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Abstract

The goal of this thesis is to lay the foundations for a theory of ∞-categories

internal to an ∞-topos B. Our model for such internal ∞-categories is based

on the notion of a complete Segal object, but can equivalently be described by

sheaves of∞-categories onB. After setting up the basic framework of this theory,

we study internal presheaf ∞-categories: we prove a version of Yoneda’s lemma

in this context, and we show that internal presheaf ∞-categories can be charac-

terised by a universal property: they provide a model for free cocompletions by

internal colimits. As a prerequisite for the latter result, we develop the theory of

adjunctions, limits and colimits and Kan extensions for internal ∞-categories.

We then move on to the study of accessibility and presentability of internal

∞-categories, which we use to define and study internal ∞-topoi. One of our

main results is a correspondence between these internal ∞-topoi and geometric

morphisms into the base ∞-topos B. We use this result to study relative aspects

in higher topos theory from an internal point of view: we provide a formula for

general pullbacks of ∞-topoi, and we characterise smooth and proper geometric

morphisms in terms of properties of the associated internal ∞-topoi. We further-

more use the latter result to compare the notions of smooth and proper maps in

topology and in higher topos theory.
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Introduction

Part of the usefulness of (higher) topoi comes from their ability to serve as a

bridge between mathematical microcosms that are a priori very different: on the

one hand, one can regard the theory of ∞-topoi as an enlargement of the theory

of topological spaces. In this interpretation, an ∞-topos X (as developed in [49])

is thus conceptualised as a generalised space. This point of view has been the

driving motivation for the development of topos theory by the Grothendieck

school [8] and is supported by the observation that most topological features of a

space 𝑋 are visible on the level of its underlying ∞-topos of sheaves Sh(𝑋). One

can therefore do geometry with ∞-topoi (see for example [3] for more on this

perspective). In another interpretation, ∞-topoi can be viewed as mathematical
universes for certain structures. As such, they allow us to equip mathematical

objects with additional data of the kind that is governed by them: if B is such

an ∞-topos, a mathematical object 𝑍 can be enriched with the structure that is

encoded by B by means of equipping 𝑍 with some form of parametrisation by B.

Usually, this simply means realising 𝑍 as a sheaf on B, i.e. as a limit-preserving

functor from the opposite of B into the (∞)-category that 𝑍 naturally belongs

to, although there are cases in which the parametrisation is encoded by more

data. An example that has generated a lot of attention in recent years is the

∞-topos Cond(Ani) of condensed anima in the sense of [75, 14] (modulo to some

set-theoretic complications). This ∞-topos governs topological structures, so that

an arbitrary mathematical object can be equipped with a topology through a

parametrisation by Cond(Ani). For example, a topological ring 𝑅 can be encoded

as a sheaf Cond(Ani)op → Rings, where the target denotes the category of

(discrete) rings. Another example is the ∞-topos PSh(Orb𝐺) of presheaves on

the orbit category Orb𝐺 associated with a finite group 𝐺. This ∞-topos can be

thought of as a mathematical universe governing 𝐺-equivariant structures [12].
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Introduction

The fact that these a priori very different mathematical concepts come together

in the theory of ∞-topoi allows us in particular to combine them in a meaningful

way. The connection is established through the notion of a geometric morphism
𝑓∗ ∶ X → B. If X is thought of as a spatial object, such a map can encode

several things: if B is to be regarded as a generalised space as well, the map

𝑓∗ exhibits X as a family of generalised spaces that is parametrised by the base

space B. If the latter is instead interpreted as a mathematical universe for a

certain structure, we can still regard 𝑓∗ as a parametrisation of X by B, but its

meaning is a different one: in this case, it exhibits X as being enriched with

the kind of structure that is encoded by B. As an example of the first kind, if

(𝑋𝑠)𝑠∈𝑆 is a family of spaces parametrised by a base space 𝑆, then this family

determines a continuous map 𝑋 → 𝑆, and by passing to ∞-topoi one obtains a

geometric morphism 𝑓∗ ∶ Sh(𝑋) → Sh(𝑆). As an example of the second kind,

we may consider the case where the base ∞-topos is given by Cond(Ani). In

this situation, a geometric morphism 𝑓∗ ∶ X → Cond(Ani) tells us that X is in

some way equipped with additional topological structure. As a concrete example

from algebraic geometry, if 𝑋 is a scheme, its associated hypercomplete proétale
∞-topos 𝑋hyp

proét admits a canonical geometric morphism into Cond(Ani), which

witnesses the fact that all of the various homotopical invariants that one can

extract from 𝑋, such as its (pro)étale fundamental groups, can be equipped with

an additional topological structure [89].

No matter whether a geometric morphism 𝑓∗ ∶ X → B exhibits a generalised

space X as a family of spaces or as a single space with additional structure: any

kind of information that we may extract from X to improve our understanding of

this space ought to remember this parametrisation. For example, any homotopical

data associated toX, such as its homotopy groups, should be parametrised byB as

well, which means that the should define sheaves of groups onB. IfB is regarded

as a space, this simply means that the homotopy groups remember the fibre-

wise information of the family. If B is viewed as a universe for a mathematical

structure, this instead means that the homotopy groups carry this additional

structure as well. As an example of the first kind, if (𝑋𝑠)𝑠∈𝑆 is a family of spaces

and if 𝑓∶ 𝑋 → 𝑆 is the associated continuous map, the 𝑛th sheaf cohomology

groups (H𝑛(𝑋𝑠; ℤ))𝑠∈𝑆 can be assembled to a sheaf on 𝑆: if 𝑓∗ ∶ Sh(𝑋) → Sh(𝑆)
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is the geometric morphism induced by 𝑓, then this sheaf can be defined as the 0-
truncation of 𝑓∗B𝑛ℤ, where B𝑛ℤ denotes the constant sheaf on 𝑋 associated with

the 𝑛-fold delooping of ℤ. Under certain assumptions on 𝑓, the stalk of this sheaf

at any point 𝑠 ∈ 𝑆 then precisely recovers the group H𝑛(𝑋𝑠, ℤ) [49, Chapter 7].
As an example of the second kind, to any scheme 𝑋, Barwick-Glasman-Haine

associate its Galois category Gal(𝑋), which can be thought of as a global version

of the Galois groups of its residue fields [13]. In light of our previous observation

that the proétale∞-topos 𝑋hyp
pro ́et comes equipped with a geometric morphism into

condensed anima, one would expect the Galois category of 𝑋 to carry a certain

topological structure. This is indeed the case: by its very construction, the Galois

category is a profinite category, and can as such be encoded by a certain sheaf of

categories on Cond(Ani).

In modern days, categorified invariants of geometrical objects have come more

and more into focus. For example, where classically one would have studied a

space through its cohomology groups, one nowadays tends to focus on the entire

derived ∞-category instead. This was made possible by the emergence of higher

category theory with its multitude of useful and easily applicable methods. Thus,

if one were to choose this modern approach in order to study a (generalised)

space X that comes together with a parametrisation by an ∞-toposB in form of a

geometric morphism 𝑓∗ ∶ X → B, any categorified invariant that one associates

to X should come in the form of a sheaf of ∞-categories on B.

Categorified invariants do not only play an important role in studying spatial

structures, but also when trying to understand algebraic objects: for example,

it is common practice to try to understand a ring 𝑅 by means of studying its

∞-category of modules Mod(𝑅). Now if 𝑅 carries additional structure that is

encoded by exhibiting 𝑅 as a sheaf of rings on some ∞-topos B that governs

this kind of structure, we would likewise expect the ∞-category of modules on

𝑅 to inherit this enrichment, so that it ought to come in the form of a sheaf of

∞-categories on B as well. If B is the ∞-topos Cond(Ani) of condensed anima,

this for example means that the ∞-category of modules over a topological ring

should admit a topological structure as well. Likewise, the key algebraic objects

of interest in equivariant homotopy theory are genuine 𝐺-spectra, which can be

thought of as spectra that carry a 𝐺-action. Also in this case, the ∞-category of
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Introduction

genuine 𝐺-spectra (which can be thought of as the∞-category of modules over the

equivariant sphere spectrum) should be considered together with a 𝐺-equivariant
structure, i.e. an enhancement as a sheaf of ∞-categories on PSh(Orb𝐺).

For many purposes, it is crucial that we take the additional structure of a

categorified invariant into account. For example, if 𝑋 is a scheme, we need to

take the profinite structure on its Galois category Gal(𝑋) into account in order to

be able to recover constructible sheaves on 𝑋 from representations of Gal(𝑋) [13,
Theorem 12.1.6]. Moreover, if one wishes to classify constructible sheaves of

𝑅-modules on 𝑋 when 𝑅 carries a topology, one has to consider continuous
representations of Gal(𝑋) with values in (the subcategory of perfect objects in)

Mod(𝑅), which means in particular that the topological structure of Mod(𝑅)must

also be taken into account.

This raises the question: how does one work with such categorified invariants

when they are accompanied by an additional parametrisation by an ∞-topos

B? After all, the fact that one now has to work with sheaves of ∞-categories

instead of just bare ∞-categories appears to constitute a substantial increase in

complexity. One possible way out of this problem is provided by the process of

internalisation.

Parametrisation and internalisation

One interpretation of the notion of an ∞-topos that we have not yet mentioned

is that of a model for constructive logic. In fact, it was observed by Lawvere and

Tierney [48] already shortly after the concept of a topos had been introduced by

the Grothendieck school [8] that this very notion can be viewed as an abstraction

of the category of sets, so that every topos can be used as an environment for

(constructive) set-theoretic reasoning. This means that every topos admits a

semantics for first-order logic with respect to which every statement from intu-
itionistic set theory is valid in it1. Consequently, every set-theoretic construction

can be interpreted internally in any topos B. Likewise, every statement about

these constructions that does not rely on non-intuitionistic axioms like the law

of excluded middle or the axiom of choice will remain valid. For example, when

1By a topos, we always mean a Grothendieck topos, i.e. one which is a locally presentable category
and therefore in particular admits a natural numbers object.
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interpreting the theory of rings internal to a toposB, one ends up with the notion

of an internal ring in B: an object 𝑅 ∈ B, together with four maps

+∶ 𝑅 × 𝑅 → 𝑅 ⋅∶ 𝑅 × 𝑅 → 𝑅 0∶ 1B → 𝑅 1∶ 1B → 𝑅

in which + is the addition map and ⋅ the multiplication map and where 0 and

1 are to be thought of as picking out the neutral elements for addition and

multiplication, respectively. Furthermore, there are certain axioms that can be

expressed in a diagrammatic manner involving these four maps. Similarly, one

can interpret the theory of categories internally in the topos B, which leads to

the notion of an internal category: a pair of objects 𝐶0, 𝐶1 ∈ B in which one is to

think of 𝐶0 as the object of objects and of 𝐶1 as the object of morphisms, together
with maps

𝐶0 𝐶1 𝐶1 ×𝐶0
𝐶1 𝐶1

𝑒

𝑠

𝑡
comp

where 𝑒 picks out the identity on an object, 𝑠 and 𝑡 are the source and target maps,

respectively, and comp is the composition map. Again, there are in addition

certain axioms involving these maps that can be expressed in a purely diagram-

matic form. Now a key observation is that the datum of an internal ring in B is

tantamount to that of a sheaf of rings on B, and likewise the notion of an internal

category in B is entirely equivalent to that of a sheaf of categories on B2. In

other words, internal rings and categories in B correspond precisely to rings and

categories parametrised by B. Hence, by interpreting intuitionistic first-order

logic internally in B, one can study such parametrised rings and categories in

exactly the same way as one studies ordinary rings and ordinary categories,

essentially without any increase in complexity.

For∞-topoi, the same heuristic remains valid: every∞-toposB can be regarded

as a model for homotopy theory and as such an abstraction of the ∞-category

Ani of ∞-groupoids (or anima). Informally, this means that any construction in

Ani can be performed internally in an arbitrary ∞-topos B, and every statement

about such constructions that is sufficiently intuitionistic remains valid internally

2Strictly speaking, since Cat is a (2, 1)-category, a sheaf of categories is a pseudofunctor Bop → Cat
that preserves small limits. Such an object is traditionally called a stack.
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Introduction

in B. One way to make this precise is through the emerging research area of

homotopy type theory [80]. In this approach, the idea is to develop homotopy

theory synthetically within an (intuitionistic) dependent type theory. As this

type theory has been shown to have models in any ∞-topos [78], it follows that

any construction and argument that one can make entirely within homotopy

type theory has meaning and is valid internal to any ∞-topos B. In the same

way as in the 1-toposic case, one can therefore study (higher) mathematical

objects that are parametrised by B on the same footing as one studies their non-

parametrised analogues, as long as one’s arguments can be formalised within

homotopy type theory. To some degree, this approach can be applied to the theory

of ∞-categories themselves: although these kind of objects are beyond the realm

of bare homotopy type theory, one can consider extensions of this type theory that

are sufficiently strong so that they support a notion of synthetic higher categories.
A candidate for such an extension has been suggested by Riehl-Shulman [72] and

further studied by Buchholtz-Weinberger [15] and Weinberger [84, 85, 86, 87, 88].

Thus, by arguing about∞-categories synthetically within this framework, one can

argue simultaneously about parametrised ∞-categories without any additional

effort.

However, this approach has a shortcoming: the fact that the theory of synthetic

∞-categories is a nascent field and still requires a few foundational limitations

to be resolved before it is powerful enough to support the full weight of higher

category theory. Luckily, though, the average practitioner need not necessarily

work syntactically with ∞-categories in order to reap the benefits of internali-

sation: instead, one can choose a middle ground by working semantically with

∞-categories internal to an ∞-topos. That is, instead of working from within

a formal language, one can work directly with those structures internal to an

∞-topos B that one would end up with if one were to interpret synthetic ∞-

category theory in B. In practice, this amounts to working diagrammatically
with higher categorical structures, i.e. to only make use the abstract formal prop-

erties that all ∞-topoi have in common in order to set up the theory of higher

categories. This approach still constitutes a reduction in complexity, as it makes

no difference whether one works internal to the ∞-topos Ani (which recovers

usual ∞-category theory) or any other ∞-topos B (which recovers the theory

xii



of parametrised ∞-categories). At the same time, it circumvents the need for a

high-level formal language to develop this theory; it only requires the framework

of higher category theory itself, which has by now reached adulthood. We call

this approach internal higher category theory. The goal of this thesis is to develop

such a framework.

Internal higher category theory

B-categories The notion of an∞-categoryC internal to an∞-toposB, hereafter

referred to as a B-category, is a straightforward generalisation of that of an

internal category in a 1-topos as discussed above. The main difference is that (1)

one now has an object of 𝑛-morphisms C𝑛 for every 𝑛 ≥ 0 (where for 𝑛 = 0 one

recovers the object of objects and for 𝑛 = 1 the objects of morphisms), and (2)

each object of 𝑛-morphisms C𝑛 itself contains higher homotopical information,

being an object of the ∞-topos B that need not be truncated. Formally, we can

define such a B-category as a certain simplicial object

C∶ Δop → B

in B, where Δ denotes the simplex category, i.e. the category of finite non-empty

linearly ordered sets. In addition, for this simplicial object C to be a B-category,

it has to satisfy two conditions:

(Segal conditions) for every 𝑛 ≥ 2 the natural map C𝑛 → C1 ×C0
⋯ ×C0

C1 is

an equivalence;

(Univalence) the map C0 → (C0 × C0) ×C1×C1
C3 is an equivalence

(cf. Section 1.2.3 for details on how these maps are defined). The Segal conditions

specify that the object of 𝑛-morphisms C𝑛 precisely encodes composable sequences
of 1-morphisms, and univalence makes sure that the subobject of equivalences
in C1 (which is precisely what the right-hand side encodes) can be identified

with C0, i.e. that a map in C is an equivalence if and only if it is equivalent

to an identity. Thus, the Segal conditions make sure that the composition of

morphisms is well-defined, and univalence guarantees that the internal notion of

an equivalence in a B-category is in agreement with the external notion of an
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Introduction

equivalence as provided by the meta-theory of ∞-categories. In the case where

B = Ani, this definition precisely recovers the notion of a complete Segal space as

studied by Rezk [70]. By a theorem of Joyal and Tierney [44], these are a model

for ∞-categories, so that the theory of B-categories reduces to ordinary higher

category theory in that case. Moreover, one can canonically identifyB-categories

with sheaves of ∞-categories on B, i.e. limit-preserving functors Bop → Cat∞, so

that this notion indeed recovers what we were originally interested in, namely

∞-categories that are parametrised by B.

It is precisely the tight connection between internal and parametrised higher

category theory that brings life to this framework. In fact, virtually every single

concrete example of a B-category comes in the form of a sheaf of ∞-categories

on B. On the other hand, carrying out arguments about these objects is usually

much simpler when viewing them from an internal point of view, simply because,

as explained above, this allows us to reason about B-categories in the same way

as we can reason about ∞-categories.

Another fact that allows for an efficient development of the theory of B-

categories is that we allow ourselves to make use of the full strength of the

ambient theory of ∞-categories. For example, the framework of localisations in

presentable ∞-categories makes it immediate to define the ∞-category Cat(B) of
B-categories and to show that it is presentable and cartesian closed. The latter

property means that if C and D are B-categories, we can form the associated

functor B-category Fun
B
(C,D). Presentability of Cat(B) furthermore implies

that we can talk about limits and colimits of B-categories without any further

effort.

The universe Since univalence means that the equivalences in a B-category

C can be identified with its identities, C has the property that all its morphisms

are equivalences precisely if the unique morphism C0 → C1 is an equivalence

(which can be taken as the definition of this property). This condition already

implies that all simplicial maps are equivalences, i.e. that C is in the essential

image of the diagonal map B → Fun(Δop,B) (which is an embedding as Δ is

weakly contractible). Thus, the latter map identifies B with the full subcategory

of Cat(B) that is spanned by the B-groupoids. We now come to our first example

xiv



of a B-category, which will also be the single most important one: the universe
for B-groupoids Grpd

B
. It is defined as the sheaf of ∞-categories

B/− ∶ Bop → Cat∞, 𝐴 ↦ B/𝐴

that carries 𝐴 ∈ B to the slice ∞-category B/𝐴 and that acts on morphisms via

pullback. The fact that this defines a sheaf, i.e. a limit-preserving functor, is a

consequence (in fact, the definition) of the descent property of ∞-topoi. Strictly

speaking, this sheaf takes values in the ∞-category of large ∞-categories, but this

is not a problem: it simply means that Grpd
B

defines a large B-category, as was

to be expected.

The universe Grpd
B

plays the same role among B-categories that the ∞-

category Ani of ∞-groupoids plays among ∞-categories. Thus, we may regard

Grpd
B

as the reflection of the base ∞-topos B within itself. Large parts of the

first half of this thesis are dedicated to a justification of this heuristic.

Presheaves One of the most fundamental constructions in category theory

is that of presheaf categories. Using the notion of functor B-categories and the

universe forB-groupoids, it is immediate to obtain aB-categorical version of this

construction. In fact, ifC is an arbitraryB-category, we may define the associated

B-category of presheaves as PSh
B
(C) = Fun

B
(Cop,Grpd

B
). Here the opposite

Cop can be defined as the simplicial object obtained from C by precomposing

with the involution Δ ≃ Δ that is induced by taking the opposite of a linearly

ordered set.

The main reason why presheaves play such a pivotal role is Yoneda’s lemma. As

a first cornerstone of our framework, we will establish a B-categorical analogue

of this result. To even be able to formulate the very statement, we need to be able

to constructmapping bifunctors. As in higher category theory, it can be very hard

to directly construct such functors, due to the presence of infinite coherence data.

The solution in higher category theory is to model such functors by left fibrations,
which are usually much easier to construct, and to then use a result commonly

referred to as the straightening equivalence to obtain the desired functors from

the latter [49, Theorem 2.2.1.2]. The same strategy can be employed in internal

higher category theory.
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We define a notion of left fibrations 𝑝∶ P → C between B-categories, and we

construct a B-category LFibC of such left fibrations over C. We then show:

Theorem 2.2.1.1. There is a canonical equivalence

Fun
B
(C,Grpd

B
) ≃ LFibC

that is natural in C.

Using this result, it is now easy to construct mapping bifunctors: for every

B-category, we can define a left fibration Tw(C) → Cop × C where Tw(C) is the
B-categorical analogue of the twisted arrow ∞-category [52, Tag 03JF], and by

straightening this left fibration, we end up with the desired map of B-categories

mapC(−, −)∶ Cop × C → Grpd
B
.

By transposing this map across the adjunction Cop × − ⊣ Fun
B
(Cop, −), one

furthermore obtains the Yoneda embedding ℎC ∶ C → PSh
B
(C). Using these

constructions, we then prove Yoneda’s lemma:

Theorem 2.3.2.3. For any B-category C, there is a commutative diagram

Cop × PSh
B
(C) PSh

B
(C)op × PSh

B
(C)

Grpd
B

ev

ℎ×id

mapPShB(C)(−,−)

of B-categories, where ev denotes the evaluation map.

Colimits and cocompletions We claimed above that the universe Grpd
B

for

B-groupoids is the B-categorical analogue of the ∞-category of ∞-groupoids

Ani. So far, we have not yet provided any real evidence for this claim. In

higher category theory, the ∞-category Ani is characterised by its universal
property: the fact that it is the free cocompletion of the point. More generally, if

C is an ∞-category, the universal property of the associated Yoneda embedding

ℎC ∶ C ↪→ PSh(C) asserts that it exhibits PSh(C) as the free cocompletion of C [49,

Theorem 5.1.5.6]. Thus, to ensure that the universe fulfils its intended role, we
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need to establish the B-categorical version of this theorem: that the Yoneda

embedding ℎC ∶ C → PSh
B
(C) exhibits PSh

B
(C) as the free cocompletion of C,

for every B-category C.

To do so, we first need to establish a notion of cocompleteness for B-categories,

which is to capture the property that a B-category admits all internal colimits.

This requires developing a theory of such colimits, which we will do in this thesis

and which will be completely parallel to the theory of colimits in ∞-categories:

the ∞-category Cat(B) of B-category admits a canonical (∞, 2)-enhancement,

which allows us to define a notion of adjunctions between B-category using

abstract 2-categorical constructions. Consequently, if I and C are arbitrary B-

categories, we can define I-indexed colimits inC via the left adjoint of the diagonal

map diag∶ C → Fun
B
(I,C), provided that such an adjoint exists. The condition

that all possible such left adjoints exist can then be taken as the evident defini-

tion of cocompleteness in internal higher category theory. For the practitioner,

though, the most interesting aspect will be that as an outcome of this theory, we

will obtain an explicit sheaf-theoretic characterisation of the resulting notion of

cocompleteness:

Corollary 3.5.4.4. A B-category C is cocomplete if and only if the following
conditions are satisfied:

1. For every 𝐴 ∈ B the ∞-category C(𝐴) is cocomplete and for any map
𝑠∶ 𝐵 → 𝐴 in B the functor 𝑠∗ ∶ C(𝐴) → C(𝐵) preserves colimits.

2. For every map 𝑝∶ 𝑃 → 𝐴 in B the functor 𝑝∗ has a left adjoint 𝑝! such that
for every pullback square

𝑄 𝑃

𝐵 𝐴

𝑡

𝑞 𝑝

𝑠

the natural map 𝑞!𝑡∗ → 𝑠∗𝑝! is an equivalence.

Furthermore a functor 𝑓∶ C → D of cocomplete B-categories is cocontinuous if
and only if for every 𝐴 ∈ B the functor 𝑓 (𝐴) preserves colimits, and for every map
𝑝∶ 𝑃 → 𝐴 in B the natural map 𝑝!𝑓 (𝑃) → 𝑓 (𝐴)𝑝! is an equivalence.
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With respect to this notion of cocompleteness, the Yoneda embedding

ℎC ∶ C → PSh
B
(C)

of a B-category C can now be shown to have the desired universal property:

Theorem 3.5.1.1. For any B-category C and any cocomplete B-category E, re-
striction along the Yoneda embedding embedding ℎC ∶ C ↪→ PSh

B
(C) induces an

equivalence
ℎ∗C ∶ Funcc

B
(PSh

B
(C), E) ≃ Fun

B
(C, E),

where Funcc
B
(PSh

B
(C), E) is the B-category of cocontinuous functors between

PSh
B
(C) and E.

Presentable B-categories Cocomplete ∞-categories are exceptionally well-

behaved, provided that one imposes certain size constraints. Under these assump-

tions, they are called presentable ∞-categories [49, § 5.5] and are one of the main

reasons that make higher category theory so applicable. Among the features

that make them so convenient is the presence of adjoint functor theorems [49,

Corollary 5.5.2.9] and the fact that they admit a tensor product [50, § 4.8.1]. We

would like to have analogous results in internal higher category theory at our

disposal. Therefore, we will need to establish a notion of presentability for B-

categories. As before, the development of the theory proceeds completely parallel

to that of presentable ∞-categories: having already set up a functioning theory

of cocompleteness, we only need one additional element: that of an accessible
B-category. Recall that in higher category theory, an ∞-category is accessible

if it is obtained as the free cocompletion of a (small) ∞-category by 𝜅-filtered
colimits, for some regular cardinal 𝜅 [49, § 5.4]. Thus, in order to make sense of

such a property in B-category theory, we need an internal notion of filteredness.
Once established, it easily yields the desired concept of accessible B-categories

since the universal property of presheaf B-categories that we can already make

use of will make it easy to construct free cocompletions by an arbitrary class of

internal colimits.

Upon combining this notion of accessibility with cocompleteness, we then end

up with the definition of a presentable B-category. We will provide a plethora
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of equivalent characterisations of this notion, akin to the Lurie-Simpson char-

acterisation of presentable ∞-categories [49, Theorem 5.5.1.1], which will add

significantly to the applicability of this concept and which is further evidence of

the heuristic that one can work with B-categories in exactly the same way as

with ∞-categories. But again, the practitioner will probably be most interested

in ways to recognise this property from a sheaf-theoretic perspective. Luckily,

there is again an explicit description:

Theorem 5.4.2.5. A (large) B-category D is presentable if and only if

1. it is section-wise given by presentable ∞-categories, in the sense that the
associated sheaf of ∞-categories on B takes values in the subcategory PrL∞ of
presentable ∞-categories;

2. it is Grpd
B
-cocomplete, in the sense that for every pullback square

𝑄 𝑃

𝐵 𝐴

𝑞

𝑔

𝑝
𝑓

in B the induced square of ∞-categories

D(𝑄) D(𝑃)

D(𝐵) D(𝐴)

𝑞∗
𝑔∗

𝑝∗

𝑓 ∗

is left adjointable: both 𝑝∗ and 𝑞∗ admit left adjoints 𝑝! and 𝑞!, and the
natural map 𝑞!𝑔∗ → 𝑓 ∗𝑝! is an equivalence.

PresentableB-categories are equally well-behaved as presentable∞-categories:

we will show that they satisfy adjoint functor theorems, and we will prove that the

∞-category PrL(B) of presentable B-categories admits a symmetric monoidal

structure − ⊗ −, i.e. we construct a tensor product of presentable B-categories.

This symmetric monoidal structure can be used to realise B-modules in the

∞-category of presentable ∞-categories as presentable B-categories:
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Proposition 5.5.4.6. There is a fully faithful functor

− ⊗B Grpd
B
∶ ModB(PrL∞) → PrL(B)

which carries a B-moduleM in PrL∞ to the presentable B-categoryM ⊗B Grpd
B

given by the sheaf

M ⊗B Grpd
B
∶ Bop → Cat∞, 𝐴 ↦ M ⊗B B/𝐴,

in which − ⊗B − denotes the relative tensor product over B, i.e. the symmetric
monoidal structure of ModB(PrL∞). Moreover, this functor is strong symmetric
monoidal.

As a consequence of this result, we can now define the B-category of B-
categories CatB as the presentable B-category that is associated with the B-

module Cat∞ ⊗B. By construction, this is precisely the sheaf that carries 𝐴 ∈ B

to the ∞-category Cat(B/𝐴) of B/𝐴-categories.

B-topoi We now come to the core part of our theory of internal higher cat-

egories: the development of higher topos theory internal to B. The defining

property of∞-topoi is that of descent : the property of an∞-category Cwith finite

limits and small colimits that the slice functor C/− ∶ Cop → Cat∞ preserves small

limits [49, § 6.1.3]. In order to achieve our goal of developing a theory of higher

topoi internal to an ∞-topos B, we therefore need a B-categorical version of this

notion, which requires constructing slice functors forB-categories. The most con-

venient way to achieve this is by going through straightening and unstraightening.
We already mentioned above that we can dispose of a straightening equivalence

for left fibrations, which allows us to construct Grpd
B
-valued functors. In the

current situation, however, we need to construct a functor that takes values in

the B-category CatB of B-categories. Thus, we need a more general version of

the straightening equivalence: one for cartesian fibrations.

It is immediate to parse the definition of a cartesian fibration of ∞-categories

in the world of B-categories, resulting in a notion of cartesian fibrations between

B-categories. We then define a B-category CartC of such cartesian fibrations

over a fixed B-category C, and we show:
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Theorem 4.4.3.1. For every B-category C, there is an equivalence

StC ∶ CartC ≃ Fun
B
(Cop,CatB)

that is natural in C ∈ Cat(B).

Using this result, the B-categorical notion of descent can be formulated easily:

by the universal property of Ani, there is a unique left exact and cocontinuous

functor const∶ Ani → B. This functor can be naturally extended to a map

Cat∞ → Cat(B), so that every ∞-category C can be regarded as a constant B-

category. In particular, we can regard the interval Δ1 as a B-category, so that the

codomain fibration 𝑑0 ∶ Fun
B
(Δ1,X) → X is well-defined for any B-category X.

If X admits finite limits, then one can show that 𝑑0 is a cartesian fibration. Hence,

by straightening this map, one ends up with a functor

X/− ∶ Xop → CatB .

Now if X is in addition presentable, it is in particular cocomplete. Since CatB
is presentable as well and therefore complete (i.e. admits all internal limits), it

makes perfect sense to ask for this functor to be continuous, i.e. to preserve all

internal limits. If this is the case, we say that X satisfies descent. We define a

B-topos to be a presentable B-category that has this property.

However, having a simple and elegant definition of B-topoi is not enough. To

be able to efficiently work with B-topoi, in particular to have a way to construct
them, we need a characterisation in terms of left exact Bousfield localisations

of presheaf B-categories, similar to Lurie’s characterisation of ∞-topoi in [49,

Theorem 6.1.0.6]. Fortunately, since at this point we have a plethora of useful

B-categorical tools at our disposal, proving such a result simply amounts to

translating the arguments that lead to its ∞-categorical counterpart into our

framework. By doing so, we obtain:

Theorem 6.2.3.1. A large B-category X is a B-topos if and only if there is a
B-category C such that X arises as a left exact and accessible Bousfield localisation
of PSh

B
(C).

Here left exact and accessible are understood in the B-categorical sense, using

our theory of internal limits and colimits. By Bousfield localisation, we simply
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mean an adjunction between B-categories in which the right adjoint is fully

faithful (which is a condition that can be easily made sense of for complete Segal

spaces and therefore for B-categories as well).

With this explicit description of B-topoi, we can now develop their theory: we

study limits and colimits ofB-topoi, prove aB-categorical version of Diaconescu’s
theorem, and we study étale and subterminal B-topoi: the former being those that

arise asB-categories of presheaves onB-groupoids, and the latter being those that

arise as left exact and accessible Bousfield localisation of Grpd
B
. Furthermore,

we set up a theory of localic B-topoi, which are those that arise asB-categories of

sheaves on what we call a B-locale: an internal version of the notion of a locale.

The microcosm principle in higher topos theory

The attentive reader will have noticed that in our discussion of B-topoi, we

omitted how they can be recognised and constructed from an external, i.e. sheaf-
theoretic perspective. The reason is that in this case, the situation is somewhat

special: we are defining a certain notion, that of a higher topos, internal to an

object that is defined by the very same property, just within the meta-theory

of ∞-categories. In other words, the theory of higher topoi obeys a certain

microcosm principle in the sense of Baez-Dolan [11]. This principle is usually

understood in the context of higher algebra, where it serves as a heuristic for

the observation that certain algebraic structures, such as algebras, are defined

internal to mathematical objects, in the case of algebras monoidal ∞-categories,
which are themselves examples of the same algebraic structures: they can be

defined as algebras in the monoidal ∞-category of ∞-categories. In this situation,

one speaks of an algebra as a microcosm and the ambient monoidal ∞-category

as the macrocosm. Thus, by applying this heuristic to higher topos theory, the

base ∞-topos B can be viewed as a macrocosm and a B-topos as a microcosm.

The microcosm principle in higher topos theory goes beyond its analogue

in higher algebra, in that it furthermore comes with an intrinsic identification
between microcosm and macrocosm: the theory of B-topoi can be regarded as

a reflection of the theory of ∞-topoi over B inside the latter: when viewing a

B-topos X as a sheaf of ∞-categories, we may take its underlying ∞-category of

global sections (by evaluating the sheaf at the final object 1 ∈ B), which turns
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out to be an ∞-topos. Moreover, the universal property of Grpd
B

implies that

this is the final B-topos, so that there is a canonical geometric morphism of B-

topoi ΓX ∶ X → Grpd
B
. Thus, by passing to global sections, one sees that the

underlying ∞-topos of X comes equipped with a geometric morphism into B. In

other words, we can associate to everyB-topos a geometric morphism of∞-topoi

with codomain B. One of the main results in this thesis is that these two notions

are entirely equivalent:

Theorem 6.2.5.1. Passing from a B-topos X to the associated geometric morphism
of ∞-topoi 𝑓∗ ∶ X → B constitutes an equivalence of ∞-categories

TopR(B) ≃ (TopR∞)/B,

where TopR(B) is the ∞-category of B-topoi and geometric morphisms and TopR∞
is the ∞-category of ∞-topoi and geometric morphisms.

The 1-toposic version of this theorem has been known for a long time; it

was shown by Moens in his PhD thesis [60]. The version for higher topoi now

allows us to directly relate properties and constructions on the level of geometric

morphisms of ∞-topoi with properties and constructions of B-topoi. As the

theory of B-topoi is built completely parallel to that of ∞-topoi, this result

therefore allows us to reduce every relative notion in higher topos theory (i.e.

one concerning maps of ∞-topoi) to an absolute one (i.e. one about individual

∞-topoi). In view of our interpretation of geometric morphisms 𝑓∗ ∶ X → B as∞-

topoi parametrised by B, this result thus constitutes the promised mechanism for

reducing parametrised problems in higher topos theory to their unparametrised

analogues.

It is beyond the scope of this thesis to analyse the full potential of this mecha-

nism. Instead, we will provide a few selected examples to showcase how it can

be utilised in practice.

Pullbacks of ∞-topoi The correspondence between geometric morphisms

into B and B-topoi can be used to derive a formula for general pullbacks of
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∞-topoi. In fact, since a pullback diagram

W X

Z B

of ∞-topoi is the same datum as a binary product in the slice ∞-category of

∞-topoi over B, such a pullback can be computed as the binary product of B-

topoi. As it is the case in the theory of ∞-topoi, such a binary product admits

an explicit formula by means of the tensor product of the underlying presentable

B-categories, so that we are able to show:

Corollary 6.2.7.3. Let 𝑓∗ ∶ X → B and 𝑔∗ ∶ Z → B be geometric morphisms of
∞-topoi, and let X and Z be the associatedB-topoi. Then the fibre product Z×BX of
∞-topoi can be computed as the ∞-topos that is obtained by taking global sections
of the B-category X ⊗ Z, where − ⊗ − denotes the tensor product of presentable
B-categories. Explicitly, the fibre product can be identified with the ∞-category of
global sections of the B-category Funcont

B
(Xop,Z) of continuous functors from Xop

to Z.

Smooth and proper geometric morphisms of ∞-topoi Recall that one may

regard the theory of ∞-topoi as an enhancement of topology, so that ∞-topoi can

be interpreted as generalised spaces and geometric morphisms as continuous

maps. But before one can do actual geometry with ∞-topoi, one first needs to es-

tablish ∞-toposic analogues of topological properties and constructions. Among

the most fundamental of them is the notion of compactness. One promising candi-

date for an ∞-toposic definition of compactness is the property of an ∞-topos X

that its global sections functor ΓX ∶ X → Ani preserves filtered colimits. In fact,

this condition naturally arises from the observation that a topological space 𝑋 is

compact if and only if the (geometric) morphism of locales Open(𝑋) → Open(∗)
from the locales of open subsets in 𝑋 to the locale of open subsets of the singleton

space ∗ preserves filtered colimits. This notion of compactness makes perfect

sense for B-topoi as well: as we already have a B-categorical version of filtered-

ness at our disposal, the very same definition can be parsed in B-topos theory.
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Concretely, a B-topos X is defined to be compact if the global sections functor

X → Grpd
B

preserves (internally) filtered colimits.

In view of the correspondence between B-topoi and geometric morphisms

into B, the notion of compactness for B-topoi gives rise to a relative version of

∞-toposic compactness. However, an a priori very different candidate for such

a relative compactness condition in higher topos theory has been suggested by

Lurie [49, § 7.3]: that of a proper geometric morphism. Properness of a geometric

morphism 𝑝∗ ∶ X → B is defined as the property that in every commutative

diagram

Y′ Y X

A′ A B

𝑔∗

𝑝∗𝑞∗

𝑓 ′
∗

𝑞′∗

𝑔′
∗

𝑓∗

of ∞-topoi in which both squares are pullbacks, the left square is horizontally

left adjointable, in the sense that the mate transformation (𝑓 ′)∗𝑞∗ → 𝑞′∗(𝑔′)∗ is

an equivalence. Even in the degenerate case where 𝑝∗ is simply given by the

global sections functor ΓX ∶ X → Ani, it is not clear at all whether X being a

compact ∞-topos is equivalent to ΓX being proper. Using the theory of B-topoi,

we will show that this is in fact the case, and that more generally properness

of geometric morphisms is equivalent to compactness of the associated internal

higher topoi:

Theorem 7.2.5.1. Let 𝑓∗ ∶ X → B be a geometric morphism, and let X be the
associated B-topos. Then 𝑓∗ is proper if and only if X is a compact B-topos.

The 1-toposic analogue of this theorem was shown by Moerdijk-Vermeulen

in [61]. Its ∞-categorical version can be used to extend the class of examples of

proper maps of∞-topoi. In fact, it is generally much simpler to show compactness

of a certain B-topos than to show properness of a geometric morphism. We will

make advantage of this when we show:

Theorem 7.3.2.1. Let 𝑝∶ 𝑌 → 𝑋 be a proper and separated map of topological
spaces. Then the induced geometric morphism 𝑝∗ ∶ Sh(𝑌 ) → Sh(𝑋) is proper.

A version of this result has already been shown by Lurie in the special case

where the space 𝑌 is completely regular, i.e. a subspace of a compact Hausdorff
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space [49, Theorem 7.3.1.16]. Thus, our result constitutes a generalisation of

Lurie’s theorem to non-Hausdorff examples, and it furthermore provides a very

different proof strategy that circumvents the need for K-sheaves.

The notion of a proper geometric morphism can be formally dualised to that

of a smooth geometric morphism of ∞-topoi: here smoothness of a geometric

morphism 𝑝∗ ∶ X → B is defined as the property that in every commutative

diagram

Y′ Y X

A′ A B

𝑔∗

𝑝∗𝑞∗

𝑓 ′
∗

𝑞′∗

𝑔′
∗

𝑓∗

of ∞-topoi in which both squares are pullbacks, the left square is vertically left

adjointable, in the sense that the mate transformation 𝑞∗𝑓 ′
∗ → 𝑔′

∗(𝑞′)∗ is an

equivalence. Again, the natural question arises which property of the B-topos

associated with 𝑝∗ this notion corresponds to. In 1-topos theory, this is well-

known [39, Corollary C.3.3.16]: a geometric morphism is smooth precisely if the

associated internal topos is locally connected. We show the ∞-toposic analogue

of this result. To that end, note that if X is a B-topos, then the unique geometric

morphism ΓX ∶ X → Grpd
B

always admits a left adjoint constX ∶ Grpd
B

→ X.

We say that X is locally contractible if constX in turn admits a further left adjoint

𝜋X. We then prove:

Theorem 7.1.3.1. Let X be a B-topos and let 𝑓∗ ∶ X → B be the associated
geometric morphism. Then X is locally contractible if and only if 𝑓∗ is smooth.

As before, we can utilise this result to extend the class of examples of smooth

geometric morphisms. In fact, in combination with work of Volpe [82], it imme-

diately yields:

Theorem 7.3.1.5. If 𝑓∶ 𝑌 → 𝑋 is a topological submersion, then the geometric
morphism 𝑓∗ ∶ Sh(𝑌 ) → Sh(𝑋) is smooth.

Linear overview

This thesis is organised into seven chapters. We begin in Chapter 1 by setting up

the basic language of internal higher category theory. Chapter 2 is dedicated to
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the study of internal presheaves, containing a treatment of internal left fibrations

and their straightening equivalence as well as our proof of Yoneda’s lemma for

internal higher categories. In Chapter 3 we study internal limits and colimits

and internal cocompletions. Here we establish the universal property of internal

presheaf categories. In Chapter 4 we develop the theory of internal (co)cartesian

fibrations and establish their straightening equivalence. In Chapter 5, we develop

the theory of internal accessibility and internal presentability, which we use

in Chapter 6 to set up the theory of internal higher topoi. In particular, the

latter chapter contains our correspondence between internal higher topoi and

geometric morphisms of ∞-topoi. Lastly, we apply this framework in Chapter 7

to characterise smooth and proper morphisms of ∞-topoi.

Related work

The idea of developing category theory internal to a topos is not new; as early

as 1963, Lawvere formulated axioms for a theory of categories [47], and in

subsequent years Bénabou established the theory of internal categories in a

presheaf topos through the notion of fibred categories (see [79]). Internal category

theory remained an active research area for several years. Further development

was mainly driven by Lawvere and Tierney [48], Giraud [27], Johnstone [38],

Diaconescu [20], Moens [60] and Pitts [65]. The interested reader is referred

to [39] for an excellent exposition of this theory. More recently, Caramello

and Zanfa started developing internal 1-topos theory based on the theory of

stacks [16].

In higher higher category theory, Riehl and Shulman [72] proposed a synthetic

approach to the theory of ∞-categories based on homotopy type theory, which

was further studied by Buchholtz-Weinberger [15] and Weinberger [84, 85, 86, 87,

88]. As every ∞-topos gives a model for homotopy type theory [78], the theory

of ∞-categories internal to an ∞-topos as developed in this thesis can be viewed

as a model of simplicial homotopy type theory.

On the analytic side of the story, Rasekh previously worked out some aspects

of the theory of internal higher categories in [69]. Furthermore, Nardin and

Shah [77, 76, 63, 64] developed a theory of ∞-categories that are parametrised

by a base ∞-category C. Further aspects of this theory were contributed by
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Hilman [35]. In our language, their framework precisely corresponds to internal

∞-category theory in the presheaf ∞-topos PSh(C) and can thus be regarded

as a special case of internal higher category theory. However, the scope of the

two projects is very different: while our focus lies on developing higher topos

theory internal to an ∞-topos, the main goal for the development of parametrised

higher category theory was the study of parametrised phenomena in equivariant

homotopy theory. As a result, while the foundational parts of both theories are

very similar, they diverge at a certain point.

Lastly, since the development of internal higher category theory proceeds

along similar lines as the theory of∞-categories, our work has been very strongly

influenced by the writings of Joyal [41, 43, 42], Lurie [49, 50] and Cisinski [18].

Declaration of originality

The content of this thesis has previously appeared in a paper series on the

subject [54, 55, 59, 56, 57, 58]. Four of these papers are based on joint work with

Sebastian Wolf. The parts of this thesis that are based on material from this

collaboration are Chapter 3, Chapter 5, Chapter 6 and Chapter 7.

xxviii



1. The language ofB-categories

This chapter is intended to introduce the basic language and some core concepts

of of internal higher category theory that we will be working with throughout

this thesis. The central object of interest will be that of a B-category, where B is

an arbitrary ∞-topos. After recalling some conventions and basic constructions

in higher category theory in Section 1.1, we will focus most of Section 1.2 on

studying various approaches to think of these objects, each coming with its own

specific use cases. We furthermore explain how these objects can be regarded

as a certain flavour of categories by making sense of the notion of objects and

morphisms in a B-category. This will lead us to the notion of a context, the
presence of which being the main feature that distinguishes B-category theory

from ∞-categories.

In Section 1.3, we enter more deeply into the world ofB-categories by studying

certain classes of functors between them that will be of importance throughout

this thesis. Finally, we introduce our first (and most important) examples of

B-categories in Section 1.4: the universe for B-groupoids and the B-category of
B-categories.

1.1. Preliminaries on higher category theory

The theory of ∞-categories is omnipresent throughout this thesis. The goal of

this section is to explain how we intend to use this theory, and to recall some key

constructions that will become relevant later on. In Section 1.1.1 and Section 1.1.2,

we begin by establishing the basic terminology and the set-theoretic foundations

that we will adhere to. In Section 1.1.3 and Section 1.1.4, we recall some basic

facts from the theory of ∞-topoi. Lastly, we review the theory of factorisation
systems in an ∞-category in Section 1.1.5 as these will form the basis for many of

1



1. The language of B-categories

our arguments.

1.1.1. General conventions and notation

Throughout this thesis we freely make use of the language of higher category

theory. We will generally follow a model-independent approach to higher cate-

gories. This means that as a general rule, all statements and constructions that are

considered herein will be invariant under equivalences in the ambient∞-category,

and we will always be working within such an ambient ∞-category. For example,

this means that all constructions involving ∞-categories and functors between

∞-categories will be assumed to take place in the ∞-category of ∞-categories. In

the same vein, a set will be a discrete ∞-groupoid, and a 1-category will be an

∞-category all of whose mapping∞-groupoids are discrete. These conventions in

particular imply that we will understand the adjective unique in the homotopical

sense, i.e. as the condition that there is a contractible ∞-groupoid of choices.

We denote by Δ the simplex category, i.e. the category of non-empty totally

ordered finite sets with order-preserving maps. Every natural number 𝑛 ∈ ℕ
can be considered as an object in Δ by identifying 𝑛 with the totally ordered set

⟨𝑛⟩ = {0, … 𝑛}. For 𝑖 = 0, … , 𝑛 we denote by 𝛿 𝑖 ∶ ⟨𝑛 − 1⟩ → ⟨𝑛⟩ the unique injective

map in Δ whose image does not contain 𝑖. Dually, for 𝑖 = 0, … 𝑛 we denote by

𝜎 𝑖 ∶ ⟨𝑛 + 1⟩ → ⟨𝑛⟩ the unique surjective map in Δ such that the preimage of

𝑖 contains two elements. Furthermore, if 𝑆 ⊂ 𝑛 is an arbitrary subset of 𝑘 + 1
elements, we denote by 𝛿𝑆 ∶ ⟨𝑘⟩ → ⟨𝑛⟩ the unique injective map in Δwhose image

is precisely 𝑆. In the case that 𝑆 is an interval, we will denote by 𝜎𝑆 ∶ ⟨𝑛⟩ → ⟨𝑛−𝑘⟩
the unique surjective map that sends 𝑆 to a single object. If C is an ∞-category,

we refer to a functor 𝐶• ∶ Δop → C as a simplicial object in C. We write 𝐶𝑛 for

the image of 𝑛 ∈ Δ under this functor, and we write 𝑑𝑖, 𝑠𝑖, 𝑑𝑆 and 𝑠𝑆 for the image

of the maps 𝛿 𝑖, 𝜎 𝑖, 𝛿𝑆 and 𝜎𝑆 under this functor. Dually, a functor 𝐶• ∶ Δ → C is

referred to as a cosimplicial object in C. In this case we denote the image of 𝛿 𝑖,
𝜎 𝑖, 𝛿𝑆 and 𝜎𝑆 by 𝑑 𝑖, 𝑠𝑖, 𝑑𝑆 and 𝜎𝑆.

The 1-category Δ embeds fully faithfully into the ∞-category of ∞-categories

by means of identifying posets with 0-categories and order-preserving maps

between posets with functors between such 0-categories. We denote by Δ𝑛 the

image of 𝑛 ∈ Δ under this embedding.

2



1.1. Preliminaries on higher category theory

1.1.2. Set theoretical foundations

Once and for all we will fix three Grothendieck universesU ∈ V ∈ W that contain

the first infinite ordinal 𝜔. A set is small if it is contained in U, large if it is

contained in V and very large if it is contained in W. An analogous naming

convention will be adopted for ∞-categories and ∞-groupoids. The ∞-categories

of small, large and very large ∞-groupoids (or anima) are denoted by AniU, AniV

and AniW, respectively. Similarly, we denote the ∞-categories of small, large and

very large ∞-categories by CatU∞, CatV∞ and CatW∞ , respectively.

As especially the first two layers will appear very often in this thesis, we will

use the simplified notation Ani = AniU and Âni = AniV as well as Cat∞ = CatU∞
and Ĉat∞ = CatV∞.

1.1.3. On ∞-topoi

A large ∞-category B is said to be an ∞-topos if there exists a small ∞-category

C such that B arises as a left exact and accessible localisation of the presheaf ∞-

category PShAni(C) = Fun(Cop,Ani), see [49, § 6] for alternative characterisations
and the basic theory. An algebraic morphism between two ∞-topoi A and B is a

functor 𝑓 ∗ ∶ A → B that commutes with small colimits and finite limits. Dually,

a geometric morphism between∞-topoi is a functor 𝑓∗ ∶ B → A that admits a left

adjoint 𝑓 ∗ which defines an algebraic morphism (i.e. which commutes with finite

limits). We let TopR∞ be the subcategory of Ĉat∞ that is spanned by the ∞-topoi

and geometric morphisms, and we denote by TopL∞ the subcategory of Ĉat∞ that

is spanned by the ∞-topoi and algebraic morphisms. There is an equivalence

(TopR∞)op ≃ TopL∞ that sends an ∞-topos to itself and a geometric morphism

to its left adjoint. The ∞-category Ani of small ∞-groupoids is a final object

in TopR∞; for any ∞-topos B we denote by Γ∶ B → Ani the unique geometric

morphism and refer to this functor as the global sections functor. Explicitly, this
functor is given by map

B
(1, −) where 1 ∈ B denotes a final object. Dually, we

denote the unique algebraic morphism from Ani to B by const∶ Ani → B and

refer to this map as the constant sheaf functor.

3



1. The language of B-categories

1.1.4. Universe enlargement

For any two large ∞-categories C and A, an A-valued presheaf on C is a functor

Cop → A, and an A-valued sheaf an A-valued presheaf that preserves small

limits (whenever they exist). We denote the ∞-categories ofA-valued presheaves

and sheaves on C by PShA(C) and ShA(C), respectively.
For any ∞-topos B, we define its universe enlargement BV relative to V as the

very large ∞-category of Âni-valued sheaves onB, i.e. asBV = ShÂni(B). Again,

we will use the simplified notation B̂ = BV. By [49, Remark 6.3.5.17] this is an

∞-topos relative to V. Moreover, one can turn the assignment B ↦ B̂ into a

functor as follows:

Consider the functor PShÂni(−)∶ TopR∞ → CatW∞ that acts by sending a map

𝑓∗ ∶ B → A in TopR∞ to the map (−) ∘ 𝑓 ∗ ∶ PShÂni(B) → PShÂni(A). Since 𝑓 ∗

commutes with small colimits, the functor (−) ∘ 𝑓 ∗ restricts to a functor B̂ → Â

that we will denote by 𝑓∗ as well. As a consequence, if ∫ PShÂni(−) → TopR∞ is

the cocartesian fibration that is classified by the functor PShÂni(−), then the full

subcategory of ∫ PShÂni(−) that is spanned by pairs (B, 𝐴) with B ∈ TopR∞ and

𝐴 ∈ B̂ ⊂ PShÂni(B) is stable under cocartesian arrows and therefore defines a

cocartesian subfibration of ∫ PShÂni(−) over Top
R
∞. Moreover, by making use the

adjunction 𝑓 ∗ ⊣ 𝑓∗, one obtains a commutative diagram

B A

B̂ Â,

𝑓∗

̂𝑓∗

hence the same argumentation implies that the full subcategory of ∫ PShÂni(−)
spanned by pairs (B, 𝐴) with B ∈ TopR∞ and 𝐴 ∈ B defines a cocartesian subfi-

bration of ∫ PShÂni(−) over Top
R
∞ too. Consequently, one obtains a functor

TopR∞ → CatW∞ , B ↦ B̂

together with a natural transformation

TopR∞ CatW∞

B↦B

B↦B̂

4



1.1. Preliminaries on higher category theory

that is given by the inclusion B ↪→ B̂.

By [49, Remark 6.4.6.18] the functor 𝑓∗ ∶ B̂ → Â defines a geometric morphism

between ∞-topoi relative to the universe V, and the associated left adjoint 𝑓 ∗

is obtained as the restriction of (𝑓 ∗)! ∶ PShÂni(A) → PShÂni(B) (the functor of

left Kan extension along 𝑓 ∗) to Â. Since the functor B ↦ B̂ above therefore

takes values in the ∞-category of ∞-topoi relative to the universe V, passing to

opposite ∞-categories therefore results in a functor

TopL∞ → CatW∞ , B ↦ B̂

that sends the geometric morphism 𝑓 ∗ ∶ A → B to 𝑓 ∗ ∶ Â → B̂. By construction,

one furthermore obtains a commutative square

B A

B̂ Â,

𝑓 ∗

𝑓 ∗

hence an analogous argument as above shows that the inclusion B ↪→ B̂ defines

a natural transformation

TopL∞ CatW∞ .

B↦B

B↦B̂

Note that if 𝑓 ∗ admits a further left adjoint 𝑓!, then the map 𝑓 ∗ ∶ Â → B̂ is given

by precomposition with 𝑓!.

Remark 1.1.4.1. If B is an ∞-topos, there are a priori two ways to define the

universe enlargement BW relative to the universe W: either by applying the

above construction to the pair U ∈ W, i.e. by defining BW = ShAniW(B), or by
applying this construction first to the pair U ∈ V and then to the pair V ∈ W,

i.e. by setting BW = ShAniW(B̂), where the right-hand side now denotes the

∞-categories of functors B̂op → AniW that commute with V-small limits. It

turns out that either approach results in the same object: in fact, upon identifying

Uwith a regular cardinal in V, we may identify B̂with the∞-category IndU
Âni

(B),

5



1. The language of B-categories

i.e. the free cocompletion of B by V-small U-filtered colimits. Consequently, [49,

Proposition 5.3.5.10] implies that the inclusion B ↪→ B̂ induces an equivalence

FunFiltU-cc(B̂, (AniW)op) ≃ Fun(B, (AniW)op)

in which the left-hand side denotes the full subcategory of Fun(B̂, (AniW)op)
that is spanned by those functors that preserve U-filtered colimits. Now [49,

Proposition 5.5.1.9] implies that the above equivalence restricts to an equivalence

ShAniW(B̂) ≃ ShAniW(B), noting that its proof does not require (AniW)op to be

presentable (relative to the universe V) but merely to admit V-small colimits.

Recall that the assignment 𝐴 ↦ B/𝐴 (which is defined as the straightening

of the cartesian fibration 𝑑0 ∶ Fun(Δ1,B) → B) defines a fully faithful functor

B ↪→ (TopR∞)/B. By [25, Corollary 9.9] there is a functorial equivalence

PShÂni(B/−) ≃ PShÂni(B)/−

of functors Bop → CatW∞ that is given on each object 𝐴 ∈ B by the left Kan

extension of the functor B/𝐴 → PShÂni(B)/𝐴 that is induced by the Yoneda

embedding B ↪→ PShÂni(B) along the Yoneda embedding B/𝐴 ↪→ PShÂni(B/𝐴).

Lemma 1.1.4.2. For every 𝐴 ∈ B, the equivalence PShÂni(B/𝐴) ≃ PShÂni(B)/𝐴
restricts to an equivalence

B̂/𝐴 ≃ B̂/𝐴.

Proof. In the commutative diagram

B̂/𝐴 PShÂni(B/𝐴)

B/𝐴 B̂/𝐴 PShÂni(B)/𝐴

𝜙 ≃

the task is to find the dashed arrow 𝜙 that completes the diagram and to show

that this functor is an equivalence of ∞-categories. To that end, note that one has

B̂/𝐴 ≃ IndU
Âni

(B/𝐴), which by [49, Proposition 5.3.5.10] implies that composition

with the Yoneda embedding gives rise to an equivalence

FunFiltU-cc(B̂/𝐴,D) ≃ Fun(B/𝐴,D)

6



1.1. Preliminaries on higher category theory

for any ∞-category D which admits U-small filtered colimits. This result implies

that the functor 𝜙 in the diagram above is well-defined and makes the diagram

indeed commute. By construction, 𝜙 must be fully faithful. On the other hand,

combining the equivalence of ∞-categories B̂ ≃ IndU
Âni

(B) with the fact that

the projection B̂/𝐴 → B̂ creates colimits shows that every object in B̂/𝐴 is

obtained as the colimit of a functor J → B/𝐴 → B̂/𝐴 where J is a U-filtered

∞-category. Since 𝜙 commutes with U-filtered colimits, this shows that this

functor is essentially surjective.

Proposition 1.1.4.3. There is a canonical equivalence

B̂/− ≃ B̂/−

of functors Bop → CatW∞ .

Proof. By Lemma 1.1.4.2, the functorial equivalence

PShÂni(B/−) ≃ PShÂni(B)/−

restricts object-wise to an equivalence on the level of sheaves, hence the result

follows.

We finish this section by discussing the preservation of structure under universe

enlargement:

Proposition 1.1.4.4. For any ∞-topos B the inclusion B ↪→ B̂ commutes with
small limits and colimits and with the internal hom.

Proof. Since the Yoneda embedding ℎ∶ B ↪→ PShÂni(B) commutes with small

limits and since B̂ is a Bousfield localisation of PShÂni(B), the embeddingB ↪→ B̂

preserves small limits. The case of small colimits is proved in [49, Remark 6.3.5.17].

Lastly, since the product bifunctor on B̂ restricts to the product bifunctor on

B, it suffices to show that for 𝐴, 𝐵 ∈ B ↪→ B̂ their internal hom Hom
B̂
(𝐴, 𝐵) is

contained in B. Now B̂ is a left exact localisation of PShÂni(B) and therefore an

exponential ideal in PShÂni(B), hence it suffices to show that the internal hom

7



1. The language of B-categories

HomPShÂni(B)(ℎ(𝐴), ℎ(𝐵)) in PShÂni(B) is representable. This follows from the

computation

HomPShÂni(B)(ℎ(𝐴), ℎ(𝐵)) ≃ mapPShÂni(B)(ℎ(−) × ℎ(𝐴), ℎ(𝐵))

≃ map
B
(− × 𝐴, 𝐵)

≃ map
B
(−,Hom

B
(𝐴, 𝐵))

in which we make repeated use of Yoneda’s lemma.

1.1.5. Factorisation systems

Let C be an ∞-category. Given two maps 𝑓∶ 𝑎 → 𝑏 and 𝑔∶ 𝑐 → 𝑑 in C, we say

that 𝑓 and 𝑔 are orthogonal if the commutative square

map
C
(𝑏, 𝑐) map

C
(𝑏, 𝑑)

map
C
(𝑎, 𝑐) map

C
(𝑎, 𝑑)

𝑔∗

𝑓 ∗ 𝑓 ∗

𝑔∗

is cartesian. We denote the orthogonality relation between 𝑓 and 𝑔 by 𝑓 ⊥𝑔, and
we will say that 𝑓 is left orthogonal to 𝑔 and 𝑔 is right orthogonal to 𝑓. In particular,

𝑓 and 𝑔 being orthogonal implies that any lifting square

𝑎 𝑐

𝑏 𝑑

𝑓 𝑔

has a unique solution. If C is cartesian closed, we furthermore say that 𝑓 and 𝑔
are internally orthogonal if the square

Hom
C
(𝑏, 𝑐) Hom

C
(𝑏, 𝑑)

Hom
C
(𝑎, 𝑐) Hom

C
(𝑎, 𝑑)

𝑔∗

𝑓 ∗ 𝑓 ∗

𝑔∗

is cartesian. By definition, this is equivalent to 𝑐 × 𝑓 ⊥𝑔 for every 𝑐 ∈ C. We will

denote the internal orthogonality relation between 𝑓 and 𝑔 by 𝑓 ⊩𝑔.
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1.1. Preliminaries on higher category theory

If C has a terminal object 1 ∈ C, then an object 𝑐 ∈ C is said to be local
with respect to the map 𝑓∶ 𝑎 → 𝑏 in C if the terminal map 𝜋𝑐 ∶ 𝑐 → 1 is right

orthogonal to 𝑓, i.e. if 𝑓 ⊥𝜋𝑐 holds. Similarly, 𝑐 is internally local with respect to 𝑓
if 𝑓 ⊩𝜋𝑐 holds.

If 𝑆 is an arbitrary family of maps in C, we will denote by 𝑆⊥ the collection of

maps that are right orthogonal to any map in 𝑆, and by ⊥𝑆 the collection of maps

that are left orthogonal to any map in 𝑆.

Definition 1.1.5.1. Let C be an∞-category. A factorisation system is a pair (L,R)
of families of maps in C such that

1. Any map 𝑓 in C admits a factorisation 𝑓 ≃ 𝑟 𝑙 with 𝑟 ∈ R and 𝑙 ∈ L.

2. L⊥ = R as well as ⊥R = L.

The following proposition summarises some properties of factorisation systems

whose proof is a straightforward consequence of the definition:

Proposition 1.1.5.2. Let C be an ∞-category and let (L,R) be a factorisation
system in C. Then

1. The intersection L ∩ R is precisely the collection of equivalences in C;

2. if 𝑔 ∈ L, then 𝑓 𝑔 ∈ L if and only 𝑓 ∈ L; dually, if 𝑓 ∈ R then 𝑓 𝑔 ∈ R if and
only if 𝑔 ∈ R;

3. R is stable under pullbacks and L is stable under pushouts;

4. both R and L are stable under taking retracts.

5. R is stable under all limits that exist in Fun(Δ1,C), and dually L is stable
under all colimits that exist in Fun(Δ1,C).

If (L,R) is a factorisation system in an ∞-category C, then R defines a full

subcategory of the arrow ∞-category Fun(Δ1,C). The factorisation of maps in C

then defines a left adjoint to this inclusion [49, Lemma 5.2.8.19]. More precisely,

if 𝑓∶ 𝑑 → 𝑐 is a map in C and if 𝑟 𝑙∶ 𝑑 → 𝑒 → 𝑐 is the factorisation of 𝑓 into maps

𝑙 ∈ L and 𝑟 ∈ R, then the assignment 𝑓 ↦ 𝑟 extends to a functor Fun(Δ1,C) → R

9



1. The language of B-categories

that is left adjoint to the inclusion. The unit of this adjunction is then given by

the square

𝑑 𝑒

𝑐 𝑐.

𝑙

𝑓 𝑟
id

By dualisation, this also shows that the inclusion L ↪→ Fun(Δ1,C) admits a right

adjoint.

Note that the fact that the inclusion R ↪→ Fun(Δ1,C) admits a left adjoint

moreover proves that for any 𝑐 ∈ C the induced inclusion R/𝑐 ↪→ C/𝑐 is reflective.

If 𝑓∶ 𝑑 → 𝑐 is an object in C/𝑐 and if 𝑓 ≃ 𝑟 𝑙 is its factorisation, then the map 𝑟 is
the image of 𝑓 under the localisation functor and the map 𝑙 is the component of

the counit of the adjunction at 𝑓. In particular, this shows that the map 𝑓∶ 𝑑 → 𝑐
is contained in L if and only if it is sent to the terminal object by the localisation

functor C/𝑐 → R/𝑐, and the essential image of the inclusionR/𝑐 ↪→ C/𝑐 is spanned

by those objects in C/𝑐 that are local with respect to the class of maps in C/𝑐 that

are sent to L via the projection functor (𝜋𝑐)! ∶ C/𝑐 → C.

Remark 1.1.5.3. Suppose that (L,R) is a factorisation system in an ∞-category

C that has a final object 1 ∈ C, and let 𝑓∶ 𝑐 → 𝑑 be a map in C. Let 𝐿∶ C → R/1
be a left adjoint to the inclusion, and consider the commutative diagram

𝑐 𝑑

𝐿(𝑐) 𝐿(𝑑)

1 1

𝑓

𝐿(𝑓 )

id

in which the two vertical compositions are determined by the factorisation of

the two terminal maps 𝜋𝑐 ∶ 𝑐 → 1 and 𝜋𝑑 ∶ 𝑑 → 1 into maps in L and R. If 𝑓 is

contained in L, then item (2) of Proposition 1.1.5.2 implies that 𝐿(𝑓 ) must be

contained in L as well. On the other hand, item (2) of Proposition 1.1.5.2 also

implies that 𝐿(𝑓 ) is contained in R. Hence 𝐿(𝑓 ) must be an equivalence. In other

words, the functor 𝐿 sends maps in L to equivalences in R/1. The converse is

however not true in general, i.e. not every map that is sent to an equivalence

10



1.1. Preliminaries on higher category theory

by 𝐿 must necessarily be contained in L. A notable exception is the case where

𝜋𝑑 ∶ 𝑑 → 1 is already contained in L. In this case, the map 𝑑 → 𝐿(𝑑) is an

equivalence, hence 𝐿(𝑓 ) being an equivalence does imply that 𝑓 is contained in

L.

Lastly, let us discuss how a factorisation system can be generated by a set of

maps:

Proposition 1.1.5.4 ([49, Proposition 5.5.5.7]). Let C be a presentable ∞-category
and let 𝑆 be a small set of maps in C. Then there is a factorisation system (L,R) in
C with R = 𝑆⊥ and L = ⊥R.

In the situation of Proposition 1.1.5.4, the assignment 𝑆 ↦ L can be viewed as

a certain closure operation that is referred to as saturation. Recall the definition

of a saturated class:

Definition 1.1.5.5. Let C be a presentable ∞-category and let 𝑆 be a class of

maps in C. Then 𝑆 is saturated if

1. 𝑆 contains all equivalences in C and is closed under composition;

2. 𝑆 is closed under small colimits in Fun(Δ1,C);

3. 𝑆 is closed under pushouts.

By Proposition 1.1.5.2, the left class in any factorisation system is saturated.

Now if 𝑆 is a small set of maps and if (L,R) is the induced factorisation system

in C as provided by Proposition 1.1.5.4, then L is the universal saturated class

that contains 𝑆, in the following sense:

Proposition 1.1.5.6. Let C be a presentable ∞-category and let 𝑆 be a small set of
maps in C. Let (L,R) be the associated factorisation system. Then L is the smallest
saturated class of maps that contains 𝑆.

Proof. To begin with, note that the property of a class being saturated is preserved

under taking arbitrary intersections, hence the smallest saturated class containing

𝑆 is well-defined and is explicitly given by the intersection

𝑆 = ⋂
𝑆⊂𝑇

𝑇

11



1. The language of B-categories

over all saturated classes of maps that contain 𝑆. We need to show that any satu-

rated 𝑇 ⊃ 𝑆 contains L as well. But since L = ⊥R and as (L,R) is a factorisation

system, this is equivalent to 𝑇⊥ ⊂ R, which in turn follows immediately from

𝑆 ⊂ 𝑇 and 𝑆⊥ = R.

An analogous construction can be carried out when replacing orthogonality

by internal orthogonality in the case where C is cartesian closed:

Proposition 1.1.5.7 ([2, Proposition 3.2.9]). Let C be a presentable and cartesian
closed ∞-category and let 𝑆 be a small set of maps in C. Then there is a factorisation
system (L,R) in C such that R = 𝑆 ⊩ and L = ⊩R = ⊥R.

Since a map 𝑟 in a cartesian closed ∞-category C is internally right orthogonal

to a map 𝑙 if and only if 𝑟 is right orthogonal to 𝑐×𝑙 for any 𝑐 ∈ C, Proposition 1.1.5.4

implies:

Proposition 1.1.5.8. Let C be a presentable and cartesian closed ∞-category and
let 𝑆 be a small set of maps in C. Let (L,R) be the factorisation system provided by
Proposition 1.1.5.7. Then L is the smallest saturated class of maps that contains the
set {𝑐 × 𝑓 | 𝑐 ∈ C, 𝑓 ∈ 𝑆}.

Remark 1.1.5.9. If (L,R) is an internal factorisation system (i.e. if we have

R = L ⊩), the class L is preserved by − × 𝑐 for every 𝑐 ∈ C. Consequently, this

implies that R is closed under exponentiation, i.e. preserved by Hom
C
(𝑐, −) for

every 𝑐 ∈ C.

Example 1.1.5.10. Let C be a presentable and cartesian closed ∞-category. We

say that a map 𝑓∶ 𝑐 → 𝑑 is a monomorphism if it is internally right orthogonal

to the codiagonal 1 ⊔ 1 → 1, where 1 is the final object in C. By construction,

a map in C is a monomorphism if and only if its diagonal is an equivalence.

Dually, we say that a map is a strong epimorphism if it is internally left orthogonal

to every monomorphism. By Proposition 1.1.5.7, one obtains a factorisation

system in which the left class are strong epimorphisms and the right class are

monomorphisms. If C is an ∞-topos, then strong epimorphisms are precisely

covers, i.e. effective epimorphisms in the terminology of [49]. This follows from

the fact that covers and monomorphisms form a factorisation system in any

12



1.2. B-categories

∞-topos [49, Example 5.2.8.16], combined with the fact that the left class of a

factorisation system is uniquely determined by the right class.

1.2. B-categories

In this section, we introduce the basic framework of the theory of higher cate-

gories internal to an ∞-topos B, hereafter referred to as B-categories. We will

define these objects by mimicking the model for ∞-categories provided by com-
plete Segal spaces. Thus, a B-category will be defined as a simplicial object in

B satisfying two conditions: the Segal conditions and univalence. We begin in

Section 1.2.1 by establishing some basic facts about general simplicial objects

in an ∞-topos, before we define B-groupoids in Section 1.2.2 and B-categories

in Section 1.2.3. In Section 1.2.4, we discuss in what way our definitions are

functorial in the base ∞-topos B, and in Section 1.2.5, we shed light on certain

(∞, 2)-categorical aspects of the theory of B-categories.

In Section 1.2.6, we explain an alternative approach to B-categories: that

of sheaves of ∞-categories on B. Conceptually, this approach is quite different,

focussing more on the parametrised point of view rather than the internal one.
Nonetheless, the two perspectives are entirely equivalent to one another, which

is a key insight that allows us to reap the benefits of both worlds. In fact, virtually

every concrete example of a B-category will come in the form of a sheaf of

∞-categories onB, whereas the development of the theory will mostly take place

within the complete Segal model of B-categories.

Lastly, we explain in Section 1.2.7 how B-categories can be thought of as a

certain flavour of categories by defining objects and morphisms in a B-category.

The key difference from ∞-categories will be that every object or morphism in

a B-category will be defined within a context, an object in the base ∞-topos B.

The presence of contexts is a consequence of the spatial nature of ∞-topoi, which

enable us to make definitions and perform constructions locally.

1.2.1. Simplicial objects in an ∞-topos

Let B be an arbitrary ∞-topos and let BΔ denote the ∞-topos of simplicial

objects in B. By postcomposition with the adjunction (const ⊣ Γ)∶ Ani ⇆ B

13



1. The language of B-categories

one obtains an induced adjunction (const ⊣ Γ)∶ AniΔ ⇆ BΔ on the level of

simplicial objects. This defines a functor

(−)Δ ∶ TopR∞ → (TopR∞)/AniΔ

from the ∞-category of ∞-topoi with geometric morphisms as maps to the slice

∞-category of ∞-topoi over AniΔ.

Remark 1.2.1.1. We will often not notationally distinguish between a simplicial

∞-groupoid 𝐾 and its image along the functor const∶ AniΔ → BΔ, if it is clear

from the context in which ∞-category our arguments are taking place.

We define the tensoring of BΔ over AniΔ as the bifunctor

− ⊗ −∶ AniΔ ×BΔ → BΔ

that is given by the composition (− × −) ∘ (const × idBΔ
). Dually, we define the

powering of BΔ over AniΔ as the bifunctor

(−)(−) ∶ AniopΔ ×BΔ → BΔ

that is given by the composite Hom
BΔ

(−, −) ∘ (const × idBΔ
) where Hom

BΔ
(−, −)

denotes the internal hom in BΔ. Let HomBΔ
(−, −)∶ B

op
Δ × BΔ → AniΔ be the

bifunctor given by the composition Γ∘Hom
BΔ

(−, −). We then obtain equivalences

map
BΔ

(−, (−)(−)) ≃ map
BΔ

(− ⊗ −, −) ≃ mapAniΔ
(−,HomBΔ

(−, −)).

Remark 1.2.1.2. We may regard every 𝐴 ∈ B as a simplicial object in B via

the diagonal functor B ↪→ BΔ. Since products in BΔ are computed object-

wise, the endofunctor 𝐴 × − on BΔ is equivalent to the functor that is given by

postcomposing simplicial objects with the product functor 𝐴 × −∶ B → B. The

latter admits a right adjoint Hom
B
(𝐴, −)∶ B → B, and since postcomposition

with an adjunction induces an adjunction on the level of functor∞-categories, the

uniqueness of adjoints implies that the internal hom Hom
BΔ

(𝐴, −)∶ BΔ → BΔ
is obtained by applying Hom

B
(𝐴, −) level-wise to simplicial objects in B. More

precisely, the restriction of the internal hom Hom
BΔ

(−, −) along the inclusion

Bop ×BΔ ↪→ B
op
Δ ×BΔ is equivalent to the transpose of the composite functor

Bop ×BΔ × Δop
idBop × evΔop
−−−−−−−−−−→ Bop ×B

Hom
B
(−,−)

−−−−−−−−−−→ B

14



1.2. B-categories

in which evΔop denotes the evaluation map.

In particular, this argument shows that the internal hom of BΔ restricts to the

internal hom of B.

Remark 1.2.1.3. Let 𝑖∶ G ↪→ B be a small full subcategory such that the left Kan

extension PSh(G) → B of the 𝑖 is a left exact and accessible Bousfield localisation.

Then BΔ is a left exact and accessible Bousfield localisation of PShAni(Δ ×G). Let
𝐿∶ PShAni(Δ × G) → BΔ be the localisation functor. Then the composition

Δ × G
ℎ
↪−→ PShAni(Δ × G)

𝐿
−→ BΔ

can be identified with the restriction − ⊗ −|Δ×G of the tensoring bifunctor along

the inclusion Δ• × 𝑖∶ Δ ×G ↪→ AniΔ ×B, where Δ• denotes the Yoneda embedding.

By [51, § 20.4.1], this means that − ⊗ −|Δ×G is a dense functor, i.e. that every

simplicial object in B can be canonically obtained as a colimit of objects of the

form Δ𝑛 ⊗ 𝐺 for 𝑛 ≥ 0 and 𝐺 ∈ G, or equivalently that the identity functor on BΔ
is a left Kan extension of − ⊗ −|Δ×G along itself.

Observe that the diagonal functor 𝜄 ∶ B ↪→ BΔ admits both a right adjoint given

by the evaluation functor (−)0 ∶ BΔ → B and a left adjoint given by the colimit

functor colimΔop ∶ BΔ → B. Restricting the powering bifunctor along the Yoneda

embedding Δ• ∶ Δ ↪→ AniΔ then defines a functor (−)Δ
•
∶ BΔ → PShBΔ

(Δ). The
computation

map
B
(−, ((−)Δ

•
)0) ≃ map

BΔ
(𝜄(−), (−)Δ

•
)

≃ mapAniΔ
(Δ•,HomBΔ

(𝜄(−), −))

≃ ΓHom
BΔ

(𝜄(−), (−)•)

≃ map
B
(−, (−)•)

in which the penultimate equivalence follows from Yoneda’s lemma and Re-

mark 1.2.1.2 now shows :

Proposition 1.2.1.4. The composite functor

BΔ
(−)Δ•

−−−−→ PShBΔ
(Δ)

(−)0
−−−→ BΔ
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1. The language of B-categories

in which the second arrow denotes postcomposition with the evaluation functor
(−)0 ∶ BΔ → B is equivalent to the identity functor on BΔ.

Lastly, we mention that we can construct opposites on the level of simplicial

objects in B: In fact, recall that the autoequivalence (−)op ∶ Cat∞ → Cat∞
restricts to an autoequivalence on Δ ↪ Cat∞. By precomposition, one thus

obtains an autoequivalence (−)op ∶ BΔ → BΔ. For any simplicial object 𝐶 in B,

we refer to the simplicial object 𝐶op as the opposite of 𝐶. Note that the restriction

of (−)op along the diagonal embedding 𝜄 ∶ B ↪→ BΔ recovers the identity on B.

1.2.2. B-groupoids

Before we define and study the central notion of a B-category, we first discuss

the simpler case of B-groupoids:

Definition 1.2.2.1. A simplicial object in B is said to be a B-groupoid if it inter-

nally local with respect to the map 𝑠0 ∶ Δ1 → Δ0. We denote by Grpd(B) ↪→ BΔ
the full subcategory spanned by the B-groupoids.

B-groupoids turn out to be precisely those simplicial objects that are contained

in the full subcategory 𝜄 ∶ B ↪→ BΔ:

Proposition 1.2.2.2. For any simplicial object 𝐶 ∈ BΔ, the following are equivalent:

1. 𝐶 is contained in the essential image of the diagonal functor 𝜄 ∶ B ↪→ BΔ.

2. 𝐶 is internally local with respect to the map 𝑠0 ∶ Δ1 → Δ0.

The proof of Proposition 1.2.2.2 will rely on the following combinatorial lemma:

Lemma 1.2.2.3. Let 𝑆 be a saturated class of maps in B that contains the maps
𝑠0 ∶ Δ1 ⊗ 𝐶 → 𝐶 for every 𝐶 ∈ BΔ. Then 𝑆 contains the projection Δ𝑛 ⊗ 𝐴 → 𝐴 for
every 𝑛 ≥ 0 and every 𝐴 ∈ B.

Proof. Wewill use induction on 𝑛, the case 𝑛 = 1 being true by assumption. Let us

therefore assume that for an arbitrary integer 𝑛 ≥ 1 the projection 𝑠0 ∶ Δ𝑛⊗𝐴 → 𝐴
is contained in 𝑆. Then the composition (Δ1 × Δ𝑛) ⊗ 𝐴 → Δ𝑛 ⊗ 𝐴 → 𝐴 in

which the first map is induced by 𝑠0 ∶ Δ1 → Δ0 is contained in 𝑆 as well. Let
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1.2. B-categories

𝛼∶ Δ𝑛+1 → Δ1×Δ𝑛 be the map that is defined by 𝛼(0) = (0, 0) and 𝛼(𝑘) = (1, 𝑘−1)
for all 1 ≤ 𝑘 ≤ 𝑛 + 1, and let 𝛽∶ Δ1 × Δ𝑛 → Δ𝑛+1 be defined by 𝛽(0, 𝑘) = 0 and

𝛽(1, 𝑘) = 𝑘 + 1 for all 0 ≤ 𝑘 ≤ 𝑛. Then the composition 𝛽𝛼 is equivalent to the

identity on Δ𝑛+1, and we therefore obtain a retract diagram

Δ𝑛+1 ⊗ 𝐴 (Δ1 × Δ𝑛) ⊗ 𝐴 Δ𝑛+1 ⊗ 𝐴

𝐴 𝐴 𝐴

𝛼⊗id 𝛽⊗id

id id

which shows that the map Δ𝑛+1 ⊗ 𝐴 → 𝐴 is contained in 𝑆 as well.

Proof of Proposition 1.2.2.2. If 𝐶 is internally local with respect to 𝑠0 ∶ Δ1 → Δ0,

Lemma 1.2.2.3 and Proposition 1.2.1.4 imply that the simplicial maps 𝐶0 → 𝐶𝑛 are

equivalences in B for all 𝑛 ≥ 0, which in turn implies that 𝐶 is in the essential

image of the diagonal functor (as Δop is weakly contractible). Conversely, let

𝐴 ∈ B be an arbitrary object. By making use of the adjunction colimΔop ⊣ 𝜄
and the fact that the functor colimΔop commutes with finite products as Δop is a

sifted ∞-category, the object 𝜄(𝐴) is internally local to 𝑠0 whenever 𝐴 is internally

local to colimΔop(𝑠0)∶ colimΔop Δ1 → colimΔop Δ0 in B. Since the colimit of a

representable presheaf on a small ∞-category is always the final object 1 ∈ Ani,

the latter map must be an equivalence, hence the result follows.

1.2.3. B-categories

We now proceed by defining a B-category via the Segal conditions and the notion

of univalence. To that end, let us recall the following combinatorial constructions:

Definition 1.2.3.1. For any 𝑛 ≥ 1, let 𝐼 𝑛 = Δ1 ⊔Δ0 ⋯ ⊔Δ0 Δ1 ⊂ Δ𝑛 denote

the spine of Δ𝑛, i.e the simplicial subset of Δ𝑛 that is spanned by the inclusions

𝑑 {𝑖−1,𝑖} ∶ Δ1 ⊂ Δ𝑛 for 𝑖 = 1, … , 𝑛. Furthermore, let 𝐸1 be the simplicial set that is

defined by the pushout square

Δ1 ⊔ Δ1 Δ0 ⊔ Δ0

Δ3 𝐸1

𝑠0⊔𝑠0

𝑑 {0,2}⊔𝑑 {1,3}
⌟

in AniΔ. We refer to 𝐸1 as the walking equivalence.
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1. The language of B-categories

Remark 1.2.3.2. Many authors define the walking equivalence as the simplicial

set that arises as the nerve of the category with two objects and a unique isomor-

phism between them. The simplicial set 𝐸1 from Definition 1.2.3.1 is different in

that it is comprised of a map together with separate left and right inverses.

Remark 1.2.3.3. In the situation of Definition 1.2.3.1, the colimits that define 𝐼 𝑛

and 𝐸1 a priori live in AniΔ. However, it turns out that they can be computed

as the ordinary (i.e 1-categorical) pushouts in the 1-category of simplicial sets.

Indeed, colimits in AniΔ are computed level-wise and so are ordinary colimits

in SetΔ, hence it suffice to show that for any integer 𝑘 ≥ 0 the colimits in

Ani of the diagrams in Set ↪→ Ani that define 𝐼 𝑛𝑘 and 𝐸1
𝑘 can be computed by the

ordinary colimits of these diagrams in Set. As the Quillenmodel structure on the 1-
category of simplicial sets is left proper, ordinary pushouts alongmonomorphisms

of simplicial sets present homotopy pushouts in Ani. Now 𝐼 𝑛 is an iterated

pushout along monomorphisms in AniΔ, hence 𝐼 𝑛𝑘 is an iterated pushout along

monomorphisms in Set ↪→ Ani, hence the claim follows for 𝐼 𝑛. Regarding the

simplicial ∞-groupoid 𝐸1, note that 𝐸1 fits into the commutative diagram

Δ1 Δ0

Δ1 Δ3 Δ3 ⊔Δ1 Δ0

Δ0 Δ0 ⊔Δ1 Δ3 𝐸1

𝑑 {1,3} ⌟
𝑑 {0,2}

⌟ ⌟

of simplicial ∞-groupoids. Since the pushouts in the lower left and in the up-

per right corner are computed by the ordinary pushouts of simplicial sets, the

claim now follows from the straightforward observation that the composition

Δ1 ↪→ Δ3 → Δ3 ⊔Δ1 Δ0 is a monomorphism.

Definition 1.2.3.4. An object 𝐶 ∈ BΔ is called a B-category if

(Segal conditions) 𝐶 is internally local with respect to the map 𝐼 2 ↪→ Δ2, and

(univalence) 𝐶 is internally local with respect to the map 𝐸1 → Δ0.

We denote the full subcategory of BΔ that is spanned by the B-categories by

Cat(B).
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Lemma 1.2.3.5. The following sets generate the same saturated class of maps in
BΔ:

1. 𝑆 = {𝐼 2 ⊗ 𝐾 ↪→ Δ2 ⊗ 𝐾 | 𝐾 ∈ BΔ};

2. 𝑇 = {𝐼 𝑛 ⊗ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 | 𝑛 ≥ 2, 𝐴 ∈ B};

3. 𝑈 = {𝐼 𝑛 ⊗ 𝐾 ↪→ Δ𝑛 ⊗ 𝐾 | 𝑛 ≥ 2, 𝐾 ∈ BΔ}.

Proof. Using Remark 1.2.1.3, we may assume without loss of generality that 𝐾
is of the form Δ𝑘 ⊗ 𝐴 for some 𝐴 ∈ B and some 𝑘 ≥ 0. Moreover, note that if

𝑖∶ 𝐾 → 𝐿 is a map in AniΔ, a map 𝑓∶ 𝐶 → 𝐷 in BΔ is right orthogonal to 𝑖 ⊗ id𝐴
if and only if 𝑓∗ ∶ FunB(𝐴, 𝐶) → FunB(𝐴, 𝐷) is right orthogonal to 𝑖. This allows

us to reduce to the case where B ≃ Ani, where 𝐴 ≃ 1 and where 𝐾 ≃ Δ𝑘 for an

arbitrary 𝑘 ≥ 0.
We now claim that a map in AniΔ is contained in the saturation 𝑇 of 𝑇 if and

only if it is contained in the saturation 𝑇′ of the set

𝑇 ′ = {Λ𝑛
𝑖 ↪→ Δ𝑛 | 𝑛 ≥ 2, 0 < 𝑖 < 𝑛}

of inner horn inclusions. In fact, by [43, Proposition 2.13] the spine inclusions

𝐼 𝑛 ↪→ Δ𝑛 are contained in 𝑇′, and the converse is proved in [44, Lemma 3.5]. As a

consequence, every inner anodyne map between simplicial sets is contained in

𝑇. Therefore, [49, Proposition 2.3.2.4] implies that for any 𝑛 ≥ 2 and any 𝑘 ≥ 0,
the map 𝐼 𝑛 × Δ𝑘 ↪→ Δ𝑛 × Δ𝑘 is contained in 𝑇 as well. To complete the proof,

we therefore only need to show that 𝑇 is contained in the saturation 𝑆 of 𝑆. To
that end, observe that 𝑆 contains all maps of the form 𝐼 2 × 𝜕Δ𝑘 ↪→ Δ2 × 𝜕Δ𝑘 and

therefore all maps of the form

(𝐼 2 × Δ𝑘) ⊔𝐼 2×𝜕Δ𝑘 (Δ2 × 𝜕Δ𝑘) ↪→ Δ2 × Δ𝑘

as well. By [49, Proposition 2.3.2.1], this implies that 𝑇 ′ is contained in 𝑆 as well,

hence the claim follows.

Lemma 1.2.3.6. Let 𝑆 be a strongly saturated class of maps in B that contains
the maps 𝐸1 ⊗ 𝐴 → 𝐴 and 𝐼 𝑛 ⊗ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 for all 𝐴 ∈ B and all 𝑛 ≥ 0. Then 𝑆
contains the maps 𝐸1 ⊗ 𝐶 → 𝐶 for all 𝐶 ∈ BΔ.

19



1. The language of B-categories

Proof. Using a similar argumentation as in Lemma 1.2.3.5, wemay assumewithout

loss of generality that B ≃ Ani, that 𝐴 is the final simplicial ∞-groupoid and fur-

thermore that 𝐶 ≃ Δ𝑛. As furthermore by Lemma 1.2.3.5 themap 𝐸1×𝐼 𝑛 ↪→ 𝐸1×Δ𝑛

is contained in 𝑆 for all 𝑛 ≥ 0, we need only show that the inducedmap 𝐸1×𝐼 𝑛 → 𝐼 𝑛

is contained in 𝑆. Using that 𝐼 𝑛 is a colimit of a diagram involving only Δ0 and

Δ1, we may further restrict to the case 𝑛 = 1, in which case the statement was

proven by Rezk in [70, Proposition 12.1].

Proposition 1.2.3.7. Let 𝐶 be a simplicial object in B. The following conditions
are equivalent:

1. 𝐶 is a B-category;

2. for all 𝑛 ≥ 2 the maps

𝐶𝑛 → 𝐶1 ×𝐶0
⋯ ×𝐶0

𝐶1

as well as the map
𝐶0 → (𝐶0 × 𝐶0) ×𝐶1×𝐶1

𝐶3

are equivalences.

Proof. A simplicial object 𝐶 in B satisfies the Segal condition if and only if it is

local with respect to the collection of maps 𝐼 2 ⊗ 𝐸 ↪→ Δ2 ⊗ 𝐸 for any simplicial

object 𝐸 ∈ BΔ. On the other hand, the first map of condition (2) is an equivalence

if and only if 𝐶 is local with respect to all maps 𝐼 𝑛⊗𝐴 ↪→ Δ𝑛⊗𝐴 for arbitrary𝐴 ∈ B.

By Lemma 1.2.3.5, these two conditions are equivalent. Similarly, Lemma 1.2.3.6

implies that 𝐶 is univalent if and only if the second map of condition (2) is an

equivalence.

Remark 1.2.3.8. Proposition 1.2.3.7 allows us to make sense of the notion of

a C-category for any ∞-category C with finite limits. That is, we may define a

C-category to be a simplicial object 𝐶 ∈ CΔ that satisfies the second condition of

Proposition 1.2.3.7.

Example 1.2.3.9. Proposition 1.2.3.7 shows that an Ani-category is precisely a

complete Segal space as developed by Rezk [70]. By a theorem of Joyal and Tier-

ney [44] the ∞-category of complete Segal spaces is a model for the ∞-category

20



1.2. B-categories

of ∞-categories Cat∞, i.e. the left Kan extension of the inclusion Δ ↪→ Cat∞
determines an equivalence Cat(Ani) ≃ Cat∞.

Since Cat(B) is a localisation of BΔ at a small set of morphisms, one finds:

Proposition 1.2.3.10. The inclusion Cat(B) ↪→ BΔ exhibits Cat(B) as an accessi-
ble localisation of BΔ. In particular, the ∞-category Cat(B) is presentable.

Remark 1.2.3.11. As Cat(B) is an accessible localisation of BΔ, the inclusion

Cat(B) ↪→ BΔ creates small limits. On the other hand, colimits of small diagrams

are usually not created (or even preserved) by the inclusion, as these can be

computed by applying the localisation functor BΔ → Cat(B) to the colimits

of the underlying diagrams of simplicial objects in B. Filtered colimits, on the

other hand, are created by the inclusion Cat(B) ↪→ BΔ. In fact, as such colimits

commute with finite limits, it is immediate from Proposition 1.2.3.7 that the

colimit in BΔ of a small filtered diagram of B-categories is contained in Cat(B)
and is therefore the colimit of this diagram in Cat(B). In particular, as colimits

are universal in BΔ, this observation implies that filtered colimits are universal

in Cat(B).

As B-categories are internally local with respect to the maps 𝐼 2 ↪→ Δ2 and

𝐸1 → 1, the ∞-category Cat(B) is cartesian closed. More precisely, the construc-

tion of Cat(B) implies:

Proposition 1.2.3.12. The full subcategory Cat(B) ↪→ BΔ is an exponential ideal

and therefore in particular a cartesian closed ∞-category. In other words, if C is a
B-category and 𝐷 is a simplicial object in B, the internal hom Hom

BΔ
(𝐷,C) is a

B-category.

Corollary 1.2.3.13. The localisation functor BΔ → Cat(B) preserves finite prod-
ucts.

Definition 1.2.3.14. If C and D are B-categories, we denote their internal hom

by Fun
B
(C,D) and refer to it as the B-category of functors between C and D.

Recall that the inclusion 𝜄 ∶ B ↪→ BΔ admits a right adjoint (−)0 and a left

adjoint colimΔop(−). It is moreover immediate from Proposition 1.2.3.7 that 𝜄
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factors through the inclusion Cat(B) ↪→ BΔ, i.e. that for any object 𝐴 ∈ B the

associated B-groupoid defines a B-category. Therefore, we obtain functors

Grpd(B) Cat(B).

(−)≃

(−)gpd

⊤
⊤

The functor (−)≃ is referred to as the core B-groupoid functor, and the functor

(−)gpd is referred to as the groupoidification functor. If C is a B-category, the

B-groupoid C≃ is to be thought of as the maximal B-groupoid that is contained

in C (i.e. the subcategory spanned by all objects and equivalences in C), whereas

the B-groupoid Cgpd should be regarded as the result of formally inverting all

morphisms in C.

Proposition 1.2.3.15. The groupoidification functor (−)gpd ∶ Cat(B) → Grpd(B)
commutes with small colimits and finite products.

Proof. As the groupoidification functor is a left adjoint, it commutes with small

colimits. Moreover, since the final object 1 ∈ Cat(B) is given by the constant

simplicial object on 1 ∈ B and since groupoidification is a localisation functor,

there is an equivalence 1gpd ≃ 1. It therefore suffices to consider the case of

binary products, which follows from Δop being a sifted ∞-category.

Proposition 1.2.3.16. The core B-groupoid functor (−)≃ ∶ Cat(B) → Grpd(B)
commutes with small filtered colimits and small limits.

Proof. As the core B-groupoid functor is a right adjoint, it commutes with small

limits. By Remark 1.2.3.11, small filtered colimits of B-categories are created

by the inclusion Cat(B) ↪→ BΔ, hence it suffices to show that (−)0 ∶ BΔ → B

commutes with such colimits, which is immediate.

Lastly, we observe that the involution (−)op ∶ BΔ ≃ BΔ that takes a simplicial

object 𝐶 to its opposite 𝐶op restricts to an involution (−)op ∶ Cat(B) ≃ Cat(B).
In other words, the opposite Cop of a B-category C is well-defined.
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1.2. B-categories

1.2.4. Functoriality and base change

In this section we discuss how to change the base ∞-topos for internal higher

category theory. What makes this possible is the following general lemma:

Lemma 1.2.4.1. Let 𝐹∶ C → D be a functor between ∞-categories that admit
finite limits such that 𝐹 preserves pullbacks and such that for any map 𝑓∶ 𝑐 → 𝑐′

in C the commutative square

𝐹(𝑐 × 𝑐) 𝐹 (𝑐′ × 𝑐′)

𝐹 (𝑐) × 𝐹(𝑐) 𝐹 (𝑐′) × 𝐹(𝑐′)

𝐹(𝑓 ×𝑓 )

𝐹(𝑓 )×𝐹(𝑓 )

is cartesian. Then the induced functor CΔ → DΔ that is given by postcomposition
with 𝐹 sends C-categories to D-categories and therefore restricts to a functor

𝐹∶ Cat(C) → Cat(D).

In particular, any left exact functor 𝐹 between finitely complete∞-categories induces
a functor on the level of categories.

Proof. Since 𝐹 preserves pullbacks the functor CΔ → DΔ that is given by post-

composition with 𝐹 preserves the Segal conditions, and by assumption on 𝐹 the

commutative square

𝐹(C0) 𝐹 (C3)

𝐹 (C0) × 𝐹(C0) 𝐹 (C1) × 𝐹(C1)

(𝑑{0,2},𝑑{1,3})
(𝑠0,𝑠0)

is cartesian for every C-category C, hence the claim follows.

Since both geometric and algebraic morphisms of∞-topoi preserve finite limits

and therefore satisfy the condition from Lemma 1.2.4.1, one concludes that if

𝑓∗ ∶ B → A is a geometric morphism of ∞-topoi with left adjoint 𝑓 ∗, one obtains

an induced adjunction

(𝑓 ∗ ⊣ 𝑓∗)∶ Cat(A) ⇆ Cat(B).
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1. The language of B-categories

In particular, the adjunction (const ⊣ Γ)∶ Ani ⇆ B gives rise to an adjunction

(const ⊣ Γ)∶ Cat∞ ⇆ Cat(B).

Hence, we may regard every ∞-category as a constant B-category, and every

B-category has an underlying ∞-category of global sections.

Remark 1.2.4.2. We will usually not notationally distinguish between an ∞-

category and the associated constant B-category, as long as it is clear from the

context in which ∞-category we are working.

The procedure of changing the base ∞-topos can be made functorial in the

strongest possible sense. In fact, if we let Z denote the subcategory of CatW∞
spanned by the ∞-categories that admit finite limits, together with those functors

that satisfy the conditions of Lemma 1.2.4.1, and if ∫(−)Δ → Z is the cocartesian

fibration that classifies the functor (−)Δ ∶ Z → CatW∞ , then Lemma 1.2.4.1 implies

that the full subcategory of ∫(−)Δ that is spanned by the pairs (C,C) with C ∈ Z

andC a C-category is stable under taking cocartesian arrows and therefore defines

a cocartesian subfibration of ∫(−)Δ over Z. Hence one obtains a functor

Cat∶ Z → CatW∞ .

Since both the forgetful functor TopR∞ → CatW∞ and the universe enlargement

functor B ↦ B̂ for ∞-topoi factor through Z and since moreover the inclusion

B ↪→ B̂ commutes with small limits, postcomposition with the functor Cat gives

rise to functors B ↦ Cat(B) as well as B ↦ Cat(B̂) together with a natural

transformation

TopR∞ CatW∞

B↦Cat(B)

B↦Cat(B̂)

that is given by the inclusion Cat(B) ↪→ Cat(B̂). Analogously, one obtains two

functors TopL∞ ⇉ CatW∞ together with a natural transformation

TopL∞ CatW∞ .

B↦Cat(B)

B↦Cat(B̂)
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1.2. B-categories

As the inclusion C ↪→ CΔ and its right adjoint (−)0 ∶ CΔ → C are clearly functorial

in C ∈ Z, we may now conclude:

Proposition 1.2.4.3. There are two commutative squares

Grpd(B) Grpd(B̂)

Cat(B) Cat(B̂)

(−)≃ (−)≃

that are functorial in B both with respect to maps in TopR∞ and maps in TopL∞.

Let W be the full subcategory of Z that is spanned by the ∞-categories that

admit colimits indexed by Δop and the functors that preserve such colimits. Then

the map colimΔop ∶ CΔ → C is functorial in C ∈ W, and as universe enlargement

preserves small colimits one finds:

Proposition 1.2.4.4. There is a commutative square

Grpd(B) Grpd(B̂)

Cat(B) Cat(B̂)

(−)gpd (−)gpd

that is functorial in B with respect to maps in TopL∞.

Convention 1.2.4.5. We refer to the objects in Cat(B̂) as large B-categories

(or as B̂-categories) and to the objects in Cat(B) as small B-categories. If not

specified otherwise, every B-category is small. Note, however, that by replacing

the universe U with the larger universe V (i.e. by working internally to B̂), every

statement about B-categories carries over to one about large B-categories as

well. Also, we will sometimes omit specifying the relative size of a B-category if

it is evident from the context.

Base change along étale geometric morphisms is particularly well-behaved, as

we will discuss now. Let Cat(B)/− ∶ Bop → Ĉat∞ be the functor that classifies

the cartesian fibration

Fun(Δ1,Cat(B)) ×Cat(B) B → B.

