Liang et al., 2020; Yao et al., 
2020). Indeed, this is a limitation as uncalibrated SWMM models might 
yield unsatisfactory modelling performances (Peng & Stovin, 2017), 
which could alter the findings of such studies. On the other hand, many 
scholars have attempted to calibrate SWMM catchment models by 
altering physical properties such as the percentage of imperviousness 
(Hamouz et al., 2020). This practice is questionable since LID imple
mentation scenarios would also involve changing the degree of imper
viousness and hence abolishing the calibration setup. There is a clear 
need for a proper sensitivity analysis to identify the most influential 
SWMM catchment model parameters for calibration without changing 
the physical properties, such as the degree of imperviousness. 

The motivation for this study was to investigate the influence of the 
spatial distribution and density of LID measures on runoff mitigation 
and provide insights to improve the robustness of implementation 
strategies of LID infrastructures within an urban catchment. This work 
implemented the SWMM model for an urban catchment in Trondheim, 
Norway, and several urbanizations and climate change scenarios. LID 
techniques integration at different spatial locations and densities was 
also implemented. This paper addresses the following:  

(i) Identification of the most sensitive parameters of the SWMM 
modelling approach 

(ii) Modelling of the combined impact of climate change and ur
banization on runoff mitigation  

(iii) Comparison of different spatial configurations for LID 
implementation. 

2. Methods 

2.1. Study site and data 

The study area is an urban catchment, Risvollan, in Trondheim city, 
Norway. A separate stormwater management system drains water over 
20.6 ha in the residential area of Risvollan, in the south-east of the city, 
where the elevation varies between 85 and 134 m.a.s.l. This study used 
the GIS spatial data, subcatchments delineation and stormwater network 
data from Hailegeorgis & Alfredsen (2018) study. The catchment was 
considered 27 % impervious area, with 14 % roofs, 9 % roads and 4 % 
sidewalks, and 73 % pervious area, including grasslands, vegetated 
areas, and some built-up zones. Most of the land cover delineations were 
done using aerial photos and local land use maps, while the sidewalk 
areas were obtained by 1 m buffering around the road zones. The 
catchment was subdivided into 55 subcatchments, on average of 0.39 
ha, linked together by a stormwater network comprised of 78 manholes, 
78 conduits and one outlet. Fig. 1 presents a map of the area, including 
subcatchment delineation, land cover delineation and an outline of the 

stormwater network. A measure station next to the outlet provides 
several decades of 1-min precipitation and temperature data. Precipi
tation was measured with an unshielded Lambrecht tipping bucket, with 
0.1 mm per tip. Stormwater flow data at the outfall of the catchment was 
also collected with a 1-min resolution. Missing stormwater flow data 
was interpolated linearly, and time periods with significant missing data 
were excluded from the study. 

2.2. Model and model setup 

The study system and area are modelled in the EPA’s Storm Water 
Management Model (SWMM), an open-source model first developed in 
1971, and widely used for planning, design, and analysis of stormwater 
systems. This study used the version 5.1 that incorporates LID modelling 
for various types of green infrastructure, such as green roofs and 
permeable pavements (Rossman, 2015). The model set-up from GIS 
data, as well as all future manipulations for calibration, sensitivity study 
and scenarios exploration, were done in R programming language using 
the swmmr package (Leutnant et al., 2019). In this study, the SWMM 
catchment model simulates the rainfall/runoff process using the Green- 
Ampt equation for infiltration and kinematic wave formula for runoff 
routing (Rossman, 2015). All simulations were event-based. Hence, 
evaporation was ignored in this study. 

Both permeable pavements and green roofs were implemented in this 
study, using the internal LID module in SWMM (Rossman, 2015). This 
module simulates the hydrological processes of green roofs using Green- 
Ampt equation for surface infiltration to the soil layer, Darcy’s equation 
for percolation to the drainage layer and manning formula for drainage 
layer outflow. For permeable pavement, the water infiltrates from the 
surface directly to the soil layer (the bedding layer), limited by the 
permeability of the surface layer. The percolation from the bedding 
layer to the base layer is determined following Darcy’s equations, and 
the drainage flow is determined by an empirical power equation 
(Rossman, 2015). 

The green roof type implemented consisted of a 30 mm vegetation 
mat over a 10 mm textile retention fabric and was designed for sloped 
roofs. All green roofs implemented had the same unit area of 15 m2 and 
the same unit width of 7.5 m. Their parameters for the surface, soil and 
drainage layers in the SWMM model were obtained from Johannessen 
et al. (2019). A permeable pavement with a bottom liner was imple
mented in the study. It comprises of an interlocking pavement of 80 mm 
thickness with 10 mm joints that allows water to infiltrate into a 30 mm 
bedding layer. The base layer was 100 mm thick and made of coarse 
materials, and the subbase layer was 250 mm thick. The pavement was 
lined with an impermeable geotextile. All permeable pavements 
implemented had the same unit area of 100 m2 and the same unit width 
of 8 m. The parameters for the SWMM implementation of the permeable 
pavements were obtained from Abdalla et al. (2021). 

