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ABSTRACT: In the Himalayan region, tunnels are often constructed through complex and varying geological
formations having rock mass with higher degree of jointing, faulting, folding, and weakness/shear zones. Such
rock mass condition significantly increases the rock mass permeability which enables a higher possibility of water
leakage into and out of the headrace tunnels built for hydropower projects and is a challenging situation for tunnel
stability. Therefore, comprehensive leakage assessment and effective pre- and post-grouting application are essen-
tial in hydropower tunnels. In this research, the water leakage was predicted by using three machine learning
approaches such as Support Vector Regression (SVR), Decision Tree (DT) regression, and K-Nearest Neighbors
(KNN) models. The water leakage/inflow was predicted in one of the hydropower tunnels based on the geological
condition of rock mass, rock mass quality, and hydro-geological conditions. The effective post-grouting method
was applied to mitigate the potential water leakage and to enhance the rock mass quality and stability of the hydro-
power tunnel. It was observed that the injection grouting technique helps to make tunnels less permeable, reduces

instability conditions, and ensures the long-term safety and structural integrity of the hydropower tunnels.
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1 INTRODUCTION

The tunnel construction in the Himalayan region
faces severe tunneling challenges due to the complex
geological conditions characterized by a higher
degree of jointing, high degree of faulting, folding,
weathering, and the presence of weakness/shear zones
within the rock mass (Panthi 2006). These complex
geological conditions are due to the consequence of
active tectonic activities in the region. These condi-
tions significantly increase rock mass permeability
and make headrace tunnels of hydropower projects
susceptible to water leakage. Thus, groundwater
inflow and leakage are the most common and challen-
ging issues in hydropower tunnelling projects in the
Himalayan region (Panthi 2006). Water ingress into
these tunnels not only affects the stability of the
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tunnel but also poses operational and safety risks,
which could lead to project delay and huge economic
loss (Panthi and Nilsen 2010). Therefore, an accurate
water inflow/leakage assessment is essential for
timely measure and control of water inflow/leakage,
and the selection of appropriate grouting techniques
to enhance the strength of rock mass and to secure
stability of water tunnels.

Many researchers highlight the use of analytical,
empirical, and numerical techniques and theoretical
frameworks for the prediction of water ingress and
grouting capability. However, it is challenging to
predict the accurate amount in tunnelling projects
(Holmgy 2008 and Stille 2015). To mitigate these
limitations, machine learning (ML) techniques could
be an appropriate approach to predict the water
inflow/leakage and to decide effective grouting
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measures. However, this is challenging due to the
limited availability of field data related to rock mass
properties, structural geology, groundwater level,
project topography, and effective stresses.

This paper attempts to present different machine
learning (ML) approaches for comprehensive assess-
ment and prediction of water inflow/leakage, and the
application of injection grouting to reduce water
leakage and enhance tunnel stability in the headrace
tunnel of 54 MW Super Dordi Hydropower Project
(SDHEP).

2 PROJECT BACKGROUND

2.1 Brief about SDHEP

The Super Dordi Hydropower Project “Kha” (hereafter
referred to as SDHEP) is a Run-of-River (ROR) pro-
ject, which is located at Dordi Rural Municipality,
Lamjung District, Gandaki Province of Nepal, which
is about 188 km northwest of Kathmandu. Geographic-
ally, this project area is located between Longitudes
84°34°15” E and 84°31°00” E, and Latitudes 28°
18°43” N and 28°16°20” N. The project is a high-head
scheme with a gross head of 638 m and has a design
discharge is 9.9 m*/sec. The total installed capacity of
this project is 54 MW. The main components of this
project are low-head diversion dam (18.5 m X 3.3 m),
D — shaped gravel trap 36 m X 4 m X 2.3-4 m),
double-chamber desander basins (123 m X 11 m X
13 m), D — shaped headrace tunnel (2.8 m Dia and
52 km length), surge shaft (6 m Dia. and
49 m height), pressure shafts (2.2 m dia. and
1052 m long including penstock branches to two tur-
bines), underground powerhouse (51.3 m X 15 m X
29.6 m), tailrace tunnel, and access tunnel (PHCPL
2022). In order to address the challenges associated
with frequently occurring high tectonic activity and the
risk of landslides, and to ensure long-term stability, the
major water conveyance structures such as the desan-
der, headrace tunnel, surge shaft, penstock shaft,
powerhouse cavern, and tailrace tunnel are strategically
constructed underground.