One now finds:
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1. The language of B-categories

Proposition 1.2.4.6. There is an equivalence

Cat(B/−) ≃ Cat(B)/−

of functors Bop → Ĉat∞ that fits into a commutative square

Cat(B/−) Cat(B̂/−)

Cat(B)/− Cat(B̂)/−

≃ ≃

Proof. On account of the natural equivalence Fun(Δ1,BΔ) ≃ Fun(Δ1,B)Δ and

the fact that the cartesian fibration Fun(Δ1,B)Δ ×BΔ
B → B is classified by the

functor (B/−)Δ (see for example [17, Proposition 2.6.1] for an argument), one

obtains an equivalence

(B/−)Δ ≃ (BΔ)/−

of functorsBop → Ĉat∞. In order to obtain an equivalence Cat(B/−) ≃ Cat(B)/−,
it therefore suffices to show that this equivalence of functors sendsB/𝐴-categories

to objects in (BΔ)/𝐴 whose underlying simplicial object in B is a B-category. By

construction, the component of the above equivalence at 𝐴 ∈ B sits inside the

commutative diagram

(B/𝐴)Δ (BΔ)/𝐴

BΔ,
(𝜋𝐴)!∘(−)

≃

(𝜋𝐴)!

hence the claim follows from the fact that the forgetful functor (𝜋𝐴)! ∶ B/𝐴 → B

satisfies the conditions of Lemma 1.2.4.1. Lastly, the existence of a commutative

square as in the statement of the proposition follows from the construction of

the equivalence Cat(B/−) ≃ Cat(B)/− and Lemma 1.1.4.2.

1.2.5. The (∞, 2)-categorical structure of Cat(B)

Recall from Definition 1.2.3.14 that we denote by

Fun
B
(−, −)∶ Cat(B)op × Cat(B) → Cat(B)
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1.2. B-categories

the internal hom in Cat(B). By Proposition 1.2.3.12, this bifunctor is obtained by

restricting the internal hom of BΔ to the full subcategory Cat(B) ↪→ BΔ. As the

product bifunctor on Cat(B) is obtained in the same fashion, the three bifunctors

that are defined in the beginning of Section 1.2.1 restrict to bifunctors on the level

of B-categories and ∞-categories. Explicitly, one obtains a tensoring bifunctor

− ⊗ −∶ Cat∞ ×Cat(B) → Cat(B)

which is given by const(−) × −, a powering bifunctor

(−)(−) ∶ Catop∞ ×Cat(B) → Cat(B)

given by Fun
B
(const(−), −), and a functor ∞-category bifunctor

FunB(−, −)∶ Cat(B)op × Cat(B) → Cat∞

which is defined as ΓFun
B
(−, −). These functors are equipped with equivalences

mapCat(B)(−, (−)
(−)) ≃ mapCat(B)(− ⊗ −, −) ≃ mapCat∞

(−, FunB(−, −)).

In particular, the second equivalence implies that postcomposing FunB(−, −)
with the core ∞-groupoid functor (−)≃ ∶ Cat∞ → Ani recovers the bifunctor

mapCat(B)(−, −).
The above constructions are well-behaved with respect to universe enlarge-

ment:

Proposition 1.2.5.1. The internal hom in Cat(B̂) restricts to the internal hom in
Cat(B).

Proof. As the product bifunctor on Cat(B̂) clearly restricts to the product bi-

functor on Cat(B), it suffices to show that for any two small B-categories

C,D ∈ Cat(B) ↪→ Cat(B̂) their internal hom Fun
B̂
(C,D) in Cat(B̂) is small

as well. It suffices to show this on the level of simplicial objects, i.e. we need to

show that the simplicial object Hom
B̂Δ

(C,D) ∈ B̂Δ is contained in BΔ. Using

Proposition 1.2.1.4 one finds

Hom
B̂Δ

(C,D)𝑛 ≃ Hom
B̂Δ

(Δ𝑛 ⊗ C,D)0,
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1. The language of B-categories

hence it suffices to show that Hom
B̂Δ

(C,D)0 is contained inB. By Remark 1.2.1.3,

using that the functor Hom
B̂Δ

(−,D)0 sends colimits in B̂Δ to limits in B̂, we may

assume without loss of generality C ≃ Δ𝑛 ⊗ 𝐴. In this case one computes

Hom
B̂Δ

(Δ𝑛 ⊗ 𝐴,D)0 ≃ Hom
B̂Δ

(𝐴,D)𝑛 ≃ Hom
B̂
(𝐴,D𝑛)

in which the last step follows from Remark 1.2.1.2. Therefore, the claim is a

consequence of Proposition 1.1.4.4.

Combining Proposition 1.2.5.1 with Proposition 1.2.4.3, one now easily deduces:

Corollary 1.2.5.2. The tensoring, powering and mapping ∞-category bifunctors
on Cat(B̂) restrict to the tensoring, powering and mapping ∞-category bifunctors
on Cat(B).

Convention 1.2.5.3. For simplicity, we will usually also denote by Fun
B
(−, −)

the internal hom in Cat(B̂), and likewise by FunB(−, −) the mapping ∞-category

bifunctor on Cat(B̂). By Proposition 1.2.5.1 and Corollary 1.2.5.2, there is no

possibility of confusion.

Functor B-categories are moreover preserved by étale base change:

Proposition 1.2.5.4. For any object 𝐴 ∈ B there is a canonical equivalence

𝜋∗
𝐴FunB(−, −) ≃ Fun

B/𝐴
(𝜋∗

𝐴(−), 𝜋
∗
𝐴(−))

of bifunctors Cat(B)op × Cat(B) → Cat(B/𝐴).

Proof. By definition of functor categories in Cat(B) and in Cat(B/𝐴), the da-

tum of an equivalence of bifunctors 𝜋∗
𝐴FunB(−, −) ≃ Fun

B/𝐴
(𝜋∗

𝐴(−), 𝜋
∗
𝐴(−)) is

equivalent to the datum of an equivalence

(𝜋𝐴)!(− ×𝐴 𝜋∗
𝐴(−)) ≃ (𝜋𝐴)!(−) × −

of bifunctors Cat(B/𝐴) × Cat(B) → Cat(B). Since 𝜋∗
𝐴 commutes with products,

we have a commutative diagram

B ×B B/𝐴 ×B/𝐴

B B/𝐴.

−×−

𝜋∗
𝐴×𝜋

∗
𝐴

−×𝐴−

𝜋∗
𝐴
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The (horizontal) mate of this square (see for example Definition 3.1.2.5 below)

yields a map

𝜙∶ (𝜋𝐴)!(− ×𝐴 −) → (𝜋𝐴)!(−) × 𝜋𝐴(−),

and by combining this map with the adjunction counit 𝜖∶ (𝜋𝐴)!𝜋∗
𝐴 → idCat(B),

we can define a map

(𝜋𝐴)!(− ×𝐴 𝜋∗
𝐴(−))

𝜙(id ×𝜋∗
𝐴)

−−−−−−−→ (𝜋𝐴)!(−) × (𝜋𝐴)!𝜋∗
𝐴(−)

id ×𝜖
−−−−→ (𝜋𝐴)!(−) × −.

By construction, when evaluated at a pair (C → 𝐴,D), this map is given by the

morphism 𝜓 in the commutative diagram

C × D D

C ×𝐴 (D × 𝐴) D × 𝐴

C 1

C 𝐴.

pr1

pr0
pr1

pr0

𝜓
pr0

id 𝜋𝐴

pr1

The square on the left side being cartesian now implies that 𝜓 is an equivalence,

hence the desired result follows.

Remark 1.2.5.5. Note that Proposition 1.2.5.4 also implies that for any two

B-categories C and D, there is a commutative diagram

Fun
B/𝐴

(𝜋∗
𝐴C, 𝜋∗

𝐴D) × 𝜋∗
𝐴C 𝜋∗

𝐴(FunB(C,D) × C)

𝜋∗
𝐴D.

ev𝜋∗𝐴C

≃

𝜋∗
𝐴 evC

In fact, by the argument in the proof of Proposition 1.2.5.4, the equivalence

Fun
B/𝐴

(𝜋∗
𝐴C, −) ≃ 𝜋∗

𝐴FunB(C, 𝜋∗
𝐴(−))

is obtained as the (horizontal) mate of the commutative square

B B

B/𝐴 B/𝐴.

C×−

𝜋∗
𝐴 𝜋∗

𝐴
𝜋∗
𝐴C×𝐴−
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Therefore, the claim can be deduced from the functoriality of mates (see Re-

mark 3.1.2.7).

Remark 1.2.5.6. It is clear from the definition that base change along every

algebraic morphism of ∞-topoi commutes with the tensoring bifunctor, so that

dually base change along every geometric morphism of ∞-topoi commutes with

the powering bifunctor. Moreover, Proposition 1.2.5.4 implies that the powering

bifunctor is also preserved by the étale base change 𝜋∗
𝐴 for every 𝐴 ∈ B.

Remark 1.2.5.7. The bifunctor FunB(−, −) gives rise to an (∞, 2)-categorical
enhancement of Cat(B). More precisely, on account of Cat(B) being cartesian

closed, this ∞-category is canonically enriched over itself [24, § 7]. The functor

Γ∶ Cat(B) → Cat∞ can then be used to change enrichment from Cat(B) to Cat∞,

so that Cat(B) becomes a Cat∞-enriched ∞-category, which is one of the known

models for (∞, 2)-categories [31].

1.2.6. Cat∞-valued sheaves on an ∞-topos

B-categories can be alternatively regarded as sheaves of ∞-categories on B. To

see this, first recall from the discussion in Section 1.1.4 that the Yoneda embedding

induces a commutative square

B B̂

PShAni(B) PShÂni(B)

that is natural in B both with respect to maps in TopR∞ and in TopL∞. Postcom-

position with the functor (−)Δ therefore gives rise to a natural commutative

square

BΔ B̂Δ

PShAniΔ(B) PShÂniΔ
(B)

in which the essential image of the two vertical maps is spanned by the collection

of AniΔ-valued and ÂniΔ-valued sheaves, respectively. Using Proposition 1.2.3.7
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it is immediate that this square further restricts to a natural commutative square

Cat(B) Cat(B̂)

PShCat∞(B) PShĈat∞
(B).

As limits in Cat∞ and in Ĉat∞ are computed on the level of the underlying

simplicial ∞-groupoids, the essential image of the two vertical maps is spanned

by the collection of Cat∞-valued and Ĉat∞-valued sheaves, respectively. One

therefore obtains:

Proposition 1.2.6.1. The inclusions

Cat(B) ↪→ PShCat∞(B) and Cat(B̂) ↪→ PShĈat∞
(B)

induce a commutative square

Cat(B) Cat(B̂)

ShCat∞(B) ShĈat∞
(B)

≃ ≃

that is natural in B both with respect to maps in TopR∞ and in TopL∞.

Remark 1.2.6.2. In what follows, we will often implicitly identify a B-category

C with the associated Cat∞-valued sheaf on B. In particular, if 𝐴 ∈ B is an

arbitrary object we will write C(𝐴) for the ∞-category of local sections of C over

𝐴.

Remark 1.2.6.3. Recall that straightening and unstraightening yields a natu-

ral equivalence PShCat∞(C) ≃ Cart(C) between the ∞-category of Cat∞-valued

presheaves on a small ∞-category C and the ∞-category of cartesian fibrations

over C. Hence, the inclusion Cat(B̂) ↪→ PShĈat∞
(B) gives rise to an embedding

Cat(B̂) ↪→ Cart(B)

that is natural in B. For any (large) B-category C we will denote the image of C

under this functor by ∫C → B.
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The equivalence in Proposition 1.2.6.1 can also be implemented by making use

of the bifunctor FunB(−, −): If 𝜄 ∶ B ↪→ Cat(B) denotes the natural inclusion, the

computation

mapCat∞
(Δ•, FunB(𝜄(−), −)) ≃ mapCat(B)(𝜄(−), (−)

Δ•
) ≃ map

B
(−, (−)•)

(in which the last equivalence follows from Proposition 1.2.1.4) shows that the

transpose of the bifunctor

FunB(𝜄(−), −)∶ Bop × Cat(B) → Cat∞

recovers the natural inclusion Cat(B) ↪→ PShCat∞(B) and therefore in particular

the equivalence Cat(B) ≃ ShCat∞(B) from Proposition 1.2.6.1. It is therefore

reasonable to define:

Definition 1.2.6.4. For any object 𝐴 ∈ B, the local sections functor over 𝐴 is

defined as the functor FunB(𝐴, −)∶ Cat(B) → Cat∞.

Remark 1.2.6.5. In the context of Definition 1.2.6.4, the local sections functor

over an object 𝐴 ∈ B is equivalently given by the composite

Cat(B)
𝜋∗
𝐴

−−→ Cat(B/𝐴)
ΓB/𝐴
−−−−→ Cat∞ .

In fact, the equivalence of functors − × (𝜋𝐴)!(−) ≃ (𝜋𝐴)!(𝜋∗
𝐴(−) ×𝐴 −) gives rise

to the following chain of equivalences

mapCat(B)(− ⊗ (𝜋𝐴)!(−), −) ≃ mapCat(B)((𝜋𝐴)!(− ⊗ −), −)

≃ mapCat(B/𝐴)
(− ⊗ −, 𝜋∗

𝐴(−))

that induces an equivalence of functors

FunB((𝜋𝐴)!(−), −) ≃ FunB/𝐴
(−, 𝜋∗

𝐴(−)).

Remark 1.2.6.6. By construction, the equivalence Cat(B) ≃ ShCat∞(B) fits into
two commutative squares

Grpd(B) ShAni(B)

Cat(B) ShCat∞(B)

≃

≃

(−)≃ (−)≃
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that are functorial inBwith respect to maps both in TopR∞ and in TopL∞. Here the

two vertical maps on the right are given by postcomposition with the adjunction

(𝜄 ⊣ (−)≃)∶ Ani ⇆ Cat∞. One moreover has a commutative square

Grpd(B) ShAni(B)

Cat(B) ShCat∞(B)

≃

≃
(−)gpd (−)gpd

that is functorial in B with respect to maps in TopL∞, where the vertical map

on the right is given by postcomposition with the groupoidification functor

(−)gpd ∶ Cat∞ → Ani.

Remark 1.2.6.7. The equivalence Cat(B) ≃ ShCat∞(B) also fits into a commuta-

tive square

Cat(B) ShCat∞(B)

Cat(B) ShCat∞(B)

≃

(−)op (−)op

≃

in which the right vertical map is given by postcomposition with the equivalence

(−)op ∶ Cat∞ ≃ Cat∞.

Remark 1.2.6.8. The fact that the inclusion Cat(B) ↪→ PShCat∞(B) is obtained
by the functor FunB(𝜄(−), −) implies that the Cat∞-valued presheaf that underlies

the powering CX of a B-category C by an ∞-category X ∈ Cat∞ is given by the

functor Fun(X,C(−)). Moreover, this identification is natural both in X ∈ Cat∞
and in C ∈ Cat(B).

By contrast, the Cat∞-valued presheaf that underlies the tensoring X ⊗ C of

the B-category C by the ∞-category X is not given by the functor X × C(−). In
fact, the latter is in general not a sheaf. However, one can show that the presheaf

that is associated with X ⊗ C is given by the sheafification of the presheaf

X × C(−), i.e. by the image of X × C(−) under the left adjoint of the inclusion

ShCat∞(B) ↪→ PShCat∞(B).
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1.2.7. Objects and morphisms in a B-category

Let C be a B-category, and let 𝐴 ∈ B be an arbitrary object. An object 𝑐 of C
in context 𝐴 is defined to be a local section 𝑐∶ 𝐴 → C, which is equivalently

determined by a map 𝑐∶ 𝐴 → C0 since 𝐴 is a B-groupoid. A morphism in C

in context 𝐴 is defined as an object 𝑓 of CΔ1
, i.e. as a map 𝑓∶ Δ1 ⊗ 𝐴 → C,

or equivalently as a map 𝑓∶ 𝐴 → C1. Similarly one defines the notion of an

𝑛-morphism for any 𝑛 ≥ 1 as a map Δ𝑛 ⊗ 𝐴 → C. Any morphism 𝑓 has a

source and a target which are obtained by precomposing 𝑓∶ Δ1 ⊗ 𝐴 → C with

𝑑1 ∶ 𝐴 → Δ1⊗𝐴 and with 𝑑0 ∶ 𝐴 → Δ1⊗𝐴, respectively. If 𝑐 and 𝑑 are the source

and target of such a morphism 𝑓, we also use the familiar notation 𝑓∶ 𝑐 → 𝑑.
For any object 𝑐 in C in context 𝐴, there is a morphism id𝑐 that is defined by the

composite 𝑐𝑠0 ∶ Δ1 ⊗ 𝐴 → 𝐴 → C.

Remark 1.2.7.1. On account of the adjunction (𝜋𝐴)! ⊣ 𝜋∗
𝐴, specifying an object

𝑐∶ 𝐴 → C in context 𝐴 ∈ B is tantamount to specifying an object ̄𝑐 ∶ 1 → 𝜋∗
𝐴C

in context 1 ∈ B/𝐴. A similar observation can be made for morphisms in a

B-category.

Given two objects 𝑐 and 𝑑 in C in context 𝐴 ∈ B, the mapping B-groupoid
mapC(𝑐, 𝑑) ∈ B/𝐴 is defined as the pullback

mapC(𝑐, 𝑑) C1

𝐴 C0 × C0.

(𝑑1,𝑑0)
(𝑐,𝑑)

Equivalently, this object can be defined by the pullback

mapC(𝑐, 𝑑) CΔ1

𝐴 C × C,

(𝑑1,𝑑0)

(𝑐,𝑑)

see Section 2.1.1 below. By construction, sections 𝐴 → mapC(𝑐, 𝑑) over 𝐴 cor-

respond to morphisms 𝑓∶ 𝑐 → 𝑑 in C in context 𝐴. Two maps 𝑓 , 𝑔∶ 𝑐 ⇉ 𝑑 are

said to be equivalent if they are equivalent as sections 𝐴 ⇉ mapC(𝑐, 𝑑) over 𝐴,

in which case we write 𝑓 ≃ 𝑔.
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Remark 1.2.7.2. Since for every𝐴 ∈ B the adjunction counit (𝜋𝐴)!𝜋∗
𝐴 → idB car-

ries maps inB to pullback squares, we deduce that if 𝑐, 𝑑∶ 𝐴 ⇉ C are two objects

in context 𝐴 and if ̄𝑐, ̄𝑑 ∶ 1 ⇉ 𝜋∗
𝐴C are the transposed objects (see Remark 1.2.7.1),

we have a canonical equivalence

mapC(𝑐, 𝑑) ≃ map𝜋∗
𝐴C

( ̄𝑐, ̄𝑑)

in B/𝐴.

Similarly to the case of two objects, if 𝑐0, … , 𝑐𝑛 are objects in context 𝐴 in

C, one writes mapC(𝑐0, … , 𝑐𝑛) for the pullback of (𝑑𝑛, … , 𝑑0)∶ C𝑛 → C𝑛+1
0 along

(𝑐0, … , 𝑐𝑛)∶ 𝐴 → C𝑛+1
0 . Using the Segal conditions, one obtains an equivalence

mapC(𝑐0, … , 𝑐𝑛) ≃ mapC(𝑐0, 𝑐1) ×𝐴 ⋯ ×𝐴 mapC(𝑐𝑛−1, 𝑐𝑛).

By combining this identification with the map mapC(𝑐0, … , 𝑐𝑛) → mapC(𝑐0, 𝑐𝑛)
that is induced by the map 𝑑{0,𝑛} ∶ C𝑛 → C1, one obtains a composition map

mapC(𝑐0, 𝑐1) ×𝐴 ⋯ ×𝐴 mapC(𝑐𝑛−1, 𝑐𝑛) → mapC(𝑐0, 𝑐𝑛).

Given maps 𝑓𝑖 ∶ 𝑐𝑖−1 → 𝑐𝑖 in C for 𝑖 = 1, … , 𝑛, we write 𝑓𝑛 ⋯𝑓1 for their compo-

sition. By making use of the simplicial identities, it is straightforward to verify

that composition is associative and unital, i.e. that the relations 𝑓 (𝑔ℎ) ≃ (𝑓 𝑔)ℎ
and 𝑓 id ≃ 𝑓 ≃ id 𝑓 as well as their higher analogues hold whenever they make

sense, see [70, Proposition 5.4] for a proof.

A morphism 𝑓∶ 𝑐 → 𝑑 in C is an equivalence if there are maps 𝑔∶ 𝑐 → 𝑑 and

ℎ∶ 𝑐 → 𝑑 (all in context 𝐴) such that 𝑔𝑓 ≃ id𝑐 and 𝑓 ℎ ≃ id𝑑. Let Δ1 → 𝐸1 be

the map that is induced by the inclusion 𝑑{1,2} ∶ Δ1 ↪→ Δ3. One then obtains the

following characterisation of equivalences in C:

Proposition 1.2.7.3. A map 𝑓∶ 𝑐 → 𝑑 in C in context 𝐴 is an equivalence if and
only if the map Δ1 ⊗ 𝐴 → C that is determined by 𝑓 factors through the map
Δ1 ⊗ 𝐴 → 𝐸1 ⊗ 𝐴.

Proof. Suppose that there are 𝑔, ℎ∶ 𝑑 ⇉ 𝑐 together with equivalences 𝑔𝑓 ≃ id𝑐
and 𝑓 ℎ ≃ id𝑑 that witness 𝑓 as an equivalence in C. The triple (ℎ, 𝑓 , 𝑔) then deter-

mines a map 𝐼 3 ⊗𝐴 → C which can be uniquely extended to a map Δ3 ⊗𝐴 → C
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since C is a B-category. By construction, the restriction of this map along the

inclusions 𝑑{0,2} ∶ Δ1 ⊗𝐴 → Δ3 ⊗𝐴 and 𝑑 {1,3} ∶ Δ1 ⊗𝐴 → Δ3 ⊗𝐴 are equivalent

to id𝑑 and id𝑐, respectively. By definition, this means that Δ3 ⊗ 𝐴 → C extends

along the map Δ3 ⊗ 𝐴 → 𝐸1 ⊗ 𝐴.

Conversely, if the map Δ1 ⊗ 𝐴 → C that is determined by 𝑓 factors through

the map Δ1 ⊗𝐴 → 𝐸1 ⊗𝐴, it in particular determines a map Δ3 ⊗𝐴 → C whose

restriction along 𝑑{0,1} ∶ Δ1 ⊗ 𝐴 → Δ3 ⊗ 𝐴 and 𝑑{2,3} ∶ Δ1 ⊗ 𝐴 → Δ3 ⊗ 𝐴 gives

rise to two maps ℎ, 𝑔∶ 𝑐 ⇉ 𝑑 in C. By construction of 𝐸1 and the definition of

composition, the composites 𝑓 ℎ and 𝑔𝑓 factor through 𝑑∶ 𝐴 → C and 𝑐∶ 𝐴 → C,

respectively, which means that these composites are equivalent to id𝑐 and id𝑑.

Corollary 1.2.7.4. A map 𝑓∶ 𝐴 → C1 defines an equivalence in C if and only if it
factors through the map 𝑠0 ∶ C0 → C1.

Proof. Since C is a B-category, any map 𝐸1 ⊗𝐴 → C extends uniquely along the

projection 𝐸1 ⊗ 𝐴 → 𝐴, hence the result follows from Proposition 1.2.7.3.

Remark 1.2.7.5. We will see in Section 1.3.1 below that the map 𝑠0 ∶ C0 → C1
is a monomorphism in B. Therefore, a map 𝑓∶ 𝐴 → C1 being an equivalence is

a property, and not extra structure.

As a consequence of Corollary 1.2.7.4, given two objects 𝑐, 𝑑 in C in context

𝐴 ∈ B, we may define the B-groupoid of equivalences eqC(𝑐, 𝑑) ∈ B/𝐴 via the

pullback square
eqC(𝑐, 𝑑) C0

𝐴 C0 × C0.

(𝑑1,𝑑0)
(𝑐,𝑑)

By construction, sections 𝐴 → eqC(𝑐, 𝑑) over 𝐴 correspond to equivalences

𝑓∶ 𝑐 → 𝑑 in C in context 𝐴.

We will say that two objects 𝑐, 𝑑∶ 𝐴 ⇉ C are equivalent if there is an equiva-

lence 𝑐 ≃ 𝑑, i.e. a section𝐴 → eqC(𝑐, 𝑑) over𝐴. This is equivalent to the condition

that 𝑐 and 𝑑 are equivalent as objects in map
B
(𝐴,C0). Furthermore, we will say

that they are locally equivalent if there is a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 inB such that

𝑠∗𝑖 (𝑐) ≃ 𝑠∗𝑖 (𝑑) for every 𝑖 (where 𝑠∗𝑖 (𝑐) is simply given by the composition 𝑐𝑠𝑖, and
likewise for 𝑠∗𝑖 (𝑑)).
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Remark 1.2.7.6. Using the same arguments as in Remark 1.2.7.2, for every pair

of objects 𝑐, 𝑑∶ 𝐴 ⇉ C in context 𝐴 ∈ B we obtain a canonical equivalence

eqC(𝑐, 𝑑) ≃ eq𝜋∗
𝐴C

( ̄𝑐, ̄𝑑) which fits into a commutative square

eqC(𝑐, 𝑑) eq𝜋∗
𝐴C

( ̄𝑐, ̄𝑑)

mapC(𝑐, 𝑑) map𝜋∗
𝐴C

( ̄𝑐, ̄𝑑).

≃

≃

in which the vertical maps are induced by 𝑠0 ∶ C0 ↪→ C1 and 𝑠0 ∶ 𝜋∗
𝐴C0 ↪→ 𝜋∗

𝐴C1,

respectively.

Remark 1.2.7.7. As a B-category C is determined by the associated sheaf of

∞-categories on B but not just by the underlying ∞-category Γ(C) of global

sections, it is crucial that we allow objects and morphisms in C to have arbitrary

context 𝐴 ∈ B. In other words, we need to allow objects and morphisms to be

only locally defined. Alternatively, this phenomenon can be viewed as a shadow

of the notion of contexts in type theory (hence the name), where they are needed

to keep track of the types of the variables that occur in a formula.

Remark 1.2.7.8. At first, the fact that objects and morphisms of a B-category C

might have non-global context 𝐴 appears to complicate things, but in practice

this is usually not the case: in fact, by Remark 1.2.7.1, the datum of an object

𝑐∶ 𝐴 → C precisely corresponds to that of an object ̄𝑐 ∶ 1B/𝐴
→ 𝜋∗

𝐴C. In other

words, upon replacing B with B/𝐴 and C with 𝜋∗
𝐴C, object in context 𝐴 are

turned into objects in global context, and the same is true for morphisms as well

(see Remark 1.2.7.2). Very often, we will make use of this correspondence in order

to be able to restrict our attention to objects and morphisms in global context.

This will be possible as we make sure that virtually every construction that we

make is preserved under étale base change, so that the B-category 𝜋∗
𝐴C plays the

same role among B/𝐴-categories as C plays among B-categories. Furthermore,

we make sure that every property of an object in a B-category is invariant under

the transposition from Remark 1.2.7.1, so that 𝑐 satisfies a certain condition if and

only if ̄𝑐 does. For example, Remark 1.2.7.6 implies that the property of a map

𝑓∶ 𝑐 → 𝑑 in context 𝐴 to be an equivalence follows this rule.
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Remark 1.2.7.9. Observe that every B-category C has a distinguished object

𝜏∶ C0 → C that is determined by the counit of the adjunction

𝜄 ⊣ (−)0 ∶ B ⇆ Cat(B).

We refer to 𝜏 as the tautological object of C. By definition, every object 𝑐∶ 𝐴 → C

arises as a pullback of 𝜏, in the sense that we have 𝑐 ≃ 𝑐∗𝜏 (where 𝑐∗𝜏 is simply

the composition 𝜏 𝑐). In that way, many questions about an arbitrary object in a

B-category can be reduced to questions about the tautological object.

Remark 1.2.7.10. Even if we are dealing with a large B-category C, we will

usually only need to consider small contexts 𝐴 ∈ B when speaking about objects

or maps in C. Essentially, this is possible since B̂ is generated by B under large

colimits, which implies that every large context 𝐴 ∈ B̂ admits a cover by small

contexts. Another way of saying this is that C is uniquely specified by its value

at small contexts, cf. Remark 1.1.4.1.

1.3. Functors of B-categories

A functor between two B-categories C and D is simply defined to be a map

𝑓∶ C → D in Cat(B), or equivalently an object 𝑓∶ 1 → Fun
B
(C,D) in global

context 1 ∈ B. More generally, we may call an object 𝐴 → Fun
B
(C,D) a functor

between C and D in context 𝐴 ∈ B. By Proposition 1.2.5.4, this is precisely the

datum of a map 𝜋∗
𝐴C → 𝜋∗

𝐴D of B/𝐴-categories. A map 𝐴 → Fun
B
(C,D)Δ

1
is

referred to as a morphism of functors or natural transformation in context 𝐴 ∈ B,

By Proposition 1.2.5.4, the datum of such a map is tantamount to that of a map

Δ1 ⊗ 𝜋∗
𝐴C → 𝜋∗

𝐴D in Cat(B/𝐴).

In this section, our goal is to study several important classes of functors between

B-categories. We begin in Section 1.3.1 with the study of monomorphisms and

strong epimorphisms, and in Section 1.3.2 we discuss the related notion of fully

faithful and essentially surjective functors. Finally, we discuss conservative

functors and localisations in Section 1.3.3.
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1.3.1. Monomorphisms and strong epimorphisms

Recall that a monomorphism in Cat(B) (i.e. a (−1)-truncated map) is a functor

that is internally left orthogonal to the map Δ0 ⊔ Δ0 → Δ0, cf. Example 1.1.5.10.

In other words, a functor 𝑓∶ C → D between B-categories is a monomorphism

if and only if the square

C D

C × C D × D

𝑓

(idC,idC) (idD,idD)
𝑓 ×𝑓

is a pullback, or equivalently that the diagonal map C → C×DC is an equivalence.

Dually, we say that a functor of B-categories is a strong epimorphism if it is

(internally) left orthogonal to the class of monomorphisms.

Remark 1.3.1.1. Since the notion of a monomorphism can be phrased entirely

in terms of pullbacks, base change both geometric and algebraic morphisms of

∞-topoi preserves monomorphisms. Consequently, base change along algebraic

morphisms also preserves strong epimorphisms.

Proposition 1.3.1.2. A functor 𝑓∶ C → D between B-categories is a monomor-
phism if and only if both 𝑓0 and 𝑓1 are monomorphisms in B. In particular,
both the inclusion Grpd(B) ↪→ Cat(B) as well as the core B-groupoid functor
(−)≃ ∶ Cat(B) → Grpd(B) preserve monomorphisms.

Proof. Since limits in Cat(B) are computed level-wise, the map 𝑓 is a monomor-

phism precisely if 𝑓𝑛 is a monomorphism in B for all 𝑛 ≥ 0. Owing to the

Segal conditions, this is automatically satisfied whenever only 𝑓0 and 𝑓1 are

monomorphisms.

Example 1.3.1.3. For any B-category C, the canonical map C≃ → C is a

monomorphism. In fact, using Proposition 1.3.1.2 this is equivalent to the map

𝑠0 ∶ C0 → C1 being a monomorphism in B, which in turn follows from the

observation that the square

Δ1 Δ0

Δ0 Δ0

𝑠0

𝑠0
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is a pushout in Cat∞ (which can be shown by similar arguments as used in the

proof of Lemma 1.3.2.8 below).

Proposition 1.3.1.4. Let 𝑓∶ C → D be a functor between largeB-categories. Then
the following are equivalent:

1. 𝑓 is a monomorphism;

2. 𝑓 ≃ is a monomorphism in B̂, and for any 𝐴 ∈ B and any two objects
𝑐0, 𝑐1 ∶ 𝐴 → C in context 𝐴 ∈ B, the morphism

mapC(𝑐0, 𝑐1) → mapD(𝑓 (𝑐0), 𝑓 (𝑐1))

that is induced by 𝑓 is a monomorphism in B̂/𝐴;

3. for every 𝐴 ∈ B the functor 𝑓 (𝐴)∶ C(𝐴) → D(𝐴) is a monomorphism of
∞-categories;

Proof. As monomorphisms are defined by a limit condition and as the inclusion

Cat(B̂) ↪→ PShĈat∞
(B) creates limits, one easily sees that conditions (1) and (3)

are equivalent. Moreover, Proposition 1.3.1.2 implies that 𝑓 is a monomorphism if

and only if both 𝑓0 and 𝑓1 are monomorphisms in B̂. It therefore suffices to show

that 𝑓1 is a monomorphism if and only if for every 𝐴 ∈ B and any two objects

𝑐0, 𝑐1 ∶ 𝐴 ⇉ C in context 𝐴, the morphism

mapC(𝑐0, 𝑐1) → mapD(𝑓 (𝑐0), 𝑓 (𝑐1))

that is induced by 𝑓 is a monomorphism in B̂/𝐴, provided that 𝑓0 is a monomor-

phism. By definition, the map that 𝑓 induces on mapping B-groupoids fits into

the commutative diagram

mapC(𝑐0, 𝑐1) mapD(𝑓 (𝑐0), 𝑓 (𝑐1))

C1 D1

𝐴 𝐴

C0 × C0 D0 × D0.

𝑓1

id

𝑓0×𝑓0

in which the two squares on the left and on the right are pullbacks. As 𝑓0 is a

monomorphism, the bottom square is a pullback, which implies that the top square
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is a pullback as well. Hence if 𝑓1 is a monomorphism, then the morphism on map-

ping B-groupoids must be a monomorphism as well. Conversely, suppose that 𝑓
induces a monomorphism on mappingB-groupoids. Let 𝑃 ≃ (C0 ×C0) ×D0×D0

D1
denote the pullback of the front square in the above diagram. Then 𝑓1 factors

as C1 → 𝑃 → D1 in which the second arrow is a monomorphism. It therefore

suffices to show that the map C1 → 𝑃 is a monomorphism as well. Note that

the map mapD(𝑓 (𝑐0), 𝑓 (𝑐1)) → D1 factors through the inclusion 𝑃 ↪→ D1 such

that the induced map mapD(𝑓 (𝑐0), 𝑓 (𝑐1)) → 𝑃 arises as the pullback of the map

𝑃 → C0 × C0 along (𝑐0, 𝑐1). As the object 𝐶0 × 𝐶0 is obtained as the colimit of the

diagram

B/𝐶0×𝐶0
→ B ↪→ B̂,

we obtain a cover ⨆𝐴→C0×C0
𝐴 � 𝐶0 × 𝐶0 in B̂ and therefore a cover

⨆
(𝑐0,𝑐1)

mapD(𝑓 (𝑐0), 𝑓 (𝑐1)) � 𝑃.

We conclude the proof by observing that there is a pullback diagram

⨆(𝑐0,𝑐1)
mapC(𝑐0, 𝑐1) C1

⨆(𝑐0,𝑐1)
mapD(𝑓 (𝑐0), 𝑓 (𝑐1)) 𝑃

in which the left vertical map is a monomorphism. Thus C1 → 𝑃 is also a

monomorphism by [49, Proposition 6.2.3.17].

Remark 1.3.1.5. In light of Proposition 1.3.1.2 it might be tempting to expect that

dually a map 𝑓∶ C → D in Cat(B) is a strong epimorphism if and only if 𝑓0 and 𝑓1
are covers in B. In fact, this is a sufficient condition: the Segal conditions imply

that 𝑓0 and 𝑓1 being a cover is equivalent to 𝑓 being a cover in the ∞-topos BΔ
(where covers are given by level-wise covers in B). Therefore, this claim follow

from the observation that the left adjoint of the inclusion Cat(B) ↪→ BΔ carries

covers to strong epimorphisms as dually this inclusion preserves monomorphisms.

The condition that 𝑓0 and 𝑓1 are covers is however not necessary. For example,

the functor (𝑑2, 𝑑0)∶ Δ1 ⊔ Δ1 → Δ2 in Cat∞ is a strong epimorphism since every
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subcategory of Δ2 that contains the image of this functor must necessarily be Δ2,

but this map is not surjective on the level of morphisms.

For any ∞-category C with finite limits and any object 𝑐 ∈ C, we write SubC(𝑐)
for the poset of subobjects of 𝑐, i.e. the full subcategory of C/𝑐 that is spanned by

the (−1)-truncated objects. Since a functor 𝑓∶ C → D is a monomorphism in

Cat(B) if and only if 𝑓 is a (−1)-truncated object in Cat(B)/D, it makes sense to

define:

Definition 1.3.1.6. Let D be a B-category. A subcategory of D is defined to be

an object in SubCat(B)(D).

Warning 1.3.1.7. If C is a B-category, not every subobject of C in BΔ need to

be a B-category. Therefore, the two posets SubCat(B)(C) and SubBΔ
(C) are in

general different.

Recall from the discussion in Section 1.2.7 that if C is a B-category and 𝐴 is an

object in B, the datum of a map 𝐴 → C1 is equivalent to that of a map 𝐴 → CΔ1
,

which is in turn equivalent to that of a map Δ1 ⊗ 𝐴 → C. Hence, the identity

C1 → C1 transposes to a functor Δ1 ⊗ C1 → C.

Lemma 1.3.1.8. For any B-category C, the functor Δ1 ⊗ C1 → C is a strong
epimorphism in Cat(B).

Proof. In light of Remark 1.3.1.5, it suffices to show that the functor Δ1 ⊗C1 → C

induces a cover on level 0 and level 1. On level 0, the map is given by

(𝑑1, 𝑑0)∶ C1 ⊔ C1 → C0

which is clearly a cover since precomposition with 𝑠0 ⊔ 𝑠0 ∶ C0 ⊔ C0 → C1 ⊔ C1
recovers the diagonal C0 ⊔ C0 → C0 which is always a cover in B. On level 1,
one obtains the map

(𝑠0𝑑1, id, 𝑠0𝑑0)∶ C1 ⊔ C1 ⊔ C1 → C1

which is similarly a cover in B, as desired.

Proposition 1.3.1.9. Let 𝑓∶ C → D be a functor between large B-categories and
let E ↪→ D be a subcategory. The following are equivalent:
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1. 𝑓 factors through the inclusion E ↪→ D;

2. 𝑓 ≃ factors through E≃ ↪→ D≃, and for each pair (𝑐0, 𝑐1)∶ 𝐴 → C0 × C0 of
objects in context 𝐴 ∈ B, the map

mapC(𝑐0, 𝑐1) → mapD(𝑓 (𝑐0), 𝑓 (𝑐1))

that is induced by 𝑓 factors through the inclusion

mapE(𝑓 (𝑐0), 𝑓 (𝑐1)) ↪→ mapD(𝑓 (𝑐0), 𝑓 (𝑐1));

3. for each map Δ1 ⊗ 𝐴 → C in context 𝐴 ∈ B its image in D is contained in E.

Proof. It is immediate that (1) implies (2) and that (2) implies (3). Suppose there-

fore that condition (3) holds. As in the proof of Proposition 1.3.1.4, the collection

of all maps 𝐴 → C1 constitutes a cover

⨆
𝐴→C1

𝐴 � C1

in B̂. By Remark 1.3.1.5, we may view this map as a strong epimorphism between

large B-groupoids. Since strong epimorphisms are internally left orthogonal to

monomorphisms and therefore closed under products in Cat(B̂), we deduce that

the induced map

⨆
𝐴→C1

Δ1 ⊗ 𝐴 → Δ1 ⊗ C1

is a strong epimorphism. Together with Lemma 1.3.1.8, we therefore obtain a

strong epimorphism ⨆𝐴�C1
Δ1 ⊗ 𝐴 → C. Using the assumptions, we may now

construct a lifting problem

⨆𝐴→C1
Δ1 ⊗ 𝐴 E

C D
𝑓

which admits a unique solution, hence condition (1) follows.

Corollary 1.3.1.10. A functor 𝑓∶ C → D of B-categories factors through the
inclusion D≃ ↪→ D if and only if 𝑓 sends all morphisms in C to equivalences in
D.
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Definition 1.3.1.11. Let 𝑓∶ C → D be a map in Cat(B) and let C � E ↪→ D be

the factorisation of 𝑓 into a strong epimorphism and a monomorphism. Then the

subcategory E ↪→ D is referred to as the 1-image of 𝑓.

In higher category theory, one can define a subcategory of an ∞-category by

rather low-dimensional data, namely by specifying a collection of objects and a

collection of morphisms between these objects that are closed under composition

and contain all equivalences. Hereafter, our goal is to obtain a similar result for

subcategories of B-categories. To that end, note that the functor

(−)Δ
1
∶ Cat(B)/C → Cat(B)/CΔ1

admits a left adjoint that is given by the composition

Cat(B)/CΔ1
Δ1⊗−
−−−−−→ Cat(B)/Δ1⊗CΔ1

ev!
−−→ Cat(B)/C

in which ev denotes the evaluation map. Similarly, the functor

(−)≃ ∶ Cat(B)/CΔ1 → B/C1

has a left adjoint that is given by the composition

B/C1
↪→ Cat(B)/C1

𝑖!
−→ Cat(B)/CΔ1

where 𝑖∶ C1 ≃ (CΔ1
)≃ ↪→ CΔ1

denotes the canonical inclusion. By Proposi-

tion 1.3.1.2, the functor (−)1 = (−)≃ ∘(−)Δ
1
sends a monomorphismD ↪→ C to the

inclusionD1 ↪→ C1 and therefore restricts to a functor SubCat(B)(C) → SubB(C1).
As SubCat(B)(C) ↪→ Cat(B)/C admits a left adjoint that sends a functor 𝑓∶ D → C

to its 1-image in C, we thus obtain an adjunction

(⟨−⟩ ⊣ (−)1)∶ SubB(C1) ⇆ SubCat(B)(C)

in which the left adjoint ⟨−⟩ sends a monomorphism 𝑆 ↪→ C1 to the 1-image ⟨𝑆⟩
of the associated map Δ1 ⊗ 𝑆 → C. Note that for any subcategory D ↪→ C, the

counit ⟨D1⟩ → D is given by the unique solution to the lifting problem

Δ1 ⊗ D1 D

⟨D1⟩ C
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in which the upper horizontal map is the transpose of the identity D1 → D1. By

Lemma 1.3.1.8, this is a strong epimorphism, hence we conclude that the map

⟨D1⟩ → D must be an equivalence. We have thus shown:

Proposition 1.3.1.12. For any B-category C, the functor

(−)1 ∶ SubCat(B)(C) → SubB(C1)

exhibits the poset SubCat(B)(C) as a reflective subposet of SubB(C1).

Remark 1.3.1.13. The inclusion (−)1 ∶ SubCat(B)(C) ↪→ SubB(C1) is in general

not an equivalence. For example, consider B = Ani and C = Δ2: here the two

maps 𝑑 {0,1} ∶ Δ1 → Δ2 and 𝑑{1,2} ∶ Δ1 → Δ2 determine a proper subobject of Δ2
1,

but the associated subcategory of Δ2 is nevertheless Δ2 itself.

As a consequence of Proposition 1.3.1.12, it is now possible to define the

subcategory of a B-category that is generated by a collection of morphisms:

Definition 1.3.1.14. Let C be a B-category and let (𝑓𝑖 ∶ 𝐴𝑖 → C1)𝑖∈𝐼 be a small

family of morphisms in C. Let 𝐸 ↪→ C1 be the subobject that is obtained by

taking the image of the induced map ⨆𝑖 𝐴𝑖 → C1. Then we refer to the induced

subcategory ⟨𝐸⟩ ↪→ C as the subcategory of C that is generated by the family

(𝑓𝑖)𝑖∈𝐼.

Remark 1.3.1.15. In the situation of Definition 1.3.1.14, the condition that (𝑓𝑖)𝑖∈𝐼
is a small family is superfluous. In fact, if the family is large, one can simply pass

to the universe enlargement B̂ to make sense of the image 𝐸 ↪→ C1 in this case.

Since C1 is contained in B, the same must be true for 𝐸, hence the subcategory

generated by the family (𝑓𝑖)𝑖∈𝐼 is still well-defined.

Remark 1.3.1.16. Unwinding the definitions, if (𝑓𝑖 ∶ 𝐴𝑖 → C1) is a family of

maps in a B-category C, then the subcategory of C that is generated by this

family is given by the 1-image of the associated functor ⨆𝑖 Δ
1 ⊗ 𝐴𝑖 → C.

As Remark 1.3.1.13 exemplifies, one obstruction to

(−)1 ∶ SubCat(B)(C) ↪→ SubB(C1)
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being an equivalence is that the collection of maps that determine a subobject

𝑆 ↪→ C1 need not be stable under composition. In other words, to make sure

that a subobject of C1 arises as the object of morphisms of a subcategory of C,

we need to impose a composability condition on this subobject. Altogether, we

obtain the following characterisation of the essential image of (−)1:

Proposition 1.3.1.17. For any B-category C, a subobject 𝑆 ↪→ C1 lies in the
essential image of the inclusion SubCat(B)(C) ↪→ SubB(C1) if and only if

1. it is closed under equivalences, i.e. the map (𝑠0𝑑1, 𝑠0𝑑0)∶ 𝑆 ⊔ 𝑆 → C1 factors
through 𝑆 ↪→ C1;

2. it is closed under composition, i.e. the restriction of 𝑑1 ∶ C1 ×C0
C1 → C1

along the inclusion 𝑆 ×C0
𝑆 ↪→ C1 ×C0

C1 factors through 𝑆 ↪→ C1.

The remainder of this section is devoted to the proof of Proposition 1.3.1.17.

Our strategy is to make use of the intuition that the datum of a subcategory of C

should be equivalent to the datum of a collection of objects in C, together with a

composable collection of maps between these objects. Our goal hereafter is turn

this surmise into a formal statement.

For any integer 𝑘 ≥ 0, let 𝑖𝑘 ∶ Δ≤𝑘 ↪→ Δ denote the full subcategory spanned

by ⟨𝑛⟩ for 𝑛 ≤ 𝑘, and let B≤𝑘
Δ denote the ∞-category of B-valued presheaves on

Δ≤𝑘. The truncation functor 𝑖∗𝑘 ∶ BΔ → B≤𝑘
Δ admits both a left adjoint (𝑖𝑘)! and a

right adjoint (𝑖𝑘)∗ given by left and right Kan extension. Note that both (𝑖𝑘)! and
(𝑖𝑘)∗ are fully faithful. We will generally identify B≤𝑘

Δ with its essential image

in BΔ along the right Kan extension (𝑖𝑘)∗. We define the associated coskeleton
functor as cosk𝑘 = (𝑖𝑘)∗𝑖∗𝑘 and the skeleton functor as sk𝑘 = (𝑖𝑘)!𝑖∗𝑘 . The unit

of the adjunction 𝑖∗𝑘 ⊣ (𝑖𝑘)∗ provides a map idBΔ
→ cosk𝑘, and the counit of

the adjunction (𝑖𝑘)! ⊣ 𝑖∗𝑘 provides a map sk𝑘 → idBΔ
. We say that 𝐶 ∈ BΔ is

𝑘-coskeletal if the map 𝐶 → cosk𝑘(𝐶) is an equivalence, i.e. if 𝐶 is contained in

B≤𝑘
Δ ⊂ BΔ. Dually, 𝐶 is 𝑘-skeletal if the map sk𝑘(𝐶) → 𝐶 is an equivalence. Note

that the adjunction sk𝑘 ⊣ cosk𝑘 implies that a simplicial object is 𝑘-coskeletal if
and only if it is local with respect to the maps sk𝑘(𝐷) → 𝐷 for every 𝐷 ∈ BΔ.

Definition 1.3.1.18. For any integer 𝑘 ≥ 0, a map 𝑓∶ 𝐶 → 𝐷 in BΔ is said to be

𝑘-coskeletal if it is right orthogonal to sk𝑘(𝐾) → 𝐾 for every 𝐾 ∈ BΔ.
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Note that by using the adjunction sk𝑘 ⊣ cosk𝑘 and Yoneda’s lemma, one has the

following criterion for a map between simplicial objects in B to be 𝑘-coskeletal:

Proposition 1.3.1.19. For any integer 𝑘 ≥ 0, a map 𝑓∶ 𝐶 → 𝐷 inBΔ is 𝑘-coskeletal
precisely if the canonical map 𝐶 → 𝐷 ×cosk𝑘(𝐷) cosk𝑘(𝐶) is an equivalence.

For any 𝑛 ≥ 1, denote by 𝜕Δ𝑛 the simplicial ∞-groupoid sk𝑛−1 Δ𝑛 and by

𝜕Δ𝑛 ↪→ Δ𝑛 the natural map induced by the adjunction counit.

For later use, we record the following obvious consequence of the skeletal

filtration on simplicial sets:

Lemma 1.3.1.20. Let 𝑗∶ 𝐾 ↪ 𝐿 be a monomorphism of finite simplicial sets and
assume that sk𝑘 𝐾 = sk𝑘 𝐿 for some 𝑘 ∈ ℕ. Then 𝑗 is contained in the smallest
saturated class containing the maps 𝜕Δ𝑙 → Δ𝑙 for 𝑘 < 𝑙 < dim 𝐿.

Lemma 1.3.1.21. Let 𝑘 ≥ 0 be an integer. Then the following sets generate the
same saturated class of morphisms in BΔ:

1. {sk𝑘 𝐷 → 𝐷 | 𝐷 ∈ BΔ};

2. {𝜕Δ𝑛 ⊗ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 | 𝑛 > 𝑘, 𝐴 ∈ B}.

3. {𝜕Δ𝑘+1 ⊗ 𝐷 ↪→ Δ𝑘+1 ⊗ 𝐷 | 𝐷 ∈ BΔ}.

Proof. We start by showing that the saturations of (1) and (2) agree. Given 𝐴 ∈ B,

note that since the truncation functor 𝑖∗𝑘 commutes with postcomposition by both

the pullback functor 𝜋∗
𝐴 ∶ B → B/𝐴 and its right adjoint (𝜋𝐴)∗, the uniqueness

of adjoints implies that the functor sk𝑘 commutes with − × 𝐴∶ BΔ → BΔ. By

a similar argument, the functor sk𝑘 commutes with const∶ AniΔ → BΔ. We

therefore obtain an equivalence sk𝑘(Δ𝑚⊗𝐴) ≃ sk𝑘(Δ𝑚)⊗𝐴with respect to which

the canonical map sk𝑘(Δ𝑚 ⊗ 𝐴) → Δ𝑚 ⊗ 𝐴 corresponds to the map obtained by

applying the functor − ⊗ 𝐴 to the map sk𝑘(Δ𝑚) → Δ𝑚. This already implies that

the set in (2) is contained in the set in (1), so that the saturation of (2) is contained

in the saturation of (1). Conversely, as any 𝐷 ∈ BΔ can be written as a colimit of

objects of the form Δ𝑛 ⊗ 𝐴 (see Remark 1.2.1.3), the above argument also shows

that every map in (1) is a colimit of maps of the form sk𝑘(Δ𝑛)⊗𝐴 → Δ𝑛⊗𝐴. Since

moreover constB and − ⊗ 𝐴 are colimit-preserving functors, one finds that (1) is
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contained in the saturation of (2) as soon as we can show that any saturated class

𝑆 of maps in AniΔ which contains 𝜕Δ𝑛 → Δ𝑛 for all 𝑛 > 𝑘 must also contain the

maps sk𝑘 Δ𝑚 → Δ𝑚 for all 𝑚. To prove this latter claim, we argue by induction

over 𝑛 > 𝑘. If 𝑛 = 𝑘 + 1 this is clear by definition. For 𝑛 > 𝑘 + 1 we consider the

composite sk𝑘 Δ𝑛 → 𝜕Δ𝑛 → Δ𝑛. By our induction hypothesis and Lemma 1.3.1.20,

the first map is in 𝑆 and the composite is so by assumption. Using part (2) of

Proposition 1.1.5.2, the claim now follows.

Next, to show that the saturation of (2) contains (3), we may again assume

𝐷 ≃ Δ𝑚⊗𝐴. In this case, the inclusion 𝜕Δ𝑘+1×Δ𝑚 ↪→ Δ𝑘+1×Δ𝑚 can be obtained as

an iterated pushout of maps of the form 𝜕Δ𝑛 ↪→ Δ𝑛 for 𝑛 > 𝑘 (by Lemma 1.3.1.20),

hence the claim follows. For the converse inclusion, we will use induction on 𝑛,
the case 𝑛 = 𝑘 + 1 being satisfied by definition. Given that for a fixed 𝑛 > 𝑘 the

inclusion 𝜕Δ𝑛 ⊗𝐴 ↪→ Δ𝑛 ⊗𝐴 is contained in the saturation of (3), Lemma 1.3.1.20

allows us to build the inclusion 𝜕Δ𝑛 × Δ1 ↪→ sk𝑛(Δ𝑛 × Δ1) as an iterated pushout

along 𝜕Δ𝑛 ↪→ Δ𝑛. Therefore, the map sk𝑛(Δ𝑛 × Δ1) ⊗ 𝐴 ↪→ (Δ𝑛 × Δ1) ⊗ 𝐴 is

contained in the saturation of (3) (again by part (2) of Proposition 1.1.5.2). Let

𝛼∶ Δ𝑛+1 → Δ𝑛×Δ1 be defined by 𝛼(𝑖) = (𝑖, 0) for 𝑖 = 0, … , 𝑛 and 𝛼(𝑛+1) = (𝑛+1, 1),
and let 𝛽∶ Δ𝑛 × Δ1 → Δ𝑛+1 be given by 𝛽(𝑖, 0) = 𝑖 and 𝛽(𝑖, 1) = 𝑛 + 1. We then

obtain a retract diagram

𝜕Δ𝑛+1 sk𝑛(Δ𝑛 × Δ1) 𝜕Δ𝑛+1

Δ𝑛+1 Δ𝑛 × Δ1 Δ𝑛+1

𝛼 ′ 𝛽′

𝛼 𝛽

in which 𝛼′ and 𝛽′ are given by the restriction of 𝛼 and 𝛽, respectively. We

therefore conclude that the map 𝜕Δ𝑛+1⊗𝐴 ↪→ Δ𝑛+1⊗𝐴 is in the saturation of (3),

as desired.

As a consequence of Lemma 1.3.1.21, one finds:

Proposition 1.3.1.22. For any integer 𝑘 ≥ 0, a map 𝑓∶ 𝐶 → 𝐷 inBΔ is 𝑘-coskeletal
if and only if it is internally right orthogonal to the map 𝜕Δ𝑘+1 ↪→ Δ𝑘+1.

We can use Proposition 1.3.1.22 to show that every monomorphism between

B-categories is 1-coskeletal:
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Lemma 1.3.1.23. Let 𝑆 be the internal saturation of Δ0 ⊔ Δ0 → Δ0 and 𝐼 2 ↪→ Δ2

in BΔ. Then 𝑆 contains the map 𝜕Δ2 ↪→ Δ2.

Proof. Let 𝑓∶ 𝐾 → 𝐿 be a map in BΔ that is internally right orthogonal to the

maps Δ0 ⊔ Δ0 → Δ0 and the inclusion of the 2-spine 𝐼 2 ↪→ Δ2. Then 𝑓 is a

monomorphism. Now consider the commutative diagram

𝐾Δ2

𝑃 𝐾 𝜕Δ2
𝐾 𝐼 2

𝑄 𝑅 𝐾 𝐼 2

𝐿Δ
2

𝐿𝜕Δ
2

𝐿𝐼
2

𝐿Δ
2

𝐿𝜕Δ
2

𝐿𝐼
2

⌜
id

⌜ ⌜

id id id

in which 𝑃, 𝑄 and 𝑅 are defined by the condition that the respective square is

a pullback diagram. We need to show that the map 𝐾Δ2
→ 𝑃 is an equivalence.

As by assumption on 𝑓 the map 𝐾Δ2
→ 𝑄 is an equivalence, it suffices to show

that 𝑃 → 𝑄 is an equivalence as well. But this map is already a monomorphism,

hence the claim follows from the observation that 𝑃 → 𝑄 must be a cover as the

map 𝐾Δ2
→ 𝑄 is one.

Proposition 1.3.1.24. Every monomorphism between B-categories is 1-coskeletal.

Proof. Lemma 1.3.1.23 implies that every monomorphism between B-categories

is internally right orthogonal to 𝜕Δ2 ↪→ Δ2 and therefore 1-coskeletal.

Let C be a B-category and let Cat(B)≤1/C be the full subcategory of Cat(B)/C
that is spanned by the 1-coskeletal maps into C. By restricting the inclusion

Cat(B)≤1/C ↪→ Cat(B)/C to (−1)-truncated objects (i.e. to monomorphisms into

D), one obtains a full embedding

Sub≤1Cat(B)(C) ↪→ SubCat(B)(C)

of partially ordered sets. Proposition 1.3.1.24 now implies:
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Corollary 1.3.1.25. For any B-category C, the inclusion

Sub≤1Cat(B)(C) ↪→ SubCat(B)(C)

is an equivalence.

For any B-category C, the functor (cosk1)/C ∶ (BΔ)/C → (B≤1
Δ )/ cosk1 C that

is induced by the coskeleton functor on the slice ∞-categories admits a fully

faithful right adjoint 𝜂∗ that is given by base change along the adjunction unit

𝜂∶ C → cosk1 C. Upon restricting to subobjects, we therefore obtain an adjunc-

tion

SubBΔ
(C) SubB≤1

Δ
(cosk1 C).

𝜂∗

(cosk1)/C

In general, the functor 𝜂∗ does not take values in SubCat(B)(C), but we may

explicitly characterise those subobjects of cosk1 C that do give rise to aB-category.

To that end, note that given a subobject 𝐷 ↪→ cosk1 C in B≤1
Δ , the restriction of

𝑑1 ∶ C1 ×C0
C1 → C1 along the inclusion 𝐷1 ×𝐷0

𝐷1 ↪→ C1 ×C0
C1 determines a

map 𝑑1 ∶ 𝐷1 ×𝐷0
𝐷1 → C1.

Definition 1.3.1.26. Let C be a B-category. A subobject 𝐷 ↪→ cosk1 C in B≤1
Δ

is said to be closed under composition if the map 𝑑1 ∶ 𝐷1 ×𝐷0
𝐷1 → C1 factors

through 𝐷1 ↪→ C1. We denote by Subcomp
B≤1

Δ
(cosk1 C) the full subcategory of

SubB≤1
Δ
(cosk1 C) that is spanned by these subobjects.

Lemma 1.3.1.27. Let 𝐴 ∈ B be an arbitrary object and let 𝑆 be a saturated set of
maps in BΔ that contains the internal saturation of 𝜕Δ2 ↪→ Δ2 as well as the map
𝐼 2 ⊗ 𝐴 ↪→ Δ2 ⊗ 𝐴. Then 𝑆 contains 𝐼 𝑛 ⊗ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 for all 𝑛 ≥ 2.

Proof. We may assume 𝑛 > 2. By [43, Proposition 2.13], it suffices to show that

for all 0 < 𝑖 < 𝑛 the inclusion Λ𝑛
𝑖 ⊗ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 is contained in 𝑆. On account of

the factorisation Λ𝑛
𝑖 ↪→ 𝜕Δ𝑛 ↪→ Δ𝑛 in which the first map is obtained as a pushout

along 𝜕Δ𝑛−1 ↪→ Δ𝑛, this is immediate.

Proposition 1.3.1.28. Let 𝐷 ↪→ cosk1 C be a subobject in B≤1
Δ . Then 𝜂∗𝐷 is a

B-category if and only if 𝐷 is closed under composition. In particular, 𝜂∗ defines an
equivalence

Subcomp
B≤1

Δ
(cosk1 C) ≃ SubCat(B)(C).
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Proof. If 𝜂∗𝐷 is a B-category, the fact that applying cosk1 to the inclusion

𝜂∗𝐷 ↪→ C recovers the subobject 𝐷 ↪→ cosk1 C implies that 𝐷 is closed un-

der composition. Conversely, suppose that 𝐷 is closed under composition. Since

𝐸1 → 1 is a cover in BΔ (where 𝐸1 is the walking equivalence, see Section 1.2.3),

every monomorphism of simplicial objects in B is internally right orthogonal to

𝐸1 → 1. Therefore 𝜂∗𝐷 is univalent. We still need to show that 𝜂∗𝐷 satisfies the

Segal conditions. Since 𝜂∗𝐷 ↪→ C is 1-coskeletal, Lemma 1.3.1.27 implies that we

only need to show that (𝜂∗𝐷)2 → 𝐶1 ×𝐷0
𝐷1 is an equivalence. As this map is a

monomorphism, it furthermore suffices to show that it is a cover in B. Note that

since the natural map (−)Δ
2
→ (−)𝜕Δ

2
induces an equivalence on 1-coskeletal

objects, the identification 𝜕Δ2 ≃ 𝐼 2 ⊔Δ0⊔Δ0 Δ1 gives rise to a commutative square

C1 ×C0
C1 (cosk1 C)2 C1 ×C0

C1

𝐷1 ×𝐷0
𝐷1 𝐷2 𝐷1 ×𝐷0

𝐷1

C1 C0 × C0

𝐷1 𝐷0 × 𝐷0

𝑑1

𝑑1

in which the two squares in the front and in the back of the cube are pullbacks and

where the dashed arrows exist as 𝐷 is closed under composition. By combining

this diagram with the pullback square

(𝜂∗𝐷)2 𝐷2

C2 (cosk1 C)2,

one concludes that the map (𝜂∗𝐷)2 → 𝐷1 ×𝐷0
𝐷1 admits a section and is there-

fore a cover, as desired. Lastly, the claim that that 𝜂∗ induces an equivalence

Subcomp
B≤1

Δ
(cosk1 C) ≃ SubCat(B)(C) now follows easily with Corollary 1.3.1.25.

Proof of Proposition 1.3.1.17. It is clear that any subobject 𝑆 ↪→ C1 that arises

as the object of morphisms of a subcategory of C must necessarily satisfy the

two conditions, so it suffices to prove the converse. Let 𝐷0 ↪→ C be the image

of (𝑑1, 𝑑0)∶ 𝑆 ⊔ 𝑆 → C0. As 𝑆 is closed under equivalences in C, the restric-

tion of 𝑠0 ∶ C0 → C1 to 𝐷0 factors through 𝑆 ↪→ C1. By setting 𝐷1 = 𝑆, we
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thus obtain a subobject 𝐷 ↪→ cosk1 C in B≤1
Δ . By assumption, this subobject

is closed under composition in the sense of Definition 1.3.1.26, hence Proposi-

tion 1.3.1.28 implies that 𝜂∗𝐷 is a subcategory of C. Hence 𝑆 = 𝐷1 arises as the

object of morphisms of 𝜂∗𝐷 and is therefore contained in the essential image of

(−)1 ∶ SubCat(B)(C) ↪→ SubB(C1).

1.3.2. Fully faithful and essentially surjective functors

Definition 1.3.2.1. A functor C → D between B-categories is said to be fully
faithful if it is internally right orthogonal to the map (𝑑1, 𝑑0)∶ Δ0 ⊔ Δ0 → Δ1.

Dually, a functor is essentially surjective if is (internally) left orthogonal to the

class of fully faithful functors.

Remark 1.3.2.2. A functor 𝑓∶ C → D between ∞-categories is essentially

surjective in the sense of Definition 1.3.2.1 if and only if every object in D is

equivalent to an object in the image of 𝑓, i.e. if and only if it is essentially surjective

in the usual sense of the term. We will show this in Corollary 1.3.2.15 below.

By Proposition 1.1.5.7, the two classes of essentially surjective and fully faithful

functors form an orthogonal factorisation system in Cat(B). In particular, one

obtains:

Proposition 1.3.2.3. Let 𝑓∶ C → D be a functor between B-categories. Then 𝑓 is
an equivalence if and only if 𝑓 is fully faithful and essentially surjective.

Let 𝑓∶ C → D be a functor between B-categories. By definition, 𝑓 being fully

faithful precisely means that the square

CΔ1
DΔ1

C × C D × D

𝑓 Δ1

𝑓 ×𝑓

is cartesian. Applying the core functor, this implies that the square

C1 D1

C0 × C0 D0 × D0

𝑓1

𝑓0×𝑓0
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is cartesian as well. In fact, the latter square being cartesian is even a sufficient

criterion for 𝑓 to be fully faithful. The proof of this statement requires the

following combinatorial lemma:

Lemma 1.3.2.4. Let 𝐴 ∈ B be an arbitrary object and let 𝑆 be a saturated class
of morphisms in BΔ that contains the maps 𝐼 𝑛 ⊗ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 for all 𝑛 ≥ 0. If 𝑆
contains the map (𝑑1, 𝑑0)∶ 𝐴 ⊔ 𝐴 → Δ1 ⊗ 𝐴, then it also contains the map

(𝑑1, 𝑑0)∶ (Δ𝑛 ⊗ 𝐴) ⊔ (Δ𝑛 ⊗ 𝐴) → (Δ1 × Δ𝑛) ⊗ 𝐴

for any integer 𝑛 ≥ 0.

Proof. By replacing B with B/𝐴, we may assume without loss of generality that

𝐴 ≃ 1. As all maps in the statement of the lemma are contained in the essential

image of const∶ Ani → B, we may further assume B ≃ Ani. Furthermore, as

the inclusion 𝐼 𝑛 ⊔ 𝐼 𝑛 ↪→ Δ𝑛 ⊔ Δ𝑛 is contained in 𝑆, it suffices to show that the

map 𝐼 𝑛 ⊔ 𝐼 𝑛 ↪→ Δ1 × Δ𝑛 is contained in 𝑆 as well. By Lemma 1.2.3.5 the map

Δ1 × 𝐼 𝑛 ↪→ Δ1 × Δ𝑛 is contained in 𝑆, hence we need only show that also the

map 𝐼 𝑛 ⊔ 𝐼 𝑛 ↪→ Δ1 × 𝐼 𝑛 is an element of 𝑆. Now 𝐼 𝑛 being defined as the colimit

Δ1 ⊔Δ0 ⋯ ⊔Δ0 Δ1, we can assume without loss of generality 𝑛 = 1. Using the

decomposition Δ1 × Δ1 ≃ Δ2 ⊔Δ1 Δ2, one easily sees that this map is the pushout

in Fun(Δ1,AniΔ) that is obtained by glueing the two maps

(𝑑{0,1}, 𝑑 {2})∶ Δ1 ⊔ Δ0 ↪→ Δ2

and

(𝑑{0}, 𝑑 {1,2})∶ Δ0 ⊔ Δ1 ↪→ Δ2

along the morphism (𝑑1, 𝑑0)∶ Δ0 ⊔ Δ0 ↪→ Δ1. The proof is therefore finished

once we show that the two maps above are contained in 𝑆. We show this for the

first one, the case of the second one is completely analogous. Making use once

more of the assumption that the spine inclusion 𝐼 2 ↪→ Δ2 is contained in 𝑆, it
suffices to show that the map

(𝑑 {0,1}, 𝑑 {2})∶ Δ1 ⊔ Δ0 ↪→ 𝐼 2

is contained in 𝑆. This follows from the observation that this map is obtained by

glueing the two maps Δ0 ⊔ Δ0 ↪→ Δ1 and idΔ1 along idΔ0 in Fun(Δ1,AniΔ).
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Proposition 1.3.2.5. A functor 𝑓∶ C → D between B-categories is fully faithful
if and only if the square

C1 D1

C0 × C0 D0 × D0

𝑓1

𝑓0×𝑓0

is cartesian.

Proof. We already observed above that 𝑓 being fully faithful implies that the

square is cartesian. Conversely, the square being cartesian is equivalent to 𝑓
being right orthogonal to the set of maps

𝑆 = {(Δ0 ⊔ Δ0) ⊗ 𝐴 → Δ1 ⊗ 𝐴 | 𝐴 ∈ B}

in Cat(B). By Lemma 1.3.2.4, the saturation of 𝑆 in Cat(B) contains the maps

(Δ𝑛 ⊔ Δ𝑛) ⊗ 𝐴 → (Δ1 × Δ𝑛) ⊗ 𝐴

for 𝐴 ∈ B and 𝑛 ≥ 0, which translates into the statement that the induced square

(CΔ1
)𝑛 (DΔ1

)𝑛

C𝑛 × C𝑛 D𝑛 × D𝑛

𝑓 Δ1
𝑛

𝑓𝑛×𝑓𝑛

is a pullback square for all 𝑛 ≥ 0. As limits in Cat(B) can be computed on the

underlying simplicial objects, this shows that 𝑓 is fully faithful.

Remark 1.3.2.6. As a consequence of Proposition 1.3.2.5, base change along both

geometric and algebraic morphisms of ∞-topoi preserves fully faithful functors.

Consequently, base change along algebraic morphisms also preserves essentially

surjective functors.

Proposition 1.3.2.7. Let 𝑓∶ C → D be a functor between largeB-categories. Then
the following are equivalent:

1. The functor 𝑓 is fully faithful;
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2. for any𝐴 ∈ B and any two objects 𝑐0, 𝑐1 ∶ 𝐴 → C in context𝐴, the morphism

mapC(𝑐0, 𝑐1) → mapD(𝑓 (𝑐0), 𝑓 (𝑐1))

that is induced by 𝑓 is an equivalence in B̂/𝐴;

3. for every 𝐴 ∈ B the functor 𝑓 (𝐴)∶ C(𝐴) → D(𝐴) of ∞-categories is fully
faithful;

4. the induced map ∫C → ∫D of cartesian fibrations over B is fully faithful.

Proof. As limits in ShĈat∞
(B) are computed object-wise, it is clear that the first

and the third condition are equivalent. Moreover, the third and forth conditions

are equivalent by (the proof of) [10, Lemma 3.1.9]. Now if 𝑓 is fully faithful and

𝑐0, 𝑐1 ∶ 𝐴 ⇉ C are arbitrary objects in context 𝐴 ∈ B, the map

mapC(𝑐0, 𝑐1) → mapD(𝑓 (𝑐0), 𝑓 (𝑐1))

is defined by the commutative diagram

mapC(𝑐0, 𝑐1) mapD(𝑓 (𝑐0), 𝑓 (𝑐1))

C1 D1

𝐴 𝐴

C0 × C0 D0 × D0.

𝑓1

id

𝑓0×𝑓0

in which the two vertical squares on the left and on the right are cartesian. As

𝑓 is fully faithful, the square in the front is cartesian, hence the square in the

back must be cartesian as well, which implies that the second condition holds.

Conversely, if 𝑓 induces an equivalence on mapping groupoids, the fact that the

object 𝐶0 × 𝐶0 ∈ B̂ is obtained as the colimit of the diagram B/𝐶0×𝐶0
→ B ↪→ B̂,

we obtain a cover

⨆
𝐴→C0×C0

𝐴 � C0 × C0

in B̂. By assumption, pasting the front square in the above diagram with the
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pullback square

⨆𝐴→C0×C0
mapC(𝑐0, 𝑐1) C1

⨆𝐴→C0×C0
𝐴 C0 × C0

results in a pullback square, hence the claim follows from the fact that the étale

base change along a cover in an ∞-topos constitutes a conservative algebraic

morphism.

Our next goal is to show that fully faithful functors are monomorphisms in

Cat(B). For this, we will need the following lemma:

Lemma 1.3.2.8. The map Δ1 → Δ0 is essentially surjective as a functor of B-
categories.

Proof. Algebraic morphisms preserve essential surjectivity since dually geometric

morphisms preserve full faithfulness. We may therefore assume without loss

of generality B ≃ Ani. Let 𝑆 be the saturated class of maps in AniΔ that is

generated by Δ0 ⊔ Δ0 ↪→ Δ1, the spine inclusions 𝐼 𝑛 ↪→ Δ𝑛 for 𝑛 ≥ 0 as well as

the map 𝐸1 → 1, where 𝐸1 denotes the walking equivalence. It suffices to show

that Δ1 → Δ0 is contained in 𝑆. Let 𝐾 ↪→ Δ3 be the unique map of simplicial

∞-groupoids that fits into the commutative diagram

Δ1 Δ2

Δ2 𝐾

Δ3.

𝑑 {1,2}

𝑑 {0,1}

⌟ 𝑑 {1,2,3}

𝑑 {0,1,2}

The inclusion 𝐾 ↪→ Δ3 is contained in 𝑆: in fact, as the inclusion 𝐼 3 ↪→ Δ3 is an

element of 𝑆 and factors through 𝐾 ↪→ Δ3, it suffices to observe that the map

𝐼 3 ↪→ 𝐾 can be obtained by glueing two copies of the inclusion 𝐼 2 ↪→ Δ2 along
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the idΔ1 in Fun(Δ1,AniΔ). We now obtain a commutative diagram

Δ1 ⊔ Δ1 𝐾 Δ3

Δ0 ⊔ Δ0 𝐿 𝐸1
⌟ ⌟

in which the upper left horizontal map is induced by composing 𝑑{0,2} ∶ Δ1 ↪→ Δ2

with the two maps Δ2 ⇉ 𝐾 that are defined by the pushout square. As 𝐾 ↪→ Δ3

is contained in 𝑆, we conclude that the induced map 𝐿 ↪→ 𝐸1 must be in 𝑆 as well.

As a consequence, the terminal map 𝐿 → Δ0 is an element of 𝑆 too. Let Δ1 → 𝐾
be the composite map in the pushout square that defines 𝐾. Postcomposing with

the map 𝐾 → 𝐿 from the previous diagram gives rise to a map Δ1 → 𝐿. We finish

the proof by showing that this map is contained in 𝑆. Let 𝐻 be defined by the

pushout square

Δ1 Δ0

Δ2 𝐻.

𝑑 {0,2} ⌟

Then the map Δ1 → 𝐿 is recovered as the composite map in the cocartesian

square

Δ1 𝐻

𝐻 𝐿,

𝛼

𝛽

⌟

in which 𝛼 and 𝛽 are given by composing 𝑑 {1,2} ∶ Δ1 ↪→ Δ2 and 𝑑 {0,1} ∶ Δ1 ↪→ Δ2,

respectively, with the map Δ2 → 𝐻. As a consequence, we only need to verify

that 𝛼, 𝛽 ∈ 𝑆. We will show this for 𝛼, the case of the map 𝛽 is analogous. Consider

the commutative diagram

Δ0 Δ1 Δ0

Δ1 Λ2
0 Δ1

Δ2 𝐻

𝑑0

𝑑0 ⌟ ⌟ 𝑑0

𝑑 {1,2} ⌟
𝛼
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in which the composite of the two vertical maps in the middle is given by

𝑑{0,2} ∶ Δ1 ↪→ Δ2. As maps in 𝑆 are stable under pushouts, we only need to

show that the inclusion Λ2
0 ↪→ Δ2 is contained in 𝑆. Consider the commutative

square

Δ0 ⊔ Δ1 Λ2
0

𝐼 2 Δ2

that is uniquely determined by the condition that the composite map is induced

by the inclusions 𝑑{0} ∶ Δ0 ↪→ Δ2 and 𝑑0 ∶ Δ1 ↪→ Δ2. As the lower horizontal

map is contained in 𝑆 by assumption on 𝑆, it suffices to show that the two maps

from Δ0 ⊔Δ1 are in 𝑆 as well. This follows immediately from the observation that

both of these maps can be obtained as a pushout of the map Δ0 ⊔ Δ0 ↪→ Δ1.

Proposition 1.3.2.9. Every fully faithful functor of B-categories is a monomor-
phism in Cat(B).

Proof. By Lemma 1.3.2.8, the map Δ1 → Δ0 is essentially surjective, hence

Δ0 ⊔ Δ0 → Δ0 is essentially surjective as well. Since monomorphisms are pre-

cisely those maps that are internally right orthogonal to this map, the claim

follows.

For fully faithful functors between B-groupoids, the converse of Proposi-

tion 1.3.2.9 is true as well:

Corollary 1.3.2.10. For a map 𝑓∶ G → H between B-groupoids, the following are
equivalent:

1. 𝑓 is fully faithful;

2. 𝑓 is a monomorphism in Cat(B);

3. 𝑓 is a monomorphism in Grpd(B).

Proof. By Proposition 1.3.2.9, if 𝑓 is fully faithful, then 𝑓 is a monomorphism

in Cat(B). Conversely, 𝑓 being a monomorphism in Cat(B) precisely means

that 𝑓 is internally right orthogonal to the map Δ0 ⊔ Δ0 → Δ0. As the latter
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is the image of the map Δ0 ⊔ Δ0 → Δ1 under the groupoidification functor

(−)gpd ∶ Cat(B) → Cat(B), the claim follows by adjunction from the assumption

that 𝑓 is internally right orthogonal to Δ0 ⊔ Δ0 → Δ0. Lastly, (2) and (3) are

equivalent as inclusion Grpd(B) ↪→ Cat(B) commutes with small limits.

Definition 1.3.2.11. Let D be a B-category. A full subcategory of D is a fully

faithful functor C ↪→ D. The collection of full subcategories of D spans a partially

ordered subset of SubCat(B)(D) that we denote by Subfull(D).

As in∞-category theory, a full subcategory of aB-category should be uniquely

specified by the collection of objects that are contained in it. Hereafter our

goal is to turn this heuristic into a precise statement. To that end, note that

the functor (−)0 ∶ BΔ → B admits a right adjoint ̌𝐶(−) that sends an object

𝐴 ∈ B to its Čech nerve ̌𝐶(𝐴). Now if D is an arbitrary B-category, the functor

(−)0 ∶ (BΔ)/D → B/D0
admits a right adjoint ⟨−⟩D that is given by the composi-

tion

B/D0

̌𝐶
−→ (BΔ)/ ̌𝐶(D0)

𝜂∗
−−→ (BΔ)/D

in which 𝜂∶ D → ̌𝐶(D0) denotes the adjunction unit. As ̌𝐶 is fully faithful, so is

the functor ⟨−⟩D.

Lemma 1.3.2.12. For every B-category D and any monomorphism 𝑃 ↪→ D0, the
simplicial object ⟨𝑃⟩D is a B-category, and the functor ⟨𝑃⟩D → D is fully faithful.

Proof. By construction, the map ⟨𝑃⟩D → D fits into a cartesian square

⟨𝑃⟩D D

̌𝐶(𝑃) ̌𝐶(D0).

𝜂

To show that ⟨𝑃⟩D is a B-category, it therefore suffices to show that the map
̌𝐶(𝑃) → ̌𝐶(D0) is internally right orthogonal to the two maps 𝐸1 → 1 and

𝐼 2 ↪→ Δ2. This is in turn equivalent to the map 𝑃 ↪→ D0 being internally right

orthogonal (in B) to the two maps (𝐸1)0 → 1 and (𝐼 2)0 ↪→ (Δ2)0. As the first

one is a cover in B and the second one is an equivalence, this is immediate. By

the same argumentation, the functor ⟨𝑃⟩D → D is fully faithful precisely if the
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map 𝑃 ↪→ D0 is internally right orthogonal to (Δ0 ⊔ Δ0)0 → (Δ1)0, which follows

from the observation that this map is an equivalence in B.

As a consequence of Lemma 1.3.2.12, the functor ⟨−⟩D restricts to an embedding

⟨−⟩D ∶ SubB(D0) ↪→ Subfull(D)

of partially ordered sets.

Proposition 1.3.2.13. For any B-category D, the map

⟨−⟩D ∶ SubB(D0) ↪→ Subfull(D)

is an equivalence.

Proof. It suffices to show that the map is essentially surjective. Let therefore

C ↪→ D be a full subcategory of D. Using Corollary 1.3.2.10, the induced map

C0 → D0 is a monomorphism in B. We therefore obtain a factorisation

C ↪→ ⟨C0⟩D ↪→ D

in which the first map is fully faithful since the second map and the composite

map are fully faithful. As moreover the map C ↪→ ⟨C0⟩D induces an equivalence

on level 0, Proposition 1.3.2.5 implies that it must be an equivalence on level

1 as well. Together with the Segal condition, this implies that this map is an

equivalence, which completes the proof.

Proposition 1.3.2.14. Let 𝑓∶ C → D be a functor between large B-categories and
let E ↪→ D be a full subcategory. Then the following are equivalent:

1. 𝑓 factors through the inclusion E ↪→ D;

2. 𝑓 ≃ factors through E≃ ↪→ D≃;

3. for every object 𝑐 in C in context 𝐴 ∈ B its image 𝑓 (𝑐) is contained in E.

Proof. Clearly (1) implies (2). By making use of the adjunction (−)0 ⊣ ⟨−⟩D
and Proposition 1.3.2.13, one finds that conversely (2) implies (1). A fortiori (2)
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implies (3). Conversely, suppose that for any 𝑐∶ 𝐴 → C the composite map

𝐴 → C0 → D0 factors through E0 ↪→ D0. As the map

⨆
𝐴→C0

𝐴 � C0

defines a cover in B̂, the lifting problem

⨆𝐴→C0
𝐴 E0

C0 D0
𝑓

admits a unique solution, which proves that (2) holds.

Corollary 1.3.2.15. A map 𝑓∶ C → D between B-categories is essentially surjec-
tive if and only if 𝑓0 ∶ C0 → D0 is a cover in B.

Proof. Suppose first that 𝑓0 is a cover, and let

C
𝑝
−→ E

𝑖
−→ D

be the factorisation of 𝑓 into an essentially surjective and a fully faithful func-

tor. We need to show that 𝑖 is an equivalence. Since 𝑖 is fully faithful, Proposi-

tion 1.3.2.13 implies that this is the case if and only if 𝑖0 is an equivalence. But

since 𝑓0 is a cover, the map 𝑖0 is one as well and must therefore be an equivalence

as it is already a monomorphism by Proposition 1.3.2.9.

Conversely, suppose that 𝑓 is essentially surjective, and let

C0
𝑝
−→ 𝑃

𝑖
−→ D0

be the factorisation of 𝑓0 into a cover and a monomorphism in B. We need to

show that 𝑖 is an equivalence. By Proposition 1.3.2.13, the object 𝑃 determines a

full subcategory ⟨𝑃⟩D of D and since 𝑓0 factors through 𝑃, Proposition 1.3.2.14

implies that 𝑓 factors through a map C → ⟨𝑃⟩D. It suffices to show that this

functor is essentially surjective. Let C � E ↪→ ⟨𝑃⟩D be the factorisation of this

functor into an essentially surjective and a fully faithful functor. Then 𝑝∶ C0 → 𝑃
factors through a monomorphism E0 ↪→ 𝑃, but since 𝑝 is a cover this map must
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be a cover as well and therefore an equivalence. Proposition 1.3.2.13 then implies

that the map E ↪→ ⟨𝑃⟩D is an equivalence and therefore that the functorC → ⟨𝑃⟩D
is essentially surjective, as desired.

Definition 1.3.2.16. Let 𝑓∶ C → D be a map in Cat(B) and let C � E ↪→ D be

the factorisation of 𝑓 into an essentially surjective and a fully faithful functor.

Then the full subcategory E ↪→ D is referred to as the essential image of 𝑓.

Definition 1.3.2.17. Let D be a B-category and let (𝑑𝑖 ∶ 𝐴𝑖 → D)𝑖∈𝐼 be a small

family of objects in D. The essential image of the induced map ⨆𝑖 𝐴𝑖 → D is

referred to as the full subcategory of D that is generated by the family (𝑑𝑖)𝑖∈𝐼.

Remark 1.3.2.18. In the context of Definition 1.3.2.17, let 𝐺 ↪→ D0 be the image

of the map (𝑑𝑖)𝑖∈𝐼 ∶ ⨆𝑖 𝐴𝑖 → D0. Then Corollary 1.3.2.15 implies that the full

subcategory of D generated by the family (𝑑𝑖)𝑖∈𝐼 is given by ⟨𝐺⟩D. Moreover, an

object 𝑑∶ 𝐴 → D is contained in ⟨𝐺⟩D if and only if it locally equivalent to one

of the 𝑑𝑖, in the sense that there is a cover (𝑠𝑗)𝑗∈𝐽 ∶ ⨆𝑖 𝐵𝑖 � 𝐴, a map 𝜙∶ 𝐽 → 𝐼
as well as maps 𝑡𝑗 ∶ 𝐵𝑗 → 𝐴𝜙(𝑗) such that for each 𝑗 there is an equivalence

𝑠∗𝑗 (𝑑) ≃ 𝑡∗𝑗 (𝑑𝜙(𝑗)). In fact, that this is sufficient follows from the fact that the lifting

problem
⨆𝑗 𝐵𝑗 𝐺

𝐴 D0

(in which the upper horizontal arrow is induced by the maps 𝐵𝑗 → 𝐴𝜙(𝑗) → 𝐺)
has a unique solution, and that it is also necessary follows from considering the

pullback square
⨆𝑖 𝐴𝑖 ×𝐺 𝐴 𝐴

⨆𝑖 𝐴𝑖 𝐺

in B.

Remark 1.3.2.19. By the same argument as in Remark 1.3.1.15, the full subcate-

gory of aB-categoryD that is generated by a collection of objects (𝑑𝑖 ∶ 𝐴𝑖 → D)𝑖∈𝐼
is well-defined even if this family is large.
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1.3.3. Conservative functors and localisations

Definition 1.3.3.1. A functor of B-categories is said to be conservative if it is

internally right orthogonal to the map Δ1 → Δ0.

By Proposition 1.2.2.2, if C is a B-category, the unique map C → 1 in Cat(B)
is conservative if and only if C is a B-groupoid. Consequently, item (2) of

Proposition 1.1.5.2 implies that if 𝐴 ∈ B is an arbitrary object, a map C → 𝐴
in Cat(B) is conservative if and only if C is a B/𝐴-groupoid. In particular, if

𝑓∶ C → D is a conservative functor, then the fibre C|𝑑 of 𝑓 over any object

𝑑∶ 𝐴 → D with 𝐴 ∈ B is a B/𝐴-groupoid This property turns out to characterise
conservative functors. To show this, we first need the following lemma:

Lemma 1.3.3.2. Let 𝑆 be a saturated class of maps in Cat(B) that contains the
projections Δ1 ⊗ 𝐴 → 𝐴 for all 𝐴 ∈ B. Then 𝑆 contains the projection Δ1 ⊗ C → C

for any B-category C.

Proof. As every B-category C is a colimit of B-categories of the form Δ𝑛 ⊗𝐴 for

some 𝑛 ≥ 0 and some 𝐴 ∈ B, we may assume without loss of generality C ≃ Δ𝑛.

Since Δ𝑛 ≃ 𝐼 𝑛 in Cat(B), we may furthermore assume 𝑛 = 1. In light of the

decomposition Δ1 × Δ1 ≃ Δ2 ⊔Δ1 Δ2, the projection Δ1 × Δ1 → Δ1 is equivalent

to the composition

Δ2 ⊔Δ1 Δ2
𝑠1⊔Δ1 id
−−−−−−→ Δ2 𝑠0

−−→ Δ1.

It will therefore be enough to show that the two maps 𝑠0, 𝑠1 ∶ Δ2 ⇉ Δ1 are

contained in 𝑆, which follows immediately from the observation that these

two maps are given by 𝑠0 ⊔Δ0 id and id⊔Δ0 𝑠0 in light of the decomposition

Δ2 ≃ Δ1 ⊔Δ0 Δ1.

Lemma 1.3.3.2 immediately implies:

Proposition 1.3.3.3. A functor 𝑓∶ C → D between B-categories is conservative if
and only if the square

C0 D0

C1 D1

𝑓0

𝑠0 𝑠0
𝑓1

is cartesian.

63



1. The language of B-categories

Remark 1.3.3.4. Proposition 1.3.3.3 implies that base change along both algebraic

and geometric morphisms of ∞-topoi preserves conservative functors.

Corollary 1.3.3.5. A functor 𝑓∶ C → D between B-categories is conservative if
and only if the commutative square

C≃ D≃

C D

𝑓 ≃

𝑓

is cartesian.

Proof. On account of the Segal conditions, a cartesian square of B-categories

is cartesian if and only if it is cartesian on level 0 and level 1, hence the claim

follows from the observation that the square in the statement of the corollary is

trivially cartesian on level 0 and recovers the square from Proposition 1.3.3.3 on

level 1.

Corollary 1.3.3.6. A functor C → D between large B-categories is conservative if
and only if for any object 𝑑∶ 𝐴 → D in context 𝐴 ∈ B the fibre C|𝑑 = C ×𝐴 D is a
B̂/𝐴-groupoid.

Proof. If 𝑓 is conservative, then for any object 𝑑∶ 𝐴 → D the map C|𝑑 → 𝐴 is

conservative as well, hence C|𝑑 is internally local with respect to Δ1 → Δ0 and

therefore a B̂/𝐴-groupoid. Conversely, if C|𝑑 is a B̂/𝐴-groupoid for any object

𝑑∶ 𝐴 → D, the fact that C0 ≃ colim𝐴→C0
𝐴 and descent in B̂Δ imply that the

fibre of 𝑓 over the map C0 → C is contained in B̂. On account of Corollary 1.3.3.5,

the claim now follows.

We now turn to the left complement of the factorisation system that is generated

by conservative functors:

Definition 1.3.3.7. A functor between B-categories is an iterated localisation if

it is left orthogonal to every conservative functor.

Remark 1.3.3.8. As base change along geometric morphisms preserves con-

servative functors (see Remark 1.3.3.4), base change along algebraic morphisms

dually preserves iterated localisations.
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The saturated class of iterated localisations in Cat(B) is internally generated

by Δ1 → Δ0. Since this map is a strong epimorphism by Remark 1.3.1.5, we

deduce:

Proposition 1.3.3.9. Every iterated localisation in Cat(B) is a strong epimorphism
and therefore in particular essentially surjective. Dually, every monomorphism is
conservative.

Definition 1.3.3.10. Let C be a B-category and let S → C be a functor. The

localisation of C at S is the B-category S−1C that fits into the pushout square

S Sgpd

C S−1C.
⌟

We refer to the map C → S−1C as the localisation functor that is associated with

the map S → C. More generally, a functor C → D between B-categories is said

to be a localisation if there is a functor S → C and an equivalence D ≃ S−1C in

Cat(B)C/.

Remark 1.3.3.11. The above definition is a direct analogue of the construction

of localisations of ∞-categories, see [18, Proposition 7.1.3].

By definition, the groupoidification functor S → Sgpd in Definition 1.3.3.10 is

an iterated localisation. One therefore finds:

Proposition 1.3.3.12. For any B-category C and any functor S → C, the localisa-
tion functor C → S−1C is an iterated localisation.

Lemma 1.3.3.13. Let G be a B-groupoid and let G → C be a strong epimorphism
in Cat(B). Then C is a B-groupoid as well.

Proof. Since G is aB-groupoid, Corollary 1.3.1.10 implies that the functor G → C

factors through the inclusion C≃ ↪→ C. We may therefore construct a lifting

problem
G C≃

C Cid
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which admits a unique solution. Hence the identity onC factors throughC≃ ↪→ C,

which evidently implies that C≃ ↪→ C is already an equivalence.

Lemma 1.3.3.14. For any strong epimorphism 𝑓∶ C → D in Cat(B), the commu-
tative square

C Cgpd

D Dgpd

𝑓 𝑓 gpd

is cocartesian.

Proof. If P = D ⊔C Cgpd denotes the pushout, we need to show that the induced

functor 𝑔∶ P → Dgpd is an equivalence. Since iterated localisations are stable

under pushout, the map D → P is an iterated localisation, which (by the left

cancellation property) implies that 𝑔 must be an iterated localisation as well. We

therefore only need to show that 𝑔 is conservative. Since Dgpd is a B-groupoid,

this is equivalent to P being a B-groupoid as well (Corollary 1.3.3.6). But since

strong epimorphisms are also preserved by pushouts, the map Cgpd → P is a

strong epimorphism, hence Lemma 1.3.3.13 implies the claim.

Proposition 1.3.3.15. Let 𝑓∶ S → T and 𝑔∶ T → C be functors in Cat(B), and
suppose that 𝑓 is a strong epimorphism. Then the induced functor S−1C → T−1C is
an equivalence.

Proof. This is an immediate consequence of the pasting lemma for pushout

squares, together with Lemma 1.3.3.14.

Remark 1.3.3.16. Proposition 1.3.3.15 implies that when considering localisa-

tions of a B-category C, we may restrict our attention to subcategories S ↪→ C

instead of general functors, as we can always factor a functor S → C into a strong

epimorphism followed by a monomorphism. Alternatively, by making use of the

strong epimorphism Δ1 ⊗ S0 → S from Lemma 1.3.1.8, we can always assume

that S is of the form Δ1 ⊗ 𝐴 for some 𝐴 ∈ B.

Our next goal is to derive an explicit construction of the unique factorisation

of a functor into an iterated localisation and a conservative map. To that end,
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let 𝑓∶ C → D be a functor between B-categories. Let 𝑓 −1D≃ ↪→ C be the

subcategory that is defined by the pullback square

𝑓 −1D≃ D≃

C D.

⌜
𝑓

Since D≃ is a B-groupoid, the map 𝑓 ∗D≃ → D≃ factors through the morphism

𝑓 −1D≃ → (𝑓 −1D≃)gpd. Consequently, one obtains a factorisation of 𝑓 into the

composition

C → (𝑓 −1D≃)−1C
𝑓1
−−→ D.

Let us set C1 = (𝑓 −1D≃)−1C. By replacing C by C1 and 𝑓 by 𝑓1 and iterating

this procedure, we obtain an ℕ-indexed diagram in Cat(B)/D. Let 𝑓∞ ∶ E → D

denote the colimit of this diagram. By construction, the map 𝑓 factors into the

composition C → E → D in which the first map is a countable composition of

localisations and therefore an iterated localisation in the sense of Definition 1.3.3.7.

We claim that the map 𝑓∞ is conservative. To see this, consider the cartesian

square

𝑓 −1
∞ D≃ D≃

E D.

⌜
𝑓∞

On account of filtered colimits being universal in Cat(B) (see Remark 1.2.3.11), we

obtain an equivalence 𝑓 −1
∞ D≃ ≃ colim𝑛 𝑓 −1

𝑛 D≃. By construction, the categories

𝑓 −1
𝑛 D≃ sit inside the ℕ-indexed diagram

⋯ → 𝑓 −1
𝑛−1D

≃ → (𝑓 −1
𝑛−1D

≃)gpd → 𝑓 −1
𝑛 D≃ → (𝑓 −1

𝑛 D≃)gpd → 𝑓 −1
𝑛+1D

≃ → ⋯

such that the functor ⋅2∶ ℕ → ℕ that is given by the inclusion of all even

natural numbers recovers the ℕ-indexed diagram 𝑛 ↦ 𝑓 −1
𝑛 D≃ that is defined by

the cartesian square above. As both the inclusion of all even natural numbers

and that of all odd natural numbers define final functors ℕ → ℕ, we conclude

that 𝑓 −1
∞ D≃ is obtained as the colimit of the diagram 𝑛 ↦ (𝑓 −1

𝑛 D≃)gpd and is

therefore a B-groupoid. Applying Corollary 1.3.3.5, we thus conclude that 𝑓∞ is

conservative. Therefore the factorisation of 𝑓 into the composite C → E → D as
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constructed above is the unique factorisation of 𝑓 into an iterated localisation and

a conservative functor. Applying this construction when 𝑓 is already an iterated

localisation, one in particular obtains:

Proposition 1.3.3.17. Every iterated localisation between B-categories is obtained
as a countable composition of localisation functors.

We conclude this section by establishing that localisation functors admit a

universal property. To that end, given any two B-categories C and D and any

functor S → C, we shall denote by Fun
B
(C,D)S ↪→ Fun

B
(C,D) the full subcate-

gory that is spanned by those objects 𝐴 → Fun
B
(C,D) which encode functors

𝜋∗
𝐴C → 𝜋∗

𝐴D with the property that the composition 𝜋∗
𝐴S → 𝜋∗

𝐴C → 𝜋∗
𝐴D fac-

tors through the inclusion 𝜋∗
𝐴D

≃ ↪→ 𝜋∗
𝐴D. We denote by FunB(C,D)S for the

underlying ∞-category of global sections.

Remark 1.3.3.18. Note that a functor 𝑓∶ 𝜋∗
𝐴S → 𝜋∗

𝐴D factors through 𝜋∗
𝐴D

≃

if and only if the transposed map 𝐴 × S → D factors through D≃. As the map

D≃ ↪→ D is a monomorphism by Example 1.3.1.3, this condition is local, in the

sense that for every cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B, the functor 𝑓 factors through

𝜋∗
𝐴D

≃ if and only if each of the functors 𝑠∗𝑖 (𝑓 ) factors through 𝜋∗
𝐴𝑖
D≃. In fact, this

is certainly a necessary condition, and it is also sufficient as the lifting diagram

⨆𝑖 𝐴𝑖 × S D≃

𝐴 × S D

admits a unique solution (on account of the left vertical arrow being a strong

epimorphism, see Remark 1.3.1.5). Consequently, an object 𝐴 → Fun
B
(C,D) is

contained in Fun
B
(C,D)S if and only if it encodes a functor 𝜋∗

𝐴C → 𝜋∗
𝐴D whose

restriction along 𝜋∗
𝐴S → 𝜋∗

𝐴C factors through 𝜋∗
𝐴D

≃ (cf. Remark 1.3.2.18). In

conjunction with Proposition 1.2.5.4, this observation furthermore implies that

there is a canonical equivalence 𝜋∗
𝐴FunB(C,D)S ≃ Fun

B/𝐴
(𝜋∗

𝐴C, 𝜋∗
𝐴D)𝜋∗

𝐴S
for

every 𝐴 ∈ B.

Remark 1.3.3.19. By Corollary 1.3.1.10 and Remark 1.3.3.18, for any 𝐴 ∈ B a

functor 𝜋∗
𝐴C → 𝜋∗

𝐴D defines an object in Fun
B
(C,D)S precisely if its restriction

along 𝜋∗
𝐴S → 𝜋∗

𝐴C sends every map in 𝜋∗
𝐴S to an equivalence in 𝜋∗

𝐴C.
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Proposition 1.3.3.20. Let C be a B-category and let S → C be a functor. Then
precomposition with the localisation functor 𝐿∶ C → S−1C induces an equivalence

𝐿∗ ∶ Fun
B
(S−1C,D) ≃ Fun

B
(C,D)S

for any B-category D.

Proof. By applying the functor Fun
B
(−,D) to the pushout square that defines

the localisation of C at S, one obtains a pullback square

Fun
B
(S−1C,D) Fun

B
(C,D)

Fun
B
(Sgpd,D) Fun

B
(S,D).