2.3. Calibration and validation 

Rainfall-runoff events were extracted for calibration and validation 
from the precipitation and the stormwater runoff data of the recent years 
(2016 to 2019) to account for recent urbanization and land use change 
in the catchment. The start of events was defined at the first rainfall 
measurement, and the end was defined when the flow returns to the 
minimum measured value of 0.001 m3/s. To eliminate too small events, 
only those with an accumulated precipitation greater than 3 mm were 
considered. This yielded several dozens of events for the four years. 

The physical model parameters, such as subcatchment width, area, 
slope, imperviousness degree, as well as manholes and pipes geometric 
characteristics, were extracted from Hailegeorgis & Alfredsen, (2018) 
study. In their study, they developed a distributed hydrological model 
for the Risvollan catchment with high spatial resolution to account for 
variability of land use and land cover of the catchment. They found a 
grid size of 5 × 5 m to be sufficient for accounting for the spatial 
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variability. Accordingly, and through GIS analysis, they divided the 
catchment into 55 subcatchments that are connected with a network of 
pipes and manholes. Their model achieves satisfactory results, indi
cating that the spatial discretization was adequate. Therefore, we 
decided to use the spatial discretization from their study. Another reason 
to use spatial discretization from Hailegeorgis & Alfredsen, (2018) study 
is the fact that SWMM is a semi-distributed hydrological model. Hence, 
spatial discretization with high resolution is needed to analyse and 
compare different spatial configurations of LID measures at a catchment 
scale. 

The Manning’s roughness for the impervious zones was set to 0.013 
in impervious zones and 0.15 in pervious zones, in accordance with the 
values provided in the SWMM User Manual (Rossman, 2015). The 
subcatchments were divided into two categories, depending on their 
impervious rate. A threshold of 30 % of imperviousness was selected to 
separate pervious and impervious subcatchments. This denomination 
criterion was carried on for the relevant model parameters. It differen
tiated between the subcatchments containing mainly open grassland and 
vegetation, and those comprising a more significant part of human 
constructions and built-up areas. 

The calibrated parameters were the parameters of Green Ampt 
infiltration equation, i.e. saturated hydraulic conductivity and suction 
head, attributed to each subcatchment category, initial moisture deficit 
for pervious and impervious sub-catchments,depression storage vol
umes for both pervious and impervious zones in all subcatchments, the 
seepage loss rate in the pipe network and Manning’s roughness of pipes, 
as well as the baseflow of the drainage pipes, for a total for 11 calibrated 
parameters. The baseflow is related to processes that were not included 
in the model, such as leakage from the drinking water system, and 

connections to the wastewater system. The boundaries for the infiltra
tion, depression storage and seepage rate were set using the SWMM User 
Manual (Rossman, 2015), and the baseflow boundaries were set around 
the minimal measured outflow. The pipe roughness was calibrated 
outside its recommended range in the SWMM manual to account for 
model delays and network irregularities (e.g., obstructions, singular 
energy losses points or unforeseen leakages). The summary of the 
boundaries for each parameter is visible in Table 1. 

The calibration was performed using the Differential Evolution al
gorithm (Storn & Price, 1997) using the DEoptim library in R (Mullen 
et al., 2011). Initially, the algorithm creates a population of random 
solutions by selecting model parameters from given ranges. Each of the 
solutions is evaluated based on the value of the objective function. Then, 
the algorithm creates a new population in a way that each solution is 
either improved or remains the same. This process continues for a 
number of iterations (100 in this study) and the best solution in the last 
population is selected as the optimal. The calibration process used Kling- 
Gupta efficiency KGE as the objective function (Gupta et al., 2009) to 
evaluate the goodness-of-fit of the modelled output compared to the 
measurements of outflow. 

Seven events were chosen for calibration by excluding winter events 
and aiming for variety in rainfall hyetograph shapes (Table 2). The time 
step for modelling was selected as 10 min and hence rainfall and runoff 
data were aggregated accordingly. The calibration was performed in 
three steps as follows:  

1. One selected event (C3) was calibrated; 

Table 1 
SWMM parameters selected for calibration, their selected ranges and optimal ranges of the ensemble.   

Parameter Abbreviated name Unit Lower Bound Upper bound ensemble range 

Infiltration in pervious subcatchments Hydraulic conductivity in pervious zones KsatPer mm/h 0.1 10 0.08–3.27 
Initial moisture deficit in pervious zones IniMoistDefPer – 0 1 0–1 
Suction head in pervious zones SuctionPer mm/h 0.1 10 0.89–9.5 

Infiltration in impervious subcatchments Hydraulic conductivity in impervious zones KsatImp mm/h 0.1 10 0.15–5.31 
Initial moisture deficit in impervious zones IniMoistDefImp – 0 1 0–1 
Suction head in impervious zones SuctionImp mm/h 0.1 10 4.07–9.78 

Common to all subcatchments Depression storage in impervious zones DepStoImp mm 0.01 1 0.98 
Depression storage in pervious zones DepStoPer mm 0.01 1 0.95 
Manning’s pipe roughness Roughness 

s.m
−
1
3 

0.01 0.5 0.15–0.34 

Seepage rate Seepage mm/h 0 250 1.53–97 
Baseflow BasFlow L/s 0 0.8 0.05–0.32  

Table 2 
Summary of extracted rainfall events.   