2.2 Project geology

Geologically, the SDHEP area is located in the
Higher Himalayan range. The major rock types are
schist and gneiss as shown in Figure 1. Predomin-
antly, the geological composition of the area consists
of banded gneiss with schist partings (Adhikari et al.
2023, Katuwal et al. 2023). These geological forma-
tions extensively appear in the Higher Himalayan
region, spanning from east to west across the entire
Himalayan range.

The upper part of the headrace tunnel (HRT)
encountered the slightly to moderately weathered and
medium foliated strong gneiss. A relatively short
stretch of the tunnel section encountered fresh to
slightly weathered gneiss, which is more dominant
with quartz content. Likewise, the downstream section
of HRT, surge shaft, penstock shaft, and powerhouse

cavern encountered the slightly to moderately wea-
thered and medium foliated strong gneiss. Mainly, the
bended gneiss with occasional schist parting is encoun-
tered along the alignment of the headrace tunnel. The
topography of the project area is covered by mainly
two soil types, i.e., colluvial and alluvial soil. The col-
luvial soil consists high content of fine silt and clay
which is exposed on the surface of the HRT alignment.
Likewise, the surface of powerhouse and headworks
are exposed to alluvial soil which consists of predomin-
antly coarse-grained material such as sand, gravel,
cobble, and boulder.
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Figure 1. Longitudinal Profile of SDHEP.

3 MACHINE LEARNING TECHNIQUES

Nowadays, machine learning (ML) techniques have
been widely applicable to predict water ingress in
tunnel projects. The ML approach shows good per-
formance in predicting water inflow/leakage in
tunnel projects (Mahmoodzadeh et al. 2023). There-
fore, in this paper, three ML regression models such
as Support Vector Regression (SVR), Decision Tree
(DT) regressor, and K-Nearest Neighbors (KNN) are
used to predict the water inflow/leakage at the
SDHEP headrace tunnel. These regression models
help to predict the dependent variables from several
features or independent variables. The most appro-
priate regression model has been established by
comparing the eight statistical indices such as
R-squared (R?), Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error
(RMSE), Relative Root Mean Squared Error
(RRMSE), Mean Absolute Percentage Error
(MAPE), Mean Relative Error (MRE), and Variance
Accounted For (VAF). For this purpose, the research
methodology is set up mainly with four components
such as dataset preparation, model selection, training
and validation of selected model, and result analysis
and discussions.

3.1 Database study

To predict the water ingress/leakage in the hydropower
tunnels, it is necessary to collect the filed data and
select the effective parameters. Therefore, in this case
study, the number of datasets and types of effective
parameters such as Rock Quality Designation (RQD),
Joint number (Jn), Joint Roughness (Jr), Joint alter-
ation number (Ja), Q-Classification value (Q), static
head (h), overburden (H), shortest distance from the
tunnel to topography (d), and specific discharge (q),
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average Lugeon Unit (LU) are collected based on
actual data received from the project. The summary of
the field datasets is presented in Tables 1 and 2, which
are used for training and testing parameters. These
tables depict the statistical description of selected
parameters by defining the minimum, standard devi-
ation, maximum, mean values, and different percentile
values.

Table 1. Field datasets for rock mass quality.

