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Abstract

Physical processes at and under the water surface of oceans play a key role
in the Earth’s climate. For the models that are used to make predictions
of temperature, gas contents, humidity, etc., we rely on data from labor-
atory experiments and field observations. This thesis presents numerical
studies of error sources in two measurement techniques commonly used in
the context of waves at the air-water interface. Findings include conditions
under which results obtained from these methods become unreliable as well
as mitigation strategies.

In laboratory studies, it is often desirable to obtain the surface topography
in an area of interest. An appropriate technique in this context is the
Free Surface Synthetic Schlieren (FS-SS) method. It utilizes the apparent
distortions of a pattern seen through the surface due to refraction at the
air-water interface, to infer the free-surface topography.

In the context of field observations of currents, remote sensing techniques
are of appreciable interest due to their ability to cover large areas at low
cost compared to in-situ methods. The second technique investigated in this
work uses the wavenumber-frequency spectrum obtained from, e.g., airborne
video footage, to measure Doppler shifts in the waves’ frequencies due to a
background current, from which the current can be inferred.

Both methods rely on certain assumptions or approximations that may not
always be applicable. In order to test their limits, numerical schemes were
developed that create ideal input data, which, when analyzed with the re-
spective method, allow the isolation of error sources.

Systematic errors in the measured surface gradients obtained using the FS-
SS method were investigated for two configurations. In the standard con-
figuration, the camera is placed above the water surface and a pattern visu-
alizing the distortions is placed underwater, typically at the bottom. In the
“flipped”configuration, the camera is placed underneath the transparent wa-
ter container and the pattern above the free surface. The errors found for
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the standard geometry stay within a few percent for typical setups, whereas
the flipped configuration shows errors that can be much larger, exceeding
50%. With proper adjustment of the setup, these can be reduced to below
10%, retaining the usability of this configuration.

For the investigation of biases in the effective Doppler shift extraction from
wave elevation data, a framework was developed to generate synthetic sur-
face wave“videos”, where the background current can be both vertically and
horizontally sheared. These were subsequently analyzed using the much-
used Normalized Scalar Product method. The key findings of this part of
the study include that both spectral leakage and horizontal shear can cause
significant errors in the current measurements. Their severity was found to
depend strongly on a range of parameters, most notably the wave spectrum
shape in terms of angular spread and peakedness, and the current variation
and direction. Knowledge of how the respective biases emerge enables the
detection and mitigation of these errors, which are discussed in this thesis
as well.
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1
Introduction

More than 70% of the Earth’s surface is covered by water, though the exact
figure depends on whether ice and fresh water bodies are included (Kotwicki
2009). The relevance of this can hardly be overstated, as it is safe to say
that all life on the planet depends on access to water, be it for intake, as a
source of food, for habitation or transportation, etc. Humans and other land
animals are also indirectly affected by the oceans, because the atmosphere,
and hence the whole ecosystem, is strongly coupled to them. At the air-
water interface, gases and heat are exchanged, and evaporation at the ocean
surface is the main source of fresh water from rain.

The dynamics of the ocean and atmosphere, in terms of energy and mass
flux, take place on length scales covering several magnitudes: from more
than a thousand kilometers, observable from orbit, down to less than a
millimeter (Taylor and Thompson 2023), requiring local measurements. On
each scale one finds a variety of fascinating phenomena and processes, most
of which are still the subject of ongoing research today. It is not the aim
of this introduction to give a comprehensive account of the processes at
all scales, the reader is instead referred to the brilliant article by Taylor
and Thompson (2023) and the references found therein. On length scales
ranging from tens of meters to tens of kilometers, called the submesoscale,
dynamics are of particular interest due to their role in transferring energy
between larger and smaller scales (McWilliams 2016), as well as the mixing
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2 Introduction

and transport in the upper ocean (e.g., Laxague et al. 2018, Thomas et al.
2008). The observation of currents at these scales is therefore a necessity for
forecasts and the development of models describing the ocean-atmosphere
system. Capturing the variability of near surface flows on the submesoscale
is a challenge, however, as the flow structures are too small for orbital
observation and too large to cover with buoys (Lund et al. 2018). One
solution to this problem is to employ remote sensing techniques, such as the
airborne high-resolution observation of wave-current interactions presented
in VreĆica et al. (2022) and Lenain et al. (2023). Using such observations
of waves enables the inference of both the depth-averaged current and the
vertical current profile within the top-most layer (the depth depends on the
wave spectrum present) of the ocean (e.g., Fernandez et al. 1996, Smeltzer
et al. 2019, Stewart and Joy 1974). This is crucial for estimating a number
of practical quantities, such as load on structures, oil film dispersion or
operational safety (Lund et al. 2015).

Normally, accurate measurement of the vertical shear profile is challenging
due to the motion of both the interface and the fluid below but recent
developments in the inference of the current profile from wave observations
allow the reconstruction of nearly arbitrary profiles (Smeltzer et al. 2019).
The previously state-of-the-art method instead assumed a linear vertical
profile (e.g., Fernandez et al. 1996), limiting the accuracy.

A crucial step in the development or adaptation of methods such as these
requires testing in a controlled environment before they can be used for field
data acquisition. For instance, profilometric techniques, able to capture the
time-resolved surface topography of the air-water interface, are a suitable
tool in this regard, as the so obtained surface elevation data is “clean”,
i.e. not influenced by lighting conditions, sun glint, white-caps, etc. The
Free Surface Synthetic Schlieren method is one such candidate as shown by
Smeltzer et al. (2019). Of course, to ensure that this “truth”-measurement
of the surface topography is itself accurate, one has to have control over
possible uncertainties and errors, as is the case with all laboratory measure-
ments.

This work aims to contribute to the reliability of two commonly used meas-
urement techniques by investigating sources of systematic errors; the Free
Surface Synthetic Schlieren (see Section 1.1) method used in laboratory
studies and a remote sensing technique for near-surface currents (see Sec-
tion 1.2) used in the context of field observations.
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Figure 1.1: Illustration of the Free Surface Synthetic Schlieren method in config-
uration 1 (a) and configuration 2 (b).

1.1 Free Surface Synthetic Schlieren

When studying the interactions between turbulence, waves and currents,
whether all three or in pairs, laboratory studies are a necessary part in
the development of models. The parameters of interest can be controlled
directly, which enables the isolation of single interactions, which is a common
challenge when using field observations (e.g., Klaus and Vachon 2020).

A key element in every experiment are diagnostics that allow the distinc-
tion between different phenomena. Deformations of the water surface are
typically attributed to two sources. Turbulence in the water column leads
to a randomly rough surface with “wrinkles” (Savelsberg and Van de Water
2009), which are essentially advected with the mean (surface) flow, as stated
by Taylor’s frozen surface hypothesis. This is in contrast to what we refer to
as surface waves, periodic surface deformations that can propagate on top of
the advection by the current (Peregrine 1976). While this may be intuitively
clear, separating waves from turbulent imprints in measurement data is a
non trivial task. One way to achieve this is by analyzing the time-resolved
surface topography, as the propagation of waves obeys the well-known dis-
persion relation for water waves (e.g., Peregrine 1976, Phillips 1980), i.e., a
relation between wavelength λ and the propagation speed cp of crests and
troughs.

A commonly used method for measuring the surface topography of trans-
parent media is the Free Surface Synthetic Schlieren (FS-SS) method due to
Moisy et al. (2009). The idea behind this method is to use the refraction of
light at the air-water interface. For an observer above the water surface, an
object plane below will appear distorted. From the apparent shifts of points
on that plane, relative to the quiescent water reference, the topography can
then be inferred in principle.



4 Introduction

A number of methods exist for obtaining the apparent displacements. The
original and very common approach due to Moisy et al. (2009) is to place
a random dot pattern at the bottom of the water tank, and a camera,
viewing vertically downward, is placed above the free water surface and the
displacements are found by using digital image correlation. Modifications
include the use of a checkerboard pattern and analyzing the images using
Fourier demodulation (Wildeman 2018), and using light sources of distinct
wavelengths (e.g., blue and infrared) to improve the accuracy (Kolaas et al.
2018). How the surface topography can be retrieved from the apparent
distortions of the dot pattern is discussed in more detail in Chapter 2. The
standard setup, using a random dot pattern below, and a camera above
the water surface, is depicted in Figure 1.1 (a) and is herein referred to as
configuration 1.

The FS-SS method is very attractive due its low cost and small number of
parts. In configuration 1 it has a major drawback, however. As described in
Moisy et al. (2009), a combination of too strong surface deformations with
a too large distance between the dot pattern and the free surface leads to
the following problem: In addition to the apparent displacements, which
are due to surface gradients, the pattern also appears magnified due to the
curvature of the surface. Light rays originating from the camera cross at
some distance below the surface. When this distance is smaller than (or close
to) the distance between the water surface and the dot pattern, individual
dots appear as streaks from which displacements cannot be obtained (see,
e.g., Steinmann et al. 2018); this is illustrated in Figure 1.2. A solution
to this issue is provided in Moisy et al. (2009). Instead of configuration
1, the setup can be inverted so that the camera is below the transparent
bottom of the water tank and the dot pattern held above the free surface,
allowing for an arbitrary pattern-surface distance; this is herein referred
to as configuration 2 and has been used in, e.g., Moisy et al. (2012). The
relations connecting the surface topography to the pattern distortions in the
paraxial approximation (effectively infinite surface-camera distance) can be
found for both configuration 1 (Moisy et al. 2009) and configuration 2 (Moisy
et al. 2012). However, for a finite (but large) surface-camera distance these
are only given for configuration 1 and deriving the corresponding equations
for configuration 2 is not as straight forward as the simple change in setup
suggests (see Chapter 2 for details).

1.1.1 Goal

The Free Surface Synthetic Schlieren method is a powerful tool for obtain-
ing the surface topography of transparent fluids. For applications in exper-
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Figure 1.2: Illustration of the distortions of a dot pattern as seen by the camera.
The surface distance is increased left to right, leading to rays originating at the
camera to cross above the pattern, and thus to dots appearing as streaks. The
surface cannot be reconstructed.

iments with relatively deep water, such as the large water channel at the
fluid mechanics laboratory at NTNU (Jooss et al. 2021), its application is
limited by caustics due to a too large pattern-surface distance. Moving the
pattern closer to the surface obstructs the flow and is therefore not practical.
A flipped geometry, with the camera below the transparent bottom of the
water tank and the dot pattern above the free surface is more flexible in this
regard. However, the equations for obtaining the surface topography from
observed distortions in this configuration are only available in the parallax
approximation. The errors introduced due to a finite distance between the
camera and the free surface are unknown.

The first part of this work, therefore, is the derivation of said equations, as
well as an analysis of the systematic errors introduced by approximations
made in the derivation, both for configuration 1 and configuration 2. The
error analysis is limited to parameter ranges (e.g., water depth, camera-
surface distance, etc.) relevant for the large water channel mentioned above.
An overview of the parameters is given in Table 2.1 in Chapter 2.

1.2 Remote Sensing and Shear

Knowledge of currents in oceans, rivers, and estuaries is of great scientific
and practical importance. Various techniques for their measurement have
been developed to this day, including subsurface drifters, acoustic Doppler
profilers and stationary propellers, to name just a few. It is not the attempt
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of the author to give a comprehensive overview over these methods and the
reader is referred to Joseph (2013) instead.

They can be roughly divided into in-situ and remote techniques. In-situ
measurements, though an invaluable tool, have a major drawback, in that
they provide point measurements of the current, either stationary or along
the trajectory of a vessel. Obtaining information about the current in a
larger area is, thus, a costly and time-consuming endeavor. This problem
is exacerbated further when the depth profile of the current is of interest as
well.

Remote sensing techniques are able to collect information from large areas
and within time frames much shorter than the time scale over which these
currents vary (e.g., Lenain et al. 2023), which is crucial if the dynamics
themselves are of interest. Many of these are based on the fact that the
propagation of waves is influenced by the background current. The angular
frequency ω and wavelength λ of a small amplitude plane wave are connected
via the famous dispersion relation (DR) found in many textbooks (e.g.,
Peregrine 1976)

ωDR,0(k)
2 =

(
gk +

τ

ρ
k3
)
tanh kh, (1.1)

where k = 2π/λ is the wavenumber or spatial frequency, g is the gravita-
tional acceleration, τ the surface tension, ρ the fluid density, and h the water
depth. When surface tension effects are neglected, and the water depth is
sufficiently large, so that tanh(kh) ≈ 1, this becomes the simple relation,
ωDR,0 =

√
gk. Within this work, surface tension and finite water depth

effects are neglected.

In the presence of a constant background current described by the two-
dimensional vector U, one obtains an additional term (Peregrine 1976)

ωDR = ωDR,0(k) +U · k, (1.2)

where k is the wavevector in the (horizontal) x–y–plane and k = |k| = 2π/λ.
Figure 1.3 depicts the dispersion relation“cone”with and without a current.
The current-induced change in frequency in Equation (1.2) depends both on
the magnitude and direction of the wavevector k. In principle, the measure-
ment of the frequency (or phase velocity) at two non-parallel wavevectors
is sufficient for the inference of U (see, e.g., Dugan and Piotrowski 2003,
Hessner et al. 2014, Streßer et al. 2017, Young and Rosenthal 1985).

The task of inferring the background current becomes more complicated,
however, when it is vertically sheared, i.e., when the current changes with
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(a) (b) (c)

Figure 1.3: Dispersion cones without (a), and with a current U = (U, 0) (b) and
U = (0, U) (c). The intersection with a cylinder surface is highlighted. The dashed
line corresponds to the intersection for U = 0.

depth, U = U(z), as depicted in Figure 1.4(a). The most common modific-
ation for the dispersion relation in Equation (1.2) that accounts for depth-
dependent currents was derived in Stewart and Joy (1974), yielding the
approximation for mild vertical shear in deep water1

ωDR = ωDR,0(k) + c̃(k) · k, with c̃ = 2k

∫ 0

−∞
U(z)e2kzdz. (1.3)

In the place of U now stands the more general, k–dependent c̃, typically
called Doppler shift velocity (DSV). An intuitive explanation for its k–
dependence can be gained from the fact that, under a wave, the amplitude
of the circular motion of fluid particles due to the wave decays exponentially
with depth ∝ ekz. This is illustrated in Figure 1.4(b, c). It is intuitive that,
at depths where the fluid motion due to waves is negligible, the influence
of a background current on the surface wave can be expected to vanish as
well. In other words, the waves “feel” currents only down to a certain depth.
A rough estimate can be gained by considering the weighting factor of the
integrand in Equation (1.3), e2kz. For instance, one may set a threshold at
e2kz < 1% which corresponds to a depth of z ≈ 1

2λ.

It is therefore possible to infer the depth profile of a background current from
the measurement of the wave dispersion relation by inverting Equation (1.3).
This highly attractive principle has since been utilized to extract the vertical
shear from field data obtained using HF radar (e.g., Fernandez et al. 1996,
Stewart and Joy 1974) X-band radar (e.g., Lund et al. 2015) and optical
methods (e.g., Lenain et al. 2023).

Typically, obtaining the vertical shear profile is a two-step process, con-

1An extension to finite water depth is available as well (Kirby and Chen 1989)
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U(z) 1
2λ

(a) (b) (c)

1
2λ

z y

x

Figure 1.4: Depiction of a vertically varying current profile (a) and the circular
fluid particle motion (b,c) for waves of different wavelength λ. Waves “feel” the
current only in the top layer depending on λ.

sisting of the measurement of the DSVs c̃ and subsequently inverting the
integral in Equation (1.3) for U, given c̃(k). The inference of the vertical
velocity profile from the measured DSVs is a non-trivial task and an ongoing
field of research (e.g., Campana et al. 2016, Lund et al. 2015, Smeltzer et al.
2019). This thesis focuses on the first part of the analysis step, i.e., the
measurement of the DSVs c̃ from wavevector-frequency spectra obtained
from spatio-temporal surface data.

A variety of techniques have been employed to date to measure DSVs. Com-
mon are least-squares based methods (e.g., Gangeskar 2018, Senet et al.
2001, Young and Rosenthal 1985), the Polar current shell method (e.g.,
Huang et al. 2016) and Normalized Scalar Product (NSP) based methods
(e.g., Huang and Gill 2012, Huang et al. 2016, Lenain et al. 2023, Serafino
et al. 2010). Since the performance of these is comparable (Huang et al.
2016), and the NSP has seen recent use, the analysis in this thesis is restric-
ted to the NSP method.

Refraction of waves due to a varying current is a well-studied phenomenon.
The wavevector and frequency of an incident wave undergo changes as the
wave propagates across regions with horizontal shear and temporal vari-
ation, respectively (e.g., Peregrine 1976). Spectral methods for measuring
DSVs, such as the ones mentioned above, utilize wave-observations from
areas of finite size and with finite duration. Of particular interest is the
observation of near-surface currents and waves in regions where the cur-
rent varies horizontally, e.g. near submesoscale fronts (VreĆica et al. 2022).
To the knowledge of the author, all methods mentioned above rely on the
(mostly implicit) assumption that the obtained DSVs reflect averages (spa-
tial and temporal) of the underlying current. Though intuitive, it is not
necessarily true, as this thesis aims to show. Biases in these methods, es-
pecially when they depend on factors that cannot be controlled during the
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measurement (weather, wave spectrum, etc.), could call their dependabil-
ity into question. Hence, the errors sources must be well understood and
mitigating precautions should be taken where possible.