We claim that the two horizontal functors are fully faithful. To see this, it suffices

to consider the lower horizontal map. This is a fully faithful functor precisely if

it is internally right orthogonal to the map Δ0 ⊔ Δ0 → Δ1, and by making use of

the adjunction between tensoring and powering in Cat(B), one sees that this is

equivalent to the induced functor DΔ1
→ D ×D being internally right orthogonal

to the map S → Sgpd. Hence it suffices to show that the functor DΔ1
→ D × D

is conservative, i.e. internally right orthogonal to Δ1 → Δ0. Making use of the

adjunction between tensoring and powering in Cat(B) once more, this is seen to

be equivalent to D being internally local with respect to the map 𝐾 → Δ1 that is

defined by the commutative diagram

Δ1 ⊔ Δ1 Δ1 × Δ1

Δ0 ⊔ Δ0 𝐾

Δ1

(𝑑1×id,𝑑0×id)

𝑠0⊔𝑠0
⌟

pr1

(𝑑1,𝑑0)

in which pr1 denotes the projection onto the second factor. By the same reasoning

as in the proof of Lemma 1.3.2.8, the map 𝐾 → Δ1 is an equivalence in Cat(B),
hence the claim follows.
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Since for any 𝐴 ∈ B a functor 𝜋∗
𝐴S → 𝜋∗

𝐴D factors through 𝜋∗
𝐴D

≃ if and only

if it factors through the map 𝜋∗
𝐴S → 𝜋∗

𝐴S
gpd, one obtains a commutative square

Fun
B
(C,D)S Fun

B
(C,D)

Fun
B
(Sgpd,D) Fun

B
(S,D).

and therefore a map Fun
B
(C,D)S ↪→ Fun

B
(S−1C,D). Since every object of

Fun
B
(S−1C,D) by definition gives rise to an object in Fun

B
(C,D)S, this map

must also be essentially surjective and is thus an equivalence.

1.4. The universe and theB-category ofB-categories

In this section, we discuss our first examples of B-categories: the universe for
B-groupoids (Section 1.4.1) and the B-category of B-categories (Section 1.4.2).

These two B-categories will take a central place within our theory. The universe

for B-groupoids will be the B-categorical analogue of the ∞-category Ani of

∞-groupoids; it can be regarded as a reflection of the base ∞-topos B within

itself and is therefore a (categorical incarnation of an) object classifier of B. The

B-category of B-categories, on the other hand, allows us to argue globally about

B-categories within the theory of B-categories.

1.4.1. The universe for B-groupoids

Recall that for any large ∞-category C that admits pullbacks one can define a

Ĉat∞-valued presheaf C/− as the functor that classifies the codomain fibration

𝑑0 ∶ Fun(Δ1,C) → C. If C is an ∞-topos, then this presheaf is a sheaf [49,

Proposition 6.1.3.10]. One may therefore define:

Definition 1.4.1.1. The universe for B-groupoids is defined to be the large B-

category Grpd
B

that corresponds to the Ĉat∞-valued sheaf B/− on B.

Remark 1.4.1.2. For any object 𝐴 ∈ B there is a canonical equivalence

𝜋∗
𝐴 Grpd

B
≃ Grpd

B/𝐴
.
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In fact, the Ĉat∞-valued sheaf associated with 𝜋∗
𝐴 Grpd

B
can be identified with

FunB((𝜋𝐴)!(−),GrpdB), hence the claim follows from the observation that since

(𝜋𝐴)! is a right fibration, the commutative square

Fun(Δ1,B/𝐴) Fun(Δ1,B)

B/𝐴 B

𝑑0 𝑑0
(𝜋𝐴)!

is cartesian.

The universe for small B-groupoids Grpd
B

is supposed to be regarded as the

B-categorical analogue of the ∞-category Ani of ∞-groupoids. It can therefore

be viewed as a reflection of the ∞-topos B within itself. This is supported by the

observation that there is an equivalence

FunB(𝐴,Grpd
B
) ≃ B/𝐴

for every 𝐴 ∈ B, which in particular shows that objects 𝐴 → Grpd
B

correspond

to objects in the slice ∞-topos B/𝐴, i.e. to B/𝐴-groupoids. We can also identify

the mapping B-groupoids of Grpd
B
:

Proposition 1.4.1.3. For any two objects 𝑃, 𝑄 ∈ B/𝐴, viewed as objects of GrpdB
in context 𝐴 ∈ B, there is an equivalence

mapGrpd
B

(𝑃, 𝑄) ≃ Hom
B/𝐴

(𝑃, 𝑄)

in B/𝐴, where the right-hand side denotes the internal hom in B/𝐴.

We will not prove Proposition 1.4.1.3 at this point, as it will follow quite easily

once we have the theory of adjunctions between B-categories at our disposal.

The impatient reader is referred to Proposition 3.2.5.11.

Remark 1.4.1.4. Let Grpd
B̂

denote the universe for large B-groupoids, i.e. the

very large B-category that corresponds to the sheaf B̂/− on B̂. By the discussion

in Section 1.2.4, the inclusions B/𝐴 ↪→ B̂/𝐴 for 𝐴 ∈ B define an embedding of

presheaves B/− ↪→ B̂/− on B. Since moreover restriction along the inclusion

B ↪→ B̂ defines an equivalence

Funlim(B̂op,CatW∞ ) ≃ Funlim(Bop,CatW∞ )
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(see the argument in Remark 1.1.4.1), we obtain a fully faithful functor

Grpd
B
↪→ Grpd

B̂

in Cat(BW). Explicitly, an object 𝐴 → Grpd
B̂

in context 𝐴 ∈ B̂ that corresponds

to a map 𝑃 → 𝐴 in B̂ is contained in Grpd
B

precisely if for every map 𝐵 → 𝐴 in

B̂ where 𝐵 is small, the pullback 𝐵 ×𝐴 𝑃 is small as well.

The goal for the remainder of this section is to study the poset Subfull(GrpdB)
of full subcategories of the universe. To that end, let us recall the notion of a

local class in an ∞-topos [49, § 6.1.3]:

Definition 1.4.1.5. Let 𝑆 be a collection of maps in B that is stable under pull-

backs. Then the full subcategory of Fun(Δ1,B) spanned by the maps in 𝑆 forms

a cartesian subfibration of the codomain fibration 𝑑0 ∶ Fun(Δ1,B) → B that is

classified by a Ĉat∞-valued presheaf 𝑆/− on B. The class 𝑆 is said to be local if
𝑆/− is a sheaf and bounded if 𝑆/− takes values in Cat∞.

In the situation of Definition 1.4.1.5, [49, Lemma 6.1.3.7] implies that the

presheaf 𝑆/− is a sheaf if and only if (𝑆/−)≃ is an Âni-valued sheaf, and since the

latter takes values in Ani if and only if 𝑆/− takes values in Cat∞, one obtains:

Proposition 1.4.1.6. Let 𝑆 be a collection of maps inB that is stable under pullbacks.
Then the following are equivalent:

1. 𝑆 is a (bounded) local class.

2. 𝑆/− is a (Cat∞-valued) sheaf.

3. (𝑆/−)≃ is an (Ani-valued) sheaf.

The set of local classes in B can be identified with a subset of the partially

ordered set Subfull(Fun(Δ1,B)) and therefore inherits a partial order. One now

finds:

Proposition 1.4.1.7. There is an equivalence between the partially ordered set of
local classes in B and Subfull(GrpdB) with respect to which bounded local classes
in B correspond to small full subcategories of Grpd

B
.
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Proof. If 𝑆 is a local class, Proposition 1.4.1.6 shows that 𝑆/− is a Ĉat∞-valued sheaf

and therefore corresponds to a large B-category Grpd𝑆. By Proposition 1.3.2.7,

this is a full subcategory of the universe ofB. Conversely, if C ↪ Grpd
B

exhibits

C as a full subcategory ofGrpd
B
, Proposition 1.4.1.6 implies that the set of objects

contained in the essential image of the associated inclusion ∫C ↪ Fun(Δ1,B) of
cartesian fibrations over B (see Proposition 1.3.2.7) defines a local class. Clearly

these operations are inverse to each other and order-preserving. Applying Propo-

sition 1.4.1.6 once more, one moreover sees that this equivalence restricts to an

equivalence between the poset of bounded local classes and the poset of small

full subcategories of Grpd
B
.

Definition 1.4.1.8. A full subcategory C ↪→ Grpd
B

of the universe is said to be

a subuniverse in B.

Example 1.4.1.9. For every factorisation system (L,R) in B (in the sense of

Section 1.1.5), the right class R is local provided that the left class L is closed

under pullbacks in B (see for example [2, Proposition 3.6.1]). Such a factorisation

system is referred to as a modality. Hence any such modality gives rise to a

subuniverse Grpd
R
.

In the situation of Proposition 1.4.1.7, the case where 𝑆 is a bounded local class

deserves a more careful discussion. In this case, the sheaf 𝑆/− is represented by the

B-category Grpd𝑆, hence (𝑆/−)≃ is representable by the object Grpd≃𝑆 ∈ B which

by Yoneda’s lemma implies that the full subcategory 𝑆 ↪→ Fun(Δ1,B) admits a

final object 𝜙𝑆 ∶ (Grpd𝑆)
≃
∗ → Grpd≃𝑆 that is referred to as the universal morphism

in 𝑆. Hereafter, our goal is to reverse this discussion: Suppose that 𝑝∶ 𝑃 → 𝐴 is

an arbitrary morphism in B, and denote by ⟨𝑝⟩ the class of morphisms in B that

arise as a pullback of 𝑝. Since ⟨𝑝⟩ is stable under pullbacks, the full subcategory

of Fun(Δ1,B) spanned by the maps in ⟨𝑝⟩ defines a cartesian fibration over B

and is therefore classified by a Ĉat∞-valued presheaf ⟨𝑝⟩/− on B. We would like

to investigate the conditions that ensure ⟨𝑝⟩ to be a bounded local class in B,

with 𝑝 as a universal morphism.

Definition 1.4.1.10. A map 𝑝∶ 𝑃 → 𝐴 inB is univalent if ⟨𝑝⟩ is a bounded local

class.
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Remark 1.4.1.11. Let 𝑆 be a bounded local class of morphisms in B and let

𝜙𝑆 ∶ (Grpd𝑆)
≃
∗ → Grpd≃𝑆

denote the associated universal morphism in 𝑆. Then a map in B arises as a

pullback of 𝜙𝑆 if and only if it is contained in 𝑆, hence the map 𝜙𝑆 is univalent.

By Proposition 1.4.1.6 the notion of univalence admits the following equivalent

characterisation:

Proposition 1.4.1.12. For a map 𝑝∶ 𝑃 → 𝐴 in B, the following conditions are
equivalent:

1. 𝑝 is univalent.

2. ⟨𝑝⟩/− is representable by a B-category

3. (⟨𝑝⟩/−)≃ is representable by a B-groupoid.

Lemma 1.4.1.13. Let B be an ∞-topos and let C be a small ∞-category. A map
𝑓∶ 𝑌 → 𝑋 in the ∞-topos Fun(C,B) is a cover if and only if 𝑓 (𝑐)∶ 𝑌 (𝑐) → 𝑋(𝑐) is
a cover for every 𝑐 ∈ C.

Proof. For every 𝑐 ∈ C, evaluation at 𝑐 defines an algebraic morphism

ev𝑐 ∶ Fun(C,B) → B,

and since equivalences in Fun(C,B) are determined object-wise, the induced

algebraic morphism Fun(C,B) → ∏𝑐∈CB is conservative. Now 𝑓 is a cover if and

only if the inclusion Im(𝑓 ) ↪→ 𝑋 is an equivalence. Since algebraic morphisms

preserve the image factorisation of a map and since conservative functors reflect

equivalences, the claim follows.

Suppose that 𝑝∶ 𝑃 → 𝐴 is a map in B, viewed as an object 𝑝∶ 𝐴 → (Grpd
B
)0.

By definition of ⟨𝑝⟩ and the fact that a map in PShÂni(B) is a cover if and only if it

is object-wise given by a cover in Âni (cf. Lemma 1.4.1.13), the image factorisation

of 𝑝 in PShÂni(B) is given by 𝐴 � (⟨𝑝⟩/−)≃ ↪→ (Grpd
B
)0. Therefore 𝑝 is

univalent if and only if the cover 𝐴 � (⟨𝑝⟩/−)≃ is a monomorphism, which is

the case if and only if 𝑝∶ 𝐴 → (Grpd
B
)0 itself is a monomorphism. We therefore

conclude:
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Proposition 1.4.1.14 ([26, Proposition 3.8]). A map 𝑝∶ 𝑃 → 𝐴 in B is univalent
if and only if 𝑝∶ 𝐴 → Grpd

B
is a monomorphism.

Corollary 1.4.1.15. Let 𝑝∶ 𝑃 → 𝐴 be a map inB, viewed as an object inGrpd
B
in

context 𝐴, and let pr𝑖 ∶ 𝐴 × 𝐴 → 𝐴 be the projection onto the 𝑖th factor for 𝑖 ∈ {0, 1}.
Then 𝑝 is univalent if and only if the canonical map 𝜙∶ 𝐴 → eqGrpd

B

(pr∗0 𝑝, pr
∗
1 𝑝)

in B/𝐴×𝐴 is an equivalence.

Proof. By Proposition 1.4.1.14, the morphism 𝑝 is univalent precisely if the map

𝑝∶ 𝐴 → (Grpd
B
)0 is a monomorphism in B̂, which is equivalent to the commu-

tative square

𝐴 (Grpd
B
)0

𝐴 × 𝐴 (Grpd
B
)0 × (Grpd

B
)0

(id,id)

𝑝

(id,id)
𝑝×𝑝

being cartesian. On account of the cartesian square

eqGrpd
B

(pr∗0 𝑝, pr
∗
1 𝑝) (Grpd

B
)0

𝐴 × 𝐴 (Grpd
B
)0 × (Grpd

B
)0,

(id,id)
𝑝×𝑝

we see that this is the case if and only if the map 𝜙 is an equivalence.

The object of morphisms in the B-category Grpd⟨𝑝⟩ that is associated with a

univalent map 𝑝∶ 𝑃 → 𝐴 in B admits an explicit description as well:

Proposition 1.4.1.16. Let 𝑝∶ 𝑃 → 𝐴 be a univalent morphism in B and let
Grpd⟨𝑝⟩ be the associated B-category. Then (Grpd⟨𝑝⟩)1 is equivalent to the internal
hom Hom

B/𝐴×𝐴
(pr∗0 𝑃, pr

∗
1 𝑃) in B/𝐴×𝐴.

Proof. By construction there is a fully faithful functor Grpd⟨𝑝⟩ ↪ Grpd
B

in

Cat(B̂), which means that the square

(Grpd⟨𝑝⟩)1 (Grpd
B
)1

(Grpd⟨𝑝⟩)0 × (Grpd⟨𝑝⟩)0 (Grpd
B
)0 × (Grpd

B
)0
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1. The language of B-categories

is cartesian. On the other hand, Proposition 1.4.1.3 identifies the pullback of the

above diagram with Hom
B/𝐴×𝐴

(pr∗0 𝑃, pr
∗
1 𝑃), which finishes the proof.

Remark 1.4.1.17. The theory of univalent maps in an ∞-topos has been pre-

viously worked out by Gepner and Kock in [26] and by Rasekh in [68], using

slightly different methods.

1.4.2. The B-category ofB-categories

The goal in this section is to define the large B-category of B-categories. What

makes this possible is the following general construction:

Construction 1.4.2.1. Lurie’s tensor product of presentable ∞-categories intro-

duced in [50, § 4.8.1] defines a functor

− ⊗ −∶ PrR × PrR → PrR, (C,D) ↦ ShD(C)

that preserves limits in each variable. Since the functor B/− ∶ Bop → Ĉat∞
factors through the inclusion PrR ↪ Ĉat∞ we may consider the composite

PrR ×Bop
id ×B/−
−−−−−−→ PrR × PrR

−⊗−
−−−−→ PrR → Ĉat∞.

Its transpose defines a functor PrR → Fun(Bop, Ĉat∞). It follows from [49,

Theorem 5.5.3.18] that this map factors through the full subcategory spanned by

the limit-preserving functors and thus defines a functor

− ⊗ Grpd
B
∶ PrR → Cat(B̂).

By the explicit description of the tensor product in PrR∞, this functor is equivalently

given by Sh−(B/−). In other words, given any presentable ∞-category E, the

associated large B-category E ⊗ Grpd
B

is given by the composition

Bop
B/−
−−−→ (PrL)op

ShE(B/−)
−−−−−−−−→ Ĉat∞.

Let us now consider the above construction in the special case E = Cat∞. By

construction, Cat∞ ⊗Grpd
B

is given by the composite

Bop
B/−
−−−→ (PrL)op

ShCat∞(B/−)
−−−−−−−−−−→ Ĉat∞
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1.4. The universe and the B-category of B-categories

and thus agrees with the presheaf of ∞-categories Cat(B/−) defined in Sec-

tion 1.2.4 (see also the discussion in Section 1.2.6). In particular, it follows that

the latter is indeed a sheaf. Therefore we feel inclined to make the following

definition:

Definition 1.4.2.2. The large B-category CatB of (small) B-categories is de-

fined via the formula CatB = Cat∞ ⊗Grpd
B
, i.e. as the large B-category that

corresponds to the sheaf Cat(B/−).

Remark 1.4.2.3. There is a small subtlety in the definition of CatB: the claim

that there is a functorial equivalence between Cat∞ ⊗Grpd
B

and the presheaf

Cat(B/−) is not as innocent as it may seem. In fact, the identification

D ⊗ E ≃ ShE(D)

from [50, Proposition 4.8.1.17] (where D and E are presentable ∞-categories)

is a priori only natural in D and E up to (possibly non-coherent) homotopy.

To enhance this equivalence to one between bifunctors of ∞-categories, one in

addition needs to know that passing from left adjoint to right adjoint constitutes

an equivalence

FunL(C,D) ≃ FunR(D,C)op

(where the left-hand side denotes the ∞-category of left adjoint functors and

the right-hand side the ∞-category of right adjoint functors) that is natural (in

the fully coherent sense) in both variables. Tracing through the proof of [49,

Proposition 5.2.6.3], this in turn follows once we know that there is a commutative

diagram

Cat∞ PrL∞

(PrR∞)op

𝐹

PSh(−)
≃

in which 𝐹 is determined by the universal property of presheaves [49, Theo-

rem 5.1.5.6], i.e. the partial left adjoint of the inclusion PrL∞ ↪→ Ĉat∞. A priori,

there is only such a commutative diagram once one passes to homotopy cate-

gories. That there also exists a fully coherent version of this diagram has only

quite recently been shown by Haugseng-Linskens-Hebestreit-Nuiten [34] and by

Ramzi [66], using different methods.
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1. The language of B-categories

Remark 1.4.2.4. By definition of CatB, there is a canonical equivalence

𝜋∗
𝐴 CatB ≃ CatB/𝐴

for every 𝐴 ∈ B. In fact, this follows from the computation

𝜋∗
𝐴 CatB ≃ Cat(B/(𝜋𝐴)!(−)) ≃ Cat((B/𝐴)/−) ≃ CatB/𝐴

,

see the discussion in Section 1.1.4 and in Section 1.2.6.

Remark 1.4.2.5. By applying − ⊗ Grpd
B

to the equivalence of ∞-categories

(−)op ∶ Cat∞ ≃ Cat∞, one obtains an equivalence (−)op ∶ CatB ≃ CatB. On

local sections over 𝐴 ∈ B, this equivalence recovers the map that carries a

B/𝐴-category to its opposite (cf. Remark 1.2.6.7).

Remark 1.4.2.6. By working internal to B̂, we may define the (very large)

B-category Cat
B̂

of large B-categories. By regarding CatB as a very large B-

category, we furthermore obtain a fully faithful functor 𝑖∶ CatB ↪→ Cat
B̂
. In fact,

by the discussion in Section 1.2.4, the inclusion Cat(B/𝐴) ↪→ Cat(B̂/𝐴) defines
an embedding of presheaves Cat(B/−) ↪→ Cat(B̂/−) on B. Since moreover

restriction along the inclusion B ↪→ B̂ defines an equivalence

ShCatW∞ (B̂) ≃ ShCatW∞ (B)

(see Remark 1.1.4.1), we obtain the desired fully faithful functor CatB ↪→ Cat
B̂

in

Cat(BW). Explicitly, an object 𝐴 → Cat
B̂

in context 𝐴 ∈ B̂ that corresponds to a

B̂/𝐴-category C → 𝐴 is contained in CatB precisely if for every map 𝑠∶ 𝐴′ → 𝐴
with 𝐴′ ∈ B the pullback 𝑠∗C is small.
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One of the most fundamental constructions in higher category theory is that of

the ∞-category of presheaves on an ∞-category. To a large extent, its significance

stems from Yoneda’s lemma, which is an indispensable tool for the development of

the theory of ∞-categories. In this chapter, our goal is to study the B-categorical

analogue of presheaves, and to derive a B-categorical version of Yoneda’s lemma.

To that end, recall from Section 1.4.1 that the universe Grpd
B

is to be regarded as

the B-categorical analogue of the ∞-category Ani of ∞-groupoids. It therefore

makes sense to define:

Definition 2.0.0.1. For any B-category C, the (large) B-category of presheaves
on B is defined as PSh

B
(C) = Fun

B
(Cop,Grpd

B
). Its underlying ∞-category of

global sections will be denoted by PShB(C).

Remark 2.0.0.2. Even when C is a large B-category, we will continue to write

PSh
B
(C) for the large functor B-category Fun

B
(Cop,Grpd

B
). By contrast, the

(very large) functor B-category Fun
B
(Cop,Grpd

B̂
) will be denoted by PSh

B̂
(C).

Remark 2.0.0.3. By combining Remark 1.4.1.2 with Proposition 1.2.5.4, one has

a canonical equivalence 𝜋∗
𝐴PShB(C) ≃ PSh

B/𝐴
(𝜋∗

𝐴C) for everyB-category C and

every 𝐴 ∈ B.

The B-categorical version of Yoneda’s lemma will rely on the interplay be-

tween Grpd
B
-valued functors on a B-category C and left fibrations 𝑝∶ P → C,

a result that is commonly referred to as the straightening and unstraightening.
The collection of left fibrations forms the right class of a factorisation system in

Cat(B) whose left complement is comprised of initial functors. We discuss this

factorisation system in Section 2.1, and in Section 2.2 we establish the straighten-

ing equivalence between such left fibration and functors into the universe Grpd
B
.

Finally, we use this machinery to state and prove Yoneda’s lemma in Section 2.3.
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2. Presheaves

Remark 2.0.0.4. Our strategy for the proof of Yoneda’s lemma is inspired by

Cisinski’s proof of Yoneda’s lemma for ∞-categories in [18].

2.1. Left fibrations and initial maps

The notion of a left fibration between simplicial sets, which is originally due to

Joyal and thoroughly studied in [49, § 2.1], is a higher categorical generalisation

of the classical notion of categories fibred in groupoids. The idea is straightforward:

a map 𝑝∶ 𝑃 → 𝐶 of simplicial sets is a left fibration precisely if the lifting problem

Δ0 𝑃

Δ1 𝐶

𝑑1 𝑝

admits a solution that is unique up to coherent homotopy [49, Corollary 2.1.2.10].

If 𝑝 presents a map of ∞-categories, this simply means that 𝑝 is internally left or-
thogonal (in the cartesian closed∞-category Cat∞) to the inclusion 𝑑1 ∶ Δ0 ↪→ Δ1.

Reinterpreted in this way, the notion of a left fibration can be immediately gener-

alised to B-categories, and in fact more generally to simplicial objects in B.

In Section 2.1.1, we will study the class of left fibrations between simplicial

objects inB. In Section 2.1.2, we focus on a subcollection of left fibrations that will

be of particular importance later on: that of slice B-categories. In Section 2.1.3 we

focus on the class of maps that are left orthogonal to the collection of left fibrations:

these are classically called initial maps, and we adopt the same terminology forB-

categories. Finally, in Section 2.1.4 we study the notion of a covariant equivalence
between simplicial objects inB: given a fixed simplicial object 𝐶, the collection of

left fibrations over 𝐶 sits reflectively inside (BΔ)/𝐶, and a covariant equivalence

is a map 𝑃 → 𝑄 over 𝐶 which is inverted by the localisation functor. We will

provide a characterisation of covariant equivalences. which will, among other

things, lead to a 𝐵𝐵-categorical variant of Quillen’s Theorem A.

2.1.1. Left fibrations

In this section we discuss left fibrations betweenB-categories (andmore generally

between simplicial objects in B) and discuss some of their basic properties.
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2.1. Left fibrations and initial maps

Definition 2.1.1.1. A map 𝑃 → 𝐶 between simplicial objects in B is a left
fibration if it is internally right orthogonal to the map 𝑑1 ∶ Δ0 ↪→ Δ1. Dually, 𝑝 is

a right fibration if it is internally right orthogonal to the map 𝑑0 ∶ Δ0 ↪→ Δ1. We

denote by LFib and RFib (or LFibB and RFibB when we want to emphasise the

dependency on the base ∞-topos) the full subcategories of Fun(Δ1,BΔ) spanned
by the left and right fibrations, respectively.

In what follows, we will mostly restrict the discussion to left fibrations. By

dualising, however, all statements carry over unchanged to right fibrations. In

more precise terms, this dualisation is obtained by taking opposite simplicial

objects (as defined at the end of Section 1.2.1): Since the functor (−)op sends

the inclusion 𝑑1 ∶ Δ0 ↪ Δ1 to the map 𝑑0 ∶ Δ0 ↪ Δ1, one finds that the autoe-

quivalence (−)op ∶ BΔ ≃ BΔ sends right fibrations to left fibrations and vice

versa.

Lemma 2.1.1.2. The saturated class of maps in BΔ that is generated by the maps
𝑑1 ∶ 𝐸 ↪→ Δ1 ⊗ 𝐸 for any simplicial object 𝐸 in B coincides with the saturation of
the set

{𝑑{0} ∶ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 | 𝐴 ∈ B, 𝑛 ≥ 0}.

Proof. Let 𝑆 be the saturation of the set of maps 𝑑1 ∶ 𝐸 ↪→ Δ1 ⊗ 𝐸 for 𝐸 ∈ BΔ.

Then for any 𝐴 ∈ B and any 𝑛 ≥ 0 the map 𝑑0 ∶ (Δ0 × Δ𝑛) ⊗ 𝐴 ↪→ (Δ1 ⊗Δ𝑛) ⊗ 𝐴
is contained in 𝑆 as well. Let 𝛼∶ Δ𝑛+1 ↪→ Δ1 × Δ𝑛 be defined by 𝛼(0) = (0, 0)
and 𝛼(𝑘) = (1, 𝑘 − 1) for 1 ≤ 𝑘 ≤ 𝑛, and let 𝛽∶ Δ1 × Δ𝑛 → Δ𝑛+1 be defined by

𝛽(0, 𝑘) = 0 and 𝛽(1, 𝑘) = 𝑘 +1 for any 0 ≤ 𝑘 ≤ 𝑛. One then obtains a commutative

diagram

Δ0 Δ𝑛 Δ0

Δ𝑛+1 Δ1 × Δ𝑛 Δ𝑛+1,

𝑑 {0} 𝑑1×id 𝑑 {0}

𝛼 𝛽

and as 𝛽𝛼 ≃ idΔ𝑛+1 , the map 𝑑{0} ∶ Δ0 ↪→ Δ𝑛+1 is a retract of 𝑑1×id∶ Δ𝑛 → Δ1×Δ𝑛.

By tensoring with 𝐴, this shows that the map 𝑑{0} ∶ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴 is contained in

𝑆 for all 𝑛 ≥ 1.
Conversely, let 𝑆 be the saturation of the set of maps 𝑑{0} ∶ 𝐴 ↪→ Δ𝑛 ⊗ 𝐴

for 𝑛 ≥ 0 and 𝐴 ∈ B, and let 𝐸 be a simplicial object in B. We need to show
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that the map 𝑑1 ∶ 𝐸 ↪→ Δ1 ⊗ 𝐸 is contained in 𝑆. By the same argument as

in Lemma 1.2.3.5, we may assume without loss of generality 𝐸 ≃ Δ𝑛 ⊗ 𝐴 for

some 𝑛 ≥ 1 and some 𝐴 ∈ B. Now with respect to the usual decomposition

Δ1 × Δ𝑛 ≃ Δ𝑛+1 ⊔Δ𝑛 ⋯ ⊔Δ𝑛 Δ𝑛+1 of the product Δ1 × Δ𝑛 into 𝑛 + 1 copies of Δ𝑛+1,

the map 𝑑 {0} ∶ Δ𝑛 ↪→ Δ1 × Δ𝑛 is given by the iterated pushout

𝑑 {0} ⊔𝑑 {0} ⋯ ⊔𝑑 {0,…,𝑛−1} 𝑑{0,…,𝑛} ∶ Δ0 ⊔Δ0 ⋯ ⊔Δ𝑛−1 Δ𝑛 → Δ𝑛+1 ⊔Δ𝑛 ⋯ ⊔Δ𝑛 Δ𝑛+1

in Fun(Δ1,AniΔ). It is therefore enough to show that for every integer 𝑛 ≥ 1 and

every 0 ≤ 𝑖 ≤ 𝑛 the map 𝑑{0,…,𝑖} ∶ Δ𝑖⊗𝐴 ↪→ Δ𝑛⊗𝐴 is contained in 𝑆, which follows

immediately from the assumption by using item (2) of Proposition 1.1.5.2.

Proposition 2.1.1.3. A map 𝑃 → 𝐶 between simplicial objects in B is a left
fibration if and only if for every 𝑛 ≥ 1 the commutative diagram

𝑃𝑛 𝐶𝑛

𝑃0 𝐶0

𝑑{0} 𝑑{0}

is cartesian.

Proof. This follows immediately from Lemma 2.1.1.2.

Remark 2.1.1.4. Proposition 2.1.1.3 implies that base change along both algebraic

and geometric morphisms of∞-topoi preserves left fibrations. Moreover, if𝐴 ∈ B

is an object, the forgetful functor (𝜋𝐴)! ∶ (B/𝐴)Δ → BΔ commutes with pullbacks

and therefore also preserves left fibrations.

Lemma 2.1.1.5. Let 𝑆 be the set of maps in BΔ that is internally generated by
𝑑1 ∶ Δ0 ↪→ Δ1. Then 𝑆 contains the two maps 𝐸1 → 1 and 𝐼 2 ↪→ Δ2. Dually, the set
𝑆′ that is internally generated by 𝑑0 ∶ Δ0 ↪→ Δ1 contains the two maps 𝐸1 → 1 and
𝐼 2 ↪→ Δ2.

Proof. We show the statement for the set 𝑆, the proof for the dual case is analogous.
Since 𝑑1 is a section of the unique map Δ1 → Δ0, the latter is contained in 𝑆, hence
Δ3 → 𝐸1 is contained in 𝑆 as well since saturated classes of maps are stable under

colimits in Fun(Δ1,BΔ) and pushouts in BΔ. Since by Lemma 2.1.1.2 the map
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2.1. Left fibrations and initial maps

𝑑 {0} ∶ Δ0 ↪→ Δ3 defines an element of 𝑆, we find that the composition Δ0 → 𝐸1

is contained in 𝑆. As this is a section of the map 𝐸1 → 1, we conclude that the

latter map is contained in 𝑆 as well.

The inclusionΔ1 ↪→ 𝐼 2 of the first copy ofΔ1 in 𝐼 2 is a pushout of 𝑑1 ∶ Δ0 ↪→ Δ1

and therefore an element of 𝑆. By precomposing with 𝑑1, we thus obtain a map

Δ0 ↪→ 𝐼 2 in 𝑆 such that its postcomposition with the inclusion 𝐼 2 ↪→ Δ2 recovers

𝑑 {0} ∶ Δ0 ↪→ Δ2. Since Lemma 2.1.1.2 shows that this map is an element of 𝑆 as

well, we conclude that the inclusion 𝐼 2 ↪→ Δ2 must be contained in 𝑆 too, which

finishes the proof.

Proposition 2.1.1.6. Let 𝑝∶ 𝑃 → C be a left fibration in BΔ such that C is a
B-category. Then 𝑃 is a B-category as well.

Proof. By Lemma 2.1.1.5, the map 𝑝 is internally right orthogonal to the two

maps 𝐸1 → 1 and 𝐼 2 ↪→ Δ2. Since C is internally local with respect to these maps,

we conclude that 𝑃 is internally local with respect to the two maps as well and

therefore a B-category, as claimed.

Remark 2.1.1.7. By Proposition 1.2.3.12, a functor 𝑝∶ P → C in Cat(B) is a left

fibration precisely if it is internally right orthogonal to the map 𝑑1 in Cat(B).
Therefore, Proposition 2.1.1.6 implies that the pullback of the cartesian fibration

LFib → BΔ along the inclusion Cat(B) ↪→ BΔ is given by the full subcategory of

Fun(Δ1,Cat(B)) that is spanned by the left fibrations between B-categories. We

will denote the resulting cartesian fibration over Cat(B) by LFib as well. Note,

moreover, that also the localisation functor Fun(Δ1,Cat(B)) → LFib arises as the

restriction of the localisation functor Fun(Δ1,BΔ) → LFib.

Next, we show that left fibrations between B-categories are conservative (in

the sense of Definition 1.3.3.1) and therefore in particular fibred in B-groupoids.
To see this, note that since 𝑑0 ∶ Δ0 ↪→ Δ1 is a section of the unique map Δ1 → Δ0,

one finds:

Lemma 2.1.1.8. Let 𝑆 be a saturated class of maps in BΔ that contains the maps
𝑑0 ∶ 𝐾 ↪→ Δ1 ⊗ 𝐾 for all 𝐾 ∈ BΔ. Then 𝑆 contains the class of maps in BΔ that is
internally generated by Δ1 → Δ0.
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Lemma 2.1.1.8 now shows:

Proposition 2.1.1.9. Both left and right fibrations between simplicial objects in B

are internally right orthogonal to Δ1 → Δ0. In particular, left and right fibrations
between B-categories are conservative.

By using Proposition 2.1.1.9 and Corollary 1.3.3.6, one furthermore concludes:

Corollary 2.1.1.10. The fibre of a left or right fibration in Cat(B) over any object
in the codomain in context 𝐴 ∈ B is a B/𝐴-groupoid.

Remark 2.1.1.11. By Proposition 2.1.1.9 and Proposition 2.1.1.3, a map 𝐶 → 𝐴
in BΔ in which 𝐴 is contained in B is a left or right fibration precisely if 𝐶 is

contained inB as well. Therefore, both localisation functors Fun(Δ1,BΔ) → RFib

and Fun(Δ1,BΔ) → LFib recover the functor colimΔop ∶ BΔ → B upon taking

the fibre over the final object 1 ∈ BΔ. By restriction, the localisation functors

Fun(Δ1,Cat(B)) → RFib and Fun(Δ1,Cat(B)) → LFib thus both induce the

groupoidification functor on the fibres over 1 ∈ Cat(B).

We conclude this section by showing that equivalences between left or right

fibrations can be detected fibre-wise:

Proposition 2.1.1.12. A map 𝑓∶ 𝑃 → 𝑄 between left fibrations over a simplicial
object 𝐶 in B̂ is an equivalence if and only if for every object 𝐴 ∈ B and every map
𝑐∶ 𝐴 → 𝐶 the induced map 𝑐∗𝑃 → 𝑐∗𝑄 is an equivalence in B̂/𝐴. In particular, a
map between left fibrations of large B-categories is an equivalence if and only if it
induces an equivalence on the fibres over every object in the base B-category.

Proof. By item (2) of Proposition 1.1.5.2, the map 𝑓 is a left fibration itself. There-

fore 𝑓 is an equivalence whenever the underlying map 𝑓0 ∶ 𝑃0 → 𝑄0 is one. The

claim now follows from descent together with the fact that 𝐶0 is canonically

obtained as the colimit colim𝐴→𝐶0
𝐴.

2.1.2. SliceB-categories

In this section we will discuss one particularly important example of left fibrations

between B-categories - that of slice B-categories.
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Definition 2.1.2.1. Let 𝑓∶ D → C and 𝑔∶ E → C be two functors between

B-categories. The comma B-category D ↓C E is defined as the pullback

D ↓C E CΔ1

D × E C × C.

(𝑑1,𝑑0)
𝑓 ×𝑔

If 𝑔 is given by an object 𝑐∶ 𝐴 → C, we write D/𝑐 = D ↓C 𝐴, and if in addition

𝑓 is the identity on C we refer to this B-category as the slice B-category over 𝑐.
Dually if 𝑓 is given by an object 𝑐∶ 𝐴 → C we write D𝑐/ = 𝐴 ↓C D and refer

to this B-category as the slice B-category under 𝑐 when furthermore 𝑔 is the

identity on C.

In the situation of Definition 2.1.2.1, the slice B-category C𝑐/ comes along

with a canonical map to 𝐴 × C which we will denote by (𝜋𝑐)! ∶ C𝑐/ → 𝐴 × C.

Furthermore, note that the identity id𝑐 ∶ 𝐴 → CΔ1
induces a map 𝐴 → C𝑐/ over

(id𝐴, 𝑐)∶ 𝐴 → 𝐴 × C that we will denote by id𝑐 as well.

Remark 2.1.2.2. LetC be aB-category and let 𝑐∶ 𝐴 → C be an object inC, which

can be equivalently regarded as an object ̄𝑐 ∶ 1 → 𝜋∗
𝐴C (see Remark 1.2.7.1). Using

Proposition 1.2.4.6 and Remark 1.2.5.6, the map (𝜋𝑐)! ∶ C𝑐/ → 𝐴×C is equivalent

to the image of the projection (𝜋𝑐)! ∶ (𝜋∗
𝐴C)𝑐/ → 𝜋∗

𝐴C along the forgetful functor

(𝜋𝐴)! ∶ Cat(B/𝐴) → Cat(B). In other words, when viewed as a B/𝐴-category,

we can identify C𝑐/ with the slice of ̄𝑐 ∶ 1 → 𝜋∗
𝐴C, which allows us to restrict our

attention to slices under (or over) objects that are defined in global context.

Hereafter, our goal is to prove that the projection (𝜋𝑐)! ∶ C𝑐/ → 𝐴 × C is a left

fibration for any B-category C and any object 𝑐 in C in context 𝐴 ∈ B. We will

achieve this by identifying (𝜋𝑐)! as a pullback of the twisted arrow B-category on

C. To that end, let − ⋆ −∶ Δ × Δ → Δ be the ordinal sum bifunctor. We may then

define:

Definition 2.1.2.3. Let 𝜖∶ Δ → Δ denote the functor ⟨𝑛⟩ ↦ ⟨𝑛⟩op ⋆ ⟨𝑛⟩. For any
B-category C, we define the twisted arrow B-category Tw(C) to be the simplicial

object given by the composition

Δop 𝜖op
−−→ Δop C

−→ B.
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This defines a functor Tw∶ Cat(B) → BΔ.

Note that the functor 𝜖 in Definition 2.1.2.3 comes along with two canonical

natural transformations

(−)op → 𝜖 ← idΔ

which induces a map of simplicial objects

Tw(C) → Cop × C

that is natural in C.

Proposition 2.1.2.4. For any B-category C, the simplicial object Tw(C) is a B-
category as well, and the map Tw(C) → Cop × C is a left fibration.

Proof. We will begin by showing that for any 𝑛 ≥ 1 the square

Tw(C)𝑛 Cop
𝑛 × Cop

𝑛

Tw(C)0 Cop
0 × C0

𝑑{0} 𝑑{0}

is a pullback diagram. Unwinding the definitions, this is equivalent to the diagram

C2𝑛+1

C𝑛 C1 C𝑛

C0 C0

𝑑{0,…,𝑛} 𝑑{𝑛,𝑛+1}
𝑑{𝑛+1,…,2𝑛+1}

𝑑{𝑛} 𝑑{0} 𝑑{1} 𝑑{0}

being a limit diagram, which follows easily from the Segal conditions. By Propo-

sition 2.1.1.3, the map Tw(C) → Cop × C is therefore a left fibration. Since the

codomain of this map defines a B-category, Proposition 2.1.1.6 now implies that

Tw(C) is a B-category as well.

Remark 2.1.2.5. For every B-category C, note that Remark 1.2.5.6 and the

definition of the twisted arrow B-category immediately imply that the twisted

arrow construction is preserved by base change along geometric morphisms and

along étale algebraic morphisms of ∞-topoi.
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We proceed with our goal of exhibiting the slice projection (𝜋𝑐)! ∶ C𝑐/ → 𝐴×C
as a pullback of the left fibration Tw(C) → Cop × C. To that end, note that the

ordinal sum functor ⋆∶ Δ × Δ → Δ fits into the commutative square

Δ × Δ Δ

Cat∞ ×Cat∞ Cat∞

⋆

⋄

in which − ⋄ − denotes the bifunctor that sends a pair (C,D) of ∞-categories to

the pushout

(C ×D) ⊔ (C ×D) C ×D × Δ1

C ⊔D C ⋄ D.

(𝑑1,𝑑0)

pr0 ⊔ pr1 ⌟

In fact, the inclusions ⟨𝑚⟩ ↪ ⟨𝑚⟩ ⋆ ⟨𝑛⟩ ↩ ⟨𝑛⟩ in Δ induce a map Δ𝑚 ⊔Δ𝑛 → Δ𝑚⋆𝑛

that is natural in 𝑚 and 𝑛, and we may also define a map Δ𝑛 × Δ𝑚 × Δ1 → Δ𝑛⋆𝑚 of

1-categories naturally in 𝑚 and 𝑛 by sending a triple (𝑖, 𝑗, 𝑘) to 𝑖 if 𝑘 = 0 and to

𝑚 + 𝑗 otherwise. This construction gives rise to a natural map Δ𝑚 ⋄ Δ𝑛 → Δ𝑚⋆𝑛

that is an equivalence by [49, Proposition 4.2.1.2]. Combining this observation

with Proposition 1.2.1.4, we therefore conclude that for any B-category the

underlying simplicial object of Tw(C) is obtained by applying the core functor to

the simplicial object C(Δ•)op⋄Δ•
in Cat(B).

Lemma 2.1.2.6. For any integer 𝑛 ≥ 0, the canonical square

(Δ𝑛)op ⊔ Δ𝑛 (Δ𝑛)op ⋄ Δ𝑛

Δ0 ⊔ Δ𝑛 Δ0 ⋄ Δ𝑛

is a pushout in Cat∞.

Proof. By definition of the bifunctor ⋄ and the pasting lemma for pushout squares,

the commutative square in the statement of the lemma is a pushout if and only if

the square

((Δ𝑛)op × Δ𝑛) ⊔ ((Δ𝑛)op × Δ𝑛) (Δ𝑛)op × Δ𝑛 × Δ1

Δ𝑛 ⊔ Δ𝑛 Δ𝑛 × Δ1

(𝑑1,𝑑0)

pr1 ⊔ pr1 pr1 × idΔ1

(𝑑1,𝑑0)
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is cocartesian. As the functor − × Δ𝑛 preserves colimits, we may assume Δ𝑛 = Δ0.

Moreover, in light of the decomposition Δ𝑛 ≃ Δ1 ⊔Δ0 ⋯ ⊔Δ0 Δ1 in Cat∞, we may

assume (Δ𝑛)op = (Δ1)op. We now have to show that the commutative square

(Δ1)op ⊔ (Δ1)op (Δ1)op × Δ1

Δ0 ⊔ Δ0 Δ1

(𝑑1,𝑑0)

(𝑑1,𝑑0)

is a pushout, which is easily shown by making use of the equivalence

(Δ1)op × Δ1 ≃ Δ2 ⊔Δ1 Δ2

and the fact that the diagram

Δ1 Δ2

Δ0 Δ1

𝑑0

𝑑0

is cocartesian in Cat∞.

By making use of Lemma 2.1.2.6, one now obtains a cartesian square

(CΔ0⋄Δ•
)0 Tw(C)

C0 × C Cop × C.

On the other hand, the defining pushout for Δ0 ⋄ Δ• gives rise to a cartesian

square

(C(Δ0)op⋄Δ•
)0 CΔ1

C0 × C C × C,

which in particular shows:
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Proposition 2.1.2.7. Let C be a B-category. For any object 𝑐∶ 𝐴 → C, the
canonical map (𝜋𝑐)! ∶ C𝑐/ → 𝐴 × C fits into a cartesian square

C𝑐/ Tw(C)

𝐴 × C Cop × C𝑐×id

in Cat(B). In particular, (𝜋𝑐)! is a left fibration.

2.1.3. Initial functors

We will now focus on the left complement of the class of left fibrations. The

results in this section are heavily inspired by Cisinski’s book [18].

Definition 2.1.3.1. A map 𝐽 → 𝐼 between simplicial objects in B is said to be

initial if it is left orthogonal to every left fibration in BΔ. Dually, 𝐽 → 𝐼 is final if
it is left orthogonal to every right fibration in BΔ.

Remark 2.1.3.2. A map 𝐽 → 𝐼 between simplicial objects in B is initial if and

only if its opposite 𝐽 op → 𝐼 op is final. Therefore all properties of initial maps

carry over to final maps upon taking opposite simplicial objects. We will therefore

restrict our attention to the case of initial maps.

Remark 2.1.3.3. By Remark 2.1.1.4, base change along every algebraic morphism

preserves initial maps. Moreover, if𝐴 ∈ B is an arbitrary object, then the forgetful

functor (𝜋𝐴)! ∶ (B/𝐴)Δ → BΔ preserves initial maps as well. It even creates initial
maps since every map in (B/𝐴)Δ arises as a pullback of a map that is in the image

of 𝜋∗
𝐴 ∶ BΔ → (B/𝐴)Δ.

Remark 2.1.3.4. A functor J → I between B-categories is initial (final) in BΔ
precisely if it is internally left orthogonal to left (right) fibrations in Cat(B). This
is easily seen as a consequence of Proposition 2.1.1.6.

Example 2.1.3.5. By Lemma 2.1.1.8, any map between simplicial objects in B

that is in the internal saturation of the map Δ1 → Δ0 defines both an initial and

a final map. In particular, all iterated localisations are both initial and final.
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Definition 2.1.3.6. Let C be a B-category. An object 𝑐∶ 𝐴 → C is said to

be initial if the transpose map 1 → 𝜋∗
𝐴C defines an initial functor in Cat(B/𝐴).

Dually, 𝑐 is final if the transpose map 1 → 𝜋∗
𝐴C defines a final functor in Cat(B/𝐴).

Remark 2.1.3.7. In Corollary 2.1.3.16 we will see that initial and final objects

satisfy the expected universal property, which in particular implies that an object

in an ordinary ∞-category is initial or final in the sense of Definition 2.1.3.6

precisely if it is initial or final in the usual sense.

Warning 2.1.3.8. Note that an object 𝑐∶ 𝐴 → C in a B-category C being initial

is different from the condition that 𝑐 is initial when viewed as a functor in Cat(B).
In fact, by Remark 2.1.3.3 the first condition is equivalent to (𝑐, id)∶ 𝐴 → 𝐴 × C
being initial as a functor in Cat(B), hence either of the two conditions implying

the other would imply that the projection𝐴×C → C is initial as well, which is not

true in general. By contrast, if C is the underlying B-category of a B/𝐴-category

and if 𝑐∶ 𝐴 → C is a section of the structure map C → 𝐴, then 𝑐 defines an

initial object of the B/𝐴-category C in global context 1B/𝐴
if and only if the map

𝑐∶ 𝐴 → C is initial in Cat(B).

Any functor between B-categories admits a unique factorisation into an initial

map followed by a left fibration. In what follows, our goal is to describe this

factorisation explicitly for the case where the domain is the final object 1 ∈ B, i.e.

encodes an object in global context. To that end, recall that to any B-category C

and any object 𝑐∶ 1 → C one can associate the slice B-category C𝑐/ → C such

that the identity map on 𝑐 defines a lift id𝑐 ∶ 1 → C𝑐/ of 𝑐∶ 1 → C.

Proposition 2.1.3.9. For any B-category and any object 𝑐 in C in context 1 ∈ B,
the object id𝑐 ∶ 1 → C𝑐/ is initial.

Remark 2.1.3.10. By combining Remark 2.1.2.2 with Remark 2.1.3.3, Proposi-

tion 2.1.3.9 furthermore implies that if 𝑐∶ 𝐴 → C is an object in arbitrary context

𝐴 ∈ B, then the induced section id𝑐 ∶ 𝐴 → C𝑐/ over 𝐴 is an initial map in Cat(B).

In order to show Proposition 2.1.3.9, we will need a convenient criterion how to

detect initial objects. This will make use of the notion of cocomma B-categories:
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Definition 2.1.3.11. Let 𝑓∶ C → D and 𝑔∶ C → E be functors in Cat(B). The
cocomma B-category D ⋄C E is the B-category that is defined by the pushout

square

C ⊔ C Δ1 ⊗ C

D ⊔ E D ⋄C E.

(𝑑1,𝑑0)

𝑓 ⊔𝑔

If 𝐴 ∈ B is an arbitrary object and C → 𝐴 is a map (i.e. if C is a B/𝐴-category),

we write C▷ = C ⋄C 𝐴 and refer to this B-category as the right cone of C → 𝐴.

Dually, we write C◁ = 𝐴 ⋄C C and refer to this B-category as the left cone of
C → 𝐴.

Note that if if C is aB-category and 𝑐∶ 1 → C is an arbitrary object, then there

is always a canonical map∞ → 𝑐 inC◁, where∞∶ 1 → C◁ denotes the cone point.

In fact, this map can be defined as the image of the map id⊗𝑐∶ Δ1 → Δ1 ⊗ C

along the map Δ1 ⊗ C → C◁. We are now ready to state and prove the desired

criterion for initiality:

Lemma 2.1.3.12. Let C be a B-category and let 𝑐∶ 1 → C be an object. Then the
following are equivalent:

1. the canonical inclusion C → C◁ admits a retraction 𝑟∶ C◁ → C that carries
the canonical map ∞ → 𝑐 in C◁ to an equivalence in C;

2. there is a map 𝜖∶ Δ1 ⊗ C → C such that

a) the composite 𝜖𝑑1 ∶ C → C is equivalent to the constant map with value
𝑐, i.e. to the composite C → 1 → C in which the second arrow is given
by 𝑐;

b) the composite 𝜖𝑑0 ∶ C → C is equivalent to the identity;

c) the map 𝜖 ∘ (id⊗𝑐)∶ Δ1 → C is an equivalence.

Moreover, if either of these conditions is satisfied, then 𝑐 is initial.

Proof. If (1) holds, then one can define 𝜖 as the composition of 𝑟with the canonical

map Δ1 ⊗ C → C◁. The conditions on 𝑟 then immediately imply that (2) holds.

Conversely, if (2) holds, the universal property of pushouts gives rise to a map
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𝑟∶ C◁ → C which carries the map ∞ → 𝑐 to an equivalence. Lastly, if (1) holds,

then the map 𝑟 gives rise to a commutative diagram

1 1 1

Δ1 C◁ C

1 C C

𝑑1

id id

𝑐id𝑐

𝑟

𝑑0

𝑐 id
id

in Cat(B). As a consequence, the map 𝑐∶ 1 → C is seen to be a retract of

the map Δ1 → C◁, hence it suffices to show that the latter is initial. Since

both 𝑑1 and ∞∶ 1 → C◁ are initial, this follows immediately from item (2) in

Proposition 1.1.5.2.

Proof of Proposition 2.1.3.9. We would like to apply Lemma 2.1.3.12 to the pair

(C𝑐/, id𝑐). To that end, let 𝑑∶ Δ1 × Δ1 → Δ1 be the projection onto the diag-

onal that is given by composing the equivalence Δ1 × Δ1 ≃ Δ2 ⊔Δ1 Δ2 with

𝑠0 ⊔Δ1 𝑠0 ∶ Δ2 ⊔Δ1 Δ2 → Δ1. Then the map 𝑑∗ ∶ CΔ1
→ CΔ1×Δ1

fits into the two

commutative squares

CΔ1
CΔ1×Δ1

CΔ1
CΔ1×Δ1

C CΔ1
C CΔ1

.

𝑑∗

𝑑1 (id ×𝑑1)∗

𝑑∗

𝑑1 (𝑑1×id)∗

𝑠0 𝑠0

Transposing 𝑑∗ along the adjunction Δ1 ⊗ − ⊣ (−)Δ
1
thus determines a map

𝑒∶ Δ1 ⊗ CΔ1
→ CΔ1

together with two commutative squares

Δ1 ⊗ CΔ1
CΔ1

CΔ1
Δ1 ⊗ CΔ1

Δ1 ⊗ C C C CΔ1
.

𝑒

id⊗𝑑1 𝑑1

𝑑1⊗id

𝑑1 𝑒

𝑠0⊗id 𝑠0

By pasting the right square with the pullback diagram that defines the slice B-

category C𝑐/, we obtain a map ℎ∶ (C𝑐/)◁ → CΔ1
that fits into the commutative
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diagram

C𝑐/ Δ1 ⊗ C𝑐/ Δ1

CΔ1
Δ1 ⊗ CΔ1

Δ1 ⊗ C

1 (C𝑐/)◁ 1

C CΔ1
. C.

𝑑1⊗id
id⊗𝜋C𝑐/

id⊗𝑐
𝑑1⊗id

𝑑1

id⊗𝑑1

𝑐 ℎ 𝑐
𝑠0

𝑒

𝑑1

𝑠0⊗id

The horizontal square on the bottom right in this diagram now gives rise to the

desired map 𝑟∶ (C𝑐/)◁ → C𝑐/. By inspection of the above commutative diagram,

it is clear that 𝑟 sends the canonical map ∞ → id𝑐 to the identity on id𝑐 ∶ 1 → C𝑐/
and therefore to an equivalence. Lastly, the observation that the composition

CΔ1 𝑑0⊗id
−−−−−→ Δ1 ⊗ CΔ1 𝑒

−→ CΔ1

recovers the identity on CΔ1
implies that 𝑟 is a retract of the map C𝑐/ → (C𝑐/)◁,

which finishes the proof.

Corollary 2.1.3.13. Let C be a B-category and let 𝑐∶ 1 → C be an object in C.
Then the composition (𝜋𝑐)! id𝑐 ∶ 1 → C𝑐/ → C yields the unique factorisation of 𝑐
into an initial map and a left fibration.

Remark 2.1.3.14. In light of Remark 2.1.2.2 and the fact that the forgetful

functor (𝜋𝐴)! preserves initial maps, Corollary 2.1.3.13 more generally shows

that if 𝑐∶ 𝐴 → C is an object in arbitrary context 𝐴 ∈ B, the factorisation of 𝑐
into an initial map and a left fibration is given by the composition

pr1(𝜋𝑐)! id𝑐 ∶ 𝐴 → C𝑐/ → C,

where pr1 ∶ 𝐴 × C → C denotes the projection.

Lemma 2.1.3.12 can furthermore be used to derive the following characterisa-

tion of initial objects in a B-category:

Proposition 2.1.3.15. Let C be a B-category. For any object 𝑐∶ 1 → C, the
following are equivalent:
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1. 𝑐 is an initial object;

2. the projection (𝜋𝑐)! ∶ C𝑐/ → C is an equivalence;

3. for any object 𝑑∶ 𝐴 → C in context 𝐴 ∈ B the map mapC(𝜋
∗
𝐴(𝑐), 𝑑) → 𝐴 is

an equivalence in B.

Proof. If 𝑐 is initial, Corollary 2.1.3.13 implies that the left fibration (𝜋𝑐)! ∶ C𝑐/ → C

must be initial as well and therefore an equivalence. Conversely, if this map is

an equivalence, Corollary 2.1.3.13 implies that 𝑐 is initial. Lastly, since the map

(𝜋𝑐)! ∶ C𝑐/ → C is a left fibration, Proposition 2.1.1.12 implies that this map is

an equivalence whenever the induced map (C𝑐/)|𝑑 → 𝐴 is an equivalence for

any object 𝑑∶ 𝐴 → C. As this map recovers the morphism in (3), the claim

follows.

Corollary 2.1.3.16. Let C be aB-category and let 𝑐 and 𝑑 be objects in C in context
1 ∈ B such that 𝑐 is initial. Then there is a unique map 𝑐 → 𝑑 in C that is an
equivalence if and only if 𝑑 is initial as well.

Proof. By Proposition 2.1.3.15, the map mapC(𝑐, 𝑑) → 1 is an equivalence. There-

fore, there is a unique map 𝑓∶ 𝑐 → 𝑑 that corresponds to the unique section

1 → mapC(𝑐, 𝑑). If 𝑑 is initial, then by the same argumentation there is a unique

map 𝑔∶ 𝑑 → 𝑐, and by uniqueness this must be an inverse of 𝑓. Hence 𝑓 is an

equivalence. Conversely, if 𝑓 is an equivalence, then 𝑐 and 𝑑 are equivalent as

objects in C, which implies that the two maps 𝑐, 𝑑∶ 1 ⇉ C in Cat(B/𝐴) are

equivalent, which shows that 𝑑 must be initial.

As a consequence of Corollary 2.1.3.16 (and its dual), initial (and final) objects in

aB-categoryC are unique. Wewill usually denote an initial object by∅C ∶ 1 → C

and a final object by 1C ∶ 1 → C.

2.1.4. Covariant equivalences

Recall from Section 1.1.5 that the inclusion LFib ↪→ Fun(Δ1,BΔ) admits a left

adjoint 𝐿. We will denote by 𝐿/𝐶 ∶ (BΔ)/𝐶 → LFib(𝐶) the induced functor on

the fibre over a simplicial object 𝐶 in B, i.e. the left adjoint of the inclusion

LFib(𝐶) ↪→ (BΔ)/𝐶.
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Definition 2.1.4.1. Let 𝐶 be a simplicial object in B and let 𝑓∶ 𝑃 → 𝑄 be a map

in (BΔ)/𝐶. Then 𝑓 is said to be a covariant equivalence if 𝐿/𝐶(𝑓 ) is an equivalence

in LFib(𝐶).

Remark 2.1.4.2. In the context of Definition 2.1.4.1, the map 𝐿/𝐶(𝑓 ) is con-

structed by means of the unique commutative diagram

𝑃 𝑄

𝐿/𝐶(𝑃) 𝐿/𝐶(𝑄)

𝐶

𝑓

𝐿/𝐶(𝑓 )

in which the two vertical maps are initial and the two diagonal maps are left

fibrations. In particular, if 𝑓 is initial then 𝑓 is a covariant equivalence over 𝐶. The
converse implication is true whenever the map 𝑄 → 𝐶 is already a left fibration.

The main goal of this section is to prove the following characterisation of

covariant equivalences over C:

Proposition 2.1.4.3. Let C be a B-category and let

𝑃 𝑄

C
𝑝

𝑓

𝑞

be a commutative triangle in BΔ. Then the following are equivalent:

1. 𝑓 is a covariant equivalence over C;

2. for any object 𝑐∶ 𝐴 → C the induced map 𝑓/𝑐 ∶ 𝑃/𝑐 → 𝑄/𝑐 is a covariant
equivalence over C/𝑐;

3. for any object 𝑐∶ 𝐴 → C the induced map

colim
Δop

(𝑓/𝑐)∶ colim
Δop

(𝑃/𝑐) → colim
Δop

(𝑄/𝑐)

is an equivalence in B.
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The proof of Proposition 2.1.4.3 is based on the concept of a proper map.
Observe that for any map 𝑝∶ 𝑃 → 𝐶 in BΔ the commutative square

LFib(𝐶) (BΔ)/𝐶

LFib(𝑃) (BΔ)/𝑃

𝑝∗ 𝑝∗

gives rise to a left lax square

LFib(𝐶) (BΔ)/𝐶

LFib(𝑃) (BΔ)/P

𝑝∗

𝐿/𝐶

𝑝∗

𝐿/𝐷

by means of the mate construction. As 𝐿 does not preserve pullbacks, this square

does not commute in general.

Definition 2.1.4.4. A map 𝑝∶ 𝑃 → 𝐶 in BΔ is said to be proper if for any

cartesian square

𝑄 𝑃

𝐷 𝐶

𝑞 𝑝

in BΔ the left lax square

LFib(𝐷) (BΔ)/𝐷

LFib(𝑄) (BΔ)/𝑄

𝑞∗

𝐿/𝐷

𝑞∗
𝐿/𝑄

commutes. Dually, a map 𝑝∶ 𝑃 → 𝐶 is smooth if 𝑃op → 𝐶op is proper.

Proposition 2.1.4.5. A map 𝑝∶ 𝑃 → 𝐶 in BΔ is proper if and only if the pullback
functor 𝑝∗ ∶ (BΔ)/𝐶 → (BΔ)/𝑃 preserves initial maps (where a map in (BΔ)/𝐶 is
said to be initial if its image in BΔ is initial, and similarly for (BΔ)/𝑃).
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Proof. Unwinding the definitions, the left lax square from Definition 2.1.4.4 is

commutative if and only if for any 𝑓∶ 𝐸 → 𝐷 the lower square in the commutative

diagram
𝑞∗𝐸 𝐸

𝐿(𝑞∗𝐸) 𝐿(𝐸)

𝑄 𝐷

𝑞∗𝑓 𝑓

𝑞

is cartesian. Here the vertical maps are given by the factorisation of 𝐸 → 𝐷 and

𝑞∗𝐸 → 𝑄 into an initial map and a left fibration. In particular, if 𝑝∗ preserves

initial maps, then the map 𝐿(𝑞∗𝐸) → 𝑞∗𝐿(𝐸) is initial. But since this map must

also be a left fibration, it is necessarily an equivalence. The converse direction

follows from chasing an initial map through the commutative square that is

provided in the definition of proper maps.

Remark 2.1.4.6. Proposition 2.1.4.5 in particular implies that proper maps are

preserved by étale base change. In fact, if 𝐴 ∈ B is an arbitrary object and if

𝑝∶ 𝑃 → 𝐶 is proper, then by Remark 2.1.3.3 the map 𝜋∗
𝐴(𝑃) → 𝜋∗

𝐴𝐶 is proper

as soon as its image along (𝜋𝐴)! is proper. As the latter can be identified with

𝑝 × id∶ 𝑃 × 𝐴 → 𝐶 × 𝐴, this follows immediately from the definition.

By definition, proper maps preserve covariant equivalences:

Proposition 2.1.4.7. If 𝑝∶ 𝑃 → 𝐶 is a proper map between simplicial objects in B,
then the base change functor 𝑝∗ ∶ (BΔ)/𝐶 → (BΔ)/𝑃 carries covariant equivalences
over 𝐶 to covariant equivalences over 𝑃.

Proposition 2.1.4.8. For any two simplicial objects 𝐶 and 𝐷 in B the projection
𝐶 × 𝐷 → 𝐶 is proper.

Proof. This follows immediately from the fact that initial maps are stable under

products (since initial maps are internally left orthogonal to left fibrations).

The central ingredient towards the proof of Proposition 2.1.4.3 is the following

proposition:
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Proposition 2.1.4.9. Any right fibration between simplicial objects in B is proper.

Proof. Since right fibrations are stable under pullbacks, it suffices to show that

the base change along a right fibration preserves initial maps. To that end, let 𝑆
be the set of maps in BΔ whose base change along right fibrations results in an

initial map. We claim that 𝑆 is saturated. In fact, it is obvious that 𝑆 is closed under

composition and contains all equivalences, and the stability of 𝑆 under pushouts

and small colimits in Fun(Δ1,BΔ) follows from the fact that RFib defines a sheaf

on BΔ (as it is defined as the right orthogonality class of a factorisation system).

As a consequence, it suffices to show that the initial map 𝑑1 ∶ 𝐷 ↪ Δ1 ⊗ 𝐷 is

contained in 𝑆 for any simplicial object 𝐷 in B.

Let therefore

𝑄 𝑃

𝐷 Δ1 ⊗ 𝐷

𝑓

𝑝

𝑑1

be a cartesian square in BΔ such that 𝑝 is a right fibration. Let 𝜏∶ Δ1 × Δ1 → Δ1

be the map that sends the final vertex (1, 1) to 1 and any other vertex to 0. We

then obtain a commutative diagram

Δ1 Δ0

Δ1 Δ1 × Δ1 Δ1

Δ1

id ×𝑑1

𝑠0

𝑑1

𝑑0×id 𝜏

id ×𝑑0 id

of ∞-categories such that the composition of the two horizontal arrows is the

identity. Now let (Δ1⊗𝑄)⊔𝑄𝑃 be the pushout of 𝑓 along the map 𝑑0 ∶ 𝑄 → Δ1⊗𝑄,
and observe that the induced map (Δ1 ⊗ 𝑄) ⊔𝑄 𝑃 → Δ1 ⊗ 𝑃 is final (by making

use of item (2) of Proposition 1.1.5.2). Therefore the lifting problem

(Δ1 ⊗ 𝑄) ⊔𝑄 𝑃 𝑃

Δ1 ⊗ 𝑃 Δ1 ⊗ 𝐷

(𝑓 ⊗𝑠0,id)

𝑝

(𝜏⊗id)∘(id⊗𝑝)

ℎ

98



2.1. Left fibrations and initial maps

admits a unique solution ℎ. Let 𝑟∶ 𝑃 → 𝑄 be defined as the unique functor that

makes the diagram

𝑃 Δ1 ⊗ 𝑃

𝑄 𝑃

Δ1 ⊗ 𝐷 (Δ1 × Δ1) ⊗ 𝐷

𝐷 Δ1 ⊗ 𝐷

𝑟

𝑑1

𝑝
ℎ id⊗𝑝

𝑞

𝑓

𝑠0
𝑑1⊗id

𝜏⊗id𝑑1

𝑝

commute. By construction, this map satisfies 𝑟𝑓 ≃ id and moreover fits into the

commutative diagram
𝑃

Δ1 ⊗ 𝑃 𝑃

𝑃.

𝑑1
𝑓 𝑟

ℎ

𝑑0 id

Hence the commutative diagram

𝑄 Δ1 ⊗ 𝑄 ⊔𝑄 𝑃 𝑄

𝑃 Δ1 ⊗ 𝑃 𝑃

𝑓

(𝑠0,𝑟 )

𝑓

𝑑1 𝑠0

exhibits 𝑓 as a retract of the initial map Δ1 ⊗ 𝑄 ⊔𝑄 𝑃 → Δ1 ⊗ 𝑃 (in which the

domain is the pushout of 𝑓 along the inclusion 𝑑1 ∶ 𝑄 → Δ1 ⊗ 𝑄) and therefore

as an initial map itself.

Proof of Proposition 2.1.4.3. Suppose first that 𝑓 is a covariant equivalence over

C. Since the projection (𝜋𝑐)! ∶ C/𝑐 → C × 𝐴 is a right fibration and since by

Proposition 2.1.4.9 any right fibration is proper, Proposition 2.1.4.7 implies that

the map 𝑓/𝑐 must be a covariant equivalence over C/𝑐.

Suppose now that 𝑓/𝑐 is a covariant equivalence over C/𝑐, i.e. that 𝐿/(C/𝑐)(𝑓 ) is
an equivalence. Quite generally, note that for any simplicial object𝐷 inB the base

change functor 𝜋∗
𝐷 ∶ BΔ → (BΔ)/D admits a left adjoint (𝜋𝐷)! that is given by the
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forgetful functor, which implies that the base change functor 𝜋∗
𝐷 ∶ B → LFib(𝐷)

admits a left adjoint (𝜋𝐷)! as well that is explicitly given by the composition

LFib(𝐷) ↪→ (BΔ)/𝐷
(𝜋𝐷)!
−−−−→ BΔ

colimΔop
−−−−−−−→ B,

cf. Remark 2.1.1.11. One consequently obtains a commutative square

(BΔ)/𝐷 BΔ

LFib(𝐷) B.

(𝜋𝐷)!

𝐿/𝐷 colimΔop

(𝜋𝐷)!

Applying this observation to 𝐷 = C/𝑐, one finds that the map colimΔop(𝑓/𝑐)
arises as the image of 𝐿/(C/𝑐)(𝑓 ) along the functor (𝜋C/𝑐

)! and is therefore an

equivalence.

Lastly, assume that colimΔop(𝑓/𝑐) is an equivalence in B for every object

𝑐∶ 𝐴 → C in context 𝐴 ∈ B. We need to show that the map

𝐿/C(𝑓 )∶ 𝐿/C(𝑃) → 𝐿/C(𝑄)

in LFib(C) is an equivalence. By Proposition 2.1.1.12, it suffices to show that the

map 𝐿/C(𝑓 )|𝑐 ∶ 𝐿/C(𝑃)|𝑐 → 𝐿/C(𝑄)|𝑐 that is induced on the fibres over 𝑐∶ 𝐴 → C

is an equivalence in B for all objects 𝑐 in C. By making use of the factorisation

of 𝑐 into the canonical final map id𝑐 ∶ 𝐴 → C/𝑐 followed by the right fibration

pr1(𝜋𝑐)! ∶ C/𝑐 → C, one obtains a pullback square

𝐿/C(𝑃)|𝑐 𝐿/C(𝑄)|𝑐

𝐿/C(𝑃)/𝑐 𝐿/C(𝑄)/𝑐

𝐿/C(𝑓 )|𝑐

(𝐿/C(𝑓 ))/𝑐

in which the vertical maps are final since they arise as pullbacks of the final map

id𝑐 along left fibrations and since the dual of Proposition 2.1.4.9 implies that left

fibrations are smooth. Note that the fibres 𝐿/C(𝑃)|𝑐 and 𝐿/C(𝑄)|𝑐 are contained in

B. Hence the functor colimΔop sends the two vertical maps in the above square

to equivalences in B while leaving the upper horizontal map unchanged. We

conclude that 𝐿/C(f)|𝑐 is an equivalence whenever colimΔop((𝐿/C(𝑓 ))/𝑐) is one,
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and since the latter recovers the map colimΔop(𝑓/𝑐) (again using properness of

the right fibration pr0(𝜋𝑐)! ∶ C/𝑐 → C), the result follows.

Proposition 2.1.4.3 can be used to derive an internal version of Quillen’s theo-

rem A:

Corollary 2.1.4.10. A functor 𝑓∶ J → I between B-categories is initial if and only
if for every object 𝑖 in I in context 𝐴 ∈ B the canonical map (J/𝑖)gpd → 𝐴 is an
equivalence.

Proof. On account of Remark 2.1.4.2, the map 𝑓 is initial if and only if it is a

covariant equivalence over I. By Proposition 2.1.4.3, this is the case if and only

if for every object 𝑖∶ 𝐴 → I the map (J/𝑖)gpd → (I/𝑖)gpd is an equivalence. By

construction, there is a commutative diagram

(J/𝑖)gpd (I/𝑖)gpd

𝐴.

Therefore, the proof is finished once we show that the map (I/𝑖)gpd → 𝐴 is an

equivalence. But this follows from the observation that the map I/𝑖 → 𝐴 is final

as it is a retraction of the final section id𝑐 ∶ 𝐴 → I/𝑐.

Remark 2.1.4.11. As a consequence of Corollary 2.1.4.10, the condition of a

functor between B-categories to be initial is local. More precisely, if ⨆𝑘 𝐴𝑘 � 1
is a cover in B and if 𝑓∶ J → I is a functor between B-categories, then 𝑓 is

initial if and only if 𝜋∗
𝐴𝑘

𝑓 is initial for all 𝑘. In fact, Corollary 2.1.4.10 tells us

that 𝑓 being initial is equivalent to the map (J/𝑖)gpd → 𝐴 being an equivalence

for every object 𝑖∶ 𝐴 → I. Using Remark 1.2.5.6, we obtain an equivalence

𝜋∗
𝐴𝑘

(J/𝑖) ≃ (𝜋∗
𝐴𝑘
J)/𝜋∗

𝐴𝑘
𝑖 over 𝐴𝑘 for all 𝑘. Since 𝜋∗

𝐴𝑘
moreover commutes with the

groupoidification functor (Proposition 1.2.4.4), we may thus identify the pullback

of the map (J/𝑖)gpd → 𝐴 along 𝜋𝐴𝑘
with the map (𝜋∗

𝐴𝑘
J/𝜋∗

𝐴𝑘
𝑖)gpd → 𝜋∗

𝐴𝑘
𝐴 in B/𝐴𝑘

.

The claim now follows from the fact that the algebraic morphism B → ∏𝑘 B/𝐴𝑘

is conservative since ⨆𝑘 𝐴𝑘 � 1 is a cover in B.

We end this section with yet another characterisation of covariant equivalences

that will be useful later:
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Proposition 2.1.4.12. Let C be a B-category and let

𝑃 𝑄

C
𝑝

𝑓

𝑞

be a commutative triangle in BΔ in which both 𝑝 and 𝑞 are smooth. Then 𝑓 is
a covariant equivalence over C if and only if for any object 𝑐 in C in arbitrary
context 𝐴 ∈ B the induced map colimΔop 𝑓 |𝑐 ∶ colimΔop(𝑃|𝑐) → colimΔop(𝑄|𝑐) is
an equivalence.

Proof. 𝑓 is a covariant equivalence over C if and only if 𝐿/C(𝑓 ) is an equivalence.

Let

𝑃 𝑄

𝐿/C(𝑃) 𝐿/C(𝑄)

𝑓

𝑖 𝑗
𝐿/C(𝑓 )

be the canonical square in which the two vertical maps are obtained from the

adjunction unit and are therefore initial. Since 𝐿/C(𝑓 ) is a map in of left fibrations

over C, Proposition 2.1.1.12 implies that this map is an equivalence if and only if

the induced map 𝐿/C(𝑓 )|𝑐 on the fibres over 𝑐 is one for every object 𝑐∶ 𝐴 → C.

It therefore suffices to show that in the induced commutative diagram

𝑃|𝑐 𝑄|𝑐

𝐿/C(𝑃)|𝑐 𝐿/C(𝑄)|𝑐

𝑓 |𝑐

𝑖|𝑐 𝑗|𝑐
𝐿/C(𝑓 )|𝑐

of the fibres over 𝑐 the maps 𝑖|𝑐 and 𝑗|𝑐 are initial. We will show this for 𝑖|𝑐, the
case of 𝑗|𝑐 is analogous.

Let 𝑝′ ∶ 𝐿/C(𝑃) → C be the structure map, and consider the commutative
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diagram

𝑃|𝑐 𝑃/𝑐 𝑃

𝐿/C(𝑃)|𝑐 𝐿/C(𝑃)/𝑐 𝐿/C(𝑃)

𝑃|𝑐 𝑃/𝑐 𝑃

𝐴 C/𝑐 C.

id

𝑖|𝑐 𝑖/𝑐

id

𝑖
id

𝑝′|𝑐

𝑝|𝑐 𝑝/𝑐 𝑝

id𝑐 pr0(𝜋𝑐)!

𝑝′
/𝑐 𝑝′

The projection pr0(𝜋𝑐)! is a right fibration, which implies that the two maps

𝑃/𝑐 → 𝑃 and 𝐿/C(𝑃)/𝑐 → 𝐿/C(𝑃) must be right fibrations as well. Hence Propo-

sition 2.1.4.9 implies that the map 𝑖/𝑐 must be initial. Moreover, since 𝑝 and 𝑝′

are smooth the maps 𝑝/𝑐 and 𝑝′
/𝑐 must be smooth as well, which implies that

the maps 𝑃|𝑐 → 𝑃/𝑐 and 𝐿/C(𝑃)|𝑐 → 𝐿/C(𝑃)/𝑐 must be final since id𝑐 is final. We

therefore obtain a pullback square

𝑃|𝑐 𝑃/𝑐

𝐿/C(𝑃)|𝑐 𝐿/C(𝑃)/𝑐

𝑖|𝑐 𝑖/𝑐

in which the horizontal maps are final and the vertical map on the right is initial.

Since the functor colimΔop carries both final and initial maps to equivalences

in B (cf. Remark 1.1.5.3 and Remark 2.1.1.11), the map colimΔop(𝑖|𝑐) must be an

equivalence. But as 𝐿/C(𝑃)|𝑐 is already contained in B, the map 𝑖|𝑐 is equivalent
to the composition of an initial map with an equivalence and therefore initial

itself.

2.2. Straightening of left fibrations

In [49, § 2.1.1], Lurie proves the straightening equivalence for left fibrations,

which states that to every left fibration 𝑝∶ 𝑃 → 𝐶 of simplicial sets one can

associated a functor 𝑓∶ 𝐶 → Ani which is unique up to coherent homotopy. The

functor 𝑓 is called the straightening of 𝑝. In this section, our goal is to obtain a

B-categorical version of this result. Recall that the analogue of Ani in the world
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of B-categories is the universe for B-groupoids Grpd
B
. Therefore, a variant of

straightening for B-categories ought to associate to each left fibration 𝑝∶ 𝑃 → 𝐶
of simplicial objects in B a map 𝑓∶ 𝐶 → Grpd

B
, and this assignment should

induce an equivalence between a (suitably defined) B-category of left fibrations

over 𝐶 and the functor B-category Fun
B
(𝐶,Grpd

B
). We accomplish this goal

in Section 2.2.1. As a consequence, there is a universal left fibration, which is

defined as the unique left fibration 𝜙∶ (Grpd
B
)∗ → Grpd

B
whose straightening

is the equivalence on Grpd
B
. In Section 2.2.2, we study this map in some detail.

2.2.1. The straightening equivalence

For any B-category C, we will denote by LFibC the Ĉat∞-valued presheaf on

B that is given by the assignment 𝐴 ↦ LFib(C × 𝐴). This defines a functor

C ↦ LFibC from Cat(B) into PShĈat∞
(B).

Theorem 2.2.1.1. For every B-category C, the presheaf LFibC defines a large
B-category, and there is a canonical equivalence

Fun
B
(C,Grpd

B
) ≃ LFibC

that is natural in C.

Theorem 2.2.1.1 can be easily deduced from the following more general state-

ment:

Proposition 2.2.1.2. There is an equivalence

FunB(−,Grpd
B
) ≃ LFib

of Ĉat∞-valued sheaves on BΔ.

Remark 2.2.1.3. In the situation of Proposition 2.2.1.2, it is clear that the presheaf

FunB(−,Grpd
B
) defines a sheaf on BΔ, but the claim that LFib is a sheaf (with-

out knowing that LFib is equivalent to FunB(−,Grpd
B
)) requires an argument.

Recall from Proposition 1.4.1.6 that LFib is a sheaf if and only if the class of left

fibrations in BΔ is local. In light of the characterisation of left fibrations from

Proposition 2.1.1.3, this is a straightforward consequence of descent in B.

104



2.2. Straightening of left fibrations

Proof of Theorem 2.2.1.1. Bymaking use of the embedding Cat(B) ↪ PShCat∞(B),
one sees that the functor Fun

B
(−,Grpd

B
) is equivalent to the bifunctor

FunB(− × −,Grpd
B
)∶ Bop × Cat(B)op → Ĉat∞.

Similarly, the functor LFib(−) corresponds to the bifunctor

LFib(− × −)∶ Bop × Cat(B)op → Ĉat∞

under this identification. Thus, the claim follows by restricting the equivalence

FunB(−,Grpd
B
) ≃ LFib

along the inclusion Cat(B) ↪→ BΔ.

The remainder of this section is devoted to the proof of Proposition 2.2.1.2. Fix

a small full subcategory G ⊂ B as in Remark 1.2.1.3 The main ingredient will be

to establish an equivalence

Fun
B̂
(Δ• ⊗ −,Grpd

B
) ≃ LFib(Δ• ⊗ −)

of Ĉat∞-valued presheaves on Δ × G. This will require a few preparations. First,

for any 𝑛 ≥ 0 an any 𝐺 ∈ G let us denote by Δ𝑛 × 𝐺 the presheaf on Δ × G that

is represented by the pair (⟨𝑛⟩, 𝐺). We thus obtain 𝐿(Δ𝑛 × 𝐺) ≃ Δ𝑛 ⊗ 𝐺 (where

𝐿∶ PSh(Δ × G) → BΔ is the localisation functor).

Lemma 2.2.1.4. Assigning to a left fibration 𝑃 → Δ𝑛 ⊗𝐺 in BΔ its pullback along
the adjunction unit Δ𝑛 × 𝐺 → Δ𝑛 ⊗ 𝐺 in PShAni(Δ × G) defines an embedding

LFib(Δ• ⊗ −) ↪ PShAni(Δ × G)/Δ•×−

of presheaves on Δ × G.

Proof. Since the presheaf LFib(Δ• ⊗ −) embeds into the presheaf (BΔ)/Δ•⊗−, it

suffices to prove that one can define an embedding

(BΔ)/Δ•⊗− ↪ PShAni(Δ × G)/Δ•×−
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in the desired way. Since the localisation functor PShAni(Δ × G) → BΔ is left

exact, there is a functorial map

PShAni(Δ × G)/Δ•×− → (BΔ)/Δ•⊗−

that is given on the level of cartesian fibrations by the pullback of the natural

map

Fun(Δ1, PShAni(Δ × G)) → Fun(Δ1,BΔ) ×PShAni(Δ×G) BΔ

along the Yoneda embedding Δ × G ↪→ PShAni(Δ × G). On the fibre over (⟨𝑛⟩, 𝐺),
this functor is given by the map that is naturally induced by the localisation

functor PShAni(Δ × G) → BΔ upon taking slice ∞-categories. Hence there are

fibre-wise right adjoints that are given by composing the natural map

(BΔ)/Δ𝑛⊗𝐺 → PShAni(Δ × G)/Δ𝑛⊗𝐺

that is induced by the inclusion BΔ ↪ PShAni(Δ × G) with the pullback functor

along the adjunction unit Δ𝑛 × 𝐺 → Δ𝑛 ⊗ 𝐺 in PShAni(Δ × G). Note that each

of these fibre-wise right adjoints is fully faithful since the localisation functor

commutes with pullbacks. We conclude by observing that these fibre-wise right

adjoints assemble to a map of Ĉat∞-valued presheaves on Δ × G.

By [25, Proposition 9.8] there is a functorial equivalence

PShAni(Δ × G)/Δ•×− ≃ PShAni((Δ × G)/Δ•×−)

where the right-hand side can furthermore be identified with PShAni(Δ/Δ• ×G/−).
Combining this result with Lemma 2.2.1.4, we conclude that there is an embedding

LFib(Δ• ⊗ −) ↪ PShAni(Δ/Δ• × G/−)

that sends a left fibration 𝑃 → Δ𝑛 ⊗𝐺 inBΔ to the presheaf that maps a pair (𝜏 , 𝑠)
(where 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩ is a map in Δ and 𝑠∶ 𝐻 → 𝐺 is a map in G) to the fibre

𝑃𝑘(𝐻)|(𝜏 ,𝑠) 𝑃𝑘(𝐻)

1 constB(Δ𝑛
𝑘) × 𝐺(𝐻).(𝜏 ,𝑠)
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Note that this embedding factors through the inclusion

PShB/−
(Δ/Δ•) ↪ PShPShAni(G/−)(Δ/Δ•) ≃ PShAni(Δ/Δ• × G/−),

which implies that we end up with a functorial embedding

LFib(Δ• ⊗ −) ↪ PShB/−
(Δ/Δ•).

Our next goal is to characterise the essential image of this embedding:

Lemma 2.2.1.5. For any 𝐺 ∈ G and any 𝑛 ≥ 0, a presheaf 𝐹 ∈ PShB/𝐺
(Δ/Δ𝑛) is

contained in the essential image of the inclusion LFib(Δ𝑛 ⊗ 𝐺) ↪→ PShB/𝐺
(Δ/Δ𝑛)

if and only if for any 𝑘 ≥ 1 and any map 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩ in Δ, the inclusion
𝛿 {0} ∶ ⟨0⟩ → ⟨𝑘⟩ induces an equivalence 𝐹(𝜏) ≃ 𝐹(𝜏𝛿 {0}).

Proof. Let 𝐹 be a B/𝐺-valued presheaf on Δ/Δ𝑛 and let 𝑃 → Δ𝑛 × 𝐺 be the map in

PShAni(Δ × G) that corresponds to 𝐹 in view of the inclusion

PShB/𝐺
(Δ/Δ𝑛) ↪ PShAni(Δ × G)/Δ𝑛×𝐺.

Then 𝑃 → Δ𝑛 × 𝐺 is in the essential image of the inclusion

(BΔ)/Δ𝑛⊗𝐺 ↪ PShAni(Δ × G)/Δ𝑛×𝐺.

To see this, let (𝐿 ⊣ 𝑖) denotes the adjunction PShAni(Δ × G) ⇆ BΔ. We need to

show that the commutative square

𝑃 𝑖𝐿(𝑃)

Δ𝑛 × 𝐺 𝑖(Δ𝑛 ⊗ 𝐺)

that is induced by the adjunction unit id → 𝑖𝐿 is a pullback square in PShAni(Δ×G).
It suffices to show this for each 𝑘 ∈ Δ individually. In this case, the map

𝑃𝑘 → const(Δ𝑛
𝑘) × 𝐺 is given by the coproduct

⨆
𝜏∶ ⟨𝑘⟩→⟨𝑛⟩

𝐹(𝜏) → ⨆
𝜏∶ ⟨𝑘⟩→⟨𝑛⟩

𝐺,
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hence it suffices to show that for each map 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩ in Δ the square

𝐹(𝜏) 𝑖𝐿(𝐹(𝜏))

𝐺 𝑖𝐿(𝐺)

is cartesian, which follows from 𝐹(𝜏) being contained in B. Hence 𝐹 is contained

in LFib(Δ𝑛 ⊗ 𝐺) precisely if the map 𝐿(𝑃) → Δ𝑛 ⊗ 𝐺 is a left fibration.

Using that 𝐿 is left exact as well as Proposition 2.1.1.3, one finds that map

𝐿(𝑃) → Δ𝑛 ⊗ 𝐺 being a left fibration is equivalent to the square

𝑃𝑘 𝑃0

Δ𝑛
𝑘 × 𝐺 Δ𝑛

0 × 𝐺

𝑑{0}

𝑑{0}

being a pullback diagram for all 𝑘 ≥ 1. On account of the commutative diagrams

𝐹(𝜏) 𝐹 (𝜏𝛿 {0})

𝑃𝑘 𝑃0

𝐺 𝐺

Δ𝑛
𝑘 × 𝐺 Δ𝑛

0 × 𝐺

𝑑{0}

id

𝜏 𝜏𝛿 {0}𝑑{0}

for all 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩, in which the squares on the left and on the right are cartesian,

this is seen to be equivalent to the map 𝛿 {0} ∶ ⟨0⟩ → ⟨𝑘⟩ inducing an equivalence

𝐹(𝜏) ≃ 𝐹(𝜏𝛿 {0}).

Recall that there is an equivalence

FunB(Δ• ⊗ −,Grpd
B
) ≃ Fun(Δ•,Grpd

B
(−)) ≃ Fun(Δ•,B/−)

of Ĉat∞-valued presheaves on Δ × G. Let

𝜆∶ Δ𝑛 → (Δ/Δ𝑛)
op

denote the functor that sends 𝑘 ≤ 𝑛 to the inclusion 𝑑{𝑘,…,𝑛} ∶ Δ𝑛−𝑘 ⊂ Δ𝑛. This

functor admits a right adjoint

𝜖∶ (Δ/Δ𝑛)
op

→ Δ𝑛
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that sends 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩ to 𝜏 (0). One easily checks that 𝜖 is natural in 𝑛. Moreover,

since 𝜆𝜎 is the identity functor on Δ𝑛, this adjunction exhibits Δ𝑛 as a localisation

of (Δ/Δ𝑛)
op

. By precomposition, we therefore obtain a functorial embedding

𝜖∗ ∶ Fun(Δ•,B/−) ↪ PShB/−
(Δ/Δ•)

that exhibits each ∞-category Fun(Δ𝑛,B/𝐺) as a colocalisation of PShB/𝐺
(Δ/Δ𝑛),

with the right adjoint given by 𝜆∗.

Lemma 2.2.1.6. For any pair (⟨𝑛⟩, 𝐺) ∈ Δ × G, the essential image of the functor

𝜖∗ ∶ Fun(Δ𝑛,B/𝐺) ↪ PShB/𝐺
(Δ/Δ𝑛)

coincides with the essential image of the embedding

LFib(Δ𝑛 ⊗ 𝐺) ↪ PShB/𝐺
(Δ/Δ𝑛).

Proof. We first claim that for any 𝜎∶ Δ𝑛 → B/𝐺 the associated presheaf

𝜎𝜖∶ (Δ/Δ𝑛)op → B/𝐺

satisfies the condition of Lemma 2.2.1.5. In fact, if 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩ is a map in Δ
with 𝑘 ≥ 1, then the map in B/𝐺 that is induced by the inclusion 𝛿 {0} ∶ ⟨0⟩ → ⟨𝑘⟩
is simply the identity 𝜎(𝜏(0)) ≃ 𝜎(𝜏(0)), hence the claim follows.

To finish the proof, it now suffices to show that for any 𝐹 ∈ PShB/𝐺
(Δ/Δ𝑛)

that satisfies the condition of Lemma 2.2.1.5 the adjunction counit 𝜖∗𝜆∗𝐹 → 𝐹 is

an equivalence. Since this map is given by precomposition with the adjunction

counit of 𝜆 ⊣ 𝜖, the map 𝜖∗𝜆∗𝐹 → 𝐹 is defined on each object 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩ in
Δ/Δ𝑛 by applying 𝐹 to the map ⟨𝑘⟩ → ⟨𝑛 − 𝜏(0)⟩ over ⟨𝑛⟩, where the structure map

of the codomain into ⟨𝑛⟩ is given by the inclusion 𝛿 {𝜏 (0),…,𝑛}. Since precomposing

this map with 𝛿 {0} ∶ ⟨0⟩ → ⟨𝑘⟩ recovers the inclusion 𝛿 {0} ∶ ⟨0⟩ → ⟨𝑛 − 𝜏(0)⟩, the
two out of three property of equivalences and the condition on 𝐹 imply that 𝐹
sends the map ⟨𝑘⟩ → ⟨𝑛 − 𝜏(0)⟩ to an equivalence in B/𝐺, as desired.

Proof of Proposition 2.2.1.2. By Lemma 2.2.1.6, there is an equivalence

LFib(Δ• ⊗ −) ≃ FunB(Δ• ⊗ −,Grpd
B
)
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of functors Δop × Bop → B
op
Δ → Ĉat∞. As both LFib and FunB(−,Grpd

B
)

are sheaves on BΔ (see Remark 2.2.1.3), Remark 1.2.1.3 implies that the above

equivalences can be uniquely extended to an equivalence

LFib ≃ FunB(−,Grpd
B
),

which finishes the proof.

Remark 2.2.1.7. Let𝐴 ∈ B be an arbitrary object. By combining Theorem 2.2.1.1,

Remark 1.4.1.2 and Proposition 1.2.5.4, one obtains an equivalence

𝜋∗
𝐴 LFibC ≃ LFib𝜋∗

𝐴C

that is natural in C. By unwinding the constructions, this equivalence is explicitly

given by the chain of equivalences

FunB/𝐴
(−, LFib𝜋∗

𝐴C
) ≃ LFib(− ×𝐴 𝜋∗

𝐴C)

≃ LFib((𝜋𝐴)!(−) × C)

≃ FunB/𝐴
(−, 𝜋∗

𝐴 LFibC)

in which the middle equivalence is induced by the equivalence

(𝜋𝐴)!(− ×𝐴 𝜋∗
𝐴C) ≃ (𝜋𝐴)!(−) × C,

together with the evident observation that the forgetful functor

(𝜋𝐴)! ∶ Cat(B/𝐴) → Cat(B)

yields an equivalence LFibB((𝜋𝐴)!(−)) ≃ LFibB/𝐴
(−) of sheaves on Cat(B/𝐴).

Remark 2.2.1.8. The proof of Proposition 2.2.1.2 shows that the restriction of the

equivalence FunB(−,Grpd
B
) ≃ LFib along the inclusion B ↪ Cat(B) recovers

the equivalence

FunB(−,Grpd
B
) ≃ B/−

of Ĉat∞-valued sheaves on B.
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Let 𝑝∶ 𝑃 → 𝐶 be a map between simplicial objects in B̂. We will say that

𝑝 is small if for every map 𝐷 → 𝐶 in B̂Δ in which D is small (i.e. contained in

BΔ), the pullback 𝑝∗𝐷 = 𝑃 ×𝐶 𝐷 is small as well. The collection of small maps

defines a cartesian subfibration of the codomain fibration Fun(Δ1, B̂Δ) → B̂Δ.

We therefore obtain a subpresheaf LFibU
B̂
↪→ LFib

B̂
of the sheaf of left fibrations

on B̂Δ that is spanned by the small left fibrations.

Proposition 2.2.1.9. Let 𝑝∶ 𝑃 → 𝐶 be a left fibration between simplicial objects
in B̂. Then 𝑝 is small if and only if for all maps 𝑐∶ 𝐴 → 𝐶 with 𝐴 ∈ B the fibre
𝑃|𝑐 = 𝑃 ×𝐶 𝐴 is contained in B/𝐴.

Proof. The condition is clearly necessary. For the converse direction, it suffices

to show that if 𝑝∶ 𝑃 → 𝐶 is a left fibration in B̂Δ such that 𝐶 is small and such

that the fibre 𝑃|𝑐 is small for every map 𝑐∶ 𝐴 → 𝐶 with 𝐴 ∈ B, the simplicial

object 𝑃 is small as well. To see this, note that since 𝑝 is a left fibration and 𝐶 is

small, it suffices to show that 𝑃0 is small. But this follows from the fact that 𝑃0
arises as the fibre of 𝑝 over the map 𝐶0 → 𝐶, see Corollary 1.3.3.5.

By combining Remark 1.4.1.4 and Remark 2.2.1.8 with Proposition 2.2.1.9, we

now obtain:

Corollary 2.2.1.10. For every large B-category C, the subpresheaf

LFibU(− × C) ↪→ LFib(− × C)

defines a large B-category LFibUC . Moreover, the restriction of the equivalence

LFibC ≃ Fun
B
(C,Grpd

B̂
)

along the fully faithful functor Fun
B
(C,Grpd

B
) ↪→ Fun

B
(C,Grpd

B̂
) gives rise to

an equivalence

Fun
B
(C,Grpd

B
) ≃ LFibUC

in Cat(B̂).
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Remark 2.2.1.11. The equivalence (−)op ∶ BΔ ≃ BΔ from Section 1.2.1 induces

a commutative square

RFib LFib

BΔ BΔ

(−)op

(−)op

and therefore by Theorem 2.2.1.1 an equivalence

RFib ≃ FunB((−)op,Grpd
B
) = PSh

B
(−)

of Ĉat∞-valued sheaves on BΔ. Since the diagonal embedding B ↪→ BΔ com-

mutes with taking opposite simplicial objects inB, we thus obtain an equivalence

RFibC ≃ PSh
B
(C)

(where the largeB-category RFibC is given by the Ĉat∞-valued sheaf RFib(C×−))

that is natural in C ∈ Cat(B). Similarly, one also obtains an equivalence

RFibUC ≃ Fun
B
(Cop,Grpd

B
)

for every large B-category C.

2.2.2. The universal left fibration

By Corollary 2.2.1.10, the identity idGrpd
B
∶ Grpd

B
≃ Grpd

B
determines a small

left fibration 𝜙∶ (Grpd
B
)∗ → Grpd

B
of large B-categories.

Definition 2.2.2.1. The left fibration 𝜙∶ (Grpd
B
)∗ → Grpd

B
is referred to as

the the universal left fibration.

Remark 2.2.2.2. Yoneda’s lemma for ∞-categories implies that the equivalence

mapCat(B)(−,GrpdB) ≃ (LFibU)≃

that is induced by the equivalence in Corollary 2.2.1.10 on the underlying Âni-

valued sheaves is induced by assigning to each functor 𝑓∶ C → Grpd
B

the left

fibration ∫ 𝑓 → C that is determined by the pullback square

∫ 𝑓 (Grpd
B
)∗

C Grpd
B
.

𝜙
𝑓
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We say that the left fibration ∫ 𝑓 → C is classified by 𝑓. Conversely, given a

small left fibration 𝑝∶ P → C of large B-categories, the functor C → Grpd
B

that

classifies 𝑝 acts by carrying an object 𝑐∶ 𝐴 → P to the B/𝐴-groupoid P|𝑐 that is
determined by the cartesian square

P|𝑐 P

𝐴 C.𝑐

Remark 2.2.2.3. For any 𝐴 ∈ B the functor 𝜋∗
𝐴 carries the universal left fibration

in B to the universal left fibration in B/𝐴. In fact, in view of Remark 2.2.1.7, this

follows immediately from the observation that we have a commutative diagram

1B/𝐴

𝜋∗
𝐴FunB(Grpd

B
,Grpd

B
) Fun

B/𝐴
(Grpd

B/𝐴
,Grpd

B/𝐴
)

𝜋∗
𝐴(idGrpdB) idGrpdB/𝐴

≃

(see Remark 1.4.1.2 and Proposition 1.2.5.4).

The main goal of this section is to prove that the universal left fibration admits

the following explicit description:

Proposition 2.2.2.4. The global section 1∶ 1 → Grpd
B
that is determined by the

final object 1B ∈ B defines a final object in the universe Grpd
B
. Moreover, there is

an equivalence (Grpd
B
)1/ ≃ (Grpd

B
)∗ that fits into the commutative diagram

(Grpd
B
)1/ (Grpd

B
)∗

Grpd
B
.

≃

(𝜋1)!
𝜙

The remainder of this section is devoted to the proof of Proposition 2.2.2.4.

The core ingredient will be the following proposition:

Proposition 2.2.2.5. Let 𝑔∶ D → C be a functor between large B-categories and
suppose that 𝑔 admits a factorisation 𝑝𝑖∶ D → P → C into a final map and a small
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right fibration. Let 𝑓∶ Cop → Grpd
B
be the associated functor. Consider the left

fibration 𝜋 that is defined by the cartesian square

Z Fun
B
(Dop, (Grpd

B
)∗)

PSh
B
(C) PSh

B
(D).

𝜙∗
𝑔∗

Then there is an initial object 𝑧∶ 1 → Z whose image along 𝜋 is 𝑓.

Proof. Since 𝑖∶ Dop → Pop is initial and (Grpd
B
)∗ → Grpd

B
is a left fibration,

the pullback square in the statement of the lemma decomposes into two cartesian

squares

Z Fun
B
(Pop, (Grpd

B
)∗) Fun

B
(Dop, (Grpd

B
)∗)

PSh
B
(C) PSh

B
(P) PSh

B
(D).

𝜋 𝜙∗

𝑖∗

𝜙∗
𝑝∗ 𝑖∗

By applying the Yoneda embedding Cat(B̂) ↪→ PShÂni(Cat(B̂)) to the left square,

we obtain a pullback square

map
Cat(B̂)(−,Z) map

Cat(B̂)(− × Pop, (Grpd
B
)∗)

map
Cat(B̂)(− × Cop,Grpd

B
) map

Cat(B̂)(− × Pop,Grpd
B
)

𝜙∗
(id ×𝑝)∗

of Âni-valued presheaves on Cat(B̂). By the formula for the mapping spaces in

arrow ∞-categories (see for example [28, Proposition 2.3]), we thus obtain an

equivalence

map
Cat(B̂)(−,Z) ≃ mapLFibU(𝑠0(−) × 𝑝op, 𝜙) (∗)

(in which 𝑠0 ∶ Cat(B̂) → LFibU is the functor that carries a B-category C to the

identity idC). As a consequence, the cartesian square

Pop (Grpd
B
)∗

Cop Grpd
B

𝑝

𝑓
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gives rise to an object 𝑧∶ 1 → Z whose image along 𝜋 is 𝑓.
We still need to show that 𝑧 is initial. To that end, note that by the equivalence

(∗), the identity on Z corresponds to a commutative square

Z × Pop (Grpd
B
)∗

Z × Cop Grpd
B
,

id ×𝑝

𝑘

and therefore gives rise to a map Z × Pop → ∫𝑘 of left fibrations over Z × Cop.