RQD Jn Jr Ja Q
Count 175 175 175 175 175
Mean 62.17 6.19 1.57 1.55 7.77
Std 9.52 1.17 0.3 0.55 5.69
Min 30 3 1 1 1.1
25% 55 6 1.5 1 3.33
50% 65 6 1.5 2 6
75% 70 6 1.5 2 10.24
Max 80 9 3 3 30

Table 2. Field datasets for topography and water inflow.

h(m) d(m) H(@m) qlitmin/m) LU
Count 175 175 175 175 175
Mean 11.3 139.35 1735  3.52 1.61
Std 7.86 20.53 21.7 6.21 2.82
Min 0.19 63 120 1.28 0.56
25% 3.39 128.5 163 1.95 0.91
50% 14.61 138 170 2.26 1.05
75% 19.96 150 179 2.88 1.3
Max 20.56 191 231 59.51 27.3

3.1.1 Correlation analysis

In machine learning, the correlation heatmap is often
used to establish and visualize the strength of relation-
ship (multicollinearity) between the multiple feature
variables and dependent variables. The accuracy of the
predicted model is significantly influenced by the mul-
ticollinearity numerical values. In this heat map,
Color-coding cells make it easy to see how variables
are related with a quick look.

In this research, the correlation heatmap analysis
(using the Pearson correlation coefficient) was per-
formed between collected database from the head-
race tunnel. This process illustrates the interrelation
between independent features and dependent vari-
able. The range of this analysis lies within [-1, 1].
A high value of [+1] means these variables are
highly correlated and have a high positive effect and
vice versa. In Figure 2, the positive correlation value
of 0.62 is seen between the RQD and Q-value,
which is remarkable since an increase in the RQD
value will give an increased quality of rock mass.
The Figure also depicts that the rate of water ingress/
leakage positively correlated with the overburden,
and joint alteration number. On the other hand,

parameters such as RQD, Q-value, and joint rough-
ness are inversely correlated. Moreover, Figure 2
indicates that the correlation between the available
datasets seems relatively low. This may be due to the
fact that the water ingress and grout consumption are
also influenced by variables such as persistence,
joint volume, spacing of joints, and infilling material

characteristics.
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Figure 2. Correlation matrix for database.

3.1.2 Principal Component Analysis (PCA)

The PCA is a multivariate statistical approach that is
used for the dimensionality reduction of project data-
bases. For this purpose, the principal components
have been established to describe the linear combin-
ation of features and to define the variation in the
selected database. Figure 3 illustrates the screen plot
of principal components for the ingress/leakage of
water. This Figure clearly explains that 90% of
selected database variance is explained by the six
major principal components. The variability of each
variable in these principal components are presented
in Table 3.

Table 3. A Summary of principal components
coefficients.

Variables PCl PC2 PC3 PC4 PC5 PCo6
h -0.27 -0.15 -0.44 -035 029 -0.54
H 0.15 0.04 -0.58 05 041 0.13
RQD -0.4 023 031 001 023 045
Jn 0.19 -028 0.55 -0.13 053 -0.32
Jr -0.21 0.62 -0.03 -02 -0.29 -0.34
Ja 0.16 034 026 0.63 0 -0.49
Q -0.39 037 0.02 -0.01 0.54 0.07
LU 05 032 -0.06 -028 0.16 0.09
q 049 033 -0.06 -03 0.15 0.13
Eigenvalues 289 150 134 1.11 082 0.78
Variability (%) 31.88 16.52 14.78 12.26 9.08 8.57
Cumulative 31.88 48.40 63.18 75.77 84.53 93.10
(%)
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Figure 3. Screen plot for Principal Components.

3.1.3 Variance Inflation Factor (VIF)

Dimension of the given data set is primarily reduced
by the PCA analysis without quantifying the multicol-
linearity. To address this limitation, the Variance Infla-
tion Factor (VIF) has been applied. The correlation
strength between the independent variables has been
established by using the VIF. Moreover, the VIF can
provide information about the severity and presence of
multicollinearity in the databases, which is illustrated
in Table 4. The VIF = 1 indicates no multicollinearity
between the selected variables. When the value of the
VIF is greater than 10, it is a sign of a high degree of
multicollinearity between the variables and it will be
problematic in the regression models, therefore, elimin-
ating these features will be easier for regression ana-
lysis. However, the selection of independent variables
depends upon the selection of the regression model
(Cheng et al. 2022). In this research, all parameters are
considered for the establishment of a regression model.