1.2.1 Goal

Remote measurement techniques for ocean currents have seen broad use in
the past 50 years and as methods become more sophisticated and precise,
the importance of control over systematic error sources grows.

The aim of the second part of this work, therefore, is to investigate system-
atic errors, or biases, in the DSV extraction via the commonly used NSP
method. A major goal herein is to scrutinize the validity of the assumption
that, in the presence of horizontal shear, DSV extraction returns the do-
main average of the background current. For this, a numerical framework
is developed capable of generating synthetic surface elevation data of waves
propagating atop horizontally and vertically sheared currents. The choice
of scenarios is made such that different error sources can be identified and
the effects of horizontal shear isolated, within realistic ranges for parameters
such as spectral shape, shear strength, domain size, etc.

1.3 Thesis Outline

The topics of Free Surface Synthetic Schlieren and remote sensing intro-
duced in Chapter 1 are somewhat distinct. Therefore, each topic is given
a separate chapter, Chapter 2 and Chapter 3, respectively, wherein more
detailed background, theory and methodology are discussed. The relev-
ant research articles are summarized in Chapter 4 before concluding with a
future outlook.
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2
The Free Surface Synthetic Schlieren

Method on its Head

The Free Surface Synthetic Schlieren (FS-SS) method is based on a simple
principle. Due to refraction at an interface between two media of different
refractive index n, objects behind the interface appear displaced and this
displacement depends on the topography h(x, y) of the interface. This is
depicted in Figure 2.1 (a) for configuration 1.

Consider first a flat interface, i.e., h is constant. Light originating from
an object point M in the z = 0 plane reaches the observer C at along a
path that is affected by refraction (red line). For the observer M appears
to be at the location M’. When the surface is deformed due to, e.g., waves,
the surface normal vector n̂ has horizontal components determined by the
surface gradient ∇h, which leads to a change of refraction angles (blue line).
The point M then appears to be at a location M”different from M’.

From the difference between M’ and M”, i.e., the displacement vector M’M”,
the surface gradient ∇h can in principle be inferred. An approximate, linear
relation between M’M” and ∇h at the point I was derived in Moisy et al.
(2009).

This chapter begins with a brief review of the theory and key findings from
Moisy et al. (2009). Then, an analogous equation for configuration 2, de-

11
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O

M”

n̂

I

y

n

hp
n′

C

x

z

M M’

(a)

x

z

MO M’

M”

n̂

I

y
h2
n2

C

h1
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Figure 2.1: Illustration of the principle behind the Free Surface Synthetic Schlieren
method for configuration 1 (a) and configuration 2 (b). Light from an object point
M reaches the camera C along rays indicated by arrows. When the interface is flat,
the red path is followed, leading to an image point appearing at M’. When the
interface is deformed, indicated by the surface normal vector n̂ at I, the ray takes a
different path, marked in blue, giving rise to the image point M”. Thus, the vector
M’M”can be used to infer the surface normal vector and gradient.

picted in Figure 2.1 (b), is derived. This configuration differs from the first
configuration in having an additional interface, i.e., change of refractive in-
dex, between the free surface of interest (z = h) and the camera C. The
setup is in general described by the distances between the camera and the
water bottom h0, the water depth h1, and the camera-surface distance h2,
together with the respective refractive indices n0, n1 and n2, determined by
the transparent materials, typically air, water, and air.

The second part of this chapter is an investigation of systematic errors
emerging under certain circumstances, detailed in Section 2.2. This analysis
is restricted to parameters typical for the large water channel at the fluid
mechanics laboratory at NTNU (see Jooss et al. 2021) and Table 2.1 for
details).

Note, that the analysis presented here deals only with the inference of the
surface gradient ∇h from measured displacements M’M”. For obtaining the
displacements themselves, one can use, e.g., a Particle Image Velocimetry
(PIV) procedure (see Moisy et al. 2009) using a random dot pattern at z = 0
for making the displacements measurable.

The contents of this chapter are relevant for the free surface analysis presen-
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ted in Article I. Measurements therein were taken using the FS-SS method
in configuration 2.

2.1 Theory

There are three key assumptions that the derivations given herein and in
Moisy et al. (2009) are based on:

1. Surface deformations are small with respect to the distance between
the surface and the dot pattern. Points on the surface are well ap-
proximated by setting their vertical coordinate to the pattern-surface
distance hp (configuration 1) or h2 (configuration 2).

2. The surface steepness (or slope) is small, i.e., ε = |∇h| ≪ 1.

3. The camera pattern distance H is much larger than the dimension L
of the observed square domain, so that H ≫ L

√
2/2. View angles can

therefore be assumed to be small.

2.1.1 Refraction

When a ray of light crosses the interface between two homogeneous media,
labelled 1 and 2 it gets refracted, i.e., the transmitted ray propagates in
a different direction than the incoming ray. This can be quantified by the
well-known Snell-Descartes law

n1 sinα1 = n2 sinα2 (2.1)

where α1 and α2 are the angles between the ray and the surface normal at
the point of intersection on the respective sides of the interface. Accordingly,
n1 and n2 are the refractive indices of the two materials. In general, the
refractive index is a function of the light’s wavelength, but within the visible
range of about 400 to 800 nm, the effect is assumed negligible. The refractive
index of water, for instance, varies between 1.34 and 1.33 (Hale and Querry
1973).

For the following, it is necessary to use a vectorial form of the Snell-Descartes
law. Let the incoming and outgoing ray be denoted by the unit vectors r̂1
and r̂2 and the unit surface normal vector n̂. The equivalent of Equa-
tion (2.1) can be found in many basic optics text books, e.g., in Goodman
(2010),

n1(n̂× r̂1) = n2(n̂× r̂2). (2.2)

An explicit equation for r̂2 = r̂2(r̂1, n̂, n1, n2) can be obtained, but in the
derivations found in the literature a crucial choice of sign is often left out.
A sketch of a derivation is repeated here in order to avoid the ambiguity.
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The special cases of n1 = n2 and r̂1 ∥ n̂ are trivial, and therefore excluded.
Since n̂, r̂1 and r̂2 lie within the same plane, r̂2 can be constructed by linear
combination

r̂2 = ar̂1 − bn̂ with a, b ∈ R. (2.3)

From Equation (2.2) one obtains a = n1/n2. The constant b can then be
determined from the requirement that r̂2 be of unit length. One finds

b = a(n̂ · r̂1)±
√
1− a2(1− (n̂ · r̂1)2) (2.4)

The choice of the sign of the root depends on whether n̂ points towards r̂1,
i.e., the sign of the scalar product (n̂ · r̂1). This can be seen by requiring
that, in the limit of identical materials a → 1, no refraction should occur,
i.e., r̂2 → r̂1. An unambiguous expression for b then is

b = a n̂ · r̂1 − sign(n̂ · r̂1)
√
1− a2(1− (n̂ · r̂1)2). (2.5)

Thus, Equation (2.3) becomes

r̂2 =
n1

n2
r̂1 − n̂


n1

n2
n̂ · r̂1 − sign(n̂ · r̂1)

√
1−

(
n1

n2

)2

(1− (n̂ · r̂1)2)


. (2.6)

2.1.2 Review of Configuration 1

Figure 1.1 (a) shows the setup for configuration 1, where the camera is
located above the free surface and a random dot pattern is placed below.

Let the origin O of the coordinate system lie on the pattern and the z-axis
be perpendicular to it. A camera, or observer, is located on the z-axis at
z = H, denoted by the point C. The free surface is described by z = h(x, y),
where hp denotes the surface location in the absence of deformations, i.e.,
hp is the average distance between the dot pattern and the free surface.

Conventionally, the refractive indices above and below the free surface are
n (z > h) and n′ (z < h), respectively. It is useful to collect these in the
material constant α = 1− n/n′.

Under the assumptions mentioned above, Moisy et al. (2009) use this setup
to derive an approximate equation linking the apparent displacement δx =
M’M” of points on the dot pattern to the surface gradient ∇h causing it.
Using slightly different notation, the result is

∇h ≈ − δx

h∗M
, where

1

h∗M
=

1

αhp
− 1

H
. (2.7)
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Note, that a subscript M has been added to h∗ to clearly differentiate this
result from the following derivation for configuration 2.

An additional step for obtaining the gradient field is then required, which
corrects for parallax errors due to a finite camera-pattern distance H. This
step attributes each ∇h obtained through Equation (2.7) to their respective
horizontal coordinate x = (x, y), i.e., the point I, through the exact relation

x =

(
1− hp

H

)
OM”. (2.8)

In their work, Moisy et al. (2009) also describe how the surface topography
h(x, y) is calculated from ∇h(x, y), but as this is independent of the setup
configuration, it is not discussed here.

2.1.3 Derivation for Configuration 2

Setup and Notation

The setup for the FS-SS method in configuration 2 is depicted in Figure 1.1
(b). It is practical to return to a coordinate system like that for configuration
1, as shown in Figure 2.1 (b), with gravity acting along the positive z-
direction.

As in configuration 1, let H be the total distance from the camera to the
random dot pattern. This distance is now divided into the pattern-surface
distance hp ≡ h2, the water depth h1 and the distance between the camera
and the bottom of the tank h0. In the experimental setup, for which this
derivation is dedicated, there is air above and below the water. It is useful,
however, to let the refractive indices of the three sections be arbitrary. From
z = H to z = 0, let them be denoted by n0, n1 and n2.

Procedure

The derivation of Equation (2.7) given in Moisy et al. (2009), makes use
of a plane containing the points M, M”, I and C. Within this plane, the
Snell-Descartes law in the form of Equation (2.1) can be applied directly, as
it contains the surface normal vector n̂. Such a plane cannot, however, be
constructed in configuration 2 because of the additional refraction of light
rays at the interface at z = H − h0.

Hence, a different approach is chosen2. The idea is to find the position of
M, denoted in the following by x0, as a function of the virtual point M”,

2An additional reason is, that the later conducted error analysis made the forward
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specifically, the azimuth β0 and polar angle ϕ0 under which the camera sees
it. To this end the direction of the ray, originating from the camera within
each material (see Figure 2.2) is calculated. This exact relation can then
be approximated to find an analytical expression for the inverse relation. A
similar procedure is applied to the point M’.

x

z y

C

M”

h2
n2

h1
n1

h0
n0R0

R1

R2

M(x0)

n̂

β0

ϕ0

Figure 2.2: Illustration of ray paths starting at the camera C, defined by the angles
β0 and ϕ0, for configuration 2 (see Figure 2.1 (b)). The ray is refracted at the two
upper interfaces. The vectors Ri denote the ray propagation direction inside the
respective materials. At z = 0, in the point M, or its position x0, denotes where
the ray intersects the dot pattern. This point appears for the observer C at M”.

It is important to note, that the positions of the objects M of the images
M’ and M”are not necessarily the same within this procedure, because the
input variable is the position of the image rather than the object itself. This
will be remedied in the last step of the following derivation.

Derivation

Consider a light ray starting at the camera C, z = H, with an initial direction
defined by a polar angle β0 between the ray and the vertical, and the azimuth
angle ϕ0. These are determined by the position of M”, as tanβ0 = |OM”|/H
and tanϕ0 = OM”y/OM”x. Upon refraction at the first (flat) interface,
the polar angle of the ray becomes β1 = arcsin (n0/n1 sinβ0), while the
azimuth angle is conserved ϕ1 = ϕ0. The direction of the ray can therefore
be expressed as

Ri =



cosϕ0 sinβi
sinϕ0 sinβi
− cosβi


 for i = 0, 1. (2.9)

propagation of rays from the camera necessary, thus lending itself as a starting point for
the derivation of an approximation as well.
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Let the surface normal vector at the point where the ray intersects the
second interface at z = h2 be

n̂ =



cosϕn̂ sin γ
sinϕn̂ sin γ

cos γ


 with tan γ = |∇h|. (2.10)

Equation (2.6) can then be used to find the direction of the ray R2 for
0 < z < h2.

With R0, R1 and R2 known, the point M, where the ray crosses the z = 0
plane, is then given by

x0 =
2∑

i=0

R̃i

∣∣∣∣
hi

(Ri)z

∣∣∣∣, where R̃i =

(
(Ri)x
(Ri)y

)
. (2.11)

Through Equation (2.9) and Equation (2.6), Equation (2.11) provides an
explicit function for the position of the object M, x0(ϕ0, β0, ϕn̂, γ).

The procedure described above is applicable in the case of no surface gradi-
ent (denoted by a hat), but it is useful to use a simpler relation between a
point x̂0 and the view angles (β̂0, ϕ̂0) under which it is seen by the camera.
Here, the azimuth angle of the ray is conserved, i.e., the ray stays in the
same vertical plane. Therefore Equation (2.1) can be applied directly to
find

|x̂0| =
2∑

i=0

hi tan β̂i, where β̂i = arcsin

(
n0

ni
sin β̂0

)
, (2.12)

and x̂0 = (|x̂0| cos ϕ̂0, |x̂0| sin ϕ̂0).

If x̂0 = x0, then the apparent displacement is

δx = M’M”= H tanβ0

(
cosϕ0

sinϕ0

)
−H tan β̂0

(
cos ϕ̂0

sin ϕ̂0

)
. (2.13)

Now, to obtain an approximate relation for Equation (2.13), the Taylor
expansions of Equation (2.11) and Equation (2.12) are calculated in the
small angles β0 and γ, and β̂0, respectively. Only terms of order one are
kept, resulting in

x0 ≈
(
h0 +

n0

n1

(
h1 + h2

n1

n2

))
β0

(
cosϕ0

sinϕ0

)
− h2

(
1− n1

n2

)
γ

(
cosϕn̂

sinϕn̂

)

(2.14)
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and

x̂0 ≈
(
h0 +

n0

n1

(
h1 + h2

n1

n2

))
β̂0

(
cos ϕ̂0

sin ϕ̂0

)
. (2.15)

Note, that within the small slope approximation γ ≪ 1, this is proportional
to the negative surface gradient, i.e., γ(cosϕn̂, sinϕn̂) ≈ −∇h. Assume,
now, that the imagesM’ andM”originate from the same object pointM, i.e.,
x0 = x̂0. Rearranging Equation (2.14) and Equation (2.15) for the terms
tanβ0(cosϕ0, sinϕ0) and tan β̂0(cos ϕ̂0, sin ϕ̂0), respectively, and inserting
these into Equation (2.13) one finds

δx ≈ H
h2

(
1− n1

n2

)

h0 +
n0
n1

(
h1 + h2

n1
n2

)(−∇h). (2.16)

In order to obtain an expression similar to the result from Moisy et al.
(2009), Equation (2.7), the constants αi,j = 1 − ni/nj are defined and,
using H = h0 + h1 + h2, Equation (2.16) is rearranged to yield

∇h ≈ −δx

h∗
(2.17)

where
1

h∗
=

1

h2 α1,2
− 1

H

(
h1
h2

α0,1

α1,2
+

α0,2

α1,2

)
. (2.18)

For the special case n0 = n1, i.e., configuration 1, α0,1 vanishes and α0,2 =
α1,2, thus restoring Equation (2.7). The second term vanishes in the paraxial
limit H → ∞, and the relation used in Moisy et al. (2012) is obtained.
For finite H, neglecting the term introduces an error in h∗ that depends
largely on the relative water depth h1/H. For instance, if H ≈ 3m and
h1 = 1m, the additional error is about 10%. Including the second term in
Equation (2.18) comes at no additional cost and is therefore advisable.

2.2 Error analysis

When using a diagnostic it is important to be aware of its inherent limita-
tions. The assumptions which the FS-SS is based on can be violated easily,
e.g., by choosing too small distances H and h2, or waves of significant steep-
ness ε. The following is an investigation of errors in the retrieved surface
gradient ∇h that emerge due to finite slope |∇h|, pattern-camera distance
H, and surface elevation h, as well as parallax distortions. The parameter
ranges (see Table 2.1) are based on the experimental setup at the large water
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channel at the fluid mechanics laboratory at NTNU (see Jooss et al. 2021).
Accordingly, results are presented in dimensional form. Where applicable,
the analysis is performed for both configuration 1 and configuration 2.

Refractive index
n0 1.0
n1 1.33
n2 1.0

Layer Thickness
h0 1 - 4m
h1 0.2 - 1.0m
h2 5 - 15 cm

Pattern size L up to 1m

Wave slope ε 0.0 - 0.4

Table 2.1: Overview of parameter ranges typical for the FS-SS setup in configura-
tion 2 when used at the large water channel at the fluid mechanics laboratory at
NTNU.