Using Corollary 2.2.1.10, this map corresponds to a morphism 𝛼∶ pr∗1(𝑓 ) → 𝑘 in

Fun
B
(Z × Cop,Grpd

B
), where pr1 ∶ Z × Cop → Cop denotes the projection. Let

us consider the evident commutative square

pr∗1(𝑓 ) pr∗1(𝑓 )

pr∗1(𝑓 ) 𝑘

id

id 𝛼

𝛼

as a map 𝜏∶ id → 𝛼 in the B-category Fun
B
((Δ1 ⊗ Z) × Cop,Grpd

B
). By again

using Corollary 2.2.1.10, this map corresponds to a morphism (Δ1⊗Z)×Pop → ∫𝛼
of left fibrations over (Δ1⊗Z)×Cop and therefore by the equivalence (∗) to a map

𝜖∶ Δ1 ⊗ Z → Z. By functoriality, the map Z → Z that is induced by restricting

𝜖 along the inclusion 𝑑1 ∶ Z → Δ1 ⊗ Z corresponds to the outer square in the

commutative diagram

Z × Pop Pop (Grpd
B
)∗

Z × Cop Cop Grpd
B
,

pr1

id ×𝑝 𝑝
pr1 𝑓

hence this map is equivalent to the constant functor 𝑧∶ Z → 1 → Z. Precompos-

ing the map Δ1 ⊗ Z → Z with the inclusion 𝑑0 ∶ Z → Δ1 ⊗ Z, on the other hand,

produces the identity on Z. As moreover the restriction of the map Δ1 ⊗ Z → Z

along 𝑧∶ 1 → Z recovers the identity on 𝑧, Lemma 2.1.3.12 implies that 𝑧 is

initial.
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Proposition 2.2.2.5 has the following immediate consequence:

Corollary 2.2.2.6. Let 𝑔∶ D → C be a functor between large B-categories, and
suppose that 𝑔 admits a factorisation 𝑝𝑖∶ D → P → C into a final map and a small

right fibration. Let 𝑓∶ Cop → Grpd
B
be the associated functor. Then there is a

cartesian square

PSh
B
(C)

𝑓 /
Fun

B
(Dop, (Grpd

B
)∗)

PSh
B
(C) PSh

B
(D).

𝜙∗
𝑔∗

Proof. By Proposition 2.2.2.5, the B-category Z that is defined by the cartesian

square
Z Fun

B
(Dop, (Grpd

B
)∗)

PSh
B
(C) PSh

B
(D).

𝜙∗
𝑔∗

admits an initial object ∅Z ∶ 1 → Z whose image in PSh
B
(C) is 𝑓. By Corol-

lary 2.1.3.13 we obtain a commutative square

1 Z

PSh
B
(C)𝑓 / PSh

B
(C)

𝑓

∅Z

(𝜋𝑓)!

in which the two maps starting in the upper left corner are initial and the two

maps ending in the lower right corner are left fibrations. When regarded as a

lifting problem, the above square thus admits a unique filler PSh
B
(C)𝑓 / → Z

that is both initial and a left fibration and therefore an equivalence.

Proof of Proposition 2.2.2.4. Applying Corollary 2.2.2.6 to D ≃ C ≃ 1, we immedi-

ately conclude that the object 1∶ 1 → Grpd
B

gives rise to a cartesian square

(Grpd
B
)1/ (Grpd

B
)∗

Grpd
B

Grpd
B
,id
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which implies that the upper horizontal map must be an equivalence. Moreover,

in light of Remark 1.2.6.8, evaluating the map (𝜋1)! ∶ (Grpd
B
)/1 → Grpd

B
at

𝐴 ∈ B recovers the map (𝜋𝐴)! ∶ (B/𝐴)/𝐴 → B/𝐴 and is therefore an equivalence.

Hence Proposition 2.1.3.15 implies that 1∶ 1 → Grpd
B

is final.

Remark 2.2.2.7. Proposition 2.2.2.4 shows, together with Remark 1.2.6.8, that

the Ĉat∞-valued sheaf that corresponds to (Grpd
B
)∗ is given by sending 𝐴 ∈ B

to the ∞-category of pointed objects in B/𝐴.

Corollary 2.2.2.8. Let C be a (large) B-category and let 𝑝∶ P → C be a small left
fibration that is classified by a functor 𝑓∶ C → Grpd

B
. Then Γ(𝑝) is classified by

the functor Γ ∘ Γ(𝑓 )∶ Γ(C) → B → Ani.

Proof. By Proposition 2.2.2.4, there is a commutative diagram

Γ(P) B1/ Ani1/

Γ(C) B Ani

Γ(𝑝)
Γ(𝑓 ) Γ

in which both squares are cartesian and in which the left square arises from

applying the global sections functor Γ to the cartesian square in Cat(B̂) that

exhibits 𝑝 as being classified by 𝑓.

2.3. Yoneda’s lemma

The goal of this section is to make use of the theory of left fibrations and their

interplay with Grpd
B
-valued functors via the straightening equivalence in order

to prove a version of Yoneda’s lemma for B-categories. Recall that if C is an

∞-category, one has a functor map
C
(−, −)∶ Cop × C → Ani whose transpose

yields the Yoneda embedding ℎC ∶ C → PSh(C), and Yoneda’s lemma asserts that

is a natural equivalence mapPSh(C)(ℎC(𝑐), 𝐹 ) ≃ 𝐹(𝑐) for every 𝑐 ∈ C and every

𝐹∶ Cop → Ani. Thus, in order to even state Yoneda’s lemma for B-categories,

we first need to construct a functor mapC(−, −)∶ Cop ×C → Grpd
B

for every B-

categoryC. Using the straightening equivalence for left fibrations, this is easy: we

may simply straighten the left fibration 𝑝∶ Tw(C) → Cop × C from Section 2.1.2.
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However, in the case where the B-category is large (such as PSh
B
(C)), we run

into a problem: in this case, we can only straighten 𝑝 if this is a small left fibration.

This is precisely the condition that the B-category in question is locally small.
We study this notion in some detail in Section 2.3.1, before we move on to state

and prove Yoneda’s lemma in Section 2.3.2.

2.3.1. Locally smallB-categories

In higher category theory, a large∞-category C is called locally small if map
C
(𝑐, 𝑑)

is small for every pair of objects 𝑐, 𝑑 ∈ C. In this section, we generalise this

notion to B-categories. Recall from the discussion at the end of Section 2.2.1 the

definition of a small left fibration. We may now define:

Definition 2.3.1.1. A locally small B-category is a largeB-category C for which

the left fibration Tw(C) → Cop × C is small.

Remark 2.3.1.2. The base change of a locally small along every geometric

morphism and every étale algebraic morphism of ∞-topoi is locally small as well.

In fact, in light of Remark 2.1.2.5, it suffices to show that base change along these

functors preserve small left fibrations. This is a straightforward consequence of

the fact that each of these functors and their left adjoints all preserve the property

of being small (see Section 1.2.4).

As a consequence of Proposition 2.1.2.4, the fibre of Tw(C) → Cop ×C over any

pair of objects (𝑐, 𝑑)∶ 𝐴 → Cop × C in context 𝐴 ∈ B is a large B/𝐴-groupoid,

hence the fibre can be computed as the fibre of the induced map of core B-

groupoids, which is simply the pullback

mapC(𝑐, 𝑑) C1

𝐴 C0 × C0.
(𝑐,𝑑)

Using Proposition 2.2.1.9, we may therefore deduce:

Proposition 2.3.1.3. A B-category C is locally small if and only if for any pair
of objects 𝑐, 𝑑 in C in context 𝐴 ∈ B the (a priori large) mapping B/𝐴-groupoid
mapC(𝑐, 𝑑) is contained in B/𝐴.
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Example 2.3.1.4. Using Proposition 2.3.1.3 together with Proposition 1.4.1.3,

one finds that the universe Grpd
B

is locally small.

Proposition 2.3.1.5. A locally small B-category C is small if and only if C≃ is a
small B-groupoid.

Proof. The condition is clearly necessary, so let us assume that C is locally small

and that C≃ is a small B-groupoid. By making use of the Segal conditions, we

need only show that C1 is contained in B. Since C0 × C0 is an object of B, this

follows from the observation that C1 is recovered as the mapping B-groupoid of

the pair (pr0, pr1)∶ C0 × C0 → C0 × C0.

Lemma 2.3.1.6. Let 𝑓∶ C → D be a functor such that C is small and D is locally
small. Then the essential image E of 𝑓 is small.

Proof. Being a full subcategory of D, the B-category E is locally small (using

Proposition 1.3.2.7), hence Proposition 2.3.1.5 implies that E is small whenever

E≃ is a small B-groupoid. By Corollary 1.3.2.15, E0 is the image of the map

𝑓0 ∶ C0 → D0, hence one finds that E0 is the colimit of the Čech nerve ofC0 → D0,

i.e. E0 ≃ colim𝑛 C0 ×D0
⋯ ×D0

C0. As Δ is a small 1-category, it suffices to show

that for each 𝑛 ≥ 0 the (𝑛+1)-fold fibre product C0 ×D0
⋯×D0

C0 ∈ B̂ is contained

in B. We may identify this object as the pullback of the map C𝑛+1
0 → D𝑛+1

0 along

the diagonal D0 → D𝑛+1
0 . Since the map D0 → D𝑛 is a monomorphism in B̂, we

obtain a monomorphism

C0 ×D0
⋯ ×D0

C0 ↪→ mapD(pr
∗
0 𝑓0, … , pr∗𝑛 𝑓𝑛)

where pr𝑖 ∶ C𝑛+1
0 → C0 denotes the 𝑖th projection. Since D is by assumption

locally small, the codomain of this map is contained in B, hence the result

follows.

Proposition 2.3.1.7. For any smallB-categoryC and any locally smallB-category
D, the (large) functor B-category Fun

B
(C,D) is locally small as well.

Proof. Using Proposition 2.3.1.3, we need to show that for any pair of objects

𝑓 , 𝑔∶ 𝐴 ⇉ Fun
B
(C,D) the mappingB-groupoid mapFun

B
(C,D)(𝑓 , 𝑔) is small. Let

E be the essential image of 𝑓 when viewed as a functor 𝐴 × C → D, and let E′ be
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the essential image of 𝑔 when viewed as a functor 𝐴 × C → D. Then both E and

E′ are small B-categories by Lemma 2.3.1.6. By the same argument, the essential

image E′′ of the functor E⊔E′ → D that is induced by the two inclusions is a small

B-category that embeds fully faithfully into D. By construction, both 𝑓 and 𝑔 are

contained in Fun
B
(C, E′′). As the latter is small, the (a priori large) mapping B-

groupoid mapFun
B
(C,D)(𝑓 , 𝑔) ≃ mapFun

B
(C,E′′)(𝑓 , 𝑔)must be contained inB.

2.3.2. Yoneda’s lemma

If C is an arbitrary locally small B-category, applying Theorem 2.2.1.1 to the left

fibration Tw(C) → Cop × C gives rise the mapping B-groupoid functor

mapC(−, −)∶ Cop × C → Grpd
B
.

By transposing across the adjunction Cop × − ⊣ Fun
B
(Cop, −), this functor

determines the Yoneda embedding

ℎ∶ C → Fun
B
(Cop,Grpd

B
) = PSh

B
(C).

Remark 2.3.2.1. By combining Remark 2.1.2.5 and Remark 2.2.2.3, one obtains a

commutative diagram

𝜋∗
𝐴C

op × 𝜋∗
𝐴C

𝜋∗
𝐴 Grpd

B
Grpd

B/𝐴

𝜋∗
𝐴 mapC(−,−)

map𝜋∗𝐴C(−,−)

≃

for every 𝐴 ∈ B and every C ∈ Cat(B). By combining this observation with

Remark 1.2.5.5, one furthermore finds that there is a commutative diagram

𝜋∗
𝐴C 𝜋∗

𝐴PShB(C)

PSh
B/𝐴

(𝜋∗
𝐴C).

𝜋∗
𝐴ℎC

ℎ𝜋∗𝐴C
≃

Remark 2.3.2.2. Let C be a locally small B-category, let 𝐴 ∈ B be an arbi-

trary object and let 𝑐 be an object in C in context 𝐴. Let us furthermore fix
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2.3. Yoneda’s lemma

a map 𝑓∶ 𝑑 → 𝑒 in C in context 𝐴. Applying the mapping B-groupoid func-

tor mapC(−, −) to the pair (id𝑐, 𝑓 ) of maps in C then results in a morphism

𝑓! ∶ mapC(𝑐, 𝑑) → mapC(𝑐, 𝑒) in B/𝐴. Explicitly, this map is given by applying

the chain of equivalences LFibU(Δ1⊗𝐴) ≃ FunB(Δ1⊗𝐴,Grpd
B
) ≃ Fun(Δ1,B/𝐴)

to the left fibration P → Δ1 ⊗ 𝐴 that arises as the pullback

P C𝑐/

Δ1 ⊗ 𝐴 𝐴 × C
(pr1,𝑓 )

in which pr1 ∶ Δ1 ⊗ 𝐴 → 𝐴 denotes the projection. By construction of the

equivalence of ∞-categories LFibU(Δ1 ⊗ 𝐴) ≃ Fun(Δ1,B/𝐴), one now sees that

the map 𝑓! fits into the commutative diagram

mapC(𝑐, 𝑑) 𝑍 mapC(𝑐, 𝑒)

(C𝑐/)0 (C𝑐/)1 (C𝑐/)0

𝐴 𝐴 𝐴

C0 C1 C0.

𝑓!

≃

𝑑1 𝑑0

id

𝑑

id

𝑓 𝑒
𝑑1 𝑑0

Let 𝑔∶ 𝑐 → 𝑑 be an arbitrary map in C in context 𝐴, and let 𝜎∶ Δ2 ⊗ 𝐴 → C be

the 2-morphism that is encoded by the commutative diagram

𝑐 𝑑

𝑒.

𝑔

𝑓 𝑔
𝑓

Let furthermore 𝜏∶ Δ1 ⊗ 𝐴 → C be the 2-morphism that is determined by the

commutative diagram

𝑐 𝑐

𝑒.

id

𝑓 𝑔
𝑓 𝑔
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On account of the decomposition Δ1 × Δ1 ≃ Δ2 ⊔Δ1 Δ2, the pair (𝜏 , 𝜎) gives rise
to a map (Δ1 × Δ1) ⊗ 𝐴 → C that by construction defines a section 𝐴 → 𝑍.
Furthermore, the composition 𝐴 → 𝑍 ≃ mapC(𝑐, 𝑑) recovers 𝑔 and the compo-

sition 𝐴 → 𝑍 → mapC(𝑐, 𝑒) recovers 𝑓 𝑔. Therefore, the map 𝑓! acts by sending

a map 𝑔∶ 𝑐 → 𝑑 to the composition 𝑓 𝑔∶ 𝑐 → 𝑑 → 𝑒. By a dual argument, the

map 𝑓 ∗ ∶ mapC(𝑒, 𝑐) → mapC(𝑑, 𝑐) that is determined by applying the mapping

B-groupoid functor to the pair (𝑓 , id𝑐) sends a map 𝑔∶ 𝑒 → 𝑐 to the composition

𝑔𝑓∶ 𝑑 → 𝑒 → 𝑐.

If C is a B-category, let us denote by ev∶ Cop × PSh
B
(C) → Grpd

B
the

evaluation functor, i.e. the counit of the adjunction Cop × − ⊣ Fun
B
(Cop, −).

Theorem 2.3.2.3 (Yoneda’s lemma). For anyB-category C, there is a commutative
diagram

Cop × PSh
B
(C) PSh

B
(C)op × PSh

B
(C)

Grpd
B

ev

ℎ×id

mapPShB(C)(−,−)

in Cat(B̂).

The proof of Theorem 2.3.2.3 employs a strategy that is similar to the one used

by Cisinski in [18] for a proof of Yoneda’s lemma for ∞-categories. We will need

the following lemma:

Lemma 2.3.2.4. Let
P Q

C × E C × D

𝑝

𝑓

𝑞
id ×𝑔

be a commutative diagram in Cat(B) such that the maps 𝑝 and 𝑞 are left fibrations,
and suppose that for any object 𝑐∶ 𝐴 → C the induced map 𝑓 |𝑐 ∶ P|𝑐 → Q|𝑐 is initial.
Then 𝑓 is initial.

Proof. By Remark 2.1.4.2 and the fact that 𝑞 is a left fibration, it suffices to show

that 𝑓 is a covariant equivalence over C × D. Using Proposition 2.1.4.3, it is more-

over enough to show that for any object 𝑑∶ 𝐴 → D the induced map 𝑓/𝑑 (that is
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2.3. Yoneda’s lemma

obtained by pulling back 𝑓 along the right fibrationC×D/𝑑 → C×D) is a covariant

equivalence over C. In fact, if this is the case, then Proposition 2.1.4.3 implies that

for any object 𝑐∶ 𝐴 → C the induced map (𝑓/𝑑)/𝑐 becomes an equivalence after

applying the groupoidification functor. Now it is straightforward to see that this

map is equivalently obtained by the pullback 𝑓/(𝑐,𝑑) of 𝑓 along the right fibration

(C × D)/(𝑐,𝑑) → C × D that is determined by the object (𝑐, 𝑑)∶ 𝐴 → C × D, hence

another application of Proposition 2.1.4.3 implies that 𝑓 is a covariant equivalence

over C × D.

Now since the projections C × E/𝑑 → C and C × D/𝑑 → C are smooth, the

diagonal maps in the induced commutative diagram

P/𝑑 Q/𝑑

C

𝑓/𝑑

are smooth (as left fibrations are smooth by the dual of Proposition 2.1.4.9). As

the induced map (𝑓/𝑑) |𝑐 on the fibres over 𝑐∶ 𝐴 → C is a pullback of the initial

functor 𝑓 |𝑐 along a proper map, this functor must be initial as well, hence we

may apply Proposition 2.1.4.12 to deduce that 𝑓/𝑑 is a covariant equivalence over

C, as required.

Remark 2.3.2.5. In the situation of Lemma 2.3.2.4, let 𝜋∗
𝐴(𝑓 )| ̄𝑐 ∶ 𝜋∗

𝐴P| ̄𝑐 → 𝜋∗
𝐴Q| ̄𝑐

be the functor that arises as the fibre of the morphism 𝜋∗
𝐴(𝑓 )∶ 𝜋∗

𝐴(P) → 𝜋∗
𝐴(Q)

over the object ̄𝑐 ∶ 1 → 𝜋∗
𝐴C that corresponds to 𝑐∶ 𝐴 → C by transposition.

Then 𝑓 |𝑐 is obtained as the image of 𝜋∗
𝐴(𝑓 )| ̄𝑐 along the forgetful functor (𝜋𝐴)!,

hence Remark 2.1.3.3 implies that 𝑓 |𝑐 is initial if and only if 𝜋∗
𝐴(𝑓 )| ̄𝑐 is initial.

Therefore, we deduce from Lemma 2.3.2.4 that 𝑓 is an initial map if and only if

for every object 𝐴 ∈ B the fibre of 𝜋∗
𝐴(𝑓 ) over every global object 𝑐∶ 1 → 𝜋∗

𝐴C is

initial.

Proof of Theorem 2.3.2.3. Let ∫ ev → Cop × PSh
B
(C) be the left fibration that

classifies the evaluation functor ev. Using Theorem 2.2.1.1, it suffices to show
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2. Presheaves

that there is a cartesian square

∫ ev Tw(PSh
B
(C))

Cop × PSh
B
(C) PSh

B
(C)op × PSh

B
(C).ℎ×id

Note that by definition of the evaluation functor, there is a cartesian square

Tw(C) ∫ ev

Cop × C Cop × PSh
B
(C).

𝑓

id ×ℎ

Moreover, using functoriality of the twisted arrow B-category construction, we

may construct a commutative diagram

Tw(C) P Tw(PSh
B
(C))

Cop × C Cop × PSh
B
(C) PSh

B
(C)op × PSh

B
(C)

𝑔

Tw(ℎ)

id ×ℎ

ℎ×ℎ

ℎ×id

in which the right square is cartesian. As a consequence, one obtains a commuta-

tive square

Tw(C) ∫ ev

P Cop × PSh
B
(C).

𝑔

𝑓

To complete the proof, it therefore suffices to produce a lift P → ∫ ev in the

previous square and to show that this map is an equivalence. This is possible

once we verify that the two maps 𝑓 and 𝑔 are initial.

In order to show that the map 𝑔 is initial, note that we are in the situation of

Lemma 2.3.2.4, which means that it suffices to show that for any object 𝑐∶ 𝐴 → C
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2.3. Yoneda’s lemma

the induced functor 𝑔|𝑐 ∶ Tw(C)|𝑐 → P|𝑐 is initial. By construction of P, this map

is equivalent to the functor Tw(ℎ)|𝑐 ∶ Tw(C)|𝑐 → Tw(PSh
B
(C))|ℎ(𝑐), and by using

Proposition 2.1.2.7 this map can be identified with the functor

C𝑐/ → PSh
B
(C)

ℎ(𝑐)/
.

This map is initial as it sends the initial section id𝑐 to the initial section idℎ(𝑐).

In order to prove that 𝑓∶ Tw(C) → ∫ ev is initial, we employ Lemma 2.3.2.4

once more to conclude that it will be sufficient to show that the map 𝑓 |𝑐 in the

induced cartesian square

C𝑐/ ∫ ev |𝑐

𝐴 × C 𝐴 × PSh
B
(C)

𝑓 |𝑐

id ×ℎ

is initial. Remark 2.3.2.5 implies that we may regard this square as a diagram in

Cat(B̂/𝐴). By combining Remark 2.1.2.5, Remark 2.3.2.1 and Remark 1.2.5.5, we

may thus assume without loss of generality 𝐴 ≃ 1.
Now the key observation is that since the composition ev ∘(𝑐 × id) can be identi-

fied with 𝑐∗, we may apply Proposition 2.2.2.5 to the factorisation 1 → C/𝑐 → C of

𝑐 into a final map followed by a right fibration (cf. Corollary 2.1.3.13) to conclude

that there is a lift 𝑧∶ 1 → ∫ ev |𝑐 of ℎ(𝑐) that defines an initial object in ∫ ev |𝑐.
Since the fibre of ∫ ev |𝑐 over ℎ(𝑐) is given by mapC(𝑐, 𝑐), the object 𝑧 determines a

map 𝑤∶ 1 → mapC(𝑐, 𝑐) in C, and it suffices to show that this map is equivalent

to id𝑐. To that end, note that the proof of Proposition 2.2.2.5 shows that in light

of the equivalence

mapCat(B)(1, ∫ ev |𝑐) ≃ mapLFib((𝜋𝑐)
op
! , 𝜙)

(where (𝜋𝑐)
op
! ∶ (C/𝑐)op → Cop is the projection and 𝜙 is the universal left fibra-

tion), the initial object 𝑧∶ 1 → ∫ ev |𝑐 is determined by the outer square in the

commutative diagram

(C/𝑐)op Tw(C) (Grpd
B
)∗

Cop Cop × C Grpd
B

(𝜋𝑐)
op
! 𝜙
id ×𝑐 mapC(−,−)
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in which the left square is the pullback diagram from Proposition 2.1.2.7. As a

consequence, the section 𝑤∶ 1 → mapC(𝑐, 𝑐) is encoded by pasting the previous

diagram with the lift

(C/𝑐)op

1 Cop,

(𝜋𝑐)
op
!

𝑐

id𝑐

which immediately implies the claim.

Corollary 2.3.2.6. For everyC ∈ Cat(B), the Yoneda embedding ℎ∶ C → PSh
B
(C)

is fully faithful.

Proof. By Theorem 2.3.2.3 the canonical square

Tw(C) Tw(PSh
B
(C))

Cop × C PSh
B
(C)op × PSh

B
(C)ℎop×ℎ

that is obtained by functoriality of the twisted arrow construction is cartesian,

which proves the claim upon applying the core B-groupoid functor.

Remark 2.3.2.7. Theorem 2.3.2.3 moreover implies that if 𝐹∶ 𝐴 → PSh
B
(C) is

a presheaf, then the associated right fibration ∫ 𝐹 → C × 𝐴 fits into a pullback

square

∫ 𝐹 PSh
B
(C)/𝐹

C × 𝐴 PSh
B
(C) × 𝐴.

ℎC×id

In other words, there is an equivalence ∫ 𝐹 ≃ C/𝐹 of right fibrations over C in

context 𝐴.

Definition 2.3.2.8. LetC be aB-category. Then a presheaf 𝑓∶ 𝐴×Cop → Grpd
B

is said to be representable by an object 𝑐∶ 𝐴 → C if there is an equivalence

𝑓 ≃ ℎC(𝑐) (where ℎC denotes the Yoneda embedding).
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Remark 2.3.2.9. If 𝑝∶ P → 𝐴 × C is a right fibration between B-categories

(i.e. an object 𝐴 → RFibC), we may say that 𝑝 is representable if the associated

presheaf 𝐴 × Cop → Grpd
B

that classifies 𝑝 is representable in the sense of

Definition 2.3.2.8. Equivalently, this means that there is an object 𝑐∶ 𝐴 → C and

an equivalence C/𝑐 ≃ P over 𝐴 × C.

Remark 2.3.2.10. The property of being representable is local in B: given

any cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B and presheaf 𝑓∶ 𝐴 → PSh
B
(C), then 𝑓 is

representable if and only if 𝑠∗𝑖 (𝑓 ) is representable for each 𝑖. In fact, this is

certainly a necessary condition, and it is also sufficient on account of the lifting

problem

⨆𝑖 𝐴𝑖 C

𝐴 PSh
B
(C)

(𝑠𝑖)

(𝑠∗𝑖 𝑓 )

ℎC
𝑓

having a unique solution.

Proposition 2.3.2.11. A right fibration 𝑝∶ P → C × 𝐴 between B-categories is
representable by an object 𝑐∶ 𝐴 → C if and only if there is a final section 𝐴 → P

over 𝐴.

Proof. In light of Remark 2.1.3.3, we may replace B with B/𝐴 and can therefore

assume that 𝐴 ≃ 1. Now if 𝑝 is representable by an object 𝑐∶ 1 → C then there is

an equivalence P ≃ C/𝑐 over C, hence Proposition 2.1.3.9 implies that there is a

final object 1 → P. Conversely, if there is such a final object 𝑑∶ 1 → P, the lifting

problem

1 C/𝑝(𝑑)

P C

𝑑

id𝑝(𝑑)

(𝜋𝑝(𝑑))!
𝑝

admits a unique solution which is necessarily an equivalence since id𝑝(𝑑) is final

and 𝑝 is a right fibration.

We conclude this section with noting that Corollary 2.3.2.6 furthermore implies

that equivalences of functors between B-categories can be checked object-wise:
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Proposition 2.3.2.12. LetC andD beB-categories and let ∶ Δ1 → Fun
B
(C,D) be

a morphism in Fun
B
(C,D). Then 𝛼 is an equivalence if and only if for all 𝑐∶ 𝐴 → C

the map 𝛼(𝑐)∶ Δ1 ⊗ 𝐴 → D is an equivalence in D.

Proof. The condition is clearly necessary, so suppose that 𝛼(𝑐) is an equivalence

for every object 𝑐∶ 𝐴 → C. By Corollary 2.3.2.6, the functor

ℎ∗ ∶ Fun
B
(C,D) ↪→ Fun

B
(C,PSh

B
(D)) ≃ Fun

B
(C × Dop,Grpd

B
)

is fully faithful and therefore in particular conservative. It therefore suffices

to show that the map ℎ∗𝛼 is an equivalence. For any (𝑐, 𝑑)∶ 1 → C × Dop, the

map ℎ∗𝛼(𝑐, 𝑑) corresponds to the image of 𝛼(𝑐) along D ↪→ PSh
B
(D) → Grpd

B

in which the second arrow is given by evaluation at 𝑑. As a consequence, the

map ℎ∗𝛼(𝑐, 𝑑) must be an equivalence in Grpd
B
. By replacing B with B/𝐴

and using Remark 1.2.5.5 and Remark 2.3.2.1, the same is true when (𝑐, 𝑑) is

in arbitrary context. By replacing C with C × Dop, we may therefore assume

without loss of generality D ≃ Grpd
B
. In this case, the desired result follows

from Proposition 2.1.1.12.
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Recall from Section 2.3.2 that to every B-category C we can associate its Yoneda
embedding ℎC ∶ C ↪→ PSh

B
(C). One of the main goals in this chapter to establish

the universal property of this map: it exhibits PSh
B
(C) as the free cocompletion

of C. In order to make the this result precise, we first need to introduce a rather

substantial portion of categorical tools in the setting of B-categories.

We will begin in Section 3.1 by studying adjunction between B-categories.

The main interesting observation here is that, while one obtains a functioning

theory of adjunctions which is completely parallel to that of adjunctions between

∞-categories, one can also describe adjunctions between B-categories quite ex-

plicitly as section-wise adjunctions of the corresponding sheaves of ∞-categories

on B that are compatible with the transition functors in a certain way.

In Section 3.2 and Section 3.3, we develop the theory of limits and colimits in
a B-category. In particular, we make precise what it means for a B-category

to be cocomplete. Perhaps surprisingly, the latter does not simply mean that a

B-category C admits colimits indexed by every indexing B-category I, but also

that the étale base change 𝜋∗
𝐴C admits colimits indexed by every B/𝐴-category I,

for every 𝐴 ∈ B. In other words, the notion of cocompleteness is designed so that

it is stable under étale base change, which is a prerequisite for every reasonably

defined notion.

As a next step, we discuss Kan extensions of functors between B-categories in

Section 3.4. The main outcome of this section will be that (left) Kan extensions

always exist provided that the target is sufficiently cocomplete, as it is the case

in ordinary (higher) category theory.

At this point, we will have built sufficient machinery to be able to establish

the universal property of presheaf B-categories in Section 3.5. More generally,

we will construct the free U-cocompletion of a small B-category for any so called
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internal class U ofB-categories, which can simply be defined as a full subcategory

of the B-category CatB of B-categories. As an application, we will provide a

general method to decompose colimits into simpler pieces. In particular, this will

allow us to derive a very explicit description of the notion of cocompleteness.

3.1. Adjunctions

In this section we will study adjunctions between B-categories. We begin in Sec-

tion 3.1.1 by defining such adjunctions as ordinary adjunctions in the underlying

bicategory of Cat(B). In Section 3.1.2 we compare our definition with relative
adjunctions and prove a convenient section-wise criterion for when a functor

admits a left or right adjoint. In Section 3.1.3 we discuss an alternative approach

to adjunctions based on an equivalence of mapping B-groupoids. Finally, we

discuss the special case of reflective subcategories in Section 3.1.4.

3.1.1. Definitions and basic properties

Let C and D be B-categories, let 𝑓 , 𝑔∶ C ⇉ D be two functors and let 𝛼∶ 𝑓 → 𝑔
be a morphism of functors, i.e. a map in FunB(C,D). If ℎ∶ E → C is any other

functor, we denote by 𝛼ℎ∶ 𝑓 ℎ → 𝑔ℎ the map ℎ∗(𝛼) in FunB(E,D). Dually, if

𝑘∶ D → E is an arbitrary functor, we denote by 𝑘𝛼∶ 𝑘𝑓 → 𝑘𝑔 the map 𝑘∗(𝛼) in
FunB(C, E). Having established the necessary notational conventions, we may

now define:

Definition 3.1.1.1. Let C and D be B-categories. An adjunction between C and

D is a tuple (𝑙, 𝑟 , 𝜂, 𝜖), where 𝑙 ∶ C → D and 𝑟∶ D → C are functors and where

𝜂∶ idD → 𝑟𝑙 and 𝜖∶ 𝑙𝑟 → idC are maps such that there are commutative triangles

𝑙 𝑙𝑟 𝑙 𝑟 𝑙𝑟 𝑟

𝑙 𝑟

𝑙𝜂

id
𝜖𝑙

𝜂𝑟

𝑟𝜖
id

in FunB(C,D) and in FunB(D,C), respectively. We denote such an adjunction

by 𝑙 ⊣ 𝑟, and we refer to 𝜂 as the unit and to 𝜖 as the counit of the adjunction. We

say that a pair (𝑙, 𝑟)∶ C ⇆ D defines an adjunction if there exist transformations

𝜂 and 𝜖 as above such that the tuple (𝑙, 𝑟 , 𝜂, 𝜖) is an adjunction.
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Analogous to how adjunctions between ∞-categories can be defined (see [42,

§17]), Definition 3.1.1.1 is equivalent to that of an adjunction in the underlying

homotopy bicategory of the (∞, 2)-category Cat(B) (see Section 1.2.5). We may

therefore make use of the usual bicategorical arguments to derive results for

adjunctions in Cat(B). Hereafter, we list a few of these results, we refer the

reader to [29, § I.6] and [73, § 2.1] for proofs.

Proposition 3.1.1.2. If (𝑙 ⊣ 𝑟)∶ C ⇆ D and (𝑙′ ⊣ 𝑟 ′)∶ D ⇆ E are ad-
junctions between B-categories, then the composite functors define an adjunction
(𝑙𝑙′ ⊣ 𝑟 ′𝑟)∶ C ⇆ E.

Proposition 3.1.1.3. Adjoints are unique if they exist, i.e if (𝑙 ⊣ 𝑟) and (𝑙 ⊣ 𝑟 ′)
are adjunctions between B-categories, then 𝑟 ≃ 𝑟 ′. Dually, if (𝑙 ⊣ 𝑟) and (𝑙′ ⊣ 𝑟)
are adjunctions, then 𝑙 ≃ 𝑙′.

Proposition 3.1.1.4. In order for a pair (𝑙, 𝑟)∶ C ⇆ D of functors between B-
categories to define an adjunction, it suffices to provide maps 𝜂∶ idD → 𝑟𝑙 and
𝜖∶ 𝑙𝑟 → idC such that the compositions 𝜖𝑙 ∘ 𝑙𝜂 and 𝑟𝜖 ∘ 𝜂𝑟 are equivalences.

Corollary 3.1.1.5. If 𝑓∶ C → D is an equivalence between B-categories, then the
pair (𝑓 , 𝑓 −1) defines an adjunction.

Corollary 3.1.1.6. For any adjunction (𝑙 ⊣ 𝑟)∶ C ⇆ D between B-categories
and any equivalence 𝑓∶ 𝐷 ≃ 𝐷′, the induced pair (𝑙𝑓 −1, 𝑓 𝑟)∶ C ⇆ D′ defines an
adjunction as well.

If A and B are ∞-topoi and 𝑓∶ Cat(B) → Cat(A) is a functor, we will often

need to know whether 𝑓 carries an adjunction 𝑙 ⊣ 𝑟 in Cat(B) to an adjunction

𝑓 (𝑙) ⊣ 𝑓 (𝑟) in Cat(A). This is obviously the case whenever 𝑓 is a functor of

(∞, 2)-categories. Since we do not wish to dive too deep into (∞, 2)-categorical
arguments, we will instead make use of the straightforward observation that 𝑓
preserves adjunctions whenever there is a bifunctorial map

FunB(−, −) → FunA(𝑓 (−), 𝑓 (−))

that recovers the action of 𝑓 on mapping ∞-groupoids upon postcomposition

with the core ∞-groupoid functor.
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Lemma 3.1.1.7. Let A and B be ∞-topoi and let 𝑓∶ Cat(B) → Cat(A) be a
functor that preserves finite products. Suppose furthermore that there is a map

constA → 𝑓 ∘ constB,

where constB ∶ Cat∞ → Cat(B) and constA ∶ Cat∞ → Cat(A) are the constant
sheaf functors. Then 𝑓 induces a bifunctorial map

FunB(−, −) → FunA(𝑓 (−), 𝑓 (−))

that recovers the action of 𝑓 on mapping∞-groupoids upon postcomposition with the
core ∞-groupoid functor. Moreover, if 𝑓 is fully faithful and if constA → 𝑓 ∘ constB
restricts to an equivalence on the essential image of 𝑓, then this map is an equivalence.

Proof. Since 𝑓 preserves finite products, the map constA → 𝑓 ∘ constB induces a

map

− ⊗ 𝑓 (−) → 𝑓 (− ⊗ −)

of bifunctors Cat∞ ×Cat(B) → Cat(A). This map gives rise to the first arrow in

the composition

mapCat(A)(𝑓 (− ⊗ −), 𝑓 (−)) → mapCat(A)(− ⊗ 𝑓 (−), 𝑓 (−))

≃ mapCat∞
(−, FunA(𝑓 (−), 𝑓 (−))),

and by precomposition with the morphism

mapCat(B)(− ⊗ −, −) → mapCat(A)(𝑓 (− ⊗ −), 𝑓 (−))

that is induced by 𝑓 and Yoneda’s lemma, we end up with the desired morphism

of functors

FunB(−, −) → FunA(𝑓 (−), 𝑓 (−))

that recovers the morphism mapCat(B)(−, −) → mapCat(A)(𝑓 (−), 𝑓 (−)) upon

restriction to core ∞-groupoids. By construction, this map is an equivalence

whenever 𝑓 is fully faithful and constA → 𝑓 ∘ constB is an equivalence.

Remark 3.1.1.8. In the situation of Lemma 3.1.1.7, the construction in the proof

shows that if C and D are B-categories, the functor

FunB(C,D) → FunA(𝑓 (C), 𝑓 (D))
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that is induced by 𝑓 and the morphism of functors 𝜙∶ − ⊗𝑓 (−) → 𝑓 (− ⊗ −) is
given as the transpose of the composition

FunB(C,D) ⊗ 𝑓 (C)
𝜙
−→ 𝑓 (FunB(C,D) ⊗ C)

𝑓 (ev)
−−−−→ 𝑓 (D)

in which ev∶ FunB(C,D) ⊗ C → D denotes the counit of the adjunction

− ⊗ C ⊣ FunB(C, −).

Using Lemma 3.1.1.7, one now finds:

Corollary 3.1.1.9. Let 𝑓∗ ∶ B → A be a geometric morphism of ∞-topoi. If a
pair (𝑙, 𝑟) of functors in Cat(B) defines an adjunction, then the pair (𝑓∗(𝑙), 𝑓∗(𝑟))
defines an adjunction in Cat(A). Moreover, the converse is true whenever 𝑓∗ is fully
faithful.
Dually, for any algebraic morphism 𝑓 ∗ ∶ A → B of ∞-topoi, if a pair (𝑙, 𝑟) of

functors in Cat(𝐴) defines an adjunction, then the pair (𝑓 ∗(𝑙), 𝑓 ∗(𝑟)) defines an
adjunction in Cat(B), and the converse is true whenever 𝑓 ∗ is fully faithful.

Proof. On account of the equivalence constB ≃ 𝑓 ∗ ∘ constA as well as the mor-

phism constA → 𝑓∗ constB that is induced by the adjunction unit idA → 𝑓∗𝑓 ∗,

the claim follows immediately from Lemma 3.1.1.7.

Corollary 3.1.1.10. For any simplicial object 𝐾 ∈ BΔ, the endofunctor FunB(𝐾, −)
on Cat(B) preserves adjunctions in Cat(B).

Proof. By bifunctoriality of Fun
B
(−, −), precomposition with the terminal map

𝐾 → 1 in BΔ gives rise to the diagonal functor idCat(B) → Fun
B
(𝐾, −), and

combining this map with the functor constB then defines a map

constB(−) → Fun
B
(𝐾, constB(−)),

hence Lemma 3.1.1.7 applies.

Remark 3.1.1.11. In the situation of Corollary 3.1.1.10, Remark 3.1.1.8 shows

that for any two B-categories C and D, the induced map

FunB(C,D) → FunB(Fun
B
(𝐾,C), Fun

B
(𝐾,D))

133



3. Colimits and cocompletion

is the one that is determined by the composition

FunB(C,D) ⊗ (Fun
B
(𝐾,C) × 𝐾)

id⊗ ev𝐾
−−−−−−→ FunB(C,D) ⊗ C

evC
−−−→ D

in light of the two adjunctions − × 𝐾 ⊣ Fun
B
(𝐾, −) and − ⊗ C ⊣ FunB(C, −).

Here ev𝐾 and evC, respectively, denote the counits of these adjunctions.

Combining Corollary 3.1.1.9 with Corollary 3.1.1.10, one furthermore obtains:

Corollary 3.1.1.12. For any simplicial object 𝐾 ∈ BΔ, the functor

FunB(𝐾, −)∶ Cat(B) → Cat∞

carries adjunctions in Cat(B) to adjunctions in Cat∞.

Similarly as above, if A and B are ∞-topoi and if 𝑓∶ Cat(B) → Cat(A) is a

functor such that there is a bifunctorial map

FunB(−, −) → FunA(𝑓 (−), 𝑓 (−))op

that recovers the action of 𝑓 on mapping ∞-groupoids upon postcomposition

with the core ∞-groupoid functor, the functor 𝑓 sends an adjunction 𝑙 ⊣ 𝑟 in
Cat(B) to an adjunction 𝑓 (𝑟) ⊣ 𝑓 (𝑙) in Cat(A). One therefore finds:

Proposition 3.1.1.13. The equivalence (−)op ∶ Cat(B) → Cat(B) sends an ad-
junction 𝑙 ⊣ 𝑟 to an adjunction 𝑟op ⊣ 𝑙op.

Proof. This follows from the evident equivalence

(−)op ∶ FunB(−, −) ≃ FunB((−)op, (−)op)op

of bifunctors Cat(B)op × Cat(B) → Cat∞, which shows that if 𝑙 ⊣ 𝑟 is an ad-

junction with unit 𝜂 and counit 𝜖, then the pair (𝑟op, 𝑙op) defines an adjunction

that is witnessed by the two maps 𝜖op ∶ id → 𝑙op𝑟op and 𝜂op ∶ 𝑟op𝑙op → id that

correspond to 𝜖 and 𝜂 via the above equivalence.

The contravariant versions of the functors which are considered in Corol-

lary 3.1.1.10 and Corollary 3.1.1.12 preserve adjunctions as well: If C is an arbi-

trary B-category, functoriality of Fun
B
(−,C) defines a map

mapCat(B)(E,D) → mapCat(B)(FunB(D,C), Fun
B
(E,C))
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that is natural in E and D. The composition

mapCat(B)(− ⊗ E,D) → mapCat(B)(FunB(D,C), Fun
B
(− ⊗ E,C))

≃ mapCat(B)(FunB(D,C) × (− ⊗ E),C)

≃ mapCat(B)((− ⊗ Fun
B
(D,C)) × E,C)

≃ mapCat(B)(− ⊗ Fun
B
(D,C), Fun

B
(E,C))

(in which each step is natural in D and E) and Yoneda’s lemma now give rise to a

map

FunB(E,D) → FunB(Fun
B
(D,C), Fun

B
(E,C))

that defines a morphism of functors Cat(B)op ×Cat(B) → Cat∞ and that recovers

the action of Fun
B
(−,C) on mapping ∞-groupoids upon postcomposition with

the core ∞-groupoid functor. One therefore finds:

Proposition 3.1.1.14. For every B-category C, applying the functors Fun
B
(−,C)

and FunB(−,C) to an adjunction 𝑙 ⊣ 𝑟 in Cat(B) yields an adjunction 𝑟∗ ⊣ 𝑙∗ in
Cat(B) and in Cat∞, respectively.

We end this section by showing that an adjunction between B-categories

induces an adjunction when passing to slice B-categories:

Proposition 3.1.1.15. Let (𝑙 ⊣ 𝑟)∶ C ⇆ D be an adjunction betweenB-categories,
and let 𝑐∶ 𝐴 → C be an arbitrary object. Then the induced map 𝑟/𝑐 ∶ C/𝑐 → D/𝑟(𝑐)
of B/𝐴-categories admits a left adjoint 𝑙𝑐 that is explicitly given by the composition

𝑙𝑐 ∶ D/𝑟(𝑐)
𝑙/𝑟(𝑐)
−−−→ C/𝑙𝑟(𝑐)

(𝜖𝑐)!
−−−→ C/𝑐,

where 𝜖𝑐∶ 𝑙𝑟(𝑐) → 𝑐 is the counit of the adjunction (𝑙 ⊣ 𝑟).

Proof. Using Remark 2.1.2.2, we may replace B by B/𝐴 and the adjunction 𝑙 ⊣ 𝑟
by its image along 𝜋∗

𝐴 and can therefore assume without loss of generality that

𝐴 ≃ 1. Let us fix an adjunction unit 𝜂 and an adjunction counit 𝜖. In light of the
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commutative diagram

C/𝑐 D/𝑟(𝑐)

D/𝑟(𝑐) C/𝑙𝑟(𝑐) D/𝑟 𝑙𝑟(𝑐)

D C D

𝑟/𝑐

(𝜋𝑐)! (𝜋𝑟(𝑐))!

𝑙/𝑟(𝑐)

(𝜋𝑟(𝑐))!

𝑙𝑐
(𝜖𝑐)!

𝑟/𝑙𝑟(𝑐)

(𝜋𝑙𝑟 (𝑐))!

(𝜖𝑟(𝑐))!

(𝜋𝑟 𝑙𝑟(𝑐))!
𝑙 𝑟

we obtain an equivalence 𝑟 𝑙(𝜋𝑟(𝑐))! ≃ (𝜋𝑟(𝑐))!𝑟/𝑐𝑙𝑐, which in turn yields a commu-

tative diagram

1 D/𝑟(𝑐) D/𝑟(𝑐)

Δ1 Δ1 ⊗ D/𝑟(𝑐) D.

𝑑0

id𝑟(𝑐)

𝜖𝑟(𝑐)

𝑑0

𝑟/𝑐𝑙𝑐

(𝜋𝑟(𝑐))!
id⊗ id𝑟(𝑐)

𝑟𝜂𝑐

𝜂(𝜋𝑟(𝑐))!

𝜂𝑐

Note that as 𝑑0 is a final functor, the lift 𝜂𝑐 exists. Moreover, since restricting

𝜂𝑐 along id⊗ id𝑟(𝑐) produces a lift of the outer square in the above diagram, the

uniqueness of such lifts and the triangle identities for the adjunction 𝑙 ⊣ 𝑟 imply

that 𝜂𝑐 carries the final object id𝑟(𝑐) to the map in D/𝑟(𝑐) that is encoded by the

commutative triangle

𝑟(𝑐) 𝑟 𝑙𝑟(𝑐)

𝑟(𝑐).
id𝑟(𝑐)

𝑟𝜂(𝑐)

𝜖𝑟(𝑐)

In particular, the functor D/𝑟(𝑐)
𝑑1
−−→ Δ1 ⊗ D/𝑟(𝑐)

𝜂𝑐
−−→ D/𝑟(𝑐) preserves the final

object. Since this functor by construction commutes with the projection (𝜋𝑟(𝑐))!,
it must therefore be equivalent to the identity on D/𝑟(𝑐), so that 𝜂𝑐 encodes a map

idD/𝑟(𝑐)
→ 𝑟/𝑐𝑙𝑐.

Dually, we also have an equivalence 𝑙𝑟 (𝜋𝑐)! ≃ (𝜋𝑐)!𝑙𝑐𝑟/𝑐, so that the map

𝜖(𝜋𝑐)! ∶ Δ1 ⊗ C/𝑐 → C encodes a morphism of functors (𝜋𝑐)!𝑙𝑐𝑟/𝑐 → (𝜋𝑐)!. By an
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analogous argument as above, we can now construct a lift 𝜖𝑐 ∶ Δ1 ⊗C/𝑐 → C/𝑐 of

𝜖(𝜋𝑐)! along (𝜋𝑐)! that encodes a morphism of functors 𝑙𝑐𝑟/𝑐 → idC/𝑐
. To complete

the proof, it now suffices to show that the two compositions

𝑟/𝑐
𝜂𝑐𝑟/𝑐
−−−→ 𝑟/𝑐𝑙𝑐𝑟/𝑐

𝑟/𝑐𝜖𝑐
−−−→ 𝑟/𝑐 𝑙𝑐

𝑙𝑐𝜂𝑐
−−→ 𝑙𝑐𝑟/𝑐𝑙𝑐

𝜖𝑙𝑐
−−→ 𝑙𝑐

are equivalences, cf. Proposition 3.1.1.4. Using that (𝜋𝑟(𝑐))! and (𝜋𝑐)! are right

fibrations and therefore in particular conservative, it suffices to show that these

two morphisms become equivalences after postcomposition with (𝜋𝑟(𝑐))! and
(𝜋𝑐)!, respectively. Therefore, the claim follows from the triangle identities for

𝜂 and 𝜖, together with the observation that by construction we may identify

(𝜋𝑟(𝑐))!𝜂𝑐 ≃ 𝜂(𝜋𝑟(𝑐))! and (𝜋𝑐)!𝜖𝑐 ≃ 𝜖(𝜋𝑐)!.

3.1.2. Adjunctions via relative adjunctions of cartesian fibrations

Recall from the discussion in Section 1.2.6 that every pair (𝑙, 𝑟)∶ C ⇆ D of

functors between (large) B-categories give rise to functors (∫ 𝑙, ∫ 𝑟)∶ ∫C ⇆ ∫D
between the associated cartesian fibrations over B. In this section, our goal is to

characterise those pairs (∫ 𝑙, ∫ 𝑟) that come from an adjunction 𝑙 ⊣ 𝑟.
Given any small ∞-category C, there is a bifunctor

− ⊗ −∶ Cat∞ ×Cart(C) → Cart(C)

that sends a pair (X,P → C) to the cartesian fibration X × P → P → C in

which the first arrow is the natural projection. Explicitly, a morphism in X × P is

cartesian precisely if its projection to P is cartesian in P and its projection to X

is an equivalence. For an arbitrary fixed cartesian fibration P → C, the functor

− ⊗ P∶ Cat∞ → Cart(C) ↪→ (Ĉat∞)/C admits a right adjoint Fun/C(P, −) that
sends a map Q → C to the ∞-category that is defined by the pullback square

Fun/C(P,Q) Fun(P,Q)

1 Fun(P,C)

in which the vertical map on the right is given by postcomposition with Q → C

and in which the lower horizontal arrow picks out the cartesian fibration P → C
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[49, Proposition 5.2.5.1]. If Q → C is a cartesian fibration, let us denote by

FunCart/C (P,Q) ↪→ Fun/C(P,Q) the full subcategory that is spanned by those

functors that preserve cartesian edges, and observe that this defines a functor

FunCart/C (P, −)∶ Cart(C) → Cat∞ .

As the equivalence map/C(X⊗ P,Q) ≃ mapĈat∞
(X, Fun/C(P,Q)) identifies func-

tors X ⊗ P → Q that preserve cartesian arrows with functors X → Fun/C(P,Q)
that take values in the full subcategory FunCart/C (P,Q), one obtains an adjunction

(−⊗P ⊣ FunCart/C (P, −))∶ Ĉat∞ ⇆ Cart(C). By making use of the bifunctoriality

of−⊗−, the assignmentP ↦ FunCart/C (P, −) gives rise to a bifunctor FunCart/C (−, −)
in a unique way such that there is an equivalence

mapCart(C)(− ⊗ −, −) ≃ mapCat∞
(−, FunCart/C (−, −)).

Now observe that by functoriality of the unstraightening equivalence, there is an

equivalence ∫(−⊗−) ≃ −⊗∫(−) of bifunctors Cat∞ ×Cat(PShAni(C)) → Cart(C)
in which the tensoring on the left-hand side is given by the canonical tensoring in

Cat(PShAni(C)) over Cat∞, i.e. by the bifunctor const(−) × −. By the uniqueness

of adjoints, one therefore finds:

Proposition 3.1.2.1. For any small ∞-category C, there is an equivalence

FunPShAni(C)(−, −) ≃ FunCart/C (∫(−), ∫(−))

of bifunctors Cat(PShAni(C))op × Cat(PShAni(C)) → Cat∞ that recovers the action
of the equivalence ∫∶ Cat(PShAni(C)) ≃ Cart(C) on mapping ∞-groupoids upon
postcomposition with the core ∞-groupoid functor.

Recall the notion of a relative adjunction between cartesian fibrations as defined

by Lurie in [50, § 7.3]:

Definition 3.1.2.2. Let C be an∞-category and letP andQ be cartesian fibrations

over C. A relative adjunction between P and Q is defined to be an adjunction

(𝑙 ⊣ 𝑟)∶ Q ⇆ P between the underlying ∞-categories such that both 𝑙 and 𝑟
define maps in Cart(C) and such that the structure map 𝑝∶ P → C sends the

adjunction counit 𝜖 to the identity transformation on 𝑝 and the structure map

𝑞∶ Q → C sends the adjunction unit 𝜂 to the identity transformation on 𝑞.
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By construction of the bifunctor FunCartC (−, −), it is immediate that a pair

(𝑙, 𝑟)∶ Q ⇆ P of maps in Cart(C) defines a relative adjunction if and only if

there are maps 𝜂∶ idQ → 𝑟𝑙 and 𝜖∶ 𝑙𝑟 → idP in FunCartC (Q,Q) and FunCartC (P,P),
respectively, that satisfy the triangle identities from Definition 3.1.1.1. Proposi-

tion 3.1.2.1 therefore implies:

Corollary 3.1.2.3. For any small ∞-category C, a pair (𝑙, 𝑟)∶ C ⇆ D of functors
between PShAni(C)-categories defines an adjunction if and only if the associated
pair (∫ 𝑙, ∫ 𝑟) defines a relative adjunction in Cart(C).

Observe that as by [49, Lemma 6.3.5.28] the inclusion B̂ ↪→ PShÂni(B) defines
a geometric morphism of ∞-topoi (relative to the universe V), Corollary 3.1.1.9

implies that the pair (𝑙, 𝑟) defines an adjunction between large B-categories if

and only if it defines an adjunction in PShÂni(B). We may therefore conclude:

Corollary 3.1.2.4. A pair (𝑙, 𝑟)∶ C ⇆ D of functors between large B-categories
defines an adjunction if and only if the associated pair (∫ 𝑙, ∫ 𝑟) defines a relative
adjunction in Cart(B).

The upshot of Corollary 3.1.2.4 is that we may make use of Lurie’s results on

relative adjunctions in order to formulate a useful criterion for when a functor

between B-categories admits a right and a left adjoint, respectively. For this we

need to recall the mate construction:

Definition 3.1.2.5. For any right lax square in Cat(B) of the form

C1 D1

C2 D2

𝑟1

𝑓 𝑔
𝜙

𝑟2

such that both 𝑟1 and 𝑟2 admit left adjoints 𝑙1 and 𝑙2 exhibited by units 𝜂𝑖 ∶ id → 𝑟𝑖𝑙𝑖
and counits 𝜖𝑖 ∶ 𝑙𝑖𝑟𝑖 → id, there is a left lax square

C1 D1

C2 D2

𝑙1

𝑓
𝜓

𝑔
𝑙2
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in which 𝜓 is defined as the composite map

𝑙2𝑔
𝑙2𝑔𝜂1
−−−−→ 𝑙2𝑔𝑟1𝑙1

𝑙2𝜙𝑙1
−−−→ 𝑙2𝑟2𝑓 𝑙1

𝜖2𝑓 𝑙1
−−−−→ 𝑓 𝑙1.

Conversely, when starting with the latter left lax square, the original right lax

square is recovered by means of the composition

𝑔𝑟1
𝜂2𝑔𝑟1
−−−−→ 𝑟2𝑙2𝑔𝑟1

𝑟2𝜓 𝑟1
−−−−→ 𝑟2𝑓 𝑙1𝑟1

𝑟2𝑓 𝜖1
−−−−→ 𝑟2𝑓 .

The left lax square determined by 𝜓 is referred to as the mate of the right lax

square determined by 𝜓, and vice versa.

Remark 3.1.2.6. In the 2-categorical context mates have been studied under

the name adjoint squares by Gray in [29, §I.6], and under the name mate in [45,

§2]. In the (∞, 2)-categorical setting they have been studied by Haugseng, see

the discussion following [33, Remark 4.5]. In the case where the starting 2-cell

is invertible, which we will mostly use, they are also already considered in [50,

Definition 4.7.4.13].

Remark 3.1.2.7. The mate construction is functorial in the following sense:

Consider the composition of right lax squares

C1 D1

C2 D2

C3 D3,

𝑟1

𝑓1 𝑔1
𝜙1

𝑟2

𝑓2 𝑔2
𝜙2

𝑟3

by which we simply mean the composition (𝜙2𝑓1) ∘ (𝑔2𝜙1). Then the mate of the

composite square is given by the composition of left lax squares

C1 D1

C2 D2

C3 D3,

𝑙1

𝑓1
𝜓1 𝑔1

𝑙2

𝑓2
𝜓2 𝑔2

𝑙3
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in which 𝜓1 denotes the mate of 𝜙1 and 𝜓2 denotes the mate of 𝜙2. This is easily
checked using the triangle identities for adjunctions and the interchange law in

bicategories.

Similarly, one can show that the mate of the horizontal composition of right

lax squares

C1 D1 E1

C2 D2 E2

𝑟1

𝑓 𝑔
𝜙1

𝑟 ′1

ℎ
𝜙2

𝑟2 𝑟 ′2

(i.e. the composite 𝑟 ′2𝜙1 ∘ 𝜙2𝑟1) is given by the horizontal composition of the

associated mates.

Lemma 3.1.2.8. Let C be an ∞-category and let 𝑝∶ P → C and 𝑞∶ Q → C be
cartesian fibrations. A map 𝑟∶ P → Q in Cart(C) is a relative right adjoint if and
only if

1. for all 𝑐 ∈ C the functor 𝑟 |𝑐 ∶ P|𝑐 → Q|𝑐 that is induced by 𝑟 on the fibres over
𝑐 admits a left adjoint 𝑙𝑐 ∶ Q|𝑐 → P|𝑐;

2. For every morphism 𝑔∶ 𝑑 → 𝑐 in C, the mate of the commutative square

P|𝑐 Q|𝑐

P|𝑑 Q|𝑑

𝑟 |𝑐

𝑔∗ 𝑔∗≃

𝑟|𝑑

commutes.

If this is the case, the relative left adjoint 𝑙 of 𝑟 recovers the map 𝑙𝑐 on the fibres over
𝑐 ∈ C.

Dually, a map 𝑙 ∶ Q → P in Cart(C) is a relative left adjoint if and only if

1. for all 𝑐 ∈ C the functor 𝑙 |𝑐 ∶ Q|𝑐 → P|𝑐 that is induced by 𝑙 on the fibres over 𝑐
admits a right adjoint 𝑟𝑐 ∶ P|𝑐 → Q|𝑐;

141



3. Colimits and cocompletion

2. For every morphism 𝑔∶ 𝑑 → 𝑐 in C, the mate of the commutative square

P|𝑐 Q|𝑐

P|𝑑 Q|𝑑

𝑙|𝑐

𝑔∗ 𝑔∗

𝑙 |𝑑

≃

commutes.

If this is the case, the relative right adjoint 𝑟 of 𝑙 recovers the map 𝑟𝑐 on the fibres
over 𝑐 ∈ C.

Proof. The second claim is the content of (the dual of) [50, Proposition 7.3.2.11].

The first claim, on the other hand, is a formal consequence of the second: in

fact, in light of the straightening equivalence for cartesian fibrations, there is an

equivalence (−)∨,op ∶ Cart(C) ≃ Cart(C) that is determined by the equivalence

(−)op∗ ∶ PShĈat∞
(C) ≃ PShĈat∞

(C)

given by postcomposition with the involution (−)op ∶ Ĉat∞ ≃ Ĉat∞. By combin-

ing Proposition 3.1.1.13 with Corollary 3.1.2.3, the equivalence (−)∨,op carries

a relative left adjoint to a relative right adjoint, and it is evidently true that it

translates the two conditions in the second statement to the two conditions in

the first one. Since we already know that the second statement is verified, the

first one therefore follows as well.

By combining Corollary 3.1.2.4 with Lemma 3.1.2.8, we conclude:

Proposition 3.1.2.9. A functor 𝑟∶ C → D in Cat(B̂) is a right adjoint if and only
if the following two conditions hold:

1. For any object 𝐴 ∈ B, the induced functor 𝑟(𝐴)∶ C(𝐴) → D(𝐴) is the right
adjoint in an adjunction (𝑙𝐴, 𝑟 (𝐴), 𝜂𝐴, 𝜖𝐴).

2. For any morphism 𝑠∶ 𝐵 → 𝐴 in B, the mate of the commutative square

C(𝐴) D(𝐴)

C(𝐵) D(𝐵)

𝑟(𝐴)

𝑠∗ 𝑠∗≃

𝑟(𝐵)

commutes.
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If this is the case, then the left adjoint 𝑙 of 𝑟 is given on objects 𝐴 ∈ B by 𝑙𝐴 and on
morphisms 𝑠∶ 𝐵 → 𝐴 by the mate of the commutative square defined by 𝑟(𝑠).

Dually, a functor 𝑙 ∶ D → C in Cat(B̂) is a left adjoint if and only if the following
two conditions hold:

1. For any object 𝐴 ∈ B, the induced map 𝑙(𝐴)∶ D(𝐴) → C(𝐴) is the left
adjoint in an adjunction (𝑙(𝐴), 𝑟𝐴, 𝜂𝐴, 𝜖𝐴).

2. For any morphism 𝑠∶ 𝐵 → 𝐴 in B, the mate of the commutative square

C(𝐴) D(𝐴)

C(𝐵) D(𝐵)

𝑙(𝐴)

𝑠∗ ≃ 𝑠∗

𝑙(𝐵)

commutes.

If this is the case, then a right adjoint 𝑟 of 𝑙 is given on objects 𝐴 ∈ B by 𝑟𝐴 and on
morphisms 𝑠∶ 𝐵 → 𝐴 by the mate of the commutative square defined by 𝑙(𝑠).

Remark 3.1.2.10. In the situation of Proposition 3.1.2.9, suppose that the functor

𝑟∶ C → D is fully faithful and suppose that condition (1) is satisfied. Since the

mate of the commutative square in condition (2) is given by the composition

𝑙𝐵𝑔∗ 𝑙𝐵𝑔∗𝜂𝐴
−−−−−→ 𝑙𝐵𝑔∗𝑟(𝐴)𝑙𝐴

≃
−→ 𝑙𝐵𝑟(𝐵)𝑔∗𝑙𝐴

𝜖𝐵𝑔∗𝑙𝐴
−−−−−→ 𝑔∗𝑙𝐴

in which the map 𝜖𝐵 is an equivalence, the composition is an equivalence when-

ever the map 𝑙𝐵𝑔∗𝜂𝐴 is an equivalence. Since furthermore the map 𝑙𝐴𝜂𝐴 is an

equivalence as well, we may in this case replace condition (2) by the a priori

weaker condition that there exists an arbitrary equivalence 𝑙𝐵𝑔∗ ≃ 𝑔∗𝑙𝐴.

Combining Lemma 3.1.2.8 with Corollary 3.1.2.3 furthermore implies:

Corollary 3.1.2.11. Let 𝑟∶ C → D be a functor of B-categories and choose a left
exact localisation 𝐿∶ PSh(C) → B, where C is some small ∞-category. Then 𝑟 is a
right adjoint if and only if the following two conditions hold:

1. For any object 𝑐 ∈ C, the induced functor 𝑟(𝐿𝑐)∶ C(𝐿𝑐) → D(𝐿𝑐) is a right
adjoint.
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2. For any morphism 𝑠∶ 𝑑 → 𝑐 in C, the mate of the commutative square

C(𝐿𝑐) D(𝐿𝑐)

C(𝐿𝑑) D(𝐿𝑑)

𝑟(𝐿𝑐)

𝐿𝑠∗ 𝐿𝑠∗≃

𝑟(𝐿𝑑)

commutes.

Using the criterion from Proposition 3.1.2.9, we are now able to provide a large

class of examples for adjunctions between B-categories:

Example 3.1.2.12. In Construction 1.4.2.1, we defined a functor

− ⊗ Grpd
B
∶ PrR∞ → Cat(B)

that carries a presentable ∞-category C to the sheaf of ∞-categories C ⊗ B/−
(where − ⊗ − is Lurie’s tensor product of presentable ∞-categories). Therefore,

if 𝑔∶ C → D is a right adjoint functor between presentable ∞-categories, we get

an induced functor

𝑔 ⊗ Grpd
B
∶ C ⊗ Grpd

B
→ D ⊗ Grpd

B

of large B-categories. We note that for any morphism 𝑠∶ 𝐵 → 𝐴 in B the mate

of the commutative square

C ⊗B/𝐴 D ⊗B/𝐴

C ⊗B/𝐵 D ⊗B/𝐵

C⊗𝑠∗

𝑔⊗B/𝐴

D⊗𝑠∗
𝑔⊗B/𝐵

may be identified with the square induced by passing to left adjoints in the

commutative diagram

C ⊗B/𝐴 D ⊗B/𝐴

C ⊗B/𝐵 D ⊗B/𝐵

𝑔⊗B/𝐴

𝑔⊗B/𝐵

C⊗𝑠∗ D⊗𝑠∗

Thus it follows from Proposition 3.1.2.9 that 𝑔 ⊗ Grpd
B

is a right adjoint.
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We conclude this section by applying the above example in two concrete

cases. At first we note that by using Remark 1.2.6.8, the large B-category

(Grpd
B
)Δ = PSh

B
(Δ) (whereΔ is viewed as a constantB-category)may naturally

be identified with the largeB-category AniΔ ⊗Grpd
B
. Therefore, by applying the

functor −⊗Grpd
B

from Construction 1.4.2.1 to the inclusion Cat∞ ↪ PShAni(Δ),
one obtains a canonical inclusion of large B-categories

𝜄 ∶ CatB ↪→ PSh
B
(Δ).

Now Example 3.1.2.12 shows:

Proposition 3.1.2.13. The inclusion 𝜄 ∶ CatB ↪→ PSh
B
(Δ) admits a left adjoint.

Similarly, the inclusion Ani ↪ Cat∞ induces an inclusion Grpd
B
↪→ CatB, so

that Example 3.1.2.12 furthermore yields:

Proposition 3.1.2.14. The inclusion Grpd
B
↪→ CatB admits both a right adjoint

(−)≃ and a left adjoint (−)gpd that recover the core B-groupoid and the groupoidifi-
cation functor on local sections.

3.1.3. Adjunctions in terms of mappingB-groupoids

The notion of an adjunction between ∞-categories can be formalised in several

ways. One way is the bicategorical approach that we have chosen in Defini-

tion 3.1.1.1, but an equivalent way to define an adjunction is by means of a triple

(𝑙, 𝑟 , 𝛼) in which (𝑙, 𝑟)∶ C ⇆ D is a pair of functors and

𝛼∶ map
D
(−, 𝑟(−)) ≃ map

C
(𝑙(−), −)

is an equivalence (see for Example [18, Theorem 6.1.23]). The aim of this section

is to obtain an analogous characterisation for adjunctions between B-categories.

To that end, recall from Section 2.1.1 that there is a factorisation system in Cat(B)
between initial functors and left fibrations. Recall, furthermore, that there is a

functor Cat(B)op → Cat(B̂) that carries a B-category C to the large B-category

LFibC of left fibrations over C and that carries a functor 𝑓∶ C → D to the pullback

functor 𝑓 ∗ ∶ LFibC → LFibD that carries a left fibration 𝑞∶ Q → 𝐴×D in context

145



3. Colimits and cocompletion

𝐴 ∈ B to its pullback along id ×𝑓∶ 𝐴 × C → 𝐴 × D. Now the key result from

which we will derive our desired characterisation of adjunctions is the following

statement:

Proposition 3.1.3.1. Let 𝑓∶ C → D be a functor between B-categories. Then the
pullback functor

𝑓 ∗ ∶ LFibD → LFibC

admits a left adjoint 𝑓! that is fully faithful whenever 𝑓 is. If 𝑝∶ P → 𝐴 × C is an
object in LFibC, the left fibration 𝑓!(𝑝) over 𝐴×D is the unique functor that fits into
a commutative diagram

P 𝑓!P

𝐴 × C 𝐴 × D

𝑝

𝑖

𝑓!(𝑝)
id ×𝑓

such that 𝑖 is initial.

In order to prove Proposition 3.1.3.1, we need the following lemma:

Lemma 3.1.3.2. If 𝑓∶ C → D and 𝑔∶ D → E are functors in Cat(B) such that 𝑔
is fully faithful, then 𝑔𝑓 is initial if and only if both 𝑓 and 𝑔 are initial.

Proof. As initial functors are closed under composition, 𝑔𝑓 is initial whenever

both 𝑓 and 𝑔 are, so it suffices to show the converse direction. Since initial

functors are the left complement in a factorisation system, they satisfy the left

cancellability property, so that it suffices to show that 𝑓 is initial given that

𝑔𝑓 is. We will make use of the B-categorical version of Quillen’s theorem A

(Corollary 2.1.4.10). Let therefore 𝑑∶ 𝐴 → D be an object in context 𝐴 ∈ B. On

account of the commutative diagram

C/𝑑 D/𝑑 E/𝑔(𝑑)

C × 𝐴 D × 𝐴 E × 𝐴

in which the left square is a pullback, it suffices to show that the right square is a

pullback as well, which follows immediately from 𝑔 being fully faithful.
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Proof of Proposition 3.1.3.1. Wewish to apply Proposition 3.1.2.9. Fixing an object

𝐴 ∈ B, first note that the functor

𝑓 ∗ ∶ LFib(𝐴 × D) → LFib(𝐴 × C)

that is given by pullback along (id ×𝑓 )∶ 𝐴 × C → 𝐴 × D has a left adjoint 𝑓!. In
fact, on account of the commutative square

LFib(𝐴 × D) LFib(𝐴 × C)

Cat(B)/𝐴×D Cat(B)/𝐴×C,

𝑓 ∗

𝑖 𝑖
𝑓 ∗

one may factor 𝑓! as the composition 𝐿/𝐴×D ∘ (id ×𝑓 )! ∘ 𝑖, where

𝐿/𝐴×C ∶ Cat(B)/𝐴×D → LFib(𝐴 × D)

denotes the localisation functor and where (id ×𝑓 )! denotes the forgetful func-

tor. By construction, this functor sends 𝑝∶ P → 𝐴 × C to the left fibration

𝑓!(𝑝)∶ Q → 𝐴×D that arises from the factorisation of (id ×𝑓 )𝑝∶ P → 𝐴×D into

an initial map and a left fibration. Note that the counit of this adjunction is given

by the canonical map P → Q×CD. If 𝑓 is fully faithful, Lemma 3.1.3.2 implies that

this map is initial and therefore an equivalence since it is already a left fibration.

As a consequence 𝑓 being fully faithful implies that 𝑓! is fully faithful as well.

Therefore, by using Proposition 3.1.2.9 the proof is complete once we show that

for any map 𝑠∶ 𝐵 → 𝐴 in B, the lax square

LFib(𝐴 × D) LFib(𝐴 × C)

LFib(𝐵 × D) LFib(𝐵 × C)

𝑓!

𝑠∗
𝜙

𝑠∗

𝑓!

commutes. To see this, let 𝑝∶ P → 𝐴 × C be a left fibration, and consider the
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commutative diagram

𝑠∗𝑓!P 𝑓!P

𝑠∗P P

𝐵 × D 𝐴 × D

𝐵 × C 𝐴 × C

𝑠∗𝑓!(𝑝) 𝑓!(𝑝)

𝑠∗𝑝

𝑠∗𝑖 𝑖

𝑠×id

𝑠×id
id ×𝑓 id ×𝑓

𝑝

in which 𝑓!(𝑝)𝑖∶ P → 𝑓!P → 𝐴 × D is the factorisation of (id ×𝑓 )𝑝 into an initial

map and a left fibration. The map 𝜙∶ 𝑓!𝑠∗(𝑝) → 𝑠∗𝑓!(𝑝) is given by the unique

lift in the commutative square

𝑠∗P 𝑠∗𝑓!P

𝑓!𝑠∗P 𝐵 × D

𝑗

𝑠∗𝑖

𝑠∗𝑓!(𝑝)
𝜙

𝑓!𝑠∗𝑝

in which 𝑗 is initial. To complete the proof, it therefore suffices to show that 𝑠∗𝑖 is
initial, which follows from the fact that the map 𝑠∶ 𝐵 → 𝐴 is a right fibration

and therefore proper, cf. Section 2.1.4.

Corollary 3.1.3.3. For any functor 𝑓∶ C → D between B-categories, the functor

𝑓 ∗ ∶ Fun
B
(D,Grpd

B
) → Fun

B
(C,Grpd

B
)

admits a left adjoint 𝑓! that fits into a commutative diagram

Cop Dop

Fun
B
(C,Grpd

B
) Fun

B
(D,Grpd

B
)

𝑓 op

ℎCop ℎDop

𝑓!

in which the two vertical arrows are given by the Yoneda embedding. Moreover, 𝑓 is
fully faithful if and only if 𝑓! is fully faithful.

Proof. The existence of the left adjoint 𝑓! follows immediately from Proposi-

tion 3.1.3.1 on account of the straightening/unstraightening equivalence for left

fibrations (Theorem 2.2.1.1). To show that the composition

Cop ↪→ Fun
B
(C,Grpd

B
) → Fun

B
(D,Grpd

B
)
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factors through the Yoneda embedding Dop ↪→ Fun
B
(D,Grpd

B
), it suffices to

show that for every representable left fibration 𝑝∶ P → 𝐴 × C the associated left

fibration 𝑓!(𝑝)∶ Q → 𝐴 × D is representable as well. This follows immediately

from the fact that there is an initial map 𝑖∶ P → Q, which implies that Q

admits an initial section 𝐴 → Q over 𝐴 whenever P admits such a section

(cf. Proposition 2.3.2.11).

Proposition 3.1.3.4. A pair of functors (𝑙, 𝑟)∶ C ⇆ D between B-categories
defines an adjunction if and only if there is an equivalence of functors

𝛼∶ mapD(𝑙(−), −) ≃ mapC(−, 𝑟(−)).

Proof. Suppose that 𝑙 ⊣ 𝑟 is an adjunction in Cat(B). Then Proposition 3.1.1.14

gives rise to an adjunction 𝑙∗ ⊣ 𝑟∗ ∶ PSh
B
(D) ⇆ PSh

B
(C). On the other hand,

Corollary 3.1.3.3 provides a left adjoint 𝑟! to 𝑟∗, hence the uniqueness of adjoints

implies that there is an equivalence 𝛽∶ 𝑟! ≃ 𝑙∗. We therefore conclude that

there is an equivalence 𝛼∶ ℎC𝑟 ≃ 𝑙∗ℎD, where ℎC and ℎD denotes the Yoneda

embedding of C and D, respectively. By transposing 𝛼 across the adjunction

− × Dop ⊣ Fun
B
(Dop, −), we thus end up with an equivalence

𝛼∶ mapD(𝑙(−), −) ≃ mapC(−, 𝑟(−)),

as desired.

Conversely, suppose that the pair (𝑙, 𝑟) comes along with an equivalence 𝛼 as

above. As functoriality of the twisted arrow construction (Definition 2.1.2.3) gives

rise to a morphism of functors mapC(−, −) → mapD(𝑙(−), 𝑙(−)), one obtains a

map

mapC(−, −) → mapD(𝑙(−), 𝑙(−)) ≃ mapC(−, 𝑟 𝑙(−)).

As the Yoneda embedding is fully faithful (Corollary 2.3.2.6), this map arises

uniquely from a map 𝜂∶ idC → 𝑟𝑙. In fact, we may view the above map as a

functor

C → PSh
B
(C)Δ

1

that sends an object 𝑑∶ 𝐴 → C to the map

mapC(−, 𝑑) → mapD(𝑙(−), 𝑙(𝑑)) ≃ mapC(−, 𝑟 𝑙(𝑑))
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in PSh
B
(C). As the Yoneda embedding C ↪→ PSh

B
(C) is fully faithful, this map

must arise from a map in C, hence the above functor factors through the fully

faithful functor CΔ1
↪→ PSh

B
(C)Δ

1
that is induced by the Yoneda embedding. By

a similar argument, one obtains a map 𝜖∶ 𝑙𝑟 → idD. We complete the proof by

showing that 𝜂 and 𝜖 satisfy the conditions of Proposition 3.1.1.4, i.e. that the

maps 𝑟𝜖 ∘ 𝜂𝑟 and 𝜖𝑙 ∘ 𝑙𝜂 are equivalences. We show this for the first case, the second

case follows from an analogous argument. Since equivalences of functors can

be detected object-wise by Proposition 2.3.2.12, it suffices to show that for any

object 𝑑∶ 𝐴 → D the map

𝑟(𝑑)
𝜂𝑟𝑑
−−→ 𝑟𝑙𝑟(𝑑)

𝑟𝜖𝑑
−−→ 𝑟(𝑑)

is an equivalence. Now bifunctoriality of the equivalence

mapD(𝑙(−), −) ≃ mapC(−, 𝑟(−))

implies that there is a commutative diagram

𝑟(𝑑) 𝑟 𝑙𝑟(𝑑)

𝑟(𝑑) 𝑟(𝑑)

𝜂𝑟𝑑

id𝑟(𝑑) 𝑟𝜖𝑑
id𝑟(𝑑)

that arises from the transposed commutative diagram

𝑙𝑟 (𝑑) 𝑙𝑟(𝑑)

𝑙𝑟(𝑑) 𝑑,

id𝑙𝑟 (𝑑)

id𝑙𝑟 (𝑑) 𝜖𝑑
𝜖𝑑

which proves the claim.

Recall from Definition 2.1.2.1 that if 𝑟∶ D → C is a functor between B-

categories and if 𝑐∶ 𝐴 → D is an arbitrary object, we denote by D𝑐/ → 𝐴×D the

left fibration that arises as pullback of the slice projection (𝜋𝑐)! ∶ C𝑐/ → 𝐴 × C
along id ×𝑟∶ 𝐴 × D → 𝐴 × C (cf. Section 2.1.2). Note that by functoriality of the

straightening equivalence (Theorem 2.2.1.1), this left fibration is classified by the

functor mapC(𝑐, 𝑟(−))∶ 𝐴 × D → Grpd
B
. We now obtain:
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Corollary 3.1.3.5. Let 𝑟∶ D → C be a functor between large B-categories. Then 𝑟
admits a left adjoint 𝑙 if and only if for any object 𝑐∶ 𝐴 → C in context 𝐴 ∈ B the
copresheaf mapC(𝑐, 𝑟(−)) (viewed as an object in Fun

B
(D,Grpd

B
) in context 𝐴) is

representable by an object in D, in which case the representing object is given by
𝑙(𝑐) and the associated initial object in D𝑐/ is given by the unit map 𝜂𝑐∶ 𝑐 → 𝑟𝑙(𝑐).

Proof. By Proposition 3.1.3.4, the functor 𝑟 admits a left adjoint if and only if there

is a functor 𝑙 ∶ C → D and an equivalence

𝛼∶ mapD(𝑙(−), −) ≃ mapC(−, 𝑟(−)).

Therefore, if 𝑟 admits a left adjoint then mapC(𝑐, 𝑟(−)) is representable by the

object 𝑙(𝑐)∶ 𝐴 → D, and the explicit construction of the equivalence 𝛼 in Propo-

sition 3.1.3.4 shows that the equivalence

D𝑙(𝑐)/ ≃ D𝑐/

over 𝐴 × D that arises from 𝛼 sends the initial section id𝑙(𝑐) ∶ 𝐴 → D𝑙(𝑐)/ to the

unit map 𝜂𝑐∶ 𝑐 → 𝑟𝑙(𝑐).
Conversely, if mapC(𝑐, 𝑟(−)) is representable for every object 𝑐 in C in context

𝐴 ∈ B, then the functor ℎ𝑟∶ D → C ↪→ PSh
B̂
(C) transposes to a functor

Cop → Fun
B
(D,Grpd

B̂
)

that factors through the Yoneda embedding Dop ↪→ Fun
B
(D,Grpd

B̂
) and there-

fore defines a functor 𝑙 ∶ C → D. By construction, this functor comes with an

equivalence

mapD(𝑙(−), −) ≃ mapC(−, 𝑟(−)),

hence the claim follows.

Let C and D be B-categories and let FunR
B
(D,C) ↪→ Fun

B
(D,C) be the full

subcategory that is spanned by those functors 𝜋∗
𝐴D → 𝜋∗

𝐴C in Cat(B/𝐴) (for

every 𝐴 ∈ B) that admit a left adjoint. Dually, let FunL
B
(C,D) ↪→ Fun

B
(C,D)

denote the full subcategory spanned by those functors that admit a right adjoint.

Remark 3.1.3.6. If C and D are B-categories and 𝐴 ∈ B is an arbitrary object,

the property of a functor 𝑓∶ 𝜋∗
𝐴C → 𝜋∗

𝐴D to be a right adjoint is local in B.

151



3. Colimits and cocompletion

In fact, by Corollary 3.1.3.5 this property is equivalent to the condition that

for every object 𝑐 in 𝜋∗
𝐴C (in arbitrary context), the functor map𝜋∗

𝐴C
(𝑐, 𝑓 (−)) is

representable. Hence the claim follows from the fact that the representability

of such functors is a local condition (see Remark 2.3.2.10). In particular, this

implies that every object in FunR
B
(C,D) in context 𝐴 ∈ B encodes a right adjoint

functor 𝜋∗
𝐴C → 𝜋∗

𝐴D (cf. Remark 1.3.2.18), and one furthermore has a canonical

equivalence

𝜋∗
𝐴Fun

R
B
(D,C) ≃ FunR

B/𝐴
(𝜋∗

𝐴D, 𝜋∗
𝐴C)

for every 𝐴 ∈ B.

Corollary 3.1.3.7. For any two B-categories C and D, there is an equivalence

FunR
B
(D,C) ≃ FunL

B
(C,D)op

that sends a functor between D and C to its left adjoint, and vice versa.

Proof. Postcomposition with the Yoneda embeddings ℎC and ℎD gives rise to

fully faithful functors

FunR
B
(D,C) ↪→ Fun

B
(D × Cop,Grpd

B
) ↩ FunL

B
(C,D)op.

Thus, to finish the proof, we only need to show that for any 𝐴 ∈ B, an object

𝑓∶ 𝐴 ×D × Cop → Grpd
B

in Fun
B
(D × Cop,Grpd

B
) is contained in the essential

image of FunR
B
(D,C) if and only if it is contained in the essential image of

FunL
B
(C,D)op. By Remark 3.1.3.6 and Remark 2.3.2.1 and Proposition 1.2.5.4, we

may replace B with B/𝐴 and can thus assume that 𝐴 ≃ 1. By Corollary 3.1.3.5,

the functor 𝑓 is contained in FunR
B
(D,C) if and only if 𝑓 (𝑑, −) is representable

for any object 𝑑 in D and 𝑓 (−, 𝑐) is representable for any object 𝑐 in C, which is

in turn equivalent to 𝑓 being contained in the essential image of FunL
B
(C,D)op.

Thus the claim follows.

3.1.4. Reflective subcategories

In this brief section we discuss the special case of an adjunction where the

right adjoint is fully faithful. Again this material is quite standard for ordinary

∞-categories, see for example [49, §5.2.7].
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Definition 3.1.4.1. Let 𝑖∶ C ↪→ D be a fully faithful functor of B-categories.

Then C is said to be reflective in D if 𝑖 admits a left adjoint. Dually, C is coreflective
if 𝑖 admits a right adjoint.

Proposition 3.1.4.2. If (𝑙 ⊣ 𝑟)∶ C ⇆ D is an adjunction between B-categories,
then 𝑙 is fully faithful if and only if the adjunction unit 𝜂 is an equivalence, and 𝑟 is
fully faithful if and only if the adjunction counit 𝜖 is an equivalence.

Proof. The functor 𝑙 is fully faithful if and only if the map

mapC(−, −) → mapD(𝑙(−), 𝑙(−))

is an equivalence (by combining Proposition 1.3.2.7 with Proposition 2.3.2.12).

By postcomposition with the equivalence

mapD(𝑙(−), 𝑙(−)) ≃ mapC(−, 𝑟 𝑙(−))

that is provided by Proposition 3.1.3.4, this is in turn equivalent to the map

mapC(−, −) → mapC(−, 𝑟 𝑙(−))

being an equivalence. But this map is obtained as the image of the adjunction

unit 𝜂 along the fully faithful functor Fun
B
(C,C) ↪→ Fun

B
(Cop × C,Grpd

B
)

that is induced by postcomposition with the Yoneda embedding C ↪→ PSh
B
(C).

The claim thus follows from the observation that fully faithful functors are

conservative (see Lemma 1.3.2.8). The dual statement about 𝑟 and 𝜖 is proved by

an analogous argument.

By combining Proposition 3.1.4.2 with Proposition 3.1.1.4, one immediately

deduces:

Corollary 3.1.4.3. Let 𝑖∶ D ↪→ C be a fully faithful functor between B-categories.
Then D is reflective in C if and only if 𝑖 admits a retraction 𝐿∶ C → D together
with a map 𝜂∶ idC → 𝑖𝐿 such that both 𝜂𝑖 and 𝐿𝜂 are equivalences.

If D ↪→ C is a reflective subcategory, then the reflection functor 𝐿∶ C → D is a

retraction and therefore in particular essentially surjective (cf. Corollary 1.3.2.15).

Consequently, we may recover the subcategory D from the functor 𝑖𝐿∶ C → C
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3. Colimits and cocompletion

be means of its factorisation into an essentially surjective and a fully faithful

functor. Conversely, given an arbitrary endofunctor 𝑓∶ C → C, Corollary 3.1.4.3

shows that the essential image of 𝑓 defines a reflective subcategory precisely if

there is a map 𝜂∶ idC → 𝑓 such that both 𝜂𝑓 and 𝑓 𝜂 are equivalences. Let us

record this observation for future use in the following proposition.

Proposition 3.1.4.4. Let C be a B-category, let 𝑓∶ C → C be a functor and let
𝑖𝐿∶ C � D ↪→ C be its factorisation into an essentially surjective and a fully
faithful functor. Then 𝐿 ⊣ 𝑖 precisely if there is a map 𝜂∶ idC → 𝑓 such that both
𝜂𝑓 and 𝑓 𝜂 are equivalences.

Example 3.1.4.5. If (L,R) is a modality in B (see Example 1.4.1.9), then for any

𝐴 ∈ B the full subcategory R/𝐴 ↪→ B/𝐴 is reflective: the associated reflection

functor 𝐿/𝐴 ∶ B/𝐴 → R/𝐴 is induced by the unique factorisation of maps. Since

(L,R) being a modality precisely means that for every map 𝑠∶ 𝐵 → 𝐴 in B the

natural map 𝐿/𝐵𝑠∗ → 𝑠∗𝐿/𝐴 is an equivalence, we deduce from Proposition 3.1.2.9,

that the right orthogonality class R of any modality (L,R) defines a reflective

subcategory of Grpd
B
. In Example 3.3.2.6 below, we will characterise those

reflective subcategories of Grpd
B

that arise in such a way.

Reflective subcategories are examples of localisations in the sense of Sec-

tion 1.3.3:

Proposition 3.1.4.6. Let (𝑙 ⊣ 𝑟)∶ C ⇆ D be a reflective subcategory. Then 𝑙 is the
localisation of C at the subcategory S = 𝑙−1D≃ ↪→ C.

Proof. By construction of S, we obtain a commutative diagram

S Sgpd D≃

C S−1C D,𝐿

𝑙

𝑔

hence we only need to show that 𝑔 is an equivalence. Let us define ℎ = 𝐿𝑟. Then
𝑔ℎ ≃ 𝑙𝑟 ≃ id, hence ℎ is a right inverse of 𝑔. We finish the proof by showing that

ℎ is a left inverse of 𝑔 as well. Since 𝐿∗ ∶ Fun
B
(S−1C, S−1C) → Fun

B
(C, S−1C)
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is fully faithful by Proposition 1.3.3.20, it suffices to produce an equivalence

ℎ𝑔𝐿 ≃ 𝐿. Let 𝜂∶ id → 𝑟𝑙 be the adjunction unit. Since 𝑙𝜂 is an equivalence, the

map 𝑙𝜂𝑐 factors through the core D≃ ↪→ D for every object 𝑐∶ 𝐴 → C in context

𝐴 ∈ B. By construction of S, this means that 𝜂𝑐 is contained in S, hence 𝐿𝜂𝑐
is an equivalence. Since equivalences of functors can be detected object-wise

(see Proposition 2.3.2.12), we conclude that 𝐿𝜂∶ 𝐿 → 𝐿𝑟𝑙 ≃ ℎ𝑔𝐿 is the desired

equivalence.

It will be useful to have a name for the class of localisations that arise from

reflective subcategories:

Definition 3.1.4.7. If S → C is a functor between B-categories, we say that the

associated localisation 𝐿∶ C → 𝑆−1C is Bousfield if 𝐿 admits a fully faithful right

adjoint 𝑖∶ S−1C ↪→ C.

Remark 3.1.4.8. The extra condition on the right adjoint in Definition 3.1.4.7

to be fully faithful is superfluous: in fact, by Proposition 1.3.3.20 the functor

𝐿∗ ∶ PSh
B
(𝑆−1C) → PSh

B
(C) is fully faithful and by Proposition 3.1.1.14 𝐿∗ is left

adjoint to 𝑖∗. We therefore obtain an equivalence 𝐿∗ ≃ 𝑖!, hence Corollary 3.1.3.3

implies that 𝑖 must be fully faithful as well.

3.2. Limits and colimits

In this section we study limits and colimits in aB-category. We set up the general

theory in Section 3.2.1–3.2.4. All in all our treatment is quite parallel to the one

in ordinary higher category theory, see for example [42, §19] or [18, §6.2]. In

Section 3.2.5 and Section 3.2.6 we discuss limits and colimits in the universe

Grpd
B

and in the B-category of B-categories CatB. In Section 3.2.7 we show

that initial and final functors can be characterised by their property of preserving

limits and colimits. Finally, in Section 3.5.4 we explain how general internal limits

and colimits can be decomposed into B-groupoidal and ∞-categorical ones.

3.2.1. Definitions and first examples

Let C be a B-category. Recall from Proposition 1.2.3.12 that for any simplicial

object 𝐼 in B the internal hom Fun
B
(𝐼 ,C) in BΔ is a B-category. We refer to the
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3. Colimits and cocompletion

objects of this B-category as 𝐼-indexed diagrams in C. Note that this B-category

is equivalent to Fun
B
(I,C), where I is the image of the simplicial object 𝐼 along

the localisation functor BΔ → Cat(B). Thus, in what follows we can always

safely assume that 𝐼 is a B-category.

Now recall from Definition 2.1.2.1 that to any pair of maps 𝑓∶ D → C and

𝑔∶ E → C in Cat(B) we can associate the comma B-category

D ↓C E = (D × E) ×C×C CΔ1
.

We may now define:

Definition 3.2.1.1. Let C be a B-category and let 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) be an

𝐼-indexed diagram in C in context 𝐴 ∈ B, for some 𝐼 ∈ BΔ. The B-category
of cones over 𝑑 is defined as the comma B-category C/𝑑 = C ↓Fun

B
(𝐼 ,C) 𝐴

formed from 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) and the diagonal map diag∶ C → Fun

B
(𝐼 ,C).

Dually, the B-category of cocones under 𝑑 is defined as the comma B-category

C𝑑/ = 𝐴 ↓Fun
B
(𝐼 ,C) C.

In the situation of Definition 3.2.1.1, the B-category of cones C/𝑑 admits a

structure map into C × 𝐴 that fits into the pullback square

C/𝑑 Fun
B
(𝐼 ,C)/𝑑

C × 𝐴 Fun
B
(𝐼 ,C) × 𝐴.

(𝜋𝑑)!
diag × id

Since (𝜋𝑑)! is a right fibration, so is the map C/𝑑 → C×𝐴. In other words, we may

regard this map as an object in RFibC in context 𝐴. Dually, the map C𝑑/ → 𝐴×C
is a left fibration and therefore defines an object in LFibC in context 𝐴. With

respect to the straightening/unstraightening equivalence RFibC ≃ PSh
B
(C) from

Theorem 2.2.1.1, the right fibration C/𝑑 → C × 𝐴 corresponds to the presheaf

mapFun
B
(𝐼 ,C)(diag(−), 𝑑) on C, and the left fibration C𝑑/ → 𝐴 × C corresponds

to the copresheaf mapFun
B
(𝐼 ,C)(𝑑, diag(−)) on C.

Remark 3.2.1.2. In the situation of Definition 3.2.1.1, let

̄𝑑 ∶ 1B/𝐴
→ 𝜋∗

𝐴FunB(𝐼 ,C) ≃ Fun
B/𝐴

(𝜋∗
𝐴𝐼 , 𝜋

∗
𝐴C)
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be the transpose of 𝑑. Since the forgetful functor (𝜋𝐴)! ∶ Cat(B/𝐴) → Cat(B)
preserves pullbacks, we deduce from Remark 2.1.2.2 that the map C/𝑑 → C × 𝐴
arises as the image of (𝜋∗

𝐴C)/ ̄𝑑 → 𝜋∗
𝐴C along (𝜋𝐴)!. In other words, when regarded

as a B/𝐴-category, we can identify C/𝑑 with (𝜋∗
𝐴C)/ ̄𝑑.

Remark 3.2.1.3. Let 𝐼 be a simplicial object in B and let C be a B-category.

Recall from Definition 2.1.3.11 that the right cone 𝐼 ▷ is given by the pushout

𝐼 ⊔ 𝐼 Δ1 ⊗ 𝐼

𝐼 ⊔ 1 𝐼 ▷.

id ×𝜋𝐼

(𝑑1,𝑑0)

(𝜄,∞)

By applying the functor Fun
B
(−,C) to this diagram, one obtains an equivalence

Fun
B
(𝐼 ▷,C) ≃ Fun

B
(𝐼 ,C) ↓Fun

B
(𝐼 ,C) C

over Fun
B
(𝐼 ,C) ×C, in which the right-hand side denotes the commaB-category

that is formed from the cospan

Fun
B
(𝐼 ,C)

id
−−→ Fun

B
(𝐼 ,C)

diag
←−−− C.

By construction, if 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) is an 𝐼-indexed diagram in C in context

𝐴 ∈ B, one obtains a pullback square

C𝑑/ Fun
B
(𝐼 ▷,C)

𝐴 × C Fun
B
(𝐼 ,C) × C.

(𝜄∗,∞∗)
𝑑×id

In other words, the pullback of Fun
B
(𝐼 ▷,C) along 𝑑 × id recovers the B-category

of cocones under 𝑑. We may therefore regard any object ̄𝑑 ∶ 𝐴 → Fun
B
(𝐼 ▷,C) as

a cocone 𝑑 → diag 𝑐 under the diagram 𝑑 = 𝜄∗ ̄𝑑 with 𝑐 = ∞∗ ̄𝑑, where ∞∶ 1 → 𝐼 ▷

denotes the cone point.

Dually, one defines the left cone 𝐼 ◁ as the pushout

𝐼 ⊔ 𝐼 Δ1 ⊗ 𝐼

1 × 𝐼 𝐼 ◁
𝜋𝐼×id

(𝑑1,𝑑0)
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and therefore obtains an equivalence

Fun
B
(𝐼 ◁,C) ≃ C ↓Fun

B
(𝐼 ,C) FunB(𝐼 ,C)

over C × Fun
B
(𝐼 ,C). Consequently, the pullback of Fun

B
(𝐼 ◁,C) along id ×𝑑

recovers the B-category of cones C/𝑑 over 𝑑.

Definition 3.2.1.4. Let C be a B-category and let 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) be an

𝐼-indexed diagram in context 𝐴 in C, for some 𝐴 ∈ B and some 𝐼 ∈ BΔ. A limit
cone of 𝑑 is a map diag(lim 𝑑) → 𝑑 in Fun

B
(𝐼 ,C) in context 𝐴 that defines a final

section 𝐴 → C/𝑑 over 𝐴. Dually, a colimit cocone of 𝑑 is a map 𝑑 → diag(colim 𝑑)
in Fun

B
(𝐼 ,C) in context 𝐴 that defines an initial section 𝐴 → C𝑑/ over 𝐴.

Remark 3.2.1.5. The above definition is a direct analogue of Joyal’s original

definition of limits and colimits in an ∞-category [41].

Remark 3.2.1.6. In the situation of Definition 3.2.1.4, Proposition 2.3.2.11 implies

that an 𝐼-indexed diagram 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) admits a colimit cocone if and

only if the presheaf mapFun
B
(𝐼 ,C)(𝑑, diag(−)) is representable, in which case the

representing object is given by colim 𝑑. In other words, if 𝑑 admits a colimit

cocone, one obtains an equivalence Ccolim 𝑑/ ≃ C𝑑/ over 𝐴 × C, and conversely

if there is an object 𝑐∶ 𝐴 → C and an equivalence C𝑐/ ≃ C𝑑/ over 𝐴 × C then

the image of the object id𝑐 in C𝑐/ along this equivalence defines a colimit cocone

of 𝑑. A similar observation can be made for limits. In particular, the colimit and

limit of a diagram are unique up to equivalence if they exist.

Remark 3.2.1.7. The existence of limits and colimits is a local condition: in fact,

by the same reasoning as in Remark 3.1.3.6, given any cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in

B, a diagram 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) admits a limit in C if and only if the diagram

𝑠∗𝑖 (𝑑)∶ 𝐴𝑖 → Fun
B
(𝐼 ,C) admits a limit in C for every 𝑖. Analogous observations

can be made for colimits.

Remark 3.2.1.8. In light of Remark 3.2.1.2, a cone diag 𝑐 → 𝑑 in Fun
B
(𝐼 ,C) in

context 𝐴 transposes to a cone diag ̄𝑐 → ̄𝑑 in Fun
B/𝐴

(𝜋∗
𝐴𝐼 , 𝜋

∗
𝐴C) in context 1B/𝐴

(where ̄𝑐 ∶ 1B/𝐴
→ 𝜋∗

𝐴C and ̄𝑑 ∶ 1B/𝐴
→ Fun

B/𝐴
(𝜋∗

𝐴𝐼 , 𝜋
∗
𝐴C) are the transpose of

𝑐 and 𝑑, respectively), and the former defines an initial section 𝐴 → C/𝑑 over
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𝐴 if and only if the latter defines an initial object 1B/𝐴
→ (𝜋∗

𝐴C)/ ̄𝑑. In other

words, we may compute the limit of 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) as the transpose of the

limit of ̄𝑑 ∶ 1B/𝐴
→ Fun

B/𝐴
(𝜋∗

𝐴𝐼 , 𝜋
∗
𝐴C). Analogous observations can be made for

colimits.

Example 3.2.1.9. Let C be B-category and let 𝑐∶ 𝐴 → C be an object, viewed

as a 1-indexed diagram 𝑐∶ 𝐴 → Fun
B
(1,C) ≃ C. Then there are equivalences

lim 𝑐 ≃ 𝑐 ≃ colim 𝑐, and the associated limit and colimit cocones are given by

id𝑐 ∶ 𝐴 → C/𝑐 and id𝑐 ∶ 𝐴 → C𝑐/.