Event name Start date and time End date and time Duration (h) Peak 
(mm/min) 

Amount (mm) Return period (years) 

Calibration events C1 29.09.2016 23:07 30.09.2016 07:23 8.27 0.2 10.3 <1 
C2 10.08.2018 09:37 11.08.2018 20:22 34.75 0.3 40.6 <1 
C3 19.08.2017 13:27 21.08.2017 13:06 47.65 0.5 46.6 <1 
C4 27.10.2017 19:10 30.10.2017 11:06 64.93 0.2 37.4 <1 
C5 30.10.2019 15:26 02.11.2019 01:13 57.78 0.2 17.5 <1 
C6 13.09.2019 09:22 22.09.2019 12:13 218.85 0.4 107 <1 
C7 30.10.2017 15:40 03.11.2017 09:17 89.62 0.1 27.7 <1 

Validation events V1 29.08.2019 13:54 29.08.2019 19:37 5.72 0.4 8.6 <1 
V2 07.06.2019 10:39 07.06.2019 18:08 7.48 0.3 8.9 <1 
V3 11.07.2017 23:58 12.07.2017 09:45 9.78 0.2 7.9 <1 
V4 18.10.2017 02:59 18.10.2017 15:20 12.35 0.3 6.1 <1 
V5 18.06.2017 18:39 22.06.2017 05:36 46.63 0.2 34.1 <1 
V6 22.09.2018 11:25 02.10.2018 18:13 5.07 0.2 98.5 <1 
V7 18.04.2018 02:03 23.04.2018 07:58 64.93 0.6 17.5 <1 

Rainfall events for scenarios analysis E1 20.07.2009 00:00 20.07.2009 23:59 24 0.2 68.9 20 
E2 29.07.2007 00:00 29.07.2007 12:00 12.00 1 42.5 5 
E3 05.06.2003 12:59 05.06.2003 19:00 6.00 0.7 30.7 5 
E4 13.08.2007 18:15 13.08.2007 18:45 0.3 3.3 11.8 100  
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2. The initial soil moisture deficits of each of the seven calibrated events 
were optimized. This was achieved after fixing all other parameters 
to the values of the optimal parameter set of C3;  

3. The depression storages are fixed to the optimal value of C3 and the 
optimal initial saturation of each event are fixed. Then, the remining 
model parameters were optimized for each event separately. 

This process resulted in a different parameter set for each of the 
seven calibrated events. These parameter sets were considered for 
ensemble simulation in which each parameter set yields different flow 
simulation. The results of ensemble simulations are combined to provide 
a measure of uncertainty due to model parameters. 

Six validation events were extracted from 2016 to 2019 data in the 
same fashion as the calibration events and are presented in Table 2. The 
calibrated models of the ensemble were applied to provide flow simu
lations for those events. The model performance was evaluated against 
the average of the ensemble using KGE (equation (1)). 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(1)  

r is the correlation between simulations and observation, α is the mea
sure of flow variability error and β is the measure of the volumetric error 
(percentage bias). 

2.4. Sensitivity analysis 

A sensitivity analysis of the parameters was carried out to screen the 
parameters of the model. This approach can also constitute a first 
analysis of the uncertainty of the simulation results. 

The applied method was derived from the GLUE methodology 
(Beven & Binley, 1992), implemented in a similar fashion to Krebs et al. 
(2016). Also referred to as Monte-Carlo filtering (Saltelli et al., 2007), 
this method relies on Monte-Carlo simulations with a filtering method to 
distinguish behavioural and non-behavioural parameter sets. The 
behavioural parameter sets are defined as parameter sets leading to 
performance higher than a specific threshold value of the objective 
function. The initial distribution of parameter sets is considered as a 
prior while the filtered distribution stand for a posterior distribution. 
The sensitivity is evaluated by computing the Kolmogorov Smirnov (KS) 
distance between the prior and posterior distribution of each parameter. 
The distance associated to each parameter is then screened to select the 
most behavioural parameter, i.e. the parameters with the largest sta
tistical distance between prior and posterior. 

The Sobol sequence (Sobol, 2001) was chosen to sample 65 000 sets 
of the 11 parameters. The model was run with event C3 (Table 2) for 
each of the parameter sets. The performance was evaluated with three 
objectives functions (equations 1, 2 and 3). The KGE threshold used to 
separate behavioural and non-behavioural parameters was 0.58. To 
evaluate the results of the GLUE-based sensitivity screening, the method 

Fig. 2. Calibration results of the SWMM model.  
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was confirmed using another sensitivity analysis method, the RBD-FAST 
method (Random Balance Design – Fourier Amplitude Sensitivity Test) 
(Tarantola et al., 2006) and Sobol 1st order and total effect indices 
(Sobol, 2001). For this purpose, the sensitivity analysis was also applied 
to the KGE, NSE and the PBIAS with GLUE and the RBD-FAST. Different 
thresholds were chosen for the GLUE methodology to ensure that the 
filtered dataset include 15 %, 5 % and 1 % of the sampled parameter. In 
addition, Pearson correlation coefficients were determined between the 
behavioural parameters to evaluate correlations between model 
parameters. 