2.2.1 Approximation Errors

As mentioned, the derivation of Equation (2.17) is based on the Taylor
expansion of Equation (2.11) and Equation (2.12) and keeping only first
order terms in the surface slope angle γ and the azimuthal camera view
angles β0 and β̂0. The expected error due to discarding higher order terms
is investigated in the following by “simulating” the apparent displacements
as seen by the camera and comparing the retrieved surface gradient with
the prescribed one.

The simulation of the apparent displacement δx = M’M” consists of nu-
merically finding the positions of M’ and M” for a given position x, i.e., a
point M. This is done by minimizing the distances |x̂0 − x| and |x0 − x|,
using Equation (2.11) and Equation (2.12), respectively. This yields the
correct view angles (β̂0, ϕ̂0) and (β0, ϕ0) and hence the observable apparent
displacement δx via Equation (2.13).

The prescribed surface gradient is set to have only an x-component, i.e.,
∇h = (tan γ, 0), and the position x of M is varied along the positive x- and
y-axis as well as the diagonal x = y, parameterized by r. This covers almost
all possible combinations of position x and surface gradient direction and is
therefore deemed sufficient for the analysis.

The error in the approximate surface gradient obtained from Equation (2.17)
using δx is divided into the error in magnitude, |∇h|, and the direction of
∇h. Figure 2.3 (conf1) and Figure 2.4 (conf2) show contour plots of the
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Figure 2.3: Relative error in the retrieved surface gradient |∇h| in percent, for
configuration 1. The prescribed gradient is ∇h = (tan γ, 0). Columns 1-3: The
object point M, x0, lies on y = 0, x = 0 and x = y, respectively. Rows 1-4: ,
H − hp = 1.5, 2.5, 3.5, 4.5m, hp = 5 cm.
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Figure 2.4: Same as Figure 2.3, but for configuration 2, with the same camera
pattern distances H. Rows 1-4: h0 = 1, 2, 3, 4m, h1 = 0.5m, h2 = 5 cm.
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relative errors in slope, |∇happrox|/| tan γ| − 1, as a function of x, y, and r,
and tan γ. Errors in the surface gradient direction ϕ ≈ ϕn̂ showed only small
errors of < 4◦ if the error in |∇h| was less than 20%. Thus, for acceptable
errors in the gradient, the direction of ∇h is reliable as well.

Graphs of different pattern-surface distance and water depth were omitted
as their influence on the results was not significant. Increasing hp (or h2)
slightly decreases errors by a few percent points relative to the results shown.

In both configurations a strong asymmetry can be seen between errors for
points along x and y. This becomes relevant when significant errors are
expected, as such an asymmetry would lead to, e.g., skewed wave crests.
Compared to configuration 1, configuration 2 is much more prone to exhibit
systematic errors in general, especially for strong wave slopes and large
r = |OM’|, where they are higher by a factor of 4-5. From the results it is
clear, that a small camera distance of less than h2 = 2m (H ∼ 2.5L) is to
be avoided, as errors reach 20% even for small surface slopes. If errors of
less than 10% are required, while finite surface slopes are expected in the
experiment, the camera-pattern distance must be increased drastically. For
instance, if |∇h| ≤ 0.3 a distance h2 > 4m (H ∼ 4.5L) is necessary.

2.2.2 Errors from Wrong Remapping/Parallax

The surface gradient obtained via Equation (2.17) has to be attributed to the
horizontal position of the point on the surface that lead to the displacement,
i.e., point I (see Figure 2.1). To find a relation for the horizontal coordinates
of I, it can be used that the points O, C, M”and I lie in the same plane shown
in Figure 2.5.

Let J be the vertical projection of I onto the z = 0 plane. The distance |OJ|
between the origin and J can be expressed in terms of the angles β0 and β1

|OJ| = h0 tanβ0 + h1 tanβ1 = |OM”|h0
H

+ h1
sinβ1√

1− sin2 β1
. (2.19)

Using the Snell-Descartes law, Equation (2.1) relating β1 and β0,

sinβ1 =
n0

n1

tanβ0√
1 + tan2 β0

=
n0

n1

|OM”|
H√

1 +
(
|OM”|
H

)2 . (2.20)

Equation (2.19) and Equation (2.20) can be combined to obtain

|OJ|
|OM”|

=
h0
H

+
h1
H

√√√√
(
n1

n0

)2

−
( |OM”|

H

)2
(
1−

(
n1

n0

)2
)−1

. (2.21)
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n0
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|OJ|

J

|OM”|
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Figure 2.5: Illustration of parallax due to finite camera-pattern distance H. The
surface gradient obtained from the displacement M’M”must be ascribed to point
I, or its vertical projection J. The figure shows the vertical plane containing M”
obtained by rotating the x-z-plane by ϕ0. Note that the light ray below I (reaching
M) is omitted, since it points out of the plane.

The second term under the root can be neglected in the small angle approx-
imation, which introduces errors of less than a percent for the parameters
considered herein. Then, using H = h0 + h1 + h2, it can be rearranged to
match Equation (2.8) in form

|OJ|
|OM”|

= 1− h2
H

+
h1
H

(
1− n0

n1

)
. (2.22)

One may be tempted to think that the remapping step is insensitive to
whether OM’ or OM” is used in Equation (2.22). Figure 2.6 shows the
retrieved surface slope of a sinusoidal wave for typical parameters, without
remapping and with remapping using both OM”and OM’. The latter shows
a severely skewed gradient profile, which increases with wave steepness,
highlighting the importance of correct usage of Equation (2.22).

2.2.3 Finite Wave Height

The FS-SS setup in configuration 2 has more flexibility in the choice of
the pattern-surface distance h2, compared to configuration 1. Reducing it
decreases sensitivity, which also increases the maximum allowed curvature
of the surface before caustics render a measurement of displacements im-
possible, putting an upper bound on h2. However, by reducing h2, the
assumption of negligible surface elevation h/h2 ≈ 1 can be violated, setting
a lower bound for h2.

The retrievability of displacements δx from the observed distortions of the
dot pattern is discussed in detail in Moisy et al. (2009). Even before caustics
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Figure 2.6: Example of recovered surface gradients obtained with and without
the remapping procedure (see Equation (2.22)) for a waves of different steepness
ε = 0.015 (a) and ε = 0.15 (b). Without remapping (dotted line) an x-dependent
phase shift is observable, as reported in Moisy et al. (2009), and using OM’ (red
dashed) instead of OM” (red solid) for remapping leads to a skewed gradient field
which increases with ε.

render the retrieval theoretically impossible, lensing effects due to the sur-
face curvature stretch the dots too much for reliable measurements of δx.
A criterion is set by defining the strain σ as the change of the apparent
displacement δx along OM’ with position M’. It is found therein, that
a practical upper bound for the strain is σ < 0.7. For a plane wave of
wavelength λ and amplitude a, the expected strain σ(x) can be found using
Equation (2.17) and is approximately

σ ≈ max

∣∣∣∣
∂δx

∂x

∣∣∣∣ = max

∣∣∣∣h∗
∂2

∂x2
a sin

(
2π

λ
x

)∣∣∣∣ ≈
ε|α2|h22π

λ
≈ 2

h2
λ
ε (2.23)

where H ≫ h2, and (n0, n1, n2) = (1, 1.33, 1) were assumed. Thus, an upper
bound for the surface pattern distance is h2max ≈ 0.35λ/ε.

By moving the pattern closer to the surface, the small amplitude assumption
h(x, y)/h2 ≈ 1 may not hold anymore. To show the effects of a finite
surface displacement h(x) and to find an appropriate value for h2, the exact
apparent displacement is simulated similar to the approach described in
Section 2.2.1. To simplify the analysis, the surface is assumed to vary with
x, and only y = 0 is considered, i.e., h = h(x).

For a given point M at z = 0, the positions of M’ and M” are found nu-
merically through ray propagation, and the distance between them gives
the apparent displacement δx, from which the surface gradient is calculated
via Equation (2.17). The gradient field is then obtained by remapping the
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positions M” via Equation (2.22). The additional step required in the ray
propagation is the finding of the intersection of the ray with the surface
(xintersect, h(xintersect)), after which the surface normal n̂(xintersect) vector at
that point is used to find the ray vector below the surface via Equation (2.6).
Other than that, the procedure is unchanged.
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Figure 2.7: Example of recovered surface gradient of a plane wave for different
surface-pattern distances h2. (a) a/h2 = 0.01, (b) a/h2 = 0.85. The thick grey line
shows the gradient of the prescribed wave. The distance between the water bottom
and the camera varies between 1.5m (red) and 10.5m (blue).

Figure 2.7 shows an example of the obtained gradient field for a wave of
both small and significant relative wave height a/h2 = 0.02. The result is
that the surface gradient is generally overestimated near the extrema, in
addition to a slight overall skewness that can be reduced by increasing h0.

A measure of this error can be defined in terms of the root mean square
(rms) of the recovered gradient field relative to the exact rms, measured
over the same domain,

ϵrms =
rms(∇happrox)

rms(∇hexact)
− 1. (2.24)

This error was calculated for a range of surface-pattern distances and waves
of different wavelengths λ and steepness ε. The results shown in Figure 2.8
were obtained for configuration 2 with a camera-pattern distance of h0 =
10.5m and a water depth of h1 = 0.5m. No data is shown for cases where the
expected strain σ exceeds 0.8 at lower λ, as the displacement field would
be irretrievable. Similarly, no data is shown where the wave amplitude
exceeds h2, i.e., where the dot pattern is in contact with the water surface.
Calculations for different values of h0 and h1 within the limits of the setup
of the large water channel were also performed. The differences are mostly
insignificant, i.e., about 2%. The asymmetry, or skewness due to a reduction
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in h0 (see Figure 2.7 (b)) causes an increase of the small oscillations on the
curves in Figure 2.8, which are due to extrema being moved outside the
domain when increasing λ. Since the trend of the curves is not affected,
however, these graphs are not shown.
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Figure 2.8: Error in the rms (see Equation (2.24)) of retrieved surface gradients
for plane waves of various wavelengths λ, and steepness ε (indicated), for pattern-
surface distances h2 of (a) 15 cm, (b) 10 cm, (c) 5 cm and (d) 2 cm. The domain
length is L = 70 cm. To avoid parallax errors, the camera-pattern distance is
chosen large, h0 + h1 = 11m. Each line begins at a lower wavelength determined
by an upper bound for the maximum strain (see Equation (2.23)) σ < 0.8. Some
lines have an additional bound at higher wavelengths due to the wave amplitude
a exceeding the pattern-surface distance, i.e., a ≤ h2. The red, dashed parts of
graphs represent parameter ranges where the pattern-surface distance h2 is less
than twice the wave amplitude a, a/h2 ≥ 1

2 .

Figure 2.8 reveals a limitation of the FS-SS at larger steepness values. If,
for instance, steep waves with ε = 0.5 of both small λ = 5 cm and large
wavelength λ = 20 cm are present, h2 ≈ 2 cm is required, but this introduces
large errors for the measurements of longer waves. On the other hand, the
errors do not exceed 20%, so that a first estimate of the surface elevation can



2.2. Error analysis 27

be obtained by moving the pattern as close to water surface as is necessary
to avoid too large image strain σ. The analyzed data can then be used to
find the range of wavelengths and hence the expected magnitude of errors
due to the reduction in h2.
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3
Systematic Errors in Doppler Shifts

Extracted from Wave Spectra

The present work concerns systematic errors in the measurement of Doppler
shift velocities (DSVs) from spatiotemporal surface data. In particular,
the influence of horizontal shear is of central interest. In order to have
control over the large number of free parameters, a numerical framework
is developed, in which synthetic surface elevation data is generated, herein
termed“simulation”, and subsequently analyzed using the normalized scalar
product (NSP) method. In this chapter, the theory and numerical scheme
for the simulation are presented, and the choice of technical parameters of
the simulation and the NSP method are discussed. This excludes scenario
defining quantities such as the shape of the spectrum, current direction,
etc., which are presented in detail in Article II and Article III.

Dimensional Basis
In the following, dimensional quantities will be denoted with an asterisk,
e.g., L∗ [m], T ∗ [s] and g∗ = 9.81m/s2. The basis for the non-dimensionalization
of all quantities herein is given by a length scale l∗ref and time scale t∗ref,
defined by a reference wavenumber k∗ref and its angular frequency ω∗

ref =

29
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√
g∗k∗ref in quiescent water

l∗ref =
2π

k∗ref
and t∗ref =

2π

ω∗
ref

=
2π√
g∗k∗ref

. (3.1)

An advantage of this choice is that all velocities, e.g., a background current
U∗, are given as fractions of the reference wavenumber’s quiescent water
phase velocity, i.e., U = U∗t∗ref/l

∗
ref = U∗/c∗p,0(k

∗
ref) with c∗p,0 =

√
g∗/k∗.

Additionally, angular frequencies and wavenumbers are normalized directly
using ω∗

ref and k∗ref, instead of using the defined time and length scales t∗ref
and l∗ref. This normalizes all phases by 2π, which will be denoted in the same
way, i.e., a phase of ϕ∗ and a non-dimensional phase ϕ = ϕ∗/2π. Within this
system, care must be taken when re-introducing dimensions. For instance,
if a resolution is given by δω = 1

T , then,

δω =
1

T
⇐⇒ δω∗

ω∗
ref

=
1

T ∗/t∗ref
⇐⇒ δω∗ =

2π

T ∗ . (3.2)

The same can be obtained by reintroducing the time scale t∗ref via multi-
plication (both sides) with 1/t∗ref and multiplying only the right–hand side
by 2π. The latter procedure appears arbitrary, but the factor 2π can be
understood to restore radians3. Where non-dimensional and dimensional
equations differ in form, clarification will be provided.

3.1 Theory

For the simulation and analysis of surface waves in this thesis, the descrip-
tion of water waves atop a varying current is pivotal. To isolate and focus
on the effects due to a background current, with focus on remote sensing
applications, the following simplifying assumptions are made:

1. The fluid is inviscid, incompressible and its properties are homogen-
eous and constant.

2. Fluid motion due to waves is affected by a prescribed background
current, but not vice versa, i.e., the interaction is unidirectional.

3. Surface tension and finite water depth effects are negligible.

4. The slope, or steepness, ε ≪ 1 of waves is small.

5. Background currents are stationary U ̸= U(t).

3It is possible to keep track of radians formally with a reference phase 2π rad; this would
necessitate the introduction of powers of rad into almost all well-established equations,
which is impractical. For instance, the “velocity” c̃ in Equation (1.3) would have units
radm/s, when it should only be m/s.
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6. The vertical shear of the background current is moderate in the sense
described in Ellingsen and Li (2017).

7. The horizontal shear of the background current is small compared to
the wave’s frequency (see Section 3.1.2).

8. Background currents are separable in terms of vertical and horizontal
coordinates, i.e., U(x, z) = Uh(x)f(z).

3.1.1 Dispersion Relation

The surface elevation ζ of a wave with infinitesimal amplitude a at the air-
water interface is described by a cosine in time and space, i.e., ζ(x, t) =
a cos(2π(k · x− ωt)). The wave’s wavevector k (or wavenumber k = |k| in
1D) and its frequency ω are linked by the dispersion relation ωDR(k). From
the dispersion relation one obtains the propagation speed of wave crests
and troughs, the phase speed cp = ω/k. Energy carried by the wave, on
the other hand, moves at the group velocity cg = ∇kω (see, e.g., Peregrine
1976), where ∇k = (∂/∂kx, ∂/∂ky).

Under the assumptions 1, 2, 3 and 4 and in the presence of a uniform
current, the dispersion relation can be derived to give Equation (1.2) (see,
e.g., Peregrine 1976), which is non-dimensionalized to

ωDR(k) =
√
k +U · k. (3.3)

For a moderately vertically sheared background currentU(z), the dispersion
relation becomes (Stewart and Joy 1974)

ωDR(k) =
√
k + k · c̃(k) where c̃(k) = 4πk

∫ 0

−∞
Ue4πkz dz . (3.4)

For this approximation to hold, it is required that the depth averaged ver-
tical shear is small (Ellingsen and Li 2017) relative to the quiescent water
phase velocity, i.e.

δ(k) =
1

cp

∫ 0

−∞

k

k
· ∂U
∂z

e4πkz dz ≪ 1. (3.5)

Ellingsen and Li (2017) show that even for moderate vertical shear, where
δ = 0.35, Equation (1.3) gives reliable results. For Stronger vertical shear
they provide an alternative approximation, which could be implemented
here as well. (Factors of 2π = l∗refk

∗
ref appear in Equation (3.4) and Equa-

tion (3.5) due to non-dimensionalization of k∗ dz∗ and k∗z∗.)
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In the absence of vertical shear c̃ = U = const., the group velocity evaluates
to

cg = êk
1

2
√
k
+U = cg,0 +U, (3.6)

where êk = k/k. For a vertically sheared current, however, the group
velocity cannot be obtained by replacing U with c̃(k), because taking the
derivatives with respect to k produces additional terms from the integrand
of Equation (3.4) (Banihashemi and Kirby 2019). One obtains

cg = cg,0 + 4π

∫ 0

−∞
[kU+ êk(k ·U) + 4πkz êk(k ·U)]e4πkz dz . (3.7)

The integral can be solved analytically for a range of profiles, particularly
under assumption 8, that U is separable. An example will be given in the
next section.