Example 3.2.1.10. For any B-category C and any object 𝑐∶ 𝐴 → C, the object 𝑐
is initial if and only if it defines a colimit of the initial diagram 𝑑∶ 𝐴×∅ ≃ ∅ → C,

and dually 𝑐 is final if and only if it defines a limit of 𝑑. In fact, by Remark 3.2.1.8

we may replace B by B/𝐴 and can thus assume that 𝐴 ≃ 1. In this case, since ∅
is initial in Cat(B), there is an equivalence Fun

B
(∅,C) ≃ 1, which implies that

the left fibration C𝑑/ → C is an equivalence. Consequently, an object 1 → C𝑑/
is initial if and only if its image 1 → C is. The analogous statement about final

objects and limits follows by dualisation.

Proposition 3.2.1.11. Let C be a B-category and let 𝐼 be a simplicial object in B.
The following conditions are equivalent:

1. every diagram 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) admits a colimit colim 𝑑;

2. the diagonal diag∶ C → Fun
B
(𝐼 ,C) admits a left adjoint

colim∶ Fun
B
(𝐼 ,C) → C.

If either of these conditions are satisfied, the functor colim carries 𝑑 to colim 𝑑,
and the adjunction unit 𝑑 → diag colim 𝑑 defines a colimit cocone of 𝑑. The dual
statement for limits holds as well.

Proof. By the dual of Corollary 3.1.3.5, the functor diag admits a left adjoint if

and only if for every 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) the functor mapFun

B
(𝐼 ,D)(𝑑, diag(−))

is representable by an object in C, in which case the left adjoint sends 𝑑 to the

representing object in C. By definition, this functor classifies the left fibration

C𝑑/ → 𝐴 × C. Therefore, Remark 3.2.1.6 shows that diag admits a left adjoint if
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3. Colimits and cocompletion

and only if every diagram 𝑑 admits a colimit colim 𝑑∶ 𝐴 → C, in which case this is

the representing object of the functor mapFun
B
(𝐼 ,C)(𝑑, diag(−)). Corollary 3.1.3.5

moreover shows that in this case the adjunction unit 𝑑 → diag colim 𝑑 defines an

initial section 𝐴 → C𝑑/.

Example 3.2.1.12. Let C be a largeB-category and G be aB-groupoid. By using

Proposition 3.1.2.9, the following two conditions are equivalent:

1. C admits G-indexed colimits;

2. for every 𝐴 ∈ B the functor 𝜋∗
G ∶ C(𝐴) → C(G × 𝐴) admits a left adjoint

(𝜋G)! such that for every map 𝑠∶ 𝐵 → 𝐴 in B the natural morphism

(𝜋G)!𝑠∗ → 𝑠∗(𝜋G)! is an equivalence.

In particular, if C has G-indexed colimits, then the colimit of 𝑑∶ 𝐴 → Fun
B
(G,C)

can be identified with the image of 𝑑 ∈ C(G × 𝐴) along the functor (𝜋G)!.
Dually, the following two conditions are equivalent:

1. C admits G-indexed limits;

2. for every 𝐴 ∈ B the functor 𝜋∗
G ∶ C(𝐴) → C(G × 𝐴) admits a right adjoint

(𝜋G)∗ such that for every map 𝑠∶ 𝐵 → 𝐴 in B the natural morphism

𝑠∗(𝜋G)∗ → (𝜋G)∗𝑠∗ is an equivalence.

In particular, if C has G-indexed limits, then the limit of 𝑑∶ 𝐴 → Fun
B
(G,C) can

be identified with the image of 𝑑 ∈ C(G × 𝐴) along the functor (𝜋G)∗.

Example 3.2.1.13. Let C be a large B-category and let I be an ∞-category. By

using Proposition 3.1.2.9, the following two conditions are equivalent:

1. C admits I-indexed colimits;

2. for every 𝐴 ∈ B the ∞-category C(𝐴) admits I-indexed colimits, and for

every map 𝑠∶ 𝐵 → 𝐴 in B the functor 𝑠∗ ∶ C(𝐴) → C(𝐵) preserves such
colimits.

Dually, the following two conditions are equivalent:

1. C admits I-indexed limits;
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2. for every 𝐴 ∈ B the ∞-category C(𝐴) admits I-indexed limits, and for

every map 𝑠∶ 𝐵 → 𝐴 in B the functor 𝑠∗ ∶ C(𝐴) → C(𝐵) preserves such
limits.

Remark 3.2.1.14. Let C be a small ∞-category such that B is a left exact and

accessible localisation of PSh(C). Let 𝐿∶ PSh(C) → B be the localisation functor.

Then Corollary 3.1.2.11 implies that in the situation of Example 3.2.1.12 and

Example 3.2.1.13, it suffices to check the condition in (2) for the special case

where 𝐴 = 𝐿(𝑐), 𝐵 = 𝐿(𝑑) and 𝑠 = 𝐿(𝑡) for some objects 𝑐, 𝑑 ∈ C and some map

𝑡∶ 𝑑 → 𝑐 in C.

3.2.2. Preservation of limits and colimits

Let 𝑓∶ C → D be a functor betweenB-categories and 𝐼 be a simplicial object inB.

Let 𝑓∗ ∶ Fun
B
(𝐼 ,C) → Fun

B
(𝐼 ,D) be the functor that is given by postcomposition

with 𝑓. For any diagram 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C), the functor 𝑓∗ gives rise to two

evident commutative squares

C/𝑑 D/𝑓∗𝑑 C𝑑/ D𝑓∗𝑑/

C × 𝐴 D × 𝐴 𝐴 × C 𝐴 × D

𝑓∗ 𝑓∗

𝑓 ×id id ×𝑓

Definition 3.2.2.1. Let 𝑓∶ C → D be a functor ofB-categories, let 𝑑∶ 𝐼 ×𝐴 → C

be a diagram and suppose that 𝑑 admits a limit in C. Then 𝑓 is said to preserve
this limit if the induced functor 𝑓∗ ∶ C/𝑑 → D/𝑓∗𝑑 is final. Dually, if 𝑑 admits a

colimit in C, then 𝑓 is said to preserve this colimit if the functor 𝑓∗ ∶ C𝑑/ → D𝑓∗𝑑/
is initial.

Remark 3.2.2.2. In the situation of Definition 3.2.2.1, the condition that 𝑓∗ is

final is equivalent to the condition that this functor carries the limit cone𝐴 → C/𝑑
to a final section 𝐴 → D/𝑓∗𝑑 over 𝐴. In particular, the latter defines a limit cone

over the diagram 𝑓∗𝑑. The same observation can be made for the preservation of

a colimit.

Remark 3.2.2.3. The property that a functor 𝑓∶ C → D preserves the limit

(colimit) of a diagram 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) is a local condition: if (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴
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3. Colimits and cocompletion

is a cover in B. then 𝑓 preserves the limit (colimit) of 𝑑 if and only if for every 𝑖
the limit (colimit) of the induced diagram 𝑠∗𝑖 (𝑑) is preserved by 𝑓. This follows

immediately from the fact that initiality (and therefore also finality) is a local

condition (Remark 2.1.4.11).

Remark 3.2.2.4. When viewing the map 𝑓∗ from Definition 3.2.2.1 as a functor

of B/𝐴-categories, Remark 3.2.1.2 implies that this map can be identified with

the functor

(𝜋∗
𝐴𝑓 )∗ ∶ (𝜋∗

𝐴C)/ ̄𝑑 → (𝜋∗
𝐴D)/(𝜋∗

𝐴𝑓 )∗ ̄𝑑

(where ̄𝑑 ∶ 1B/𝐴
→ Fun

B/𝐴
(𝜋∗

𝐴𝐼 , 𝜋
∗
𝐴C) denotes the transpose of 𝑑). In combination

with Remark 3.2.1.8 and Remark 2.1.3.3, this implies that 𝑓 preserves the limit

of 𝑑 if and only if 𝜋∗
𝐴𝑓 preserves the limit of ̄𝑑. Analogous observations hold for

colimits.

Lemma 3.2.2.5. Let (𝑙 ⊣ 𝑟)∶ C ⇆ D be an adjunction between B-categories, and
let 𝑓∶ 𝑐 → 𝑟(𝑑) be a map in C in context 𝐴 ∈ B. Then 𝑓 is an equivalence if and
only if the transpose map 𝑔∶ 𝑙(𝑐) → 𝑑 defines a final section of C/𝑑 over 𝐴.

Proof. By Corollary 3.1.3.5, the counit 𝜖𝑑∶ 𝑙𝑟(𝑑) → 𝑑 defines a final section of C/𝑑
over 𝐴, hence the dual of Corollary 2.1.3.16 implies that there is a map 𝑔 → 𝜖𝑑 in

C/𝑑 that is an equivalence if and only if 𝑔 is final. On account of the equivalence

C/𝑑 ≃ C/𝑟(𝑑), this map corresponds to a map 𝑓 → id𝑟(𝑑) in C/𝑟(𝑑). The result now

follows from the straightforward observation that the latter is an equivalence if

and only if 𝑓 is an equivalence in C.

Proposition 3.2.2.6. Let 𝑓∶ C → D be a functor between B-categories and let
𝐼 be a simplicial object in B such that C and D admit all 𝐼-indexed limits, i.e
the diagonal maps C → Fun

B
(𝐼 ,C) and D → Fun

B
(𝐼 ,D) admit right adjoints

(cf. Proposition 3.2.1.11). Then 𝑓 preserves all 𝐼-indexed limits precisely if the mate
of the commutative square

Fun
B
(𝐼 ,C) C

Fun
B
(𝐼 ,D) D

𝑓∗

diag
𝑓

diag

commutes. The dual statement about colimits holds as well.
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3.2. Limits and colimits

Proof. Suppose that 𝑓 preserves all 𝐼-indexed limits. The mate of the commutative

square in the statement of the proposition is encoded by a map 𝜙∶ 𝑓 lim → lim 𝑓∗
that is given by the composite

𝑓 lim
𝜂𝑓 lim
−−−−−→ lim diag 𝑓 lim

≃
−→ lim 𝑓∗ diag lim

lim 𝑓∗𝜖
−−−−−→ lim 𝑓∗

in which 𝜂 and 𝜖 are the units and counits of the two adjunctions diag ⊣ lim.

By Proposition 2.3.2.12, this map is an equivalence if and only if for any dia-

gram 𝑑∶ 𝐴 → Fun
B
(𝐼 ,D) the associated map 𝜙(𝑑)∶ 𝑓 (lim 𝑑) → lim 𝑓∗𝑑 is an

equivalence in D. Now since the transpose map diag 𝑓 (lim 𝑑) → 𝑓∗𝑑 is given by

postcomposing the equivalence diag 𝑓 (lim 𝑑) ≃ 𝑓∗ diag(lim 𝑑) with the map 𝑓∗𝜖𝑑
and since Proposition 3.2.1.11 implies that 𝜖𝑑 is precisely the limit cone over 𝑑 in

D, the claim follows from Lemma 3.2.2.5.

Remark 3.2.2.7. Let 𝑓∶ C → D be a functor between B-categories, let 𝐼 be an

arbitrary simplicial object in B and let 𝑑∶ 𝐴 → Fun
B
(I,C) be a diagram that has

a limit in C. Suppose furthermore that 𝑓∗𝑑 has a limit in D. Then the universal

property of final objects (see Corollary 2.1.3.16) gives rise to a unique map

diag 𝑓 (lim 𝑑) diag lim 𝑓∗𝑑

𝑓∗𝑑

in D/𝑓∗𝑑 that is an equivalence if and only if 𝑓 preserves the limit of 𝑑. Since

D/𝑓∗𝑑 → D is a right fibration and therefore in particular conservative, this is in

turn equivalent to the map 𝑓 (lim 𝑑) → lim 𝑓∗𝑑 being an equivalence in D. If both

C and D admit 𝐼-indexed limits, this map is nothing but the mate transformation

𝑓 lim → lim 𝑓∗ from Proposition 3.2.2.6 evaluated at the object 𝑑.

Example 3.2.2.8. Let 𝑓∶ C → D be a functor between large B-categories and

let G be a B-groupoid. Suppose that both C and D admit G-indexed colimits. By

using Proposition 3.1.2.9 and Proposition 3.2.2.6, the following two conditions

are equivalent:

1. 𝑓 preserves G-indexed colimits;
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3. Colimits and cocompletion

2. for every 𝐴 ∈ B the natural morphism (𝜋G)!𝑓 (G × 𝐴) → 𝑓 (𝐴)(𝜋G)! is an
equivalence.

Dually, if C and D admit G-indexed limits, the following two conditions are

equivalent:

1. 𝑓 preserves G-indexed limits;

2. for every 𝐴 ∈ B the natural morphism 𝑓 (𝐴)(𝜋G)∗ → (𝜋G)∗𝑓 (𝐴) is an

equivalence.

Example 3.2.2.9. Let 𝑓∶ C → D be a functor between large B-categories, let I

be an ∞-category and suppose that both C and D admit I-indexed colimits. By

using Proposition 3.1.2.9 and Proposition 3.2.2.6, the following two conditions

are equivalent:

1. 𝑓 preserves I-indexed colimits;

2. for every 𝐴 ∈ B the functor 𝑓 (𝐴)∶ C(𝐴) → D(𝐴) preserves I-indexed

colimits.

Dually, if C and D admit I-indexed limits, the following two conditions are

equivalent:

1. 𝑓 preserves I-indexed limits;

2. for every 𝐴 ∈ B the functor 𝑓 (𝐴)∶ C(𝐴) → D(𝐴) preserves I-indexed

limits.

Checking whether a functor between B-categories preserves certain limits or

colimits becomes simpler when the functor is fully faithful:

Proposition 3.2.2.10. Let 𝑓∶ C ↪→ D be a fully faithful functor between B-
categories, let 𝐼 be a simplicial object inB and let 𝑑∶ 𝐴 → Fun

B
(𝐼 ,C) be a diagram

in C. Suppose that 𝑓∗(𝑑) admits a colimit in D such that colim 𝑓∗𝑑 is contained in
C. Then colim 𝑓∗𝑑 already defines a colimit of 𝑑 in C. The analogous statement for
limits holds as well.

164



3.2. Limits and colimits

Proof. Since 𝑓 is fully faithful, the canonical square

C𝑑/ D𝑓∗𝑑/

𝐴 × C 𝐴 × D

𝑓∗

id ×𝑓

is a pullback and 𝑓∗ is fully faithful. Therefore, if colim 𝑓∗𝑑∶ 𝐴 → D𝑓∗𝑑/ is an

initial section such that the underlying object colim 𝑓∗𝑑 in D is contained in C,

then the entire colimit cocone is contained in the essential image of 𝑓∗, i.e. defines
a section 𝐴 → C𝑑/ over 𝐴. By Lemma 3.1.3.2, this section must be initial as well,

hence the result follows.

Corollary 3.2.2.11. Let 𝑓∶ C ↪→ D be a fully faithful functor betweenB-categories,
and suppose that both C and D admit 𝐼-indexed colimits for some simplicial ob-
ject 𝐼 in B. Then 𝑓 preserves 𝐼-indexed colimits if and only if the restriction of
colim∶ Fun

B
(𝐼 ,D) → D along the inclusion 𝑓∗ ∶ Fun

B
(𝐼 ,C) ↪→ Fun

B
(𝐼 ,D) fac-

tors through the inclusion 𝑓∶ C ↪→ D. The analogous statement for limits holds as
well.

We conclude this section with a discussion of the preservation of (co)limits by

adjoint functors. We will need the following lemma:

Lemma 3.2.2.12. Let (𝑙 ⊣ 𝑟)∶ C ⇆ D be an adjunction between B-categories and
let 𝑖∶ 𝐿 → 𝐾 be a map between simplicial objects in B. Then the two commutative
squares

Fun
B
(𝐾,C) Fun

B
(𝐾,D) Fun

B
(𝐾,C) Fun

B
(𝐾,D)

Fun
B
(𝐿,C) Fun

B
(𝐿,D) Fun

B
(𝐿,C) Fun

B
(𝐿,D)

𝑙∗

𝑖∗ 𝑖∗

𝑟∗

𝑖∗ 𝑖∗

𝑙∗ 𝑟∗

that are obtained from the bifunctoriality of Fun
B
(−, −) are related by the mate

correspondence.

Proof. To prove the lemma, we may argue in the homotopy bicategory of the

(∞, 2)-category Cat(B). Then the claim follows from the fact that

𝑖∗ ∶ Fun
B
(𝐾, −) → Fun

B
(𝐿, −)
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determines a pseudo-natural transformation between 2-functors. See [45, Propo-

sition 2.5] for an argument in the strict case.

Proposition 3.2.2.13. Let (𝑙 ⊣ 𝑟)∶ C ⇆ D be an adjunction betweenB-categories.
Then 𝑙 preserves all colimits that exist in C, and 𝑟 preserves all limits that exist in D.

Proof. We will show that the right adjoint 𝑟∶ D → C preserves all limits that

exist in D, the dual statement about 𝑙 and colimits follows by taking opposite B-

categories. Let therefore 𝐼 be a simplicial object in B and let 𝑑∶ 𝐴 → Fun
B
(𝐼 ,D)

be a diagram that has a limit in D. We need to show that the image of the final

section diag lim 𝑑 → 𝑑 along 𝑟∗ ∶ D/𝑑 → C/𝑟∗𝑑 is final. By Corollary 3.1.1.10, the

functor Fun
B
(𝐼 , −) sends the adjunction 𝑙 ⊣ 𝑟 to an adjunction

𝑙∗ ⊣ 𝑟∗ ∶ Fun
B
(𝐼 ,C) ⇆ Fun

B
(𝐼 ,D),

hence by using Proposition 3.1.3.4 one obtains a chain of equivalences

mapC(−, 𝑟(lim 𝑑)) ≃ mapD(𝑙(−), lim 𝑑)

≃ mapFun
B
(𝐼 ,D)(diag 𝑙(−), 𝑑)

≃ mapFun
B
(𝐼 ,D)(𝑙∗ diag(−), 𝑑)

≃ mapFun
B
(𝐼 ,C)(diag(−), 𝑟∗𝑑)

of presheaves on C. We complete the proof by showing that this equivalence

sends the identity id𝑟(lim 𝑑) to the map diag 𝑟(lim 𝑑) ≃ 𝑟∗ diag lim 𝑑 → 𝑟∗𝑑 that

arises as the image of the limit cone diag lim 𝑑 → 𝑑 under the functor 𝑟∗. By

construction, the image of the identity id𝑟(lim 𝑑) under this chain of equivalences

is given by the composition

diag 𝑟(lim 𝑑)
𝜂 diag 𝑟
−−−−−→ 𝑟∗𝑙∗ diag 𝑟(lim 𝑑)
≃
−→ 𝑟∗ diag 𝑙𝑟 (lim 𝑑)
𝑟∗ diag 𝜖
−−−−−−→ 𝑟∗ diag lim 𝑑 → 𝑟∗𝑑

in which the right-most map is the image of the limit cone diag lim 𝑑 → 𝑑
under the functor 𝑟∗, the map 𝜂 denotes the unit of the adjunction 𝑙∗ ⊣ 𝑟∗ and

𝜖 denotes the counit of the adjunction 𝑙 ⊣ 𝑟. As the composition of the first
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three maps is precisely the mate of the equivalence 𝑙∗ diag ≃ diag 𝑙 and therefore

recovers the equivalence diag 𝑟(lim 𝑑) ≃ 𝑟∗ diag(lim 𝑑) by Lemma 3.2.2.12, the

result follows.

Proposition 3.2.2.14. Let (𝑙 ⊣ 𝑟)∶ C ⇆ D be an adjunction in Cat(B) that
exhibits D as a reflective subcategory of C, let 𝐼 be a simplicial object in B and let
𝑑∶ 𝐴 → Fun

B
(𝐼 ,D) be a diagram in context 𝐴 ∈ B such that 𝑟∗𝑑 admits a colimit

in C. Then 𝑙(colim 𝑟∗𝑑) defines a colimit of 𝑑 in D. Dually, if 𝑟∗𝑑 admits a limit in
C, then 𝑙(lim 𝑟∗𝑑) defines a limit of 𝑑 in D.

Proof. Suppose first that 𝑟∗𝑑 admits a colimit in C. Since 𝑟 is fully faithful, we

obtain a chain of equivalences

mapFun
B
(𝐼 ,D)(𝑑, diag(−)) ≃ mapFun

B
(𝐼 ,C)(𝑟∗𝑑, diag 𝑟(−))

≃ mapC(colim 𝑟∗𝑑, 𝑟(−))

≃ mapD(𝑙(colim 𝑟∗𝑑), −),

which shows that the colimit of 𝑑 inD exists and is explicitly given by 𝑙(colim 𝑟∗𝑑).
Next, let us suppose that 𝑟∗𝑑 admits a limit in C. By the triangle identities, the

functor 𝑙 sends the adjunction unit 𝜂∶ id → 𝑟𝑙 to an equivalence. In particular,

the map lim 𝑟∗𝑑 → 𝑟𝑙(lim 𝑟∗𝑑) is sent to an equivalence inD. Note that on account

of the equivalence

mapC(−, lim 𝑟∗𝑑) ≃ mapFun
B
(𝐼 ,D)(diag 𝑙(−), 𝑑),

the presheaf mapC(−, lim 𝑟∗𝑑) sends any map in C that is inverted by 𝑙 to an

equivalence in Grpd
B
. Applying this observation to 𝜂∶ lim 𝑟∗𝑑 → 𝑟𝑙(lim 𝑟∗𝑑),

we obtain a retraction 𝜙∶ 𝑟 𝑙(lim 𝑟∗𝑑) → lim 𝑟∗𝑑 of 𝜂 that gives rise to a retract

diagram

lim 𝑟∗𝑑 𝑟 𝑙(lim 𝑟∗𝑑) lim 𝑟∗𝑑

𝑟 𝑙(lim 𝑟∗𝑑) 𝑟 𝑙𝑟 𝑙(lim 𝑟∗𝑑) 𝑟 𝑙(lim 𝑟∗𝑑)

𝜂

𝜂 𝜙

𝜂 𝜂
𝑟 𝑙𝜂 𝑟 𝑙𝜙

in which the two maps in the lower row are equivalences. By the triangle

identities and the fact that since 𝑟 is fully faithful the adjunction counit 𝜖∶ 𝑙𝑟 → id
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is an equivalence (see Proposition 3.1.4.2), the vertical map in the middle must be

an equivalence as well, hence we conclude that 𝜂∶ lim 𝑟∗𝑑 → 𝑟𝑙(lim 𝑟∗𝑑) too is

an equivalence. Therefore, the computation

mapFun
B
(𝐼 ,D)(diag(−), 𝑑) ≃ mapFun

B
(𝐼 ,C)(diag 𝑟(−), 𝑟∗𝑑)

≃ mapC(𝑟(−), lim 𝑟∗𝑑)

≃ mapC(𝑟(−), 𝑟 𝑙(lim 𝑟∗𝑑))

≃ mapD(𝑙𝑟(−), 𝑙(lim 𝑟∗𝑑))

≃ mapD(−, 𝑙(lim 𝑟∗𝑑))

proves the claim.

Remark 3.2.2.15. We adopted the strategy for the proof of the second claim

in Proposition 3.2.2.14 from Denis-Charles Cisinski’s proof of the analogous

statement for ∞-categories, see [18, Proposition 6.2.17].

3.2.3. Limits and colimits in functorB-categories

In this section, we discuss the familiar fact that limits and colimits in functor

∞-categories can be computed object-wise in the context of B-categories.

Proposition 3.2.3.1. Let 𝐼 be a simplicial object inB and letC be aB-category that
admits all 𝐼-indexed limits. Then Fun

B
(𝐾,C) admits all 𝐼-indexed limits for any sim-

plicial object𝐾 inB, and the precomposition functor 𝑖∗ ∶ Fun
B
(𝐾,C) → Fun

B
(𝐿,C)

preserves 𝐼-indexed limits for any map 𝑖∶ 𝐿 → 𝐾 in BΔ. The dual statement for
colimits is true as well.

Proof. We show the statement for limits. Note that we have a commutative

diagram

Fun
B
(𝐾,C) Fun

B
(𝐾, Fun

B
(𝐼 ,C)) Fun

B
(𝐼 , Fun

B
(𝐾,C))

Fun
B
(𝐿,C) Fun

B
(𝐿, Fun

B
(𝐼 ,C)) Fun

B
(𝐼 , Fun

B
(𝐿,C)).

𝑖∗

diag∗

diag

𝑖∗

≃

(𝑖∗)∗
diag∗

diag

≃
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Since Proposition 3.2.1.11 implies that the two functors labelled with diag∗ have

a right adjoint, so do the functors labelled with diag, so that both Fun
B
(𝐾,C)

and Fun
B
(𝐿,C) admit 𝐼-indexed limits. Moreover, the functoriality of the mate

construction (cf. Remark 3.1.2.7) implies that in order to show that the functor

𝑖∗ ∶ Fun
B
(𝐾,C) → Fun

B
(𝐿,C) preserves 𝐼-indexed limits, we only need to show

that the mate of the left square in the above diagram commutes, which is an

immediate consequence of Lemma 3.2.2.12.

Proposition 3.2.3.2. Let 𝐼 be a simplicial object in B and let C and D be B-
categories such thatD admits 𝐼-indexed limits. Let 𝑑∶ 𝐼 → Fun

B
(C,D) be a diagram

in global context, and let diag 𝐹 → 𝑑 be a cone over 𝑑, where 𝐹∶ 1 → Fun
B
(C,D) is

an arbitrary object. Then diag 𝐹 → 𝑑 is a limit cone if and only if for every 𝐴 ∈ B

and every 𝑐∶ 𝐴 → C the induced map diag(𝐹)(𝑐) → ̄𝑑(𝑐) is a limit cone in D. The
dual statements for colimits holds as well.

Proof. By means of the adjunction diag ⊣ lim and Lemma 3.2.2.5, the map

diag 𝐹 → 𝑑 defines a limit cone if and only if the transpose map 𝐹 → lim 𝑑 is an

equivalence in Fun
B
(C,D). Using that equivalences in functor B-categories are

detected object-wise (see Proposition 2.3.2.12, this is in turn the case precisely if for

every 𝑐∶ 𝐴 → C the map 𝐹(𝑐) → (lim 𝑑)(𝑐) is an equivalence in context 𝐴. Note

that by Remark 3.2.1.7, this map transposes to the map 𝜋∗
𝐴(𝐹 )( ̄𝑐) → lim 𝜋∗

𝐴(𝑑)( ̄𝑐)
(where ̄𝑐 ∶ 1B/𝐴

→ 𝜋∗
𝐴C is the transpose of 𝑐). Using Proposition 3.2.3.1, we can

identify the latter with the map 𝜋∗
𝐴(𝐹 )( ̄𝑐) → lim(𝜋∗

𝐴(𝑑)(𝑐)), i.e. with the transpose

of the morphism of diagrams diag 𝜋∗
𝐴(𝐹 )( ̄𝑐) → 𝜋∗

𝐴(𝑑)( ̄𝑐). Hence, we conclude that

diag 𝐹 → 𝑑 is a limit cone if and only if diag 𝜋∗
𝐴(𝐹 )( ̄𝑐) → 𝜋∗

𝐴(𝑑)( ̄𝑐) is one for each

𝑐∶ 𝐴 → C. Now by Remark 3.2.1.2, the latter transposes to diag 𝐹(𝑐) → 𝑑(𝑐),
hence the claim follows from Remark 3.2.1.8.

Proposition 3.2.3.3. Let 𝑓∶ C → D be a functor between B-categories, let 𝐼 be a
simplicial object in B and suppose that both C and D admits 𝐼-indexed limits and
that 𝑓 preserves such limits. Then for every simplicial object 𝐾 in B, the induced
functor 𝑓∗ ∶ Fun

B
(𝐾,C) → Fun

B
(𝐾,D) preserves 𝐼-indexed limits as well. The

dual statement for colimits holds too.

Proof. Similarly as in the proof in Proposition 3.2.3.1, we need to show that the
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3. Colimits and cocompletion

mate of the left square in the commutative diagram

Fun
B
(𝐾,C) Fun

B
(𝐾, Fun

B
(𝐼 ,C)) Fun

B
(𝐼 , Fun

B
(𝐾,C))

Fun
B
(𝐾,D) Fun

B
(𝐾, Fun

B
(𝐼 ,D)) Fun

B
(𝐼 , Fun

B
(𝐾,D))

𝑓∗

diag∗

diag

(𝑓∗)∗

≃

(𝑓∗)∗
diag∗

diag

≃

commutes, which follows from the observation that this mate is obtained by

applying the functor Fun
B
(𝐾, −) to the mate of the commutative square

C Fun
B
(𝐼 ,C)

D Fun
B
(𝐼 ,D),

𝑓

diag

𝑓∗
diag

which by assumption is an equivalence. Hence the claim follows.

3.2.4. Colimits in sliceB-categories

It is well-known that if C is an ∞-category and 𝑐 ∈ C is an arbitrary object, the

colimit of a diagram 𝑑∶ I → C/𝑐 can be computed as the colimit of the underlying

diagram (𝜋𝑐)!𝑑∶ I → C. In this section, we will establish the analogous statement

for B-categories.

Lemma 3.2.4.1. Let C be a B-category and let 𝑓∶ 𝑐 → 𝑑 be a map in C in context
1 ∈ B such that 𝑐 is an initial object in C. Then 𝑓 defines an initial object in C/𝑑.

Proof. Let 𝑔∶ 𝑐′ → 𝑑 be an arbitrary map in C in context 1 ∈ B. We have an

evident commutative square

(C/𝑑)/𝑔 C/𝑐′

C/𝑑 C.

≃

(𝜋𝑔)! (𝜋𝑐′)!
(𝜋𝑑)!
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3.2. Limits and colimits

in which the upper horizontal map is an equivalence as it is a right fibration that

preserves final objects. Moreover, since 𝑐 is initial, the diagram

1 C/𝑑

1 C

𝑓

id (𝜋𝑑)!
𝑐

is a pullback. Consequently, we obtain an equivalence map/𝑑(𝑓 , 𝑔) ≃ mapC(𝑐, 𝑐
′).

Since 𝑐 is initial, we conclude that map/𝑑(𝑓 , 𝑔) ≃ 1. By replacing B with B/𝐴,

the same conclusion holds for every map 𝑔∶ 𝑐′ → 𝜋∗
𝐴𝑑 in context 𝐴. Hence, we

deduce from Proposition 2.1.3.15 that 𝑓 is initial.

Lemma 3.2.4.2. Let C be a B-category and let 𝑓∶ 𝑐 → 𝑑 be a map in C in context
1 ∈ B. Then there is an equivalence (C𝑐/)/𝑓 ≃ (C/𝑑)𝑓 / that commutes with the
projections to C/𝑑 and C𝑐/.

Proof. Note that the projection (𝜋𝑐)! ∶ C𝑐/ → C induces a left fibration

(𝜋𝑐)! ∶ (C𝑐/)/𝑓 → C/𝑑.

By considering the commutative square

𝑐 𝑐

𝑐 𝑑

id

id 𝑓
𝑓

as an object 𝜙∶ 1 → (C𝑐/)/𝑓, we obtain a commutative square

1 (C𝑐/)/𝑓

(C/𝑑)𝑓 / C/𝑑.

𝜙

id𝑓 (𝜋𝑐)!
(𝜋𝑐)!

As the left vertical map is initial, the dotted filler exists, hence the proof is

complete once we show that 𝜙 is initial too. By construction, the right fibration

(𝜋𝑓)! ∶ (C𝑐/)/𝑓 → C𝑐/ carries 𝜙 to an initial object. The desired result therefore

follows from Lemma 3.2.4.1.
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3. Colimits and cocompletion

Proposition 3.2.4.3. Let I and C be B-categories and let 𝑐∶ 1 → C be an object.
Let 𝑑∶ I → C/𝑐 be a diagram and suppose that the diagram (𝜋𝑐)!𝑑∶ I → C admits
a colimit in C. Then 𝑑 admits a colimit in C/𝑐, and (𝜋𝑐)! preserves this colimit.

Proof. On account of the equivalence Fun
B
(I,C/𝑐) ≃ Fun

B
(I,C)/ diag(𝑐), we may

equivalently regard the diagram 𝑑∶ K → C/𝑐 as an object 𝑑′ = (𝜋𝑐)!𝑑 → diag(𝑐)
in Fun

B
(I,C)/ diag(𝑐), which can in turn be equivalently regarded as a cocone

𝑑′ ∶ 1 → C𝑑′/. One therefore obtains a unique map

𝑑′

diag(colim 𝑑′) diag(𝑐)

𝑑′

in C𝑑′/ (by the universal property of initial objects, see Proposition 2.1.3.15)

which can be regarded as an object in (C𝑑′/)/𝑑′ . Now Lemma 3.2.4.2 gives rise to

an equivalence

(Fun
B
(I,C)𝑑′/)/𝑑′ ≃ Fun

B
(I,C/𝑐)𝑑/

over Fun
B
(I,C/𝑐) the pullback of which along the diagonal map determines an

equivalence (C𝑑′/)/𝑑′ ≃ (C/𝑐)𝑑/ that fits into a commutative diagram

(C𝑑′/)/𝑑′ (C/𝑐)𝑑/

C𝑑/

≃

(𝜋𝑑′)! (𝜋𝑐)!

Consequently, the colimit cocone 𝑑′ → colim 𝑑′ lifts along (𝜋𝑐)! to a cocone

under 𝑑. By Lemma 3.2.4.1, this lift defines an initial object and therefore a colimit

cocone, hence the claim follows.

3.2.5. Limits and colimits in the universe

Our goal of this section is to prove that the universe Grpd
B

for B-groupoids

admits small limits and colimits, and to give explicit constructions of those. We

start with the case of colimits:
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3.2. Limits and colimits

Proposition 3.2.5.1. The universe Grpd
B
for small B-groupoids admits small

colimits. Moreover, if I is a B-category and if 𝑑∶ 𝐴 → Fun
B
(I,Grpd

B
) is an I-

indexed diagram in context 𝐴 ∈ B, then the colimit colim 𝑑∶ 𝐴 → Grpd
B
is given

by the B/𝐴-groupoid (∫ 𝑑)gpd , where ∫ 𝑑 → 𝐴 × I denotes the left fibration that is
classified by 𝑑.

Proof. In light of Proposition 3.2.1.11, we need to show that the diagonal functor

diag∶ Grpd
B

→ Fun
B
(I,Grpd

B
)

has a left adjoint, which is a consequence of Corollary 3.1.3.3. The explicit

description of this colimit furthermore follows from Proposition 3.1.3.1.

Remark 3.2.5.2. For the special case B ≃ Ani, the explicit construction of

colimits in Proposition 3.2.5.1 is given in [49, Corollary 3.3.4.6].

Remark 3.2.5.3. Let 𝑖∶ B ↪ PSh(C) be a left exact accessible localisation with

left adjoint 𝐿, where C is a small ∞-category. Let I be a B-category and let

𝑑∶ 1 → Fun
B
(I,Grpd

B
) be a diagram classified by a left fibration P → I. By

Proposition 3.2.5.1 we have that colim 𝑑 ≃ Pgpd ≃ colimΔop P. Therefore colim 𝑑
is given by applying 𝐿 to the presheaf

𝑐 ↦ (colim
Δop

P)(𝑐) ≃ colim
Δop

(P(𝑐)) ≃ P(𝑐)gpd.

Since Corollary 2.2.2.8 implies that for every 𝑐 ∈ C the left fibration P(𝑐) → I(𝑐)
classifies the functor ΓB/𝐿(𝑐)

∘ 𝑑(𝑐)∶ I(𝑐) → S, we conclude that colim 𝑑 ∈ B is

given by applying 𝐿 to the presheaf 𝑐 ↦ colim(Γ ∘ 𝑑(𝑐)).

We will now proceed by showing that Grpd
B

also admits small limits. By

Proposition 3.2.1.11, we need to show that for any B-category I the diagonal

functor

diag∶ Grpd
B

→ Fun
B
(I,Grpd

B
)

admits a right adjoint. To that end, recall that since Cat(B) is cartesian closed,

the pullback functor 𝜋∗
I ∶ Cat(B) → Cat(B)/I admits a right adjoint (𝜋I)∗ that

is given by sending a functor 𝑝∶ P → I to the B-category Fun
B
(I,P)/I that is
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3. Colimits and cocompletion

defined by the pullback square

Fun
B
(I,P)/I Fun

B
(I,P)

1 Fun
B
(I, I).

𝑝∗

idI

If 𝑝 is a left fibration, then so is 𝑝∗, hence (𝜋I)∗ sends 𝑝 to a B-groupoid in

this case. Upon replacing B with B/𝐴 (where 𝐴 ∈ B is an arbitrary object)

and using Remark 2.2.1.7, this argument also shows that the pullback functor

𝜋∗
I ∶ B/𝐴 → LFib(𝐴 × I) admits a right adjoint (𝜋I)∗ for any 𝐴 ∈ B. Moreover,

if 𝑠∶ 𝐵 → 𝐴 is a map in B, the natural map 𝑠∗(𝜋I)∗ → (𝜋I)∗𝑠∗ is an equivalence

whenever the transpose map 𝑠!(𝜋I)∗ → (𝜋I)∗𝑠! is one, and as this latter condition

is evidently satisfied, Proposition 3.1.2.9 and Theorem 2.2.1.1 now show:

Proposition 3.2.5.4. The universe Grpd
B
for small B-groupoids admits small

limits. More precisely, if I is a B-category and if 𝑑∶ 𝐴 → Fun
B
(𝐼 ,Grpd

B
) is an

I-indexed diagram in context 𝐴 ∈ B, then the limit lim 𝑑∶ 𝐴 → Grpd
B
is given

by the B/𝐴-groupoid Fun
B/𝐴

(𝜋∗
𝐴I, ∫ ̄𝑑)/𝜋∗

𝐴I
in B/𝐴, where ∫ ̄𝑑 → 𝜋∗

𝐴I is the left

fibration that is classified by the transpose ̄𝑑 ∶ 𝜋∗
𝐴I → Grpd

B/𝐴
of 𝑑.

Remark 3.2.5.5. For the special case B ≃ Ani, the explicit construction of limits

in Proposition 3.2.5.4 is given in [49, Corollary 3.3.3.3].

If I is an arbitrary B-category, the fact that right adjoint functors preserve

limits (Proposition 3.2.2.13) combined with the fact that the final object 1Grpd
B

is the limit of the unique diagram ∅ → Grpd
B

(Example 3.2.1.10) show that

diag(1Grpd
B
)∶ 1 → Fun

B
(I,Grpd

B
) defines a final object in Fun

B
(I,Grpd

B
).

We will denote this object by 1Fun
B
(I,Grpd

B
). Proposition 3.2.5.4 now implies:

Corollary 3.2.5.6. For any B-category I, the limit functor

lim
I

∶ Fun
B
(I,Grpd

B
) → Grpd

B

is explicitly given by the representable functormapFun
B
(I,Grpd

B
)(1FunB(I,Grpd

B
), −).

Proof. Since Proposition 3.2.5.4 already implies the existence of limI, the claim

follows from the equivalence

mapFun
B
(I,Grpd

B
)(1FunB(I,Grpd

B
), −) ≃ mapGrpd

B

(1Grpd
B
, lim

I
(−))
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3.2. Limits and colimits

and the fact that mapGrpd
B

(1Grpd
B
, −) is equivalent to the identity functor on

Grpd
B
, see Proposition 2.2.2.4.

Recall from Remark 1.4.1.4 that there is an embedding 𝑖∶ Grpd
B
↪→ Grpd

B̂
.

For later use, we note:

Proposition 3.2.5.7. The inclusion 𝑖∶ Grpd
B
↪→ Grpd

B̂
preserves small limits

and colimits.

Proof. We begin with the case of colimits. Using Corollary 3.2.2.11, it suffices to

show that the restriction of the colimit functor colim∶ Fun
B
(I,Grpd

B̂
) → Grpd

B̂

along the inclusion 𝑖∗ ∶ Fun
B
(I,Grpd

B
) ↪→ Fun

B
(I,Grpd

B̂
) takes values in

Grpd
B

for any B-category I. Since Proposition 3.2.5.1 implies that the colimit

of any diagram 𝑑∶ 𝐴 → Fun
B
(I,Grpd

B̂
) is given by the (large) B/𝐴-groupoid

(∫ 𝑑)gpd, the claim follows from Proposition 1.2.4.4, together with the fact that 𝑑
taking values in Fun

B
(I,Grpd

B
) is tantamount to ∫ 𝑑 being a smallB/𝐴-category,

cf. Corollary 2.2.1.10.

As for the case of limits, by Corollary 3.2.5.6 we need to verify that the functor

mapFun
B
(I,Grpd

B̂
)(1FunB(I,Grpd

B̂
), 𝑖∗(−))∶ Fun

B
(𝐼 ,Grpd

B
) → Grpd

B̂

takes values in Grpd
B
. Since we have 1Grpd

B̂
≃ 𝑖(1Grpd

B
), we find that the final

object 1Fun
B
(I,Grpd

B̂
) can be identified with the image of 1Fun

B
(I,Grpd

B
) along 𝑖∗,

so that we obtain an equivalence

mapFun
B
(I,Grpd

B̂
)(1FunB(I,Grpd

B̂
), 𝑖∗(−)) ≃ mapFun

B
(I,Grpd

B
)(1FunB(I,Grpd

B
), −)

as 𝑖∗ is fully faithful. Hence the claim follows.

We have now assembled the necessary results in order to prove the following:

Proposition 3.2.5.8. For anyB-categoryC, theB-category PSh
B
(C) of presheaves

on C admits small limits and colimits. Moreover, for any B-category I and any
diagram 𝑑∶ 𝐴 → Fun

B
(I,C), a cone diag 𝑐 → 𝑑 defines a limit of 𝑑 if and only if

the induced cone diag ℎ(𝑐) → ℎ∗𝑑 defines a limit in PSh
B
(C). In particular, the

Yoneda embedding ℎ preserves small limits.

175



3. Colimits and cocompletion

Proof. The fact that PSh
B
(C) admits small limits and colimits follows immedi-

ately from combining Proposition 3.2.3.1 with Proposition 3.2.5.4 and Proposi-

tion 3.2.5.1. Now if we fix an I-indexed diagram 𝑑∶ 𝐴 → Fun
B
(I,C) in C and if

diag 𝑐 → 𝑑 is an arbitrary cone that is represented by a section 𝐴 → C/𝑑 over 𝐴,

we obtain a commutative diagram

C/𝑐 PSh
B
(C)/ℎ(𝑐)

C/𝑑 PSh
B
(C)/ℎ∗𝑑

C × 𝐴 PSh
B
(C) × 𝐴

C × 𝐴 PSh
B
(C) × 𝐴

ℎ×id

id idℎ×id

in which the square in the front and the one in the back are cartesian as ℎ is

fully faithful. Therefore, the upper horizontal square must be cartesian as well.

The cone diag 𝑐 → 𝑑 defines a limit of 𝑑 if and only if the map C/𝑐 → C/𝑑 is

an equivalence. Likewise, the induced cone diag ℎ(𝑐) → ℎ∗𝑑 defines a limit of

ℎ∗𝑑 precisely if the map PSh
B
(C)/ℎ(𝑐) → PSh

B
(C)/ℎ∗𝑑 is an equivalence. To

complete the proof, we therefore need to show that the first map is an equiva-

lence if and only if the second map is one. As the upper square in the previous

diagram is cartesian, the second condition implies the first. Conversely, the

map PSh
B
(C)/ℎ(𝑐) → PSh

B
(C)/ℎ∗𝑑 corresponds via Theorem 2.3.2.3 to a map

between presheaves on PSh
B
(C) which are both representable by objects in

PSh
B
(C). Therefore, there is a unique map ℎ(𝑐) → lim ℎ∗𝑑 in PSh

B
(C) such that

the induced map

mapPSh
B
(C)(−, ℎ(𝑐)) → mapPSh

B
(C)(−, lim ℎ∗𝑑)

recovers the morphism PSh
B
(C)/ℎ(𝑐) → PSh

B
(C)/ℎ∗𝑑 on the level of presheaves

on PSh
B
(C). As Yoneda’s lemma (Theorem 2.3.2.3) implies that restricting this

map along ℎ∶ C ↪→ PSh
B
(C) recovers the map ℎ(𝑐) → lim ℎ∗𝑑, the latter being

an equivalence implies that the morphism PSh
B
(C)/ℎ(𝑐) → PSh

B
(C)/ℎ∗𝑑 is an

equivalence as well, as desired.
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Corollary 3.2.5.9. For any B-category C and any object 𝑐∶ 𝐴 → C in context
𝐴 ∈ B, the corepresentable functor mapC(𝑐, −)∶ 𝐴 × C → Grpd

B
transposes to a

functor 𝜋∗
𝐴C → Grpd

B/𝐴
that preserves all limits that exist in 𝜋∗

𝐴C.

Proof. By Remark 2.3.2.1, the transpose of mapC(𝑐, −) can be identified with

map𝜋∗
𝐴C

( ̄𝑐, −), where ̄𝑐 ∶ 1B/𝐴
→ 𝜋∗

𝐴C is the transpose of 𝑐. Therefore, by replac-

ing B with B/𝐴, we may assume that 𝐴 ≃ 1. On account of Yoneda’s lemma,

the functor mapC(𝑐, −) is equivalent to the composition 𝑐∗ℎ, where ℎ denotes the

Yoneda embedding and 𝑐∗ ∶ PSh
B
(C) → Grpd

B
is the evaluation functor at 𝑐. By

Proposition 3.2.5.8 and Proposition 3.2.3.1, both of these functors preserve limits,

hence the claim follows.

Our next goal is to show that Grpd
B

is cartesian closed. To that end, note that

Proposition 3.2.5.4 in particular implies that Grpd
B

admits products. We denote

the resulting product functor by − × −∶ Grpd
B
×Grpd

B
→ Grpd

B
.

Proposition 3.2.5.10. The universe Grpd
B
for small B-groupoids is cartesian

closed, in that there is an equivalence

mapGrpd
B

(− × −, −) ≃ mapGrpd
B

(−,mapGrpd
B

(−, −))

of functors Grpdop
B

×Grpdop
B

×Grpd
B

→ Grpd
B
.

Proof. First, we claim that the transpose 𝜙∶ Grpd
B

→ Fun
B
(Grpd

B
,Grpd

B
)

of the product bifunctor − × −∶ Grpd
B
×Grpd

B
→ Grpd

B
takes values in

FunL
B
(Grpd

B
,Grpd

B
). To see this, we need to show that the image of everyB/𝐴-

groupoid G along 𝜙 defines a left adjoint functor of B/𝐴-categories. Note that

since 𝜋∗
𝐴 preserves adjunctions (Corollary 3.1.1.9) and the internal hom (Proposi-

tion 1.2.5.4), we may identify 𝜋∗
𝐴(− × −) with the product bifunctor of 𝜋∗

𝐴 Grpd
B

and 𝜋∗
𝐴(𝜙) with its transpose. Along with the equivalence 𝜋∗

𝐴 Grpd
B

≃ Grpd
B/𝐴

from Remark 1.4.1.2, this implies that 𝜙(G)∶ 𝐴 → Fun
B
(Grpd

B
,Grpd

B
) trans-

poses to the product functor G × −∶ Grpd
B/𝐴

→ Grpd
B/𝐴

. Thus, by replacing

B with B/𝐴, we may assume without loss of generality that 𝐴 ≃ 1. In this case,

Example 3.2.1.13 implies that the functor G × −∶ Grpd
B

→ Grpd
B

is given on

local sections over 𝐴 ∈ B by the ∞-categorical product functor

B/𝐴 B/𝐴
𝜋∗
𝐴G×−
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3. Colimits and cocompletion

which admits a right adjoint Hom
B/𝐴

(𝜋∗
𝐴G, −). If 𝑠∶ 𝐵 → 𝐴 is a map in B, we

deduce from Proposition 1.2.5.4 that the natural map

𝑠∗Hom
B/𝐴

(𝜋∗
𝐴G, −) → Hom

B/𝐵
(𝜋∗

𝐵G, 𝑠∗(−))

is an equivalence, hence Proposition 3.1.2.9 shows that the functor

G × −∶ Grpd
B

→ Grpd
B

admits a right adjoint, as desired.

As a consequence of what we have just shown and Corollary 3.1.3.7, we now

obtain a bifunctor 𝑓∶ Grpdop
B

×Grpd
B

→ Grpd
B

that fits into an equivalence

mapGrpd
B

(− × −, −) ≃ mapGrpd
B

(−, 𝑓 (−, −)).

We complete the proof by showing that 𝑓 is equivalent to mapGrpd
B

(−, −). Note

that by Proposition 2.2.2.4 the functor mapGrpd
B

(1Grpd
B
, −) is equivalent to the

identity on Grpd
B
. Hence the chain of equivalences

𝑓 (−, −) ≃ mapGrpd
B

(1Grpd
B
, 𝑓 (−, −))

≃ mapGrpd
B

(1Grpd
B

× −, −)

≃ mapGrpd
B

(−, −)

in which the second step follows from the equivalence 1Grpd
B

× − ≃ idGrpd
B

gives rise to the desired identification.

In Proposition 1.4.1.3, we claimed without proof that for any two object

𝑃, 𝑄 ∈ B/𝐴, viewed as objects of Grpd
B

in context 𝐴 ∈ B, there is an equivalence

Hom
B/𝐴

(𝑃, 𝑄) ≃ mapGrpd
B

(𝑃, 𝑄)

of B/𝐴-groupoids (where Hom
B/𝐴

(𝑃, 𝑄) denotes the internal hom in B/𝐴). We

are finally in the position to prove this statement. In fact, we even show that

there is a functorial equivalence:

Proposition 3.2.5.11. The evaluation of the map of B-categories mapGrpd
B

(−, −)

at 𝐴 ∈ B recovers the internal hom bifunctor Hom
B/𝐴

(−, −)∶ B
op
/𝐴 ×B/𝐴 → B/𝐴.
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Proof. By Remark 2.3.2.1 and Remark 1.4.1.2, we may replace B with B/𝐴, so

that we can assume without loss of generality that 𝐴 ≃ 1. Also, Corollary 2.2.2.8

implies that one may identify the bifunctor map
B
(−, −)∶ Bop ×B → Ani with

the composition

Bop ×B
ΓB(mapGrpdB

(−,−))
−−−−−−−−−−−−−−−−→ B

ΓB
−−→ Ani .

Since applying ΓB to the bifunctor − × −∶ Grpd
B
×Grpd

B
→ Grpd

B
recovers

the ordinary product bifunctor on B, Proposition 3.2.5.10 yields an equivalence

map
B
(− × −, −) ≃ map

B
(−, ΓB(mapGrpd

B

(−, −))),

which finishes the proof.

3.2.6. Limits and colimits ofB-categories

Recall that by the discussion in Section 1.4.2, the assignment 𝐴 ↦ Cat(B/𝐴)
defines a sheaf of ∞-categories on B that we denote by CatB and that we refer

to as the B-category of (small) B-categories. By combining Proposition 3.2.2.14

with Proposition 3.1.2.13 and the fact that presheaf B-categories admits small

limits and colimits (Proposition 3.2.5.8), we find:

Proposition 3.2.6.1. The B-category CatB admits small limits and colimits.

Remark 3.2.6.2. Similar to the case of diagrams in Grpd
B
, one can give explicit

formulas for limits and colimits of diagrams in CatB. However, these formulas

rely on the theory of cartesian and cocartesian fibrations for B-categories, which

will be the subject of Chapter 4. The explicit formulas for limits and colimits in

CatB will be derived in Section 4.5.1.

Next, our goal is to show that CatB is cartesian closed. Let

− × −∶ CatB ×CatB → CatB

be the product functor.
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3. Colimits and cocompletion

Proposition 3.2.6.3. There is a functor Fun
B
(−, −)∶ Catop

B
×CatB → CatB

together with an equivalence

mapCatB
(− × −, −) ≃ mapCatB

(−, Fun
B
(−, −)).

In other words, the B-category CatB is cartesian closed.

Proof. This is proved in exactly the same way as Proposition 3.2.5.10. Namely,

by using Corollary 3.1.3.7, it is enough to show that the product bifunctor

transposes to a functor CatB → FunL
B
(CatB,CatB). Using the equivalence

𝜋∗
𝐴 CatB ≃ CatB/𝐴

from Remark 1.4.2.4, we may carry out the same reduction

steps as in the proof of Proposition 3.2.5.10, so that it will be sufficient to prove

that for everyB-category C the functor C×−∶ CatB → CatB has a right adjoint.

To see this, note that this functor is given on local sections over 𝐴 ∈ B by the

∞-categorical product functor

Cat(B/𝐴) Cat(B/𝐴).
𝜋∗
𝐴C×−

which admits a right adjoint Fun
B/𝐴

(𝜋∗
𝐴C, −). Furthermore, if 𝑠∶ 𝐵 → 𝐴 is a map

in B, we deduce from Proposition 1.2.5.4 that the natural map

𝑠∗Fun
B/𝐴

(𝜋∗
𝐴C, −) → Fun

B/𝐵
(𝜋∗

𝐵C, 𝑠∗(−))

is an equivalence. Hence, Proposition 3.1.2.9 shows that the functor

C × −∶ CatB → CatB

admits a right adjoint, as desired.

Remark 3.2.6.4. By making use of Corollary 2.2.2.8 and the fact that the product

bifunctor−×− onCatB recovers the∞-categorical product bifunctor on Cat(B/𝐴)
upon taking local sections over 𝐴 ∈ B, the equivalence

mapCatB
(− × −, −) ≃ mapCatB

(−, Fun
B
(−, −))

from Proposition 3.2.6.3 implies that Fun
B
(−, −)∶ Catop

B
×CatB → CatB recov-

ers the internal hom of Cat(B/𝐴) when being evaluated at 𝐴 ∈ B, which justifies

our choice of notation.
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Corollary 3.2.6.5. The bifunctor mapCatB
(−, −)∶ Catop

B
×CatB → Grpd

B
is

equivalent to the composition of the bifunctor Fun
B
(−, −)∶ Catop

B
×CatB → CatB

with the core B-groupoid functor (−)≃ ∶ CatB → Grpd
B
.

Proof. On account of Proposition 3.1.2.14 and the fact that mapGrpd
B

(1Grpd
B
, −)

is equivalent to the identity on Grpd
B

(see Proposition 2.2.2.4), we obtain equiv-

alences

Fun
B
(−, −)≃ ≃ mapGrpd

B

(1Grpd
B
, Fun

B
(−, −)≃)

≃ mapCatB
(1Grpd

B
, Fun

B
(−, −))

≃ mapCatB
(1Grpd

B
× −, −)

≃ mapCatB
(−, −)

in which the last equivalence follows from the equivalence 1Grpd
B

× − ≃ idCatB .

3.2.7. A characterisation of initial and final functors

In this section, we show that initial and final functors (see Section 2.1.1) can

be characterised as those functors along which restriction of diagrams does

not change their limits and colimits, respectively. For the case B ≃ Ani, this

characterisation is proved in [49, Proposition 4.1.1.8] or [18, Theorem 6.4.5].

For the general case, note that precomposition with a functor 𝑖∶ J → I of B-

categories defines a functor 𝑖∗ ∶ Fun
B
(I,C) → Fun

B
(J,C) that induces a functor

𝑖∗ ∶ C𝑑/ → C𝑖∗𝑑/ over 𝐴 × C for every I-indexed diagram 𝑑∶ 𝐴 → Fun
B
(I,C) in

C.

Proposition 3.2.7.1. For any functor 𝑖∶ J → I between B-categories, the following
are equivalent:

1. 𝑖 is final;

2. for every large B-category C and every diagram 𝑑∶ 𝐴 → Fun
B
(I,C) in

context 𝐴 ∈ B, the functor 𝑖∗ ∶ C𝑑/ → C𝑖∗𝑑/ is an equivalence;
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3. Colimits and cocompletion

3. For every large B-category C and every diagram 𝑑∶ 𝐴 → Fun
B
(I,C) in

context 𝐴 ∈ B that admits a colimit colim 𝑑, the image of the colimit cocone
𝑑 → diag colim 𝑑 along the functor 𝑖∗ ∶ C𝑑/ → C𝑖∗𝑑/ defines a colimit cocone
of 𝑖∗𝑑.

4. The mate of the commutative square

Grpd
B

Fun
B
(I,Grpd

B
)

Grpd
B

Fun
B
(J,Grpd

B
)

diag

id 𝑖∗

diag

commutes.

The dual characterisation of initial functors holds as well.

Proof. Suppose that 𝑖 is final, and let 𝑑∶ 𝐴 → Fun
B
(I,C) be an arbitrary diagram.

By making use of Remark 3.2.1.8 and Remark 2.1.3.3, we may replace B with

B/𝐴 and can therefore assume that 𝐴 ≃ 1. To show (2), note that on account of

Proposition 2.1.1.12, it suffices to show that the induced map 𝑖∗|𝑐 on the fibres

over every 𝑐∶ 𝐴 → C is an equivalence. By the same argument as above, we may

again assume 𝐴 ≃ 1. Now the commutative diagram

1 C

Fun
B
(I,C) Fun

B
(I,C) × Fun

B
(I,C)

𝑐

𝑑 𝑑×diag
id × diag(𝑐)

shows that the fibre of the left fibration C𝑑/ → C over 𝑐 is equivalent to the fibre

of the right fibration Fun
B
(I,C/𝑐) → Fun

B
(I,C) (that is given by postcomposition

with (𝜋𝑐)! ∶ C/𝑐 → C) over 𝑑∶ 1 → Fun
B
(I,C). Similarly, the fibre of C𝑖∗𝑑/ → C

over 𝑐 is equivalent to the fibre of the right fibration Fun
B
(J,C/𝑐) → Fun

B
(J,C)
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over 𝑖∗𝑑 such that the map 𝑖∗|𝑐 fits into the commutative diagram

C𝑖∗𝑑/|𝑐 Fun
B
(J,C/𝑐)

C𝑑/|𝑐 Fun
B
(I,C/𝑐)

1 Fun
B
(J,C)

1 Fun
B
(I,C)

𝑖∗|𝑐 𝑖∗

𝑖∗𝑑

𝑑

id 𝑖∗

in which the two squares in the front and in the back are cartesian. Since 𝑖 is
final, the right square must be cartesian as well, hence 𝑖∗|𝑐 is an equivalence, so

that (2) holds. Condition (3) follows immediately from (2). For the special case

C = Grpd
B
, the same argument as in the proof of Proposition 3.2.2.6 shows that

condition (3) is equivalent to the condition that the map colimJ 𝑖∗ → colimI must

be an equivalence, hence condition (3) implies condition (4). Lastly, suppose

that the map colimJ 𝑖∗ → colimI is an equivalence, and let us show that 𝑖 is final.
It will be enough to show that 𝑖 is internally left orthogonal to the universal

right fibration (Grpd
B
)op∗ → Grpdop

B
as every right fibration between (small)

B-categories arises as a pullback of this functor. By Proposition 3.2.5.4, the

universe Grpd
B

admits small limits, hence if 𝑑∶ 𝐴 → Fun
B
(I,Grpdop

B
) is an

arbitrary diagram both (Grpdop
B

)𝑑/ and (Grpdop
B

)𝑖∗𝑑/ admits an initial section.

By assumption, the functor 𝑖∗ ∶ (Grpdop
B

)𝑑/ → (Grpdop
B

)𝑖∗𝑑/ sends the colimit

cocone 𝑑 → diag colim 𝑑 to an initial section of (Grpdop
B

)𝑖∗𝑑/, which implies that

the functor 𝑖∗ ∶ (Grpdop
B

)𝑑/ → (Grpdop
B

)𝑖∗𝑑/ must be initial as well. But this map is

already a left fibration since it can be regarded as amap between left fibrations over

Grpdop
B
, hence we conclude that this functor must be an equivalence. Similarly

as above and by making use of the equivalence (Grpd
B
)∗ ≃ (Grpd

B
)1GrpdB/ over
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Grpd
B

from Proposition 2.2.2.4, one obtains a commutative diagram

(Grpdop
B

)𝑖∗𝑑/|𝜋∗
𝐴(1GrpdB) Fun

B
(J, (Grpd

B
)op∗ )

(Grpdop
B

)𝑑/|𝜋∗
𝐴(1GrpdB) Fun

B
(I, (Grpd

B
)op∗ )

𝐴 Fun
B
(J,Grpdop

B
)

𝐴 Fun
B
(I,Grpdop

B
)

𝑖∗|𝜋∗𝐴(1GrpdB
) 𝑖∗

𝑖∗𝑑

𝑑

id 𝑖∗

in which the squares in the front, in the back and on the left are cartesian. As the

maps

Fun
B
(I, (Grpd

B
)op∗ ) → Fun

B
(I,Grpdop

B
)

and

Fun
B
(J, (Grpd

B
)op∗ ) → Fun

B
(J,Grpdop

B
)

are right fibrations, the vertical square on the right is cartesian already when its

underlying square of core B-groupoids is. We therefore deduce that this square

must be a pullback as well, which means that 𝑖 is final.

Remark 3.2.7.2. Let C be a large B-category, let 𝑖∶ J → I be a functor between

B-categories and let us fix an I-indexed diagram 𝑑∶ 𝐴 → Fun
B
(I,C). Suppose

that both 𝑑 and 𝑖∗𝑑 admit a colimit in C. Then the universal property of initial

objects (see Corollary 2.1.3.16) gives rise to a unique map

𝑖∗𝑑

diag colim 𝑖∗𝑑 diag colim 𝑑

in C𝑖∗𝑑/ that is an equivalence if and only if the cocone 𝑖∗𝑑 → diag colim 𝑑 (which

is the image of the colimit cocone 𝑑 → diag colim 𝑑 along 𝑖∗) is a colimit cocone.

Proposition 3.2.7.1 now implies that this map is always an equivalence when

𝑖 is final, and conversely 𝑖 must be final whenever this map is an equivalence

for every B-category C and every diagram 𝑑 that has a colimit in C (in fact,

Proposition 3.2.7.1 shows that it suffices to consider C = Grpd
B
).
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3.3. Cocompleteness

3.3. Cocompleteness

This section is dedicated to a more global study of (co)limits in a B-category.

More precisely, if U is an internal class of B-categories (i.e. a full subcategory of

CatB, see Definition 3.3.1.1), we define and study what it means for a B-category

C to be U-(co)complete and for a functor 𝑓∶ C → D between B-categories to be

U-(co)continuous. For the maximal case, i.e. where U = CatB, this will yield the

correct internal analogue of the usual notion of cocompleteness and cocontinuity

in (higher) category theory. One should note that this will be a strictly stronger

notion than to simply admit all internal colimits that are indexed by small B-

categories, cf. Example 3.5.4.8 below. We begin in Section 3.3.1 by defining the

notion of an internal class U of B-categories, which is the internal analogue

of a collection of ∞-categories. In Section 3.3.2, we give the definition of U-

cocompleteness and U-cocontinuity with respect to such an internal class and

we recast some of the results from Section 3.2 in this language. In Section 3.3.3,

we define the large B-category of U-cocomplete B-categories and B-categories

of U-cocontinuous functors between U-cocomplete B-categories.

3.3.1. Internal classes

In this section we introduce the correct B-categorical analogue of classes of

∞-categories:

Definition 3.3.1.1. An internal class of B-categories is a full subcategory U of

CatB.

Remark 3.3.1.2. The reason why we define an internal class as a full subcategory

U ↪→ CatB rather than just a full subcategory U ↪→ Cat(B) in the usual ∞-

categorical sense is that when using internal classes as indexing classes for

colimits, only the former notion leads to a theory of cocompleteness that is local
in B, whereas the latter does not. For example, it is not reasonable to call a B-

category cocomplete even when it admits I-indexed colimits for every B-category

I, because it could still happen that there is a B/𝐴-category J (for some 𝐴 ∈ B)

such that 𝜋∗
𝐴C does not have all J-indexed colimits (see Example 3.5.4.8 below).

Instead, on should ask that C admits all colimits indexed by the maximal internal
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class CatB (Example 3.3.1.3), which precisely amounts to asking that every small

diagram I → 𝜋∗
𝐴C of B/𝐴-categories admits a colimit for every 𝐴 ∈ B. In this

way, the notion of cocompleteness is forced to be local.

Example 3.3.1.3. By Remark 1.4.2.6, the (large) B-category CatB may be re-

garded as an internal class of large B-categories, so as a full subcategory of

the (very large) B-category Cat
B̂
. Consequently, every internal class of (small)

B-categories can also be regarded as an internal class of large B-categories.

Example 3.3.1.4. LetK ⊂ Cat∞ be a class of ∞-categories. Note that on account

of the adjunction const ⊣ Γ∶ Ĉat∞ ⇆ Cat(B̂), the transpose of the functor

const |K ∶ K ↪→ Cat∞ → Cat(B) ≃ Γ(CatB)

defines a map const(K) → CatB in Cat(B̂). The essential image of this functor

thus defines an internal class ofB-categories that we denote by LConstK ↪→ CatB
and that we refer to as the internal class of locallyK-constantB-categories. By con-

struction, this is the full subcategory of CatB that is spanned by the K-constant

B-categories, i.e. by those objects 1 → CatB that correspond to categories of

the form const(𝐾) for some 𝐾 ∈ K. Thus, a B/𝐴-category C defines an object

in LConst in context 𝐴 ∈ B precisely if there is a cover (𝑠𝑖)𝑖∈𝐼 ∶ ⨆𝑖∈𝐼 𝐴𝑖 � 𝐴
in B such that for every 𝑖 there is an equivalence 𝑠∗𝑖 C ≃ constB/𝐴𝑖

(𝐾𝑖) for some

𝐾𝑖 ∈ K. In the maximal caseK = Cat∞, we simply write LConst for the associated

internal class of locally constant B-categories.

Example 3.3.1.5. Recall from the discussion in Section 1.4.1 that every local

class 𝑆 of morphisms in B corresponds to a subuniverse Grpd𝑆 ↪→ Grpd
B

(i.e. full

subcategory of Grpd
B
). On account of the inclusion Grpd

B
↪→ CatB from Propo-

sition 3.1.2.14, we may thus regard Grpd𝑆 as an internal class of B-categories.

3.3.2. U-cocomplete B-categories

In this sectionwe define and study the condition on aB-category to admit colimits

indexed by objects in an internal class U of B-categories (see Definition 3.3.1.1).

Definition 3.3.2.1. Let U be an internal class ofB-categories. AB-category C is

said to be U-cocomplete if 𝜋∗
𝐴C admits I-indexed colimits for every object I ∈ U(𝐴)
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and every 𝐴 ∈ B. Similarly, if 𝑓∶ C → D is a functor between B-categories that

are both U-cocomplete, we say that 𝑓 is U-cocontinuous if 𝜋∗
𝐴𝑓 preserves I-indexed

colimits for any 𝐴 ∈ B and any I ∈ U(𝐴). We simply say that a (large)B-category

C is cocomplete if it is CatB-cocomplete (when viewing CatB as an internal class

of B̂-categories), and we call a functor between cocomplete (large) B-categories

cocontinuous if it is CatB-cocontinuous.

Dually, we say that a B-category C is U-complete if 𝜋∗
𝐴C admits I-indexed

limits for every object I ∈ U(𝐴) and every 𝐴 ∈ B. If 𝑓∶ C → D is a functor

between B-categories that are both U-complete, we say that 𝑓 is U-continuous if
𝜋∗
𝐴𝑓 preserves I-indexed limits for any 𝐴 ∈ B and any I ∈ U(𝐴). We simply say

that a (large)B-categoryC is complete if it isCatB-complete, and we call a functor

between complete (large) B-categories continuous if it is CatB-continuous.

Remark 3.3.2.2. IfU is an internal class ofB-categories, let op(U) be the internal
class that arises as the image of U along the equivalence (−)op ∶ CatB ≃ CatB
from Remark 1.4.2.5. Then a B-category C is U-complete if and only if Cop is

op(U)-cocomplete, and a functor 𝑓 is U-continuous if and only if 𝑓 op is op(U)-
cocontinuous. Hence, we may dualise statements about op(U)-cocompleteness

and op(U)-cocontinuity to obtain the corresponding dual statements about U-

completeness and U-continuity.

Remark 3.3.2.3. Since both the existence of (co)limits and the preservation of

such (co)limits are local conditions (Remark 3.2.1.7 and Remark 3.2.2.3), one finds

that if ⨆𝑖 𝐴𝑖 � 1 is a cover in B, a B-category C is U-(co)complete if and only

if 𝜋∗
𝐴𝑖
C is 𝜋∗

𝐴𝑖
U-(co)complete, and a functor 𝑓∶ C → D between U-(co)complete

B-categories is U-(co)continuous if and only if 𝜋∗
𝐴𝑖
(𝑓 ) is 𝜋∗

𝐴𝑖
U-(co)continuous.

Remark 3.3.2.4. Let U be an internal class of B-categories that is spanned by a

collection of objects (I𝑖 ∈ CatB(𝐴𝑖))𝑖∈𝐼 in CatB (in the sense of Definition 1.3.2.17).

Then Remark 3.2.1.7 implies that aB-category C is U-cocomplete whenever 𝜋∗
𝐴𝑖
C

has I𝑖-indexed colimits for all 𝑖 ∈ 𝐼. Moreover, Remark 3.2.2.3 implies that a functor

𝑓∶ C → D between U-cocomplete B-categories is U-cocontinuous whenever

𝜋∗
𝐴𝑖
𝑓 preserves I𝑖-indexed colimits for all 𝑖 ∈ 𝐼.

For the examples of internal classes U that we introduced in Section 3.3.1, the

associated notion of U-cocompleteness and U-cocontinuity admits a quite explicit

187



3. Colimits and cocompletion

description. We begin with the case U = Grpd𝑆, where 𝑆 is a local class of maps

in B (see Example 3.3.1.5). By combining Example 3.2.1.12 with Example 3.2.2.8,

we find:

Proposition 3.3.2.5. Let 𝑆 be a local class of maps in B and let Grpd𝑆 be the
associated internal class of (large) B-categories. Then a large B-category C is
Grpd𝑆-cocomplete if and only if the following two conditions are satisfied:

1. for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆, the functor 𝑝∗ ∶ C(𝐴) → C(𝑃) admits a left
adjoint 𝑝!;

2. for every pullback square

𝑄 𝑃

𝐵 𝐴

𝑡

𝑞 𝑝

𝑠

in B in which 𝑝 and 𝑞 are contained in 𝑆, the natural map 𝑞!𝑡∗ → 𝑠∗𝑝! is an
equivalence.

Furthermore, a functor 𝑓∶ C → D between (large) Grpd𝑆-cocomplete B-categories
is Grpd𝑆-cocontinuous precisely if for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆 the natural map
𝑝!𝑓 (𝑃) → 𝑓 (𝐴)𝑝! is an equivalence.

Example 3.3.2.6. If 𝑆 is a local class in B, the associated subuniverse

Grpd𝑆 ↪→ Grpd
B

is closed under Grpd𝑆-colimits (i.e. Grpd𝑆 is Grpd𝑆-cocomplete and the inclusion

of Grpd𝑆 into Grpd
B

is Grpd𝑆-cocontinuous) if and only if 𝑆 is stable under com-

position. Moreover, recall from Example 3.1.4.5 that every modality (L,R) in B

(i.e. a factorisation system inwhichL is stable under base change inB) determines

a reflective subcategory Grpd
R

of Grpd
B
. Conversely, if Grpd

R
↪→ Grpd

B
is an

arbitrary reflective subcategory, then [81, Theorem 4.8] shows that the associated

local class R in B arises from a modality as in Example 3.1.4.5 precisely if R is

stable under composition. Hence modalities in B correspond precisely to those

reflective subuniverses that are closed under self-indexed colimits in Grpd
B
.
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3.3. Cocompleteness

Next, letK ⊂ Cat∞ be a class of∞-categories, and let LConstK be the associated

internal class (see Example 3.3.1.4). Using Remark 3.3.2.4, Example 3.2.1.13 and

Example 3.2.2.9 now imply:

Proposition 3.3.2.7. If K is a class of ∞-categories, a (large) B-category C is
LConstK-cocomplete if and only if for every 𝐴 ∈ B the ∞-category C(𝐴) admits
colimits indexed by every object inK and for every map 𝑠∶ 𝐵 → 𝐴 in B the functor
𝑠∗ ∶ C(𝐴) → C(𝐵) preserves such colimits. Furthermore, a functor 𝑓∶ C → D

between LConstK-cocomplete B-categories is LConstK-cocontinuous if and only if
for all 𝐴 ∈ B the functor 𝑓 (𝐴) preserves all colimits that are indexed by objects in
K.

In Construction 1.4.2.1, we defined a functor − ⊗ Grpd
B
∶ PrR∞ → Cat(B̂). Its

explicit formula and Proposition 3.3.2.7 now yield:

Corollary 3.3.2.8. For every class of ∞-categories K there is an equivalence

CatLConstK-cc
B

≃ CatK-cc
∞ ⊗Grpd

B

with respect to which the inclusion CatLConstK-cc
B

↪→ CatB is obtained by applying
− ⊗ Grpd

B
to the inclusion CatK-cc

∞ ↪→ Cat∞.

Remark 3.3.2.9. Wemay also combine Proposition 3.3.2.5 and Proposition 3.3.2.7

in the following way: if 𝑆 is a local class of maps in B and K a class of ∞-

categories, we may consider the internal class ⟨𝑆,K⟩ generated by Grpd𝑆 and

LConstK (i.e. the essential image of the functorGrpd𝑆 ⊔ LConstK → CatB). Then

Remark 3.3.2.4 shows that a B-category C is ⟨𝑆,K⟩-cocomplete if and only if

1. for every 𝐴 ∈ B the ∞-category C(𝐴) admits colimits indexed by ob-

jects in K, and for every map 𝑠∶ 𝐵 → 𝐴 in B the transition functor

𝑠∗ ∶ C(𝐴) → C(𝐵) preserve these colimits;

2. for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆 the functor 𝑝∗ admits a left adjoint 𝑝! that is
compatible with base change in the sense of Proposition 3.3.2.5.

The goal for the remainder of this section is to recast some of the results that we

obtained in Section 3.2 in the language of U-cocompleteness and U-cocontinuity.
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3. Colimits and cocompletion

We begin with the preservation of limits and colimits by adjoint functors. Since

by Corollary 3.1.1.9 the functor 𝜋∗
𝐴 carries adjunctions in B to adjunctions in

B/𝐴 for every 𝐴 ∈ B, we immediately obtain from Proposition 3.2.2.13:

Proposition 3.3.2.10. A left adjoint functor between U-cocomplete categories is U-
cocontinuous, while a right adjoint between U-complete categories is U-continuous.

Similarly, Proposition 3.2.2.14 shows:

Proposition 3.3.2.11. Suppose that U is an internal class ofB-categories and let D
be a U-cocomplete B-category. Then any reflective and any coreflective subcategory
of D is U-cocomplete as well.

Using Proposition 1.2.5.4, we furthermore deduce from Proposition 3.2.3.1 and

Proposition 3.2.3.3:

Proposition 3.3.2.12. Suppose that 𝑓∶ C → D is a U-cocontinuous functor be-
tween U-cocomplete B-categories, and let 𝐾 be a simplicial object in B. Then the
postcomposition functor 𝑓∗ ∶ Fun

B
(𝐾,C) → Fun

B
(𝐾,D) is a U-cocontinuous func-

tor between U-cocomplete B-categories. Moreover, for all 𝑖∶ 𝐿 → 𝐾 in BΔ, the map
𝑖∗ ∶ Fun

B
(𝐾,C) → Fun

B
(𝐿,C) is U-cocontinuous as well.

By combining Proposition 3.2.4.3 with Remark 1.2.5.6, we obtain:

Proposition 3.3.2.13. Let U be an internal class of B-categories and let C be a
U-cocomplete B-category. For every object 𝑐∶ 1 → C, the slice B-category C/𝑐 is
U-cocomplete, and the forgetful functor (𝜋𝑐)! is U-cocontinuous.

Example 3.3.2.14. The universe Grpd
B

for small B-groupoids is complete and

cocomplete since Grpd
B

admits small limits and colimits (Proposition 3.2.5.1

and Proposition 3.2.5.4) and since for any 𝐴 ∈ B there is a natural equivalence

𝜋∗
𝐴 Grpd

B
≃ Grpd

B/𝐴
(Remark 1.4.1.2). By the same argument and Proposi-

tion 3.2.5.7, the inclusion 𝑖∶ Grpd
B
↪→ Grpd

B̂
is continuous and cocontinuous.

Proposition 3.3.2.15. For any B-category C, the presheaf B-category PSh
B
(C)

is complete and cocomplete. If C is furthermore U-complete for some internal class
U, the Yoneda embedding ℎC ∶ C ↪→ PSh

B
(C) is U-continuous, and for every
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3.3. Cocompleteness

𝑐∶ 𝐴 → C the corepresentable copresheafmapC(𝑐, −)∶ 𝐴×C → Grpd
B
transposes

to a 𝜋∗
𝐴U-continuous functor 𝜋

∗
𝐴C → Grpd

B/𝐴
.

Proof. The first claim is an immediate consequence of Example 3.3.2.14 and Propo-

sition 3.3.2.12. Regarding the second claim, we have to see that the embedding

𝜋∗
𝐴ℎ∶ 𝜋∗

𝐴C → 𝜋∗
𝐴PShB(C) preserves all limits indexed by the objects in U(𝐴). By

Remark 2.3.2.1, we may identify 𝜋∗
𝐴ℎC with ℎ𝜋∗

𝐴C
, so that we may replace B with

B/𝐴 and can therefore assume that 𝐴 ≃ 1. Now the claim follows from Proposi-

tion 3.2.5.8. Lastly, the third claim is a direct consequence of Corollary 3.2.5.9.

Example 3.3.2.16. By combining Proposition 3.3.2.15 with Proposition 3.3.2.11

and Proposition 3.1.2.13, one finds that the B-category CatB is complete and

cocomplete.

3.3.3. The largeB-category of U-cocomplete B-categories

Recall that we showed in Proposition 1.3.1.12 that in order to define a (non-full)

subcategory of a B-category C, it suffices to specify a subobject of its object of

morphisms C1. With this in mind, we define (cf. Definition 1.3.1.14):

Definition 3.3.3.1. For any internal class U of B-categories, we define the large

B-category of U-cocomplete B-categories CatU-ccB as the subcategory of CatB
that is spanned by the 𝜋∗

𝐴U-cocontinuous functors between 𝜋∗
𝐴U-cocomplete

B/𝐴-categories for every 𝐴 ∈ B. We write Cat(B)U-cc for the underlying ∞-

category of global sections. In the case where U = CatB (viewed as an internal

class of large B-categories), we denote the resulting very large B-category by

Catcc
B̂

and its underlying ∞-category of global sections by Cat(B̂)cc.

Remark 3.3.3.2. The subobject of (CatB)1 spanned by the 𝜋∗
𝐴U-cocontinuous

functors between 𝜋∗
𝐴U-cocomplete B-categories is stable under equivalences and

composition in the sense of Proposition 1.3.1.17. As moreover U-cocompleteness

and U-cocontinuity are local conditions (Remark 3.3.2.3), we conclude that an ob-

ject 𝐴 → CatB is contained in CatU-ccB if and only if the associated B/𝐴-category

is 𝜋∗
𝐴U-complete, and a functor 𝑓∶ C → D between B/𝐴-categories defines a

morphism in CatU-ccB in context 𝐴 ∈ B precisely if it is a 𝜋∗
𝐴U-cocontinuous

functor between 𝜋∗
𝐴U-cocomplete B/𝐴-categories. In particular, if C and D are

191



3. Colimits and cocompletion

𝜋∗
𝐴U-cocompleteB/𝐴-categories, a functor 𝜋∗

𝐴C → 𝜋∗
𝐴D is contained in the image

of the monomorphism

mapCatU-ccB
(C,D) ↪→ mapCatB

(C,D)

if and only if it is 𝜋∗
𝐴U-cocontinuous. As a further consequence of the above, we

obtain a canonical equivalence 𝜋∗
𝐴 CatU-ccB ≃ Cat𝜋

∗
𝐴U-cc
B/𝐴

for every 𝐴 ∈ B.

Definition 3.3.3.3. Let U be an internal class of B-categories. If C and D are

U-cocompleteB-categories, we will denote by FunU-cc
B

(C,D) the full subcategory

of Fun
B
(C,D) that is spanned by those objects𝐴 → Fun

B
(C,D) in context𝐴 ∈ B

such that the corresponding functor 𝜋∗
𝐴C → 𝜋∗

𝐴D is 𝜋∗
𝐴U-cocontinuous. We will

denote by FunU-ccB (C,D) the underlying∞-category of global sections. In the case

where U = CatB, we will denote the associated large B-category by Funcc
B
(C,D)

and its underlying ∞-category of global sections by Fun𝑐B 𝑐(C,D).

Remark 3.3.3.4. In the situation of Definition 3.3.3.3, note that by combining

Remark 3.2.6.4 and Corollary 3.2.6.5 with Remark 3.3.3.2, we obtain an equivalence

mapCatU-ccB
(C,D) ≃ FunU-cc

B
(C,D)≃.

As a consequence, Remark 3.3.3.2 implies that an object 𝐴 → Fun
B
(C,D) is

contained in FunU-cc
B

(C,D) if and only if the associated functor 𝜋∗
𝐴C → 𝜋∗

𝐴D is

𝜋∗
𝐴U-cocontinuous, and we obtain a canonical equivalence

𝜋∗
𝐴Fun

U-cc
B

(C,D) ≃ Fun𝜋
∗
𝐴U-cc
B/𝐴

(𝜋∗
𝐴C, 𝜋∗

𝐴D)

for every 𝐴 ∈ B.

The notion of U-cocompleteness and U-cocontinuity allows for some flexibility

in the choice of internal class U. For example, Proposition 3.2.7.1 implies that

whenever I is a B-category that is contained in U and 𝑓∶ I → J is a final functor,

adjoining the B-category J to U does not affect whether a B-category is U-

cocomplete or not. As it will be convenient later to impose certain stability

conditions on an internal class, we define:

Definition 3.3.3.5. A colimit class in B is an internal class U of B-categories

that contains the final B-category 1 and that is stable under final functors, i.e.

satisfies the property that whenever I → J is a final functor in B/𝐴 for some

𝐴 ∈ B, then I ∈ U(𝐴) implies that J ∈ U(𝐴).
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3.4. Kan extensions

For every internal class U of B-categories one can construct a colimit class

Ucolim that is uniquely specified by the condition that Ucolim is the minimal

colimit class that contains U. Explicitly, this class is spanned by those B/𝐴-

categories J that admit a final functor from either an object in U(𝐴) or the

final B/𝐴-category 1 ∈ Cat(B/𝐴). Thus, a B/𝐴-category I is contained in

Ucolim(𝐴) if and only if there is a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B such that for

each 𝑖 the B/𝐴𝑖
-category 𝑠∗𝑖 I admits a final functor from either an object in U(𝐴𝑖)

or the final object 1 ∈ Cat(B/𝐴𝑖
). By combining Proposition 3.2.7.1 with Re-

mark 3.3.2.4, we deduce that a B-category C is U-cocomplete if and only if it is

Ucolim-cocomplete, and similarly a functor 𝑓∶ C → D is U-cocontinuous if and

only if it is Ucolim-cocontinuous. Together with the evident observation that the

above description of the objects in Ucolim is local in B (so that one obtains an

equivalence 𝜋∗
𝐴(U

colim) ≃ (𝜋∗
𝐴U)colim for all 𝐴 ∈ B), this implies that one has

CatU-ccB ≃ CatU
colim-cc

B . Thus, for the sake of discussing colimits, we may therefore

always assume that an internal class is a colimit class.

3.4. Kan extensions

The goal of this section is to develop the theory of Kan extensions of functors

between B-categories. The main theorem about the existence of Kan extensions

will be discussed in Section 3.4.3, but its proof requires a few preliminary steps.

We begin in Section 3.4.1 by discussing the co-Yoneda lemma, which states that

every presheaf can be obtained as the colimit of its Grothendieck construction.

Secondly, Section 3.4.2 contains a discussion of what we call U-small presheaves,
those that can be obtained as U-colimits of representables. Lastly, after having

established our main existence theorem for Kan extensions, we apply this result

to obtain a characterisation of colimit cocones in Section 3.4.4.

3.4.1. The co-Yoneda lemma

Recall from Remark 2.3.2.7 that if C is a B-category and if 𝐹∶ Cop → Grpd
B

is a

presheaf on C, we may identify the pullback 𝑝∶ C/𝐹 → C of the right fibration

(𝜋𝐹)! ∶ PSh
B
(C)/𝐹 → PSh

B
(C) along the Yoneda embedding ℎ∶ C ↪→ PSh

B
(C)

with the right fibration ∫ 𝐹 → C that is classified by 𝐹. Let us denote by
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3. Colimits and cocompletion

ℎ/𝐹 ∶ C/𝐹 ↪→ PSh
B
(C)/𝐹 the induced embedding. Since PSh

B
(C)/𝐹 admits a

final object id𝐹 ∶ 1 → PSh
B
(C)/𝐹, Proposition 3.2.7.1 implies that the functor

(𝜋𝐹)! admits a colimit that is given by 𝐹 itself (cf. Example 3.2.1.9). Using Re-

mark 3.2.7.2, the functor ℎ/𝐹 therefore induces a canonical map

colim ℎ𝑝 ≃ colim(𝜋𝐹)!ℎ/𝐹 → colim(𝜋𝐹)! ≃ 𝐹

of presheaves on C. Our goal in this section is to prove that this map is an

equivalence:

Proposition 3.4.1.1. Let C be aB-category, let 𝐹∶ 1 → PSh
B
(C) be a presheaf on

C and let 𝑝∶ 𝐶/𝐹 → C be the associated right fibration. Then the map colim ℎ𝑝 → 𝐹
is an equivalence.

Remark 3.4.1.2. The analogue of Proposition 3.4.1.1 for ∞-categories can be

found in [49, Lemma 5.1.5.3].

The proof of Proposition 3.4.1.1 requires a few preparations. We begin with

the following special case:

Proposition 3.4.1.3. For any B-category C, the colimit of the Yoneda embedding
is given by the final object 1PSh

B
(C).

Proof. Using Proposition 3.2.5.7 in conjunction with Proposition 3.2.2.10, it suf-

fices to show that the colimit of ℎ̂∶ C ↪→ PSh
B̂
(C) = Fun

B
(Cop,Grpd

B̂
) is given

by 1PSh
B̂
(C). On account of the commutative diagram

PSh
B̂
(C) Fun

B
(C,PSh

B̂
(C))

Fun
B
(Cop × PSh

B
(C),Grpd

B̂
) Fun

B
(Cop × C,Grpd

B̂
)

diag

pr∗0 ≃
(id ×ℎ)∗

and Corollary 3.1.3.3, the colimit of ℎ̂ in PSh
B̂
(C) can be identified with the

presheaf (pr0)!(id ×ℎ)!(𝑖mapC), where 𝑖∶ Grpd
B

↪→ Grpd
B̂

denotes the inclu-

sion. On the other hand, Yoneda’s lemma provides a commutative square

Tw(C) ∫ ev

Cop × C Cop × PSh
B
(C)

𝑗

id ×ℎ
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in which 𝑗 is initial, which together with Proposition 3.1.3.1 implies that the

functor (id ×ℎ)!(𝑖mapC) is given by 𝑖∘ev. On account of the commutative diagram

PSh
B̂
(C)

Fun(Cop × PSh
B
(C),Grpd

B̂
) Fun(PSh

B
(C),PSh

B̂
(C))

pr∗0 diag

≃

in which the lower equivalence carries 𝑖 ∘ ev to 𝑖∗ ∶ PSh
B
(C) ↪→ PSh

B̂
(C), we

conclude that the colimit of ℎ̂ is equivalent to the colimit of 𝑖∗. Since 1PSh
B
(C)

is a final object, the result thus follows from Proposition 3.2.7.1, together with

Example 3.2.1.9.

Lemma 3.4.1.4. Let C be a B-category and let 𝐹∶ Cop → Grpd
B
be a presheaf

on C. Then there is a canonical equivalence PSh
B
(C/𝐹) ≃ PSh

B
(C)/𝐹 that fits into

a commutative diagram

C/𝐹

PSh
B
(C/𝐹) PSh

B
(C)/𝐹

(ℎC)/𝐹
ℎ(C/𝐹)

≃

Proof. Let 𝑝∶ C/𝐹 → C be the projection, and let 𝑝! ∶ PSh
B
(C/𝐹) → PSh

B
(C)

be the left adjoint of the precomposition functor 𝑝∗. By Corollary 3.1.3.3, there

is an equivalence 𝑝!ℎ(C/𝐹) ≃ ℎC𝑝, so it suffices to show that 𝑝! factors through
(𝜋𝐹)! ∶ PSh

B
(C)/𝐹 → PSh

B
(C) via an equivalence. By construction of 𝑝!, this

functor sends the final object 1PSh
B
(C) to 𝐹, hence we obtain a lifting problem

1 PSh
B
(C)/𝐹

PSh
B
(C/𝐹) PSh

B
(C)

𝐹

1PShB(C) (𝜋𝐹)!
𝑝!

in which 𝐹 and 1PSh
B
(C) define final maps and (𝜋𝐹)! is a right fibration. On

account of the factorisation system between final maps and right fibrations, the

dashed arrow exists and has to be final as well. To complete the proof, it therefore

suffices to show that it is also a right fibration, which follows once we verify that
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3. Colimits and cocompletion

𝑝! is a right fibration. By Proposition 3.1.3.1, this map evaluates at any 𝐴 ∈ B

to the the functor RFib(𝐴 × C/𝐹) → RFib(𝐴 × C) that is given by restricting the

right fibration Cat(B)/𝐴×C/𝐹
→ Cat(B)/𝐴×C of ∞-categories. Since the canonical

square
RFib(𝐴 × C/𝐹) Cat(B)/𝐴×C/𝐹

RFib(𝐴 × C) Cat(B)/𝐴×C

is a pullback, it thus follows that 𝑝! is section-wise a right fibration and must

therefore be a right fibration itself.

Proof of Proposition 3.4.1.1. The map colim ℎ𝑝 → 𝐹 is determined by the cocone

under the functor ℎ𝑝 ≃ (𝜋𝐹)!ℎ/𝐹 that arises as the image of the colimit cocone

(𝜋𝐹)! → diag(𝐹 ) along

(ℎ/𝐹)∗ ∶ PSh
B
(C)(𝜋𝐹)!/ → PSh

B
(C)ℎ𝑝/.

Using the equivalence 𝜙∶ PSh
B
(C)/𝐹 ≃ PSh

B
(C/𝐹) from Lemma 3.4.1.4, we now

obtain a commutative square

PSh
B
(C/𝐹)𝜙/ PSh

B
(C/𝐹)ℎC/𝐹

/

PSh
B
(C)(𝜋𝐹)!/ PSh

B
(C)ℎ𝑝/.

(ℎ/𝐹)∗

(𝑝!)∗ (𝑝!)∗
(ℎ/𝐹)∗

As 𝑝! is a left adjoint and therefore preserves colimits, we may thus replace C by

C/𝐹 and can therefore assume without loss of generality 𝐹 = 1PSh
B
(C), in which

case the desired result follows from Proposition 3.4.1.3.

3.4.2. U-small presheaves

In this section we study those subcategories of the B-category PSh
B
(C) of

presheaves on a B-category C that are spanned by U-colimits of representable

presheaves for an arbitrary internal class U of B-categories.

Definition 3.4.2.1. Let C be a B-category and let U be an internal class of B-

categories. We say that a presheaf 𝐹∶ 𝐴 → PSh
B
(C) in context 𝐴 ∈ B is U-small
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if C/𝐹 is contained in Ucolim(𝐴) (see the discussion after Definition 3.3.3.5). We

denote by SmallU
B
(C) the full subcategory of PSh

B
(C) that is spanned by the

U-small presheaves, and we denote by SmallUB(C) the underlying ∞-category of

global sections.

Remark 3.4.2.2. Since for every 𝐴 ∈ B we have an equivalence

𝜋∗
𝐴(U

colim) ≃ (𝜋∗
𝐴U)colim

(see the discussion following Definition 3.3.3.5) and on account of Remark 2.1.2.2,

it follows that a presheaf 𝐹∶ 𝐴 → PSh
B
(C) is U-small if and only if its transpose

̂𝐹 ∶ 1B/𝐴
→ PSh

B/𝐴
(𝜋∗

𝐴C) is 𝜋∗
𝐴U-small.

Remark 3.4.2.3. The property of a presheaf 𝐹∶ 𝐴 → PSh
B
(C) to be U-small

is local in B. That is, for every cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B, the presheaf 𝐹 is

U-small if and only if 𝑠∗𝑖 (𝐹 ) isU-small. This follows immediately from the fact that

since Ucolim is itself a B-category, the property to be contained in Ucolim(𝐴) can
be checked locally. As a consequence, a presheaf 𝐹 is contained in Small

B
(C) if

and only if 𝐹 is U-small. From this observation and Remark 3.4.2.2, it furthermore

follows that there is a natural equivalence

Small𝜋
∗
𝐴U
B/𝐴

(𝜋∗
𝐴C) ≃ 𝜋∗

𝐴SmallU
B
(C).

for every 𝐴 ∈ B.

Remark 3.4.2.4. For the special case where B ≃ Ani and where U is the class of

𝜅-filtered ∞-categories for some regular cardinal 𝜅, the ∞-category of U-small

presheaves on a small ∞-category is precisely its ind-completion by 𝜅-filtered col-

imits in the sense of [49, § 5.3.5]. In general, however, the B-category SmallU
B
(C)

need not be a free cocompletion, see Section 3.5.1 below.

Example 3.4.2.5. For any internal classU ofB-categories and for anyB-category

C, the presheaf represented by an object 𝑐 in C in context 𝐴 ∈ B is U-small: in

fact, by Remark 3.4.2.2 and Remark 2.3.2.1, we may assume (by replacing B with

B/𝐴) that 𝐴 ≃ 1. In this case, the canonical section id𝑐 ∶ 1 → C/𝑐 provides a

final map from an object contained in Ucolim(1), which implies that C/𝑐 defines

an object of Ucolim as well. Hence, by furthermore using Proposition 1.3.2.14,
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3. Colimits and cocompletion

the Yoneda embedding ℎ∶ C ↪→ PSh
B
(C) thus factors through the inclusion

SmallU
B
(C) ↪→ PSh

B
(C).

Proposition 3.4.2.6. For any B-category C and any internal class U of small B-
categories, theB-category SmallU

B
(C) is closed under U-colimits of representables in

PSh
B
(C). More precisely, for any object 𝐴 → U in context 𝐴 ∈ B that corresponds

to a B/𝐴-category I, the functor colim∶ Fun
B/𝐴

(I, 𝜋∗
𝐴PShB(C)) → 𝜋∗

𝐴PShB(C)
restricts to a functor

colim∶ Fun
B/𝐴

(I, 𝜋∗
𝐴C) → 𝜋∗

𝐴SmallU
B
(C).

Proof. By using Remark 2.3.2.1 and Remark 3.4.2.3, we may replace B by B/𝐴,

so that it will be enough to show that for any diagram 𝑑∶ 𝐴 → Fun
B
(I,C) in

context 𝐴 ∈ B the colimit colim ℎ𝑑∶ 𝐴 → PSh
B
(C) is a U-small presheaf on C.

By the same argument and Remark 3.2.1.8, we can again reduce to 𝐴 ≃ 1 by

replacing B with B/𝐴. Let 𝑝𝑖∶ I → P → C be the factorisation of 𝑑 into a final

functor and a right fibration. By Proposition 3.2.7.1 we find colim ℎ𝑑 ≃ colim ℎ𝑝,
hence Proposition 3.4.1.1 implies P ≃ C/ colim ℎ𝑑. Since 𝑖 is a final functor into P

from the B-category I ∈ U(1), this shows that colim ℎ𝑑 is U-small.

We finish this section by showing that for any B-category C, the functor

ℎ∶ C ↪→ SmallU
B
(C) that is induced by the Yoneda embedding has a left adjoint

whenever C is U-cocomplete.

Proposition 3.4.2.7. Let U be an internal class of B-categories. If C is a U-
cocomplete B-category, the functor ℎ∶ C ↪→ SmallU

B
(C) that is induced by the

Yoneda embedding admits a left adjoint 𝐿∶ SmallU
B
(C) → C.

Proof. As C being U-cocomplete is equivalent to C being Ucolim-cocomplete, we

may assume without loss of generality that U is already a colimit class. Let 𝐹
be an object in SmallU

B
(C) in context 𝐴 ∈ B. On account of Corollary 3.1.3.5,

it suffices to show that the copresheaf mapSmallU
B
(C)(𝐹 , ℎ(−)) is corepresentable

by an object in C. Using Remark 2.3.2.1 and Remark 3.4.2.3, we may replace

B with B/𝐴 and can therefore assume without loss of generality that 𝐹 is a

U-small presheaf in context 1 ∈ B. In this case, we have C/𝐹 ∈ U(1), where

𝑝∶ C/𝐹 → C is the right fibration that is classified by 𝐹. Now Proposition 3.4.1.1
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3.4. Kan extensions

and Proposition 3.2.7.1 give rise to an equivalence 𝐹 ≃ colim ℎ𝑝. Thus, one

obtains a chain of equivalences

mapSmallU
B
(C)(𝐹 , ℎ(−)) ≃ mapPSh

B
(C)(colim ℎ𝑝, ℎ(−))

≃ mapFun
B
(C/𝐹,PShB(C))(ℎ𝑝, diag ℎ(−))

≃ mapFun
B
(C/𝐹,C)(𝑝, diag(−))

≃ mapC(colim 𝑝, −),

which shows that the presheaf mapSmallU
B
(C)(𝐹 , ℎ(−)) is represented by the object

𝐿(𝐹) = colim 𝑝.

3.4.3. The functor of left Kan extension

Throughout this section, let C, D and E be B-categories and let 𝑓∶ C → D be a

functor.

Definition 3.4.3.1. A left Kan extension of a functor 𝐹∶ C → E along 𝑓 is a

functor 𝑓!𝐹∶ D → E together with an equivalence

mapFun
B
(D,E)(𝑓!𝐹 , −) ≃ mapFun

B
(C,E)(𝐹 , 𝑓

∗(−)).

Dually, a right Kan extension of 𝐹 along 𝑓 is a functor 𝑓∗𝐹∶ D → E together with

an equivalence

mapFun
B
(D,E)(−, 𝑓∗𝐹) ≃ mapFun

B
(C,E)(𝑓

∗(−), 𝐹 ).

Remark 3.4.3.2. In the situation of Definition 3.4.3.1, if 𝐴 ∈ B is an arbitrary

object, one easily deduces from Proposition 1.2.5.4 and Remark 2.3.2.1 that the

functor 𝜋∗
𝐴(𝑓!𝐹) is a left Kan extension of 𝜋∗

𝐴𝐹 along 𝜋∗
𝐴𝑓.

Remark 3.4.3.3. As usual, the theory of right Kan extensions can be formally

obtained from the theory of left Kan extensions by taking opposite B-categories.

We will therefore only discuss the case of left Kan extensions.