NSE = 1 −
∑

(Qobs − Qsim)
2

∑
(Qobs − Qobs)

2 (2)  

PBIAS = 100 ×

∑
Qsim −

∑
Qobs

∑
Qobs

(3)  

Qobs and Qsim are the observed and simulated runoff, respectively. 

2.5. Urbanization, climate and LID scenarios 

2.5.1. Rainfall-Runoff analysis and runoff descriptors 
It has been demonstrated that the performance of green roofs is 

influenced by the rainfall intensity and shape of the hyetograph (Eckart 
et al., 2017; Yao et al., 2020). In this work, real recorded rainfall events 

of different durations were chosen from historical data, with a 1-min 
resolution, byscreening for extreme events as well as events whose re
turn periods are around the usual design return periods for stormwater 
systems. The European standard BS EN752:2008 recommends a design 
storm return period of 1 year for rural areas, 2 years for residential areas, 
5 years for city centres without flooding checks, and up to 10 years for 
areas with underground railways (Butler et al., 2018). Finally, three 
events of different durations, referred as E1, E2 and E3, were extracted 
from the historical data, with return periods ranging from 5 to 20 years. 
The highest event ever recorded in Trondheim from August 2007 was 
included, referred to as E4. With a return period of more than 100 years, 
this extreme rainfall event was accompanied by flash floods and extreme 
flooding, triggering damage in the city. Table 2 presents those events 
and their estimated return periods. 

As has been done in a previous study (Shuster et al., 2005), the 
catchment runoff descriptors used were the total outflow volume, made 
of the sum of the outflow volume and the flooding volume, and the peak 
runoff value. The peak flooding value was also extracted from the sim
ulations output for each manhole. The flooding in SWMM is the overflow 
from manhole when the drainage pipe is surcharged. It is calculated 
when the pipe and manhole reached their full capacity (Rossman, 2015). 
The results for those indicators are presented both in raw values and in 
variation rates. The respective references for the evolution rates are 
given in the relevant sections. 

Fig. 3. Validation results of the SWMM model. The shaded areas represent the variabilities within the ensemble.  
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2.5.2. Urbanization 
The catchment had an initial impervious rate, including roofs, side

walks and road, of 27 %. Based on this reference scenario Nref, seven 
urbanization scenarios were developed with different imperviousness 
rate ranging from 30 % to 90 %. Each scenario was named “NX”, where X 
was the target impervious rate. The scenarios were developed as follow: 
i) newly impervious areas were distributed in order to favour lowly 
impervious areas first and aim for homogenized imperviousness of each 
subcatchments but keeping the initial bias of scenario Nref for each 
scenarios, ii) the maximum imperviousness rates was set to 95 %. For 
each urbanization scenario, the model parameters were updated using 
the impervious/pervious boundary defined during the calibration pro
cess. Scenarios Nref, N60 and N90, are studied more in detail in the later 
results. 

2.5.3. LID implementation 
The ten most impervious subcatchments in the current state of the 

Risvollan catchment, with an average of 51 % roofs, 37 % roads and 12 
% pavements for the impervious areas, were the reference for the 
breakdown of impervious area in all scenarios. 

The LID infrastructures were implemented by addition of unit com
ponents (with an area of 15 m2 for green roofs and 100 m2 for permeable 
pavements) until the total area of LID, obtained by the product of the 
target density and the available area, was reached in each target 
subcatchment. 

Each LID implementation scenario was defined by the density of LID 
among the impervious area and the strategy of implementation of LID, i. 
e. the type of subcatchment where LID were implemented. Six imple
mentation strategies were developed and are visible in Fig. 1: i) Ho
mogeneous as a reference scenario, ii) left zone and iii) right zone to 
study the impact of intense implementation without favouring a dis
tance to the outlet, iv) upstream, v) downstream1 and vi) downstream2 
to study the influence of the distance to the outlet. 

For the first scenario of homogenous LID spatial configurations, they 
were implemented in each subcatchment with the given density. For the 
following scenarios, the LID units were distributed randomly within the 
corresponding target subcatchments, until the target overall LID density 
was reached, or until the target zone was saturated in LID’s, i.e., when 
all available pavements and roofs had been equipped with permeable 
pavements or green roofs, respectively. 

2.5.4. Climate change 
To account for the expected increase in heavy precipitation intensity, 

climate change factors were used in this study to compare the behaviour 
of the model for the different rainfall events and the different scenarios. 
Given the durations and the return periods of the chosen events, 2 fac
tors were used in this study: 1, for the historical events without climate 
change, and 1.4, to study those same events accounting for climate 
change (Dyrrdal and Førland, 2019). 