3.1.2 Horizontally Varying Current

When the background current is a function of the horizontal coordinates
U = U(x), the description of the propagation of waves depends on the scale
on which the current varies. On one end of the scale is a step-change in the
current, which can be viewed as an approximation to a gradual transition,
when it occurs over a length much smaller than the wavelength of a wave.
Solutions to this problem are readily available but not the focus of this work.
On the other end of the scale are currents where the change is slow enough
to be considered constant on the scale of a wave’s wavelength, assumption 7.
This is the regime of geometrical optics (see, e.g., Peregrine 1976, Voronovich
1976). The slow variation of U allows for the definition of a local dispersion
relation using the local value of the background current. Following the
formalism given in, e.g., Whitham (1999), Gerber (1993) and White and
Fornberg (1998), it is

Ω(k;x) = ωDR(k;x) =
√
k + k ·U(x), (3.8)

leading to locally defined phase and group velocities as well. How this is
used in the propagation of waves to obtain the surface elevation is discussed
in Section 3.1.4.

The numerical framework developed in the present work allows for hori-
zontal and vertical shear, with the restriction that the current is separable,
i.e., U = Uh(x)f(z), so that Equation (3.4) becomes approximately

Ω(k;x) =
√
k + k ·Uh(x)

[
4πk

∫ 0

−∞
f(z)e4πkz dz

]
. (3.9)
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Note that Uh represents the surface current only if f(0) = 1. For compar-
isons of scenarios with and without shear it is advisable to define f such
that the quantity in parentheses is on the order of one for wavenumbers in
consideration.

Similarly, the horizontal component of the current profile can be factored
out in Equation (3.7). The equations for the dispersion relation and group
velocity in the presence of horizontal shear and vertical shear thus become

Ω(k;x) =
√
k + k ·Uh(x)I1[k; f ] (3.10)

and

cg = ∇kΩ = cg,0 +Uh I1[k; f ] + êk(êk ·Uh) (I1[k; f ] + I2[k, f ]), (3.11)

where I1 and I2 are k-dependent depth-integrals of f(z)

I1[k; f ] = 4πk

∫ 0

−∞
f(z)e4πkz dz (3.12)

and

I2[k; f ] = (4πk)2
∫ 0

−∞
zf(z)e4πkz dz . (3.13)

For the numerical implementation it is useful to obtain an analytical ex-
pression for the integrals, which is readily obtained for a variety of func-
tions f(z). A fairly general family of profiles is given by the exponential
polynomial

f(z) =
∞∑

n=0

bnz
ne2παnz bn, αn ∈ R. (3.14)

Given this profile, the integrals I1 and I2 evaluate to

I1 =

∞∑

n=0

bn
2k

(2k + αn)n+1

(−1

2π

)n

n! (3.15)

and

I2 =
∞∑

n=0

−bn
(2k)2

(2k + αn)n+2

(−1

2π

)n

(n+ 1)!. (3.16)

Note, that I1 = −I2 for a vertically uniform profile bn = 0∀n > 0, leading
to the third term in Equation (3.11) to vanish.

If the vertical profile is given in terms of dimensional variables b∗n and α∗
n,

then the dimensionless quantities for the equations above are bn = b∗n(2π)
n

and αn = α∗
n/k

∗
ref.
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3.1.3 Linear Superposition

A random sea state is typically comprised of waves with a range of fre-
quencies (or wavenumbers) and a range of propagation directions (see, e.g.,
Pierson 1955). In the absence of horizontal shear, the surface elevation can
be modelled by superposition of Nk individual waves of amplitude aik (see,
e.g., Socquet-Juglard et al. 2005)

ζ(x, t) =
∑

ik

aik cos [2π(kik · x− ωDR(kik)t+ ϕ0,ik)], (3.17)

where ϕ0,ik is a random phase between 0 and 1, and ik = {1, 2, .., Nk}. In
general terms, the argument of the cosine is given as the phase ϕ(x, t),

ζ(x, t) =
∑

ik

aik cos(2πϕik(x, t)) =
∑

ik

ζik(x, t), (3.18)

where the local frequency and wavevector are ω = −∂ϕ/∂t and k = ∇ϕ,
respectively. In the presence of horizontal shear, these are locally defined
quantities and must fulfill the dispersion relation ω = ωDR(k;x) every-
where. Furthermore, for a time-independent current, the frequency of a
wave-component is constant ω = const. (Peregrine 1976), so that the phase
separates into a spatial and temporal part

ϕik(x, t) = ϕ̂ik(x)− ωikt+ ϕ0,ik , (3.19)

where the constant ϕ0,ik has been added for convenience. Note, that wave
action conservation dictates that the amplitudes aik are functions of x as
well (see, e.g., Voronovich 1976). This is neglected in this work to simplify
the interpretation of results.

3.1.4 Ray Tracing Equations

For a stationary current, slowly varying current, the phase field ϕ̂ik(x) of
each wave component (see Equation (3.18)) is determined by the dispersion
relation through

ωik = Ω(kik(x);x) = Ω(∇ϕ̂ik(x);x). (3.20)

This is a first order nonlinear partial differential equation for the ϕ̂ik(x)
and can be reduced to an ordinary differential equation using the method of
characteristics (see, e.g., Gerber 1993, Voronovich 1976, White and Fornberg
1998). The following considerations are independent of the index ik, which
is dropped for brevity.
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Using the method of characteristics, one finds the coupled set of ODEs

∂

∂t′



r(t′; s)
ϕ̂(t′; s)
k(t′; s)


 =




∇kΩ
k ·∇kΩ
−∇Ω



∣∣∣∣∣∣
r(t′;s)

, (3.21)

where t′ parameterizes each ray r, and s is a parameter (see details below).
The initial conditions, denoted by a subscript 0, are



r0(s)

ϕ̂0(s)
k0(s)


 =



r(0; s)

ϕ̂(0; s)
k(0; s)


 =




r0(s)

ϕ̂(r0(s))
k(r0(s))


 , (3.22)

which must fulfill the additional conditions

Ω(r0(s),k0(s)) = ω and
∂ϕ̂0(s)

∂s
=

∂r0(s)

∂s
· k0(s). (3.23)

The starting point for finding the phase field ϕ̂(x) is Equation (3.22). The
phase ϕ̂0(s) and wavevector k0(s) of, e.g., an incoming wave, are prescribed
along a line r0(s), parameterized by s ∈ [0, 1]. Solving the ODE in Equa-
tion (3.21) for one value of s provides ϕ̂ and k on the ray r(t′; s), which
follows the group velocity ∇kΩ. Thus, by solving the ODE for all s ∈ [0, 1],
the solution to the PDE is found for the area spanned by the union of the
ray positions r(t′; s).

In the present work, scenarios are considered where a monomodal spectrum
propagates through the domain from one side. Therefore, the initial condi-
tions are set at the bottom of the domain r0(s) = (x0(s), ymin). Assuming,
furthermore, that the current profile is constant along r0(s), the initial con-
ditions for the phase and wavevector simplify to

k0(s) = const. and ϕ̂0(s) = ϕ̂0(0) + kx,0 (x0(s)− x0(0)). (3.24)

The procedure described above assumes that the solution exists, which is
not generally the case for all initial conditions. Specifically, when neighbor-
ing rays cross, the solution becomes multivalued and is not valid anymore.
Physically, the crossing of rays means convergence of energy, leading to
diverging amplitudes (see, e.g., Gerber 1993, McKee 1974), similar to the
focusing of light by magnifying glass. At these points linear wave theory
breaks down and requires more sophisticated treatment.

If and where caustics (ray crossings) appear is difficult to predict in gen-
eral. The simplest approach is to solve the ray equation and check for ray
crossings afterward.
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3.2 Simulation

The implementation for calculating Equation (3.18) developed in this work
consists of four major steps. First, the scenario to simulate is set up in terms
of domain, background current, resolutions and wave spectrum. Second, the
waves’ phase ϕ̂ik for each input wavevector is found along rays by using the
method of characteristics described in Section 3.1.4. Third, that phase is
interpolated onto a Cartesian grid, and in the last step the surface elevation
is calculated by superposition according to Equation (3.18) for each time
step. The procedure is illustrated in Figure 3.1 and details for each step are
given below.

ϕ̂1

ϕ̂2

...

ϕ̂Nk

phase mapsinput spectrum

domain and current initial conditions ray collections

surface elevation ζ(x, y, t)

ray
tracing

interpolation

y

x

ky

kx

k1

k2

...

kNk

a(kik) superposition

Figure 3.1: Scheme used for generating synthetic surface elevation data: For a
specified domain, current and input spectrum, the initial conditions for waves
propagating through the domain are determined and the phase field ϕ̂ along rays
is then found using ray tracing and subsequently interpolated onto a Cartesian
grid. In the last step, the individual wave components are superposed to obtain
the surface elevation ζ.

3.2.1 Setup

The spatial domain is specified in terms of domain lengths Lx and Ly and
uniform spatial resolutions δx and δy. Typically, a square domain is con-
sidered with Lx = Ly = L and δx = δy. Similarly, the time domain of
the video is set by duration T and constant time step δt. To sufficiently
sample waves of the highest input wavenumber kmax and frequency ωmax,
end hence avoid aliasing, the resolutions are set such that there are at least
seven sample points per wavelength λmin and period τmin, i.e., δx = λmin/7,
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δt = τmin/7.

For the input wavevectors and the corresponding amplitudes, an amplitude
spectrum function a(k) is defined and evaluated on an evenly spaced kx-
ky-grid, with resolution δkin. Only the Nk wavevectors k for which a(k) ̸=
0 and their corresponding amplitudes are stored in a list (kik , aik) with
ik = {1, 2, .., Nk}. (if Lx ̸= Ly, separate resolutions δkx ̸= δky can be set).
To ensure that a continuous spectrum is emulated, different values for the
resolution were tested. Convergence in the extracted DSVs was reached at
about δkin ≈ 0.35/L (δk∗in ≈ 2π 0.35/L∗). All subsequent calculations were
performed using δkin = 0.3366/L.

The right–hand side of Equation (3.21) requires the evaluation of the de-
rivatives ∇Ω and ∇kΩ at each iteration of the ray tracing step. The ve-
locity profile is prescribed as U = Uh(x)f(z), with f being of the form
of Equation (3.14) defined by parameter pairs (bn, αn). Using this form,
the Integrals I1 and I2, that appear in the expressions for ∇Ω and ∇kΩ
(see Equation (3.10) and Equation (3.11)), are evaluated analytically ac-
cording to Equation (3.15) and Equation (3.16), avoiding costly numerical
integration. To also avoid numerical differentiation, the horizontally varying
part Uh is defined in terms of explicit functions for both Uh itself and its
derivatives ∂Uh/∂x and ∂Uh/∂y.

3.2.2 Ray Tracing

The first step in finding the phase field ϕ̂(x) for each input wavevector k
(the index ik is dropped for brevity) is solving Equation (3.21) such that the
domain of interest is covered by rays. Clearly the coverage is determined by
the choice of the initial conditions for ray coordinates r0(s) and wavevectors
k0(s). Using the additional assumption that the current does not change
along the lower edge of the domain (y = −L/2), the initial conditions are
set using Equation (3.24). A preliminary ray tracing run is carried out with
two rays originating at the start and end point of the initial condition line,
i.e., x0(0) and x0(1). If the rays lie entirely or partially inside the domain,
it can be inferred that the union of all rays from x0(s) do not suffice for
full coverage, and x0(s) must be extended. This is iterated until coverage
is guaranteed. The initial condition line is then discretized with constant
spacing ∆x = δx k0/k0,y, i.e., δx-spacing perpendicular to k0, to obtain
sufficiently dense coverage of the domain. For each initial point, a ray is
then found by solving Equation (3.21) using the Dormand-Prince algorithm
(Dormand and Prince 1980).

To ensure that only valid ray collections are used in the subsequent inter-
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polation step, each ray collection is examined for caustics by finding the
intersections of initially neighboring rays. If any points of intersection lie
within the domain, the respective wave component k is flagged and excluded
from subsequent calculations, since the phase ϕ̂ becomes multivalued. The
scenarios considered in Article II and Article III were chosen such that no
caustics appear.

A common test case for the ray tracing step is the annular current studied
in Gerber (1993) and White and Fornberg (1998). The velocity field is of
the form U = U(r)êθ, where U(r) a parabolic radial profile with maximum
Umax

U(r) = −4
Umax

(Rout −Rin)2
(r −Rout)(r −Rin), (3.25)

for radii in the range Rin < r < Rout; outside that range the velocity is zero.
Using the same parameters R∗

in = 40 km, R∗
out = 160 km and U∗

max = 2m/s,
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Figure 3.2: Ray tracing result for an annular current. The parameters for this test
case are taken from Gerber (1993).

incident waves with a period of T ∗ = 10 s are propagated through the do-
main from the bottom left corner of the domain, where the initial wavevector
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direction is 45◦ from the x-axis. The resulting rays are shown in Figure 3.2,
visually indistinguishable from Figure 16 in Gerber (1993). When making
a similar comparison with Figure 5 in White and Fornberg (1998), small
deviations in the outgoing ray directions can be observed, even for rays
not passing through the region of current. A likely explanation for this is,
that the current therein was not represented by an analytic expression, un-
like in Gerber (1993), but an interpolation scheme using rastered current
information (obtained using the same analytic expression).

3.2.3 Interpolation

For the superposition of the individual wave components ζik , the phase
ϕ̂ik(x) is required on a Cartesian grid spanning the domain. To obtain
it from the results of the ray tracing step, first, the position and phase
(r, ϕ̂(r)) along the rays is collected from all rays, and values lying outside
the domain are discarded. The interpolation of the so obtained scattered
phase data is achieved using a linear 2D Delaunay scheme (Amidror 2002),
with query points defined by the domain size L and resolution δx. The
linear interpolation method was deemed sufficient based on the density of
data points from the ray collections; the initial distance between rays and the
evaluation steps along each ray were chosen such that the distance between
points is approximately δx, which in turn was set to ensure > 7 data points
per wavelength.

3.2.4 Video Assembly

The last step in the simulation is the superposition of the surface elevation
ζik(x, t) of individual wave components kik .

The summation in Equation (3.18) is performed for each time t on the evenly
δt-spaced interval [0, T ]. First, the phase ϕik(x, t) of each wave component is
determined using Equation (3.19), where each phase offset ϕ0,ik is taken from
a uniform distribution in order to obtain a random sea state. Then the wave
amplitudes ζik(x, t) = aik cos(2π ϕik(x, t)) are calculated and superposed4.
(Note that the phase offset ϕ0,ik is not re-randomized when repeating the
calculation for a different time t).

This process is repeated to obtain several (typically 100) realizations of the
same scenario, with different sets of phase offsets ϕ0,ik .

4Since the superposition procedure consists of pointwise multiplication, addition and
summation of matrices, which are highly parallelizable, utilization of a GPU instead of
a CPU yielded a significant reduction in computation time. The computations were
performed on a desktop PC (Intel Core i9-12900, 64GB DDR5 RAM, NVIDIA GeForce
RTX 3070).
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3.3 Doppler Shift Velocity Extraction

3.3.1 Normalized Scalar Product Method

To obtain the wavenumber dependent DSVs c̃(k) from spatiotemporal sur-
face elevation data ζ(x, t) for a list of wavenumbers k ∈ {k1, k2, ..., kj , ...kM},
the approach given in Smeltzer et al. (2019) is used. It is based on the NSP
method (see, e.g., Huang and Gill 2012, Huang et al. 2016, Serafino et al.
2010), where the overlap (in terms of a normalized scalar product) of meas-
ured spectral intensity and a fitting function, representing the dispersion
relation, is optimized. The implementation of the DSV extraction in this
thesis is based on the code found in Smeltzer (2022), with minor modifica-
tions improving computation speed.

From the surface elevation data ζ(x, t), with x, y ∈ [0, L] and t ∈ [0, T ],
the k-ω spectrum P (k, ω) is obtained via a fast Fourier transform (FFT)
P = |F {ζ} |2. To obtain the DSV at a given wavenumber kj , the spectrum
is first masked to contain only data from wavenumbers in a small range
around kj , giving

Fj(k, ω) =

{√
P (k, ω) for |k − kj | ≤ ∆̃k

0 else
, (3.26)

whereby a cylinder shell of thickness 2∆̃k is cut from the measured spectrum,
centered around the ω-axis. If ∆̃k is chosen appropriately, the DSV is
practically constant c̃(k) ≈ c̃(kj) within the cylinder shell, labelled c̃j . In
order to retrieve c̃j from the masked spectrum using the dispersion relation
Equation (3.4), a characteristic function is defined

Gj(k, ω; c̃j) = G+
j (k, ω; c̃j) +G−

j (k, ω; c̃j), (3.27)

with5

G±
j (k, ω; c̃j) = exp

[
−2

(±ωDR(±k, c̃j)− ω

aω

)2
]
. (3.28)

G can be understood as the dispersion cone ωDR for a background current
c̃j , broadened in the ω-direction with a width factor aω (a normalization
constant is not required). Finally, the overlap between the characteristic

5The definition for G± given in Article II contains a sign error. However, it only affects
G at negative frequencies, which were excluded from the DSV extraction step, since that
part of the spectrum is redundant. Therefore, the sign error in G took no effect. In Article
III the correct definition for G± is given.
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function Gj and the masked spectral data Fj is quantified in terms of the
NSP Nj(c̃)

Nj(c̃) =
⟨GjFj⟩
⟨Gj⟩ ⟨Fj⟩

, (3.29)

where

⟨f⟩ =
y

f(k, ω) dω d2k . (3.30)

From maximizing Nj by varying c̃, the best fit is found and c̃j is obtained.