Remark 3.4.3.4. The theory of Kan extensions for the special case B ≃ Ani is

discussed in [42, § 22], [49, § 4.3], or [18, § 6.4].
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The main goal of this section is to prove the following theorem about the

existence of left Kan extensions:

Theorem 3.4.3.5. Let U be an internal class of B-categories such that for every
object 𝑑∶ 𝐴 → D in context 𝐴 ∈ B theB/𝐴-category C/𝑑 is contained in Ucolim(𝐴).
Then, whenever E is U-cocomplete, the functor 𝑓 ∗ ∶ Fun

B
(D, E) → Fun

B
(C, E) has

a left adjoint 𝑓! which is fully faithful whenever 𝑓 is fully faithful.

Proof. To begin with, by replacing U with Ucolim, we may assume without loss

of generality that U is a colimit class and therefore that C/𝑑 is contained in U for

every object 𝑑 in D.

By Corollary 3.1.3.3, the functor

(𝑓 × id)∗ ∶ Fun
B
(D × Eop,Grpd

B
) → Fun

B
(C × Eop,Grpd

B
)

admits a left adjoint (𝑓 × id)!. We now claim that the composition

Fun
B
(C, E)

ℎ∗
−−→ Fun

B
(C,PSh

B
(E))

≃
−→ Fun

B
(C × Eop,Grpd

B
)

(𝑓 ×id)!
−−−−−→ Fun

B
(D × Eop,Grpd

B
)

≃
−→ Fun

B
(D,PSh

B
(E))

takes values in Fun
B
(D, SmallU

B
(E)). To see this, let 𝐹∶ 𝐴 → Fun

B
(C, E) be an

object in context 𝐴 ∈ B. Using Proposition 1.2.5.4 together with Remark 2.3.2.1

and Remark 3.4.2.3 as well as the fact that as 𝜋∗
𝐴 preserves adjunctions (Corol-

lary 3.1.1.9) we may identify 𝜋∗
𝐴(𝑓 × id)! with (𝜋∗

𝐴(𝑓 )× id)!, we may replaceBwith

B/𝐴 and can therefore to reduce to the case where 𝐴 ≃ 1. Let 𝑝∶ P → C × Eop

be the left fibration that is classified by the transpose of ℎ𝐹, and let

P
𝑖
−→ Q

𝑞
−→ D × Eop

be the factorisation of (𝑓 × id)𝑝 into an initial functor and a left fibration. Then

𝑞∶ Q → D × Eop classifies (𝑓 × id)!(ℎ𝐹), hence we need to show that for any

object 𝑑∶ 𝐴 → D in context 𝐴 ∈ B the fibre Q|𝑑 → 𝐴 × Eop is classified by a
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3.4. Kan extensions

U-small presheaf on E. By the same argument as above, we may again assume

that 𝐴 ≃ 1. Consider the commutative diagram

Q|𝑑

P/𝑑 Q/𝑑 R

P Q Eop

C/𝑑 × Eop D/𝑑 × Eop Eop

C × Eop D × Eop

𝑠
𝑖/𝑑 𝑗

𝑟

𝑝

𝑖
id

𝑓 ×id

𝑞

in which R is uniquely determined by the condition that 𝑗 be initial and 𝑟 be a

left fibration. Since 𝑖/𝑑 is the pullback of 𝑖 along a right fibration and since right

fibrations are proper by Proposition 2.1.4.9, this map is initial. As a consequence,

the composition 𝑗𝑖/𝑑 is initial as well, which implies that the left fibration 𝑟 is
classified by the colimit of the composition C/𝑑 → C → E ↪→ PSh

B
(E). By

Proposition 3.4.2.6 and the condition on C/𝑑 to be contained in U(1), the left

fibration 𝑟 is classified by a U-small presheaf. To prove our claim, we therefore

need only show that the map 𝑠∶ Q|𝑑 → R is an equivalence. As this is a map

of right fibrations over Eop, we may work fibre-wise (Proposition 2.1.1.12). If

𝑒∶ 𝐴 → Eop is an object in context 𝐴 ∈ B, we obtain an induced commutative

triangle

(Q|𝑑)|𝑒

(Q/𝑑)|𝑒 R|𝑒

𝑠|𝑒

𝑗|𝑒

over 𝐴. Since the projections Q/𝑑 → Eop and R → Eop are left fibrations and

therefore smooth (by the dual of Proposition 2.1.4.9) and since initial functors

are a fortiori covariant equivalences (see Section 2.1.4), we deduce from Proposi-

tion 2.1.4.12 that 𝑗|𝑒 exhibits R|𝑒 as the groupoidification of (Q/𝑑)|𝑒. Moreover, the

map (Q|𝑑)|𝑒 → (Q/𝑑)|𝑒 is a pullback of the final map 𝐴 → D/𝑑 ×𝐴 along a smooth

map and therefore final as well. Since final functors induce equivalences on

groupoidifications, we thus conclude that 𝑠|𝑒 must be an equivalence, as desired.
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3. Colimits and cocompletion

By making use of the discussion thus far, we may now define 𝑓! as the compo-

sition of the two horizontal arrows in the top row of the commutative diagram

Fun
B
(C, E) Fun

B
(D, SmallU

B
(E)) Fun

B
(D, E)

Fun
B
(C × Eop,Grpd

B
) Fun

B
(D × Eop,Grpd

B
)

ℎ

𝐿∗

(𝑓 ×id)!

in which 𝐿 denotes the left adjoint to the Yoneda embedding that is supplied by

Proposition 3.4.2.7. It is now clear from the construction of 𝑓! that this functor
defines a left adjoint of 𝑓 ∗.

Lastly, suppose that 𝑓 is fully faithful. We show that in this case the adjunction

counit idFun
B
(C,E) → 𝑓 ∗𝑓! is an equivalence. Since equivalences are computed

object-wise (see Proposition 2.3.2.12), we only have to show that for every object

𝐹 in Fun
B
(C, E) the induced map 𝐹 → 𝑓 ∗𝑓!𝐹 is an equivalence. Since 𝜋∗

𝐴 preserves

adjunctions and the internal hom (Corollary 3.1.1.9 and Proposition 1.2.5.4), we

may replace B with B/𝐴 and can therefore assume that 𝐹 is in context 1 ∈ B. By

construction of the adjunction 𝑓! ⊣ 𝑓 ∗, the unit 𝐹 → 𝑓 ∗𝑓!𝐹 is determined by the

composition

ℎ∗(𝐹 )
𝜂1ℎ∗(𝐹 )
−−−−−−→ (𝑓 × id)∗(𝑓 × id)!ℎ∗(𝐹 )
(𝑓 ×id)∗𝜂2(𝑓 ×id)!ℎ∗(𝐹 )
−−−−−−−−−−−−−−−−−→ (𝑓 × id)∗ℎ∗𝐿∗(𝑓 × id)!ℎ∗(𝐹 )

in which 𝜂1 is the unit of the adjunction (𝑓 ×id)! ⊣ (𝑓 ×id)∗ and 𝜂2 is the unit of the
adjunction 𝐿∗ ⊣ ℎ∗. By Corollary 3.1.3.3, the first map is an equivalence, hence it

suffices to show that the second one is an equivalence as well. Again, it suffices to

show this object-wise. Let therefore 𝑐 be an object of C, as above without loss of

generality in context 1 ∈ B. By the above argument, the object (𝑓 × id)!ℎ∗(𝐹 )(𝑐)
is given by the colimit of the diagram ℎ𝐹(𝜋𝑐)! ∶ C/𝑐 → C → E ↪→ PSh

B
(E).

By making use of the final section id𝑐 ∶ 1 → C/𝑐, this presheaf is therefore

representable by 𝐹(𝑐), which implies the claim.

Remark 3.4.3.6. In the situation of Theorem 3.4.3.5, the construction of 𝑓! shows

that if 𝐹∶ D → E is a functor, the counit 𝑓!𝑓 ∗𝐹 → 𝐹 is given by the composition

𝐿∗(𝑓 × id)!(𝑓 × id)∗ℎ∗(𝐹 )
𝐿∗𝜖1ℎ∗𝐹
−−−−−−→ 𝐿∗ℎ∗(𝐹 )

𝜖2
−−→ 𝐹
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3.4. Kan extensions

where 𝜖1 is the counit of the adjunction (𝑓 × id)! ⊣ (𝑓 × id)∗ and 𝜖2 is the

counit of the adjunction 𝐿∗ ⊣ ℎ∗. Since the latter is an equivalence, the functor

𝐹 arises as the left Kan extension of 𝑓 ∗𝐹 precisely if the map 𝐿∗𝜖1ℎ∗(𝐹 ) is an

equivalence. Let 𝑞∶ Q → D × Eop be the left fibration that is classified by ℎ∗(𝐹 )
and let 𝑝∶ P → C × Eop be the pullback of 𝑞 along 𝑓 × id. Let furthermore

𝑞′ ∶ Q′ → C×Eop be the functor that arises from factoring (𝑓 × id)𝑝 into an initial

map and a left fibration. On the level of left fibrations over D × Eop, the map

𝜖1ℎ∗(𝐹 ) is then given by the map 𝑔 that arises as the unique lift in the commutative

diagram

P Q

Q′ D × Eop.

𝑖

𝑖∗ 𝑞
𝑞

𝑔

Then the condition that 𝐿∗𝜖1ℎ∗𝐹 is an equivalence corresponds to the condition

that for any object 𝑑∶ 𝐴 → D in context 𝐴 ∈ B the map 𝑔|𝑑 ∶ Q′|𝑑 → Q|𝑑, viewed

as a map over 𝜋∗
𝐴E

op, induces an equivalence colim(𝑞′|op𝑑 ) ≃ colim(𝑞|op𝑑 ) in 𝜋∗
𝐴E.

Note that by a similar argument as in the proof of Theorem 3.4.3.5, the map 𝑔|𝑑
fits into a commutative square

Q′
/𝑑 Q/𝑑

Q′|𝑑 Q|𝑑

𝑔/𝑑

𝑗′ 𝑗
𝑔|𝑑

in which 𝑗′ and 𝑗 are initial. As a consequence, the map 𝑔|𝑑 is determined by the

factorisation of the map 𝑗𝑖/𝑑 in the commutative diagram

P/𝑑 Q/𝑑 Q|𝑑

C/𝑑 × Eop × 𝐴 D/𝑑 × Eop × 𝐴 Eop × 𝐴

𝑖/𝑑 𝑗

𝑓/𝑑×id

into an initial map and a right fibration. This argument shows that the map 𝑔|𝑑
classifies the canonical map

colim ℎ𝐹(𝜋𝑑)!𝑓/𝑑 → colim ℎ𝐹(𝜋𝑑)!
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of presheaves on 𝜋∗
𝐴E that is induced by the functor 𝑓/𝑑 ∶ C/𝑑 → D/𝑑. Since 𝐿 is

a left inverse of ℎ that preserves colimits, we thus conclude that 𝐹 is a left Kan

extension of its restriction 𝑓 ∗𝐹 precisely if the map 𝑓/𝑑 ∶ C/𝑑 → D/𝑑 induces an

equivalence

colim 𝐹(𝜋𝑑)!𝑓/𝑑 ≃ colim 𝐹(𝜋𝑑)! ≃ 𝐹(𝑑)

in 𝜋∗
𝐴E for every object 𝑑∶ 𝐴 → D.

Recall from Section 2.3.1 that a large B-category D is locally small if the left

fibration Tw(D) → Dop × D is small. Theorem 3.4.3.5 now implies:

Corollary 3.4.3.7. If 𝑓∶ C → D is a functor of B-categories such that C is small
and D is locally small (but not necessarily small). If E is a cocomplete large B-
category, the functor of left Kan extension 𝑓! always exists.

Proof. By Theorem 3.4.3.5, it suffices to show that for any object 𝑑∶ 𝐴 → D in

context 𝐴 ∈ B the B/𝐴-category C/𝑑 is small, which follows immediately from

the observation that the right fibration C/𝑑 → C × 𝐴 a pullback of the small

fibration Tw(D) → Dop × D and therefore small itself.

3.4.4. Application: colimit cocones

In this section, we apply the theory of Kan extensions to obtain a characterisa-

tion of colimit cocones. Recall from Definition 2.1.3.11 that if I is a B-category,

the associated right cone I▷ comes equipped with two functors 𝜄 ∶ I → I▷ and

∞∶ 1 → I▷. Moreover, recall from Remark 3.2.1.3 that for everyB-category C we

may identify Fun
B
(I▷,C)with theB-category of cocones over I-indexed diagrams

in C. Our goal is to prove:

Proposition 3.4.4.1. Let I and C be B-categories and suppose that C admits
I-indexed colimits. Then the functor of left Kan extension

𝜄! ∶ Fun
B
(I,C) → Fun

B
(I▷,C)

along 𝜄 ∶ I → I▷ exists and is fully faithful, and its essential image coincides with
the full subcategory of Fun

B
(I▷,C) that is spanned by the colimit cocones.

The proof of Proposition 3.4.4.1 relies on the following two general facts:
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Lemma 3.4.4.2. Suppose that

P Q

C D

𝑝

𝑔

𝑞
𝑓

is a cartesian square in Cat(B) such that 𝑞 admits a fully faithful left adjoint. Then
𝑝 admits a fully faithful left adjoint as well.

Proof. By assumption 𝑞 has a section 𝑙1 ∶ D → Q which pulls back along 𝑓 to

form a section 𝑙0 ∶ C ↪→ P of 𝑝. Moreover, the adjunction counit 𝜖1 ∶ Δ1 ⊗Q → Q

fits into a commutative diagram

Δ1 ⊗ D Δ1 ⊗Q Q

D Q D,

id⊗𝑙1

𝑠0 𝜖1

𝑠0

𝑞
𝑙1 𝑞

hence pullback along 𝑓 defines a map 𝜖0 ∶ Δ1⊗P → P that fits into a commutative

square

Δ1 ⊗ C Δ1 ⊗ P P

C P C,

id⊗𝑙0

𝑠0 𝜖0

𝑠0

𝑝
𝑙0 𝑝

By construction, the map 𝜖0𝑑0 is equivalent to the identity on P, and the map

𝜖1𝑑1 recovers the functor 𝑙1𝑝. The previous commutative diagram now precisely

expresses that both 𝑝𝜖0 and 𝜖0𝑙0 are equivalence, hence the desired result follows

from Corollary 3.1.4.3.

Lemma 3.4.4.3. Fully faithful functors in Cat(B) are stable under pushout.

Proof. If

C E

D F

𝑓

ℎ

𝑔

𝑘
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is a pushout square in Cat(B) in which 𝑓 is fully faithful, applying the functor

PSh
B
(−) results in a pullback square

PSh
B
(F) PSh

B
(E)

PSh
B
(D) PSh

B
(C)

𝑘∗

𝑔∗

ℎ∗

𝑓 ∗

in which 𝑓 ∗ admits a fully faithful left adjoint 𝑓!. By Lemma 3.4.4.2, this implies

that 𝑔∗ admits a fully faithful left adjoint as well, hence that the functor of left

Kan extension 𝑔! is fully faithful. This in turn implies that 𝑔 must be fully faithful

too, see Corollary 3.1.3.3.

Proof of Proposition 3.4.4.1. Let U be the smallest colimit class in B that contains

I. Then C is U-cocomplete (by Remark 3.3.2.4). Hence the existence of 𝜄! follows

from Theorem 3.4.3.5 once we show that for every object 𝑗∶ 𝐴 → I▷ the B/𝐴-

category I/𝑗 is contained in U(𝐴). By definition of the right cone, we have a

cover I0 ⊔ 1 � (I▷)0 which induces a cover 𝐴0 ⊔ 𝐴1 � 𝐴 by taking the pullback

along 𝑗∶ 𝐴 → (I▷)0. Let 𝑗0 ∶ 𝐴0 → I▷ and 𝑗1 ∶ 𝐴1 → I▷ be the induced objects.

Since 𝑗0 factors through the inclusion 𝜄0 ∶ I0 ↪→ (I▷)0 and since 𝜄 is fully faithful

by Lemma 3.4.4.3, we obtain an equivalence I/𝑗0 ≃ I/𝑗′0 over 𝐴0, where 𝑗′0 is the

unique object in I such that 𝜄(𝑗′0) ≃ 𝑗0. Since 𝑗1 factors through the inclusion of the

cone point ∞∶ 1 → I▷ which defines a final object in I▷, we furthermore obtain

an equivalence I/𝑗1 ≃ 𝜋∗
𝐴𝑖
I. Therefore the B/𝐴-category I/𝑗 is locally contained in

U and therefore contained in U itself, for U defines a sheaf on B. We therefore

deduce that the functor of left Kan extension 𝜄! exists. Since Lemma 3.4.4.3 implies

that 𝜄 is fully faithful, Corollary 3.1.3.3 furthermore shows that 𝜄! is fully faithful

as well.

We finish the proof by identifying the essential image of 𝜄!. By combining

Remark 3.2.1.3 with Lemma 3.4.4.2, if 𝑑∶ 𝐴 → Fun
B
(𝐼 ,C) is a diagram, the object

𝜄!(𝑑) defines a fully faithful left adjoint 𝐴 → C𝑑/ to the projection C𝑑/ → 𝐴. By

Example 3.2.1.10, this precisely means that 𝜄!(𝑑) is an initial section over 𝐴 and is

therefore a colimit cocone. Conversely, if ̄𝑑 ∶ 𝐴 → Fun
B
(I▷,C) is a cocone under

𝑑 = 𝜄∗ ̄𝑑, the map 𝜖 ̄𝑑 ∶ 𝜄!𝑑 → ̄𝑑 defines a map in C𝑑/. By the above argument, the

domain of this map is a colimit cocone, hence if ̄𝑑 defines a colimit cocone in C𝑑/
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as well, themap 𝜖 ̄𝑑must necessarily be an equivalence since any map between two

initial objects in a B/𝐴-category is an equivalence (see Corollary 2.1.3.16).

3.5. Cocompletion

The main goal of this section is to construct and study the free cocompletion by

U-colimits of an arbitraryB-category, for any internal class U ofB-categories. In

Section 3.5.1 we give the construction of this B-category and prove its universal

property. In Section 3.5.2 we discuss a criterion to detect free cocompletions.

We finish this section by studying the free U-cocompletion of the point in Sec-

tion 3.5.3.

3.5.1. The free U-cocompletion

Let C be a B-category and let U be an internal class of B-categories. The goal

of this section is to construct the free U-cocompletion of C, i.e. the initial U-

cocomplete B-category that is equipped with a functor from C.

We begin our discussion with the maximal case U = CatB:

Theorem 3.5.1.1. For every B-category C and every cocomplete large B-category
E, the functor of left Kan extension (ℎC)! along ℎC ∶ C ↪→ PSh

B
(C) induces an

equivalence
(ℎC)! ∶ Fun

B
(C, E) ≃ Funcc

B
(PSh

B
(C), E).

In other words, the Yoneda embedding ℎC ∶ C ↪→ PSh
B
(C) exhibits the B-category

of presheaves on C as the free cocompletion of C.

Remark 3.5.1.2. The analogue of Theorem 3.5.1.1 for∞-categories is the content

of [49, Theorem 5.1.5.6] or [18, Theorem 6.3.13].

The proof of Theorem 3.5.1.1 relies on the following lemma:

Lemma 3.5.1.3. Let 𝑓∶ C → D be a functor of B-categories and assume that C
is small. Then the left Kan extension (ℎC)!(ℎD𝑓 )∶ PSh

B
(C) → PSh

B̂
(D) of ℎD𝐹

along ℎC is equivalent to the composition

PSh
B
(C)

𝑖∗
↪−→ PSh

B̂
(C)

𝑓!
−→ PSh

B̂
(D),
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3. Colimits and cocompletion

where 𝑖∶ Grpd
B
↪→ Grpd

B̂
denotes the inclusion.

Proof. Since (ℎC)! is fully faithful and since the restriction of 𝑓!𝑖∗ along ℎC recov-

ers the functor ℎD𝑓, it suffices to show that 𝑓!𝑖∗ is a left Kan extension along its

restriction. By Remark 3.4.3.6, this is the case precisely if for any presheaf 𝐹 on C

the inclusion ℎ/𝐹 ∶ C/𝐹 ↪→ PSh
B
(C)/𝐹 induces an equivalence

colim 𝑓!(𝜋𝐹)!ℎ/𝐹 ≃ colim 𝑓!(𝜋𝐹)! ≃ 𝑓!(𝐹 ).

Since 𝑓!𝑖∗ commutes with small colimits (Proposition 3.2.5.7) and as PShGrpd
B
(C)

admits small colimits (Proposition 3.3.2.12), it suffices to show that the map

colim(𝜋𝐹)!ℎ/𝐹 → 𝐹

is an equivalence in PSh
B
(C), which follows from Proposition 3.4.1.1.

Proof of Theorem 3.5.1.1. Let us first show that for any object 𝑓∶ 𝐴 → Fun
B
(C, E)

in context 𝐴 ∈ B the object (ℎC)!(𝑓 ) is contained in Funcc
B
(PSh

B
(C), E). By

making use of Proposition 1.2.5.4 and Remark 3.3.3.4, Remark 2.3.2.1 and Re-

mark 3.4.3.2, we may replace B with B/𝐴 and can therefore assume that 𝐴 ≃ 1.
Hence, we only need to show that ℎ!(𝑓 ) is cocontinuous. By again making use of

Remark 3.4.3.2 and Remark 2.3.2.1, it is furthermore enough to show that ℎ!(𝑓 )
preserves I-indexed colimits for every small B-category I. By Lemma 3.5.1.3 and

the explicit construction of ℎ! in Theorem 3.4.3.5, the functor ℎ!(𝑓 ) is equivalent
to the composition

PSh
B
(C)

𝑖∗
↪−→ PSh

B̂
(C)

𝑓!
−→ SmallCatB

B̂
(E)

𝐿
−→ E

in which 𝐿 is left adjoint to the Yoneda embedding ℎE. Since all three functors

preserve small colimits, the claim follows.

By what we have just shown, ℎ! takes values in Funcc
B
(PSh

B
(C), E) and there-

fore determines an inclusion ℎ! ∶ Fun
B
(C, E) ↪→ Funcc

B
(PSh

B
(C), E). To show

that this functor is essentially surjective as well, we need only show that any

object 𝑔∶ 𝐴 → Fun
B
(PSh

B
(C), E) in context 𝐴 ∈ B whose associated functor in

Cat(B̂/𝐴) is cocontinuous is a left Kan extension of its restriction along ℎ. By
the same reduction argument as above, we may again assume 𝐴 ≃ 1. By using
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3.5. Cocompletion

Remark 3.4.3.6, the functor 𝑔 is a Kan extension of 𝑔ℎ precisely if for any presheaf

𝐹∶ 𝐴 → PSh
B
(C) the functor ℎ/𝐹 ∶ C/𝐹 → PSh

B
(C)/𝐹 induces an equivalence

colim 𝑔(𝜋𝐹)!ℎ/𝐹 ≃ 𝑔(𝐹)

in E. Since Proposition 3.4.1.1 implies that the canonical map colim(𝜋𝐹)!ℎ/𝐹 → 𝐹
is an equivalence in PSh

B
(C) and since 𝑔 is cocontinuous, this is immediate.

Remark 3.5.1.4. In the situation of Theorem 3.5.1.1, suppose that E is in addition

locally small. If 𝑓∶ C → E is an arbitrary functor, its left Kan extension ℎ!(𝑓 ) is
not only cocontinuous, but even admits a right adjoint. In fact, by the explicit

construction of ℎ!(𝑓 ) in the proof of Theorem 3.5.1.1, we may compute

mapE(ℎ!(𝑓 )(−), −) ≃ mapE(𝐿𝑓!𝑖∗(−), −)

≃ mapPSh
B̂
(C)(𝑖∗(−), 𝑓

∗ℎE(−))

and since E is locally small, the functor 𝑓 ∗ℎE takes values in PSh
B
(C), hence

the claim follows. By replacing B with B/𝐴 and using Remark 3.4.3.2 and Re-

mark 2.3.2.1, the same argument works for arbitrary objects 𝐴 → Fun
B
(C, E),

hence we conclude that the functor ℎ! takes values in FunL
B
(PSh

B
(C), E) and

therefore gives rise to an equivalence

FunL
B
(PSh

B
(C), E) ≃ Funcc

B
(PSh

B
(C), E).

This is a special (and in a certain sense universal) case of the adjoint functor theo-

rem for presentable B-categories. We will treat the general case in Section 5.4.3.

Our next goal is to generalise Theorem 3.5.1.1 to an arbitrary internal class U

of B-categories. For this, we need to make the following general observation:

Lemma 3.5.1.5. Let E be a B-category, let C ↪→ E be a full subcategory and let
U ⊂ V be two internal classes of B-categories. Suppose that E is V-cocomplete. Then
there exists a full subcategory D ↪→ E that is closed under U-colimits (i.e. that is
U-cocomplete and the inclusion into E is U-cocontinuous), contains C and is the
smallest full subcategory of E with these properties, in that whenever D′ ↪→ E has
the same properties there is an inclusion D ↪→ D′ over E.
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3. Colimits and cocompletion

Proof. By Proposition 1.4.1.7, the poset Subfull(E) of full subcategories in E is

presentable and therefore admits all limits. To complete the proof, we therefore

only need to show that the collection of full subcategories of E that contain C and

that are closed under U-colimits in E is closed under limits in Subfull(E). Clearly,
if (D𝑖)𝑖∈𝐼 is a collection of full subcategories in E that each contain C, then so

does their meet D = ⋀𝑖 D𝑖. Similarly, suppose that each B-category D𝑖 is closed

under U-colimits in E, and let 𝐴 ∈ B be an arbitrary context. Since 𝜋∗
𝐴 commutes

with limits and carries fully faithful functors to fully faithful functors, we may

assume without loss of generality that 𝐴 ≃ 1. We thus only need to show that

the meet of the D𝑖 is closed under I-indexed colimits in E for any I ∈ U(1). Let
𝑑∶ 𝐵 → Fun

B
(I,D) be a diagram in context 𝐵 ∈ B. Since by assumption the

object colim 𝑑 is contained in D𝑖 for every 𝑖 ∈ 𝐼 and thus defines an object in D,

the result follows.

In light of Lemma 3.5.1.5, we may now define:

Definition 3.5.1.6. For any B-category C and any internal class U of small

B-categories, we define the large B-category PShU
B
(C) as the smallest full sub-

category of PSh
B
(C) that contains C and is closed under U-colimits. We will

denote by PShUB(C) the underlying ∞-category of global sections.

Remark 3.5.1.7. Suppose that U is a small internal class of B-categories and

C is a B-category. Then PShU
B
(C) is small as well. To see this, let us first fix a

small full subcategory of generators G ⊂ B (i.e. a full subcategory such that every

object in B admits a small cover by objects in G). Since U is small, there exists a

small regular cardinal 𝜅 such that for everyB-category I in U in context 𝐺 ∈ G the

object I0 ∈ B/𝐺 is 𝜅-compact. We construct a diagram E• ∶ 𝜅 → Subfull(PShB(C))
by transfinite recursion as follows: set E0 = C and E𝜆 = ⋁𝜏<𝜆 E

𝜏 for any limit

ordinal 𝜆 < 𝜅, where the right-hand side denotes the join operation in the

poset Subfull(PShB(C)). For 𝜆 < 𝜅, we furthermore define E𝜆+1 to be the full

subcategory of PSh
B
(C) that is spanned by E𝜆 together with those objects that

arise as the colimit of a diagram of the form 𝑑∶ I → 𝜋∗
𝐺E

𝜆 for 𝐺 ∈ G and I ∈ U(𝐺).
Let us set E = ⋁𝜏<𝜅 E

𝜏. Since 𝜅 is small and E𝜏 is a small largeB-category for every

𝜏 < 𝜅, the large B-category E is small as well. We claim that E is U-cocomplete.

In fact, it suffices to show that for every 𝐺 ∈ G and every diagram 𝑑∶ I → 𝜋∗
𝐺E the
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3.5. Cocompletion

object colim 𝑑 is contained in 𝜋∗
𝐺E as well. Since I0 is 𝜅-compact in B/𝐺 and since

𝜅 is 𝜅-filtered as it is regular, the map 𝑑0 ∶ I0 → E0 = ⋁𝜏<𝜅 E
𝜏
0 factors through E𝜏0

for some 𝜏 < 𝜅. As a consequence, the colimit colim 𝑑 is contained in E𝜏+1 and

therefore a fortiori in E, as claimed. Now since E is U-cocomplete and contains

C, it must also contain PShU
B
(C), which is therefore small.

In the situation of Definition 3.5.1.6, Proposition 3.4.1.1 implies that there are

inclusions

C ↪→ SmallU
B
(C) ↪→ PShU

B
(C) ↪→ PSh

B
(C).

In general, the middle inclusion is not an equivalence, as the following example

shows.

Example 3.5.1.8. Let B = Ani be ∞-topos of spaces, let C = (Δ1)op and let U be

the smallest colimit class that contains Λ2
0. An ∞-category is thus U-cocomplete

precisely if it admits pushouts. An object in Fun(Δ1,Ani) is representable when

viewed as a presheaf on (Δ1)op precisely if it is one of the two maps 0 → 1 and

1 → 1. Hence SmallU
B
(C) is the full subcategory of Fun(Δ1,Ani) that is spanned

by the maps 𝑛 → 1 for natural numbers 𝑛 ≤ 2. But this ∞-category is not closed

under pushouts in Fun(Δ1,Ani): for example, the map 𝑆1 → 1 is a pushout of

objects in SmallU
B
(C) which is not contained in SmallU

B
(C) itself.

Our first goal is to verify that the construction from Definition 3.5.1.6 is stable

under étale base change:

Proposition 3.5.1.9. For any B-category C, any internal class U of B-categories
and any object 𝐴 ∈ B, there is a natural equivalence

𝜋∗
𝐴PSh

U
B
(C) ≃ PSh𝜋

∗
𝐴U
B/𝐴

(𝜋∗
𝐴C).

The proof of Proposition 3.5.1.9 relies on the following two lemmas:

Lemma 3.5.1.10. Let 𝐴 ∈ B be an arbitrary object, let U be an internal class of
B-categories and let 𝑓∶ C → D be a 𝜋∗

𝐴U-cocontinuous functor of 𝜋
∗
𝐴U-cocomplete

B/𝐴-category. Then (𝜋𝐴)∗(𝑓 ) is a U-cocontinuous functor of U-cocomplete B-
categories.
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3. Colimits and cocompletion

Proof. Let 𝐵 ∈ B be an arbitrary object. We need to show that for every I ∈ U(𝐵)
the B/𝐵-categories 𝜋∗

𝐵(𝜋𝐴)∗C and 𝜋∗
𝐵(𝜋𝐴)∗D admit I-indexed colimits and that

𝜋∗
𝐵(𝜋𝐴)∗(𝑓 ) preserves these. Note that if pr0 ∶ 𝐴 × 𝐵 → 𝐴 and pr1 ∶ 𝐴 × 𝐵 → 𝐵

are the two projections, the natural map 𝜋∗
𝐵(𝜋𝐴)∗ → (pr1)∗ pr

∗
0 is an equiva-

lence, owing to the transpose map (pr0)! pr
∗
1 → 𝜋∗

𝐴(𝜋𝐵)! being one. Thus, we

may identify 𝜋∗
𝐵(𝜋𝐴)∗(𝑓 ) with (pr1)∗ pr

∗
0(𝑓 ). Now since 𝑓 is a 𝜋∗

𝐴U-cocontinuous

functor between 𝜋∗
𝐴U-cocomplete B/𝐴-categories, it follows that pr∗0(𝑓 ) is a

𝜋∗
𝐴×𝐵U-cocontinuous functor between 𝜋∗

𝐴×𝐵U-cocomplete B/𝐴×𝐵-categories (Re-

mark 3.3.2.3). Therefore, by passing to B/𝐵, we can assume that 𝐵 ≃ 1. In other

words, we only need to show that for every I ∈ U(1) the two horizontal maps in

the commutative square

(𝜋𝐴)∗C Fun
B
(I, (𝜋𝐴)∗C)

(𝜋𝐴)∗C Fun
B
(I, (𝜋𝐴)∗C)

(𝜋𝐴)∗(𝑓 )

diag

(𝜋𝐴)∗(𝑓 )∗
diag

have left adjoints and that the associated mate transformation is an equivalence.

This is a consequence of the equivalence

Fun
B/𝐴

(−, (𝜋𝐴)∗(−)) ≃ (𝜋𝐴)∗FunB(𝜋∗
𝐴(−), −),

which follows by adjunction from the evident equivalence

𝜋∗
𝐴(− × −) ≃ 𝜋∗

𝐴(−) ×𝐴 𝜋∗
𝐴(−),

and the fact that by Corollary 3.1.1.9 the geometric morphism (𝜋𝐴)∗ preserves

adjunctions.

Lemma 3.5.1.11. Let U be an internal class of B-categories and let

Q P

D C

𝑔

𝑞 𝑝
𝑓

be a pullback square inCat(B) in whichD, C and P areU-cocomplete and both 𝑓 and
𝑝 are U-cocontinuous. Then Q is U-cocomplete and both 𝑞 and 𝑔 are U-cocontinuous.
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3.5. Cocompletion

Proof. By replacing B with B/𝐴 for 𝐴 ∈ B if necessary and using Remark 3.2.1.8

and Remark 3.2.2.4, it will suffice to prove that any diagram 𝑑∶ K → Q with

K ∈ U(1) admits a colimit in Q and that furthermore 𝑞 preserves this colimit. The

pullback square in the statement of the lemma induces a commutative diagram

1 1

Q𝑑/ P𝑔𝑑/

1 1

D𝑞𝑑/ C𝑝𝑔𝑑/

𝑑 𝑔𝑑

𝑞∗

𝑔∗

𝑞𝑑 𝑝𝑔𝑑

𝑓∗

𝑝∗

in which the front square is a pullback, the three cocones 𝑞𝑑, 𝑔𝑑 and 𝑝𝑔𝑑 are

colimit cocones and the cocone 𝑑 is determined by the universal property of

pullbacks. To finish the proof, it suffices to show that 𝑑 is a colimit cocone, i.e.

initial. Given any 𝑑
′
∶ 1 → Q𝑑/, we obtain a pullback square

mapQ𝑑/
(𝑑, 𝑑

′
) mapP𝑔𝑑/

(𝑔𝑑, 𝑔∗𝑑
′
)

mapD𝑓 𝑑/
(𝑞𝑑, 𝑞∗𝑑

′
) mapC𝑝𝑔𝑑/

(𝑝𝑔𝑑, 𝑝∗𝑔∗𝑑
′
)

in B. Since 𝑞𝑑, 𝑔𝑑 and 𝑝𝑔𝑑 are initial, it follows that the cospan in the lower right

corner is constant on the final object 1 ∈ B, hence mapQ𝑑/
(𝑑, 𝑑

′
) ≃ 1. By replacing

B with B/𝐴 and 𝑑 with 𝜋∗
𝐴(𝑑), the same is true for any object 𝑑

′
∶ 𝐴 → Q𝑑/. As

a consequence, 𝑑 must be initial.

Proof of Proposition 3.5.1.9. It follows from Remark 2.3.2.1 that there is a commu-
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3. Colimits and cocompletion

tative diagram
𝜋∗
𝐴C

𝜋∗
𝐴PSh

U
B
(C)

𝜋∗
𝐴PShB(C) PSh

B/𝐴
(𝜋∗

𝐴C),

ℎ𝜋∗𝐴C𝜋∗
𝐴ℎ

≃

and it is clear that 𝜋∗
𝐴PSh

U
B
(C) is closed under 𝜋∗

𝐴U-colimits in PSh
B/𝐴

(𝜋∗
𝐴C). It

therefore suffices to show that if D ↪→ PSh
B/𝐴

(𝜋∗
𝐴C) is a full subcategory that

contains 𝜋∗
𝐴C and that is likewise closed under 𝜋∗

𝐴U-colimits in PSh
B/𝐴

(𝜋∗
𝐴C),

this subcategory must contain 𝜋∗
𝐴PSh

U
B
(C). Consider the commutative diagram

C D′ PSh
B
(C)

(𝜋𝐴)∗𝜋∗
𝐴C (𝜋𝐴)∗D (𝜋𝐴)∗𝜋∗

𝐴PShB(C)

𝜂𝐴 𝜂𝐴

in which 𝜂𝐴 denotes the adjunction unit of 𝜋∗
𝐴 ⊣ (𝜋𝐴)∗ and in which D′ is

defined by the condition that the right square is a pullback. Note that the triangle

identities for the adjunction 𝜋∗
𝐴 ⊣ (𝜋𝐴)∗ imply that D contains 𝜋∗

𝐴D
′. The proof

is therefore finished once we show that D′ is closed under U-colimits in PSh
B
(C).

To prove this claim, note that we may identify (𝜋𝐴)∗𝜋∗
𝐴 ≃ Fun

B
(𝐴, −). With

respect to this identification, the unit 𝜂𝐴 corresponds to precomposition with

the unique map 𝜋𝐴 ∶ 𝐴 → 1. Thus, Proposition 3.3.2.12 implies that 𝜂𝐴 is a U-

cocontinuous functor between U-cocomplete B-categories. Also, Lemma 3.5.1.10

implies that the inclusion (𝜋𝐴)∗D ↪→ (𝜋𝐴)∗𝜋∗
𝐴PShB(C) is closed underU-colimits.

Therefore, the result follows from Lemma 3.5.1.11.

Theorem 3.5.1.12. Let C be aB-category, let U be an internal class ofB-categories
and let E be a U-cocomplete largeB-category. Then the functor of left Kan extension
along ℎC ∶ C ↪→ PShU

B
(C) exists and determines an equivalence

(ℎC)! ∶ Fun
B
(C, E) ≃ FunU-cc

B
(PShU

B
(C), E).

In other words, the B-category PShU
B
(C) is the free U-cocompletion of C.
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Proof. Let us define E′ = Fun
B
(E,Grpd

B̂
)op. Then Proposition 3.3.2.15 implies

that the inclusion ℎopE ∶ E ↪→ E′ is U-cocontinuous. Let 𝑗∶ PShU
B
(C) ↪→ PSh

B
(C)

be the inclusion. By Theorem 3.4.3.5, the functors of left Kan extension along ℎC
and 𝑗 exist and define inclusions

Fun
B
(C, E′)

(ℎC)!
↪−−−−→ Fun

B
(PShU

B
(C), E′)

𝑗!
↪−→ Fun

B
(PSh

B
(C), E′),

and by Theorem 3.5.1.1 the essential image of the composition is spanned by

those objects in Fun
B
(PSh

B
(C), E′) which define cocontinuous functors. Since 𝑗

is by construction U-cocontinuous, the restriction functor

𝑗∗ ∶ Fun
B
(PSh

B
(C), E′) → Fun

B
(PShU

B
(C), E′)

restricts to a functor

𝑗∗ ∶ Funcc
B
(PSh

B
(C), E′) → FunU-cc

B
(PShU

B
(C), E′).

Consequently, we deduce that the left Kan extension functor

(ℎC)! ∶ Fun
B
(C, E′) ↪→ Fun

B
(PShU

B
(C), E′)

factors through an inclusion

(ℎC)! ∶ Fun
B
(C, E′) ↪→ FunU-cc

B
(PShU

B
(C), E′).

We claim that this functor is essentially surjective and therefore an equivalence.

On account of Remark 3.3.3.4 and Remark 3.4.3.2 as well as Proposition 3.5.1.9,

it suffices to show (by replacing B with B/𝐴) that any U-cocontinuous func-

tor 𝑓∶ PShU
B
(C) → E′ is a left Kan extension along its restriction to C. Let

𝜖∶ (ℎC)!ℎ∗C𝑓 → 𝑓 be the adjunction counit, and let D be the full subcategory of

PShU
B
(C) that is spanned by those objects 𝐹 in PShU

B
(C) (in arbitrary context) for

which 𝜖𝐹 is an equivalence. We need to show that D = PShU
B
(C). By construction,

we have C ↪→ D, so that it suffices to show that D is closed under U-colimits

in PShU
B
(C). Note that the inclusion D ↪→ PShU

B
(C) is precisely the pullback

of 𝑠0 ∶ E′ ↪→ (E′)Δ
1
along 𝜖∶ PShU

B
(C) → (E′)Δ

1
. Since Proposition 3.3.2.12

implies that 𝑠0 is cocontinuous and since 𝜖 is U-cocontinuous (this is a special
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3. Colimits and cocompletion

case of Lemma 5.5.1.3 below), we deduce from Lemma 3.5.1.11 that the inclusion

D ↪→ PShU
B
(C) is indeed closed under U-colimits.

To finish the proof, we still need to show that the equivalence

𝑐(ℎC)! ∶ Fun
B
(C, E′) ≃ FunU-cc

B
(PShU

B
(C), E′)

restricts to the desired equivalence

(ℎC)! ∶ Fun
B
(C, E) ≃ FunU-cc

B
(PShU

B
(C), E).

As clearly ℎ∗C restricts in the desired way, it suffices to show that (ℎC)! restricts
as well. By the same reduction steps as above, this follows once we show that for

every functor 𝑓∶ C → E, the left Kan extension (ℎC)!𝑓∶ PShU
B
(C) → E′ factors

through E. Consider the commutative diagram

C D E

PShU
B
(C) E′

ℎ

(ℎC)!𝑓

in which the square is a pullback. Since both ̂𝑓 and E ↪→ E′ are U-cocontinuous,

it follows from Lemma 3.5.1.11 that the inclusion D ↪→ PShU
B
(C) is closed under

U-colimits and must therefore be an equivalence. As a consequence, the functor

(ℎC)!𝑓 factors through E, as needed.

Corollary 3.5.1.13. Let C be a B-category and let U ⊂ V be internal classes
such that PShU

B
(C) is V-cocomplete. Then the inclusion 𝑖∶ PShU

B
(C) ↪→ PShV

B
(C)

admits a left adjoint. In particular, if C itself is V-cocomplete, the inclusion
ℎC ∶ C ↪→ PShV

B
(C) admits a left adjoint.

Proof. By choosing U = ∅ (i.e. the initial object in Cat(B)), the second claim

is an immediate consequence of the first. To prove the first statement, let

𝑗∶ C ↪→ PShU
B
(C) be the inclusion. Then Theorem 3.5.1.12 allows us to construct

a candidate for the left adjoint 𝐿∶ PShV
B
(C) → PShU

B
(C) of 𝑖 as the left Kan exten-

sion of 𝑗 along 𝑖𝑗. By construction, 𝐿 is V-cocontinuous. As 𝑖 is U-cocontinuous

and since we have equivalences 𝑗∗(𝐿𝑖) ≃ (𝑖𝑗)∗(𝐿) ≃ 𝑗, Theorem 3.5.1.12 moreover

gives rise to an equivalence 𝐿𝑖 ≃ idPShU
B
(C). Similarly, since 𝑗∗(𝑖) ≃ 𝑖𝑗, one obtains
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3.5. Cocompletion

an equivalence 𝑖 ≃ 𝑗!(𝑖𝑗). Therefore, transposing the identity on 𝑖𝑗 across the

adjunction (𝑖𝑗)! ⊣ (𝑖𝑗)∗ gives rise to a map 𝜂∶ idPShV
B
(C) → 𝑖𝐿 such that 𝜂𝑖 is an

equivalence, being a map between U-cocontinuous functors that restricts to an

equivalence along 𝑗. By making use of Corollary 3.1.4.3, we conclude that 𝐿 is

a left adjoint once we verify that 𝐿𝜂 is an equivalence as well. As both domain

and codomain of this map are V-cocontinuous functors, this is the case already if

its restriction along 𝑖𝑗 is an equivalence, which follows from the construction of

𝜂.

Corollary 3.5.1.14. Let U be a small internal class of B-categories. Then the
inclusion CatU-ccB ↪→ CatB admits a left adjoint that carries a B-category C to
its free U-cocompletion. Moreover, the adjunction unit is given by the Yoneda
embedding C ↪→ PShU

B
(C).

Proof. By Remark 3.5.1.7, the free U-cocompletion PShU
B
(C) is indeed a small B-

category. Therefore, the Yoneda embedding ℎC ∶ C ↪→ PShU
B
(C) is a well-defined

map in CatB. By Corollary 3.1.3.5, it suffices to show that the composition

𝜙∶ mapCatU-ccB
(PShU

B
(C), −) ↪→ mapCatB

(PShU
B
(C), −) → mapCatB

(C, −)

is an equivalence of functors CatU-ccB → Grpd
B
. Using that equivalences of func-

tors are detected object-wise (Proposition 2.3.2.12), this follows once we show

that the evaluation of this map at any object 𝐴 → CatU-ccB yields an equivalence

of B/𝐴-groupoids. By combining Remark 3.3.3.2 and Remark 2.3.2.1 with Propo-

sition 3.5.1.9, we may pass to B/𝐴 and can therefore assume that 𝐴 ≃ 1. In this

case, the result follows from Theorem 3.5.1.12 in light of the observation that

by Remark 3.3.3.4, the evaluation of 𝜙 at aU-cocompleteB-category E is precisely

the restriction of the equivalence from Theorem 3.5.1.12 to coreB-groupoids.

3.5.2. Detecting cocompletions

In this section we give a characterisation when a functor 𝑓∶ C → D exhibits

D as the free U-cocompletion of C. To achieve this, we need the notion of U-
cocontinuous objects, which is in a certain way an internal analogue of the notion

of a 𝜅-compact object in an ∞-category:

217



3. Colimits and cocompletion

Definition 3.5.2.1. Let D be a U-cocomplete B-category. We define the full

subcategory DU-cc ↪→ D of U-cocontinuous objects as the pullback

DU-cc FunU-cc
B

(D,Grpd
B
)op

D Fun
B
(D,Grpd

B
)op.

ℎDop

Remark 3.5.2.2. In the situation of Definition 3.5.2.1, we may combine Re-

mark 3.3.3.4 and Remark 2.3.2.1 to deduce that there is a canonical equivalence

𝜋∗
𝐴(D

U-cc) ≃ (𝜋∗
𝐴D)𝜋

∗
𝐴U-cc of full subcategories of 𝜋∗

𝐴D, for every 𝐴 ∈ B. Conse-

quently, an object 𝑑∶ 𝐴 → D is contained in DU-cc if and only if its transpose
̄𝑑 ∶ 1 → 𝜋∗

𝐴D is 𝜋∗
𝐴U-cocontinuous.

We now come to the main result of this section. If C ↪→ D is a full subcategory

of a U-cocomplete B-category D, we will say that D is generated by C under U-

colimits ifD is the smallest full subcategory of itself that is closed underU-colimits

and that contains C. We now obtain the following recognition principle of free

cocompletions, whose proof we adopted from its ∞-categorical analogue [49,

Proposition 5.1.6.10]:

Proposition 3.5.2.3. Let 𝑓∶ C → D be a functor betweenB-categories such that D
is U-cocomplete, and let ̂𝑓 ∶ PShU

B
(C) → D be its unique U-cocontinuous extension.

Then the following are equivalent:

1. ̂𝑓 is an equivalence;

2. 𝑓 is fully faithful, takes values in DU-cc, and generates D under U-colimits.

Proof. Wefirst note that PShU
B
(C)U-cc containsC. Indeed, Yoneda’s lemma implies

that the composition

C
ℎC
↪−−→ PShU

B
(C)

ℎ
PShUB(C)op

↪−−−−−−−−→ Fun
B
(PShU

B
(C),Grpd

B
)op

can be identified with the opposite of the transpose of the evaluation map. To-

gether with Proposition 3.5.1.9 and Remark 1.2.5.5 and Remark 2.3.2.1, this implies

that the image of 𝑐∶ 𝐴 → C along this composition transposes to the functor

PSh𝜋
∗
𝐴U
B/𝐴

(𝜋∗
𝐴C) ↪→ PSh

B/𝐴
(𝜋∗

𝐴C)
ev𝑐
−−→ Grpd

B/𝐴
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3.5. Cocompletion

which is 𝜋∗
𝐴U-cocontinuous by Proposition 3.3.2.12. Therefore, (1) implies (2).

Conversely, suppose that condition (2) is satisfied. We first prove that ̂𝑓 is

fully faithful. To that end, if 𝑐∶ 𝐴 → C is an arbitrary object, we claim that the

morphism

mapPShU
B
(C)(𝑐, −) → mapD(

̂𝑓 (𝑐), ̂𝑓 (−))

is an equivalence. By combining Remark 3.4.3.2 and Remark 2.3.2.1 with Proposi-

tion 3.5.1.9, we may replace B by B/𝐴 and can thus assume that 𝐴 ≃ 1. In this

case, the fact that C is contained in PShU
B
(C)U-cc and condition (2) imply that

both domain and codomain of the morphism are U-cocontinuous functors. Using

Lemma 5.5.1.3 below, this implies that the above map is itself U-cocontinuous

when viewed as a functor PShU
B
(C) → GrpdΔ

1

B
. Since the restriction of this map

to C is an equivalence , the universal property of PShU
B
(C) thus implies that the

entire morphism must be an equivalence. Thus, by what we just have shown, if

𝐹∶ 𝐴 → PShU
B
(C) is an arbitrary object, the natural transformation

mapPShU
B
(C)(−, 𝐹 ) → mapD(

̂𝑓 (−), ̂𝑓 (𝐹 ))

restricts to an equivalence on C. As this map transposes to a morphism of

𝜋∗
𝐴U-cocontinuous functors (using Proposition 3.3.2.15 and the fact that ̂𝑓 is

U-cocontinuous), the same argument as above shows that the entire natural

transformation is in fact an equivalence and therefore that ̂𝑓 is fully faithful, as

desired. As therefore ̂𝑓 exhibits PShU
B
(C) as a full subcategory of D that is closed

under U-colimits and that contains C, the assumption that D is generated by C

under U-colimits implies that ̂𝑓 is an equivalence.

3.5.3. Cocompletion of the point

LetU be an internal class ofB-categories. Our goal in this section is to study theB-

category PShU
B
(1) ↪→ Grpd

B
. To that end, let us denote by gpd(U) ↪→ Grpd

B
the

essential image ofU along the groupoidification functor (−)gpd ∶ CatB → Grpd
B

from Proposition 3.1.2.14.

Definition 3.5.3.1. We call an internal class U closed under groupoidification,
if for any 𝐴 ∈ B and I ∈ U(𝐴) the groupoidification Igpd is also contained in U.
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3. Colimits and cocompletion

For any internal class U we can form its closure under groupoidification, denoted
U
gpd

, that is defined as the internal class spanned by U and gpd(U).

Remark 3.5.3.2. Since for any B-category I, the morphism I → Igpd is final, it

follows that any colimit class (in the sense of Definition 3.3.3.5) is closed under

groupoidification. Furthermore, for any internal class U, we have inclusions

U ⊆ U
gpd ⊆ Ucolim. In particular the discussion after Definition 3.3.3.5 shows

that a B-category is U-cocomplete if and only if it is U
gpd

-cocomplete. The same

statement holds for U-cocontinuity.

Remark 3.5.3.3. If U is closed under groupodification, the adjunction (−)gpd ⊣ 𝜄
restricts to an adjunction

((−)gpd ⊣ 𝑖)∶ U ⇆ gpd(U).

Proposition 3.5.3.4. For any internal class U of B-categories there is a canonical
inclusion gpd(U) ↪→ PShU

B
(1) which is an equivalence whenever Ugpd is closed

under U-colimits in CatB.

Proof. By construction, the canonical map U ↪→ U
gpd

induces an equivalence of

subuniverses gpd(U) ≃ gpd(Ugpd). Therefore we may assume that U is closed

under groupoidification. For any I ∈ U(1), its groupoidification Igpd is the colimit

of the functor I → 1 ↪→ Grpd
B

(see Proposition 3.2.5.1) and therefore by defini-

tion contained in PShU
B
(1). Note that by using Remark 1.4.1.2 and Remark 1.4.2.4

as well as Corollary 3.1.1.9, for every 𝐴 ∈ B the functor 𝜋∗
𝐴 carries the adjunction

(−)gpd ⊣ 𝜄∶ CatB ⇆ Grpd
B

to the adjunction (−)gpd ⊣ 𝜄∶ CatB/𝐴
⇆ Grpd

B/𝐴
.

Together with Proposition 3.5.1.9, this observation and the above argument

also yields that for every I ∈ U(𝐴) the groupoidification Igpd defines an object

𝐴 → PShU
B
(1). Thus, the groupoidification functor (−)gpd ∶ CatB → Grpd

B

restricts to a functor U → PShU
B
(1) and therefore gives rise to the desired in-

clusion gpd(U) ↪→ PShU
B
(1). Now by definition of PShU

B
(1), this inclusion is an

equivalence if and only if gpd(U) is closed under U-colimits in Grpd
B
. But if

the subcategory U ↪→ CatB is closed under U-colimits in CatB it follows by

Remark 3.5.3.3 that we have gpd(U) = U ∩ Grpd
B
, hence the claim follows from

Lemma 3.5.1.11.
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3.5. Cocompletion

Example 3.5.3.5. Let 𝑆 be a local class of maps in B and let Grpd𝑆 ↪→ Grpd
B

be the associated full subcategory of Grpd
B
. Then Grpd𝑆 is clearly closed under

groupoidification. Recall that Grpd𝑆 is closed under Grpd𝑆-colimits in Grpd
B

precisely if the local class 𝑆 is stable under composition (see Example 3.3.2.6).

Therefore, whenever 𝑆 is stable under composition, Proposition 3.5.3.4 provides

an equivalence of subuniverses Grpd𝑆 ≃ PSh
Grpd𝑆
B

(1).

If 𝑆 is not closed under composition, the free cocompletion PSh
Grpd𝑆
B

(1) still
admits an explicit description. Namely, an object 𝑐∶ 𝐴 → Grpd

B
in context

𝐴 ∈ B defines an object of PSh
Grpd𝑆
B

(1) if and only if it is locally a composition of

two morphisms in 𝑆. To be more precise, 𝑐 is in PSh
Grpd𝑆
B

(1) if and only if there is

a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B such that every 𝑠∗𝑖 𝑐 ∈ Grpd
B
(𝐴𝑖) = B/𝐴𝑖

can be

written as a composition 𝑔𝑖𝑓𝑖 of two morphisms 𝑔𝑖 ∶ 𝑃𝑖 → 𝑄𝑖 and 𝑓𝑖 ∶ 𝑄𝑖 → 𝐴𝑖
that are in 𝑆. This description holds since the full subcategory spanned by these

objects is clearly closed under Grpd𝑆-indexed colimits and it is easy to see that it

is the smallest full subcategory of Grpd
B

with this property.

Example 3.5.3.6. The following observation is due to Bastiaan Cnossen: Suppose

that we haveB = PShAni(C) for some small ∞-category C with pullbacks, and let

𝑆 be some class of morphisms in C that is closed under pullbacks in C. It generates

a local class in B = PShAni(C) that we denote by 𝑊. As in Remark 3.3.2.9, we

obtain an internal class U𝑆 = ⟨𝑊 ,Cat∞⟩, so that we may now consider the free

U𝑆-cocompletion PShU𝑆
B

(1) of the point. It may be explicitly described as the

presheaf on C given by

PShU𝑆
B

(1)∶ Cop → Cat∞, 𝑐 ↦ PShAni(𝑆/𝑐)

where 𝑆/𝑐 denotes the full subcategory of C/𝑐 spanned by the morphisms in 𝑆. In
particular, it agrees with the PSh(C)-category underlying the initial cocomplete
pullback formalism described in [21, § 4]. One can use this observation to give

an alternative proof of [21, corollary 4.9]. In fact, one can prove something

more general since the proof in [21] relies on C being a 1-category, which is not

necessary in our framework.

We conclude this section by showing that any U-cocomplete large B-category

E is tensored over PShU
B
(1) in the following sense:
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3. Colimits and cocompletion

Definition 3.5.3.7. A large B-category E is tensored over PShU
B
(1) if there is a

functor − ⊗ −∶ PShU
B
(1) × E → E together with an equivalence

mapE(− ⊗ −, −) ≃ mapGrpd
B̂

(−,mapE(−, −)).

Proposition 3.5.3.8. If E is a U-cocomplete large B-category, then E is tensored
over PShU

B
(1).

Proof. Since E is U-cocomplete, Proposition 3.2.3.1 implies that the functor B-

category Fun
B
(E, E) is U-cocomplete as well. As a consequence, we may apply

Theorem 3.5.1.12 to extend the identity idE ∶ 1 → Fun
B
(E, E) in a unique way

to a U-cocontinuous functor 𝑓∶ PShU
B
(1) → Fun

B
(E, E). We define the desired

bifunctor −⊗− as the transpose of 𝑓. To see that it has the desired property, note

that mapE(− ⊗ −, −) is the transpose of the composition

PShU
B
(1)op

𝑓 op

−−−→ Fun
B
(Eop, Eop)

(ℎEop)∗
↪−−−−−→ Fun

B
(Eop × E,Grpd

B̂
),

whereas the functor mapGrpd
B̂

(−,mapE(−, −)) transposes to the functor

PShU
B
(1)op

𝑖
↪−→ Grpdop

B̂
ℎGrpdop

B̂
↪−−−−−→ Fun

B
(Grpd

B̂
,Grpd

B̂
)

map∗
E

−−−−→ Fun
B
(Eop × E,Grpd

B̂
).

As the opposite of either of these functors is U-cocontinuous, Theorem 3.5.1.12

implies that they are both uniquely determined by their value at the point

1∶ 1 → Grpd
B
. Since mapGrpd

B̂

(1, −) is equivalent to the identity functor,

we find that both of these functors send 1∶ 1 → Grpd
B

to mapE and that they

are therefore equivalent, as required.

Remark 3.5.3.9. By dualising Proposition 3.5.3.8, one obtains that a U-complete

large B-category E is powered over PShop(U)
B

(1): since PShop(U)
B

(1)op is the free

U-completion of the final B-category 1 ∈ Cat(B), there is a functor

(−)(−) ∶ PShop(U)
B

(1)op × E → E

that fits into an equivalence

mapE(−, (−)
(−)) ≃ mapGrpd

B̂

(−,mapE(−, −)).
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3.5.4. Application: decomposition of colimits

In [49, § 4.2], Lurie provides techniques for computing colimits in an ∞-category

bymeans of decomposing diagrams intomoremanageable pieces. For example, he

proves that an ∞-category has small colimits if and only if it has small coproducts

and pushouts. In this section, we aim for similar results in the context of B-

category theory. More precisely, our main goal is to show:

Proposition 3.5.4.1. Let U be an internal class, let 𝑑∶ I → U be a diagram
such that I ∈ U(1), and let K = colim 𝑑. Then every U-cocomplete B-category
admits K-indexed colimits, and every U-cocontinuous functor between U-cocomplete
B-categories preserves K-indexed colimits.

The proof of Proposition 3.5.4.1 requires some preparations and will be given

at the end of this section. For now, we will focus on some consequences of this

result. Our most important corollary is the following:

Corollary 3.5.4.2. A large B-category C is cocomplete if and only if it is both
Grpd

B
- and LConst-cocomplete, and a functor of cocomplete large B-categories is

cocontinuous if and only if it is both Grpd
B
- and LConst-cocontinuous.

Proof. The condition is clearly necessary, so it suffices to show that it is sufficient.

Therefore, let C be a Grpd
B
- and LConst-cocomplete B-category. In order to

show thatC is cocomplete, the fact that for every𝐴 ∈ Bwe can identify 𝜋∗
𝐴 LConst

with the internal class of locally constant B/𝐴-category as well as Remark 1.4.1.2

imply that it will be sufficient to prove that C admits I-indexed colimits for

every B-category I. To that end, let U = Grpd
B
∪ LConst ↪→ CatB be the

internal class generated by Grpd
B

and LConst, i.e. the essential image of the

induced functor Grpd
B
⊔ LConst → CatB. By Remark 3.3.2.4, we find that C is

U-cocomplete. Now by Remark 1.2.1.3, we can find a diagram 𝑑∶ J → Cat(B)
such that colim 𝑑 ≃ I and such that 𝑑(𝑖) ≃ Δ𝑛⊗G for some 𝑛 ≥ 0 and some G ∈ B.

Since 𝑑({𝑛})∶ G → Δ𝑛 ⊗ G is a final functor, the diagram 𝑑 thus takes values in

Ucolim(1) ↪→ Cat(B) (where Ucolim is the colimit class generated by U in the sense

of Definition 3.3.3.5. By the discussion followingDefinition 3.3.3.5, theB-category

is Ucolim-cocomplete. Hence, the observation that (the constant B-category

associated with) J defines an object of Ucolim(1) itself and Proposition 3.5.4.1
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3. Colimits and cocompletion

now imply that C admits I-indexed colimits, as desired. The claim that every

Grpd
B
- and LConst-cocontinuous functor is already cocontinuous is shown

analogously.

Remark 3.5.4.3. By the results in [49, § 4.2], an∞-category admits small colimits

if and only if it admits small coproducts and pushouts, and a functor preserves

small colimits if and only if it preserves small coproducts and pushouts. Since

coproducts are a particular case of ∞-groupoidal colimits, Corollary 3.5.4.2 even

implies that a B-category C is cocomplete if and only if it is Grpd
B
-cocomplete

and admits pushouts. Likewise, a functor of cocomplete B-categories is cocon-

tinuous precisely if it is Grpd
B
-cocontinuous and preserves pushouts.

By combining Corollary 3.5.4.2 with Proposition 3.3.2.5 and 3.3.2.7, we now

arrive at the following explicit description of cocompleteness and cocontinuity:

Corollary 3.5.4.4. A B-category C is cocomplete if and only if the following
conditions are satisfied:

1. For every 𝐴 ∈ B the ∞-category C(𝐴) is cocomplete and for any 𝑠∶ 𝐵 → 𝐴
the functor 𝑠∗ ∶ C(𝐴) → C(𝐵) preserves colimits.

2. For every map 𝑝∶ 𝑃 → 𝐴 in B the functor 𝑝∗ has a left adjoint 𝑝! such that
for every pullback square

𝑄 𝑃

𝐵 𝐴

𝑡

𝑞 𝑝

𝑠

the natural map 𝑞!𝑡∗ → 𝑠∗𝑝! is an equivalence.

Furthermore a functor 𝑓∶ C → D of cocomplete B-categories is cocontinuous if
and only if for every 𝐴 ∈ B the functor 𝑓 (𝐴) preserves colimits, and for every map
𝑝∶ 𝑃 → 𝐴 in B the natural map 𝑝!𝑓 (𝑃) → 𝑓 (𝐴)𝑝! is an equivalence.

Remark 3.5.4.5. Let C be a small ∞-category such that B is a left exact and

accessible localisation of PSh(C), and let 𝐿∶ PSh(C) → B be the localisation

functor. Then in order to see that a B-category C is cocomplete, it suffices to

check the conditions of Corollary 3.5.4.4 for objects in C: Indeed, as the existence
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of colimits is a local condition (Remark 3.2.1.7), one may assume without loss of

generality that the object𝐴 appearing in condition (1) and (2) of Proposition 3.3.2.5

is of the form 𝐿(𝑎) for some 𝑎 ∈ C. By furthermore using Remark 3.2.1.14, one can

also assume that 𝐵 = 𝐿(𝑏) and 𝑠 = 𝐿(𝑠′) for some 𝑑 ∈ C and some map 𝑠′ ∶ 𝑏 → 𝑎
in C. Finally, provided that C is LConst-cocomplete, Corollary 3.5.4.2 allows us

to further assume that 𝑃 = 𝐿(𝑝) and 𝑢 = 𝐿(𝑢′) for some 𝑝 ∈ C and some map

𝑢′ ∶ 𝑝 → 𝑎 in C. Together with Corollary 3.5.4.2, these observations imply that C

is cocomplete if and only if

1. for every 𝑎 ∈ C the ∞-category C(𝐿(𝑎)) has small colimits, and for every

𝑡∶ 𝑏 → 𝑎 in C the functor 𝐿(𝑡)∗ ∶ C(𝐿(𝑎)) → C(𝐿(𝑏)) preserves small

colimits;

2. for every pullback square

𝑄 𝑝

𝑏 𝑎

𝑡

𝑣 𝑢
𝑠

in PSh(C) inwhich both 𝑠∶ 𝑏 → 𝑎 and 𝑢∶ 𝑝 → 𝑎 aremaps inC, the two func-

tors 𝐿(𝑢)∗ ∶ C(𝐿(𝑎)) → C(𝐿(𝑝)) and 𝐿(𝑣)∗ ∶ C(𝐿(𝑑)) → C(𝐿(𝑄)) admits left

adjoints 𝐿(𝑢)! and 𝐿(𝑣)! such that the natural map 𝐿(𝑣)!𝐿(𝑡)∗ → 𝐿(𝑠)∗𝐿(𝑢)!
is an equivalence.

Example 3.5.4.6. Let C be a presentable ∞-category. Then Corollary 3.5.4.4

and its dual show that the B-category of Construction 1.4.2.1 is both complete

and cocomplete. In fact, C ⊗ Grpd
B

will give rise to an example of a presentable
B-category in the sense of Section 5.4.

Example 3.5.4.7. Let X be an ∞-topos and let 𝑓∗ ∶ X → B be a geometric

morphism. We may consider the limit-preserving functor

X/𝑓 ∗(−) ∶ Bop
(𝑓 ∗)op
−−−−−→ Xop

X/−
−−−→ Ĉat∞

which defines a large B-category X. Clearly X is LConst-cocomplete. Further-
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3. Colimits and cocompletion

more, for every pullback square

𝑄 𝑃

𝐵 𝐴

𝑡

𝑞 𝑝

𝑆

in B, the lax square

X/𝑓 ∗(𝑄) X/𝑓 ∗(𝑃)

X/𝑓 ∗(𝐵) X/𝑓 ∗(𝐴)

𝑓 ∗(𝑞)! 𝑓 ∗(𝑝)!

𝑓 ∗(𝑡)∗

𝑓 ∗(𝑠)∗

commutes since 𝑓 ∗ preserves pullbacks. Thus it follows from Corollary 3.5.4.4

that X is cocomplete. Dually, one shows that X is also complete. In fact, X will be

an example of a B-topos in the sense of Chapter 6

Example 3.5.4.8. We can finally explain why the notion of being cocomplete

is strictly stronger than simply admitting small colimits. For a concrete coun-

terexample, consider be the category of (topological) manifolds Man. There is a

functor

Sh
B

= Sh(−)∶ Man → PrL

that takes a manifold𝑀 to the∞-category of sheaves of spaces on𝑀. This defines

a limit-preserving functor

Sh
B
∶ PShAni(Man)op → PrL

via Kan extension and thus a PShAni(Man)-category that is in particular LConst-

cocomplete. Furthermore, Sh
B

has colimits indexed by arbitrary PShAni(Man)-
groupoids: as we show in Corollary 3.5.4.2, it suffices to see this for representable

PShAni(Man)-groupoids. By Corollary 3.1.2.11, we have to check that for any

two manifolds 𝑀 and 𝑁 the functor

𝜋∗
𝑀 ∶ Sh(𝑁 ) → Sh(𝑀 × 𝑁)

admits a left adjoint and for any map 𝛼∶ 𝑁 ′ → 𝑁 the mate of the commutative
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3.5. Cocompletion

square

Sh(𝑁 ) Sh(𝑀 × 𝑁)

Sh(𝑁 ′) Sh(𝑀 × 𝑁 ′)

𝜋∗
𝑀

𝛼∗ 𝛼∗
𝑋

𝜋∗
𝑀

is an equivalence. Since the projections 𝑀 × 𝑁 → 𝑁 and 𝑀 × 𝑁 ′ → 𝑁 ′ are

topological submersions, the left adjoint exists and the mate is an equivalence

by the smooth base change isomorphism, see [82, Lemma 3.25]. Therefore Sh
B

admits all colimits indexed by (small) PShAni(Man)-categories. However, if Sh
B

was cocomplete, it would follow that for any continuous map 𝑓∶ 𝑀 → 𝑁 of

manifolds, the pullback functor

𝑓 ∗ ∶ Sh(𝑁 ) → Sh(𝑀)

has a left adjoint. This is certainly not the case. For example, if 𝑌 is a point,

the pullback 𝑓 ∗ is simply the stalk functor at the point determined by 𝑓, and
in general stalk functors do not preserve infinite products. However, if we let

Sub denote the local class in PShAni(Man) that is generated by the topological

submersions in Man, the above arguments show that the PShAni(Man)-category
Sh

B
is in fact ⟨Sub,Cat∞⟩-cocomplete (see Remark 3.3.2.9).

We now turn to the proof of Proposition 3.5.4.1. Our strategy will be to to take

the colimit of a K-indexed diagram in the free cocompletion of C (i.e. in PSh
B
(C))

and to show that this colimit can be reflected back into C. We therefore need to

study such K-indexed colimits in PSh
B
(C) first.

Lemma 3.5.4.9. For everyB-category C, the largeB-category RFibC is a reflective
subcategory of (CatB)/C.

Proof. To begin with, we note that the sheaf associated with (CatB)/C is given

by Cat(B)/C×−. In fact, the latter defines a PShÂni(B)-category, and there is

a right fibration of PShÂni(B)-categories 𝑝∶ Cat(B)/C×− → Cat(B)/− that is

section-wise given by postcomposition with the projection onto the second fac-

tor. By Proposition 1.2.4.6, the codomain can be identified with (the underlying

PShÂni(B)-category of) the largeB-category CatB. Since Cat(B)/C×− has a final

227



3. Colimits and cocompletion

object (in the PShÂni(B)-categorical sense, which is easily deduced from Exam-

ple 3.2.1.10 and Example 3.2.1.13) that is carried to C along the right fibration 𝑝,
we thus obtain an equivalence (CatB)/C ≃ Cat(B)/C×− of PShÂni(B)-categories.
Since the domain is a (large)B-category, so is the codomain, and this equivalence

defines an identification of (large) B-category. Now using this identification, we

find that the inclusion RFib(C × −) ↪→ Cat(B)/C×− determines a fully faithful

functor 𝑖∶ RFibC ↪→ (CatB)/C such that 𝑖(𝐴) admits a left adjoint 𝐿𝐴 for every

𝐴 ∈ B. Moreover, if 𝑠∶ 𝐵 → 𝐴 is an arbitrary map in B, the fact that 𝑠 is smooth

implies that the natural map 𝐿𝐵𝑠∗ → 𝑠∗𝐿𝐴 is an equivalence (see the discussion

in Section 2.1.4), hence the claim follows.

Proposition 3.5.4.10. LetU be an internal class ofB-categories and letC be a small
B-category. Then, for any diagram 𝑑∶ I → U with colimit K in CatB and any dia-
gram 𝑝∶ K → C with colimit 𝐹 in PSh

B
(C), there is a diagram 𝑑′ ∶ I → SmallU

B
(C)

such that 𝐹 ≃ colim 𝑑′.

Proof. The cocone 𝑑 → diag(C) implies that we may equivalently regard 𝑑 as

a diagram 𝑑∶ I → U/C ↪→ (CatB)/C. By Proposition 3.2.4.3, the colimit of this

diagram is 𝑝∶ K → C. Since 𝐹 ≃ colim 𝑝, there is a final functor K → C/𝐹 over C,

hence Lemma 3.5.4.9 implies that the localisation functor 𝐿∶ (CatB)/C → RFibC
carries 𝑝∶ K → C to the right fibration C/𝐹 → C. In other words, the presheaf

𝐹 arises as the colimit of the diagram 𝑑′ = 𝐿𝑑∶ I → U/C → RFibC ≃ PSh
B
(C).

It now suffices to observe that by construction of 𝐿, this functor takes values in
SmallU

B
(C).

Proof of Proposition 3.5.4.1. Suppose that 𝑓∶ C → D is a U-cocontinuous functor

between U-cocomplete B-categories. Consider the commutative diagram

C D

PShU
B
(C) PShU

B
(D)

𝑓

ℎC ℎD
̂𝑓

that arises from applying the universal property of PShU
B
(C) to the composition

C → D ↪→ PShU
B
(D). As C and D are U-cocomplete, the vertical inclusions

admit left adjoints 𝐿C and 𝐿D (see Corollary 3.5.1.13). Now if 𝑝∶ K → C is a
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3.5. Cocompletion

diagram, Proposition 3.5.4.10 implies that there is a diagram 𝑝′ ∶ I → PShU
B
(C)

such that colim 𝑝′ is equivalent to the colimit of ℎC𝑝. In particular, the colimit

of ℎC𝑝 is contained in PShU
B
(C). Consequently, colim 𝐿C𝑝′ defines a colimit of 𝑝

(Proposition 3.3.2.10). By replacing CwithD, this argument also shows that every

diagram K → D admits a colimit in D. Moreover, as 𝑓 and ̂𝑓 are U-cocontinuous,

the universal property of PShU
B
(C) implies that the canonical map 𝐿D ̂𝑓 → 𝑓 𝐿C

is an equivalence. Consequently, as 𝐿D ̂𝑓 preserves the colimit of ℎC𝑝, so does

𝑓 𝐿C. As the colimit cocone of 𝑝 is the image of the colimit cocone of ℎD𝑝 along

𝐿C, we conclude that 𝑓 preserves the colimit of 𝑝. Now by replacing B with B/𝐴
and repeating the above argumentation, one concludes that both C and D admit

K-indexed colimits and that 𝑓 commutes with such colimits.
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4. Cocartesian fibrations and the
straightening equivalence

One of the fundamental results in higher category theory is Lurie’s straight-
ening theorem [49], which provides an equivalence Fun(C,Cat∞) ≃ Cocart(C)
between the ∞-category of Cat∞-valued functors on an ∞-category C and that of

cocartesian fibrations over C. This theorem generalises Grothendieck’s classical

result on the equivalence between pseudo-functors from a 1-category into the

2-category of 1-categories and Grothendieck opfibrations over that 1-category.
As it is notoriously challenging to directly construct a functor C → Cat∞ due to

the infinite tower of coherence conditions, the straightening theorem provides

an indispensable tool for the study of such functors.

The main goal of this chapter is to provide a B-categorical analogue of Lurie’s

result: we will define the notion of a cocartesian fibration between B-categories,

and we will establish the associated straightening equivalence which assigns to

every such cocartesian fibration 𝑝∶ P → C its straightening StC(𝑝)∶ C → CatB.

Our strategy for the proof of this result is to build upon the straightening

equivalence LFibC ≃ Fun
B
(C,Grpd

B
) for left fibrations that we already estab-

lished in Section 2.2.1, a strategy that has previously been outlined by Vladimir

Hinich [36] as a proof of the straightening equivalence for cocartesian fibrations

of ∞-categories. Since the B-category CatB embeds into PSh
B
(Δ), we may re-

gard a functor C → CatB as a simplicial object in Fun(C,Grpd
B
), or equivalently

in LFibC. We will show that cocartesian fibrations over C are powered over Δ, i.e.
that there is a functor (−)Δ

•
∶ Δop × CocartC → CocartC, where CocartC is the

(suitably defined) B-category of cocartesian fibrations with codomain C. By com-

bining this fact with the observation that there is an inclusion LFibC ↪→ CocartC
which admits a right adjoint (−)♯, we can now define the straightening functor
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4. Cocartesian fibrations and the straightening equivalence

StC via the composition

CocartC
(−)Δ•

−−−−→ Fun
B
(Δop,CocartC)

(−)♯
−−−→ Fun

B
(Δop, LFibC).

Conversely, the B-category of cocartesian fibrations over C is also tensored over

Δ in the form of a functor Δ•⊗−∶ Δ×CocartC → CocartC. By making use of the

universal property of presheaf B-categories that was established in Section 3.5.1,

we may therefore define the unstraightening functor

UnC ∶ Fun
B
(Δop, Fun

B
(CGrpd

B
)) ≃ PSh

B
(Δ × Cop) → CocartC

as the left Kan extension of the functor Δ• ⊗ C−/ ∶ Δop × Cop → CocartC along

the Yoneda embedding ℎΔ×Cop . By construction, the unstraightening functor

is left adjoint to the straightening functor. We will complete our argument by

showing that this adjunction is natural in C in the appropriate sense, so that we

can reduce to the case C = 1, in which case the desired result follows trivially.

We begin in Section 4.1 by defining the notion of a cocartesian fibrations

between B-categories via an internal analogue of what is sometimes known as

the Chevalley criterion in (higher) category theory (see for example [73, Theo-

rem 5.2.8]). Moreover, we study the concept of cocartesian morphisms in this

context and show that a cocartesian fibration can be characterised by the existence

of a sufficient amount of such cocartesian morphisms in the domain.

In Section 4.2, we establish an internal analogue of Lurie’s marked model
structure for cocartesian fibrations. We define the marked simplex category Δ+
and study the ∞-topos B+

Δ of marked simplicial objects in B, i.e. of B-valued

presheaves on Δ+ . The benefit of passing to marked simplicial objects is that

cocartesian fibrations are determined by a factorisation system in B+
Δ, which

enables us to make use of the many desirable properties of factorisation systems

in an ∞-topos to deepen our study of cocartesian fibrations. This already comes

in handy when we define and study the B-category CocartC of cocartesian

fibrations over a fixed B-category C in Section 4.3.

In Section 4.4, we set up and discuss the straightening and unstraightening

functors, and we prove the main result of this chapter, the fact that they form

an adjoint equivalence. We complement this result with a study of the universal
cocartesian fibration, which helps us understand how the straightening of a
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cocartesian fibration of B-categories is related to the straightening of the under-

lying cocartesian fibration of ∞-categories that is obtained by passing to global

sections. Lastly, we investigate the special case of cocartesian fibrations over

the interval Δ1 and how these can be used to characterise adjunctions between

B-categories.

We conclude this chapter by briefly mentioning two applications of the straight-

ening equivalence in Section 4.5. The first application gives a formula for the

limit and colimit of CatB-valued diagrams in terms of the associated cocartesian

fibrations. In the second application, we use our knowledge of cocartesian fibra-

tions over the interval to establish that passing from a right adjoint functor to its

left adjoint (and vice versa) constitutes an equivalence between the B-category

of B-categories with right adjoint functors and that of B-categories with left

adjoint functors.

4.1. Cocartesian fibrations

In this section, we define and study cocartesian fibrations between B-categories.

We introduce the notion in Section 4.1.1, where we also discuss a sheaf-theoretic

characterisation. In Section 4.1.2, we study cocartesian morphisms and show that

cocartesian fibrations are precisely those functors with respect to which their

domain has sufficiently many cocartesian morphisms.

4.1.1. Definition and section-wise characterisation

If 𝑝∶ P → C is a functor ofB-categories, we obtain a functor res𝑝 ∶ PΔ
1
→ P ↓C C

that makes the diagram

PΔ
1

P ↓C C CΔ1

P × P P × C C × C

res𝑝

𝑝∗

id ×𝑝 𝑝×id

commute. Here the right square is a pullback by definition of the comma B-

category (see Definition 2.1.2.1).
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4. Cocartesian fibrations and the straightening equivalence

Definition 4.1.1.1. A functor 𝑝∶ P → C between B-categories is said to be a

cocartesian fibration if the functor res𝑝 ∶ PΔ1
→ P ↓C C admits a fully faithful

left adjoint

lift𝑝 ∶ ∶ P ↓C C ↪→ PΔ
1
.

If 𝑝∶ P → C and 𝑞∶ Q → D are cocartesian fibrations, a cocartesian functor
between 𝑝 and 𝑞 is a commutative square

P Q

C D

𝑝

𝑔

𝑞
𝑓

such that the mate of the induced commutative square

PΔ
1

QΔ1

P ↓C C Q ↓D D

res𝑝

𝑔∗

res𝑞
𝑓∗

commutes as well.

Remark 4.1.1.2. Recall from Remark 3.1.3.6 that the condition of a functor to

be a right adjoint is local in B. Since similarly the condition of a functor to

be fully faithful is local as well, we conclude that for every cover ⨆𝑖 𝐴𝑖 � 1
in B, a functor 𝑝∶ P → C is a cocartesian fibration if and only if 𝜋∗

𝐴𝑖
(𝑝) is a

cocartesian fibration of B/𝐴𝑖
-categories for all 𝑖. A similar observation can be

made for cocartesian functors.

Remark 4.1.1.3. In the case B ≃ Ani, our definition recovers the notion of

cocartesian fibrations and cocartesian functors in Cat∞ in the sense of [49], cf.

Proposition 4.1.2.7 below.

Remark 4.1.1.4. There is an evident dual notion of cartesian fibrations, namely

those maps 𝑝∶ P → C for which the restriction functor res𝑝 ∶ PΔ1
→ C ↓C P

admits a fully faithful right adjoint. One defines cartesian functors between such

cartesian fibrations in the obvious way. By Proposition 3.1.1.13, a functor 𝑝 is a

cartesian fibration if and only if 𝑝op is a cocartesian fibration, and a map between
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cartesian fibrations defines a cartesian functor if and only if its opposite defines

a cocartesian functor. In what follows, we will therefore restrict our attention

to cocartesian fibrations, as every statement about those can be dualised in the

appropriate sense to be turned into a statement about cartesian fibrations.

Remark 4.1.1.5. In the situation of Definition 4.1.1.1, Remark 3.1.2.10 shows

that the square

P Q

C D

𝑝

𝑔

𝑞
𝑓

defines a cocartesian functor already when there is an arbitrary equivalence

lift𝑞 𝑓∗ ≃ 𝑔∗ lift𝑝.

Remark 4.1.1.6. Suppose that 𝑝∶ P → C is a cocartesian fibration. Since the

projection P ↓C C → P is the pullback of 𝑑1 ∶ CΔ1
→ C along 𝑝 and since 𝑑1

admits a fully faithful left adjoint 𝑠0, the projection P ↓C C → P also admits a

fully faithful left adjoint (Lemma 3.4.4.2), which we will denote by 𝑠0 as well. By

the uniqueness of adjoints, we thus obtain a commutative diagram

P

P ↓C C PΔ
1
.

𝑠0
𝑠0

lift𝑝

Proposition 4.1.1.7. A functor 𝑝∶ P → C in B is a cocartesian fibration if and
only if

1. for every 𝐴 ∈ B the functor 𝑝(𝐴) is a cocartesian fibration of ∞-categories;

2. for every 𝑠∶ 𝐵 → 𝐴 in B the commutative square

P(𝐴) P(𝐵)

C(𝐴) C(𝐵)

𝑠∗

𝑝(𝐴) 𝑝(𝐵)

𝑠∗

defines a cocartesian functor.
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4. Cocartesian fibrations and the straightening equivalence

Furthermore, if 𝑝∶ P → C and 𝑞∶ Q → D are cocartesian fibrations, a commutative
square

P Q

C D

𝑝

𝑔

𝑞
𝑓

defines a cocartesian functor precisely if it does so section-wise.

Proof. Since the local sections functor FunB(𝐴, −) commutes with limits and

the powering functor and preserves full faithfulness, this statement is an im-

mediate consequence of the sheaf-theoretic characterisation of right adjoint

functors (Proposition 3.1.2.9), together with Remark 3.1.2.10 and the fact that full

faithfulness can be detected section-wise as well (Proposition 1.3.2.7).

Proposition 4.1.1.8. Suppose that

P Q

C D

𝑝

𝑔

𝑞
𝑓

is a pullback square in Cat(B) such that 𝑞 is a cocartesian fibration. Then 𝑝 is a
cocartesian fibration, and the square itself defines a cocartesian functor.

Proof. The pullback square gives rise to a commutative square

PΔ
1

QΔ1

𝑃 ↓C C P ↓D D

res𝑝

𝑔∗

res𝑞
𝑓∗

that is easily seen to be a pullback too. Thus the claim follows from Lemma 3.4.4.2.

We denote by Cocart ↪→ Fun(Δ1,Cat(B)) the subcategory that is spanned

by the cocartesian fibrations and cocartesian squares. By Proposition 4.1.1.8,

this defines a cartesian subfibration of 𝑑0 ∶ Fun(Δ1,Cat(B)) → Cat(B). For

C ∈ Cat(B), we denote by Cocart(C) the fibre of Cocart over C. Clearly we

have Cocart(𝐴) ≃ Cat(B/𝐴) for any 𝐴 ∈ B since for any B/𝐴-category P and
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for 𝜋P ∶ P → 𝐴 the structure map, the restriction functor res𝜋P is an equiva-

lence. In other words, the restriction of the presheaf Cocart along the inclusion

B ↪→ Cat(B) recovers the sheaf Cat(B/−).

Proposition 4.1.1.9. For every B-category C and every simplicial object 𝐾 in B,
the functor Fun

B
(𝐾, −) restricts to a functor Cocart(C) → Cocart(Fun

B
(𝐾,C)).

Proof. This follows from the observation that Fun
B
(𝐾, −) commutes with limits

and powering, carries adjunctions to adjunctions (see Corollary 3.1.1.10) and

preserves the property of functors to be fully faithful.

4.1.2. Cocartesian morphisms

Let 𝑝∶ P → C be a cocartesian fibration. Then lift𝑝 ∶ P ↓C C ↪→ PΔ
1
determines

a subobject of maps in P. Our goal in this section is to study these maps.

Definition 4.1.2.1. Let 𝑝∶ P → C be a functor between B-categories. A map

𝑓∶ 𝑥 → 𝑦 in P (in context 𝐴 ∈ B) is said to be 𝑝-cocartesian if the commutative

square

P𝑦/ P𝑥/

C𝑝(𝑦)/ C𝑝(𝑥)/

𝑓 ∗

𝑝 𝑝
𝑝(𝑓 )∗

is a pullback square in Cat(B/𝐴).

Remark 4.1.2.2. The commutative square in Definition 4.1.2.1 formally arises

from evaluating the morphism of bifunctors mapP(−, −) → mapC(𝑝(−), 𝑝(−))
(which is itself constructed by using functoriality of the twisted arrow construc-

tion) at 𝑓∶ Δ1 ⊗ 𝐴 → Pop and by using the straightening equivalence for left

fibrations (Theorem 2.2.1.1). This produces a commutative square

P𝑦/ P𝑥/

C𝑝(𝑦)/ ×C P C𝑝(𝑥)/ ×C P,

𝑓 ∗

𝑝 𝑝
𝑝(𝑓 )∗
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that recovers the square from Definition 4.1.2.1 upon pasting with the pullback

square

C𝑝(𝑦)/ ×C P C𝑝(𝑥)/ ×C P

C𝑝(𝑦)/ C𝑝(𝑥)/.

𝑝(𝑓 )∗

𝑝(𝑓 )∗

Remark 4.1.2.3. The notion of a map to be 𝑝-cocartesian is local in B: if

(𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 is a cover in B, then 𝑓∶ 𝑥 → 𝑦 in context 𝐴 is 𝑝-cocartesian if

and only if each 𝑠∗𝑖 (𝑓 ) is. This follows immediately from the observation that the

functor Cat(B/𝐴) → ∏𝑖 Cat(B/𝐴𝑖
) is conservative. As a consequence, there is a

subobject 𝐸 ↪→ P1 that is determined by the condition that a map 𝑓∶ 𝑥 → 𝑦 in P

in context 𝐴 is contained in 𝐸 if and only if it is 𝑝-cocartesian.

Remark 4.1.2.4. In the situation of Definition 4.1.2.1, the pasting lemma for

pullback squares implies that the subobject 𝐸 ↪→ P1 that is determined by the

cocartesian morphisms in P is closed under composition and equivalences in

the sense of Proposition 1.3.1.17. Furthermore, the pasting lemma shows that

if 𝑓∶ 𝑥 → 𝑦 is a cocartesian map and 𝑔∶ 𝑦 → 𝑧 is an arbitrary map, then 𝑔𝑓 is

cocartesian if and only if 𝑔 is cocartesian.

Let 𝑝∶ P → C be a functor in Cat(B) and let 𝑓∶ 𝑥 → 𝑦 be a map in P in

context 𝐴 ∈ B with image 𝛼∶ 𝑐 → 𝑑 in C. Let PΔ2
|𝑓 and PΛ2

0 |𝑓 be the fibres of

𝑑{0,1} ∶ PΔ2
→ PΔ1

and 𝑑{0,1} ∶ PΛ2
0 → PΔ1

over 𝑓∶ 𝐴 → PΔ1
. Define CΔ2

|𝛼 and

CΛ2
0 |𝛼 likewise. One then obtains:

Proposition 4.1.2.5. Let 𝑝∶ P → C be a functor in Cat(B) and let 𝑓∶ 𝑥 → 𝑦 be a
map in P in context 𝐴 ∈ B. Let 𝛼 be the image of 𝑓 along 𝑝. Then 𝑓 is cocartesian if
and only if the commutative square

PΔ
2
|𝑓 PΛ

2
0 |𝑓

CΔ2
|𝛼 CΛ2

0 |𝛼

is cartesian.
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Proof. By replacingBwithB/𝐴 and 𝑓with its transpose, we may assume without

loss of generality that 𝐴 ≃ 1. Moreover, note that there is a commutative diagram

PΔ
2
|𝑓 PΛ

2
0 |𝑓

P.
𝑑{2} 𝑑{2}

in which the diagonal maps are left fibrations. Hence the map PΔ
2
|𝑓 → PΛ

2
0 |𝑓 is a

left fibration as well. As the same is true for the map CΔ2
|𝛼 → CΛ2

0 |𝛼, the square

in the statement of the proposition is a pullback if and only if it is carried to a

pullback square by the core B-groupoid functor. Let 𝜏 be the tautological object

in P in context P0, i.e. the object that is determined by the identity P0 ≃ P0. We

then obtain a commutative diagram

mapP(𝜋
∗
P0
𝑦, 𝜏 ) (PΔ

2
|𝑓)0 (PΛ

2
0 |𝑓)0 mapP(𝜋

∗
P0
𝑥, 𝜏 )

P1 P2 (PΛ
2
0)0 P1

P0 P0 P0 P0

P0 × P0 P1 × P0 P1 × P0 P0 × P0

𝑑{1,2}

(𝑑1,𝑑0)

𝑑{0,2}

𝑦×id

id

𝑓 ×id

id id

𝑓 ×id 𝑥×id𝑑0×id id

(𝑑{0,1},𝑑{2})

𝑑1×id

(𝑑{0,1},𝑑{2}) (𝑑1,𝑑0)

in which the dotted arrow is the map that is induced by the functor PΔ
2
|𝑓 → PΛ

2
0 |𝑓

upon applying the core B-groupoid functor. Note that both the front left and

the front right square is cartesian, hence both (PΔ2
|𝑓)0 → mapP(𝜋

∗
P0
𝑦, 𝜏 ) and

(PΛ2
0 |𝑓)0 → mapP(𝜋

∗
P0
𝑥, 𝜏 ) must be an equivalence. Now by using the argument

in Remark 2.3.2.2, the composition

mapP(𝜋
∗
P0
𝑦, 𝑧)

≃
−→ (PΔ

2
|𝑓)0 → (PΛ

2
0 |𝑓)0

≃
−→ mapP(𝜋

∗
P0
𝑥, 𝑧)

recovers the map 𝑓 ∗. We now note that the above construction is natural in P, in

that we may identify the commutative square that arises from applying (−)≃ to
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4. Cocartesian fibrations and the straightening equivalence

the square in the statement of the proposition with the commutative diagram

mapP(𝜋
∗
P0
𝑦, 𝜏 ) mapP(𝜋

∗
P0
𝑥, 𝜏 )

mapC(𝜋
∗
P0
𝑑, 𝑝(𝜏)) mapC(𝜋

∗
P0
𝑐, 𝑝(𝜏 ))

(𝜋∗
P0
𝑓 )∗

(𝜋∗
P0
𝛼)∗

that is obtained by evaluating the square from Definition 4.1.2.1 at 𝜏. As 𝜏 is the
tautological object, we conclude that this diagram is a pullback if and only if 𝑓 is

cocartesian, as desired.

Let C be aB-category. Observe that the evaluation functor ev∶ Δ1 ⊗CΔ1
→ C

can be regarded as a morphism 𝜙∶ 𝑑1 → 𝑑0 in Fun
B
(CΔ1

,C). By postcomposition

with the Yoneda embedding, one thus obtains a map

𝜙∗ ∶ mapC(−, 𝑑1(−)) → mapC(−, 𝑑0(−)).

Dually, one obtains a map

𝜙∗ ∶ mapC(𝑑0(−), −) → mapC(𝑑1(−), −).

Lemma 4.1.2.6. For any B-category C, there is a cartesian square

mapCΔ1 (−, −) mapC(𝑑0(−), 𝑑0(−))

mapC(𝑑1(−), 𝑑1(−)) mapC(𝑑1(−), 𝑑0(−))

𝜙∗

𝜙∗

in which the left vertical and the upper horizontal map are given by the action of
the functors 𝑑1, 𝑑0 ∶ CΔ1

⇉ C on mapping B-groupoids.

Proof. Let 𝜖∶ 𝑠0𝑑1 → id be the counit of the adjunction 𝑠0 ⊣ 𝑑1 and 𝜂∶ id → 𝑠0𝑑0
be the unit of the adjunction 𝑑0 ⊣ 𝑠0. Then 𝜙∶ Δ1 ⊗ CΔ1

→ C can be recovered

both by postcomposing 𝜂 with 𝑑1 and 𝜖 with 𝑑0. We may therefore construct a

commutative square as in the statement of the lemma as the unique square that
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makes the diagram

mapCΔ1 (−, −) mapC(𝑑0(−), 𝑑0(−))

mapCΔ1 (−, −) mapCΔ1 (−, 𝑠0𝑑0(−))

mapC(𝑑1(−), 𝑑1(−)) mapC(𝑑1(−), 𝑑0(−))

mapCΔ1 (𝑠0𝑑1(−), −) mapCΔ1 (𝑠0𝑑1(−), 𝑠0𝑑0(−))

≃

𝜙∗

≃
𝜂∗

𝜖∗
𝜙∗

≃ ≃
𝜂∗

𝜖∗

commute. We still need to show that this square is cartesian, for which it suffices

to show that it becomes a pullback after being evaluated at an arbitrary pair of

maps 𝑓∶ 𝑐 → 𝑑 and 𝑔∶ 𝑐′ → 𝑑′ in C in context 𝐴 ∈ B, see Proposition 3.2.3.2.

This in turn allows us to argue section-wise inB, which by using Corollary 2.2.2.8

lets us further reduce the statement to its analogue for∞-categories. This appears

(in a more general form) as [28, Proposition 2.3].

Proposition 4.1.2.7. A functor 𝑝∶ P → C in Cat(B) is cocartesian if and only
if for every object 𝑥 in P in context 𝐴 ∈ B and every map 𝛼∶ 𝑐 ≃ 𝑝(𝑥) → 𝑑 in C,
there exists a cocartesian lift of 𝛼, i.e. a cocartesian morphism 𝑓∶ 𝑥 → 𝑦 such that
𝑝(𝑓 ) ≃ 𝛼.

Proof. The datum of an object 𝑥∶ 𝐴 → P and a map 𝛼∶ 𝑐 ≃ 𝑝(𝑥) → 𝑑 in C is

tantamount to an object 𝑤∶ 𝐴 → P ↓C C. In light of this observation, the datum

of a lift 𝑓∶ 𝑥 → 𝑦 of 𝛼 is equivalent to a lift of 𝑤 along res𝑝. Given such a lift,

the definition of comma B-categories and Lemma 4.1.2.6 provide a commutative

diagram

mapPΔ1 (𝑓 , −) mapP(𝑦 , 𝑑0(−))

mapP↓CC
(𝑤, res𝑝(−)) mapCΔ1 (𝛼, 𝑝∗(−)) mapC(𝑑, 𝑝𝑑0(−))

mapP(𝑥, 𝑑1(−)) mapP(𝑥, 𝑑0(−))

mapP(𝑥, 𝑑1(−)) mapC(𝑐, 𝑝𝑑1(−)) mapC(𝑐, 𝑝𝑑0(−))

𝑓 ∗

𝜌

𝜙∗

id

𝑝𝜙∗

𝛼∗
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4. Cocartesian fibrations and the straightening equivalence

in which the two squares in the front and the one in the back are cartesian and

in which the dotted arrow 𝜌 is given by the composition

mapPΔ1 (𝑓 , −) → mapP↓CC
(res𝑝(𝑓 ), res𝑝(−))

𝜂∗
−−→ mapP↓CC

(𝑤, res𝑝(−))

in which 𝜂∶ 𝑤 ≃ res𝑝(𝑓 ) is the specified equivalence that exhibits 𝑓 as a lift of 𝑤.
Now by Corollary 3.1.3.5, 𝑝 is cocartesian precisely if every object 𝑤 in P ↓C C

admits a lift 𝑓 along res𝑝 such that the induced map 𝜌 is an equivalence. The

proof is thus finished once we show that 𝜌 is an equivalence if and only if 𝑓 is a

cocartesian morphism. If 𝑓 is a cocartesian morphism, then the right square in

the above diagram is a pullback, which clearly implies that 𝜌 is a pullback of the

identity on mapP(𝑥, 𝑑1(−)) and therefore an equivalence as well. Conversely, if 𝜌
is an equivalence, one obtains a pullback square

mapPΔ1 (𝑓 , −) mapC(𝑑, 𝑝𝑑0(−))

mapP(𝑥, 𝑑1(−)) mapC(𝑐, 𝑝𝑑0(−))

𝛼∗

that recovers the square from Definition 4.1.2.1 upon precomposition with the

map 𝑠0 ∶ P ↪→ PΔ
1
.

Remark 4.1.2.8. The proof of Proposition 4.1.2.7 shows that if 𝑝∶ P → C is

a cocartesian fibration, a map 𝑓∶ 𝑥 → 𝑦 in P in context 𝐴 ∈ B is contained in

the subobject (P ↓C C)0 ↪→ P1 if and only if it is a cocartesian morphism. In

particular, the map 𝑓 is cocartesian with respect to 𝑝 if and only if it is cocartesian

with respect to 𝑝(𝐴) when viewed as a map in the ∞-category P(𝐴).

Remark 4.1.2.9. The proof of Proposition 4.1.2.7 shows that if 𝑥∶ 𝐴 → P is an

arbitrary object, a map 𝛼∶ 𝑐 ≃ 𝑝(𝑥) → 𝑑 admits a cocartesian lift 𝑓∶ 𝑥 → 𝑦
if and only if the copresheaf mapP↓CC

(𝑤, res𝑝(−)) is corepresentable, where

𝑤∶ 𝐴 → P ↓C C is the object that corresponds to the datum (𝑥, 𝛼∶ 𝑐 ≃ 𝑝(𝑥) → 𝑑).
By making use of Remark 2.3.2.10, we thus conclude that 𝛼 admits a cocartesian

lift 𝑓∶ 𝑥 → 𝑦 if and only if there is a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B such that 𝑠∗𝑖 𝛼
admits a cocartesian lift 𝑓𝑖 ∶ 𝑠∗𝑖 𝑥 → 𝑦𝑖 for each 𝑖.
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4.1. Cocartesian fibrations

Corollary 4.1.2.10. Let 𝑝∶ P → C and 𝑞∶ Q → C be cocartesian fibrations and
let ℎ∶ P → Q be a cocartesian functor over C. Then ℎ is an equivalence precisely if
it is a fibre-wise equivalence, i.e. if for every object 𝑐∶ 𝐴 → C in context 𝐴 ∈ B the
induced map ℎ|𝑐 ∶ P|𝑐 → Q|𝑐 between the fibres is an equivalence.