3. Results and discussion 

3.1. Model parametrization 

3.1.1. Calibration and validation results 
It is a common practice to calibrate the impervious rate of sub

catchments in SWMM models. The imperviousness degree is part of what 
Liong et al. (1991) calls non-traditional parameters. Contrary to the 
traditional parameters, i.e., infiltration parameters or depression stor
ages, non-traditional parameters can technically be measured or inter
preted from measures, but due to model limitations, relative errors and 
complex measurement procedures, they are often included in the cali
bration process and have relatively dominant effects. For example, 
Sangal & Bonema (1994) recommends the determination of the imper
vious rate to be the first step of the calibration, using a storm in which 
the rainfall intensity does not exceed the infiltration capacity of the 
pervious areas. More generally, with current automated calibration 
processes, this parameter is often included within the calibration 
parameter set, see for example (Hernes et al., 2020; Panos et al., 2018; 
Temprano et al., 2007), among many others. However, this method was 
not applicable here as the future urbanization scenarios would involve 
manipulations of the impervious rate. 

The calibration resulted in KGE values ranging from 0.705 to 0.898 
(Fig. 2) for the seven calibrated events. Kouchi et al. (2017) reports that 
a KGE ≥ 0.75 defines a good model performance, and KGE ≥ 0.5 defines 
a satisfactory model performance. This indicates a good to satisfactory 
calibration results. The model provides a satisfactory outflow timing and 
shape in most of the simulated events. However, the modelled peak 
values were underestimated for some events. The optimized parameter 
values are presented in Table 1. Fig. 3 presents the performance of the 
calibrated SWMM models on the six validation events. By comparing the 

Fig. 4. Bivariate Kernel Density Estimation (KDE) plots (below diagonal) and univariate KDE plots (diagonal) of the most sensitive parameters of the SWMM model.  
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average of the ensemble with the observation, three events yielded 
simulation with satisfactory KGE values (KGE greater than 0.5). This 
means that for certain events (V1, V2 and V4), the model performance 
was unsatisfactory, when only the mean of the ensemble is considered. 
However, the peak values of most of the validations events laid within 
the bounds of the ensemble, except for V1. Hence, the SWMM model 
with the ensemble simulation is considered valuable for evaluating the 
effect of LID implementation on high flow values. Therefore, it was 
decided to apply the ensemble simulations for investigating scenarios of 
LID implementation. 

3.1.2. Sensitivity analysis results 
GLUE has been applied to the Risvollan model, as an assessment of 

uncertainty, to estimate the relative sensitivity of the parameters and 
screen the most behavioural ones. 

After the filtering of the 65 000 parameter sets with KGE of 0.58 as a 
threshold value separating behavioural and non-behavioural parame
ters, 682 parameter sets were found to be behavioural, representing 1 % 
of the generated datasets. Fig. 4 presents the bivariate and the univariate 
kernel density (KDE) plots of the 5 most sensitive parameters of this 
SWMM model (BaseFlow, DepStoPer, KsatPer, KsatImp, Seepage). The two 
predominantly sensitive parameters, the baseflow and the depression 

storage in pervious area, highlight the characteristic of lowly urbanized 
catchment: there is a lot of uncertainty in the natural area behaviour and 
inflow going in the network. The hydraulic conductivities, and to a 
lesser extent the pipe seepage rate, absorb model irregularities and 
unmodelled hydrological processes in this model (e.g. interaction with 
groundwater) and smoothen the output. 

The use of RBD-FAST method and Sobol 1st order and total effect 
indices (Fig. 5) led to a similar screening. However, the GLUE-based 
sensitivity is sensitive to the threshold used in terms of ranking. It 
should also be noted that the ranking depends on the objective function 
chosen. According to RBD-FAST and Sobol indices, the depression 
storage in pervious area is more sensitive than the baseflow in terms of 
NSE and Pbias. The ranking differ for NSE with the GLUE-based 
approach. Those results confirm that the GLUE methodology can be 
applied for screening behavioural and non-behavioural parameters if 
used carefully; despite the flexibility of the GLUE method, it does not 
allow to achieve similar ranking as the one achieved with the RBD-FAST 
or Sobol indices. The sizes of the filtered dataset can also influence the 
results, so the threshold should be carefully selected (Brunetti et al., 
2016). 

The review from Salvadore et al. (2015), that concluded that in many 
SWMM modelling studies, the most sensitive parameters are the 

Fig. 5. Sensitivity measure of the Sobol, RDB_FAST method and the GLUE-based Sensitivity analysis (SA) using KGE, NSE and PBIAS as objective function. The order 
of the parameter is obtained from the raking according to RDB-FAST with KGE. Different thresholds were used for the GLUE-based SA to ensure that the filtered 
dataset contain 15%, 5% of 1% of the original dataset. 
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Manning’s roughness coefficient of pipes and the impervious rate. In the 
current approach, due to the use of baseflow, the roughness had a lower 
influence. Due to the necessary hypothesis for LID implementation 
scenario, the impervious rate was not considered as a calibrated 
parameter. Krebs et al. (2013) found that for their model, the depression 
storage in impervious zones was the most sensitive parameter, similarly 
to the current study where it ranks 2nd. 

The correlation between the most sensitive parameters is displayed 
on Fig. 4. With a maximum absolute value of 0.35, it appears that there 
is no strong correlation between any of the parameters, indicating an 
adequate independence of the parameters. This is reflected in total effect 
Sobol indices where the ranking remain unchanged from 1st order 
indices. 