Table 4. A summary of Variance Inflation Factor (VIF).

Forq H h RQD Jn Jr Ja Q LU

VIF 459 43 653 251 315 118 48 49

3.2 Data distribution

The selected datasets have been organized into
distinct plots to enable quick visualization and
enhance understanding. To accomplish this, box
plots were initially generated for the chosen data-
sets. It was observed that the Jn, Jr, and Ja data-
sets displayed limited data variability and were
not well-distributed. To address this limitation,
the plot performance has been enhanced by
incorporating both box and histogram plots for
the selected datasets as shown in Figure 4. Histo-
grams display how data is distributed in terms of
shape and frequency. In contrast, box plots are
useful for a rapid assessment of central tenden-
cies, data spread, and the presence of outliers.

In Figure 4, except the box plot data of h, and
RQD, the data are out of the middle of the box.
Therefore, to address this issue and combine both of
these distribution representations into a single plot,
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Figure 4. Multivariate data visualization of selected
parameters.

the violin plot is found to be a more effective choice
for visualizing of data that has multiple peaks or
a skewed distribution. Likewise, a violin plot is the
configuration of the data set that enhances clarity
and understanding. Moreover, the violin plots illus-
trate the summary of statistics and probability dens-
ity function (or density) of each feature and
dependent variables. Figure 5 illustrates the distribu-
tion of the statical quartile summary of filed data set.
In these Figures, a wider region of density plot indi-
cates the more frequent occurrence and vice versa.
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Figure 5. Datasets distribution in violin plot.

3.3 Data normalization

Data normalization constitutes a fundamental pro-
cess within the domain of machine learning (ML).
This procedure is essential due to the inherent vari-
ability in the dimensions and units of input data,
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which can fluctuate with changing input data. The
act of normalization serves to rescale all input fea-
tures and variables to a uniform scale. Table 1 and 2
depicts that the range of specific discharge varies
from 1.28 lit/min/m to 59.51 lit/min/m, whereas
the joint alteration number (Ja) varies from 1 to
3 and the height of overburden varies from
120 m to 131 m. This indicates that the magni-
tude of input variables are in different scales.
Therefore, data normalization should be con-
ducted for better correlation and prediction of
machine learning models.

3.4 Statistical analysis of selected model

Statistical evaluation of selected model plays
a crucial role in understanding and predicting the
efficient model for headrace tunnels of hydropower
projects. Therefore, various statistical indices such
as R-squared (R%), Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Relative Root Mean Squared Error
(RRMSE), Mean Absolute Percentage Error
(MAPE), Mean Relative Error (MRE), and Variance
Accounted For (VAF) are calculated by using Equa-
tion 1 to Equation 8, respectively. The linear correl-
ation between the predicted and actual values is
established by using R”.

R2_1_ Sum of squared regression (SSR) 1
= (1)
sum of squared total (SST)

1 n
MAE =-3"" |y — 7| 2)

n

MSE =15~ (1)’ 3)

RMSE= [0S o @)

RRMSE = \/%Zl_l <y?y;7yf>2 (5)

I A
MAPE :;Zizl | 100% (6)
1 n y‘-’ —y{)
MRE =- AN 7
Iy )
a3
vaF = 1 - 70T =01 o0 (8)
var (%)

Where, actual and predicted values of variables
are represented by )¢ and )/ respectively, and n in
the equations is the total number of datasets that are
used in selected machine learning models.

4 WATER INFLOW PREDICTION MODEL
AND RESULTS

In this study, Support Vector Regression (SVR),
Decision Tress (DT), and K-Nearest Neighbors
(KNN) models are applied for the assessment and
prediction of water ingress in the headrace tunnel of
SDHEP in Anaconda version 3.6 with computation
in Python.