Proof. Suppose that ℎ is a fibre-wise equivalence. Then ℎ is certainly essentially

surjective, so it suffices to show that it is fully faithful as well. To that end, let

𝑥, 𝑦∶ 𝐴 ⇉ P be two objects in P. We wish to show that the induced map

mapP(𝑥, 𝑦) → mapQ(ℎ(𝑥), ℎ(𝑦)) (∗)

is an equivalence in B/𝐴. Let 𝑐 = 𝑝(𝑥) and 𝑑 = 𝑝(𝑦). Then the above map

lies over mapC(𝑐, 𝑑), which in particular implies that it arises as a retract of its

pullback along the projection mapC(𝑐, 𝑑) ×𝐴 mapC(𝑐, 𝑑) → mapC(𝑐, 𝑑). Hence,

by using Remark 2.3.2.1, we may assume (upon replacing B/𝐴 with B/mapC(𝑐,𝑑)
)

that (1) there exists a map 𝛼∶ 𝑐 → 𝑑 in context 𝐴 and that (2) we only need to

check that the fibre of (∗) over 𝛼 is an equivalence. Using Proposition 4.1.2.7,

we may choose a cocartesian lift 𝑓∶ 𝑥 → 𝑧 of 𝛼 in P. By Remark 4.1.2.8 and the

assumption that ℎ is a cocartesian functor, the map ℎ(𝑓 ) must be cocartesian as

well. Therefore, we obtain a pullback square

mapP(𝑧, 𝑦) mapQ(ℎ(𝑧), ℎ(𝑦))

mapP(𝑥, 𝑦) mapQ(ℎ(𝑥), ℎ(𝑦))

𝑓 ∗ ℎ(𝑓 )∗

in which the upper horizontal map lies over mapC(𝑑, 𝑑), such that its fibre over

id𝑑 coincides with the fibre of mapP(𝑥, 𝑦) → mapQ(ℎ(𝑥), ℎ(𝑦)) over the object

𝛼∶ 𝐴 → mapC(𝑐, 𝑑). We may therefore assume without loss of generality 𝑐 = 𝑑
and 𝛼 = id𝑑. Thus the claim follows from the assumption that ℎ|𝑑 is fully faithful.

Remark 4.1.2.11. If 𝑝∶ P → C is a functor between B-categories, we can define

a map 𝑓∶ 𝑦 → 𝑥 in P to be cartesian if it is cocartesian when viewed as a map

𝑥 → 𝑦 in Pop. Explicitly, this amounts to the condition that the commutative
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4. Cocartesian fibrations and the straightening equivalence

square

P/𝑦 P/𝑥

C/𝑑 C/𝑐

𝑓!

𝑝 𝑝
𝛼!

(where 𝛼∶ 𝑑 → 𝑐 is the image of 𝑓 along 𝑝) is a pullback. The results in this

section can therefore be dualised to cartesian fibrations, with cartesian maps in

place of cocartesian maps.

4.2. The marked model for cocartesian fibrations

As opposed to left fibrations between B-categories, cocartesian fibration do not

arise as the right complement of a factorisation system in Cat(B). In order to

rectify this, one must treat cocartesian maps as extra data. This naturally leads

us to the study of marked simplicial objects in B, which are an internal (and

higher-categorical) analogue of marked simplicial sets as studied in [49, § 3.1].

In Section 4.2.1 we introduce the ∞-topos of marked simplicial objects in B

and study its basic properties. In Section 4.2.2 and Section 4.2.3, we study the

factorisation system in the ∞-topos of marked simplicial objects that gives rise to

the desired model for cocartesian fibrations. In Section 4.2.4, we discuss how left

fibrations can be recovered in the marked model. Finally, Section 4.2.5 features

a discussion of the notion of marked proper and marked smooth maps, which

will be important for our study of the B-category of cocartesian fibrations over a

fixed base B-category.

4.2.1. Marked simplicial objects

Recall from Appendix A.1 the definition of the marked simplex (∞-)category Δ+.

It comes equipped with a fully faithful functor 𝜄 ∶ Δ ↪→ Δ+ that admits both a left

adjoint ♭ and a right adjoint ♯. Moreover, there is a single object in Δ+ that is not

contained in the essential image of 𝜄; we will denote this object by +. We may

now define:

Definition 4.2.1.1. A marked simplicial object in B is a functor Δop
+ → B. We

denote by B+
Δ = Fun(Δop

+ ,B) the ∞-topos of marked simplicial objects in B.
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Remark 4.2.1.2. Analogous to the case of simplicial objects in B, postcomposi-

tion with the global sections functor induces a geometric morphism

Γ∶ B+
Δ → Ani+Δ,

which in particular implies that the ∞-topos B+
Δ is tensored and powered over

Ani+Δ. For ⟨𝑛⟩ ∈ Δ, we will denote by Δ𝑛
+ the object in Ani+Δ that is represented

by 𝜄⟨𝑛⟩, and we will denote by Δ+
+ the marked simplicial ∞-groupoid that is

represented by +. As usual, we will implicitly identify such marked simplicial

∞-groupoids with the associated constant marked simplicial objects in B. Note

that analogously as in the case of simplicial objects in B, the identity functor on

B+
Δ is equivalent to the composition ev0 ∘(−)Δ

•
+ . In other words, for every marked

simplicial object 𝑃 in B there is an equivalence 𝑃• ≃ (𝑃Δ•
+)0 which is natural in 𝑃.

By precomposition, the restriction functor (−)|Δ = 𝜄∗ ∶ B+
Δ → BΔ admits both

a left adjoint (−)♭ and a right adjoint (−)♯, both of which are fully faithful. We

denote by (−)♯ the right adjoint of (−)♯ that is given by right Kan extension along

♯. There is also a further left adjoint (−)♭ of (−)♭ given by left Kan extension

along ♭, but we will not need this functor. Note that applying the unit of the

adjunction (−)|Δ ⊣ (−)♯ to (−)♭ gives rise to a canonical morphism (−)♭ → (−)♯.
Explicitly, this map is given by precomposition with ♭𝜖∶ ♯ ≃ ♭𝜄♯ → ♭, where 𝜖 is
the counit of the adjunction 𝜄 ⊣ ♯.

Remark 4.2.1.3. Since the map ♭𝜖∶ ♯ → ♭ evaluates to the identity on ⟨0⟩, the
natural morphism (−)♭ → (−)♯ is an equivalence when restricted to B ↪→ BΔ.

Observe that the fact that (−)♭ is left adjoint to (−)|Δ and therefore equivalent

to the functor of left Kan extension 𝜄! implies that there is a canonical equivalence

Δ•
+ ≃ (Δ•)♭ of functors Δ → B+

Δ. We will also need to identify the marked

simplicial objectΔ+
+. To that end, observe that there is an equivalence (Δ+

+)|Δ ≃ Δ1

and therefore a canonical morphism Δ+
+ → (Δ1)♯ in B+

Δ.

Lemma 4.2.1.4. The map Δ+
+ → (Δ1)♯ is an equivalence.

Proof. We can assume B ≃ Ani. By construction, the restriction functor (−)|Δ
carries the map Δ+

+ → (Δ1)♯ to an equivalence. As equivalences in Ani+Δ are
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detected object-wise, it therefore suffices to show that the evaluation of this map

at + ∈ Δ+ is an equivalence as well. On account of Yoneda’s lemma, this amounts

to showing that the morphism

mapΔ+
(+, +) → mapΔ(⟨1⟩, ⟨1⟩)

that is induced by the action of the functor ♯ on mapping ∞-groupoids is an

equivalence. In light of the explicit computation of mapΔ+
(+, +) in Appendix A.1,

this is immediate.

Remark 4.2.1.5. The canonical map Δ1
+ → Δ+

+ gives rise to a commutative

diagram

(Δ1
+)|♭Δ Δ1

+ (Δ1
+)|♯Δ

(Δ+
+)|♭Δ Δ+

+ (Δ+
+)|♯Δ

in which the two horizontal maps on the left are given by the counit of the

adjunction (−)♭ ⊣ (−)|Δ and the ones on the right are given by the unit of the

adjunction (−)|Δ ⊣ (−)♯. As Δ1
+ is in the essential image of (−)♭, the upper left

horizontal map is an equivalence, and by Lemma 4.2.1.4 the lower right horizontal

map is an equivalence too. Hence the morphism (Δ1)♭ → (Δ1)♯ recovers the

canonical map Δ1
+ → Δ+

+ upon identifying (Δ1)♭ ≃ Δ1
+ and Δ+

+ ≃ (Δ1)♯.

4.2.2. Marked left anodyne morphisms

The goal of this section is to construct a saturated class of maps inB+
Δ whose right

complement ought to model cocartesian fibrations. Our approach is in large parts

an adaptation of Lurie’s construction of the cocartesian model structure in [49,

§ 3.1], but as we work internally there will be some deviations. In particular, the

generators that we list in Definition 4.2.2.1 are slightly different from the class of

marked anodyne morphisms as defined in [49, Definition 3.1.1.1].

Definition 4.2.2.1. Amap inB+
Δ is said to bemarked left anodyne if it is contained

in the internal saturation of the following collection of maps:

1. (𝐼 2)♭ ↪→ (Δ2)♭;
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2. (𝐸1)♭ → 1;

3. (Δ1)♯ ⊔(Δ1)♭ (Δ1)♯ → (Δ1)♯;

4. 𝑑1 ∶ 1 ↪→ (Δ1)♯.

For practical purposes, we will need a slightly smaller set of generators for

the collection of marked left anodyne maps. In what follows, we shall adopt Jay

Shah’s notation in [77] and let ♮(Δ
𝑛)♭ = (Δ1)♯ ⊔(Δ1)♭ (Δ𝑛)♭ denote the pushout

of (Δ1)♭ → (Δ1)♯ along 𝑑{0,1} ∶ (Δ1)♭ ↪→ (Δ𝑛)♭ for every 𝑛 ≥ 2. We will use the

same notation for any subobject of Δ𝑛 that contains the edge {0, 1}.

Proposition 4.2.2.2. A map in B+
Δ is marked left anodyne if and only if it is

contained in the saturation of the following collection of maps:

1. (𝐼 2 ⊗ 𝐾)♭ ↪→ (Δ2 ⊗ 𝐾)♭ for all 𝐾 ∈ BΔ;

2. (𝐸1 ⊗ 𝐾)♭ → 𝐾♭ for all 𝐾 ∈ BΔ;

3. (Δ1 ⊗ 𝐴)♯ ⊔(Δ1⊗𝐴)♭ (Δ1 ⊗ 𝐴)♯ → (Δ1 ⊗ 𝐴)♯ for all 𝐴 ∈ B;

4. ♮(Λ
2
0)

♭ ⊗ 𝐴 ↪→ ♮(Δ
2)♭ ⊗ 𝐴 for all 𝐴 ∈ B;

5. 𝑑1 ∶ 𝐴♯ ↪→ (Δ1 ⊗ 𝐴)♯ for all 𝐴 ∈ B;

6. (𝐼 2 ⊗ 𝐴)♯ ↪→ (Δ2 ⊗ 𝐴)♯ for all 𝐴 ∈ B.

We will spread out the proof of Proposition 4.2.2.2 over Lemma 4.2.2.4 and

Lemma 4.2.2.6. Both of them will make repeated use of the following basic

observation:

Lemma 4.2.2.3. Let
𝐾 𝑀

𝐿 𝑁

𝑓 𝑔

be a commutative square in B+
Δ such that 𝑓 |Δ and 𝑔|Δ are equivalences. Then the

square is a pushout if and only if it becomes a pushout after evaluation at + ∈ Δ+.
In particular, if 𝐶 → 𝐷 is a map in BΔ, the map 𝐶♯ ⊔𝐶♭ 𝐷♭ → 𝐷♯ is an equivalence
if and only if 𝐶1 ⊔𝐶0

𝐷0 → 𝐷1 is an equivalence. An analogous result holds for
pullbacks.
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Proof. The square is a pushout if and only if its evaluation at each object in Δ+
is a pushout in B. Since all but the object + ∈ Δ+ are contained in the essential

image of the inclusion Δ ↪→ Δ+ and since the functor (−)|Δ by assumption carries

the vertical maps to equivalences, the first claim follows. As for the second claim,

it suffices to observe that the map 𝐶1 ⊔𝐶0
𝐷0 → 𝐷1 is precisely the evaluation of

𝐶♯ ⊔𝐶♭ 𝐷♭ → 𝐷♯ at + ∈ Δ+.

Lemma 4.2.2.4. The internal saturation of the maps in (1)–(3) in Definition 4.2.2.1
is equal to the saturation of the following maps:

1. (𝐼 2 ⊗ 𝐾)♭ ↪→ (Δ2 ⊗ 𝐾)♭ for all 𝐾 ∈ BΔ;

2. (𝐸1 ⊗ 𝐾)♭ → 𝐾♭ for all 𝐾 ∈ BΔ;

3. (Δ1 ⊗ 𝐴)♯ ⊔(Δ1⊗𝐴)♭ (Δ1 ⊗ 𝐴)♯ → (Δ1 ⊗ 𝐴)♯ for all 𝐴 ∈ B.

Proof. Let 𝑆 be the saturation of the maps in (1)–(3) in the lemma. As the internal

saturation of the maps in (1)–(3) in Definition 4.2.2.1 clearly contains S, it suffices

to prove the converse direction. We need to show that for every marked simplicial

object 𝐾, the map 𝑓 ⊗ id𝐾 is contained in 𝑆, where 𝑓 is one of the maps in (1)–(3)

in Definition 4.2.2.1. As every marked simplicial object can be obtained as a small

colimit of objects of the form Δ𝑛
+ ⊗ 𝐴, where 𝐴 ∈ B and either 𝑛 ≥ 0 or 𝑛 = +,

we only need to show this for 𝐾 ∈ {(Δ𝑛)♭ | 𝑛 ≥ 0} ∪ {(Δ1)♯}. There are therefore

six cases:

1. For 𝑛 ≥ 0, the map (𝐼 2 × Δ𝑛)♭ ↪→ (Δ2 × Δ𝑛)♭ is by definition contained in 𝑆.

2. In order to show that the map (𝐼 2)♭ × (Δ1)♯ ↪→ (Δ2)♭ × (Δ1)♯ is contained

in 𝑆, it suffices to show that the map

((Δ2)♭ × (Δ1)♯) ⊔(𝐼 2)♭×(Δ1)♭ ((𝐼 2)♭ × (Δ1)♯) → (Δ2)♭ × (Δ1)♯

is contained in 𝑆. Using Lemma 4.2.2.3, one easily verifies that this map is

an equivalence.

3. The maps (𝐸1 × Δ𝑛)♭ → (Δ𝑛)♭ are by definition contained in 𝑆.

248



4.2. The marked model for cocartesian fibrations

4. Consider the commutative diagram

(Δ1 ⊔ Δ1)♭ (Δ1 ⊔ Δ1)♯

(Δ1 ⊔ Δ1)♭ (Δ1 ⊔ Δ1)♯

(Δ1)♭ (Δ1)♭ ⊔(Δ1⊔Δ1)♭ (Δ1 ⊔ Δ1)♯

(𝐸1 × Δ1)♭ (𝐸1)♭ × (Δ1)♯

id id

𝜙

in which the two vertical maps in the front square are induced by the

inclusion of the two points of 𝐸1. Since Lemma 4.2.2.3 implies that the

front square in this diagram is a pushout, the map 𝜙 is obtained as a pushout

of maps that are contained in 𝑆 and must therefore be in 𝑆 too. Hence,

to show that (𝐸1)♭ × (Δ1)♯ → (Δ1)♯ is contained in 𝑆, it suffices to show

that (Δ1)♭ ⊔(Δ1⊔Δ1)♭ (Δ1 ⊔ Δ1)♯ → (Δ1)♯ is in 𝑆, which follows from the

observation that this is precisely the map in (3) in the case where 𝐴 ≃ 1.

5. Let us set 𝐿 = (Δ1)♯ ⊔(Δ1)♭ (Δ1)♯. We have a commutative diagram

⨆𝑖∈⟨𝑛⟩(Δ
1)♭ ⊔ ⨆𝑖∈⟨𝑛⟩(Δ

1)♭ ⨆𝑖∈⟨𝑛⟩(Δ
1)♯ ⊔ ⨆𝑖∈⟨𝑛⟩(Δ

1)♯

(Δ1 × Δ𝑛)♭ ⊔ (Δ1 × Δ𝑛)♭ ((Δ1)♯ × (Δ𝑛)♭) ⊔ ((Δ1)♯ × (Δ𝑛)♭)

⨆𝑖∈⟨𝑛⟩(Δ
1)♭ ⨆𝑖∈⟨𝑛⟩ 𝐿

(Δ1 × Δ𝑛)♭ 𝐿 × (Δ𝑛)♭

in which both the front and the back square are pushouts. By making

use of Lemma 4.2.2.3, one moreover easily verifies that the top square is

a pushout too, which implies that the bottom square is one as well. As a
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consequence, we obtain a commutative diagram

⨆𝑖∈⟨𝑛⟩(Δ
1)♭ ⨆𝑖∈⟨𝑛⟩ 𝐿 ⨆𝑖∈⟨𝑛⟩(Δ

1)♯

(Δ1 × Δ𝑛)♭ 𝐿 × (Δ𝑛)♭ (Δ1)♯ × (Δ𝑛)♭

in which the left square is cocartesian. Since the map 𝐾 → (Δ1)♯ is

contained in 𝑆, we conclude that the map 𝐾 × (Δ𝑛)♭ → (Δ1)♯ × (Δ𝑛)♭ is an

element of 𝑆 whenever the right square is a pushout diagram. This follows

from the observation that the outer square of this diagram is cocartesian,

which is easily verified using Lemma 4.2.2.3.

6. Let again 𝐾 = (Δ1)♯ ⊔(Δ1)♭ (Δ1)♯ and consider the commutative diagram

7. Let again 𝐿 = (Δ1)♯ ⊔(Δ1)♭ (Δ1)♯ and consider the commutative diagram

(Δ1 ⊔ Δ1)♭ 𝐿 × (Δ1)♭ (Δ1 × Δ1)♭

(Δ1 ⊔ Δ1)♯ 𝐿 × (Δ1)♯ (Δ1)♭ × (Δ1)♯

in which the two horizontal maps on the left are induced by the inclusion

of the two points of 𝐿0. Using Lemma 4.2.2.3, one finds that the composite

square is cocartesian, and the fact that the two horizontal maps on the left

induce an equivalence when evaluated at + ∈ Δ+ similarly implies that

the left square is a pushout too. We thus conclude that the right square is

cocartesian. As the upper right horizontal morphism is contained in 𝑆, this
shows that the map 𝐿 × (Δ1)♯ → (Δ1)♭ × (Δ1)♯ is in 𝑆 as well.

Remark 4.2.2.5. Note that the internal saturation of the maps in (1)–(3) in

Definition 4.2.2.1 also contains the map 𝐾♯ ⊔𝐾♭ 𝐾♯ → 𝐾♯ for every simplicial

object 𝐾. In fact, this follows from the observation that this map arises as a retract

of the morphism

(Δ1 ⊗ 𝐾)♯ ⊔(Δ1⊗𝐾)♭ (Δ1 ⊗ 𝐾)♯ → (Δ1 ⊗ 𝐾)♯.
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Lemma 4.2.2.6. Let 𝑆 be a saturated class of maps in B+
Δ that contains the internal

saturation of the maps in (1)–(3) in Definition 4.2.2.1. Then 𝑆 contains the internal
saturation of 𝑑1 ∶ 1 ↪→ (Δ1)♯ if and only if it contains the following maps:

1. ♮(Λ
2
0)

♭ ⊗ 𝐴 ↪→ ♮(Δ
2)♭ ⊗ 𝐴 for all 𝐴 ∈ B;

2. 𝑑1 ∶ 𝐴♯ ↪→ (Δ1 ⊗ 𝐴)♯ for all 𝐴 ∈ B;

3. (𝐼 2 ⊗ 𝐴)♯ ↪→ (Δ2 ⊗ 𝐴)♯ for all 𝐴 ∈ B.

Proof. Suppose first that 𝑆 contains the internal saturation of 𝑑1 ∶ 1 ↪→ (Δ1)♯.
There are now three cases to consider:

1. Let 𝐾 → 𝐿 be the unique map in B+
Δ that fits into the diagram

(Λ2
0)

♭ (Δ2)♭

♮(Λ
2
0)

♭
♮(Δ

2)♭

(Δ1 × Λ2
0)

♭ 𝐾 (Δ1 × Δ2)♭

(Δ1)♯ × ♮(Λ
2
0)

♭ 𝐿 (Δ1)♯ × ♮(Δ
2)♭

𝑑1
𝑑1

𝑑1
𝑑1

such that both the front and the back square is a pushout. Then the

inclusion 𝐿 ↪→ (Δ1)♯ × ♮(Δ
2)♭ is contained in 𝑆. We claim that the inclusion

♮(Λ
2
0)

♭ ↪→ ♮(Δ
2)♭ is a retract of this map. To see this, first note that

the two squares on the bottom of the above diagram are cocartesian by

Lemma 4.2.2.3. Now let 𝑟∶ Δ1 × Δ2 → Δ2 be the map given by 𝑟(0, 1) = 0
and 𝑟(𝑘, 𝑙) = 𝑙 else. The 𝑟♭ restricts to a map (𝑟 ′)♭ ∶ 𝐾 → (Λ2

0)
♭. We obtain

a commutative diagram

(Λ2
0)

♭ 𝐾 (Λ2
0)

♭

(Δ2)♭ (Δ1 × Δ2)♭ (Δ2)♭

♮(Λ
2
0)

♭ 𝐿 ♮(Λ
2
0)

♭

♮(Δ
2)♭ (Δ1)♯ × ♮(Δ

2)♭ ♮(Δ
2)♭

𝑑0 (𝑟 ′)♭

𝑑0 𝑟♭

𝑑0
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in which the upper row is a retract diagram. Since the lower row is obtained

as a pushout of the upper row, the claim follows. As a consequence, the

maps in (1) can be realised as retracts of maps in 𝑆, which shows that they

too must be contained in 𝑆.

2. The maps 𝑑1 ∶ 𝐴♯ ↪→ (Δ1 ⊗ 𝐴)♯ are by definition contained in 𝑆.

3. Note that the map 𝑑{0,1} ∶ (Δ1 ⊗ 𝐴)♯ ↪→ (𝐼 2 ⊗ 𝐴)♯ is a pushout of the

inclusion 𝑑1 ∶ 𝐴♯ ↪→ (Δ1 ⊗ 𝐴)♯ and therefore contained in 𝑆. Hence,

to show that the maps in (3) are in 𝑆, it suffices to prove that the map

𝑑{0,1} ∶ (Δ1 ⊗ 𝐴)♯ ↪→ (Δ2 ⊗ 𝐴)♯ is an element of 𝑆. This in turn fol-

lows from the observation that this map is a retract of the morphism

𝑑1 ∶ (Δ1 ⊗ 𝐴)♯ ↪→ (Δ1 ⊗ (Δ1 ⊗ 𝐴))♯.

We now show the converse inclusion. As in the proof of Lemma 4.2.2.4, we only

need to show that the map 𝑑1 ∶ 𝐾 ↪→ (Δ1)♯ ⊗ 𝐾 is contained in 𝑆 for every

𝐾 ∈ {(Δ𝑛 ⊗ 𝐴)♭ | 𝑛 ≥ 0, 𝐴 ∈ B} ∪ {(Δ1 ⊗ 𝐴)♯ | 𝐴 ∈ B}.

As 𝑑1 ∶ 𝐴♯ ↪→ (Δ1⊗𝐴)♯ is contained in 𝑆, we can replaceB byB/𝐴 and therefore

always assume 𝐴 ≃ 1. Moreover, since 𝑆 by assumption contains the internal

saturation of (𝐼 2)♭ ↪→ (Δ2)♭, the map (𝐼 𝑛)♭ ⊗𝐾 ↪→ (Δ𝑛)♭ ⊗𝐾 is in 𝑆 too, for every

integer 𝑛 ≥ 2 (see Lemma 1.2.3.5). Thus, if 𝑓 ∈ 𝑆 is an arbitrary map such that

id(Δ1)♭ ⊗𝑓 is contained in 𝑆, the map id(Δ𝑛)♭ ⊗𝑓 must be in 𝑆 too for every integer

𝑛 ≥ 0. In total, these considerations allow us to assume 𝐾 ∈ {(Δ1)♭, (Δ1)♯}. There
are therefore two cases:

1. To show that 𝑑1 ∶ (Δ1)♭ ↪→ (Δ1)♯ × (Δ1)♭ is contained in 𝑆, first note that

the codomain of this map is given by the pushout

(Δ1 ⊔ Δ1)♭ (Δ1 ⊔ Δ1)♯

(Δ1 × Δ1)♭ (Δ1)♭ × (Δ1)♯.

(𝑑1×id,𝑑0×id)

Therefore, by using the decomposition Δ1 × Δ1 ≃ Δ2 ⊔Δ1 Δ2, we obtain an

equivalence of marked simplicial objects (Δ1)♭ × (Δ1)♯ ≃ 𝐻 ⊔(Δ1)♭ 𝐾, where
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4.2. The marked model for cocartesian fibrations

𝐻 and 𝐾 are defined as the pushouts

(Δ1)♭ (Δ1)♯ (Δ1)♭ (Δ1)♯

(Δ2)♭ 𝐻 (Δ2)♭ 𝐾.

𝑑 {1,2} 𝑑 {0,1}

With respect to this identification, the inclusion 𝑑1 ∶ (Δ1)♭ ↪→ (Δ1)♯×(Δ1)♭

is obtained by the composition

(Δ1)♭
𝑑 {0,1}
↪−−−→ 𝐻 ↪→ 𝐻 ⊔(Δ1)♭ 𝐾.

It therefore suffices to show that 𝑑{0,1} ∶ (Δ1)♭ ↪→ 𝐻 and 𝑑{0,2} ∶ (Δ1)♭ ↪→ 𝐾
are contained in 𝑆. We begin with the first map. Observe that this morphism

is equivalent to the composition

(Δ1)♭
𝑑 {0,1}
↪−−−→ (Δ1)♯ ⊔(Δ1)♭ (𝐼 2)♭ ↪→ (Δ1)♯ ⊔(Δ1)♭ (Δ2)♭.

Here the right map is of the form (1) in Definition 4.2.2.1 and therefore

included in 𝑆. The left map, on the other hand, is obtained as a pushout

of 𝑑1 ∶ (Δ0)♯ ↪→ (Δ1)♯, hence contained in 𝑆 too. In order to show that

𝑑{0,2} ∶ (Δ1)♭ ↪→ 𝐾 defines an element of 𝑆, it suffices to observe that this

map can be obtained as the composition

(Δ1)♭
𝑑 {0,2}"
↪−−−−→ ♮(Λ

2
0)

♭ ↪→ ♮(Δ
2)♭

in which the right map is of the form (1) and therefore in 𝑆 and in which

the left map is a pushout of 𝑑1 ∶ (Δ0)♯ ↪→ (Δ1)♯, so contained in 𝑆 as well.

2. Finally, we show that the map 𝑑1 ∶ (Δ1)♯ ↪→ (Δ1 × Δ1)♯ is contained in 𝑆.
On account of the commutative diagram

(Δ1)♯ (Δ2)♯

(Δ0)♯ (Δ1)♯

(Δ2)♯ (Δ1 × Δ1)♯

(Δ0)♯ (Δ1)♯

𝑑 {0,2}

𝑑 {0,2}
id

𝑑1
𝑑1 𝑑 {0,1}

𝑑1

𝑑 {0}

id
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in which both the front and the back square is a pushout and in which

the map 𝑑1 ∶ (Δ0)♯ ↪→ (Δ1)♯ is contained in 𝑆, it will be sufficient to show

that the two maps 𝑑{0} ∶ (Δ0)♯ ↪→ (Δ2)♯ and 𝑑{0,1} ∶ (Δ1)♯ ↪→ (Δ2)♯ are

contained in 𝑆 as well. As the first of these two maps can be factored into

𝑑1 ∶ (Δ0)♯ ↪→ (Δ1)♯ followed by 𝑑{0,1} ∶ (Δ1)♯ ↪→ (Δ2)♯, we only need to

prove this for the second map. By in turn factoring this morphism as

(Δ1)♯
𝑑 {0,1}
↪−−−→ (𝐼 2)♯ ↪→ (Δ2)♯,

this is a consequence of the observation that the map (Δ1)♯ ↪→ (𝐼 2)♯ is

obtained as a pushout of 𝑑1 ∶ (Δ0)♯ ↪→ (Δ1)♯.

Proof of Proposition 4.2.2.2. Combine Lemma 4.2.2.4 and Lemma 4.2.2.6.

4.2.3. Marked cocartesian fibrations

In this section we turn to studying the right complement of the class of marked

left anodyne morphisms in B+
Δ.

Definition 4.2.3.1. A map in B+
Δ is a marked cocartesian fibration if it is right

orthogonal to the class of marked left anodyne maps. We write

Cocart+ ↪→ Fun(Δ1,B+
Δ)

for the full cartesian subfibration over B+
Δ that is spanned by the marked cocarte-

sian fibrations.

The following proposition shows that marked cocartesian fibrations faith-

fully generalise cocartesian fibrations of B-categories. The analogous result

for cocartesian fibrations of ∞-categories appears as (the dual of) [49, Proposi-

tion 3.1.1.6].

Proposition 4.2.3.2. For any B-category C, a map 𝑝∶ 𝑃 → C♯ is a marked
cocartesian fibration if and only if 𝑃|Δ is a B-category, the map 𝑝|Δ is a cocartesian
fibration in Cat(B), and the map 𝑃+ → 𝑃1 is a monomorphism that identifies 𝑃+
with the subobject of cocartesian morphisms of 𝑝|Δ.
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Proof. The map 𝑝 being right orthogonal to the maps of the form (1) and (2) in

Proposition 4.2.2.2 is equivalent to 𝑃|Δ being a B-category. Moreover, 𝑝 is right

orthogonal to the maps in (3) in Proposition 4.2.2.2 if and only if 𝑃+ → 𝑃1 is a

monomorphism in B.

Suppose now that 𝑝 is right orthogonal to the morphisms that are listed

in (1)–(3) in Proposition 4.2.2.2, and let us denote by P = 𝑃|Δ the underlying

B-category of 𝑃. The condition that 𝑝 is right orthogonal to the maps in (4) in

Proposition 4.2.2.2 is now equivalent to the commutative diagram

𝑃+ ×P1
P2 C1 ×C1

C2

𝑃+ ×P1
(PΛ

2
0)0 C1 ×C1

(CΛ2
0)0

being a pullback square. By employing Proposition 4.1.2.5, this is equivalent

to the condition that the inclusion 𝑃+ ↪→ P1 defines a cocartesian morphism

in P = 𝑃|Δ. Therefore, if 𝑝 is in addition right orthogonal to the maps in (5)

in Proposition 4.2.2.2, we conclude from Proposition 4.1.2.7 that 𝑝|Δ must be a

cocartesian fibration. Furthermore, under these conditions every cocartesian map

factors through 𝑃+ ↪→ P1. To see this, suppose that 𝑓∶ 𝑥 → 𝑦 is a cocartesian

morphism in P in context 𝐴 ∈ B, and let 𝛼∶ 𝑐 → 𝑑 be the image of 𝑓 along 𝑝|Δ.
Using the maps in (5) in Proposition 4.2.2.2, there exists a marked lift of 𝛼, i.e.
a map 𝑔∶ 𝑥 → 𝑧 in P that is contained in 𝑃+ ↪→ P1 and that is sent to 𝛼 by 𝑝|Δ.
Since 𝑔 is marked and therefore cocartesian, Proposition 4.1.2.5 implies that one

can find a map ℎ∶ 𝑧 → 𝑦 in P that is sent to id𝑑 by 𝑝|Δ such that ℎ𝑔 ≃ 𝑓. This
implies that ℎ must be cocartesian as well and therefore an equivalence. Thus 𝑓
is marked too, i.e contained in the image of 𝑃+ ↪→ P1.

So far, we have shown that if 𝑝 is a marked cocartesian fibration, then the

simplicial object 𝑃|Δ is a B-category and 𝑝|Δ is a cocartesian fibration such that

𝑃+ → 𝑃1 is a monomorphism that identifies 𝑃+ with the subobject of cocartesian

maps in 𝑃|Δ. Conversely, if the map 𝑝 satisfies these conditions, the above

argumentation shows that the proof is complete once we show that 𝑝 is right

orthogonal to the maps in (5) and (6) in Proposition 4.2.2.2. Since orthogonality

to the maps in (5) precisely means that the map 𝑃+ → 𝑃0 ×𝐶0
𝐶1 is an equivalence,

this is immediate by the assumption that the inclusion 𝑃+ ↪→ 𝑃1 identifies 𝑃+
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with the subobject of cocartesian maps in 𝑃|Δ, cf. Remark 4.1.2.8. Orthogonality

to the maps in (6), on the other hand, translates into the condition that the map

(𝑃♯)2 → 𝑃+×𝑃0 𝑃+ is an equivalence. To show this, first note that by Lemma 4.2.2.3

the commutative square

(Δ1 ⊔ 𝐼 2)♭ (Δ1 ⊔ 𝐼 2)♯

(Δ2)♭ (Δ2)♯

is a pushout. Here the map Δ1 ⊔ 𝐼 2 → Δ2 is given by 𝑑{0,2} on the first summand

and by the canonical inclusion on the second one. One therefore obtains a

pullback square
(𝑃♯)2 𝑃+

𝑃+ ×𝑃0 𝑃+ 𝑃1

in which the lower horizontal map is given by the composition

𝑃+ ×𝑃0 𝑃+ ↪→ 𝑃1 ×𝑃0 𝑃1 ≃ 𝑃2
𝑑{0,2}
−−−−→ 𝑃1.

Since cocartesian maps in 𝑃|Δ are closed under composition (see Remark 4.1.2.4),

we thus conclude that the lower horizontal map factors through the inclusion

𝑃+ ↪→ 𝑃1. This shows that the map (𝑃♯)2 ↪→ 𝑃+ ×𝑃0 𝑃+ is an equivalence, as

desired.

As a consequence of Proposition 4.2.3.2, we obtain a commutative square

Cocart+ ×B+
Δ
Cat(B) Cocart

Fun(Δ1,B+
Δ) Fun(Δ1,BΔ)

(−)|Δ

(−)|Δ

Out next goal is to show:

Proposition 4.2.3.3. The functor (−)|Δ ∶ Cocart+ ×B+
Δ
Cat(B) → Cocart is an

equivalence.
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The proof of Proposition 4.2.3.3 will need the following lemma:

Lemma 4.2.3.4. Given two presheaves 𝜎, 𝜏 ∈ PShB(Δ2) such that 𝜏 (1) → 𝜏(0) is a
monomorphism in B, the map

mapPShB(Δ2)(𝜎 , 𝜏 ) → mapPShB(Δ1)(𝑑
∗
{0,2}𝜎, 𝑑

∗
{0,2}𝜏 )

is a monomorphism in Ani whose image consists of those maps 𝑑∗{0,2}𝜎 → 𝑑∗{0,2}𝜏 for
which the composition 𝜎(1) → 𝜎(0) → 𝜏(0) takes values in 𝜏 (1) ↪→ 𝜏(0).

Proof. By making use of the adjunction 𝑠∗{0,1} ⊣ 𝑑∗{0,2}, the map is equivalently

given by postcomposition with the adjunction unit 𝜂∶ 𝜏 → 𝑠∗{0,1}𝑑
∗
{0,2}𝜏 which is

explicitly given by the commutative diagram

𝜏 (0)

𝜏 (1)

𝜏 (2) 𝜏 (0)

𝜏 (2) 𝜏 (0).

id

id id

Since 𝜏 (1) ↪→ 𝜏(0) is by assumption a monomorphism, the entire map 𝜂 must

be a monomorphism too. As a consequence, postcomposition with 𝜂 defines a

monomorphism in Ani, and it is clear from the description of 𝜂 that the image of

this map is of the desired form.

Proof of Proposition 4.2.3.3. We first show that the functor is fully faithful. To that

end, let us fix two objects 𝑝∶ 𝑃 → C♯ and 𝑞∶ 𝑄 → D♯ in Cocart+ ×B+
Δ
Cat(B).

We then obtain a pullback square

mapCocart+(𝑝, 𝑞) mapFun(Δ1,BΔ)
(𝑝|Δ, 𝑞|Δ)

mapFun(Δ1,PShB(Δ2))(𝜈
∗𝑝, 𝜈∗𝑞) mapFun(Δ1,PShB(Δ1))(𝜎

∗
0 𝑝|Δ, 𝜎

∗
0 𝑞|Δ).

By Lemma 4.2.3.4, the lower horizontal map is a monomorphism, hence the

upper horizontal map is one as well. The lemma furthermore implies that a map
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𝑝|Δ → 𝑞|Δ is contained in the image of the upper horizontal map if and only if

the composition 𝑃+ ↪→ 𝑃1 → 𝑄1 takes values in 𝑄+, which by Proposition 4.2.3.2

is the case precisely when the map 𝑝|Δ → 𝑞|Δ is a cocartesian functor. Hence the

restriction functor (−)|Δ induces an equivalence

mapCocart+(𝑝, 𝑞) ≃ mapCocart(𝑝|Δ, 𝑞|Δ)

and is thus fully faithful.

We complete the proof by showing that the functor is essentially surjective. If

𝑝∶ P → C is a cocartesian fibration in Cat(B) and if 𝐸 ↪→ P1 denotes the subobject

that is spanned by the cocartesian maps, Remark 4.1.2.4 implies that the map

𝑠0 ∶ P0 → P1 factors through 𝐸 and therefore determines a map (Δ2)op → B

whose restriction along 𝑑{0,2} ∶ Δ1 ↪→ Δ2 recovers 𝑠0 ∶ P0 → P1. In light of

the equivalence B+
Δ ≃ BΔ ×PShB(Δ1) PShB(Δ2), we therefore obtain a marked

simplicial object P♮ with P♮+ = 𝐸 such that P♮|Δ ≃ P. By construction, the object

P♮ comes equipped with a map 𝑝♮ ∶ P♮ → C♯. By Proposition 4.2.3.2, we now

conclude that 𝑝♮ defines the desired object of Cocart+ that satisfies 𝑝♮|Δ ≃ 𝑝.

Corollary 4.2.3.5. There is a pullback square

Cocart Cocart+

Cat(B) B+
Δ

(−)♮

(−)♯

of ∞-categories.

Example 4.2.3.6. If G is a B-groupoid, every functor of B-categories 𝑝∶ P → G

is a cocartesian fibration, and the subobject of cocartesian maps in P is given

by 𝑠0 ∶ P0 ↪→ P1. Hence Proposition 4.2.3.2 shows that the associated map

𝑝♭ ∶ P♭ → G♭ ≃ G♯ is a marked cocartesian fibration and can therefore be

identified with 𝑝♮ ∶ P♮ → G♯.

Remark 4.2.3.7. There is an evident way to dually define a factorisation system

of marked right anodyne maps and marked cartesian fibrations in B+
Δ. Since the

equivalence op∶ Δ ≃ Δ can be uniquely extended to an equivalence op∶ Δ+ ≃ Δ+
upon specifying that op carries the factorisation ⟨1⟩ → + → ⟨0⟩ to itself, we
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4.2. The marked model for cocartesian fibrations

may simply define a map 𝑓 in B+
Δ to be marked right anodyne if 𝑓 op is marked

left anodyne. Explicitly, the class of marked right anodyne maps is the internal

saturation of the maps in (1)–(3) in Definition 4.2.2.1 together with the map

4′) 𝑑0 ∶ 1 ↪→ (Δ1)♯.

A map 𝑓 in B+
Δ is then a marked cartesian fibration if it is right orthogonal to the

class of marked right anodynemaps, or equivalently if 𝑓 op is a marked cocartesian

fibration. We denote by Cart+ the associated cartesian fibration over B+
Δ. Note

that by similarly replacing the maps in (4) and (5) in Proposition 4.2.2.2, one

obtains an analogous collection of generators for the dual case. In particular,

Proposition 4.2.3.2 carries over to the case of cartesian fibrations, which implies

that we also have a pullback square

Cart Cart+

Cat(B) B+
Δ.

(−)♮

(−)♯

4.2.4. Marked left fibrations

In this section we discuss the marked analogue of the class of left fibrations

between simplicial objects inB. Wewill use this notion to show that left fibrations

form a coreflective subcategory of cocartesian fibrations.

Definition 4.2.4.1. Amap inB+
Δ ismarked initial if it is contained in the internal

saturation of the two maps 𝑑1 ∶ 1 ↪→ (Δ1)♭ and 𝑑1 ∶ 1 ↪→ (Δ1)♯.

Remark 4.2.4.2. On account of the commutative diagram

1 (Δ1)♭

(Δ1)♯,

𝑑1

𝑑1

the class of marked initial maps in B+
Δ is equivalent to the internal saturation of

the two maps 𝑑1 ∶ 1 ↪→ (Δ1)♭ and (Δ1)♭ ↪→ (Δ1)♯.

Proposition 4.2.4.3. Every marked left anodyne map is marked initial.
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4. Cocartesian fibrations and the straightening equivalence

Proof. We only need to show that the maps in (1)–(3) in Definition 4.2.2.1 are

marked initial. By Lemma 4.2.2.4, we may equivalently show this for the maps

in (1)–(3) in Lemma 4.2.2.4. The case of the first two maps is an immediate

consequence of Lemma 2.1.1.5. As for the map (Δ1)♯ ⊔(Δ1)♭ (Δ1)♯ → (Δ1)♯, this
follows from the fact that (Δ1)♭ ↪→ (Δ1)♯ is marked initial.

Definition 4.2.4.4. A map 𝑝∶ 𝑃 → 𝐶 in B+
Δ is called a marked left fibration if

it is internally right orthogonal to both 𝑑1 ∶ 1 ↪→ (Δ1)♭ and 𝑑1 ∶ 1 ↪→ (Δ1)♯. We

write LFib+ ↪→ Fun(Δ1,B+
Δ) for the full cartesian subfibration over B+

Δ that is

spanned by the marked left fibrations.

As a consequence of Proposition 4.2.2.2, one has:

Proposition 4.2.4.5. Every marked left fibration is marked cocartesian.

Lemma 4.2.4.6. Let 𝑆 be the saturation of the maps 𝑑1 ∶ 𝐾♭ ↪→ (Δ1 ⊗ 𝐾)♭ for
every 𝐾 ∈ BΔ and (Δ1 ⊗ 𝐴)♭ → (Δ1 ⊗ 𝐴)♯ for all 𝐴 ∈ B. Then 𝑆 contains every
marked initial map.

Proof. We begin by showing that 𝑆 contains the internal saturation of the inclu-

sion 𝑑1 ∶ 1 ↪→ (Δ1)♭. To that end, note that 𝑆 is stable under taking products

with any object 𝐴 ∈ B. Therefore, it suffices to show that 𝑆 contains the map

𝑑1 ∶ (Δ1)♯ ↪→ (Δ1)♭ × (Δ1)♯. The pushout square

(Δ1 ⊔ Δ1)♭ (Δ1 ⊔ Δ1)♯

(Δ1 × Δ1)♭ (Δ1)♭ × (Δ1)♯
(𝑑1,𝑑0)

implies that (Δ1 × Δ1)♭ ↪→ (Δ1)♭ × (Δ1)♯ is in 𝑆. On account of the commutative

square

(Δ1)♭ (Δ1)♯

(Δ1 × Δ1)♭ (Δ1)♭ × (Δ1)♯,

𝑑1 𝑑1

we therefore conclude that the right vertical map must be contained in 𝑆 as well.

260



4.2. The marked model for cocartesian fibrations

We still need to show that 𝑆 also contains the internal saturation of the inclusion

𝑑1 ∶ 1 ↪→ (Δ1)♯. By Lemma 4.2.2.3, the commutative square

sk1(Δ𝑛)♭ sk1(Δ𝑛)♯

(Δ𝑛)♭ (Δ𝑛)♯

(where sk1(Δ𝑛) is the 1-skeleton of Δ𝑛, cf. Section 1.3.1) is a pushout for ev-

ery 𝑛 ≥ 2. Hence 𝑆 contains the map (Δ𝑛 ⊗ 𝐴)♭ → (Δ𝑛 ⊗ 𝐴)♯ for all 𝑛 ≥ 0
and all 𝐴 ∈ B and therefore also the maps 𝑑1 ∶ 𝐴♯ ↪→ (Δ𝑛 ⊗ 𝐴)♯. Using

Lemma 2.1.1.2, we conclude that for every 𝐾 ∈ BΔ the map 𝐾♯ ↪→ (Δ1⊗𝐾)♯ is an

element of 𝑆. To finish the proof, we now only need to verify that the morphism

𝑑1 ∶ (Δ𝑛)♭ ↪→ (Δ1)♯ × (Δ𝑛)♭ is in 𝑆 too. To that end, Lemma 2.1.1.5 implies that

the maps (𝐼 𝑛)♭ ↪→ (Δ𝑛)♭ are contained in 𝑆 and that we can therefore assume

𝑛 ∈ {0, 1}. By Remark 4.2.4.2, we can further reduce this to 𝑛 = 1. Now the

commutative square

1 (Δ1)♯

(Δ1)♭ (Δ1)♯ × (Δ1)♭
𝑑1

𝑑1

id ×𝑑1

𝑑1×id

and the first part of the proof show that the lower horizontal map is contained in

𝑆, as desired.

Proposition 4.2.4.7. A map 𝑝∶ 𝑃 → 𝐶 of marked simplicial objects in B is a
marked left fibration if and only if

1. the map 𝑝|Δ ∶ 𝑃|Δ → 𝐶|Δ is a left fibration of simplicial objects in B;

2. the commutative square

𝑃+ 𝑃1

𝐶+ 𝐶1

𝑝+ 𝑝1

is a pullback.
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4. Cocartesian fibrations and the straightening equivalence

Proof. Condition (1) is equivalent to 𝑝 being right orthogonal to the inclusion

𝑑1 ∶ 𝐾♭ ↪→ (Δ1 × 𝐾)♭ for all 𝐾 ∈ BΔ, whereas condition (2) is equivalent to 𝑝
being right orthogonal to the map (Δ1 ⊗ 𝐴)♭ → (Δ1 ⊗ 𝐴)♯ for all 𝐴 ∈ B. Hence

the result follows from Lemma 4.2.4.6.

Corollary 4.2.4.8. Let 𝐶 be a simplicial object in B. Then a map 𝑝∶ 𝑃 → 𝐶♯

is a marked left fibration if and only if the map 𝑃+ → 𝑃1 is an equivalence and
𝑝|Δ ∶ 𝑃|Δ → 𝐶 is a left fibration.

Proof. Since the map 𝐶♯
+ → 𝐶♯

1 is an equivalence, this follows immediately from

Proposition 4.2.4.7.

Remark 4.2.4.9. There is a dual version of Corollary 4.2.4.8 with (−)♭ in place

of (−)♯: a map 𝑝∶ 𝑃 → 𝐶♭ is a marked left fibration if and only if 𝑝|Δ is a left

fibration and 𝑃0 → 𝑃+ is an equivalence. To see this, note that 𝑃0 → 𝑃+ is an

equivalence precisely if 𝑝 is local with respect to 𝑠0 ∶ (Δ1 ⊗ 𝐴)♯ → 𝐴♯ for all

𝐴 ∈ B. As the latter map is a retraction of 𝑑1 ∶ 𝐴♯ → (Δ1 ⊗𝐴)♯, this condition is

equivalent to 𝑃 being local with respect to 𝑑1 ∶ 𝐴 → (Δ1 ⊗ 𝐴)♯. Since 𝐶♭ is local

with respect to this map as well, we conclude that 𝑃0 → 𝑃+ is an equivalence if and

only if 𝑝 is right orthogonal to 𝑑1 ∶ 𝐴 → (Δ1 ⊗ 𝐴)♯. By applying Lemma 4.2.4.6,

the claim now follows.

Recall from Section 2.1.1 that the collection of left fibrations in BΔ determines

a cartesian fibration LFib → BΔ. Corollary 4.2.4.8 now implies:

Corollary 4.2.4.10. The commutative square

LFib LFib+

BΔ B+
Δ

(−)♯

(−)♯

is a pullback diagram of ∞-categories.

As marked cocartesian fibrations are internally right orthogonal to the inclu-

sion 𝑑1 ∶ 1 ↪→ (Δ1)♯, the adjunction (−)♯ ⊣ (−)♯ ∶ Fun(Δ1,B+
Δ) ⇆ Fun(Δ1,BΔ)

restricts to an adjunction

(−)♯ ⊣ (−)♯ ∶ Cocart+ ⇆ LFib .
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Upon restriction to the full subcategory Cocart = Cocart+ ×B+
Δ
BΔ ↪→ Cocart+,

this yields:

Proposition 4.2.4.11. The inclusion LFib ↪→ Cocart admits a relative right adjoint
(−)♯ over BΔ.

Remark 4.2.4.12. By Corollary 4.2.3.5, the cartesian fibration Cocart → Cat(B)
as defined in Section 4.1.1 arises as the pullback of Cocart → BΔ along the

inclusion Cat(B) ↪→ BΔ. Therefore, our choice of using the same notation for

both fibrations should not lead to confusion.

Remark 4.2.4.13. As usual, one can dualise the notion of marked initial maps

and marked left fibrations in the evident way to obtain marked final maps and

marked right fibrations. All statements about marked left fibrations carry over to

analogous statements about marked right fibrations. In particular, upon defining

Cart = Cart+ ×B+
Δ
BΔ, one obtains an inclusion RFib ↪→ Cart that admits a relative

right adjoint (−)♯ ∶ Cart → RFib over BΔ as well.

Remark 4.2.4.14. If 𝑝∶ P → C is a cocartesian fibration, Proposition 4.2.3.2

implies that the adjunction counit P♯ → P is a monomorphism that identifies P♯
with the subcategory of P that is spanned by the subobject (P ↓C C)0 ↪→ P1 of

cocartesian maps.

4.2.5. Proper maps of marked simplicial objects

Recall from Section 2.1.4 that a map 𝑝∶ 𝑃 → 𝐶 between simplicial objects in B is

proper if for every base change 𝑞∶ 𝑄 → 𝐷 of 𝑝 along some map 𝑓∶ 𝐷 → 𝐶 the

lax square

LFib(𝐷) (BΔ)/𝐷

LFib(𝑄) (BΔ)/𝑄

𝑝∗

𝐿/𝐷

𝑞∗
𝐿/𝑄

commutes. In this section we will discuss the analogous notion of proper maps

between marked simplicial objects.
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4. Cocartesian fibrations and the straightening equivalence

Definition 4.2.5.1. Amap 𝑝∶ 𝑃 → 𝐶 inB+
Δ ismarked proper if for every cartesian

square
𝑄 𝑃

𝐷 𝐶

𝑞 𝑝

in B+
Δ the left lax square

Cocart+(𝐷) (B+
Δ)/𝐷

Cocart+(𝑄) (B+
Δ)/𝑄

𝑞∗

𝐿/𝐷

𝑞∗

𝐿/𝑄

(where 𝐿/𝐷 and 𝐿/𝑄 are the localisation functors) commutes.

Note that by the same argument as in the proof of Proposition 2.1.4.5, a map

𝑝∶ 𝑃 → 𝐶 inB+
Δ is marked proper if and only if 𝑝∗ ∶ (B+

Δ)/𝐶 → (B+
Δ)/𝑃 preserves

marked left anodyne morphisms.

Proposition 4.2.5.2. For every 𝐶, 𝐷 ∈ B+
Δ, the projection 𝐶 × 𝐷 → 𝐷 is marked

proper.

Proof. It suffices to show that the terminal map 𝜋𝐶 ∶ 𝐶 → 1 is marked proper,

which follows immediately from the fact that marked left anodyne morphisms

are internally saturated and therefore preserved by 𝜋∗
𝐶 .

Remark 4.2.5.3. Given any 𝐴 ∈ B, the forgetful functor (𝜋𝐴)! ∶ (B/𝐴)+Δ → B+
Δ

preserves marked proper maps. In fact, since (𝜋𝐴)! commutes with pullbacks,

this follows from the straightforward observation that this functor also preserves

the property of a map to be marked left anodyne. As a consequence, Proposi-

tion 4.2.5.2 also implies that the projection 𝐶 ×𝐴 𝐷 → 𝐷 is marked proper for all

𝐶, 𝐷 ∈ (B/𝐴)+Δ.

In Proposition 2.1.4.9, we showed that every right fibration between simplicial

objects in B is proper. Our next goal is to generalise this result to marked

simplicial objects. We begin with the following lemma, the proof of which we

learned from Denis-Charles Cisinski [18, Proposition 5.3.5].
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Lemma 4.2.5.4. Let C be a B-category and let

𝑄 P

𝐼 2 ⊗ C Δ2 ⊗ C

𝑞

𝑗

𝑝

𝑖

be a pullback square in BΔ in which 𝑝 is a right fibration. Then 𝑗 is contained in
the internal saturation of 𝐼 2 ↪→ Δ2 and 𝐸1 → 1.

Proof. Let 𝐿∶ BΔ → Cat(B) be the localisation functor. Since P is a B-category,

we obtain a factorisation 𝑄 → 𝐿(𝑄) → P of 𝑗, and our task is to show that the

second map is an equivalence. Note that as 𝑖 is an equivalence on level 0, so is 𝑗.
As a consequence, the map 𝐿(𝑄) → P is essentially surjective. Let us show that it

is fully faithful too. Consider the commutative square

RFib(𝑄) RFib(P)

RFib(𝐼 2 ⊗ C) RFib(Δ2 ⊗ C)

𝑗!

𝑞! 𝑝!

𝑖!

in which each arrow is the left adjoint of the corresponding pullback functor.

We claim that 𝑗! is an equivalence. To see this, note that applying the functor

𝑝! to the adjunction counit 𝑗!𝑗∗ → id recovers the adjunction counit of 𝑖! ⊣ 𝑖∗.
Since Theorem 2.2.1.1 implies that 𝑖∗ is an equivalence and as 𝑝! is conservative
since 𝑝 is a right fibration, we thus find that 𝑗!𝑗∗ → id is an equivalence. As a

consequence, 𝑗∗ is fully faithful. But 𝑖! being an equivalence and both 𝑝! and
𝑞! being conservative also implies that 𝑗! is conservative. As a result, 𝑗! must

be an equivalence. Upon applying the functor − × 𝐴 to the original pullback

square for any 𝐴 ∈ B, the above argumentation also shows that the functor

𝑔! ∶ RFib(𝑄 × 𝐴) → RFib(P × 𝐴) must be an equivalence. Together with Theo-

rem 2.2.1.1, this shows that restriction along 𝐿(𝑄) → P induces an equivalence

PSh
B
(P) ≃ PSh

B
(𝐿(𝑄)) of B-categories. In light of Corollary 3.1.3.3, this implies

that 𝐿(𝑄) → P is fully faithful, as desired.

Proposition 4.2.5.5. Every marked right fibration is marked proper.
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Proof. To begin with, note that as in Remark 2.2.1.3, the explicit description

of marked right fibrations from (the dual of) Proposition 4.2.4.7 and descent

in B immediately imply that marked right fibrations form a local class in B+
Δ.

Consequently, it suffices to prove that whenever there is a pullback square

𝑄 𝑃

𝐷 𝐶

𝑞

𝑔

𝑝
𝑓

in which 𝑓 is one of the maps in Proposition 4.2.2.2 and 𝑝 is a marked right

fibration, the map 𝑔 is marked left anodyne. We will first go through the maps

listed in Lemma 4.2.2.4:

1. We begin with the case where 𝑓 is the inclusion (𝐼 2⊗𝐾)♭ ↪→ (Δ2⊗𝐾)♭. As

every simplicial object inB is a colimit ofB-categories, we can assume that

𝐾 is a B-category. By Remark 4.2.4.9, the map 𝑃|♭Δ → 𝑃 is an equivalence.

As a consequence, to show that 𝑔 marked left anodyne, it suffices to show

that 𝑔|Δ is contained in the internal saturation of 𝐼 2 ↪→ Δ2 and 𝐸1 → 1,
which is a consequence of Lemma 4.2.5.4.

2. The case where 𝑓 is the map (𝐸1 ⊗ 𝐾)♭ → 𝐾♭ follows immediately from

the fact that marked left anodyne maps are stable under products.

3. Finally, we prove the case where 𝑓 is the map

(Δ1 ⊗ 𝐴)♯ ⊔(Δ1⊗𝐴)♭ (Δ1 ⊗ 𝐴)♯ → (Δ1 ⊗ 𝐴)♯.

By Corollary 4.2.4.8, the morphism 𝑃 → 𝑃|♯Δ is an equivalence. Let us use

the notation 𝑃 ′ = 𝑃|Δ and 𝑝′ = 𝑝|Δ. Then 𝑝 ≃ (𝑝′)♯. By Lemma 4.2.2.3

and the fact that right fibrations are conservative, the map

(𝑃 ′)♭ → (𝑃 ′)♯ ×(Δ1⊗𝐴)♯ (Δ1 ⊗ 𝐴)♭

is an equivalence. Therefore, the map 𝑔∶ 𝑄 → 𝑃 is equivalent to

(𝑃 ′)♯ ⊔(𝑃 ′)♭ (𝑃 ′)♯ → (𝑃 ′)♯.

By Remark 4.2.2.5, this map is marked left anodyne.
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By making use of Lemma 4.2.2.6, it now suffices to prove the case where 𝑓 is of the
form 𝑑1 ∶ 𝐾 ↪→ (Δ1)♯ ⊗ 𝐾 for an arbitrary 𝐾 ∈ B+

Δ . This is done in the same way

as in the proof of Proposition 2.1.4.9. Namely, the map 𝑔∶ 𝑄 → 𝑃 can be shown

to arise as a retract of the marked left anodyne map ((Δ1)♯⊗𝑄)⊔𝑄 𝑃 → (Δ1)♯⊗𝑃
and is therefore marked left anodyne itself.

Remark 4.2.5.6. In the situation of Proposition 4.2.5.5, note that the argument

in the last paragraph of its proof also works when 𝑝 is only a marked cartesian

fibration, as this argument only requires 𝑝 to be internally right orthogonal

to 𝑑0 ∶ 1 ↪→ (Δ1)♯. We will need this observation later for the proof of Theo-

rem 4.4.3.1.

Remark 4.2.5.7. One can dualise the discussion in this section tomarked smooth
maps: a map 𝑓 in B+

Δ is said to be marked smooth if 𝑓 op is marked proper.

Then Proposition 4.2.5.5 dualises to the statement that marked left fibrations are

smooth.

4.3. The B-category of cocartesian fibrations

The goal of this chapter is to construct and study theB-category of cocartesian fi-

brations over aB-category C. It will be useful to first adopt a slightly more global

perspective, i.e. to allow C to vary. Therefore, we begin in Section 4.3.1 by study-

ing the BΔ-category Grpd+
BΔ

of marked objects, which we use in Section 4.3.2 to

obtain the B-category of cocartesian fibrations over a fixed base B-category and

to show that it is tensored and powered over CatB. Lastly, Section 4.3.3 contains

a discussion of the existence of limits and colimits in this B-category.

4.3.1. TheBΔ-category of marked objects

Observe that the inclusion (−)♯ ∶ BΔ ↪→ B+
Δ can be regarded as an algebraic

morphism of ∞-topoi whose right adjoint is given by (−)♯ ∶ B+
Δ → BΔ. Similarly,

the diagonal embedding B ↪→ BΔ is an algebraic morphism whose right adjoint

is the functor (−)0 of evaluation at 0. To avoid confusion, we will denote the

extension of the latter to the level of categories by (−)|B ∶ Cat(BΔ) → Cat(B)
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4. Cocartesian fibrations and the straightening equivalence

and its left adjoint by (−)|BΔ . We now obtain adjunctions

Cat(B+
Δ) Cat(BΔ) Cat(B).

(−)♯

(−)♯

(−)|B

(−)|BΔ

Note that on the level of Cat∞-valued sheaves, the two colocalisation functors

(−)♯ and (−)|B are given by precomposition with the inclusions (−)♯ ∶ BΔ ↪→ B+
Δ

and B ↪→ BΔ, respectively.

Warning 4.3.1.1. Be aware that there are now two distinct inclusion of Cat(B)
into Cat(BΔ): the first is given by (−)BΔ , and the second is given by the compo-

sition

Cat(B) ↪→ BΔ ↪→ Cat(BΔ)

in which the secondmap is the diagonal embedding. The latter inclusion identifies

Cat(B) with a class of BΔ-groupoids, whereas this is not the case for the former

map.

Definition 4.3.1.2. We define the BΔ-category of marked objects to be the (large)

BΔ-category Grpd+
BΔ

= (Grpd
B+

Δ
)♯.

Remark 4.3.1.3. Explicitly, the BΔ-category Grpd+
BΔ

of marked objects can be

identified with the sheaf (B+
Δ)/(−)♯ .

Recall from Remark 1.2.6.8 that there is a pullback square

∫PSh
B
(Δ) Fun(Δ1,BΔ)

B BΔ,

where ∫PSh
B
(Δ) → B is the cartesian fibration that corresponds to the B-

category PSh
B
(Δ). In other words, we may identify PSh

B
(Δ) ≃ (Grpd

BΔ
)|B.

Similarly, the inclusion (−)♭ ∶ BΔ ↪→ B+
Δ determines an embedding

Grpd
BΔ

↪→ Grpd
B+

Δ
|Δ

in Cat(BΔ) and therefore in particular an embedding

Grpd
BΔ

|B ↪→ Grpd
B+

Δ
|Δ|B.
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By making use of the natural equivalence (−)|Δ|B ≃ (−)♯|B from Remark 4.2.1.3,

we therefore end up with a functor

(−)♭ ∶ PSh
B
(Δ)|BΔ → Grpd+

BΔ

of BΔ-categories that carries a simplicial object 𝑃 → 𝐴 in B/𝐴 to the marked

simplicial object 𝑃♭ → 𝐴♭ ≃ 𝐴♯ in B/𝐴.

To proceed, recall that by Proposition 3.2.5.10, the universeGrpd
B+

Δ
is cartesian

closed. Using Corollary 3.1.1.9 together with Remark 1.2.5.6 and Remark 2.1.2.5,

one deduces that the property of being cartesian closed is preserved by base

change along geometric morphisms of ∞-topoi. Consequently, the BΔ-category

Grpd+
BΔ

is cartesian closed as well. We will denote by HomGrpd+
BΔ

(−, −) the

internal hom. Combining this structure with the functor (−)♭ from above, we

may now define bifunctors

− ⊗ − = (−)♭ × −∶ PSh
B
(Δ)|BΔ × Grpd+

BΔ
→ Grpd+

BΔ

and

(−)(−) = HomGrpd+
BΔ

((−)♭, −)∶ (PSh
B
(Δ)|BΔ)op × Grpd+

BΔ
→ Grpd+

BΔ
.

By construction, these two functors exhibitGrpd+
BΔ

as being tensored and powered

over PSh
B
(Δ)|BΔ :

Proposition 4.3.1.4. The two bifunctors − ⊗ − and (−)(−) fit into an equivalence

mapGrpd+
BΔ

(− ⊗ −, −) ≃ mapGrpd+
BΔ

(−, (−)(−))

of mapping bifunctors.

Remark 4.3.1.5. Let 𝐴 ∈ B be an an arbitrary object. Note that by postcomposi-

tion, the adjunction (𝜋𝐴)! ⊣ 𝜋∗
𝐴 ∶ B ⇆ B/𝐴 induces adjunctions

(𝜋𝐴)! ⊣ 𝜋∗
𝐴 ∶ BΔ ⇆ (B/𝐴)Δ

and

(𝜋𝐴)! ⊣ 𝜋∗
𝐴 ∶ B+

Δ ⇆ (B/𝐴)+Δ
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4. Cocartesian fibrations and the straightening equivalence

that give rise to a diagram

Cat(B+
Δ) Cat(BΔ) Cat(B)

Cat((B/𝐴)+Δ) Cat((B/𝐴)Δ) Cat(B/𝐴)

(−)♯

(−)♯

𝜋∗
𝐴 (𝜋𝐴)!

(−)|B

(−)|BΔ

𝜋∗
𝐴 (𝜋𝐴)! 𝜋∗

𝐴 (𝜋𝐴)!

(−)♯

(−)♯

(−)|B/𝐴

(−)|(B/𝐴)Δ

that commutes in every direction. Consequently, Remark 1.4.1.2 implies that one

obtains a commutative square

𝜋∗
𝐴PShB(Δ)|BΔ 𝜋∗

𝐴 Grpd+
BΔ

PSh
B/𝐴

(Δ)|(B/𝐴)Δ Grpd+(B/𝐴)Δ
.

≃

𝜋∗
𝐴(−)

♭

≃

(−)♭

Moreover, by Corollary 3.1.1.9, 𝜋∗
𝐴 carries the product bifunctor of Grpd+

BΔ
to the

one of Grpd+(B/𝐴)Δ
. Together with Remark 2.1.2.5, this implies that 𝜋∗

𝐴 carries the

tensoring and powering bifunctors of Grpd+
BΔ

over PSh
B
(Δ)|BΔ to the tensoring

and powering bifunctors of Grpd+(B/𝐴)Δ
over PSh

B/𝐴
(Δ)|(B/𝐴)Δ .

4.3.2. B-categories of cocartesian fibrations

In this section we make use of the preparations made in Section 4.3.1 to define

the B-category of cocartesian fibrations over a fixed B-category C and to show

that it is both tensored and powered over CatB. To that end, recall from Warn-

ing 4.3.1.1, that we may regard C as a BΔ-groupoid via combining the inclusion

Cat(B) ↪→ BΔ with the diagonal embedding BΔ ↪→ Cat(BΔ). When regarded

as such, consider the associated large B-category Fun
BΔ

(C,Grpd+
BΔ

)|B, that is

explicitly given by the Ĉat∞-valued sheaf (B+
Δ)/−×C♯ . We may now define:

Definition 4.3.2.1. For every B-category C, the large B-category CocartC of

cocartesian fibrations over C is the full subcategory of Fun
BΔ

(C,Grpd+
BΔ

)|B that

is spanned by the marked cocartesian fibrations 𝑃 → 𝐴 × C♯ for each 𝐴 ∈ B.
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Remark 4.3.2.2. Leb (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 be a cover in B and 𝑝∶ 𝑃 → 𝐴 × C♯

be a map in B+
Δ. Then 𝑝 is a marked cocartesian fibration if and only if each

𝑠∗𝑖 (𝑝)∶ 𝑠∗𝑖 (𝑃) → 𝐴𝑖 ×C♯ is one. In fact, this is certainly a necessary condition, so it

suffices to verify that it is sufficient as well. To that end, let 𝑝′𝑗∶ 𝑃 → 𝑃 ′ → 𝐴×C♯

be the unique factorisation of 𝑝 into a marked left anodyne and a marked cocarte-

sian fibration. We need to show that 𝑗 is an equivalence. Since (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 is

a cover, this is the case already when each 𝑠∗𝑖 (𝑗) is an equivalence. But as the maps

𝐴𝑖 × C♯ → 𝐴 × C♯ are marked right fibrations and therefore in particular marked

proper (Proposition 4.2.5.5), each 𝑠∗𝑖 (𝑗) is both a marked cocartesian fibration and

marked left anodyne and must therefore be an equivalence. Hence the claim

follows. As a consequence, we conclude that an object in Fun
BΔ

(C,Grpd+
BΔ

)B
in context 𝐴 ∈ B is contained in CocartC if and only if it encodes a marked

cocartesian fibration over 𝐴 × C♯. Furthermore, this observation implies that the

Ĉat∞-valued sheaf associated with CocartC is given by by Cocart+(− × C♯) and
therefore by Cocart(− × C), using Corollary 4.2.3.5.

Remark 4.3.2.3. Fix an object 𝐴 ∈ B. Since the terminal map 𝜋𝐴 ∶ 𝐴 → 1 is a

marked cocartesian fibration, a map 𝑝∶ 𝑃 → 𝐶 in (B/𝐴)+Δ is marked cocartesian

if and only if (𝜋𝐴)!(𝑝) is marked cocartesian in B+
Δ. Therefore, the equivalence

𝜋∗
𝐴FunBΔ

(C,Grpd+
BΔ

)|B ≃ Fun(B/𝐴)Δ
(𝜋∗

𝐴C,Grpd+(B/𝐴)Δ
)|B/𝐴

(see Remark 4.3.1.5 and Proposition 1.2.5.4) restricts to an equivalence of large

B-categories 𝜋∗
𝐴 CocartC ≃ Cocart𝜋∗

𝐴C
.

Our next goal is to show that for every B-category C, the large B-category

CocartC is both tensored and powered over CatB. To that end, note it follows

from Remark 2.1.2.5 that by applying the functor Fun
BΔ

(C, −)|B to the two maps

from Proposition 4.3.1.4 and by precomposing the result (in the first variable)

with the map

diag∶ PSh
B
(Δ) ≃ Fun

BΔ
(1,PSh

B
(Δ)|BΔ)|B → Fun

BΔ
(C,PSh

B
(Δ)|BΔ)|B,

one ends up with bifunctors

− ⊗ −∶ PSh
B
(Δ) × Fun

BΔ
(C,Grpd+

BΔ
)|B → Fun

BΔ
(C,Grpd+

BΔ
)|B
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4. Cocartesian fibrations and the straightening equivalence

and

(−)(−) ∶ PSh
B
(Δ)op × Fun

BΔ
(C,Grpd+

BΔ
)|B → Fun

BΔ
(C,Grpd+

BΔ
)|B

that are natural in C and that fit into an equivalence

mapFun
BΔ

(C,Grpd+
BΔ

)|B
(− ⊗ −, −) ≃ mapFun

BΔ
(C,Grpd+

BΔ
)|B

(−, (−)(−)).

In other words, they exhibit Fun
BΔ

(C,Grpd+
BΔ

)|B as being both tensored and

powered over PSh
B
(Δ).

Remark 4.3.2.4. By combining Remark 4.3.1.5 with Proposition 1.2.5.4, one

finds that for every object 𝐴 ∈ B and every B-category C, the associated base

change functor 𝜋∗
𝐴 carries the tensoring and powering of Fun

BΔ
(C,Grpd+

BΔ
)|B

over PSh
B
(Δ) to the tensoring and powering of Fun(B/𝐴)Δ

(𝜋∗
𝐴C,Grpd+(B/𝐴)Δ

)|B
over PSh

B/𝐴
(Δ).

Remark 4.3.2.5. Using that the global sections functor ΓB ∶ Cat(B̂) → Ĉat∞
carries the product bifunctor of a (large) B-category to that of its underlying

∞-category (Example 3.2.1.13), we deduce that on global sections, the tensoring

of Fun
B
(C,Grpd+

BΔ
)|B over PSh

B
(Δ) recovers the composition

BΔ × (B+
Δ)/C♯

(−)♭×id
−−−−−−→ B+

Δ × (B+
Δ)/C♯

𝜋∗
C♯×id

−−−−−→ (B+
Δ)/C♯ × (B+

Δ)/C♯

−×−
−−−−→ (B+

Δ)/C♯ × (B+
Δ)/C♯ .

Dually, this means (using Corollary 2.2.2.8 and Remark 2.1.2.5) that on global

sections, the powering of Fun
B
(C,Grpd+

BΔ
)|B over PSh

B
(Δ) is given by the

functor that carries 𝐾 ∈ BΔ and a map 𝑃 → C♯ in B+
Δ to the pullback

𝑃𝐾 Hom
B+

Δ
(𝐾♭, 𝑃)

C♯ Hom
B+

Δ
(𝐾♭,C♯).

diag
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Finally, by combining Remark 4.3.2.3, Remark 4.3.2.4 and Remark 4.3.2.5, it

is clear that the tensoring and powering of Fun
B
(C,Grpd+

BΔ
)|B over PSh

B
(Δ)

restricts to a tensoring and powering of CocartC over CatB, so that we obtain:

Corollary 4.3.2.6. For any C ∈ Cat(B), the large B-category CocartC is both
tensored and powered over the B-category CatB, and both tensoring and powering
is natural in C.

Remark 4.3.2.7. Using Remark 4.3.2.3 and Remark 4.3.2.4, one deduces that for

every 𝐴 ∈ B, the base change functor 𝜋∗
𝐴 carries the tensoring and powering of

CocartC over CatB to the tensoring and powering of Cocart𝜋∗
𝐴C

over CatB/𝐴
.

Recall from Proposition 4.2.4.11 that the inclusion LFib ↪→ Cocart admits a

relative right adjoint (−)♯ over BΔ. In the language established in this section,

this result can be rephrased as follows (cf. Corollary 3.1.2.4):

Proposition 4.3.2.8. For every B-category C, the inclusion LFibC ↪→ CocartC
admits a right adjoint (−)♯. Moreover, this right adjoint is natural in C.

Remark 4.3.2.9. Dually, we may define the large B-category CartC of cartesian
fibrations over C ∈ Cat(B) as the full subcategory of Fun

BΔ
(C,Grpd+

BΔ
)|B that is

spanned by the marked cartesian fibrations over 𝐴 × C♯ for every 𝐴 ∈ B. Using

this definition, it is immediate that all of the results discussed in this section

dualise, so that we also obtain a tensoring and powering of CartC over CatB
that is natural in C, and that we moreover have a coreflection of the inclusion

RFibC ↪→ CartC that is natural in C as well.

4.3.3. Limits and colimits of cocartesian fibrations

In this section we will study limits and colimits in theB-categories of cocartesian

fibrations that we defined in the previous section and the behaviour of these

under base change. We begin with the following observation:

Proposition 4.3.3.1. For every B-category C, the large B-category CocartC is a
reflective subcategory of Fun

BΔ
(C,Grpd+

BΔ
)|B.

Proof. In light of Proposition 3.1.2.9, this is a straightforward consequence of

the fact that for every 𝐴 ∈ B the inclusion Cocart+(𝐴 × C♯) ↪→ (B+
Δ)/𝐴×C♯
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4. Cocartesian fibrations and the straightening equivalence

admits a left adjoint and that for every map 𝑠∶ 𝐵 → 𝐴 in B the induced map

𝑠 × id∶ 𝐵 × C♯ → 𝐴 × C♯ is marked proper.

To proceed, note that using the characterisation of (co)completeness in Corol-

lary 3.5.4.4, it is immediate that the large BΔ-category Grpd+
BΔ

is complete and

cocomplete, hence so is Fun
BΔ

(C,Grpd+
BΔ

)|B by the same result and Proposi-

tion 3.3.2.12. Together with Proposition 3.3.2.11, this shows:

Proposition 4.3.3.2. For every C ∈ Cat(B), the large B-category CocartC is
complete and cocomplete.

Furthermore, we find:

Proposition 4.3.3.3. For every functor 𝑓∶ C → D in Cat(B), the associated
pullback functor 𝑓 ∗ ∶ CocartD → CocartC admits a left adjoint 𝑓!. In particular,
𝑓 ∗ is continuous. If the map 𝑓 ♯ ∶ C♯ → D♯ is moreover marked proper, then 𝑓 ∗ also
admits a right adjoint 𝑓∗, so that 𝑓 ∗ is also continuous in this case.

Proof. Since Grpd+
BΔ

is complete and cocomplete, the functor

𝑓 ∗ ∶ Fun
BΔ

(D,Grpd+
BΔ

) → Fun
BΔ

(C,Grpd+
BΔ

)

admits both a left adjoint 𝑓! and a right adjoint 𝑓∗ (Corollary 3.4.3.7 and its

dual). As base change along geometric morphisms preserves adjunctions (Corol-

lary 3.1.1.9), this implies that the functor

𝑓 ∗ ∶ Fun
BΔ

(D,Grpd+
BΔ

)|B → Fun
BΔ

(C,Grpd+
BΔ

)|B

also admits a left adjoint 𝑓! and a right adjoint 𝑓∗. Together with Proposi-

tion 4.3.3.1, this immediately implies that 𝑓 ∗ ∶ CocartD → CocartC has a left

adjoint 𝑓!. If 𝑓 ♯ is furthermore marked proper, then the right adjoint

𝑓∗ ∶ Fun
BΔ

(C,Grpd+
BΔ

)|B → Fun
BΔ

(D,Grpd+
BΔ

)|B

restricts to a right adjoint 𝑓∗ ∶ CocartC → CocartD: in fact, by making use of

Remark 4.3.2.3, this follows once we show that for every marked cocartesian

fibration 𝑝∶ 𝑃 → C♯, the induced map 𝑓∗(𝑝)∶ 𝑓∗𝑃 → D♯ is a marked cocartesian

fibration as well. Now it follows straightforwardly from the definitions that 𝑓∗(𝑝)
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is a cocartesian fibration if and only if it is local (when viewed as an object in

(B+
Δ)/D♯ ) with respect to those maps in (B+

Δ)/D♯ whose underlying map in B+
Δ

is marked left anodyne. Consequently, the claim follows from the fact that 𝑓 ∗

preserves marked left anodyne maps since 𝑓 ♯ is marked proper.

Remark 4.3.3.4. If C is a B-category, the functor

(𝜋C)! ∶ CocartC → Cocart1 ≃ CatB

is explicitly given by sending a cocartesian fibration 𝑝∶ P → 𝐴 × C to the B/𝐴-

category P−1♯ P, i.e. to the pushout

P♯ Pgpd♯

P P−1♯ P

in Cat(B/𝐴). To see this, Remark 4.3.2.3 implies that we may assume without

loss of generality 𝐴 ≃ 1. Consider the pushout square

(P♮♯)♯ ((P♮♯)gpd)♯

P♮ 𝑍

in B+
Δ. Note that the span in the upper left corner of the first square is obtained

by applying the functor (−)|Δ to the span in the upper left corner of the second

square. We claim that 𝑍 |♭Δ → 𝑍 is an equivalence. In fact, since the object 𝑍+ ∈ B

is computed as the pushout

𝑃+ (P♮♯)gpd

𝑃+ 𝑍+,

id

the map (P♮♯)gpd → 𝑍+ must be an equivalence. But since by the same argument

the map (P♮♯)gpd → 𝑍0 is an equivalence as well, the claim holds. Now by construc-

tion, the map P♮ → 𝑍 is contained in the internal saturation of 𝑠0 ∶ (Δ1)♯ → 1
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4. Cocartesian fibrations and the straightening equivalence

and is therefore in particular marked left anodyne. Moreover, if we denote by

Z ∈ Cat(B) the image of 𝑍 |Δ along the localisation functor 𝐿∶ BΔ → Cat(B), the
associated localisation map 𝑍 |Δ → Z induces a marked left anodyne map 𝑍 → Z♭.

In total, we therefore obtain a marked left anodyne map P♮ → Z♭, which implies

that the image of 𝑝 along (𝜋C)! is given by Z. As theB-category P−1♯ P is precisely

computed by applying the functor 𝐿(−)|Δ to the pushout square that defines 𝑍,
we obtain the desired equivalence P−1♯ P ≃ Z.

Remark 4.3.3.5. If C is an arbitrary B-category, Proposition 4.3.3.3 and the fact

that 𝜋C♯ ∶ C♯ → 1 is marked proper imply that the functor

(𝜋C)∗ ∶ CatB ≃ Cocart1 → CocartC

admits a right adjoint (𝜋C)∗. On global sections, this functor is given by restricting

the geometric morphism

(𝜋C♯)∗ ∶ (B+
Δ)/C♯ → B+

Δ

to marked cocartesian fibrations. Recall that this map is equivalently given by

the functor Hom
B+

Δ
(C♯, −)/C♯ that sends a map 𝑝∶ 𝑃 → C♯ to the pullback

Hom
B+

Δ
(C♯, 𝑃)/C♯ Hom

B+
Δ
(C♯, 𝑃)

1 Hom
B+

Δ
(C♯,C♯).

𝑝∗

idC♯

We thus conclude that the functor (𝜋C)∗ carries a cocartesian fibration 𝑝∶ P → C

to the associated B-category Hom
B+

Δ
(C♯,P♮)/C♯ |Δ of cocartesian sections of 𝑝.

Remark 4.3.3.6. By combining Proposition 4.3.3.3 with Proposition 4.2.5.5, one

deduces in particular that the base change functor 𝑝∗ ∶ CocartC → CocartP
along any right fibration 𝑝∶ P → C in Cat(B) admits a right adjoint 𝑝∗.

Remark 4.3.3.7. Note that by taking opposite B-categories, one obtains an

equivalence (−)op ∶ CartC ≃ CocartCop that is natural in C ∈ Cat(B). Therefore,
the results that have been established in this section can also be dualised to

cartesian fibrations.
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4.4. Straightening and unstraightening

The main goal of this section is to construct an equivalence

CocartC ≃ Fun
B
(C,CatB)

that is natural in C ∈ Cat(B). For ∞-categories, such an equivalence has first

been established by Lurie in [49], who referred to the functor from cocartesian

fibrations to Cat∞-valued functors as straightening and to its inverse as unstraight-
ening. Wewill make use of the same terminology here, although our constructions

will be substantially different from those in Lurie’s approach. We construct a

straightening functor in Section 2.2 and its left adjoint in Section 4.4.2. In Sec-

tion 4.4.3, we prove that this adjunction defines an equivalence of B-categories.

As a consequence, one obtains a universal cocartesian fibration over CatB which

is studied in Section 4.4.4. We close this section by giving an explicit description

of the straightening functor in the special case where the base B-category is the

interval Δ1 in Section 4.4.5.

4.4.1. The straightening functor

Recall from Proposition 3.1.2.13 that CatB is a reflective subcategory of PSh
B
(Δ).

Let us denote by Δ• ∶ Δ ↪→ PSh
B
(Δ) the Yoneda embedding. For any 𝑛 ≥ 0, the

presheaf represented by ⟨𝑛⟩∶ 1 → Δ is given by Δ𝑛 ∈ BΔ (see Lemma 4.4.4.6

below) and therefore by a B-category. Since Δ is a constant B-category and

therefore generated by the collection of global objects ⟨𝑛⟩∶ 1 → Δ, this shows

that the Yoneda embedding defines a functor Δ• ∶ Δ ↪→ CatB. Therefore, given

any B-category C, Corollary 4.3.2.6 implies that CocartC is both tensored and

powered over Δ, and that both bifunctors are natural in C. We now define the

straightening functor StC as the composition

StC ∶ CocartC → Fun
B
(Δop,CocartC)

→ Fun
B
(Δop, LFibC)

≃ Fun
B
(C,PSh

B
(Δ))

in which the first map is the transpose of the powering bifunctor, the second map

is given by postcomposition with the coreflection (−)♯ from Proposition 4.3.2.8
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and the last map is determined by the straightening equivalence for left fibrations

(Theorem 2.2.1.1). Note that as powering, the coreflection (−)♯ and the straight-

ening equivalence for left fibrations all are natural in C, we deduce that StC is

natural in C as well.

Remark 4.4.1.1. In the case B = Ani, the above definition of the straightening

functor has previously appeared in lecture notes by Hinich [36].

Remark 4.4.1.2. For the special case C = 1, the straightening functor is given

by the inclusion

Cocart1 ≃ CatB ↪→ PSh
B
(Δ).

In fact, since in this case the tensoring is by construction simply given by

the product bifunctor − × −∶ CatB ×CatB → CatB, the powering functor

is the internal hom of CatB from Proposition 3.2.6.3. Since the coreflection

(−)♯ ∶ CocartC → LFibC reduces to the core B-groupoid functor when C = 1,
Corollary 3.2.6.5 implies that the straightening functor St1 ∶ CatB → PSh

B
(Δ)

is transpose to

mapCatB
(Δ•, −)∶ Δop × CatB → Grpd

B
.

and is therefore given by the inclusion CatB ↪→ PSh
B
(Δ) on account of Yoneda’s

lemma.

Remark 4.4.1.3. For every 𝐴 ∈ B, Remark 4.3.2.7 and Remark 2.2.1.7 together

with Proposition 1.2.5.4 (and Remark 1.2.5.5) imply that the étale base change

𝜋∗
𝐴 StC can be identified with St𝜋∗

𝐴C
.

Proposition 4.4.1.4. For every B-category C, the straightening functor StC takes
values in Fun

B
(C,CatB).

Proof. Let 𝑝∶ P → 𝐴 × C be a cocartesian fibration in context 𝐴 ∈ B. We

need to show that the functor StC(𝑝)∶ 𝐴 × C → PSh
B
(Δ) takes values in CatB.

Upon replacing B with B/𝐴, we may assume without loss of generality 𝐴 ≃ 1, cf.
Remark 4.4.1.3. We can argue object-wise inC, i.e. it suffices to show that for every

object 𝑐∶ 𝐴 → C the simplicial object StC(𝑝)(𝑐) ∈ (B/𝐴)Δ is a B/𝐴-category.

Again, we can assume 𝐴 ≃ 1. In light of the naturality of the straightening
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functor, this argument implies that we may reduce to the case C ≃ 1. In this

case, Remark 4.4.1.2 shows that the straightening functor is simply the inclusion

CatB ↪→ PSh
B
(Δ), hence the claim follows.

We conclude this section with the observation that for every B-category C,

restricting the straightening functor StC along the inclusion LFibC ↪→ CocartC re-

covers the equivalence LFibC ≃ PSh
B
(Cop) from Theorem 2.2.1.1. More precisely,

one has:

Proposition 4.4.1.5. There is a commutative square

LFibC PSh
B
(Cop)

CocartC Fun
B
(C,PSh

B
(Δ))

≃

𝜄∗
StC

in which 𝜄 ∶ Grpd
B
↪→ PSh

B
(Δ) denotes the diagonal embedding.

Proof. We need to show that for every left fibration 𝑝∶ P → 𝐴 × C in con-

text 𝐴 ∈ B the straightening StC(𝑝)∶ 𝐴 × C → PSh
B
(Δ) factors through

𝜄 ∶ Grpd
B

↪→ PSh
B
(Δ). As in the proof of Proposition 4.4.1.4, the fact that

the straightening functor is natural in C and the fact that we may work object-

wise in C allows us to reduce to the case where C ≃ 1 ≃ 𝐴, in which case the

result also immediately follows from Remark 4.4.1.2.

Remark 4.4.1.6. Dually, one can construct a straightening functor

StC ∶ CartC → Fun
B
(Δop,RFib) ≃ Fun

B
(Cop,PSh

B
(Δ))

for every B-category C, using Remark 4.3.2.9. Note that by the explicit con-

struction of the tensoring bifunctors, the equivalence (−)op ∶ CartC ≃ CocartCop

from Remark 4.3.2.9 fits into a commutative square

Δ × CartC CartC

Δ × CocartCop CocartCop .

Δ•⊗−

op×(−)op (−)op

Δ•⊗−
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4. Cocartesian fibrations and the straightening equivalence

By making use of the adjunction between tensoring and powering, this square in

turn induces a commutative diagram

CartC Fun
B
(Δop,CartC)

CocartCop Fun
B
(Δop,CocartCop).

(−)op

(−)Δ•

(−)op∗
(−)Δ•,op

Since the coreflection of (co)cartesian fibrations into right (left) fibrations evi-

dently commutes with taking opposite B-categories, we conclude that there is a

commutative square

CartC Fun
B
(Cop,CatB)

CocartCop Fun
B
(Cop,CatB).

StC

(−)op (−)op∗
StCop

4.4.2. The unstraightening functor

In this section we construct a left adjoint to the straightening functor StC for

every B-category C. To that end, given C ∈ Cat(B), note that restricting the

tensoring bifunctor − ⊗ −∶ CatB ×CocartC → CocartC along the inclusion

Δ• × ℎCop ∶ Δ × Cop ↪→ CatB × LFibC ↪→ CatB ×CocartC

that is induced by the Yoneda embedding on either factor gives rise to a functor

Δ• ⊗ ℎCop(−)∶ Δ × Cop → CocartC .

In light of Proposition 4.3.3.2 and the universal property of presheafB-categories

(Theorem 3.5.1.1), we may now define:

Definition 4.4.2.1. For every B-category C, the unstraightening functor

UnC ∶ Fun
B
(C,PSh

B
(Δ)) → CocartC

is defined as the left Kan extension of Δ• ⊗ ℎCop(−)∶ Δ × Cop → CocartC along

the Yoneda embedding

ℎΔ×Cop ∶ Δ × Cop ↪→ PSh
B
(Δ × Cop) ≃ Fun

B
(C,PSh

B
(Δ)).
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Our next goal is to show that the unstraightening functor UnC is left adjoint to

the straightening functor StC. To that end, recall from Section 2.3.1 that a large

B-category C is locally small if the left fibration Tw(C) → Cop × C is small.

Proposition 4.4.2.2. For every C ∈ Cat(B), the large B-category CocartC is
locally small.

Proof. The largeB+
Δ-categoryGrpdB+

Δ
is locally small (see Example 2.3.1.4), hence

so is Grpd+
BΔ

by Remark 2.3.1.2 By the same remark and Proposition 2.3.1.7, this

implies that the B-category Fun
BΔ

(C,Grpd+
BΔ

)|B is locally small as well. Being

a full subcategory of the latter, this implies that CocartC must be locally small,

as desired.

As a result of Proposition 4.4.2.2, we deduce from Remark 3.5.1.4 that the

unstraightening functor UnC admits a right adjoint 𝑟. The computation

𝑟 ≃ mapPSh
B
(Δ×Cop)(ℎΔ×Cop(−, −), 𝑟(−))

≃ mapCocartC
(Δ• ⊗ ℎCop(−), −)

≃ mapCocartC
(ℎCop(−), (−)Δ

•
)

≃ mapLFibC
(ℎCop(−), (−)Δ

•
♯ )

≃ (−)Δ
•

♯

now shows:

Proposition 4.4.2.3. The unstraightening functorUnC is left adjoint to the straight-
ening functor StC.

As a direct consequence of Proposition 4.4.1.4 and Proposition 4.4.2.3, one

obtains:

Corollary 4.4.2.4. The straightening and unstraightening functors restrict to an
adjunction

(UnC ⊣ StC)∶ CocartC ⇆ Fun
B
(C,CatB)

for every B-category C.
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4. Cocartesian fibrations and the straightening equivalence

Remark 4.4.2.5. Since adjoints are unique and by Remark 4.4.1.3, we find that

for any 𝐴 ∈ B, the base change 𝜋∗
𝐴 UnC can be identified with Un𝜋∗

𝐴C
.

In general, we have no explicit way to compute the unstraightening UnC(𝑓 )
of a functor 𝑓∶ C → PSh

B
(Δ) unless 𝑓 is contained in the image of the Yoneda

embedding ℎΔ×Cop , in which case the unstraightening is simply given by the

tensoring inCocartC. We conclude this section by explaining how this description

extends to a slightly larger class of functors.

Lemma 4.4.2.6. Let C and D be B-categories. Then there is a commutative square

C × D PSh
B
(C × D)

PSh
B
(C) × PSh

B
(D) PSh

B
(C × D) × PSh

B
(C × D)

ℎC×D

ℎC×ℎD
pr∗0 × pr∗1

−×−

in which pr0 ∶ C × D → C and pr1 ∶ C × D → D are the two projections.

Proof. Since Tw(−) commutes with products, we have a pullback square

Tw(C × D) (Grpd
B
)1/ × (Grpd

B
)1/

(Cop × C) × (Dop × D) Grpd
B
×Grpd

B
.

mapC ×mapD

In light of the equivalence

(Grpd
B
)1/ × (Grpd

B
)1/ ≃ (Grpd

B
×Grpd

B
)(1,1)/,

the left fibration on the right is corepresented by (1, 1)∶ 1 → Grpd
B
×Grpd

B
. As

the latter is a final object, we conclude (using Corollary 3.2.5.6) that the copresheaf

that classifies this left fibration is the product functor

− × −∶ Grpd
B
×Grpd

B
→ Grpd

B
.

We therefore obtain a commutative square

(C × D)op × (C × D) Grpd
B

(Cop × C) × (Dop × D) Grpd
B
×Grpd

B

≃

mapC×D

mapC ×mapD

−×−
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4.4. Straightening and unstraightening

which translates into a commutative square

C × D PSh
B
(C × D)

PSh
B
(C) × PSh

B
(D) Fun

B
((C × D)op,Grpd

B
×Grpd

B
)

ℎC×D

ℎC×ℎD (−×−)∗

in which the lower horizontal map is the transpose of

evC × evD ∶ PSh
B
(C) × Cop × PSh

B
(D) × Dop → Grpd

B
×Grpd

B
.

It now suffices to observe that with respect to the equivalence

Fun
B
((C × D)op,Grpd

B
×Grpd

B
) ≃ PSh

B
(C × D) × PSh

B
(C × D),

the lower horizontal map in this diagram corresponds to pr∗0 × pr∗1 and the right

vertical map corresponds to the product functor on PSh
B
(C × D).

Lemma 4.4.2.7. Let C be a B-category and let 𝑓∶ Cop → Grpd
B
be a presheaf on

C. Then the product functor 𝑓 × −∶ PSh
B
(C) → PSh

B
(C) has a right adjoint.

Proof. Let 𝑝∶ P → C be the right fibration that is classified by 𝑓. Then 𝑓 × −
corresponds to the product functor P × −∶ RFibC → RFibC. On local sections

over 𝐴 ∈ B, this functor is given by the composition

RFib(𝜋∗
𝐴C)

𝑝∗

−−→ RFib(𝜋∗
𝐴P)

𝑝!
−−→ RFib(𝜋∗

𝐴C).

By the theory of Kan extensions (Section 3.4.3) and the fact thatGrpd
B
is complete,

the functor 𝑝∗ ∶ RFibC → RFibP has a right adjoint 𝑝∗, which implies that P × −
section-wise admits a right adjoint that is given by the composition 𝑝∗𝑝∗. Now

if 𝑠∶ 𝐵 → 𝐴 is a map in B, the mate transformation 𝑠∗𝑝∗𝑝∗ → 𝑝∗𝑝∗𝑠∗ is given

by the composition

𝑠∗𝑝∗𝑝∗ → 𝑝∗𝑠∗𝑝∗ ≃ 𝑝∗𝑝∗𝑠∗

in which the first map is induced by the mate transformation 𝑠∗𝑝∗ → 𝑝∗𝑠∗. Since
𝑝∗ is an internal right adjoint of 𝑝∗, this map must be an equivalence. Using

Proposition 3.1.2.9, the claim follows.
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4. Cocartesian fibrations and the straightening equivalence

Lemma 4.4.2.6 implies that there is a commutative triangle

Δ × Cop PSh
B
(Δ × Cop)

Δ × PSh
B
(Cop).

ℎΔ×Cop

idΔ ×ℎCop
pr∗0 Δ

•×pr∗1(−)

We are now able to compute the unstraightening of all of those functors in

Fun
B
(C,PSh

B
(Δ)) that lie in the image of pr∗0 Δ

• × pr∗1(−):

Proposition 4.4.2.8. There is a commutative square

Δ × PSh
B
(Cop) Fun

B
(C,PSh

B
(Δ))

Δ × LFibC CocartC .

≃

pr∗0 Δ
•×pr∗1(−)

UnC
Δ•⊗−

Proof. By construction of the unstraightening functor, the square commutes

when restricted along the inclusion idΔ ×ℎCop ∶ Δ × Cop ↪→ Δ × PSh
B
(Cop). By

making use of the universal property of presheaf B-categories (Theorem 3.5.1.1)

and the fact that UnC is a left adjoint functor and therefore cocontinuous (Propo-

sition 3.3.2.10), it is enough to show that for every integer 𝑛 ≥ 0 both Δ𝑛 ⊗ −
and pr∗0(Δ

𝑛) × pr∗1(−) are cocontinuous as well. For the first functor, this follows

from the observation that it has a right adjoint given by (−)Δ
𝑛

♯ . Regarding the

second functor, since pr∗1 is cocontinuous, it suffices to show that pr∗0(Δ
𝑛) × − is

cocontinuous as well, which follows from Lemma 4.4.2.7.

4.4.3. The straightening equivalence

We are finally ready to state and prove the main theorem of this chapter:

Theorem 4.4.3.1. For every B-category C, the straightening functor

StC ∶ CocartC → Fun
B
(C,CatB)

is an equivalence of large B-categories that is natural in C ∈ Cat(B).
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4.4. Straightening and unstraightening

To prove Theorem 4.4.3.1, we will show that both the unit 𝜂C and the counit

𝜖C of the adjunction UnC ⊣ StC from Corollary 4.4.2.4 is an equivalence. By

Corollary 4.1.2.10 and the fact that equivalences in functor B-categories are

detected object-wise (Proposition 2.3.2.12), it will be enough to show that for

every object 𝑐∶ 𝐴 → C the maps 𝜂C(𝑐) and 𝜖C(𝑐) are equivalences. Using Re-

mark 4.4.1.3 and Remark 4.4.2.5, we may assume that 𝐴 ≃ 1. Since furthermore

Remark 4.4.1.2 implies that St1 is an equivalence, it will suffice to construct equiv-

alences 𝑐∗𝜂C ≃ 𝜂1𝑐∗ and 𝑐∗𝜖C ≃ 𝜖1𝑐∗. In other words, we need to show that the

map Un1 𝑐∗ → 𝑐∗ UnC that arises as the mate of the commutative square

CocartC Fun
B
(C,CatB)

Cocart1 CatB

𝑐∗

StC

𝑐∗
St1

is an equivalence. This will require a few preparatory steps.

Lemma 4.4.3.2. There is a commutative square

Δ × LFibC PSh
B
(Δ) × PSh

B
(Cop)

CocartC Fun
B
(C,PSh

B
(Δ))

Δ•⊗−

Δ•×∫−1

pr∗0(−)×pr
∗
1(−)

StC

where ∫∶ PSh
B
(Cop) ≃ LFibC denotes the equivalence from Theorem 2.2.1.1.

Proof. Being a right adjoint, the straightening functor commutes with products.

Thus the claim follows from Proposition 4.4.1.5 as well as from combining Re-

mark 4.4.1.2 with the naturality of straightening.

The argument in the proof of the lemma below was communicated to the

author by Maxime Ramzi:

Lemma 4.4.3.3. Let (𝑙 ⊣ 𝑟)∶ C ⇆ D be an adjunction between (not necessarily
small) B-categories in which D is cocomplete and locally small. Let E0 ↪→ E be
a full inclusion of B-categories where E0 is small and E is locally small, and let
𝑓∶ E → D be a functor such that 𝑓 is the left Kan extension of 𝑓 𝑖 along 𝑖 and the
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4. Cocartesian fibrations and the straightening equivalence

identity on D is the left Kan extension of 𝑓 𝑖 along itself. Suppose furthermore that
there is an arbitrary equivalence 𝜙∶ 𝑓 ≃ 𝑟𝑙𝑓. Then the adjunction unit 𝜂 induces an
equivalence 𝜂𝑓∶ 𝑓 ≃ 𝑟 𝑙𝑓.