3.2. Scenarios exploration results 

3.2.1. Effects of urbanization and climate change on current catchment 
The results of the first simulations, aiming at evaluating the influence 

of urban growth and climate change on the study area, are presented in 
Fig. 6. Without accounting for climate change, the increase of urbani
zation already has a high impact on the flow indicators. For E4, the peak 
flooding increase by 100 % and the total volume outflow by 20 % be
tween the initial situation Nref and the N90 urbanization scenario. The 
peak discharge stay stable since the maximum capacity of the outflow 
pipe is reached during the simulation. Hence, a stable peak discharge 
does not mean no effect. The total volume and the peak of flooding can 
still increase, e.g. for event E4 with a climate factor of 1.4, with up to 62 

% increase of total volume outflow and 260 % increase of peak flooding. 
While the linear increase of precipitation resulted in a linear increase in 
the total outflow volume, it appears that the increase of peak runoff is 
non-linear. E2, E3 and E4 display an identical maximum peak value, 
around 0.038 mm, for several urbanization scenarios. This peak value 
most likely corresponds to the maximum outlet capacity of the network. 
Likewise, Ercolani et al. (2018) observed a non-linear peak reduction 
with respect to a catchment-scale green roof implementation. The au
thors attributed this non-linearity to drainage network being close to its 
maximum capacity. 

The peak flooding values continue to increase, linearly for E1, E2 and 
E3. Fig. 7 shows the spatial impact of an intense urbanization scenario 
(90 %) on the spatial flooding values at Risvollan. Intense precipitation 
events, especially E4 and E2, triggered flooding from different manholes 
at Risvollan under this intense urbanization scenario. It can be seen from 
Fig. 7 that some manholes experienced higher flooding values, espe
cially at the downstream parts of Risvollan. Additionally, the results 
showed that flooding from sewer manholes is triggered by rainfall in
tensity and not by the rainfall amount. For instance, E2 (return period =
2 y) caused more flooding than E1 even though E1 has more amount and 
higher return period (return period = 5 y), as summarized in Table 2. 

3.2.2. Effects of homogenous LID 
This section presents and discusses the results of homogenous LID 

implementation on all subcatchments. The variations of indicators 
induced by 100 % implementation of homogeneous LID for the different 
urbanization scenarios are presented in Fig. 8. Under the current climate 

Fig. 6. Impacts of urbanization and climate change on urban runoff. The shaded areas represent the variabilities within the ensemble.  
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for events E1, E2 and E3, the peak discharge tends to decrease, its vari
ation ranging from 0 to –22 %. It means that the more the city gets ur
banized the more effective the LID gets. However, for E2 and E4, the 
maximum outlet flow, i.e. the capacity of the drainage network, is 
attained as shown in Fig. 8, obscuring the performance of the LID 
implementation. However, the evolution of peak flooding reflects the 
LID mitigation action, as it is very consistently reduced by large rates, 
between around 50 % for N90 and event E2 and E3. 

Event E4, the most extreme event out of the 4, with a return period of 
100 years, yielded more erratic results than other events when it comes 
to peak reduction. This might be due the fact that the maximum pipe 
capacity is reached. In addition, the nature of this event, short and 
intense, triggers the complexity of the system and lead to more un
foreseen peaks. The behaviour of the system was not investigated further 
regarding this matter; however, the peak flooding tends to decrease with 
presence of LID. 

The results in Fig. 9 show the variation of peak discharge and 
flooding with the scenario Nref No-LID as a reference. The scenario 
Homogeneous 100 % and No-LID are displayed. It shows for No-LID the 
increase of the indicators (except peak discharge when the pipe capacity 
is reached). The range corresponding to Homogeneous scenario showed 
that it is possible to compensate urbanization in most of the events (E1, 

E2 and E3). However, when climate change is considered, it is not 
possible to come back to performance without climate factor and 
without urbanization. It is nonetheless possible to contain the effect of 
climate change with high urbanization. 

The total outflow variation (Fig. 8c) appears to be almost linearly 
decreasing with LID density for all rainfall scenarios, with some outlier 
values appearing for E4. At N90, the reduction rate ranges between 12 
and 46 %. When comparing these values to the pre-urbanization vol
umes (Fig. 9), it appears that it is not possible to compensate completely 
the imperviousness increase for all events and all model in the ensemble. 
However, the volume increase can be limited and often it can even 
decrease, e.g. for E3 the volume vary between 5 and 45 % without LID 
and 10 to − 20 % with LID, which evidently reduces the stress on the 
stormwater system. The range of the ensemble encompass model un
certainty and initial conditions variation. This approach shows the value 
of ensemble modelling with multiple events to cope with climate and 
condition variability. 

When considering climate change, the effect on the total volume 
outflow of the system is the most prevalent, which is expected since the 
volume of the rainfall increases. On Fig. 8, the values of total volume and 
flooding are shifted according to the climate factor. The Peak discharge 
variation is only positive for E1 since the maximum capacity of the 

Fig. 7. Impacts of intense urbanization scenario (90 %) on peak flooding from manholes at Risvollan catchment without climate change (CF = 1).  
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system was not reached. The LID implementation, occupying 100 % of 
available surfaces, cannot compensate both effect of urbanization and 
climate change (Fig. 9). However, it can compensate the effect of ur
banization since the variation of total volume outflow stay stable with 
increasing urbanization when compared to Nref without LID or climate 
factor. 