Numerically, the integrals are calculated as full summations of the 3D arrays,
where Gj is evaluated on the k-ω-grid on which the spectrum F is known,
and the product GjFj is the pointwise multiplication of the corresponding
arrays. For the optimization procedure maximizing Nj(c̃) a Nelder-Mead
simplex algorithm (Lagarias et al. 1998) is used, which is included in the
function library of most common programming and data analysis tools.

3.3.2 Spectral Leakage

When obtaining the spectrum from a measurement using a discrete Four-
ier transformation (DFT), most spectral components will exhibit spectral
leakage (Lyon 2009). It is a consequence of the finite sample size, say, the
duration T , as this truncation of the underlying “real” time series of infinite
duration is effectively a multiplication with a top hat function of length T .
In Fourier space this is equivalent to a convolution of the real signal’s spec-
trum with a sinc function sinc(fT ) = sin(fTπ)/(fTπ), causing the spectral
intensity from one frequency component to appear at other frequencies as
well.

The effect of this “leakage” can be divided into two components. First, the
most leakage appears in a small range around the real frequency, within a
range determined by the first root of the sinc function, usually referred to as
the central lobe. For a top hat function, or window, the width of the central
lobe is ∆f = 2/T . The larger issue from spectral leakage, however, comes
from the second component. At frequencies multiple central lobe widths ∆f
away, the magnitude of spurious spectral intensity is still significant, since
the sinc function decays only as 1/f .

To mitigate the long–range effect of spectral leakage, the measurement data
can be multiplied with a window function w(t) prior to any subsequent ana-
lysis. This effectively replaces the top-hat with the window of choice, thus
replacing the sinc Fourier space with the Fourier transform of w(t). Depend-
ing on the precise window w(t), a faster decay of spurious spectral intensity
at large f can be achieved, at the cost of an increase in the central lobe
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width ∆f (see, e.g., Nuttall 1981). Thus, the choice of the window func-
tion depends on the application at hand; it is typically a trade-off between
long-range and short-range spectral leakage.

In the data analysis reported in Article III, a Hann window was used, as
it is a very common choice and has a reasonably narrow central lobe while
providing good long-range leakage suppression. A more detailed discussion
regarding the influence of spectral leakage on the extraction of DSVs can
be found in Article II.

3.3.3 DSV Extraction Parameters

For reliable results, it is important to choose appropriate width parameters
∆̃k and aω. Small widths typically increase the susceptibility to noise, while
large widths tend to smooth over these influences.

From a test case with waves on quiescent water it was found that the
wavenumber bin width ∆̃k effectively acts as the width of a moving av-
erage, smoothing the extracted DSVs c̃(k) as expected. This is desirable if
the measure spectrum is noisy. A reasonable compromise was found to be
∆̃k = 2δk, where δk is the wavenumber resolution.

In contrast, the second parameter aω can have a more complex impact on the
resulting DSVs. Ideally aω should be set such that G (see Equation (3.28))
approximates the ω-distribution of the measured spectral intensity. A larger
width makes the NSP insensitive to changes in c̃, increasing the influence of
spurious spectral intensity at frequencies distant from the dispersion rela-
tion. However, reducing aω can result in the optimization procedure finding
a local maximum within the range where spectral intensity is expected, in-
stead of the center of gravity thereof. This can lead to strong fluctuations
in the extracted DSVs when the spectrum is noisy.

The choice of aω for the studies presented in Article II and Article III
is based on different considerations. Since Article II is a study on the
effect of spectral leakage, aω is set such that the characteristic function G
well encompasses the central lobe of the applied window function’s Fourier
transform. Article III is a study on the effect of horizontal shear, which leads
to broadening typically larger than that due to spectral leakage. Therefore,
aω is set such that G encompasses the maximum frequency spread expected
within the domain; it is estimated using the current spread ∆U and the
highest input wavenumber, ∆ω ∼ kmax∆U .
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3.3.4 DSV Statistics and Visualization

It is worth considering how to visualize the statistics of the extracted DSV
vectors c̃. A straightforward approach is to plot the mean ⟨...⟩ and standard
deviation σ, e.g., using error bars, for the components of c̃ separately. These
are calculated across realizations (indicated by subscript r) as follows. Let
Nr be the number of realizations and ir = {1, 2, .., Nr}, then

⟨X⟩ = 1

Nr

Nr∑

ir=1

Xir and σ2[X] =
1

Nr − 1

Nr∑

ir=1

(Xir − ⟨X⟩)2, (3.31)

where X is either c̃x or c̃y, the respective x- and y-component of c̃. The
wavenumber index j is suppressed for brevity; the mean and standard de-
viation are understood to be calculated for each j.

An alternative is to show the statistics of c̃ in terms of ⟨c̃⟩ = ⟨|c̃|⟩ and
σ[c̃] instead. In addition, information about the direction ϑc̃ of c̃ must be
provided. The angle ϑc̃ is obtained as the direction of the average DSV (not
the average of directions)

ϑc̃ = arg (⟨c̃⟩) ( ̸= ⟨arg(c̃)⟩ ). (3.32)

This approach requires more panels to show the magnitude and direction
of the DSV, but significantly improves their readability, especially when
results for different scenarios — especially current directions — are shown
in the same figure for comparison. To showcase the advantage of the second
method of visualization, the DSVs extracted for waves atop a current with
directions θU = −90◦, 0◦, 90◦ are shown in Figure 3.3. The second method
of plotting clearly facilitates the comparison of results. It is used for the
presentation of data in Article II and Article III.
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Figure 3.3: DSVs of waves atop a constant current background of strength U = 0.05
directions θU = −90◦, 0◦, 90◦ (indicated by color and marker). The two panels on
the left show the Cartesian components of the DSV c̃ = (c̃x, c̃y) in terms of the
statistical mean (line) and standard deviation (error bar). The three panels on the
right show the same results in terms of the statistical mean (top) of the magnitude
of c̃, its standard deviation (middle) and the average direction ϑc̃ (bottom). Note
how the right panels highlight biases in ⟨|c̃|⟩ and ϑc̃ for k → 0.



4
Summary of Research Articles and

Outlook

In this chapter the research articles included in this thesis are summarized
and suggestions for future studies based on the findings of this thesis are
given. The focus of this work is the investigation of systematic errors or
biases in two measurement techniques commonly employed in the context
of free water surface dynamics.

The first is the free surface synthetic schlieren (FS-SS) method due to Moisy
et al. (2009), used mainly in laboratory experiments for measuring the water
surface topography from camera images. In the standard setup (configur-
ation 1), the camera is placed above the water surface and a random dot
pattern below. From observed distortions of this pattern, the surface gradi-
ent, and hence the topography, can be reconstructed. This configuration
has certain limitations that can be overcome with a different setup (config-
uration 2), where the camera is placed below the (transparent) bottom of
the water container and the dot pattern above the surface. In Chapter 2 the
relation between the surface gradient and the observed deformations of the
dot pattern is derived for configuration 2, an equation similar in form to the
one provided in Moisy et al. (2009) for configuration 1. Both derivations
are based on first order approximations that assume small view angles and
surface slopes as well as negligible surface elevations. Testing the limits of

45
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these restrictions (see Section 2.2) it was found that the systematic errors in
the recovered surface gradient are generally much higher in configuration 2,
by up to an order of magnitude. However, by increasing the camera-pattern
distance, the errors can be reduced to below 10%, even for a significant sur-
face steepness of up to ε ≈ 0.3. Errors stemming from a finite wave height
were found to be less severe, exceeding 10% only for waves with amplitudes
approaching half the pattern surface distance, clearly violating the small
amplitude assumption.
For the surface measurements reported in Article I, the FS-SS was used in
configuration 2, with distances h0 = 0.5m (camera to bottom), h1 = 0.17m
(bottom to surface) and h2 = 0.17m (surface to pattern), covering an area
of 165mm× 165mm. The observed surface features were measured to have
a maximum surface steepness of ∼ 0.3 and surface elevation of ∼ 1 cm. Con-
sulting Figure 2.4 at [h0, h1] = [1m, 0.5m], a maximum systematic error of
less than 10% in the calculated surface gradient is expected.

The second measurement technique is the Doppler shift velocity (DSV) ex-
traction based on the normalized scalar product (NSP), used to infer subsur-
face flow speeds from spatiotemporal measurements of the surface elevation.
It is based on the fact that for waves propagating atop a vertically sheared
current, the frequencies have wavenumber dependent deviations from their
quiescent water values. The goal of this part of the thesis is to investigate
systematic errors in the extracted DSVs due to violation of the assump-
tion that the background current is horizontally uniform. For a variety of
scenarios, synthetic surface elevation data is generated and the DSVs ex-
tracted, as described in Chapter 3. Even in the absence of horizontal shear
the extracted DSVs exhibit biases due to spectral leakage, as reported in
Article II. With this knowledge, the biases due to horizontal shear are then
identified, as shown in Article III.



47

Article I

The influence of grid-generated turbulent flows on the gas transfer rate
across an air-water interface
Pim Bullee, Stefan Weichert, Astri Nore, Leon Li, Simen Å. Ellingsen and
R. Jason Hearst
Submitted to Experiments in Fluids
A previous version of the article was accepted for publication in a peer-
reviewed conference proceedings, but withdrawn due to excessive publication
delays. The data analysis — mainly Section 3.1 — and writing in general
have been improved and updated for the submission to Experiments in Fluids.

In this article, an experimental study of the transfer of oxygen through
the air-water interface is presented, and an increase due to turbulence is
quantified by varying the amount of turbulence generated using an active
grid. To isolate the effect from turbulence in the water column, the surface
elevation was recorded as well, using the FS-SS method in configuration 2.
From the obtained surface gradient data, the wavevector-frequency spectra
were calculated and an increase of spectral intensity representing surface
waves was observed and attributed to up-stream generation. Their influence
on the gas transfer rate was ruled out, however, because the increase in the
interface’s surface area was negligible.

Article II

Biases from spectral leakage in remote sensing of near-surface currents
Stefan Weichert, Benjamin K. Smeltzer and Simen Å. Ellingsen
IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15,
2023, Art no. 4208515

Article II lays the foundation for analyzing the effects of horizontal shear on
the extraction of DSVs using the NSP method. Therein it is shown that for
realistic scenarios without shear, spectral leakage can lead to false current
“measurements” far exceeding resolution-based limits. Several factors have a
big influence on the magnitude and wavenumber dependence of these biases:
the wave spectrum’s shape in terms of peakedness and angular spread, the
background current strength and direction relative to the mean propagation
direction of waves, and the spectral resolutions.

Finally, recommendations for identifying and reducing spectral leakage ef-
fects are given. Most notably, the application of a Hann window prior to
the data analysis drastically reduces the errors. Additionally, sacrificing
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frequency resolution for wavenumber resolution was found to be beneficial
in most cases.

Article III

The effect of horizontal shear in extracting near-surface currents from wave
data
Stefan Weichert, Benjamin K. Smeltzer and Simen Å. Ellingsen
Submitted to IEEE Transactions on Geoscience and Remote Sensing

In this article, biases due to horizontal shear are investigated. The back-
ground current varies linearly in strength and has constant direction. As
in Article II, sea states of different mean propagation direction and angular
spread are considered. For highly directional wave spectra the biases in the
extracted DSVs can reach 100% of the expected domain average, depending
strongly on the relative direction between waves, current and current gradi-
ent, as well as the amount by which the current changes within the field of
view.

A mitigation strategy, involving the following steps, is given. First, the
directionality of the wave spectrum is determined. A very narrow angular
spread of less than 40◦ (full width) indicates the possibility of biases due
to horizontal shear. Second, the data analysis is repeated with a reduced
domain size, which likely leads to a smaller range of currents in the domain,
the main factor for these kind of biases. If the resulting DSVs differ from
the those obtained with the full-size domain, it is advisable to look more
closely at the spectra at constant wavenumber to inspect how well the fits
of the dispersion relation matches the spectral data.
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Concluding Remarks

The FS-SS method gives access to the time resolved surface topography of
the air-water interface in laboratory experiments. Therefore, it can be used
for validating modifications of, or new remote current sensing techniques, as
demonstrated by Smeltzer et al. (2019). Hence, it may play an important
role in the ecosystem of developing measurement techniques in the future. In
this context, as well as in other experimental studies of interactions between
sheared currents, waves and turbulence, one may require water depths that
render the FS-SS unusable in the standard configuration, due to too large
distortions of the dot pattern at the water bottom. In the flipped geometry,
the sensitivity is tunable due to the the variable distance between the dot
pattern and the free surface, which restores its applicability. This increased
flexibility comes at the cost of larger errors stemming from the added re-
fracting surface at the bottom of the tank. In the paraxial limit, the errors in
both configurations vanish, but in practice the assumptions that the method
is based on may be fulfilled only to a certain degree. Errors from partially
fulfilling, or even violating these assumptions are controllable, but care must
be taken to avoid them. The method’s applicability is broader than initially
expected and only very strongly sloped surfaces pose an issue that cannot
be overcome with changes to the setup.

For measuring near-surface currents on scales up to the submesoscale, re-
mote sensing has become an indispensable tool. The spectral analysis of
optical footage from airborne observations is especially attractive due to
the speed at which data can be obtained from large areas. Additionally,
other quantities can be measured at the same time, e.g. the sea-surface-
temperature (Lenain et al. 2023, Romero et al. 2017), increasing the po-
tential value of this approach further. Of particular interest are areas of
rapid changes in the ocean currents, such as fronts and eddies. It is such
regions, however, where biases from horizontal shear must be expected. Fur-
thermore, the directional wave spectrum changes, e.g., across submesoscale
fronts VreĆica et al. (2022) or due to internal gravity waves Lenain and
Pizzo (2021). This may exacerbate the biases, as they depend strongly
on the wave spectrum (mostly angular spread), and the relative direction
between wave propagation, current and the current’s gradient.

It should be noted that the biases investigated in this work appear mostly
for very narrow spectral spread, or long-crested waves. Thus, in most cases,
the method is reliable, but it is recommended to always monitor the wave
spectrum.
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Future Work

As with essentially all research, the work presented in this thesis leaves some
questions open and raises new ones. Further attention to the topics given
below would provide valuable additional insight.

1 Short distance FS-SS: A violation of the small angle approximation leads
to large systematic errors, particularly in configuration 2. When re-
strictions of the experimental setup do not allow for moving the camera
further away, a higher order relation between the surface gradient and
measured displacements that reduces these errors would certainly prove
useful. If such a relation cannot be found analytically, one can use the
simulation approach presented herein to find an empirical polynomial
which minimizes expected errors for the setup at hand.

2 Adaptive NSP parameters for subsurface current measurements: Long
range spectral leakage effects on the DSV extraction using the NSP
method are effectively removed by tapering the surface elevation data
with a Hann window. Influences from short range leakage, on the other
hand, continue to cause biases in the DSVs at small wavenumbers. A mit-
igation strategy would be to use adaptive parameters in the NSP method
that take into account the effective broadening of the spectrum signal in
frequency, due to leakage in the wavenumber direction, strongest at low
wavenumbers. Similarly, when horizontal current ranges can be estim-
ated from preliminary measurements, the NSP parameters can be adap-
ted to accommodate for the frequency broadening due to shear, strongest
at high wavenumbers.

3 Additional case studies: The biases due to spectral leakage and horizontal
shear presented in this thesis were investigated under certain simplify-
ing assumptions. Relaxing these may give rise to additional effects, for
instance, from a bimodal input spectrum or a background current that
changes direction either horizontally or vertically. Additionally, the so far
directly used surface elevation data could be converted into more realistic
image sequences with proper lighting and shadows.