4.1  Support Vector Regression (SVR)

Support Vector Regression (SVR) is a machine-
learning technique specifically adapted for predicting
water ingress in the headrace tunnel. It connects the
capabilities of support vector machines to model and
predict water ingress into hydropower tunnels,
which supports rock engineers to make well-
informed choices for effective management and miti-
gation of water ingress challenges. The Figure 6
illustrates the water inflow prediction by using this
SVR model.
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Figure 6. SVR model for water inflow prediction.

As Figure 6 indicates, there is a good correlation
between the model and different dependent vari-
ables. Table 5 provides information about the statis-
tical indices R?, MAE, MSE, RMSE, RRMSE,
MAPE, MRE, and VAF which are evaluated as 0.99,
0.09, 0.02, 0.12, 0.05, 3.47, 0.48, and 99.6, respect-
ively, where the SVR model indicates high degree of
accuracy. Therefore, this ML model has a good cap-
acity for the prediction of water leakage/inflow in
hydropower tunnels.

Table 5. A summary of statistical indices of SVR model.

R2 MAE MSE RMSE RRMSE MAPE MRE VAF

099 0.09 0.02 0.12 0.05 347 048 99.6

4.2 Decision Tree (DT)

A Decision Tree (DT) is the most widely used pre-
dictive model for regression analysis in the context
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of hydropower tunnels to forecast and assess the
probability of water ingress. It’s a visual representa-
tion of a decision-making process that considers
various factors and their interactions to determine
the probability of water inflow/leakage in/from the
tunnels. This tool helps rock/tunnel engineers make
decisions to prevent and manage water ingress
effectively, ensuring the safety and efficiency of
hydropower operations.

The Figure 7 illustrates the comparison between
the actual field data set and the water inflow predic-
tion by using this DT model. Likewise, Table 6
establishes the statistical indices R?>, MAE, MSE,
RMSE, RRMSE, MAPE, MRE, and VAF which are
evaluated as 0.97, 0.14, 0.08, 0.29, 0.10, 4.67, 0.98,
and 97.6, respectively, which indicate that the DT
models have a good capacity for the prediction of
water inflow. The statical indices indicated that this
model presents a good correlation with the features
and dependent variables.
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Figure 7. DT model for water inflow prediction.

Table 6. A summary of statistical indices of SVR model.

R2 MAE MSE RMSE RRMSE MAPE MRE VAF

097 0.14 0.08 029 0.10 4.67 098 97.6

4.3 K-Nearest Neighbors (KNN)

A K-Nearest Neighbors (KNN) is the most widely
used predictive model for regression. Figure 8 illus-
trates the comparison between the actual field data
set and the KNN prediction model for water inflow
in the case tunnel project. Table 7 demonstrates the
statistical indices R?, MAE, MSE, RMSE, RRMSE,
MAPE, MRE, and VAF which are evaluated as 0.89,
0.45, 0.38, 0.61, 0.22, 17, -1.22, and 88.9, respect-
ively. The statical indices indicated that this model
presents a good correlation with the features and
dependent variables. All outcomes indicate that the
KNN models have a good capacity and are accept-
able for the prediction of water inflow in hydropower
tunnels.
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Figure 8. KNN model for water inflow prediction.

Table 7. A summary of statistical indices of SVR model.

R2 MAE MSE RMSE RRMSE MAPE MRE VAF

0.89 045 038 0.61 0.22 17 -1.22 88.9

5 GROUT CONSUMPTION

Post-grouting technique is very often used to control
water leakage from headrace tunnels of hydropower
projects in the Himalayan region. The measurement of
the Lugeon value, which assesses rock permeability,
plays a pivotal role to evaluate the effectiveness of
post-grouting. At SDHEP, the post-grouting technique
was used to control potential water leakage from the
headrace tunnel. The post-grouting technique involves
the injection of cement grout into the surrounding
rock mass to achieve substantial sealing of joints and
discontinuities and reduce permeability. A typical drill
hole pattern adopted while post-grouting is illustrated
in Figure 9. This Figure demonstrates the drill hole
length, and drilling pattern in both the hill and valley
sides of the headrace tunnel are shown. Likewise,
a detailed description of the parameters associated to
post-grouting is illustrated in Table 8.