Overall, homogenous LID implementation over the catchment was 
found to be an effective strategy to cope with increased urban runoff 
with increased urbanization and climate effects, for peak runoff, peak 
flooding, and total outflow volume. The LID implementation could 
partly compensate either urbanization or climate change, but can not 
fully compensate for the combination of the two. 

3.2.3. Influence of the spatial configurations of LID measures 
The variation of performance between the homogenous distribution 

and the five scenarios of spatial distribution of LID were evaluated. 
Fig. 10 and Fig. 11 presents the effects of LID implementation scenarios 
on peak discharge and total volume outflow variation, respectively, for 
three urbanization scenarios Nref, N60 and N90. In terms of total outflow 
volume and peak flooding, the left branch and right branch scenarios 
yielded similar results to those of the homogenous distribution. They 
were not found to be effective to reduce peak runoff. This indicates that 
there is no topographical or network difference that triggers a major 
behaviour difference in LID performance in those two zones. The results 
for peak discharge variation, indicate that the downstream scenarios can 
reach the same peak reduction levels as the homogenous LID with a 

smaller LID density, around 40 % for the first downstream scenario and 
20 % for the second. In contrast, upstream implementation has little 
effect on the peak discharge downstream. However, when it comes to 
outflow volume, the different LID distributions perform the same as the 
homogenous distribution. 

The spatial location of LID was found to influence the flooding from 
manholes. To demonstrate this finding, the six implementation scenarios 
were compared at a similar catchment scale LID density, which corre
spond to 100 % of LID in the target area of downstream2, the limiting 
scenario, corresponding to 23 % of the full catchment (for homogeneous 
scenario). The other LID densities within their respective target area 
were: 48 % (left), 51 % (right), 47 % (upstream), and 45 % (down
stream1). These scenarios were investigated on event E4 and urbaniza
tion N90 and by using one parameter set from the ensemble. These 
results are presented in Fig. 12. The homogenous configuration was 
found to be the least effective in reducing flooding peaks from manholes. 
Distributing LID at the upstream of the catchment resulted in flooding 
peak reductions in both the upstream and downstream manholes. 

Even with the short concentration time of the Risvollan catchment, 
of around 10–15 min (Skaugen et al., 2020), the runoff from the up
stream subcatchments has a lesser contribution to the peak flow due to 
the travelling processes, both overland and in the pipe network. 
Nevertheless, these results, along with the S-shape of the curves in 
Fig. 10, suggests that subcatchments close to a measurement point have 
higher influence on peaks. This implies the existence of critical sub
catchments, located downstream and close to the outlet of interest, that 

Fig. 8. Variation of performance induced by 100 % implementation of homogeneous LID depending on urbanization scenarios. The urbanization scenarios without 
LID are used as reference. Both current and future climate (Climate factor = 1.4) are displayed. The shaded areas represent the variabilities within the ensemble. 
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control most of the peak outflow, and that must be targeted to control it. 
Therefore, given a vulnerable outlet, if peak runoff is considered the 
most relevant indicator for the stress level put on the stormwater 
network, it seems possible to achieve the same performance as homog
enous LID in a much more cost, time and resources-efficient way, by 
targeting the critical subcatchments situated downstream, near the 
vulnerable outlet. However, the performance in terms of total volume 
reduction is the same for all LID spatial distributions. 

To compare these results with the findings of some studies around 
the same issues, Giacomoni & Joseph (2017) found placing LID at the 
downstream of the catchment to yield better peak reduction at the 
outlet, which is similar to the finding of this study. Hou et al. (2020), 
who developed an adaptive differential evolution algorithm to optimize 
the spatial priority scheme of various LID techniques, in Yichuan, China, 
recommended to place LID solutions near areas that are sensitive to 
flooding and pollution for achieving the most cost-effective stormwater 
management plan. Liang et al. (2020) found that peak flow reduction 
was most sensitive to the reduction of Directly Connected Impervious 
Areas (DCIA). Indeed, for a similar LID implementation, the results were 
better with less DCIA. Zellner et al. (2016) found that, with an increase 
in precipitation and in areas suitable for green infrastructures, imple
mentation patterns that followed the flow paths and the accumulation of 
water also became more effective, which resonate with the results of this 
study. Ercolani et al. (2018) concluded that the urban system in the 
Metropolitan City of Milan, Italy, responded non-linearly to green roof 
density in terms of peak runoff reduction at the outfall. They related this 

non-linearity to the stormwater system being close to its conveyance 
capability. They studied a targeted green roof implementation that 
concentrated them on areas where conduits were prone to filling. This 
scenario showed a better performance than a homogenous imple
mentation in terms of peak flow reduction at the outlet. This is coherent 
with the results of this study as downstream pipes are more vulnerable to 
filling as ending points of the entire network. 

With respect to flooding, Zellner et al. (2016) found that spatially 
dispersed green infrastructure was more efficient to reduce flooding 
than clustered arrangements, which is different from the results 
observed in this study. It could be explained by the higher slopes in the 
current study. Especially clustered approaches were found to have more 
effective local effects. 