4 Wave reflection effects: For certain combinations of the wave spectrum
and background current, caustics emerge for part of the spectrum, which
cannot be handled by the simulation code of this work. Such cases may
lead to interesting results. For instance, whether a wave is reflected by
the current depends strongly on the wave’s propagation direction. Then,
in one part of the domain, waves from the full input spectrum are present,
while only a reduced spectrum is measurable in another part.
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Biases from spectral leakage in remote sensing of
near-surface currents

Stefan Weichert, Benjamin K. Smeltzer, Simen Å. Ellingsen

Abstract—Remotely measuring subsurface water currents
from imagery of the wave field has become a much-used tech-
nique. We study the biases and errors in such measurements due
to spectral leakage, and suggest mitigating procedures. Deviations
between peak values in the three-dimensional wave spectrum and
the known dispersion relation in quiescent water are extracted
and interpreted as current-induced Doppler shifts, from which
the sub-surface current is inferred. The use of discrete Fourier
transforms, however, introduces spectral leakage between nearby
frequency bins. Analysing synthetically generated wave data
adhering to realistic input spectra we show that although no
current is in fact present, spurious currents can be “measured”
which can amount to a significant fraction of the phase speed
at the spectral peak. We analyse the effects of data tapering,
method of Doppler shift extraction, limited wavenumber and
frequency resolution, peakedness and angular width of the input
spectrum, and average misalignment between waves and Doppler
shift velocity direction. The narrower the input wave spectrum
in frequency and/or direction, the greater the biases become. The
use of a window function reduces the severity in nearly all cases,
yet mitigates the effects of limited resolution more effectively
in space than in time. When a current is present the absolute
biases remain essentially unchanged, when waves and currents
are roughly aligned, whereas in the case of a cross-current, biases
remain significant even for tapered data.

I. INTRODUCTION

The prospect of measuring currents near the sea surface
remotely from above is a highly attractive one. Measuring
depth-varying currents in situ by penetrating the surface re-
quires the use of e.g. buoys, ships, gliders or fixed instruments,
all relatively expensive and able to measure a single point or
trajectory at a time, and often struggle to capture currents in
the top few metres. In comparison, remote measurement from
above can be performed with inexpensive equipment mounted
on airborne platforms able to cover larger areas in a short time
(see, e.g., [1]).

By far the most common source of wave data has been
measurements using HF or X-band radar [2]–[16], primarily
mounted on ships. Only observation of the wave phase vari-
ation in time and space is required, however, meaning other
methods are equally applicable; the use of infrared [17] and
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polarimetric [18], [19] imaging has been demonstrated, as has
regular optical measurements (video) with cameras mounted
on quadcopter drones [20], and aircraft [21]–[24].

A current varying with depth will affect the wave phase ve-
locity differently for different wavelengths, resulting in a mea-
surable effective Doppler shift which depends on wavenumber
[2] and appears as a shift in the waves’ spectral dispersion
curve from that observed in quiescent water. Ever more
advanced methods have been developed in recent years for in-
ferring the depth profile of the sub-surface currents from such
measured Doppler shifts [12], [25], [26], yet the task of obtain-
ing these shifts from an observation of the spatiotemporal wave
field, by reconstructing the current-modified dispersion surface
in the frequency-wavenumber spectrum, is itself a nontrivial
task. Typically, the spectrum is divided into wavenumber
magnitude bins, whereby the Doppler shifts are found for
each bin separately. Perhaps the most frequently employed
are least-squares-based methods (e.g. [4], [8], [27]), whereas
the alternative Normalized Scalar Product (NSP) method is
also in regular use (e.g. [10], [13], [28]). We compare these
methods herein finding NSP to be unequivocally favourable.
A further method which we shall not consider here is the so-
called Polar Current Shell method (e.g. [13]), recently adapted
for this purpose [26], which has similar performance as NSP,
but favourable in some circumstances.

One should note that the same questions we seek to answer
here, also apply to bathymetry retrieval from the measured
wave spectra (see e.g. [29] and references therein). The
extraction of the water depth from the measured spectrum
requires spectral intensity at low wavenumbers, which can
be strongly influenced by spectral leakage, as we will show.
Since a finite water depth enters the dispersion relation in
a direction-independent and multiplicative way in contrast to
the additive and anisotropic term due to a current, it is not
obvious how the issues discussed herein affect the bathymetry
retrieval quantitatively, a question of potential importance
which requires further investigation.

A. Outline
In this work we consider the effects of a strong spectral

energy peak and the corresponding effect it has on the extrac-
tion of Doppler shifts for wavenumbers in the vicinity of the
peak. The energy peak results in spectral leakage to adjacent
wavevectors in the wave spectrum and may cause errors in the
extracted Doppler shifts — as perhaps the clearest example we
show that in realistic seastates, spectral leakage can cause a
significant spurious current to be “measured” when none is in
fact present.
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The phenomenon of spectral leakage is briefly reviewed in
section II-B, and we discuss how it can be mitigated by data
windowing. We then go on to describe a numerical experi-
ment where mock wave data is generated and analysed with
the methods in standard use for remote-sensing of currents
from wave dispersion, in section III. Results are reported
studying how the spurious current “measurements” depend on
the method of Doppler shift extraction (section III-C), the
angular width and peakedness of a directional (JONSWAP
[30]) wave spectrum (sections VI-B and VI-C), the spatial and
temporal resolution (sections VI-D and VI-D), as well as how
the situation changes when a uniform background current is
present, in section VI-E. We finally summarize and give a brief
overview of ways whereby the detrimental effect of spectral
leakage can be reduced in practical applications, in section
VII.

II. BACKGROUND

When remote sensing of sub-surface currents from wave
dispersion is performed, the input spectrum is an observation
of the motion of the water surface resolved in time and
space. The method is based on linear wave theory, so only
the phase of the waves is required, not the amplitude. The
data is typically a monotonic function of the sea surface
elevation or its derivative, as a function of position (x, y)
and time t. A three dimensional Fourier transform is then
applied in space and time to obtain a spectral signal as a
function of wave numbers k = (kx, ky) and frequency ω. We
assume the spatial area and duration of the observation are
L × L and T , respectively, so that the resolution in wave-
number and frequency are, respectively, δk = 2π/L and
δω = 2π/T ; we will refer to these as a pixel or bin in
wavenumber and frequency, respectively. (Note that after we
introduce nondimensional units in section III-A δk and δω
take the forms 1/L and 1/T , respectively.) We will assume
infinitely deep water for simplicity herein.

A. Theory

In a wave spectrum, the spectral signal is concentrated near
the dispersion relation ω = ωDR(k). The methods for sensing
the sub-surface current now extract a measured function ω(k).
If a current with moderately strong depth-dependence U(z) =
(U(z), V (z)) is present, the dispersion relation for a wave with
wave vector k is well approximated as ω = ωDR(k; c̃) with
the dispersion function

ωDR(k; c̃) = ω0(k) + k · c̃ (1)

where k = |k|, c̃ is the Doppler shift velocity (DSV) due to the
presence of a sub-surface current and the dispersion relation
in deep, quiescent water is

ω0(k) =
√

gk. (2)

Inversion methods to infer depth-dependent velocity profiles
from the measured spectrum are based on the approximation
[2], [31]

c̃ = 2k

∫ 0

−∞
U(z)e2kzdz. (3)

If a current is present which is uniform in depth, the resulting
Doppler shift will be independent of k, while conversely, a
Doppler shift which varies with k implies the presence of a
current which varies as a function of z. We shall see that
biases in the measured Doppler shift c̃ due to spectral leakage
typically vary significantly with k, and hence the spurious
currents which are “measured” will have a nontrivial depth
dependence. We do not pursue this question in detail.

The presence of the current thus introduces an observable
Doppler shift corresponding to the addition of a phase speed
c̃(k) to the phase velocity. Remote sensing of the depth-
varying current U(z) is then possible by measuring c̃ and
inverting equation (3) using one of several methods available
as reviewed in [1]. Methods for extracting c̃ from a measured
spectrum are reviewed and compared in section III-C.

Following Smeltzer et al. [26] we define the instructive
quantities δcδω and δcδk as

δcδω =
δω

k
; δcδk =

∂ω

∂k

δk

k
, (4)

which estimate the change in the predicted phase velocity
c due to moving the dispersion surface (1) by δk along
the wavenumber axis in the spectrum, or by δω along the
frequency axis. These are thus approximate measures of the
uncertainty in velocity measurement introduced by limited
wavenumber and frequency resolution, respectively. Further
discussion may be found in section 4.2.1 of [26].

B. Spectral leakage and windowing

Assume a continuous signal (in space or time) P̃0(t), the
“true” signal, is measured during a finite period of duration T .
A sharp cut-off at the beginning and end of the measurement
is equivalent to multiplying P̃0 by a discontinuous top-hat
function wbox(t) which is 1 within a time interval of length
T and zero outside this “window”. Multiplication with such
a window is equivalent to a convolution of the spectrum
P0 = F{P̃0} with a sinc function in frequency space (e.g.
[32]),

Pmeasured(f) = P0(f) ∗ T sinc(fT ), (5)

where sinc(a) = sin(πa)/πa, which is the Fourier transform
of the top hat function. The result is a blurring of the spectrum:
“true” spectral components will appear as spectral intensity not
only in the frequency bins closest to the actual frequency of
said component, but also on neighbouring ones that are more
than one bin away, with an intensity decreasing with distance.
One can alleviate this by replacing the “box” window with
a window of choice, simply by multiplying the acquired data
P̃ (t) = P̃0wbox(t) with said window function w(t). If the
chosen w(t) also vanishes outside the measurement interval,
the window replaces the top-hat. The choice of the optimal
window function much depends on the situation and data at
hand.

The Fourier transforms F{w}(f) of some common window
functions are shown in figure 1 (See e.g. [33] for a more
comprehensive comparison). When taking a discrete Fourier
transform (DFT) of w(t) every real frequency component f
will generate spectral intensity in frequency bins of width
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Fig. 1. Fourier transform F{w}(f) of a selection of common window
functions w(t). A frequency pixel is δω = 2π/T , normalized so that
F{w}(0) = 1. This illustrates how long-range spectral leakage can be
mitigated by tapering the measured signal. The drawback of increased short-
range leakage (1-2 pixels) is often negligible.

δf centered at nδf , n ∈ Z, with intensity F{w}(nδf − f).
For example, for the Blackman window shown in figure 1, a
frequency coinciding with a DFT frequency, i.e. f = mδf , one
obtains non-zero spectral intensity only for n − m = 0, 1, 2,
leading to no long-range leakage whatsoever. Only the central
lobe is sampled in frequency space. For any real spectrum most
frequencies will not coincide with a DFT frequency, and so
the side-lobes give rise to long-range leakage. Now, the central
lobe of the No Window (or top hat) case is only one pixel wide,
but the leakage is very long-range, i.e. spectral intensity decays
slowly and stays well above 1% for more than 20 pixels. In
contrast to this, the Blackman window decays rapidly to 10−3,
at the cost of increasing spectral leakage into the two nearest
bins, 1 and 2. The best choice of the windowing function is
usually a compromise between suppressing long-range leakage
and blurring the spectrum (short-range leakage). In this work,
a Hann window, defined as

wH(t) = 0.5− 0.5 cos (2π t/T ) , (6)

is used, as it suppresses the long-range spectral leakage to less
than 1% and leaks significantly into frequencies less than two
pixels away. In appendix A an example of extracted DSVs
with different windowing functions is given to illustrate how
the choice affects the results.

The data in this work is surface elevation ζ(x, y, t) mea-
sured in three dimensions x, y and time t, which we pre-
multiply by a 3D Hann window constructed as w(x, y, t) =
wH(x)wH(y)wH(t) prior to subjecting it to a discrete 3-
dimensional fast-Fourier transform (3DFFT). The new signal
ζ(x, y, t)w(x, y, t) goes smoothly to zero at the edges of the
domain of observation, in our case the square area with sides
L and time duration T .

III. METHODS

We proceed by producing synthetic surface elevation data
ζ(x, y, t) by superposing random linear plane waves of wave
number k and direction θ from chosen spectra with varying
properties, as detailed in section III-B. Each wave is given a
uniformly distributed random initial phase, the frequency ω is
found from equation (1), whereupon the waves are propagated
in time.

These wave “observations” are of course idealized, since
different methods for obtaining the actual surface elevation
ζ(x, y, t) or true spectrum from field data each come with
their individual challenges and limitations, an ongoing field
of research in its own right. Taking such practical challenges
into account is beyond the scope of this work, and we use the
ideal data to isolate the effects of spectra leakage in the data
analysis.

We mostly consider the case of quiescent water, i.e., there
is no background current and any Doppler shifts “measured”
from the spectrum are spurious and purely a consequence of
spectral leakage. We also consider the case where a constant
background current U0 is present, in section VI-E. Biases now
manifest as deviations of the observed DSVs from the correct
value.

A. Dimensional basis
Dimensional quantities will be denoted by a superscript

asterisk, all other quantities are non-dimensionalized. The
reference length-scale and time-scale are defined based on
a characteristic wavenumber k∗0 and its corresponding angu-
lar frequency in quiescent water ω∗

0 =
√

gk∗0 . Thus, e.g.
T = T ∗ω∗

0/2π, L = L∗k∗0/2π, k = k∗/k∗0 , ω = ω∗/ω∗
0 ,

U = U∗√k∗0/g. Unless specified otherwise, ω∗
0(k

∗
0) is taken

to be the location of the peak of the energy spectrum, hence
the peak in wavenumber space is close to to k = 1.

B. Wave spectrum
We generate wave fields from commonly used realistic

model spectra with varying directional broadness, assuming
the form

Ŝ(ω, θ) = S(ω)f(θ) (7)

where θ is the angle between k and the x axis, cos θ = k·ex/k.
We use the JONSWAP spectrum [30]

S(ω) = Ñω−5 exp

[
−5

4
ω−4

]
γr(ω) (8)

with

r(ω) = exp

[
−1

2

(
ω − 1

σ

)2
]
. (9)

For our purposes the value of Ñ is not of importance, we set
Ñ = 1. The parameter σ is

σ =

{
0.07, if ω ≤ ωp,

0.09, if ω > ωp

(10)

and the peakedness parameter γ is varied (see section VI-C).
The energy spectrum for a selection of peakedness values γ
is depicted in figure 2. The angular distribution is taken as a
cosine-square with a full width (distance of first roots) of ∆θ,
i.e.

f(θ) =

{
cos2

(
π θ−θ0

∆θ

)
, |θ − θ0| ≤ ∆θ/2

0 else
(11)

We use this spectrum to prescribe the amplitudes a(k) of
the superposed wave components in accordance with [34] as

a(k) =

√
2 k−3/2 Ŝ(ω(k), θ)δk (12)
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Fig. 2. Top: Energy spectrum S(ω) (equation 8) for a few values of the
peakedness parameter γ. The ω axis is scaled quadratically to match the
range of the bottom graph, as k = ω2. Bottom: amplitudes a(k, θ = θ0)
(equation 12) of superposed wave components. The spectra are normalized
with respect to their peak value.

on an evenly spaced grid in kx-ky , with spacing δkx = δky =
δk. Additionally, we set a(k)=0 for k/kp > 3.5.

C. Normalized scalar product
Two methods are in common use for extracting Doppler

shifts from the measured wave spectrum; least-squares (LS)
methods (e.g. [4], [8], [27]) and the Normalized Scalar Product
(NSP) method (e.g. [10], [13], [28]). While there exists a wide
range of extensions and sophistications to LS methods, we
focus our attention on the NSP method. However, since two of
the most famous works on spectrum based current extraction
( [4], [8]) use a simple form of the LS method we also give
a brief comparison of their performance in appendix C.

We employ the DSV extraction method as implemented by
Smeltzer et al. [26]; see [10], [13], [28] for details on the NSP
method more generally.

The starting point in either method is a measured, spatio-
temporally resolved free-surface η(x, y, t) and its power spec-
trum obtained via a discrete Fourier transform, P (k, ω) =
|FFT [η(x, y, t)]|2. For each wavenumber ki in a list, the
spectral intensity on a cylindrical surface with radius ki
centered around the ω-axis is defined

Fi(k, ω) =
√

P (ki cos θ, ki sin θ, ω). (13)

where θ is the azimuth angle in the kx-ky-plane. The imple-
mentation of the algorithms used are formulated in Cartesian
coordinates; however, it is illustrative to use cylindrical co-
ordinates for the following conceptual considerations. More
details of the implementation are given in appendix B.

To find the effective DSV c̃i = c̃(ki), first, a characteristic
function G is defined that contains the components of c̃i as
free parameters:

Gi(θ, ω; c̃i) = G+
i (θ, ω; c̃i) +G−

i (θ, ω; c̃i) (14)

where

G±
i (θ, ω; c̃i) = exp

[
−2

(
ω ± ωDR(θ; ki, c̃i)

a

)2
]
. (15)

The normalized scalar product Ni of the vectors Fi and Gi

is now maximized for each value of i by varying the two
components of c̃i; it is calculated as

Ni(c̃) =
⟨GiFi⟩
⟨Gi⟩ ⟨Fi⟩

(16)

where ⟨...⟩ refers to an integral over all θ and ω. In other
words, Gi can be thought of as a cosine in θ (see figure 4)
with offset ω0(ki) amplitude kic̃ and phase shift defined by
the direction of c̃; its overlap with the measured intensity on
the cylinder surface is maximized to find the best DSV c̃(ki).
This optimization step is performed using the Nelder-Mead
simplex method [35].