~-45mm@, 3m long
holes for Lugeon Test

—r—

45mm@, 4m long *
holes for grouting

2.80m

Figure 9. Detail illustration of drill hole arrangement.
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At SDHEP the post-grouting not only enhanced
the structural integrity of the rock mass but also
established a water-resistant barrier, thereby minim-
izing the risk of water leakage from the tunnel. Con-
sequently, the combination of post-grouting and the
reduction in Lugeon value ensured the long-term
structural integrity and operational reliability of the
water tunnel.

Table 8. Parameter for Injection Grouting.

Parameters Values
Drill hole length (m) 4
Drill hole diameter (mm) 45-48
Packer diameter (mm) 42

Placement of Packer inside (m) 2

5.1 Grout consumption assessment

The effective post-grouting work is very challenging
since it is extremely difficult to achieve targeted pres-
sure without losing unnecessary extra grout material.
Therefore, the effective post-grouting work is
a challenging task since the grout take is significantly
affected by the rock mass properties, topographical
condition, structural geology, joint infilling material,
groundwater level and effective rock stress conditions.
The summary of the field datasets is presented in
Table 9, which illustrates the rock mass class (RMC)
count and statistical variation of selected parameters
that defines minimum, maximum, mean values, stand-
ard deviation, and different percentile values.

The pairwise data relationships between different
parameters used in grout consumption assessment are
illustrated in Figure 10. The Figure shows pairwise

Minimum Grouting Pressure (bar) 4-6 plot or scatterplot matrix. This plot helps to visualize
Grout pressure at seepage area (bar) 15 and explore different independent and dependent
Bentonite (%) 5 variables. The plot can describe how different vari-
Plasticizer (%) 1.5-3 ables are relative to each other based on different
Retarder (if mixed outside) (%) 1.5 types of rock mass classes. Moreover, the plot pro-
W/C ratio 1:1 vides a quick overview of the relationship between
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Figure 10. Grout consumption data relationship.
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Table 9. Field Datasets for Grout Consumption.

K GC
q (litmin/m) LU (10"-7 m/s) e (um) (Kg/m)

Count 173
RMC [1=44,11=78,IV=50,V=1
Mean 2.88 1.32 1.57 162.04 4791
Std 2.09 0.95 1.11 3043 33.68
Min  1.28 0.56 0.35 103.25 3
25% 1.94 0.91 0.94 143.45 225
50% 2.24 1.05 1.28 158.78 41.5
75%  2.86 1.26 1.71 17439 66
Max 1431 6.26 6.86 277.92 153

permeability (K), Lugeon unit (LU), and water
ingress (q) for rock mass class (RMC) II, III, 1V, and
V. For example, in the context of rock mass classified
as Type IV, a high degree of fracture aperture can
significantly increase the hydraulic permeability of
the rock mass. As the Lugeon unit, a measure of per-
meability increases, it signifies a higher propensity
for water ingress from the hydropower tunnel. Con-
sequently, to mitigate this condition and ensure the
stability of the tunnel, large quantities of grout mater-
ial may be necessitated to seal the fractures and
reduce water leakage. Therefore, the matrix is
a valuable tool for gaining insights and is particularly
useful when dealing with multivariate data, as it
offers a quick and comprehensive overview of the
relationships between variables, helping in the initial
stages of data exploration.

The relationship between water leakage, Lugeon
unit, and grout consumption is shown in Figure 11.
Likewise, the relationship between hydraulic perme-
ability, hydraulic aperture, and grout consumption is
illustrated in Figure 12.

160
141 — q (litymin/m) —— Grout Consumption
w 140
12
" 120
=10 s
2 P 1
2 1008
g £
o 8 3
E 80 g
o
g o 60 =
2 &
£ 14 40
2 20
0 ]
0 25 50 5 100 125 150 175

Data No

Figure 11. Relationship between water inflow, Lugeon
unit, and grout consumption.