3.3. Implications 

This study examined the impacts of urbanization and climate change 
on the urban runoff response for the Risvollan catchment, as well as 
different LID implementation scenarios and their mitigating capacities. 
Our results highlight that climate change and urbanization put the 
current stormwater system under stress, and that LID infrastructures can 
participate in the mitigation of their effects. These results may constitute 
useful insight for municipalities. 

Firstly, in this study, it appears that, depending on the target indi
cator to be reduced, the spatial distribution of LIDs can be an important 
factor for an effective design. Indeed, if the priority is to reduce the 

Fig. 9. Variation of performance depending on urbanization with and without LIDs. They are displayed for the homogeneous LID and the no-LID implementation 
scenarios. The initial urbanization (27%) without LID and climate factor (Nref No-LID No-CF) is used as reference. 
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volume at the outfall of the catchment, the distribution of LID has little 
influence; whereas if the priority is the reduction of the outfall peak, it 
will be more resources and cost efficient to target the critical down
stream subcatchments. This highlights an important aspect of green 
infrastructure implementation: the phasing of green infrastructure 
implementation. If the total outflow volume is not influenced by the 
strategy, the peak runoff in one location or local flooding is influenced 
by the implementation in its neighbourhood. Therefore, when it comes 
to prioritize implementation with limited resources, those results sug
gest that critical area should be directly prioritized. More precisely, the 

highly influential areas of the area of interest should be identified and 
prioritized. The use of model ensemble, despite showing similar trends 
in most of the case, shows the deep level of uncertainty associated with 
limited data and knowledge linked to a specific catchment. Secondly, 
the comparison of the LID performance for different rain events suggests 
that peak attenuation should be combined to return period to evaluate 
the bandwidth of LID performance. Indeed, the implemented LID 
infrastructure in this study was able to mitigate a 12 h event with a 20- 
years return period and a relatively low peak better than it could miti
gate our 2 other events with a 5-year return period. Moreover, the 

Fig. 10. Variation of peak discharge (%) at the outfall for different LID spatial distributions. The shaded areas represent the variabilities within the ensemble. The 
case Urbanization of Scenario N0, N60 and N90 were displayed for events E1, E2, E3 and E4. 
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inclusion of a 100-year precipitation event in the rainfall scenarios 
provided erratic and inconclusive results, indicating the inadequacy of 
the method used for this case. This effect is interwined with the fact that 
our model was not calibrated for extreme events, and thus probably does 
not perform well in those cases. This highlights the need for further 
research to explore the behaviour of LID infrastructure under extreme 
events. 

3.4. Limitations 

Firstly, the rainfall input was event-based, which limits the ability to 
explore the behaviour of LID infrastructure under other types of rainfall 
than the four used here. For reference, Qin et al. (2013) described the 
performance difference of various LID infrastructures for different 
hydrograph shapes. Moreover, many studies have suggested more robust 
approaches to investigate LID performance, based on continuous rain
falls, i.e., long-term simulations (Stovin et al., 2017). Secondly, the 
calibration method used might have triggered unforeseen effects of the 

Fig. 11. Variation of total outflow volume (%) for different LID spatial distributions. The shaded areas represent the variabilities within the ensemble. The case 
Urbanization of Scenario N0, N60 and N90 were displayed for events E1, E2, E3 and E4. 
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adopted high pipe roughness. Further research might be needed to un
derstand better the limitations of this method. Finally, this study used an 
aggregation of identical unit LID structures, whereas a more realistic 
study might need to precisely retrofit existing roofs and pavements. 

4. Conclusion 

This study implemented a SWMM model of the Risvollan catchment 

in Trondheim, Norway and investigated the impacts of various urbani
zation and climate change scenarios for 4 different rainfall events. 
Different LID densities were implemented with varying spatial distri
butions, and their performances in mitigating the effects of climate 
change and urbanization were explored. 

The main results were as follows: 

Fig. 12. Flooding peak reduction FP (%) for different LID spatial distributions in reference to full urbanization scenario and for E4. The light green areas represent 
sub catchments with LID implementation. 
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(i) The most sensitive parameters of the model were the baseflow of 
drainage pipes, the depression storage of pervious areas and the 
hydraulic conductivity.  

(ii) Climate change and urbanization will deeply affect the catchment 
response to rainfall, up to 260 % increase in peak flooding and 75 
% increase in volume flow.  

(iii) The chosen LID infrastructure has demonstrated its ability to 
mitigate the effects of urbanization and climate change, with a 
varying performance depending, among other factors, on rainfall. 
However, they cannot completely compensate their effects.  

(iv) The volume reduction performance of the LID infrastructures 
does not depend on spatial location, but the peak discharge at the 
outlet is more efficient if the LID structures are located down
stream, close to the outfall. Therefore, given resources for a 
limited number of LID, the phasing of their implementation 
matters. LIDs located close to a vulnerable area should be 
implemented first. 

Overall, urbanization and climate change put a high level of stress on 
the stormwater system, and LID techniques can help to mitigate that 
stress. Their spatial distribution may be a significant criterion to be 
accounted for when aiming for effective design, depending on the local 
stakes and particularities. 
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