IV. THE NORMALIZED SCALAR PRODUCT METHOD AND
SPECTRAL LEAKAGE

For multidimensional data, spectral leakage is most promi-
nent in the directions parallel to the coordinate axes. Consider
for example a 2D signal η(x, y) on a rectangular domain and
its Fourier transform η̃(kx, ky) = F{η}. Since both x and t are
within a finite range, the effective window w(x, y) is a product
of top-hat windows in the x and y directions, respectively,
i.e. w = w1(x)w2(y). The Fourier transform of such a
product is the product of their respective Fourier transforms
w̃(kx, ky) = F{w1(x)}F{w2(y)} = w̃1(kx)w̃2(ky). Now,
since the leakage for a top-hat window falls off as 1/k, the
product w̃(kx, ky) is smallest for a given k when |kx| = |ky|
and largest when kx = 0 or ky = 0. An illustration of this can
be seen in figure 3. The extension to 3 or more dimensions is
straightforward.

10
-3

10
-2

10
-1

10
0

Fig. 3. An illustration of spectral leakage in two dimensions. Left: Logarith-
mic 2D FFT spectrum of a superposition of four sine-waves, with frequencies
denoted by triangles. The circles denote the DFT frequencies, i.e. frequencies
natural to the domain. From left to right, the leftmost spectral peak coincides
with a DFT frequency, while the rightmost peak lies in the middle of DFT
frequencies. Right: same as left, bit with a 2D Hann window applied before
doing the FFT. Note how the Hann window removes the background and
increases consistency between spectral peak, while broadening by roughly
one bin in all directions.

This (mostly) axes-parallel leakage is helpful in understand-
ing how leakage affects the DSV extraction using NSP.

A fundamental step in the NSP method is to pick out mea-
sured spectral intensity on a cylinder surface with radius ki.
One can think of the effect on the NSP as the spectral intensity
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projecting itself in the principal directions onto the cylinder,
with decreasing intensity the further the surface is from
the originating spectral intensity. Now, as the NSP method
essentially fits a function of the form ω0(ki)+Af cos(θ−θf ),
with free parameters Af and θf , to the spectral intensity on
the cylinder surface defined by ki, as illustrated in figure 4,
spurious intensity at ω ̸= ω0(ki) leads to non-zero values for
Af = k ·c̃, implying a background current even in the absence
of one. In this work we consider spectra with a single peak at
a given wave vector k = (kx, ky).

0 50 100 150 200 250 300 350

(c)

Fig. 4. Illustration of the dispersion relation ω = ωDR(k; c̃) in connection
within the Nonlinear Scalar Product method. The top graphs show the
dispersion relation in absence of a current, c̃ = 0 (a) and with a current,
c̃ = U0 (b). The intersections with a cylinder with radius ki is highlighted.
In graph (c) the spectral intensity is indicated in greyscale, visible near the
dispersion curve on the cylinder surface after unrolling it, together with the
lines of intersection from the top figures: blue, dashed corresponds to quiescent
water; red, solid is the best fit from the NSP method resulting in a non-
vanishing Doppler shift velocity.

We now consider the effect of spectral leakage for two
distinct cases, one (1) with the mean propagation direction
θ0 being parallel to the ky-axis, and one (2) with θ0 between
0° and 90°.

A. Leakage for θ0 = 90°

Consider the extraction of the DSV for a wavenumber
k < 1, i.e. below the peak of the spectrum. The spectral
leakage for the cylinder with radius k will be dominated
by short-range spectral leakage of wavenumbers close to k
and long-range leakage from the spectral peak. the short-
range spectral leakage for the most part will just blur the
spectral intensity on the cylinder, while the long-range leakage
from the spectral peak leads to a new, possibly dominating,
spectral intensity spot on the cylinder, at the same angle, but a
higher frequency. In other words right above the real spectral

intensity. Depending on the ratio of intensities, distance, and
width of the characteristic function G, the NSP algorithm may
find the correct frequency, the frequency of the projected peak
or a value in between these two to give the best fit. Therefore
the returned DSV will be parallel to the spectrum propagation
direction θ0. Similarly, if k > 1 is considered, the projection
from the spectral peak will be below the real spectral intensity,
giving DSV antiparallel to the spectrum propagation direction
θ0.

B. Leakage for 0 < θ0 < 90°

For k < 1, it is now possible for spectral leakage from
the peak to have no axes-parallel projection onto the cylin-
der surface, thus not affecting the extracted DSV for this
wavenumber. Short-range spectral leakage and leakage from
lower wavenumbers now dominate, making the prediction of
DSV direction difficult. For k > 1, one can still get an intuition
for the effect of leakage. As the peak of the spectrum lies in
the first quadrant of the kx−ky-plane, the shortest distance to
a cylinder with radius k is to the quarter of the cylinder also
lying in the first quadrant, and we can focus our consideration
on that. The leakage is now being projected onto the cylinder
at an angle relative to the mean propagation direction θ0.
Therefore, as the real spectral intensity now dominates for
θ = θ0, the frequency for wavenumbers along θ0 is found
correctly. The perpendicular component of the DSV, however
is determined mostly by the position and relative magnitude of
the spurious intensity appearing at angles θ ̸= θ0. in quiescent
water, for example, one would obtain DSVs with directions
θ ± 90°.

Note that these considerations hold true for very narrow
spectra, but are to be understood as tendencies for spectra
with considerable spectral width ∆θ, because, for any angle
θ, real spectral intensity will mostly dominate over spectral
leakage, if present.

V. PARAMETER CHOICE AND OVERVIEW

For an overview and easier referencing table I contains
the list of test cases presented in this paper. Apart from the
parameters stated therein, the resolution of the input spectrum
δink and spatial resolution δx = δy as well as temporal
resolution δt had to be set. The spatial resolution was chosen
such that waves of the highest wavenumbers, kmax = 4, would
be well resolved, δx = 1/28. Similarly, time resolution was
set to δt = 1/14. The resolution of the input spectrum was set
to δink ≈ 0.341/L, with L being the domain size. This was
deemed small enough to mimic a continuous spectrum.

The domain size and video duration were chosen to be close
to typical parameters found in airborne measurements [36].
The resulting videos in their work typically have a field of
view of L∗ = 128 − 512m, durations of T ∗ = 20 − 40 s
and wavenumbers with usable spectral intensity from 0.2 to
2 radm−1 (see figure 1 in [36]). Taking a reference wavenum-
ber of k∗0 = 0.4 radm−1, this gives a parameter range of
T ≈ 5− 10, L ≈ 8− 32.

Equation 14 contains one free parameter, a, that determines
the width of the characteristic function. We set a = 4 δω, with
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θ0 ∆θ γ L T U figure section
case-NSP-LS 75° 60° 3.3 10 20 0 11 C
case-θ0-∆θ 60°, 90° 15°...60° 3.3 10 20 0 5 VI-A,VI-B
case-γ 60° 15°...60° 1...7 10 20 0 6 VI-C
case-L-T 90° 60° 3.3 5, 10, 20 10, 20, 80 0 7 VI-D
case-U 90° 60° 3.3 10 20 0...0.15 8, 9 VI-E

TABLE I
OVERVIEW OF PARAMETER COMBINATIONS. θ0 : MEAN PROPAGATION DIRECTION OF INPUT WAVENUMBER SPECTRUM, ∆θ: ANGULAR SPREAD OF INPUT

WAVENUMBER SPECTRUM (SEE EQUATION 11), γ : PEAKEDNESS PARAMETER (SEE EQUATION 8), L: DOMAIN SPATIAL DOMAIN SIZE, T : VIDEO
DURATION, U : BACKGROUND CURRENT. ALL PARAMETERS ARE NON-DIMENSIONAL, SEE SECTION III-A

δω = 1/T being the frequency resolution (see appendix B for
details).

The results shown in figures 5-9 display statistics of the
extracted DSVs in terms of the average ⟨|c̃|⟩ and the cor-
responding standard deviation σc̃ (times two for illustrative
purposes), calculated from 100 realizations. These quantities
are useful as they represent a mean bias and fluctuation that
one has to expect from a single measurement. Additionally,
where possible, the implied velocity resolutions δcδω and δcδk
defined in equation (4) are shown for reference.

VI. RESULTS

In this section we consider the effects of wave-spectral prop-
erties, resolution and data tapering on the spurious Doppler
shifts “measured” when no current is present, as well as the
effect of a uniform current being present. An overview of the
parameter combinations used to obtain the following results is
given in section V.

A. Illustration of the effect of windowing (Hann window)

To see the influence of the angular spread ∆θ of the
wavenumber spectrum, simulations with variation both in ∆θ
and the mean propagation direction θ0 were performed (see
table I, case-θ0-∆θ, for all parameters). A selection of the
results are shown in figure 5 (upper row). A more detailed
discussion of the influence of ∆θ and θ0 is given in section
VI-A below.

The propagation direction θ0 shows a strong influence on
both the mean bias and its variation. This behaviour is likely
due to spectral leakage, because spectral leakage appears as
“streaks” in the spectrum along the spectral axes kx, ky and
ω (See illustration in figure 3). The second column in figure
5 shows the extracted DSVs of tapered surface elevation data.
The mean and random bias is strongly suppressed in all cases
and the dependency on θ0 is significantly reduced, compared
to the analysis without a Hann window. Note that ∆θ = 15°
represents a rare, very narrow spectrum, but the described
effects are visible for all spectral widths, decreasing with
increasing ∆θ.

We observe that for smaller wavenumbers (k < 1), using a
Hann window does not mitigate the effects of spectral leakage
as strongly as for k > 1. This is because the Hann window
suppresses long-range spectral leakage (more than one-two
pixels), while increasing the short-range spectra leakage (The
central lobe of the Hann window has a width of 2 bins instead
of 1 for no-window). The “steepness” ∂ω/∂k grows with
decreasing k, meaning that spectral intensity that leaks in the

k-direction appears as a strong broadening in the ω-direction
at neighbouring k-values. In our simulations the spectrum has
a peak at ω = 1 (thus close to k = 1) and quickly decreases
towards k ≈ 0.5. Therefore, the combined effects of a steep
slope in the energy spectrum and the dispersion relation cause
the short-range spectral leakage to be most prominent for
k < 1.

The effect of a steep spectral slope — discussed further
in section VI-C — can be illustrated by considering that at,
say, k = 0.6 the spectrum shows intensity at ω0(0.6), but also
intensity leaked from ω0(0.6+δk) and ω0(0.6−δk), the latter
of which is much less than the former. The algorithm therefore
finds a frequency between ω0(0.6) and ω0(0.6 + δk), which
gives a non-zero DSV (see also section IV).

B. Influence of the mean propagation direction and angular
spread

To study the influence of the angular width on the mean and
random bias in the extracted DSVs, simulations were run with
three propagation directions θ0 ∈ {90°, 75°, 60°} and a range
of spectral widths ∆θ, of which two representative examples,
(15°, 60°), are shown in figure 5 (see table I, case-θ0-∆θ, for
all parameters).

All cases show that an increase in spectral width ∆θ
significantly decreases both mean and random biases across
all wavenumbers. Results for ∆θ > 60° are not shown here,
as no notable further improvements were observed.

The reduction in angular spread ∆θ leads to an increase in
spurious DSVs c̃, because the wave components of a narrow
spectrum are mostly influenced by the current component
parallel to the mean propagation direction θ0. The narrower a
spectrum is, the smaller an observable change in frequency
due to the perpendicular current component c̃⊥ becomes.
Therefore, the influence of false spectral intensity from any
source (e.g. noise, aliasing, higher harmonics, spectral leakage)
outside the real spectrum can lead to strong perpendicular DSV
components when the spectrum is very narrow. For a more
detailed explanation, see section 5. Here we see the combined
influence of a noisy spectrum and spectral leakage.

Note, that all cases exhibit negligible spurious DSVs around
k ≈ 1. This is simply a consequence of the spectral peak lying
near this value.

The dependency of results on the mean propagation di-
rection θ0 was also investigated in a second manner: The
videos were rotated numerically by angles θrot up to 45° before
repeating the DSV extraction. This is equivalent to rotating the
camera in an experiment. Pairwise comparison of results with
same values of θ0 + θrot show no significant difference.
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Fig. 5. Doppler shift velocities (DSV) c̃ for the parameter set case-θ0-∆θ (see table I) extracted using the NSP method. The DSVs were extracted for 100
realizations with (right) and without (left) applying a Hann window beforehand. The top and bottom graphs show the biases in DSVs in terms of the average
(top) and standard deviation (bottom) of the absolute value c̃ = |c̃|. The solid and dashed line correspond to the velocity resolutions implied by frequency
and wavenumber resolution, respectively.

Two conclusions can be drawn: First, since the only refer-
ence direction is provided by the coordinate system in absence
of a background current, θ0-dependencies can be traced back
to spectral leakage, which mainly occurs parallel to the axes,
thus breaking rotational symmetry. Second, rotating the cam-
era or data provides a useful check for spectral leakage.

The use of a Hann window prior to DSV extraction greatly
mitigates the effects of spectral leakage, as discussed be-
fore, pushing even the narrow spectrum cases down to sub-
resolution (with respect to implied velocity resolutions δcδω
and δcδk).

C. Influence of peakedness γ

Depending on how developed a sea is, the best fit for
the frequency spectrum uses a peak enhancement factor γ
between 1 and 7, where 3.3 is a commonly used value for
most applications [37]. Recently, Mazzaretto et al. found that
a global mean of γ ≈ 2.4 is better suited [38].

Since the choice of γ only affects the spectrum in a small
range around the peak, it also offers itself as a tool to examine
the influence of steep gradients in the spectrum. We therefore
compare the DSVs for γ ∈ {1...7}. (see table I, case-γ, for
all parameters)

The results presented in figure 6 show that for spectra with
small angular spread, a more strongly peaked spectrum (higher
value for γ) causes increased biases (mean and random) across
all wavenumbers except for a small range around the spectral
peak at k ≈ 1, where the relative increase in spectral intensity
reduces the influence of spectral leakage from wavenumbers
k ̸= 1. A wider angular spread of the spectrum, on the other
hand, mitigates this to a large degree, especially towards higher
wavenumbers, where the influence of spectral leakage from
the peak is nearly eliminated and sub-resolution biases are
achieved. For angular spreads larger than ∆θ > 45°, the DSVs
become independent of ∆θ, though this also changes with
spectral resolution.

Towards lower wavenumbers (k < 1), without a Hann
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Fig. 6. Same as figure 5 but with parameter set case-γ (see table I).

window, any extracted DSV is unreliable, as spectral leakage
dominates the result due to the exponential decrease of ”real”
spectral intensity towards k = 0.5 and the steepness of the
dispersion relation (see previous discussion in section VI-A).

As for results before, the use of a Hann window improves
the results so far that random and mean biases are sub-
resolution even for strongly peaked (γ = 7), narrow (∆θ =
15°) spectra, effectively eliminating the dependence on ∆θ,
and to a degree, resolutions (see section VI-D).

D. Influence of resolutions δk, δω

The range of spectral leakage is constant in terms of pixels
or bins, and thus the range in k (and ω) is determined by the
resolution δk (and δω).

We therefore vary the spatial size L and temporal duration T
of the videos to change the frequency resolution δω = 1/T and
wavenumber resolution δk = 1/L to observe their influence on
the DSV extraction (see table I, case-L-T , for all parameters).

For a spectrum with an angular spread of ∆θ = 60° and
a mean propagation direction of θ0 = 90° simulations were
performed with a range of video lengths T = 5 − 80 and

domain sizes L = 5 − 20. The resulting DSVs are shown in
figure 7. (Note that the results for T < 10 are not shown as
they did not show relevant differences compared with results
for T = 10)

Clearly, for untapered data, both improving δk or δω
reduces the biases in DSVs, albeit improving the wavenumber
resolution δk has a stronger influence.

Note how the maximum in biases moves to higher k
with decreasing T . This is due to the characteristic function
G having a width a proportional to frequency resolution,
a = 4δω. When this width is reduced, the intensity that leaks
from the spectral peak onto the cylinder at k > 1 can fall
outside the reach of the characteristic function, thus reducing
or removing its influence.

When the data is tapered using a Hann window, this effect is
mostly eliminated, as the long-range spectral leakage is heavily
suppressed. Moreover, the influence of frequency resolution
δω is strongly reduced (graphs of same color group together).

An exception to rule of thumb that longer videos are always
better can be seen for the longest videos T = 80 on the
smallest domain L = 5. Here, the biases are actually greater



9

0 0.5 1 1.5 2 2.5 3 3.5

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5

0

0.02

0.04

0.06

0.08

0.1

L=20, T= 80

L=20, T= 20

L=20, T= 10

L=10, T= 80

L=10, T= 20

L=10, T= 10

L= 5, T= 80

L= 5, T= 20

L= 5, T= 10

Fig. 7. Same as figure 5 but with parameter set case-L-T (see table I). As in figure 5 The solid and dashed lines correspond to the implied velocity
resolutions from frequency and wavenumber resolution, respectively. From top to bottom the resolution increases, i.e. δw or δk become smaller.

than for the shorter cases with T ≤ 40. This is due to
the characteristic function becoming narrow enough to not
encompass the width of spectral intensity in the ω-direction.
In one dimension this would be proportional to δω, but in
2D or 3D can be dominated by leakage in k, as this effective
broadening in ω scales with O(∂ω/∂k δk) = O(δk/

√
k).