6 RESULT ANALYSIS AND DISCUSSION

The water leakage and grout consumption assess-
ments were made on the headrace tunnel of SDHEP.
The assessment was conducted using field datasets
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Figure 12. Relationship between hydraulic permeability,
hydraulic aperture, and grout consumption.

related to the rock mass quality, hydro-geological
conditions, Lugeon unit, and grout consumption.

6.1  Result comparison of water inflow prediction

Various machine learning models were employed to
predict water leakage from the headrace tunnel. The
prediction was then compared to actual datasets. All
models demonstrated acceptable and good predictive
performance individually. However, it is essential to
compare and rank these models to enhance the reli-
ability of selected models. To achieve this, statistical
indices were used to evaluate and categorize the per-
formance of each model as good, better, or best, with
respective weightings of 1, 2, and 3. The overall
ranking of each model was determined by summing
assigned weights. Table 10 illustrates the compara-
tive ranking of selected models. The table shows that
the SVR, DT, and KNN models perform best, better,
and good performance, respectively to predict the
ingress of water.

Table 10. Comparison of Water inflow predicted models.

Parameter/Model SVR DT KNN
R2 Value 0.99 0.97 0.89
Weightage 3 2 1
Value 0.09 0.14 0.45
MAE Weightage 3 2 1
Value 0.02 0.08 0.38
MSE Weightage 3 2 1
Value 0.12 0.29 0.61
RMSE Weightage 3 2 1
Value 0.05 0.10 0.22
RRMSE Weightage 3 2 1
Value 3.47 4.67 17
MAPE Weightage 3 2 1
Value 0.48 0.98 -1.22
MRE Weightage 3 2 1
Value 99.6 97.6 88.9
VAE Weightage 3 2 1
Remarks Total Weitage 24 16 8
Rank 1 2 3
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Figure 13. Actual and prediction results in comparisons.

The performance of the selected models is com-
pared using statistical tools such as R-squared,
Adjusted R-squared, and Pearson’s r value. The actual
test database and predicted results of the selected ML
models are presented in Figure 13. In the Figure, SVR
shows the strongest correlation between the predicted
and actual databases, followed by the DT and KNN
regression models. Moreover, Pearson’s r measures
how closely the data points in the scatterplot cluster
around a straight line. The authors found that the SVR
model quantifies a strong linear relationship between
variables, followed by the DT and KNN models. How-
ever, all selected ML models establish a strong rela-
tionship between actual and predicted variables.

6.2 Result comparison of grout consumption

In the above section, the relationship between differ-
ent independent variables such as water inflow,
Lugeon unit, hydraulic permeability, and hydraulic
aperture are plotted with grout consumption volume.
These curves show fairly good correlations between
these parameters in most of the chainage and rock
mass conditions. In some parts, the results show
unusual tendencies. However, after injection grout-
ing the ingress of water is fully controlled and the
headrace tunnel is well-functioning. Hence, the post-
injection grouting was successful and has signifi-
cantly reduced the water leakage potential and rock
mass permeability and improved the rock mass
strength, and enhanced tunnel stability.

7 CONCLUSION

A comprehensive overview of water ingress/leakage in
the headrace tunnel of SDHEP was conducted based
on the field data consisting of geology, hydrogeology,
and injection grout parameters. After that, thorough
data interpretation, statistical correlation, and regres-
sion analysis were performed using machine learning
algorithms to predict water leakage from the headrace
tunnel. It has been observed that machine learning
techniques may be successfully used to assess the
water ingress potential of the headrace tunnels of
hydropower projects. Different machine learning

regression models, such as Support Vector Regression
(SVR), Decision Tree (DT), and K-Nearest Neighbors
(KNN), have demonstrated the ability to predict water
inflow/leakage in the water tunnel. As the field con-
tinues to evolve, the integration of machine learning in
the management of water tunnels may prove to be
a helpful tool for assessing tunnel stability challenges.
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