Note, however, that the results presented here all show
biases well below the implied velocity resolutions, when the
data is tapered using a Hann window. If one has to choose
between increasing the domain size or the video duration, it
is clear that an increase in domain size will give the most
benefit.

E. Influence of a background current U0

The cases shown above are without a background current.
The presence of a uniform current U ̸= 0 breaks the rotational
symmetry of the dispersion relation, because of the additional,
angular dependent term k ·U .

To see the effect of a current on the biases in the extracted
DSVs, we assume a (vertically and horizontally) constant

current U with directions θU = 90°, 0°,−90° and current
strengths in the range |U | = 0.025− 0.15. (see table I , case-
U , for all parameters) The input wavenumber spectrum has an
angular spread of ∆θ = 60°, and a peakedness of γ = 3.3,
representing a realistic scenario. The mean propagation direc-
tion is held at θ0 = 90°, resulting in following, crossing and
opposing current, respectively.

The extracted DSVs are shown in figure 8. For k > 1, we
see a bias toward wave-opposing DSVs, while for k < 1, we
see a bias toward wave-following DSVs. This can be seen from
over-/underestimations for U antiparallel/parallel to the wave
propagation direction, respectively. The absolute magnitude of
errors is similar to the case of quiescent water (see section
VI-D). In the case of a pure cross-current, however, this also
results in a turning of the DSVs toward θc̃ = ±90° for
wavenumbers around the spectral peak k ≲ 1.5, as can be
seen in the third row of graphs in figure 8. Particularly, where
the spectral intensity falls off to zero rapidly (k ≈ 0.5), leakage
from the peak of the spectrum can dominate the signal, biasing
the direction of DSVs towards the propagation direction, i.e.
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90°.
Tapering the data using a Hann window mitigates these

biases in amplitude and direction as in the case of quiescent
water. For a cross-current, however, the mean bias remains
significant, i.e. on the order of 10% of the phase velocity at
the spectral peak and unusually also in the vicinity of the
spectral peak.

The error in the direction θc̃ of DSVs for wavenumbers
below the peak is also reduced significantly for following and
opposing currents. In the case of a cross-current these errors
remain significant, (10°-45°) if the current is relatively weak
or the wavenumber goes toward k = 0.5.

As mentioned in section VI-B, turning the camera in an
aerial measurement can reveal the influence of spectral leakage
(one could also rotate the resulting images, bearing in mind
that this is not in general a lossless operation and might also
reduce the field of view). Figure 9 shows the extracted DSVs
for a case with the same parameters as in figure 8, but with
current and spectrum rotated by 30° (Similar results were
obtained for 15-45°).

For the untapered data, we find even stronger mean biases
after rotation, especially for a cross-current. Here the DSVs
around the spectral peak at k ≈ 1 drop below 50% of the
background current, usually an unacceptable level of error.
However, the use of a Hann window again mitigates this, to
the point where the results of different rotation angles become
virtually indistinguishable.

VII. CONCLUSIONS

We have investigated biases from spectral leakage in remote
sensing of currents from analysis of wave spectra. Apparent,
spurious Doppler shifts in the phase velocity are observed even
in the absence of a current, and we analyse how these depend
on wave spectrum and the properties of the signal processing
procedure. Synthetically generated surface elevation data were
used to simulate a random sea state adhering to a JONSWAP
wave spectrum [30] with a cos2 directional distribution, re-
sulting in cubes of data (videos). These were subsequently
analysed with different methods in common use to extract
the Doppler-shift velocities (DSV). Following reference [26],
an appropriate measure of random errors and biases are the
“Doppler shift resolutions” corresponding to the change in
inferred velocity due to a shift of one pixel in wavenumber or
frequency.

A comparison of the normalized scalar product approach
(e.g. [26]) and a least-squares method for extracting DSV
showed that the former is preferable in all cases, and was
therefore used for all subsequent analysis herein.

Assuming the simplest case of quiescent water (i.e. no
current), a complex interplay is found between wave-spectrum
width and peakedness, and the wave-vector and frequency
resolution, together affecting the nature and extent of spurious
Doppler-shift “measurements”. Spectral leakage causes greater
problems when the wave spectrum is strongly peaked and
highly directional so that areas of the observed frequency-wave
vector spectrum which are important to Doppler-shift extrac-
tion have very low signal. Conversely, when the angular spread

is wide, ∆θ > 60° (∆θ: full width of angular distribution
), spurious DSVs are small, i.e., sub-resolution. For strongly
directional spectra ∆θ < 60°, severe biases emerge, with
amplitudes on the order of the group velocity, depending on the
JONSWAP peakedness parameter γ. The biases are sensitive to
resolution in frequency and wave-number space, and especially
in the absence of tapering (see below) poorer resolution rapidly
leads to unusable data for narrow and strongly directional wave
fields. Biases are most severe at low wavenumbers compared
to the spectral peak.

Tapering the video cubes with a 3D Hann window (e.g.
[33]) lowers the biases to the velocity resolution level implied
by the wavevector and frequency resolutions — δcδk and δcδω
as defined in equation (4) — or even below. Indeed, the effect
of ω-resolution is mostly removed for tapered data (note that
although biases are now sub-resolution, the resolution itself
will eventually be too poor for purpose). This implies that in
data acquisition one should prioritize large areas rather than
longer time series if spectral leakage is a problem.

The effect of spectral leakage is most pronounced in the
kx and ky directions in the spectrum, and hence depends on
the angle of propagation relative to these. The biases increase
towards an angle of θ0 = 45° for all wavenumbers outside a
small range around the spectral peak k = kp. This dependence
on θ0 is also mostly removed by tapering the data. Clearly the
observed current velocity cannot depend on which way the
camera is held, meaning that comparison with results when
the video is rotated 45° could give a simple indication of the
severity of spectral leakage problems.

For the case of a constant background current U with
strengths up to 0.15 c0(kp) a strong dependence on the angle
between the current and the waves is observed. While the
magnitudes of the spurious DSVs are mostly beneath the
implied velocity resolutions, we find a significant bias in
the direction of the DSVs around k = kp when the waves
propagate perpendicular to the current. This is also mitigated
by tapering the data, but not removed in the case of a cross
current.

A. Recommendations for mitigation

Summarising the outcome of our analysis from a practical
viewpoint we offer the following considerations to mitigate
the errors and biases related to spectral leakage in remote
sensing of currents from observed wave spectra. In the ex-
traction of Doppler shift velocities from the spectrum, the
commonly used least-squares method is not recommended
except if calculation cost is a severe restriction; a normalized
scalar product procedure gives universally better results (other
methods are also in use, but were not tested). Tapering
the spatio-temporal data with a 3D Hann window greatly
reduces the mean and random biases and greatly reduces the
dependence these have on spectral shape, spectral resolution,
and camera orientation. When errors due to spectral leakage
are suspected, rotating the camera (either the actual camera
or the resulting images) by a small angle before analysis (we
used 30°) and comparing results could reveal whether long
range spectral leakage is causing spurious results, because
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leakage mainly occurs along the axes of the images. We find
that the wavenumber resolution plays a more important role
in the DSV biases than frequency resolution. The influence
of the latter can be nearly eliminated by tapering the data.
Increasing the spatial domain size to improve wavenumber
resolution yields the largest improvement and should therefore
be prioritized over longer time series if spectral leakage is a
concern. The Doppler shift resolutions δcδω and δcδk defined
in equation (4) are useful as conservative measures of errors
and biases due to limited resolution and spectral leakage.
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APPENDIX

A. Comparison of window functions

There exists a wide variety of window functions employed
in all manners of fields, as discussed in e.g. [33]. The suppres-
sion of the long range spectral leakage is the most important
beneficial effect of using a window function, but stronger
suppression comes at the cost of increasing the short range
leakage. For example, the Blackman window has a central
lobe that is about 20% wider than that of the Hann window,
as can be seen in figure 1. To examine its detrimental effect,
the extraction of DSVs has been repeated with a selection
of commonly used window functions. As the results are very
similar we only show the results for the Hann window

w(t) = 0.5− 0.5 cos (2π t/T ) , (17)

the approximate Blackman window,

w(t) = 0.42− 0.5 cos (2π t/T ) + 0.08 cos (4π t/T ) , (18)

and the Kaiser-Bessel window

w(t) =
1

T
I0

(
b
√

1− (2π t/T )2
)
, (19)

with I0 being the zeroth order modified Bessel function of
the first kind and b a free parameter controlling the width
of the central lobe. In figure 10 the extraced DSVs in terms
of their main and random bias are shown. The differences in
the results are insignificant, except for the Blackman window
showing systematically higher biases due to its wider central
lobe.

B. Details of numerical implementation

Here follow further details on the implementation of the
NSP method in section III-C.

1) NSP, LS and discretized data: Because of discretization,
obtaining the spectral intensity Pi (equation 13) on a cylinder
surface needs to be replaced with the spectral intensity in a
volume around it, i.e. a cylinder shell, containing a wavenum-
ber bin around ki:

Fi(k, ω) =

{√
P (k, ω), if |k − ki| ≤ ∆̃k

0, otherwise
. (20)

This also renders the characteristic function Gi (equation (14))
a function of k. The integrals ⟨...⟩ in equation 16 then imply
an additional integration over k within the bin ki ± ∆̃k.

The concept of the NSP method stays the same, with two
details added: First, since the optimization parameter pair c̃ is
assumed constant within a wavenumber bin, the extracted DSV
is a weighted average within that bin, effectively smoothing
the function c̃(k). This also holds for the LS method, but does
not change equation (21), as it only increases the number
of triplets (kx,j , ky,j , ωj). Second, a new free parameter is
introduced with the bin width 2∆̃k that needs to be chosen
carefully. In this work, we use ∆̃k = 2δk, with δk = 1/L the
wavenumber resolution, which is a compromise between in-
creased smoothing (too large ∆̃k) and strong noise, occurring
when too few pixels of the spectrum lie within a bin. (One
could employ an interpolation scheme to circumvent this; the
algorithm used herein simply masks the data, see equation 20)

Since the data is effectively averaged over k with a running
average of width 2∆̃k, the DSVs were extracted such that two
consecutive shells have an overlap of 3/4, i.e. ki+1−ki = δk.

2) Width of the characteristic function: As mentioned in
section V the characteristic function G (equation 14) used
when premultiplying with a Hann window, contains one free
parameter that determines its width. The choice of this pa-
rameter is somewhat delicate, as too small a value causes
single intensity pixels (often outliers) or small high intensity
regions to dominate the determination of the best fit. This
is especially problematic for small (k < 1) wavenumbers,
when the spectral leakage from a noise-enhanced pixel near
the spectral peak at k ≈ 1 causes a small high-intensity region
on the cylinder shell, whereas the “real” spectral intensity, not
originating from spectral leakage, is strongly broadened, thus
having a larger total intensity but a smaller maximum intensity.
In this case, the algorithm effectively ignores the real spectral
intensity and leads to huge biases. On the other hand, too large
a value for a also leads to an increased influence of spectral
leakage, as a too wide Gaussian is insensitive to shifts in its
position. A shift with no, or only small penalty to the overlap
with the real spectral intensity, that increases the overlap with
intensity from leakage, is therefore more likely, also leading
to biases.

To decide on a good compromise we fit the characteristic
function to the Fourier transform of a Hann window, with a
as a free parameter. The result is a ≈ 1.62 δω. To ensure
the width is not too small this value is roughly doubled to
a = 4 δω. (Values for a/δω between 2 and 6 were tried as
well, but the results were most stable between 3 and 5.)

Note, that if spectral leakage occurred only in the ω direc-
tion, a = δω would be the ideal choice. However, as this is
not the case, broadening in the ω direction originates not only
from leakage in the ω direction, but also from leakage in the
k-direction. The steeper the dispersion relation ωDR, the more
this effective ω-leakage from k-leakage increases. A possible
improvement of the used NSP algorithm would therefore be to
use an adaptive a, that increases with |∂ω/∂k|. In the interest
of limiting the parameter space, it was deemed necessary to
stick to a single value for a.
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C. Comparison NSP and a basic LS algorithm

Simple least squares based methods have by now been dis-
carded in most applications. However, their low computational
cost and ease of implementation are benefits to consider. We
therefore repeated the DSV extraction using LS and compare
the results and performance. The least squares method used,
like the NSP method described in section III-C, first singles
out the spectral intensity on a cylinder surface with radius
k. We discard data points with an intensity P < 0.2 (after
normalization) and obtain a list of (kx,j , ky,j , ωj). On these,
the cost function

C(c̃) =
∑

j

(ωDR(kj ; c̃)− ωj)
2 (21)

is minimized to obtain the DSV c̃. Repeating this for a list of
wavenumbers k yields the desired value of c̃ for each value of
k. As in the NSP method and, the minimization/optimization
step is performed using the Nelder-Mead simplex method [35].

We find that the LS method runs significantly faster (up to
a factor of 3); clearly the difference in cost will depend on
the hardware used as well as the implementation. In terms of
accuracy and precision, we find that the LS method performed
consistently worse, and never better, than the NSP method.
Figure 11 shows an example result for a test case in quiescent
water (see table I, case-NSP-LS, for all parameters). As can
be seen, the DSVs obtained via the LS method can show
both a mean and random bias that exceed the implied velocity
resolutions δcδk and δcδω for most wavenumbers, while the
NSP method delivers sub-resolution DSVs for all k > 1. It
is worth pointing out, that for wavenumbers k < 1 the NSP
performs worse than the LS method. However, the random bias
in that range is so large as to make both methods unusable.
Note that a more advanced LS method may perform with
similar accuracy and precision, as is indicated in e.g. [10].
This would, presumably, lead to a computational cost similar
to that of the NSP method, eliminating the advantage. An
iterative LS method has been compared with NSP by Huang
et al. (2012). For waves on currents without vertical shear the
methods performed similarly.

DATA AVAILABILITY

The data that support the findings of this study are available
from the authors upon reasonable request.
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band radar currents and bathymetry: An argument for a wave number-
dependent retrieval method,” Journal of Geophysical Research: Oceans,
vol. 125, no. 2, p. e2019JC015618, 2020.

[30] K. F. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright,
K. Eake, J. Euring, A. Gicnapp, D. Hasselmann, and P. Kruseman,
“Measurements of wind-wave growth and swell decay during the joint
north sea wave project (JONSWAP),” Ergänzungsheft zur Deutschen
Hydrographischen Zeitschrift, Reihe A, pp. 1–95, 01 1973.

[31] S. A. Ellingsen and Y. Li, “Approximate dispersion relations for waves
on arbitrary shear flows,” J. Geophys. Res.: Oceans, vol. 122, pp. 9889–
9905, 2017.

[32] D. A. Lyon, “The discrete Fourier transform, part 4: spectral leakage,”
Journal of object technology, vol. 8, no. 7, 2009.

[33] A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1,
pp. 84–91, 1981.

[34] H. Socquet-Juglard, K. Dysthe, K. Trulsen, H. E. Krogstad, and J. Liu,
“Probability distributions of surface gravity waves during spectral
changes,” Journal of Fluid Mechanics, vol. 542, p. 195–216, 2005.

[35] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Conver-
gence properties of the nelder-mead simplex method in low dimensions,”
SIAM J. Optim., vol. 9, pp. 112–147, 1998.

[36] L. Lenain, B. K. Smeltzer, N. Pizzo, M. Freilich, L. Colosi,
S. A. Ellingsen, L. Grare, H. Peyriere, and N. Statom, “Airborne
remote sensing of upper-ocean and surface properties, currents and
their gradients from meso to submesoscales,” Geophysical Research
Letters, vol. 50, no. 8, p. e2022GL102468, 2023, e2022GL102468
2022GL102468. [Online]. Available: https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/2022GL102468

[37] Y. Goda, Random seas and design of maritime structures. World
Scientific Publishing Company, 2010, vol. 33.

[38] O. M. Mazzaretto, M. Menéndez, and H. Lobeto, “A global evaluation
of the JONSWAP spectra suitability on coastal areas,” Ocean Engn., vol.
266, p. 112756, 2022.



14

0 0.5 1 1.5 2 2.5 3 3.5

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3 3.5

0

0.05

0.1

0.15

0.2

U= 0.025

U= 0.100

U= 0.150

U= 0.025

U= 0.100

U= 0.150

U= 0.025

U= 0.100

U= 0.150

0 0.5 1 1.5 2 2.5 3 3.5

-180°

-135°

-90°

-45°

0°

45°

90°

135°

180°

0 0.5 1 1.5 2 2.5 3 3.5

-180°

-135°

-90°

-45°

0°

45°

90°

135°

180°

Fig. 8. Same as figure 5 but with parameter set case-U (see table I). The dashed horizontal lines represent the three background velocity values. Deviations
from these are spurious. The third row shows the direction θc̃ of the average Doppler shift velocity.
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