Proof. Note that by Corollary 3.4.3.7 the assumptions on E0, E and D make sure

that the functors of left Kan extension exist. Using the triangle identities, one

can construct a commutative diagram

𝑓 𝑟 𝑙𝑓 𝑓

𝑟 𝑙𝑓 𝑟 𝑙𝑟 𝑙𝑓 𝑟 𝑙𝑓

𝜂𝑓

𝜙

id

𝑟 𝑙𝜙 𝜙
𝑟 𝑙𝜂𝑓

id

𝑟𝜖𝑙𝑓

in which 𝜖 denotes the adjunction counit. Therefore, the map 𝑠 = 𝜙−1𝜂𝑓∶ 𝑓 → 𝑓
admits a retraction 𝑟 that is obtained by composing 𝜙with the dashed arrow in the

above diagram. We complete the proof by showing that 𝑠 is an equivalence. Since

by assumption 𝑓 is the left Kan extension of 𝑓 𝑖 along 𝑖 and since 𝑖 is fully faithful,

the functor of left Kan extension 𝑖! being fully faithful (see Theorem 3.4.3.5)

implies that it suffices to show that 𝑖∗(𝑠) is an equivalence. Since furthermore the

identity on D is the left Kan extension of 𝑓 𝑖 along itself, the two maps 𝑖∗(𝑠) and
𝑖∗(𝑟) induce maps 𝑠′ ∶ idD → idD and 𝑟 ′ ∶ idD → idD such that 𝑟 ′𝑠′ ≃ id and

such that 𝑖∗𝑓 ∗(𝑠′) ≃ 𝑖∗(𝑠). It therefore suffices to show that 𝑠′ is an equivalence.

Given 𝑑∶ 𝐴 → D, naturality of 𝑠′ implies that there is a commutative square

𝑑 𝑑

𝑑 𝑑,

𝑠′(𝑑)

𝑟 ′(𝑑) 𝑟 ′(𝑑)
𝑠′(𝑑)

hence 𝑟 ′(𝑑) is both a left and right inverse of 𝑠′(𝑑), which implies that 𝑠′(𝑑) is an
equivalence. As 𝑑 was chosen arbitrarily, the result follows.

Proposition 4.4.3.4. Let 𝑓∶ D → C be a functor of B-categories with respect to
which the pullback functor 𝑓 ∗ ∶ CocartC → CocartD is cocontinuous. Then the
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mate of the commutative square

CocartC Fun
B
(C,PSh

B
(Δ))

CocartD Fun
B
(D,PSh

B
(Δ))

StC

𝑓 ∗ 𝑓 ∗

StD

is an equivalence.

Proof. By Proposition 4.3.3.2 and Proposition 3.3.2.12 and the assumption on the

functor 𝑓, the mate transformation 𝜙∶ UnD 𝑓 ∗ → 𝑓 ∗ UnC is a map of cocon-

tinuous functors between cocomplete large B-categories. Using the universal

property of presheaf B-categories, the map 𝜙 is therefore an equivalence when-

ever its restriction along the Yoneda embedding

ℎΔ×Cop ∶ Δ × Cop ↪→ Fun
B
(C,PSh

B
(Δ))

is one. By making use of the commutative triangle

Δ × Cop PSh
B
(Δ × Cop)

Δ × PSh
B
(Cop),

ℎΔ×Cop

idΔ ×ℎCop
pr∗0 Δ

•×pr∗1(−)

from Lemma 4.4.2.6, we might as well show that 𝜙(pr∗0 Δ
• × pr∗1(−)) is an equiva-

lence.

To that end, let us first show that the functor pr∗0 Δ
• × pr∗1(−) is the left Kan

extension of ℎΔ×Cop along idΔ ×ℎCop . Note that Lemma 4.4.2.7 and the univer-

sal property of presheaf B-categories imply that the the associated functor

Δ → Fun
B
(PSh

B
(Cop), Fun

B
(C,PSh

B
(Δ))) factors through the inclusion

Fun
B
(C, Fun

B
(C,PSh

B
(Δ)))

Fun
B
(PSh

B
(Cop), Fun

B
(C,PSh

B
(Δ))).

(ℎCop)!
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Consequently, pr∗0 Δ
• × pr∗1(−) is in the essential image of the inclusion

Fun
B
(Δ × Cop, Fun

B
(C,PSh

B
(Δ)))

Fun
B
(Δ × PSh

B
(Cop), Fun

B
(C,PSh

B
(Δ))),

(id ×ℎCop)!

as claimed.

By combining this observation with Proposition 4.4.2.8 and Lemma 4.4.3.2, we

are in the situation of Lemma 4.4.3.3 and may therefore conclude that the map

𝜂C(pr∗0 Δ
• × pr∗1(−)) is an equivalence, where 𝜂C denotes the unit of UnC ⊣ StC.

As a consequence, since 𝜙 is explicitly given by the composition

UnD 𝑓 ∗ UnC 𝑓 ∗𝜂C
−−−−−−−−→ UnD 𝑓 ∗ StC UnC

≃
−→ UnD StD 𝑓 ∗ UnC

𝜖D𝑓 ∗ UnC
−−−−−−−→ 𝑓 ∗ UnC,

the proof is finished once we show that also the counit 𝜖D𝑓 ∗ UnC(pr∗0 Δ
• ×pr∗1(−))

is an equivalence. But as in light of Proposition 4.4.2.8 and the naturality of

tensoring there is an equivalence

𝑓 ∗ UnC(pr∗0 Δ
• × pr∗1(−)) ≃ UnD(pr∗0 Δ

• × pr∗1 𝑓
∗(−)),

the triangle identities for the adjunction UnD ⊣ StC imply that this follows once

we prove that the map 𝜂D(pr∗0 Δ
•×pr∗1 𝑓

∗(−)) is an equivalence, which has already

been shown above.

Proof of Theorem 4.4.3.1. Let 𝑐∶ 1 → C be an arbitrary global object. As discussed

in the beginning of this section, we only have to show that the natural map

𝜙∶ Un1 𝑐∗ → 𝑐∗ UnC is an equivalence. In light of the factorisation of 𝑐 into the

composition (𝜋𝑐)! id𝑐 ∶ 1 → C/𝑐 → C of a final map and a right fibration (see

Corollary 2.1.3.13), the map 𝜙 arises as the mate of the composite square in the

commutative diagram

CocartC Fun
B
(C,CatB)

CocartC/𝑐
Fun

B
(C/𝑐,CatB)

Cocart1 CatB .

StC

(𝜋𝑐)∗! (𝜋𝑐)∗!
StC/𝑐

id∗𝑐 id∗𝑐
St1
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Using the functoriality of mates, it therefore suffices to show that the mate of

each individual square in the diagram commutes. Using Proposition 4.4.3.4,

this follows once we show that the two vertical maps on the left-hand side

of the above diagram are cocontinuous. As for (𝜋𝑐)∗! , this is a consequence of

Proposition 4.3.3.3, so it suffices to consider the map id∗𝑐 . Let 𝜋C/𝑐
∶ C/𝑐 → 1 be

the projection. In light of Proposition 4.3.3.3, we obtain a map

𝜙∶ id∗𝑐 → id∗𝑐 𝜋∗
C/𝑐

(𝜋C/𝑐
)! ≃ (𝜋C/𝑐

)!

in which the map on the left-hand side is induced by the unit of the adjunction

(𝜋C/𝑐
)! ⊣ 𝜋∗

C/𝑐
and the equivalence on the right-hand side follows from the fact that

id𝑐 is a section of 𝜋C/𝑐
. Since (𝜋C/𝑐

)! is a left adjoint and therefore cocontinuous

(Proposition 3.3.2.10), it thus suffices to verify that 𝜙 is an equivalence. Explicitly,

if 𝑝∶ P → 𝐴 × C is a cocartesian fibration, the map 𝜙(𝑝) is constructed via the

commutative diagram

(P|𝑐)♭ P♮ (𝜋C/𝑐
)!(P)♭

𝐴 𝐴 × P♯ 𝐴

𝑖

𝜙(𝑝)♭

𝑝♮

𝑗

𝑐♯ pr0

in B+
Δ in which the left square is cartesian and the right square is defined by

the condition that 𝑗 is marked left anodyne. Since 𝑐 is final, the map 𝑐♯ is con-

tained in the internal saturation of 𝑑0 ∶ Δ0 ↪→ (Δ1)♯. Using the dual of Re-

mark 4.2.5.6, we thus conclude that 𝑖 is marked right anodyne. Note that since

Cocart(𝐴) ≃ Cart(𝐴) as full subcategories of (B+
Δ)/𝐴, the map 𝑗 is simultaneously

the reflection map into Cocart(𝐴) and Cart(𝐴) and must therefore be marked

right anodyne as well. We therefore conclude that also 𝜙(𝑝)♭ is a marked right an-

odyne map. Being a morphism between marked cartesian fibrations over𝐴, this is

necessarily also a marked cartesian fibration. Hence 𝜙(𝑝) is an equivalence.

Remark 4.4.3.5. Theorem 4.4.3.1 in particular implies that the Ĉat∞-presheaf

Cocart on Cat(B) is a sheaf. In fact, using the naturality of straightening and the

fact that Fun
B
(−,CatB) is a sheaf, we find that Cocart(−) ∶ Cat(B)op → Cat(B̂)
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4. Cocartesian fibrations and the straightening equivalence

is a sheaf as well. Since postcomposing the latter with the global sections functor

recovers the presheaf Cocart, the claim follows.

Remark 4.4.3.6. By combining Theorem 4.4.3.1 with Remark 4.4.1.6, one also

obtains that the straightening functor StC ∶ CartC → Fun
B
(Cop,CatB) is an

equivalence.

4.4.4. The universal cocartesian fibration

Let C be a large B-category. Recall that a functor 𝑝∶ P → C in Cat(B̂) is said to

be small if for every (small) B-category D and every functor D → C the pullback

P ×C D is small as well. The collection of small cocartesian fibrations defines a

subpresheaf CocartU ↪→ Cocart on Cat(B̂).

Lemma 4.4.4.1. Let 𝑝∶ P → C be a cocartesian fibration between large B-
categories. Then 𝑝 is small if and only if for all objects 𝑐∶ 𝐴 → C in context
𝐴 ∈ B the fibre P|𝑐 is a small B-category.

Proof. The condition is clearly necessary. Conversely, it suffices to show that

if C is small and if P|𝑐 is small for all objects 𝑐∶ 𝐴 → C in context 𝐴 ∈ B, then

B-category P is small as well. By letting 𝑐 be the tautological object C0 → C,

one finds that P0 is small. It therefore suffices to show that P is locally small,

see Proposition 2.3.1.5. Using Proposition 2.3.1.3, we need to show that for any

two objects 𝑥, 𝑦∶ 𝐴 ⇉ P in context 𝐴 ∈ B the (large) mapping B-groupoid

mapP(𝑥, 𝑦) is contained inB. Let 𝑐 = 𝑝(𝑥) and 𝑑 = 𝑝(𝑦). Note that the morphism

mapP(𝑥, 𝑦) → mapC(𝑐, 𝑑) can be identified with the fibre of

mapP(𝑥, 𝑦) ×𝐴 mapC(𝑐, 𝑑) → mapC(𝑐, 𝑑) ×𝐴 mapC(𝑐, 𝑑)

over the diagonalmapC(𝑐, 𝑑) → mapC(𝑐, 𝑑)×𝐴mapC(𝑐, 𝑑). Therefore, by replacing

𝐴 with mapC(𝑐, 𝑑), we may assume that there exists a map 𝛼∶ 𝑐 → 𝑑 in context

𝐴 and that we only have to show that the fibre of mapP(𝑥, 𝑦) → mapC(𝑐, 𝑑) over
𝛼 is contained in B. Let 𝑓∶ 𝑥 → 𝑧 be a cocartesian lift of 𝛼. We then obtain a
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cartesian square

mapP(𝑧, 𝑦) mapP(𝑥, 𝑦)

mapC(𝑑, 𝑑) mapC(𝑐, 𝑑)

𝑓 ∗

𝛼∗

such that the fibre of the left vertical map over the identity id𝑑 ∶ 𝐴 → mapC(𝑑, 𝑑)
recovers the fibre of the right vertical morphism over 𝛼. Hence this fibre recovers

the mapping B-groupoid mapP|𝑑
(𝑧, 𝑦) and is therefore small.

Recall that there is an inclusion CatB ↪→ Cat
B̂

of very large B-categories

that identifies CatB with the full subcategory of Cat
B̂

that is spanned by the

small functors D → 𝐴 over all 𝐴 ∈ B (Remark 1.4.2.6). As a consequence of

Lemma 4.4.4.1, we now obtain:

Proposition 4.4.4.2. For every largeB-categoryC, the subpresheafCocartU(−×C)
of the sheaf Cocart(−×C) that is spanned by the small cocartesian fibrations over C
is a sheaf onB and hence defines an (a priori very large)B-category CocartUC . More-
over, restricting the straightening functor StC to CocartUC determines an equivalence
CocartUC ≃ Fun

B
(C,CatB).

As a consequence of Proposition 4.4.4.2, we may now define:

Definition 4.4.4.3. The universal cocartesian fibration 𝜙B ∶ (CatB)1// → CatB
is the map that arises as the unstraightening of the identity id∶ CatB ≃ CatB.

Remark 4.4.4.4. Given 𝐴 ∈ B, Remark 4.4.1.3 implies that the base change

𝜋∗
𝐴(𝜙B) of the universal cocartesian fibration 𝜙B ∶ (CatB)1// → CatB in B is

equivalent to the universal cocartesian fibration 𝜙B/𝐴
∶ (CatB/𝐴

)1// → CatB/𝐴
.

Remark 4.4.4.5. On account of the naturality of straightening, if C → CatB is

a functor in Cat(B̂), the associated small cocartesian fibration UnC(𝑓 ) → C fits

into a unique pullback square

UnC(𝑓 ) (CatB)1//

C CatB .

𝜙B
𝑓
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The goal for the remainder of this section is to relate the cocartesian fibration

Γ(𝜙B) that is obtained by taking global sections of the universal cocartesian

fibration in B with the universal cocartesian fibration in Ani. This will require

quite a few preparations first. We begin with the following lemma:

Lemma 4.4.4.6. For any ∞-category C, the transposition of the Yoneda embedding
C ↪→ PSh

B
(C) in Cat(B) across the adjunction constB ⊣ Γ yields the composition

C
ℎC
↪−−→ PShAni(C)

(constB)∗
−−−−−−−−→ PShB(C).

Proof. Transposing the Yoneda embedding C ↪→ PSh
B
(C) across constB ⊣ Γ

yields the composition

C
𝜂
−→ Γ(C) ↪→ PShB(C)

in which 𝜂 is the adjunction unit of constB ⊣ Γ and the right map is given by

taking global sections of the Yoneda embedding in Cat(B). By in turn transposing

the above map across the adjunction Cop × − ⊣ Fun(Cop, −) in Ĉat∞, one ends

up with the functor

Cop × C
𝜂
−→ Γ(Cop × C)

Γ(map
C
)

−−−−−−−→ B.

On the other hand, the transpose of the composition C ↪→ PShAni(C) → PShB(C)
yields

Cop × C
map

C
−−−−−→ Ani

constB
−−−−−−→ B,

so it suffices to show that these two functors are equivalent. By Corollary 2.2.2.8

the functor mapΓC is equivalent to the composition

Γ ∘ Γ(map
C
)∶ ΓCop × ΓC → B → Ani,

hence the morphism map
C

→ mapΓC ∘𝜂 that is induced by the action of 𝜂 on

mapping ∞-groupoids determines a morphism map
C
→ Γ ∘ Γ(map

C
) ∘ 𝜂 which in

turn transposes to a map

constB ∘map
C
→ Γ(map

C
) ∘ 𝜂.

By the triangle identities, this is an equivalence.
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Lemma 4.4.4.7. For any ∞-category C, there is a commutative square

Fun(C,Ani) Fun(C,B)

LFibAni(C) LFibB(C)

(constB)∗

≃ ≃
constB

in which the two vertical equivalences are given by the straightening equivalence
for left fibrations in Ani and in B, respectively.

Proof. By using that both Fun(−,Ani) and Fun(−,B) are sheaves of ∞-categories

on Cat∞, it suffices to show that we have a commutative square

Fun(Δ•,Ani) Fun(Δ•,B)

LFibAni(Δ•) LFibB(Δ•)

(constB)∗

≃ ≃
constB

of functors Δop → Cat∞. Recall from Section 2.2.1 that the straightening equiva-

lence for left fibrations fits into a commutative diagram

LFibB(Δ•) (BΔ)/Δ•

Fun(Δ•,B) PShB(Δ/Δ•)

≃ ≃

𝜖∗

in which 𝜖∶ (Δ/Δ•)op → Δ• carries a map 𝜏∶ ⟨𝑘⟩ → ⟨𝑛⟩ to 𝜏 (0) ∈ ⟨𝑛⟩. It is now

straightforward to verify that the two horizontal maps and the equivalence on

the right are natural in B ∈ TopL, hence the claim follows.

Lemma 4.4.4.8. For any B-category C there exists a commutative square

Cocart(C) LFib(C)Δ

Cocart(Γ(C)) LFib(ΓC)Δ.

Γ(StC)

Γ Γ
StΓC
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Proof. By construction of the straightening functor and by making use of Re-

mark 4.3.2.5 and Lemma 4.4.4.6, the functor Γ(StC) fits into the diagram

Γ(StC)(−)• (−)Δ
•

Fun
B
(Δ•, −)

C Fun
B
(Δ•,C)

diag

in which the square is a pullback and the upper left horizontal map is given by the

inclusion of the underlying left fibration. As Γ commutes with limits, cotensoring

by ∞-categories and taking the underlying left fibration of a cocartesian fibration,

the claim follows.

For our next result, note that in light of the straightening equivalence for left

fibrations, the global sections functor Γ∶ LFibB(C) → LFibAni(ΓC) determines a

map

Γ∶ FunB(C,Grpd
B
) → Fun(Γ(C),Ani)

for every B-category C.

Lemma 4.4.4.9. The functor Γ∶ FunB(CatB,Grpd
B
) → Fun(Cat(B),Ani) car-

ries the simplicial object in FunB(CatB,Grpd
B
) that is given by mapCatB

(Δ•, −)
to the simplicial object mapCat(B)(Δ

•, −) in Fun(Cat(B),Ani).

Proof. Let 𝑖∶ CatB ↪→ PSh
B
(Δ) denote the inclusion. Note that we can identify

the simplicial object mapCatB
(Δ•, −) with the image of the simplicial object

mapPSh
B
(Δ)(Δ

•, −) in FunB(PSh
B
(Δ),Grpd

B
) along the functor

𝑖∗ ∶ FunB(PSh
B
(Δ),Grpd

B
) → FunB(CatB,Grpd

B
).

Analogously, the simplicial object mapCat(B)(Δ
•, −) is the image of map

BΔ
(Δ•, −)

along Γ(𝑖)∗. As the global sections functor Γ∶ LFibB(C) → LFibAni(ΓC) is natural
in C, we may thus replace CatB by PSh

B
(Δ) and Cat(B) byBΔ. Now the functor

of left Kan extension

(ℎΔ)! ∶ Fun
B
(Δ,Grpd

B
) ↪→ Fun

B
(PSh

B
(Δ),Grpd

B
)
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induces an inclusion LFibB(Δ) ↪→ LFibB(PSh
B
(Δ)) that acts by sending a left

fibration P → Δ to the left fibration Q → PSh
B
(Δ) that arises from the fac-

torisation of P → Δ ↪→ PSh
B
(Δ) into an initial map and a left fibration (see

Corollary 3.1.3.3). In particular, one obtains an initial map P → Q. In the case

that P is corepresented by a global object in Δ, the left fibration Q → PSh
B
(Δ)

is corepresented by its image along ℎΔ. Under these conditions, the global sec-

tions functor Γ carries the initial map P → Q to an initial map in Ĉat∞. As a

consequence, the lax square

LFibB(PSh
B
(Δ)) LFibAni(BΔ)

LFibB(Δ) LFibAni(ΓΔ)

Γ

Γ

(ℎΔ)! (ΓℎΔ)!

commutes after restricting along the inclusion Γ(ℎΔop)∶ ΓΔop ↪→ LFibB(Δ). Now

by virtue of Lemma 4.4.4.6, the restriction of ΓℎΔ along the adjunction unit

𝜂Δ ∶ Δ → ΓΔ is equivalent to the composition

Δ
ℎΔ
↪−−→ AniΔ

constB
−−−−−−→ BΔ.

Hence, the equivalence map
BΔ

(Δ•, −) ≃ mapAniΔ
(Δ•, Γ(−)) implies that the sim-

plicial object map
BΔ

(Δ•, −) arises as the image of 𝜂opΔ ∈ (ΓΔop)Δ along the inclu-

sion

(ΓℎΔ)! ∘ ℎΓΔop ∶ (ΓΔop)Δ ↪→ Fun(BΔ,Ani)Δ.

To complete the proof, it therefore suffices to construct a commutative diagram

LFibB(Δ) LFibAni(ΓΔ)

Δop.

Γ

ℎΓΔop∘𝜂
op
Δ

Γ(ℎΔop)∘𝜂
op
Δ

Again by Lemma 4.4.4.6 and by moreover making use of Lemma 4.4.4.7, the

vertical map is equivalent to the composition

Δop
ℎΔop
↪−−−→ LFibAni(Δ)

constB
−−−−−−→ LFibB(Δ).
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4. Cocartesian fibrations and the straightening equivalence

Note that the adjunction unit 𝜂 induces a map idLFibAni(Δ) → 𝜂∗Δ ∘ Γ ∘ constB in

which the codomain denotes the composition

LFibAni(Δ)
constB
−−−−−−→ LFibB(Δ)

Γ
−→ LFibAni(ΓΔ)

𝜂∗Δ
−−→ LFibAni(Δ).

By transposition, we therefore end up with a map 𝜙∶ (𝜂Δ)! → Γ ∘ constB. On

account of the equivalence (𝜂Δ)!∘ℎΔop ≃ ℎΓΔop ∘𝜂, it now suffices to show that 𝜙ℎΔop

is an equivalence. But if 𝑛 ≥ 0 is an arbitrary integer, the map 𝜂∶ Δ⟨𝑛⟩/ → ΓΔ⟨𝑛⟩/
is already initial, which implies the claim.

Proposition 4.4.4.10. There is a cartesian square

Γ(CatB)1// (Cat∞)1//

Γ(CatB) Cat∞

Γ(𝜙B) 𝜙Ani

Γ

of ∞-categories.

Proof. Identifying FunB(CatB,Grpd
B
) with LFib(CatB) and Fun(Cat(B),Ani)

with LFib(Cat(B)), Lemma 4.4.4.8 gives rise to a commutative square

Cocart(CatB) FunB(CatB,Grpd
B
)Δ

Cocart(Cat(B)) Fun(Cat(B),Ani)Δ.

Γ(StCatB)

Γ
StCat(B)

The functor Γ(StCatB) carries the universal cocartesian fibration to the simplicial

object mapCatB
(Δ•, −). By Lemma 4.4.4.9, the right vertical map in the above

diagram sends this simplicial object to mapCat(B)(Δ
•, −), which is equivalent to

mapCat∞
(Δ•, Γ(−)) by virtue of the adjunction constB ⊣ Γ. Using the naturality

of straightening (in Cat∞), we conclude that Γ(𝜙B) is the pullback of 𝜙Ani along

the global sections functor Γ, as claimed.

Corollary 4.4.4.11. Let 𝑓∶ C → CatB be a functor and let P → C be the cocarte-
sian fibration of B-categories that is classified by 𝑓. Then the cocartesian fibration
ΓP → ΓC is classified by Γ ∘ Γ(𝑓 )∶ ΓC → Cat∞.
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4.4.5. Straightening over the interval

Let 𝑝∶ M → Δ1 be a cocartesian fibration in Cat(B), and let M|0 and M|1 be its

fibres over 𝑑1 ∶ Δ0 ↪→ Δ1 and 𝑑0 ∶ Δ0 ↪→ Δ1, respectively. Our goal in this section

is to understand the functor 𝑓∶ M|0 → M|1 that arises from applying the straight-

ening functor StΔ1 to 𝑝. Note that the inclusion 𝑑1 ∶ M|♭0 ↪→ (Δ1)♯ ⊗M|♭1 being

marked left anodyne implies that there exists a unique map ℎ∶ (Δ1)♯⊗M|♭0 → M♮

that makes the diagram

M|♭0 M♮

(Δ1)♯ ⊗M|♭0 (Δ1)♯
𝑑1 𝑝♮

pr0

ℎ

commute. Upon applying the restriction functor (−)|Δ to this diagram, we there-

fore end up with a morphism ℎ∶ Δ1 ⊗M|0 → M in Cocart(Δ1) whose fibre over

𝑑1 ∶ Δ0 ↪→ Δ1 recovers the identity on M|0. Note that the cocartesian fibration

pr0 ∶ Δ1 ⊗M|0 → Δ1 is the pullback of M|0 → 1 along 𝑠0 ∶ Δ1 → 1 and therefore

corresponds via straightening to the identity on M|0. Consequently, applying the

functor StΔ1 to ℎ results in a commutative square

M|0 M|0

M|0 M|1

id

id

𝑓
𝑔

in Cat(B), which of course implies 𝑓 ≃ 𝑔. In other words, we may recover 𝑓 as

the fibre of ℎ over the final object 𝑑0 ∶ Δ0 ↪→ Δ1. To proceed, we first need the

following characterisation of cocartesian fibrations over Δ1:

Proposition 4.4.5.1. A functor 𝑝∶ M → Δ1 in Cat(B) is a cocartesian fibration if
and only if the inclusion 𝑖1 ∶ M|1 ↪→ M of the fibre of 𝑝 over 𝑑0 ∶ Δ0 ↪→ Δ1 admits
a left adjoint 𝐿1, in which case the adjunction unit 𝜂∶ 𝑚 → 𝑖1𝐿1(𝑚) is a cocartesian
map for every object 𝑚∶ 𝐴 → M in context 𝐴 ∈ B.

The proof of Proposition 4.4.5.1 will make repeated use of the following obser-

vation:
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4. Cocartesian fibrations and the straightening equivalence

Lemma 4.4.5.2. Let C be a poset. Then a functor 𝑝∶ P → C in Cat(B) is a
cocartesian fibration if and only if for every 𝑐 < 𝑑 in C and every object 𝑥∶ 𝐴 → P|𝑐
there exists a morphism 𝑓∶ 𝑥 → 𝑦 in P such that 𝑝(𝑦) ≃ 𝜋∗

𝐴(𝑑) and such that the
map

𝑓 ∗ ∶ mapP(𝑦 , 𝑖≥𝑑(−)) → mapP(𝑥, 𝑖≥𝑑(−))

is an equivalence, where 𝑖≥𝑑 ∶ P≥𝑑 = P ×C C𝑑/ ↪→ P denotes the pullback of the
inclusion (𝜋𝑑)! ∶ C𝑑/ ↪→ C along 𝑝. If this is the case, the map 𝑓 is a cocartesian
morphism.

Proof. For any 𝑐 ≤ 𝑑 in the poset C, we shall denote by (𝑐 ≤ 𝑑)∶ 1 → C1 the

associated morphism in the constant B-category. Note that C being constant

implies that C1 admits a cover ⨆𝑐≤𝑑 1 � C1, which implies that for every map

𝑓∶ 𝐴 → C there is a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 such that 𝑠∗𝑖 (𝑓 ) ≃ 𝜋∗
𝐴𝑖
(𝑐 ≤ 𝑑) for some

(𝑐 ≤ 𝑑) in the poset C. By combining this observation with Proposition 4.1.2.7

and Remark 4.1.2.9, we thus conclude that 𝑝 is cocartesian if and only if for every

𝑐 ≤ 𝑑 and every object 𝑥∶ 𝐴 → P|𝑐 there exists a cocartesian lift 𝑓∶ 𝑥 → 𝑦 of

𝜋∗
𝐴(𝑐 ≤ 𝑑). Since this is always possible when 𝑐 ≃ 𝑑, we may assume 𝑐 < 𝑑. Note

that since C is a poset, the map (𝑑1, 𝑑0)∶ C1 → C0 × C0 is a monomorphism in B.

Therefore, a map 𝑓∶ 𝑥 → 𝑦 is a lift of 𝜋∗
𝐴(𝑐 < 𝑑) if and only if 𝑝(𝑦) ≃ 𝜋∗

𝐴(𝑑). Now

in order to finish the proof, we only need to show that the map 𝑓 is cocartesian if

and only if the morphism

𝑓 ∗ ∶ mapP(𝑦 , 𝑖≥𝑑(−)) → mapP(𝑥, 𝑖≥𝑑(−))

is an equivalence. By replacing B with B/𝐴, we can assume that 𝐴 ≃ 1. By

definition, 𝑓 being cocartesian means that the commutative square

mapP(𝑦 , −) mapP(𝑥, −)

map
C
(𝑑, 𝑝(−)) map

C
(𝑐, 𝑝(−))

𝑓 ∗

(𝑐<𝑑)∗

is a pullback. Let C≱𝑑 be the full subposet of C that is spanned by the objects

in C that do not admit a map from 𝑑, and let us set P≱𝑑 = P ×C C≱𝑑. Then C0
decomposes into a coproduct (C𝑑/)0 ⊔ (C≱𝑑)0, which in turn induces a decom-

position P0 ≃ (P≥𝑑)0 ⊔ (P≱𝑑)0. As a consequence, the above square is cartesian
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if and only if its restriction along both 𝑖≥𝑑 ∶ P≥𝑑 ↪→ P and 𝑖≱𝑑 ∶ P≱𝑑 ↪→ P is

cartesian. By construction of C≱𝑑, the restriction of map
C
(𝑑, −) along the in-

clusion C≱𝑑 ↪→ C yields the initial object. Consequently, restricting the above

square along 𝑖≱𝑑 trivially gives rise to a pullback diagram. On the other hand,

the restriction of (𝑐 < 𝑑)∗ along the inclusion C𝑑/ ↪→ C produces an equivalence,

which shows that the above square being cartesian is equivalent to the condition

that 𝑓 ∗ ∶ mapP(𝑦 , 𝑖≥𝑑(−)) → mapP(𝑥, 𝑖≥𝑑(−)) is an equivalence.

Proof of Proposition 4.4.5.1. Let us first assume that the inclusion 𝑖1 ∶ M|1 ↪→ M

admits a left adjoint 𝐿1. Let 𝑚∶ 𝐴 → M be an arbitrary object and let us denote

by 𝜂∶ 𝑚 → 𝑖𝐿(𝑚) the adjunction unit. Then the map

mapM(𝑖1𝐿1(𝑚), 𝑖1(−)) mapM(𝑚, 𝑖1(−))
𝜂∗

is an equivalence. Hence Lemma 4.4.5.2 implies 𝑝 is a cocartesian fibration and

that 𝜂 is a cocartesian morphism.

Conversely, suppose that 𝑝 is a cocartesian fibration. Given 𝑚∶ 𝐴 → M and

𝑐 = 𝑝(𝑚), the fact that 1 is a final object in Δ1 gives rise to a unique map 𝛼∶ 𝑐 → 1
in context 𝐴. Let 𝑓∶ 𝑚 → 𝑚′ be a cocartesian lift of 𝛼. By construction, 𝑚′ is

contained in the essential image of 𝑖1. We would like to show that the map

𝜂∗ ∶ mapM(𝑚′, 𝑖1(−)) → mapM(𝑚, 𝑖1(−))

is an equivalence. But the map

𝛼∗ ∶ mapΔ1(𝑝(𝑚′), 𝑝𝑖1(−)) → mapΔ1(𝑝(𝑚), 𝑝𝑖1(−))

is an equivalence, hence 𝜂∗ is one as well on account of 𝜂 being cocartesian. This

shows that 𝑖1 admits a left adjoint that is given by sending 𝑚 to 𝑚′.

Let 𝜒∶ 𝑖0 → 𝑖1𝑓 be the morphism of functors M|0 → M that is encoded by the

map ℎ∶ Δ1⊗M|0 → M. Note that as for every object 𝑚∶ 𝐴 → M|0 the associated

map (𝜋∗
𝐴(0 < 1), id𝑚) in Δ1 ⊗M|0 is cocartesian, the map 𝜒(𝑚)∶ 𝑖0(𝑚) → 𝑖1𝑓 (𝑚)

in M is cocartesian too. By Proposition 4.4.5.1, the left adjoint 𝐿1 ∶ M → M|1 to

𝑖1 thus carries 𝜒(𝑚) to an equivalence in M|1. In other words, the map 𝐿1𝜒 is an

equivalence of functors. But since 𝐿1𝑖1 ≃ idM|1 via the counit of the adjunction

𝐿1 ⊣ 𝑖1, we conclude:
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Proposition 4.4.5.3. The functor 𝑓∶ M|0 → M|1 that classifies the cocartesian
fibration 𝑝∶ M → Δ1 is equivalent to the composition 𝐿1𝑖0 ∶ M|0 ↪→ M → M|1.

Remark 4.4.5.4. Proposition 4.4.5.3 in particular shows that for any object

𝑚∶ 𝐴 → M|0 in context 𝐴 ∈ B, the object 𝑓 (𝑚)∶ 𝐴 → M|1 is given by the

codomain of the unique cocartesian lift 𝑓∶ 𝑚 → 𝑚′ of the map 𝜋∗
𝐴(0 < 1) in

Δ1. More generally, if 𝐹∶ C → CatB is an arbitrary functor and if 𝑓∶ 𝑐 → 𝑑
is a map in C in context 𝐴 ∈ B, the straightforward observation that a lift

ℎ∶ 𝑥 → 𝑦 in UnC(𝐹 ) of 𝑓 is cocartesian if and only if it defines a cocartesian lift of

0 < 1 in the pullback Un𝜋∗
𝐴C

(𝜋∗
𝐴𝐹) ×𝜋∗

𝐴C
Δ1 ≃ UnΔ1(𝐹 (𝑓 )) implies that the object

𝑦∶ 𝐴 → UnC(𝐹 )|𝑑 ≃ 𝐹(𝑑) recovers the image of 𝑥 along 𝐹(𝑓 ).

Corollary 4.4.5.5. A cocartesian fibration 𝑝∶ M → Δ1 is cartesian if and only if
the functor 𝑓∶ M|0 → M|1 admits a right adjoint 𝑔∶ M|1 → M|0. If this is the case,
then 𝑔op is classified by the cocartesian fibration 𝑝op ∶ Mop → (Δ1)op ≃ Δ1.

Proof. The dual of Proposition 4.4.5.1 implies that 𝑝 is a cartesian fibration if

and only if the inclusion 𝑖0 ∶ M|0 ↪→ M admits a right adjoint 𝑅0 ∶ M → M|0.
Hence Proposition 4.4.5.3 both shows that the functor 𝑔 = 𝑅0𝑖1 is right adjoint

to 𝑓 ≃ 𝐿1𝑖0 and that 𝑔op arises as the straightening of 𝑝op. Conversely, suppose

that 𝑓 has a right adjoint 𝑔. For any object 𝑚∶ 𝐴 → M|1, we obtain a map

ℎ∶ 𝑖0𝑔(𝑚) → 𝑖1(𝑚) that is defined via the composition

𝑖0𝑔(𝑚)
𝜂
−→ 𝑖1𝐿1𝑖0𝑔(𝑚)

≃
−→ 𝑖1𝑓 𝑔(𝑚)

𝜖
−→ 𝑖1(𝑚)

where 𝜂 is the unit of the adjunction 𝐿1 ⊣ 𝑖1 and 𝜖 is the counit of the adjunction

𝑓 ⊣ 𝑔. We claim the map

ℎ∗ ∶ mapM(𝑖0(−), 𝑖0𝑔(𝑚)) → mapM(𝑖0(−), 𝑖1(𝑚))

is an equivalence. Unwinding the definitions, the composition of ℎ∗ with the

equivalence

mapM|0
(−, 𝑔(𝑚))

≃
−→ mapM(𝑖0(−), 𝑖0𝑔(𝑚))
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turns out to be equivalent to the composition

mapM|0
(−, 𝑔(𝑚))

≃
−→ mapM|1

(𝑓 (−), 𝑚)
≃
−→ mapM|1

(𝐿1𝑖0(−), 𝑚)
≃
−→ mapM(𝑖0(−), 𝑖1(𝑚))

in which the two outer equivalences are determined by the two adjunctions

𝑓 ⊣ 𝑔 and 𝐿1 ⊣ 𝑖1. Consequently, ℎ∗ is an equivalence, hence the dual version of

Lemma 4.4.5.2 implies that 𝑝 is a cartesian fibration.

Remark 4.4.5.6. In large parts, our treatment of cocartesian fibrations over the

interval is an adaptation of the discussion in [52, § 02FJ] to B-categories.

4.5. Applications

In this section, we briefly mention two application of the straightening equiva-

lence for (co)cartesian fibrations from Theorem 4.4.3.1. In Section 4.5.1 we give

formulas for the limit and colimit of a diagram in CatB, and in Section 4.5.2 we

discuss how passing from a left adjoint functor between B-categories to its right

adjoint can be turned into a functor.

4.5.1. Limits and colimits of B-categories

The straightening equivalence allows us to derive formulas for the limit and the

colimit of a diagram of the form 𝑑∶ J → CatB. As the colimit functor colimJ is

left adjoint to the diagonal functor, one can compute colim 𝑑 by evaluating the

left adjoint of the pullback map 𝜋∗
J ∶ CatB → CocartJ at UnJ(𝑑). Together with

Remark 4.3.3.4, this shows:

Proposition 4.5.1.1. Let 𝑑∶ J → CatB be a small diagram, and let 𝑝∶ P → J be the
unstraightening of 𝑑. Then the B-category colim 𝑑 is equivalent to the localisation
P−1♯ P of P at the subcategory P♯ ↪→ P that is spanned by the cocartesian maps.

Dually, the limit functor limJ is right adjoint to the diagonal functor and there-

fore corresponds via unstraightening to the right adjoint of 𝜋∗
J ∶ CatB → CocartJ.

Using Remark 4.3.3.5, this shows:
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4. Cocartesian fibrations and the straightening equivalence

Proposition 4.5.1.2. Let 𝑑∶ J → CatB be a small diagram, and let 𝑝∶ P → J be the
unstraightening of 𝑑. Then lim 𝑑 is equivalent to theB-category (Fun

B
(J♯, P♮)/J♯)|Δ

of cocartesian sections of 𝑝.

4.5.2. Functoriality of passing between right and left adjoints

Let 𝑅 ↪→ (CatB)1 be the subobject that is spanned by the right adjoint functors

(in arbitrary context), and let CatRB be the subcategory of CatB that is determined

by 𝑅 (see Section 1.3.1). Note that since the condition for a functor between

B-categories to be a right adjoint is local (Remark 3.1.3.6), a functor 𝑓∶ C → D

between B/𝐴-categories defines an object in 𝑅 if and only if 𝑓 is a right ad-

joint. Moreover, 𝑅 is closed under equivalences and composition in the sense of

Proposition 1.3.1.17, hence the inclusion CatRB ↪→ CatB induces an equivalence

(CatRB)1 ≃ 𝑅. In particular, a functor between B/𝐴-categories defines a map in

CatRB if and only if it is a right adjoint. We define the subcategory CatLB ↪→ CatB
that is spanned by the left adjoints in an analogous fashion. Note that the equiv-

alence (−)op ∶ CatB ≃ CatB restricts to an equivalence CatRB ≃ CatLB. Our goal

in this section is to prove:

Proposition 4.5.2.1. There is an equivalence (CatRB)op ≃ CatLB that carries a
right adjoint functor to its left adjoint.

The proof of Proposition 4.5.2.1 requires the following lemma, whose analogue

for cocartesian fibrations of ∞-categories appears as [52, Proposition 02FP].

Lemma 4.5.2.2. A cocartesian fibration 𝑝∶ P → C in Cat(B) is a cartesian
fibration if and only if for every morphism 𝑓∶ Δ1⊗𝐴 → C the functor P|𝑓 → Δ1⊗𝐴
is a cartesian fibration.

Proof. The condition is clearly necessary, so it suffices to prove the converse.

Note that by Remark 4.4.3.5 and its dual, both Cocart and Cart are sheaves on

Cat(B). Consequently, Remark 1.2.1.3 allows us to reduce to the case where

C ≃ Δ𝑛 ⊗ 𝐴. Using Remark 4.3.2.3 (and its dual), we can furthermore reduce to

the case 𝐴 ≃ 1. By the dual of Lemma 4.4.5.2, we need to show that for any 𝑘 < 𝑙
in Δ𝑛 and any object 𝑥∶ 𝐴 → P|𝑙, there exists a map 𝑓∶ 𝑦 → 𝑥 in P such that
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𝑝(𝑦) ≃ 𝑘 and such that the map

𝑓∗ ∶ mapP(𝑖≤𝑘(−), 𝑦) → mapP(𝑖≤𝑘(−), 𝑥)

is an equivalence. By assumption, the pullback P|𝑘<𝑙 → Δ1 of 𝑝 along the mor-

phism (𝑘 < 𝑙)∶ Δ1 ↪→ Δ𝑛 is a cartesian fibration. We can therefore choose a map

𝑓∶ 𝑦 → 𝑥 that defines a cartesian morphism in P|𝑘<𝑙. It will be sufficient to show

that for every object 𝑧∶ 𝐴 → P≤𝑘, the morphism

𝑓∗ ∶ mapP(𝑖≤𝑘(𝑧), 𝑦) → mapP(𝑖≤𝑘(𝑧), 𝑥)

is an equivalence in B/𝐴. As 𝑧 is locally contained in P|𝑗 for some 𝑗 ≤ 𝑘, we can

furthermore assume that 𝑧 is already contained in P|𝑗, i.e. that 𝑝(𝑧) ≃ 𝑗 holds. Let
𝑔∶ 𝑧 → 𝑤 be a cocartesian morphism in P such that 𝑝(𝑤) ≃ 𝑘. We then obtain a

commutative square

mapP(𝑖≤𝑘(𝑤), 𝑦) mapP(𝑖≤𝑘(𝑤), 𝑥)

mapP(𝑖≤𝑘(𝑧), 𝑦) mapP(𝑖≤𝑘(𝑧), 𝑥).

𝑓∗

𝑔∗ 𝑔∗

𝑓∗

By Lemma 4.4.5.2, the two vertical maps are equivalences. On the other hand,

since 𝑤 defines an object in P|𝑘<𝑙, the dual of Lemma 4.4.5.2 shows that the upper

horizontal map is an equivalence on account of 𝑓 being a cartesian morphism in

P|𝑘<𝑙. Hence the claim follows.

Proof of Proposition 4.5.2.1. By making use of the straightening equivalence and

Proposition 1.2.1.4, there is a chain of equivalences

CatB ≃ Fun
B
(Δ•,CatB)≃ ≃ (CocartΔ•)≃

of simplicial objects in B̂. Moreover, since CatLB ↪→ CatB is a subcategory, a

functor Δ𝑛 → CatB factors through CatLB if and only if its restriction along any

𝑓∶ Δ1 ⊗ 𝐴 → Δ𝑛 factors through CatLB (see Proposition 1.3.1.9). By combining

this observation with Corollary 4.4.5.5, one concludes that a cocartesian fibration

𝑝∶ P → Δ𝑛 arises as the unstraightening of a functor Δ𝑛 → CatRB if and only

if for every map 𝑓∶ Δ1 ⊗ 𝐴 → Δ𝑛 the functor P|𝑓 → Δ1 ⊗ 𝐴 is also a cartesian

303



4. Cocartesian fibrations and the straightening equivalence

fibration. By Lemma 4.5.2.2, this is in turn equivalent to 𝑝 being a cartesian

fibration itself. Together with Remark 4.4.1.3 and its dual, the equivalence

Fun
B
(Δ𝑛,CatB)≃ ≃ (CocartΔ𝑛)≃

identifies the subobject Fun
B
(Δ𝑛,CatLB)≃ ↪→ Fun

B
(Δ𝑛,CatB)≃ with the subob-

ject (CocartCartΔ𝑛 )≃ ↪→ (CocartΔ𝑛)≃ that is spanned by the cartesian and cocarte-

sian fibrations. Since taking opposite B-categories determines an equivalence

(CocartCartΔ𝑛 )≃ ≃ (CocartCart(Δ𝑛)op)
≃ that is natural in 𝑛, we obtain equivalences

Fun
B
(Δ•,CatLB)≃ ≃ Fun

B
((Δ•)op,CatLB)≃ ≃ Fun

B
(Δ•, (CatLB)op)≃

of simplicial objects in B̂ and thus an equivalence CatLB ≃ (CatLB)op. The result

now follows by composing this map with (−)op ∶ (CatLB)op ≃ (CatRB)op.
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B-categories

The notion of presentable∞-categories has gained a central role within the theory

of higher categories. This is due to the many favourable properties of presentable

∞-categories, such as the presence of adjoint functor theorems and the existence

of a well-behaved and explicit tensor product. Furthermore, almost all cocomplete

∞-categories that arise in practice are in fact presentable, which allows for wide

applications of these general results. Therefore, it will be crucial to have a notion

of presentability in the world of B-categories at our disposal. The main goal of

this chapter is to develop this theory.

Recall that one can define a presentable ∞-category as one which is accessible,
i.e. of the form Ind𝜅(C) for some small ∞-category C and some regular cardinal 𝜅,
and which is furthermore cocomplete. In order to make sense of such a definition

within B-category theory, we therefore first need a B-categorical notion of

accessibility. Since we already have a functional theory of free cocompletions

at our disposal, the only part that is still missing is an internal notion of 𝜅-
filteredness. Therefore, we begin this chapter in Section 5.1 with a discussion

of U-filtered B-categories with respect to an arbitrary internal class U of B-

categories. However, not every internal class U will lead to a well-functioning

theory: in B-category theory, it is no longer true that every B-category can be

written as a U-filtered colimit of U-small B-categories (where U-small simply

means being contained in U). Having such a property, which is crucial for the

development of accessibility in the world of B-categories, is a genuine condition

on an internal class U. In Section 5.2, we discuss how one can construct an

ample amount of internal classes U which satisfy this condition. Building upon

these rather technical preparations, we then define the concept of U-accessibility
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in Section 5.3 and prove a few basic results that we will need for our discussion of

presentableB-categories. For example, we give a characterisation of U-accessible

B-categories by making use of the notion of U-compactness. In Section 5.4, we

introduce and study presentable B-categories. Aside from discussing multiple

characterisations of these B-categories, we prove an adjoint functor theorem and

discuss limits and colimits of presentable B-categories. Lastly, in Section 5.5 we

discuss tensor products of B-categories and in particular a symmetric monoidal

structure on the ∞-category of presentable B-categories. We use this structure

to realise B-modules in PrL∞ as presentable B-categories.

5.1. FilteredB-categories

Classically, if 𝜅 is a (regular) cardinal, a 1-category J is said to be 𝜅-filtered if the

colimit functor colimJ ∶ Fun(J, Set) → Set commutes with 𝜅-small limits. In [49],

Lurie generalised this concept to the notion of a 𝜅-filtered ∞-category J, which is

an ∞-category for which colimJ ∶ Fun(J,Ani) → Ani preserves 𝜅-small limits.

The main goal of this section is to discuss an analogous concept for B-categories.

Following ideas introduced in 1-category theory by Adámek-Borceux-Lack-

Rosický [1] and later generalised to ∞-categories by Charles Rezk [71], we will

introduce the notion of a U-filtered B-category, where U is an arbitrary inter-

nal class, i.e. a full subcategory of the large B-category CatB of B-categories

(cf. Section 1.4.2). The main definitions and basic properties of such U-filtered B-

categories are discussed in Section 5.1.1. In Section 5.1.2, we introduce a slightly

weaker notion, that of a weakly U-filtered B-category. Classically, a 𝜅-filtered
(∞-)category can be equivalently described as an (∞-)category in which every

𝜅-small diagram has a cocone. The notion of weak U-filteredness is a generali-

sation of this condition. However, as the terminology suggests, this notion is a

priori weaker than that of U-filteredness. Following [1], we will call an internal

class U a doctrine if both conditions happen to be equivalent.

In Section 5.1.3 and Section 5.1.4, we will study two other important properties

of internal classes: regularity and the decomposition property. Recall that a

cardinal 𝜅 is said to be regular if 𝜅-small sets are closed under 𝜅-small sums. The

notion of regularity for internal classes aims at capturing this property in the

306



5.1. Filtered B-categories

world of B-categories. The decomposition property, on the other hand, is the

condition that every B-category can be obtained as a U-filtered colimit of objects

in U. Hence, this notion can be viewed as an analogue to the fact that every

(∞-)category is a 𝜅-filtered colimit of 𝜅-small (∞-)categories. We will make use of

this property when we discuss the notion of U-compactness in Section 5.1.5.

5.1.1. U-filteredB-categories

In this section, we introduce and study the notion ofU-filteredness in the world of

B-categories, where U is an arbitrary internal class. We begin with the following

definition, which is an evident generalisation of the classical concept of a 𝜅-filtered
(∞-)category:

Definition 5.1.1.1. For any internal class U of B-categories, a B-category J

is said to be U-filtered if the colimit functor colim∶ Fun
B
(J,Grpd

B
) → Grpd

B

is U-continuous. We define the internal class FiltU of U-filtered categories as

the full subcategory of CatB that is spanned by those B/𝐴-categories J that are

𝜋∗
𝐴U-filtered, for every 𝐴 ∈ B.

Remark 5.1.1.2. In the situation of Definition 5.1.1.1, the fact that U-continuity

is a local condition (Remark 3.3.2.3) implies that every object 𝐴 → FiltU is

𝜋∗
𝐴U-filtered (which a priori has no reason to be true). In particular, the sheaf

associated with FiltU is given on local sections over𝐴 ∈ B by the full subcategory

of Cat(B/𝐴) that is spanned by the 𝜋∗
𝐴U-filtered categories. For any 𝐴 ∈ B, we

therefore obtain a canonical equivalence 𝜋∗
𝐴 FiltU ≃ Filt𝜋∗

𝐴U
.

Remark 5.1.1.3. Clearly, if U ↪→ V is an inclusion of internal classes, every V-

filteredB-category is in particular U-filtered. Therefore, one obtains an inclusion

FiltV ↪→ FiltU.

Remark 5.1.1.4. If I and J are B-categories, note that the horizontal mate of the

commutative square

Fun
B
(I × J,Grpd

B
) Fun

B
(J,Grpd

B
)

Fun
B
(I,Grpd

B
) Grpd

B

diag∗

colim∗ colim

diag
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(with respect to the two adjunctions diag ⊣ lim and diag∗ ⊣ lim∗) is equivalent

to the horizontal mate of the commutative square

Fun
B
(I,Grpd

B
) Fun

B
(I × J,Grpd

B
)

Grpd
B

Fun
B
(J,Grpd

B
).

diag∗

lim lim∗
diag

(with respect to the two adjunctions colim ⊣ diag and colim∗ ⊣ diag∗). As

a consequence, the functor colim∶ Fun
B
(J,Grpd

B
) → Grpd

B
commutes with

I-indexed limits if and only if the functor lim∶ Fun
B
(I,Grpd

B
) → Grpd

B
com-

mutes with J-indexed colimits. Thus, if U is an internal class of B-categories,

a B-category J is U-filtered precisely if for all 𝐴 ∈ B and all I ∈ U(𝐴) the

limit functor lim∶ Fun
B
(I,Grpd

B/𝐴
) → Grpd

B/𝐴
commutes with 𝜋∗

𝐴J-indexed

colimits.

Recall from Section 2.1.2 the definition of the right cone J▷ of a B-category

J. It comes with an inclusion 𝜄 ∶ J ↪→ J▷ such that for every B-category C that

admits J-indexed colimits, the functor of left Kan extension 𝜄! exists and carries

an I-indexed diagram in C to its colimit cocone (Proposition 3.4.4.1). We now

obtain:

Proposition 5.1.1.5. A B-category J is U-filtered with respect to some internal
class U if and only if the inclusion 𝜄! ∶ Fun

B
(J,Grpd

B
) ↪→ Fun

B
(J▷,Grpd

B
) is

U-continuous.

Proof. By definition, the functor 𝜄! is U-continuous if and only if for all 𝐴 ∈ B

the functor 𝜋∗
𝐴(𝜄!) ≃ (𝜋∗

𝐴𝜄)! (cf. Proposition 1.2.5.4 and Corollary 3.1.1.9) preserves

limits of I-indexed diagrams for all I ∈ U(𝐴). Furthermore, J is U-filtered if and

only if the colimit functor colim∶ Fun
B/𝐴

(𝜋∗
𝐴J,GrpdB/𝐴

) → Grpd
B/𝐴

commutes

with I-indexed limits for all I ∈ U(𝐴). By replacing B with B/𝐴, it therefore

suffices to show that for any I ∈ U(1), the functor 𝜄! commutes with I-indexed

limits if and only if colim∶ Fun
B
(J,Grpd

B
) → Grpd

B
preserves I-limits. Note

that by combining Proposition 3.2.7.1 with the fact that the cone point∞∶ 1 → I▷

is final, one finds that the colimit functor colim∶ Fun
B
(J▷,Grpd

B
) → Grpd

B
is

given by evaluation at ∞. As a consequence, Proposition 3.2.3.1 implies that the
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colimit functor colim∶ Fun
B
(J▷,Grpd

B
) → Grpd

B
preserves I-indexed limits.

Owing to the commutative diagram

Fun
B
(J,Grpd

B
)

Fun
B
(J▷,Grpd

B
) Grpd

B
,

colimJ𝜄!

colimJ▷

the functoriality of mates thus implies that 𝑖! preserving I-indexed limits implies

that colimJ commutes with I-indexed limits as well. The converse direction, on

the other hand, follows from combining the functoriality of the mate construction

with the straightforward observation that

(𝜄∗, ∞∗)∶ Fun
B
(J▷,Grpd

B
) → Fun

B
(J,Grpd

B
) × Grpd

B

is a conservative functor.

By an analogous argument as in the proof of Proposition 5.1.1.5 and by fur-

thermore using Remark 5.1.1.4, one obtains:

Proposition 5.1.1.6. A category J in B is U-filtered with respect to some internal
class U if and only if for all 𝐴 ∈ B and all I ∈ U(𝐴) the functor of right Kan
extension

𝜄∗ ∶ Fun
B
(I,Grpd

B/𝐴
) ↪→ Fun

B
(I◁,Grpd

B/𝐴
)

preserves 𝜋∗
𝐴J-indexed colimits.

Remark 5.1.1.7. By Proposition 5.1.1.6 and Proposition 3.2.7.1, if J → K is a

final functor such that J is U-filtered, then K must be U-filtered as well. Since the

final B-category 1 is trivially U-filtered for every choice of internal class U, this

means that FiltU is a colimit class in the sense of Definition 3.3.3.5.

For later use, let us note the following closure property of U-filtered B-

categories:

Proposition 5.1.1.8. The internal class FiltU is closed under FiltU-colimits inCatB.
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Proof. By Remark 5.1.1.2, it suffices to show that if J is a U-filtered B-category

and 𝑑∶ J → FiltU is a diagram, its colimit K in CatB is also U-filtered. Given

any I ∈ U(1), Proposition 3.5.4.1 shows that the functor of right Kan extension

𝜄∗ ∶ Fun
B
(I,Grpd

B
) ↪→ Fun

B
(I◁,Grpd

B
) commutes with K-indexed colimits. As

for any 𝐴 ∈ B the B/𝐴-category 𝜋∗
𝐴K is the colimit of 𝜋∗

𝐴𝑑, the same argument

also shows that for all I ∈ U(𝐴) the functor

𝜄∗ ∶ Fun
B
(I◁,Grpd

B/𝐴
) ↪→ Fun

B
(I,Grpd

B/𝐴
)

commutes with 𝜋∗
𝐴K-indexed colimits. Hence Proposition 5.1.1.6 implies that K

is U-filtered.

5.1.2. Weakly U-filteredB-categories

Recall from Remark 3.3.2.2 that if U is an internal class, we denote by op(U)
the internal class that arises as the image of U along (−)op ∶ CatB ≃ CatB.

In practice, we will often require that every op(U)-cocomplete B-category is

U-filtered. However, this is not true for every internal class U, not even in the

case B = Ani [71, §6]. In this section, we will therefore study a slightly weaker

notion than that of a filtered U-category, which will encompass the class of

op(U)-cocomplete B-categories. We adopted the idea of weak U-filteredness

from Charles Rezk [71], who in turn generalised ideas from [1] to ∞-categories.

Definition 5.1.2.1. If U is an internal class of B-categories, a B-category J is

weakly U-filtered if for every 𝐴 ∈ B and every I ∈ U(𝐴) the diagonal functor

𝜋∗
𝐴J → Fun

B/𝐴
(Iop, 𝜋∗

𝐴J) is final. We define the internal class wFiltU as the full

subcategory of CatB that is spanned by the weakly 𝜋∗
𝐴U-filtered B/𝐴-categories,

for every 𝐴 ∈ B.

Remark 5.1.2.2. In the situation of Definition 5.1.2.1, as the condition of a

functor of B-categories being final is local in B by Remark 2.1.3.3, every object

𝐴 → wFiltU is weakly 𝜋∗
𝐴U-filtered. In particular, there is a canonical equivalence

𝜋∗
𝐴 wFiltU ≃ wFilt𝜋∗

𝐴U
for all 𝐴 ∈ B.

Remark 5.1.2.3. If U ↪→ V is an inclusion of internal classes, every weakly

V-filtered B-category is in particular weakly U-filtered. One thus obtains an

inclusion wFiltV ↪→ wFiltU.

310



5.1. Filtered B-categories

Example 5.1.2.4. By Quillen’s theorem A for B-categories (Corollary 2.1.4.10),

every functor that admits a left adjoint is final. Consequently, every op(U)-
cocomplete B-category I is in particular weakly U-filtered.

Proposition 5.1.2.5. A B-category J is weakly U-filtered if and only if for every
𝐴 ∈ B and every I ∈ U(𝐴) the colimit functor

colim∶ Fun
B/𝐴

(𝜋∗
𝐴J,GrpdB/𝐴

) → Grpd
B/𝐴

preserves I-indexed limits of corepresentables.

Proof. To begin with, note that since the colimit of a diagram 𝑓∶ J → Grpd
B

is given by the groupoidification of the associated left fibration J𝑓 / (Proposi-

tion 3.2.5.1), the colimit of every corepresentable is given by the final object in

Grpd
B
. In other words, there is a commutative square

Jop Fun
B
(J,Grpd

B
)

1 Grpd
B
.

ℎJop

𝜋Jop colim
1GrpdB

As a result, for any diagram 𝑑∶ I → Jop, the presheaf colim ℎJop𝑑 is equiv-

alent to the constant functor 1Grpd
B
𝜋Jop ∶ Jop → Grpd

B
. As the inclusion

1Grpd
B
↪→ Grpd

B
admits a left adjoint (Example 3.2.1.10) and is therefore contin-

uous (Proposition 3.3.2.10), we conclude that the limit lim(colim ℎJop𝑑) is given
by the final object in Grpd

B
. Hence the canonical map

colim(lim ℎJop𝑑) → lim(colim ℎJop𝑑)

is an equivalence if and only if the domain of this map is the final object as well.

On account of the chain of equivalences

lim ℎJop𝑑 ≃ mapFun
B
(J,Grpd

B
)(ℎJop(−), lim ℎJop𝑑)

≃ mapFun
B
(I,Fun

B
(J,Grpd

B
))(diag ℎJop(−), ℎJop𝑑)

≃ mapFun
B
(I,Jop)(diag(−), 𝑑),
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the functor lim ℎJop𝑑 classifies the left fibration J𝑑op/ → J. Hence colim(lim ℎJop𝑑)
is the final object if and only if (J𝑑op/)gpd ≃ 1. By replacingBwithB/𝐴, the same

argumentation goes through for any I ∈ U(𝐴) and any diagram 𝑑∶ I → 𝜋∗
𝐴J

op.

By Quillen’s theorem A for B-categories (Corollary 2.1.4.10), the result thus

follows.

Corollary 5.1.2.6. For every internal class U of B-categories, any U-filtered B-
category is weakly U-filtered. In other words, there is an inclusion FiltU ↪→ wFiltU
of internal classes.

Following the terminology introduced in [1], we may now make the following

definition:

Definition 5.1.2.7. An internal class U of B-categories is said to be sound if the

inclusion wFiltU ↪→ FiltU is an equivalence. It is called weakly sound if for every

𝐴 ∈ B, every op(𝜋∗
𝐴U)-cocomplete B/𝐴-category is 𝜋∗

𝐴U-filtered.

Remark 5.1.2.8. On account of Remark 5.1.1.2 and Remark 5.1.2.2, the étale base

change of a (weakly) sound internal class is (weakly) sound as well.

We finish this section with another characterisation of weakly U-filtered B-

categories that will be useful later. Recall from Definition 3.4.2.1 that if C is

an arbitrary B-category and V is an arbitrary internal class of B-categories,

we denote by SmallV
B
(C) ↪→ PSh

B
(C) the full subcategory that is spanned by

those objects 𝐹∶ 𝐴 → PSh
B
(C) for which the domain of the associated right

fibration C/𝐹 is contained in Vcolim(𝐴) (where Vcolim is the smallest colimit class

containing V, see Definition 3.3.3.5). We now obtain:

Proposition 5.1.2.9. AB-category J is weaklyU-filtered if and only if the inclusion

J ↪→ Smallop(U)
B

(J)

induced by the Yoneda embedding is final.

Proof. By Quillen’s theorem A for B-categories (Corollary 2.1.4.10), we find

that the inclusion J ↪→ Smallop(U)
B

(J) is final if and only if for every 𝐴 ∈ B and

every op(U)-small presheaf 𝐹∶ 𝐴 → Smallop(U)
B

(J) the groupoidification of the
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B/𝐴-category J𝐹/ is the final object in B/𝐴. By the same reasoning, J is weakly

U-filtered if and only if for every I ∈ U(𝐴) and every diagram 𝑑∶ Iop → 𝜋∗
𝐴J the

groupoidification of the B/𝐴-category 𝜋∗
𝐴J𝑑/ is final in B/𝐴. Hence it suffices

to show that for every such diagram 𝑑, there is an object 𝐹∶ 𝐴 → Smallop(U)
B

(J)
such that 𝜋∗

𝐴J𝑑/ ≃ J𝐹/, and vice versa. By replacing B with B/𝐴 and by using

Remark 3.4.2.3, wemay assume that𝐴 ≃ 1. Now by Proposition 3.4.2.6, the colimit

of ℎJ𝑑∶ I → PSh
B
(J) is contained in Smallop(U)

B
(J) and therefore defines aU-small

presheaf 𝐹. By construction, we have an equivalence SmallU
B
(J)𝐹/ ≃ SmallU

B
(J)ℎJ𝑑/

whose pullback along the Yoneda embedding determines an equivalence J𝑑/ ≃ J𝐹/.

Hence, if Jgpd𝐹/ is final, so is Jgpd𝑑/ . Conversely, if we are given an arbitrary U-small

presheaf 𝐹, the fact that Jgpd𝐹/ being final is local in B implies (by definition of

what it means for a presheaf to be U-small) that we may safely assume that there

is a diagram 𝑑∶ Iop → J with I ∈ U(1) such that 𝐹 ≃ colim ℎJ𝑑. By the same

argument as above, we thus conclude that if Jgpd𝑑/ is final, so is J𝐹/, which finishes

the proof.

5.1.3. Regular classes

Recall that a cardinal 𝜅 is said to be regular if it is infinite and if any 𝜅-small union

of 𝜅-small sets is still 𝜅-small. In this section, we will study an analogue of this

condition in the context of internal classes of B-categories. To that end, recall

from the discussion in Section 4.4.1 that the Yoneda embedding Δ ↪→ PSh
B
(Δ)

(where Δ is implicitly regarded as a constant B-category) factors through the

embedding CatB ↪→ PSh
B
(Δ), so that we may regard Δ as an internal class of

B-categories. We may now define:

Definition 5.1.3.1. An internal class U is said to be right regular if U contains Δ
and if U is closed under U-colimits in CatB. We define the right regularisation
Ureg
→ of U to be the smallest right regular class that contains U.

Dually,U is called left regular if it contains Δ and is closed under op(U)-colimits

in CatB, and we define the left regularisation Ureg
← as the smallest left regular

class that contains U.

Finally, we say that U is regular if it is both left and right regular, and we define

the regularisation Ureg of U as the smallest regular class that contains U.
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Remark 5.1.3.2. An internal class U of B-categories is left regular if and only if

op(U) is right regular, and there is an evident equivalence op(Ureg
← ) ≃ op(U)reg→

of internal classes. In particular, if we have an equivalence U ≃ op(U) of internal
classes, then the notions of left and right regularity collapse to the notion of

regularity, and the left/right regularisation of U is already its regularisation (cf.

Corollary 5.1.3.5 below).

Remark 5.1.3.3. By the same argument as in the proof of Proposition 3.5.1.9,

there is an equivalence 𝜋∗
𝐴(U

reg
→ ) ≃ (𝜋∗

𝐴U)reg→ for any internal class U and any

𝐴 ∈ B. In particular, the étale base change of a right regular class is still right

regular. Similar observations can be made for the (left) regularisation of U.

Proposition 5.1.3.4. For every internal class U of B-categories, a B-category is U-
cocomplete if and only if it is Ureg

→ -cocomplete, and a functor between B-categories
is U-cocontinuous if and only if it is Ureg

→ -cocontinuous.
Dually, a B-category is U-complete if and only if it is Ureg

← -complete, and a
functor between B-categories is U-complete if and only if it is Ureg

← -continuous.

Proof. We only prove the first statement, the second one follows by dualisation.

So let C be a U-cocomplete B-category, and let V be the largest internal class of

B-categories subject to the condition that C is V-cocomplete. Clearly V contains

Δ since every B-category is Δ-cocomplete (cf. Remark 3.3.2.4). Moreover, Propo-

sition 3.5.4.1 implies that for any I ∈ V(1) and any diagram 𝑑∶ I → V with colimit

K, the B-category C admits K-indexed colimits, which implies that K ∈ V(1) by
maximality of V. Upon replacing B with B/𝐴 and repeating the same argument,

one concludes that V is closed under V-colimits in CatB and must therefore

contain Ureg
→ . An analogous argument also shows that every U-cocontinuous

functor is Ureg
→ -cocontinuous.

Corollary 5.1.3.5. The right (left) regularisation of an internal class U is the
smallest internal class that contains U and Δ and that is closed under U-colimits
(op(U)-colimits) in CatB.

Proof. This is an immediate consequence of the observation that by Proposi-

tion 5.1.3.4, an internal class V of B-categories is closed under U-colimits (op(U)-
colimits) in CatB if and only if it is closed under Ureg

→ -colimits (op(Ureg
← )-colimits)

in CatB.
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Proposition 5.1.3.6. For every internal class U, the inclusion FiltUreg
←

↪→ FiltU is
an equivalence.

Proof. In light of Remark 5.1.3.3 and Remark 5.1.1.2, it suffices to show that every

U-filtered B-category J is already Ureg
← -filtered. This amounts to showing that

the functor

colim
J

∶ Fun
B
(I,Grpd

B
) → Grpd

B

is Ureg
← -continuous. By Proposition 5.1.3.4, this is immediate.

Corollary 5.1.3.7. The left regularisation of a (weakly) sound internal class is also
(weakly) sound.

Proof. Suppose that U is sound, i.e. that FiltU ↪→ wFiltU is an equivalence. Since

U ↪→ Ureg
← implies that we have an inclusion wFiltUreg

←
↪→ wFiltU, Proposi-

tion 5.1.3.6 implies that the inclusion FiltUreg
←

↪→ wFiltUreg is also an equivalence,

hence Ureg
← is sound. The case where U is weakly sound follows from a similar

argument.

For the study of accessibility and presentability of B-categories, we will gener-

ally need to restrict our attention to those internal classes ofB-categories that are

themselves small B-categories. It will therefore be useful to give such internal

classes a dedicated name. Again following [1], we thus define:

Definition 5.1.3.8. An internal class U of B-categories is a doctrine if U is a

small B-category.

Proposition 5.1.3.9. The (left/right) regularisation of a doctrine is still a doctrine.

Proof. It suffices to show that any doctrine U is contained in a regular doctrine

V. We will explicitly construct such a doctrine in Section 5.2.2 below, cf. Re-

mark 5.2.2.22.

5.1.4. The decomposition property

It is well-known that for every regular cardinal 𝜅, any ∞-category can be written

as a 𝜅-filtered colimit of 𝜅-small ∞-categories. In order to obtain a well-behaved

notion of accessibility internal to B, it will be crucial to have an analogue of this

property for B-categories. This leads us to the following definition:
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Definition 5.1.4.1. An internal class U of B-categories is said to have the de-
composition property if for every 𝐴 ∈ B and every B/𝐴-category C, there is a

𝜋∗
𝐴U-filtered B/𝐴-category J and a diagram 𝑑∶ J → 𝜋∗

𝐴U with colimit C.

Remark 5.1.4.2. In the situation of Definition 5.1.4.1, by applying the decom-

position property to D = Cop, one deduces that C can also be obtained as a

𝜋∗
𝐴U-filtered colimit of a diagram in op(𝜋∗

𝐴U).

The main goal of this section is to show:

Proposition 5.1.4.3. Every left regular and weakly sound internal class U has the
decomposition property.

Before we can prove Proposition 5.1.4.3, we need the following lemma:

Lemma 5.1.4.4. Let C be a small B-category and let D ↪→ PSh
B
(C) be a full

subcategory that contains C. Then any presheaf 𝐹∶ Cop → Grpd
B
is the colimit of

the diagram D/𝐹 → D ↪→ PSh
B
(C).

Proof. By Proposition 3.2.4.3, it suffices to show that the final object in PSh
B
(C)/𝐹

is the colimit of the inclusion D/𝐹 ↪→ PSh
B
(C)/𝐹. In light of the inclusions

C/𝐹 ↪→ D/𝐹 ↪→ PSh
B
(C)/𝐹

and by using the equivalence PSh
B
(C)/𝐹 ≃ PSh

B
(C/𝐹) from Lemma 3.4.1.4,

we may thus assume that 𝐹 is the final object in PSh
B
(C). Moreover, as the

inclusion Grpd
B
↪→ Grpd

B̂
is cocontinuous (Example 3.3.2.14) we may enlarge

our universe and thus assume without loss of generality that D is small. Now let

𝑖∶ C ↪→ D and 𝑗∶ D ↪→ PSh
B
(C) be the inclusions. Since the identity on PSh

B
(C)

is the left Kan extension of the Yoneda embedding ℎ along itself (Theorem 3.5.1.1),

we obtain equivalences 𝑗 ≃ 𝑗∗𝑗!𝑖!(ℎ) ≃ 𝑖!(ℎ), where the functor 𝑖! exists since D is

small (Corollary 3.4.3.7). Therefore, the identity on PSh
B
(C) is also the left Kan

extension of 𝑗 along itself. The claim now follows from the explicit description of

the left Kan extension in Remark 3.4.3.6, which implies that we have equivalences

1PSh
B
(C) ≃ 𝑗!(𝑗)(1PSh

B
(C)) ≃ colim 𝑗.

Proof of Proposition 5.1.4.3. By Remark 5.1.3.3 and Remark 5.1.2.8, it suffices to

show that every B-category C is a U-filtered colimit of a diagram in U. As U
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by regularity contains Δ and since the localisation functor PSh
B
(Δ) → CatB

is cocontinuous, we deduce from Lemma 5.1.4.4 that C arises as the colimit of

the diagram U/C → U ↪→ CatB. We therefore only need to show that U/C is

U-filtered. Using that U is weakly sound, it will suffice to show that U/C is op(U)-
cocomplete. By Proposition 3.3.2.13, the B-category (CatB)/C is cocomplete and

the projection (𝜋C)! is cocontinuous. As the inclusion U ↪→ CatB is closed under

op(U)-colimits, the desired result follows from Lemma 3.5.1.11.

Corollary 5.1.4.5. Let U be a weakly sound internal class of B-categories. Then
a (large) B-category C is cocomplete if and only if C is both op(U)- and FiltU-
cocomplete. Similarly, a functor 𝑓∶ C → D between cocomplete (large)B-categories
is cocontinuous if and only if it is both op(U)- and FiltU-cocontinuous.

Proof. We prove the first statement, the second one follows by a similar argument.

Since the claim is clearly necessary, it suffices to prove the converse. So let us

assume that C is both op(U)- and FiltU-cocomplete. By Proposition 5.1.3.4 and

Proposition 5.1.3.6, we may assume without loss of generality thatU is left regular.

Proposition 5.1.4.3 now implies that U has the decomposition property. By

definition and in light of Remark 5.1.4.2, this means that (op(U)∪FiltU)
reg
→ = CatB.

Appealing once more to Proposition 5.1.3.4, the claim follows.

5.1.5. U-compact objects

Recall from Section 3.5.2 that if V is an internal class and if C is a V-cocomplete

B-category, we say that an object 𝑐∶ 𝐴 → C is V-cocontinuous if the functor

mapC(𝑐, −)∶ 𝜋∗
𝐴C → Grpd

B/𝐴
is 𝜋∗

𝐴V-cocontinuous. In this section, we specialise

this concept to the case where V = FiltU for some internal class U. This leads us

to the notion of a U-compact object, which is the internal analogue of the concept

of a 𝜅-compact object in an ∞-category, where 𝜅 is a cardinal.

Definition 5.1.5.1. Let U be an internal class of B-categories, and let C be a

FiltU-cocomplete B-category. An object 𝑐∶ 𝐴 → C in context 𝐴 ∈ B is said to be

U-compact if it is FiltU-cocontinuous, i.e. if the functor

mapC(𝑐, −)∶ 𝜋∗
𝐴C → Grpd

B/𝐴
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is Filt𝜋∗
𝐴U

-cocontinuous. We denote by CU-cpt the full subcategory of C that is

spanned by the U-compact objects.

Remark 5.1.5.2. In the situation of Definition 5.1.5.1, an object 𝑐∶ 𝐴 → C is

contained in CU-cpt if and only if it is U-compact. This is a direct consequence

of Remark 3.5.2.2. Together with Remark 5.1.1.2, this implies that if 𝐴 ∈ B is an

arbitrary object in B, there is a natural equivalence 𝜋∗
𝐴(C

U-cpt) ≃ (𝜋∗
𝐴C)𝜋

∗
𝐴U-cpt.

Lemma 5.1.5.3. Let U be an internal class of B-categories, and let C be a FiltU-
cocomplete B-category. Then the full subcategory

FunFiltU-cc
B

(C,Grpd
B
) ↪→ Fun

B
(C,Grpd

B
)

of FiltU-cocontinuous functors is closed under U-limits.

Proof. Using Remark 3.3.3.4 and Remark 5.1.1.2, it will suffice to show that when-

ever I is a B-category that is contained in U(1) and 𝑑∶ I → Fun
B
(C,Grpd

B
)FiltU

is a diagram, then the limit lim 𝑑 in Fun
B
(C,Grpd

B
) is FiltU-cocontinuous. We

may compute lim 𝑑 as the composition

C Fun
B
(I,Grpd

B
) Grpd

B
,𝑑′ limI

where 𝑑′ is the transpose of 𝑑. Since limI is FiltU-cocontinuous by Remark 5.1.1.4,

it thus suffices to show that 𝑑′ is FiltU-cocontinuous as well. This can be extracted

as a special case of Lemma 5.5.1.3 below.

Proposition 5.1.5.4. Let U be an internal class and let C be an op(U)- and FiltU-
cocomplete B-category. Then the subcategory CU-cpt ↪→ C is closed under op(U)-
colimits in C.

Proof. By using Remark 5.1.5.2, it suffices to show that whenever I is aB-category

that is contained in U(1) and 𝑑∶ Iop → CU-cpt is a diagram, the colimit colim 𝑑 in

C is U-compact. As we have noted in Proposition 3.3.2.15, the Yoneda embedding

ℎCop ∶ Cop ↪→ Fun
B
(C,Grpd

B
) is op(U)-continuous, so that we can identify

mapC(colim 𝑑, −) with the limit of the diagram ℎCop𝑑op. The desired result now

follows from Lemma 5.1.5.3.
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Definition 5.1.5.5. If C ↪→ D is a fully faithful functor of B-categories, the

B-category RetD(C) of retracts of C in D is the full subcategory of D that is

spanned by those objects 𝑑∶ 𝐴 → D in context 𝐴 ∈ B for which there is an object

𝑐∶ 𝐴 → C and a commutative diagram

𝑐

𝑑 𝑑.id

Remark 5.1.5.6. In the situation of Definition 5.1.5.5, there are inclusions

C ↪→ RetD(C) ↪→ D. Furthermore, an object 𝑑∶ 𝐴 → D is contained in RetC(D)
precisely if there is a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 such that 𝑠∗𝑖 (𝑑)∶ 𝐴𝑖 → D is a retract

of an object 𝑐∶ 𝐴𝑖 → C. Therefore, ifC is small andD is locally small (in the sense

of Definition 2.3.1.1), then RetD(C) is small as well: in fact, by Proposition 2.3.1.5,

this follows once we verify that RetD(C)0 is small. Since the latter admits a small

cover

⨆
𝐺∈G

⨆
𝑑∈RetD(𝐺)(C(𝐺))

𝐺 � RetD(C)0

where G ⊂ B is a small generating subcategory and where RetD(𝐺)(C(𝐺)) denotes
the full subcategory of D(𝐺) that is spanned by the retracts of C(𝐺), which is

clearly a small ∞-category, this is immediate.

Lemma 5.1.5.7. Let U be an internal class of B-categories and let C be a U-
cocomplete B-category. Then the full subcategory

FunU-cc
B

(C,Grpd
B
) ↪→ Fun

B
(C,Grpd

B
)

of U-cocontinuous functors is closed under retracts.

Proof. By Remark 3.3.3.4, it will suffice to show that whenever a copresheaf

𝐹∶ C → Grpd
B

is a retract of a U-cocontinuous functor 𝐺∶ C → Grpd
B
,

then 𝐹 is U-cocontinuous as well. Let 𝑅 = Δ2 ⊔Δ1 Δ0 be the walking retract

diagram, i.e. the quotient of Δ2 that is obtained by collapsing 𝑑1 ∶ Δ1 ↪→ Δ2

to a point. Then the datum of retract 𝐹 → 𝐺 → 𝐹 is tantamount to a map

𝑟∶ C → Grpd𝑅
B
. Since the retract of an equivalence is an equivalence as well, the

functor 𝑑{1} ∶ Grpd𝑅
B

→ Grpd
B

that is obtained by evaluation at {1} ∈ Δ2 � 𝑅
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must be conservative. By combining this observation with the fact that 𝑑{1} is co-
continuous, the equivalence 𝑑{1}𝑟 ≃ 𝐺 and the functoriality of mates, we conclude

that the map colimI 𝑟∗ → 𝑟 colimI is an equivalence for every I ∈ U(1). Upon

replacing B with B/𝐴 and repeating the same argument, we thus find that 𝑟 is
U-cocontinuous. As we recover 𝐹 by postcomposing 𝑟 with the cocontinuous

functor 𝑑{0} ∶ Grpd𝑅
B

→ Grpd
B
, the claim follows.

Proposition 5.1.5.8. Let U be an internal class of B-categories and let C be a
FiltU-cocomplete B-category. Then CU-cpt is closed under retracts in C, in the sense
that the inclusion

CU-cpt ↪→ RetC(CU-cpt)

is an equivalence.

Proof. It suffices to show that the retract of a U-compact object in C is U-compact

as well, which immediately follows from Lemma 5.1.5.7.

We conclude this section with a characterisation of U-compact objects in

presheaf B-categories. This will require the following lemma:

Lemma 5.1.5.9. Let U be an internal class of B-categories and let C ↪→ D be a
full inclusion of B-categories such that D is FiltU-cocomplete. Let J be a U-filtered
B-category, let 𝑑∶ J → C ↪→ D be a diagram and suppose that 𝐹 = colim 𝑑 is a
U-compact object in D. Then 𝐹 is contained in RetD(C).

Proof. The object 𝐹 being U-compact implies that the canonical map

𝜙∶ colimmapD(𝐹 , 𝑑(−)) → mapD(𝐹 , 𝐹 )

must be an equivalence. Thus the identity on 𝐹 gives rise to a global section

id𝐹 ∶ 1 → colimmapD(𝐹 , 𝑑(−)).

Let 𝑝∶ P → J be the left fibration classified by the copresheaf mapD(𝐹 , 𝑑(−)).
Since the map P → Pgpd ≃ colimmapD(𝐹 , 𝑑(−)) is essentially surjective (by

Lemma 1.3.2.8), the map P0 → Pgpd is a cover in B (Corollary 1.3.2.15), so that

we can find a cover 𝑠∶ 𝐴 � 1 in B and a local section 𝑥∶ 𝐴 → P such that

the composite with P → Pgpd recovers 𝜋∗
𝐴 id𝐹. Let 𝑗 = 𝑝(𝑥). Then 𝑥 defines an
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object 𝑓∶ 𝐴 → P|𝑗 ≃ mapD(𝜋
∗
𝐴𝐹 , 𝑑(𝑗)) that is carried to 𝜋∗

𝐴 id𝐹 by the canonical

morphism mapD(𝜋
∗
𝐴𝐹 , 𝑑(𝑗)) → mapD(𝜋

∗
𝐴𝐹 , 𝜋

∗
𝐴𝐷). In other words, composing

𝑓∶ 𝜋∗
𝐴𝐹 → 𝑑(𝑗) with the map 𝑑(𝑗) → 𝜋∗

𝐴𝐹 into the colimit yields 𝜋∗
𝐴𝐹. As this

precisely means that 𝜋∗
𝐴𝐹 is a retract of 𝑑(𝑗), the claim follows.

Proposition 5.1.5.10. Let U be an internal class of B-categories that has the
decomposition property, and let C be a B-category. Then there is an equivalence

PSh
B
(C)U-cpt ≃ RetPSh

B
(C)(Smallop(U)

B
(C))

of full subcategories in PSh
B
(C). In particular, PSh

B
(C)U-cpt is small.

Proof. Yoneda’s lemma implies that every representable presheaf is U-compact.

By combining this observation with Proposition 5.1.5.8 and Proposition 5.1.5.4,

one thus obtains an inclusion

RetPSh
B
(C)(Smallop(U)

B
(C)) ↪→ PSh

B
(C)U-cpt.

As for the converse inclusion, suppose that 𝐹∶ Cop → Grpd
B

is a U-compact

presheaf. By Remark 5.1.4.2, there exists a U-filtered B-category J and a diagram

𝑑∶ J → op(U) such that C/𝐹 ≃ colim 𝑑 in CatB. Proposition 3.5.4.10 then shows

that 𝐹 is the colimit of a J-indexed diagram in Smallop(U)
B

(C). As 𝐹 is U-compact

and J is U-filtered, Lemma 5.1.5.9 shows that 𝐹 is locally a retract of an object in

Smallop(U)
B

(C). By Remark 5.1.5.2 and Remark 3.4.2.3, if 𝐹∶ 𝐴 → PSh
B
(C)U-cpt is

an arbitrary object, we can replaceB byB/𝐴 and carry out the same argument as

above, which shows that PSh
B
(C)U-cpt is contained in RetPSh

B
(C)(Smallop(U)

B
(C)).

Corollary 5.1.5.11. Let U be an internal class of B-categories that has the decom-
position property, and let J be a weakly U-filtered B-category. Then the inclusion
J ↪→ PSh

B
(J)U-cpt is final.

Proof. Proposition 5.1.5.10 shows that any U-compact presheaf 𝐹∶ Jop → Grpd
B

arises as a retract of some object 𝐺∶ 1 → Smallop(U)
B

(J) after passing to a suit-

able cover of 1 ∈ B. Thus, the right fibration Smallop(U)
B

(J)/𝐹 → Smallop(U)
B

(J)
is locally a retract of a representable right fibration, so that we must have

321



5. Accessible and presentable B-categories

(Smallop(U)
B

(J)/𝐹)gpd ≃ 1 as the latter property can be checked locally in B. By

Remark 5.1.5.2 and Remark 3.4.2.3, we may replace B with B/𝐴 to arrive at the

same conclusion for any object 𝐹∶ 𝐴 → PSh
B
(J)U-cpt. Using Quillen’s theorem A

(Corollary 2.1.4.10), this shows that the inclusion Smallop(U)
B

(J) ↪→ PSh
B
(J)U-cpt

is final. Hence the claim follows from Proposition 5.1.2.9.

Corollary 5.1.5.12. A left regular class U is sound if and only if it is weakly sound.

Proof. Using Remark 5.1.1.2 and Remark 5.1.2.8, it suffices to show that when-

ever U is weakly sound, every weakly U-filtered B-category J is U-filtered.

Since Proposition 5.1.4.3 implies that U has the decomposition property, Corol-

lary 5.1.5.11 shows that the inclusion J ↪→ PSh
B
(J)U-cpt is final. By Propo-

sition 5.1.5.4, the B-category PSh
B
(J)U-cpt is op(U)-cocomplete and therefore

U-filtered since U is by assumption weakly sound. Now if I ∈ U(1) is chosen

arbitrarily, the fact that Fun
B
(I,Grpd

B
) is cocomplete allows us to extend any dia-

gram 𝑑∶ J → Fun
B
(I,Grpd

B
) to a diagram 𝑑′ ∶ PSh

B
(J)U-cpt → Fun

B
(I,Grpd

B
),

using the universal property of presheaf B-categories. As J ↪→ PSh
B
(J)U-cpt is

final, the limit functor limI ∶ Fun
B
(I,Grpd

B
) → Grpd

B
preserves the colimit

of 𝑑 if and only if it preserves the colimit of 𝑑′ (see Proposition 3.2.7.1), which

is indeed the case as PSh
B
(C)U-cpt is U-filtered. By replacing B with B/𝐴 and

carrying out the same argument (which is possible by Remark 5.1.5.2), this already

implies that J must be U-filtered, as desired.

5.2. Cardinality in internal higher category theory

In our treatment of accessibility and presentability for B-categories later in this

thesis, we will rely on the existence of an ample amount of doctrines that satisfy

the decomposition property. Therefore, it will be crucial to know that there are

sufficiently many (left) regular and sound doctrines in any ∞-topos B. The main

objective of this section is to construct such internal classes. More precisely,

our approach is to first construct what we call the canonical bifiltration of the

B-category CatB, i.e. a 2-dimensional filtration by internal classes which can

be regarded as a way to order B-categories by size. The first dimension of this

bifiltration is parametrised by cardinals, and the second one by the poset of
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local classes in B. The canonical bifiltration will be exhaustive, so that every

B-category can be assigned an upper bound in size, and it will be exclusively

comprised of regular doctrines. We carry out the construction of this bifiltration

in Section 5.2.1. In Section 5.2.2, we discuss how one can extract a particularly

well-behaved subfiltration from the canonical bifiltration that is still exhaustive

and in which each member is sound. The latter will be parametrised by a class of

cardinals that satisfy a property which depends on the ∞-topos B and that we

refer to as B-regularity. Finally, we discuss a particular member of the canonical

bifiltration in Section 5.2.3, that of finite B-categories.

5.2.1. The canonical bifiltration of the B-category of B-categories

Recall from Example 3.3.1.4 that if K is an arbitrary class of ∞-categories (i.e.

a full subcategory of Cat∞), we denote by LConstK the essential image of the

canonical functor K ↪→ Cat∞ → CatB. If 𝑆 is a local class of morphisms in B, we

denote by ⟨K, 𝑆⟩ the internal class of B-categories that is generated by LConstK
and Grpd𝑆.

Definition 5.2.1.1. Let K ⊂ Cat∞ be a class of ∞-categories and let 𝑆 be a local

class of morphisms in B. We define the internal class Cat⟨K,𝑆⟩
B

of ⟨K, 𝑆⟩-small B-
categories as the left regularisation of ⟨K, 𝑆⟩. We denote its underlying∞-category

of global sections by Cat(B)⟨K,𝑆⟩.

Remark 5.2.1.2. In the situation of Definition 5.2.1.1, let us denote by 𝜋∗
𝐴𝑆 the

class of those maps in B/𝐴 whose underlying map in B is contained in 𝑆. Since
(𝜋𝐴)! preserves small colimits and covers, this is still a local class, and one has a

natural equivalence 𝜋∗
𝐴(Grpd𝑆) ≃ Grpd𝜋∗

𝐴𝑆
of subuniverses. With this understood,

Remark 5.1.3.3 gives rise to a canonical equivalence 𝜋∗
𝐴 Cat⟨K,𝑆⟩

B
≃ Cat⟨K,𝜋∗

𝐴𝑆⟩
B/𝐴

for

every 𝐴 ∈ B.

By combining Proposition 5.1.3.4 with Remark 3.3.2.9, one finds:

Proposition 5.2.1.3. A (large) B-category C is Cat⟨K,𝑆⟩
B

-complete precisely if

1. The ∞-category C(𝐴) admits limits indexed by objects in K, and for every
map 𝑠∶ 𝐵 → 𝐴 the transition functor 𝑠∗ ∶ C(𝐴) → C(𝐵) preserves these
limits;
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2. For every map 𝑝∶ 𝑃 → 𝐴 in 𝑆, the functor 𝑠∗ ∶ C(𝐴) → C(𝑃) admits a right
adjoint 𝑠∗, and for every cartesian square

𝑄 𝑃

𝐵 𝐴

𝑡

𝑞 𝑝

𝑠

in B in which 𝑝 (and therefore 𝑞) are contained in 𝑆, the natural map
𝑠∗𝑝∗ → 𝑞∗𝑡∗ is an equivalence.

Moreover, a functor 𝑓∶ C → D of Cat⟨K,𝑆⟩
B

-complete B-categories is Cat⟨K,𝑆⟩
B

-
continuous precisely if for all 𝐴 ∈ B the functor 𝑓 (𝐴) preserves limits indexed by ob-
jects inK, and for all maps 𝑝∶ 𝑃 → 𝐴 in 𝑆 the natural morphism 𝑓 (𝐴)𝑝∗ → 𝑝∗𝑓 (𝑃)
is an equivalence.
The dual statements about cocompleteness and cocontinuity (both understood

with respect to the right regular class op(Cat⟨K,𝑆⟩
B

)) hold as well.

In the situation of Definition 5.2.1.1, note that whenever K is a doctrine (i.e. a

small ∞-category) and 𝑆 is bounded (i.e. the subuniverse Grpd𝑆 that corresponds

to 𝑆 is small), Proposition 5.1.3.9 implies that Cat⟨K,𝑆⟩
B

is a doctrine. Therefore,

assigning to a pair (K, 𝑆) the regular class Cat⟨K,𝑆⟩
B

defines a map of posets

Subsmall
full (Cat∞) × Subsmall

full (Grpd
B
) → Subsmall

full (CatB)

that we refer to as the canonical bifiltration of CatB.

Remark 5.2.1.4. The canonical bifiltration is exhaustive. In fact, if C is an

arbitrary B/𝐴-category, we may find a diagram 𝑑∶ J → Cat(B/𝐴) with colimit

C such that for all 𝑗 ∈ J one has 𝑑(𝑗) ≃ Δ𝑛 ⊗ 𝐵 for some 𝑛 ≥ 0 and some 𝐵 ∈ B/𝐴.

Note that Δ𝑛 ⊗ 𝐵 can be identified with the 𝐵-indexed colimit of the constant

diagram in CatB/𝐴
with value Δ𝑛. Therefore, by choosing K to be the doctrine

of ∞-categories spanned by the single object J ∈ Cat∞ and choosing 𝑆 to be

the bounded local class that is generated by the maps 𝐵 → 𝐴, we find that C is

⟨K, 𝑆⟩-small.

Example 5.2.1.5. Since every B-category is a small colimit of objects of the

form Δ𝑛 ⊗ 𝐴 with 𝑛 ≥ 0 and 𝐴 ∈ B (see Remark 1.2.1.3), we deduce that the

regularisation of ⟨Cat∞, all⟩ is CatB (where the local class all is the class of all

morphisms in B).
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5.2.2. 𝜅-smallB-categories

Let 𝜅 be a cardinal. Recall from [49, § 6.1.6] that a map 𝑝∶ 𝑃 → 𝐴 in B is said to

be relatively 𝜅-compact if for every 𝜅-compact 𝐵 ∈ B and every map 𝑠∶ 𝐵 → 𝐴,

the pullback 𝑠∗𝑃 is 𝜅-compact as well. We denote by 𝜅-cpt the local class of

morphisms in B that is generated by the relatively 𝜅-compact morphisms, and

we let Grpd𝜅
B

be the associated subuniverse. Explicitly, a map 𝑝∶ 𝑃 → 𝐴 is

contained in 𝜅-cpt precisely if there is a cover (𝑠𝑖)𝑖 ∶ ⨆𝑖 𝐴𝑖 � 𝐴 such that 𝑠∗𝑖 𝑝 is

relatively 𝜅-compact for each 𝑖.
Let us denote by Cat𝜅∞ the doctrine of 𝜅-small ∞-categories. We may now

define:

Definition 5.2.2.1. A B-category is said to be 𝜅-small if it is ⟨Cat𝜅∞, 𝜅-cpt⟩-small.

We will use the notation Cat𝜅B = Cat⟨Cat
𝜅
∞,𝜅-cpt⟩

B
to denote the internal class of

𝜅-small B-categories, and we denote its underlying ∞-category of global sections

by Cat(B)𝜅.

Remark 5.2.2.2. Note that for general 𝐴 ∈ B there is no reason to expect an

equivalence 𝜋∗
𝐴(Grpd

𝜅
B
) ≃ Grpd𝜅

B/𝐴
. Therefore, we can also not expect to have

an equivalence 𝜋∗
𝐴 Cat𝜅B ≃ Cat𝜅B/𝐴

. The situation improves, however, when 𝐴 is

assumed to be 𝜅-compact. In this case, the observation that an object in B/𝐴 is

𝜅-compact if and only if its underlying object inB is 𝜅-compact implies that a map

in B/𝐴 is relatively 𝜅-compact if and only its underlying map in B is relatively

𝜅-compact, so that we obtain an equivalence 𝜋∗
𝐴(Grpd

𝜅
B
) ≃ Grpd𝜅

B/𝐴
. By using Re-

mark 5.2.1.2, this equivalence in turn induces an equivalence 𝜋∗
𝐴 Cat𝜅B ≃ Cat𝜅B/𝐴

.

The internal class Cat𝜅B is not very well-behaved for arbitrary cardinals 𝜅.
Therefore, we will restrict our attention to a certain class of cardinals that are in

a sense adapted to the ∞-topos B.

Definition 5.2.2.3. We say that cardinal 𝜅 is B-regular if

1. 𝜅 is regular and uncountable;

2. B is 𝜅-accessible;

3. the full subcategory B𝜅-cpt ↪→ B of 𝜅-compact objects in B is closed under

finite limits and subobjects in B.
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Remark 5.2.2.4. Every uncountable regular cardinal 𝜅 is Ani-regular. In fact, con-

dition (2) is immediate, and 1 ∈ Ani is certainly 𝜅-compact. Moreover, if 𝑃 = 𝐴×𝐶𝐵
is a pullback of 𝜅-compact∞-groupoids, descent implies 𝑃 ≃ colim𝑎∈𝐴 𝑃|𝑎. Since 𝜅-
compact∞-groupoids are precisely those which are 𝜅-small [49, Corollary 5.4.1.5]

and since 𝜅-compact objects in Ani are stable under 𝜅-small colimits, it suffices to

show that 𝑃|𝑎 is 𝜅-compact. We may therefore reduce to the case where 𝐴 ≃ 1.
By the same reasoning, we can assume 𝐵 ≃ 1 as well. But then 𝑃 can be identified

with a mapping ∞-groupoid of 𝐶, which is 𝜅-small by again making use of [49,

Corollary 5.4.1.5]. Finally, the identification of 𝜅-compact ∞-groupoids with

𝜅-small ∞-groupoids also shows that these are stable under subobjects. Hence

condition (3) is satisfied as well.

Remark 5.2.2.5. Note that there is an ample amount of B-regular cardinals, in

the sense that if 𝜅′ is an arbitrary cardinal one can always find a larger cardinal

𝜅 ≥ 𝜅′ that is B-regular. Indeed, by enlarging 𝜅′ if necessary one can always

arrange for B to be 𝜅′-accessible. Then for any (uncountable) 𝜅 ≫ 𝜅′ (in the

sense of [49, Definition A.2.6.3]) for which B𝜅′-cpt is 𝜅-small, an object in B is

𝜅-compact if and only if the underlying presheaf on B𝜅′-cpt takes values in the

full subcategory Ani𝜅-cpt ↪→ Ani of 𝜅-compact ∞-groupoids [49, Lemma 5.4.7.5].

In combination with Remark 5.2.2.4, this shows that 𝜅 is B-regular. In particular,

this argument shows that we can always find a B-regular 𝜅 such that 𝜅 ≫ 𝜅′.

Remark 5.2.2.6. If 𝜅 is a B-regular cardinal, then 𝜅 is also B/𝐴-regular for every

𝜅-compact object 𝐴 ∈ B. In fact, since an object in B/𝐴 is 𝜅-compact if and only

if its image along (𝜋𝐴)! is 𝜅-compact, every object in B/𝐴 is a 𝜅-filtered colimit of

𝜅-compact objects, which shows that (2) is satisfied. Condition (3) follows from

𝐴 being 𝜅-compact, together with the fact that (𝜋𝐴)! preserves pullbacks (and

consequently also subobjects).

Remark 5.2.2.7. For every B-regular cardinal 𝜅, the ∞-topos B admits a pre-

sentation by the full subcategory B𝜅-cpt ⊂ B of 𝜅-compact objects, in the sense

that its Yoneda extension PSh(B𝜅-cpt) → B is a left exact and accessible Bousfield

localisation [49, Proposition 6.1.5.2]. Moreover, the inclusion B ↪→ PSh(B𝜅-cpt)
commutes with 𝜅-filtered colimits. In particular, the global sections functor

Γ∶ B → Ani commutes with 𝜅-filtered colimits, so that constB restricts to a
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functor Ani𝜅-cpt → B𝜅-cpt.

The first main result in this section will be the following characterisation of

𝜅-small B-categories when 𝜅 is B-regular:

Proposition 5.2.2.8. Let 𝜅 be a B-regular cardinal, and let C be a B-category.
Then the following are equivalent:

1. C is 𝜅-small;

2. C is a 𝜅-compact object in Cat(B);

3. C is contained in the smallest full subcategory of Cat(B) that is spanned by
objects of the form Δ𝑛 ⊗ 𝐺 for 𝑛 ≥ 0 and 𝐺 ∈ B𝜅-cpt and that is closed under
𝜅-small colimits;

4. C is a 𝜅-compact object in BΔ;

5. C0 and C1 are 𝜅-compact objects in B.

Remark 5.2.2.9. On account of Remark 5.2.2.2, Proposition 5.2.2.8 implies that

for every 𝜅-compact object 𝐴 ∈ B, we can identify Cat(B/𝐴)𝜅 with the full

subcategory of 𝜅-compact objects in Cat(B/𝐴).

The proof of Proposition 5.2.2.8 requires a few preparations. We begin by

establishing that the class of relatively 𝜅-compact maps in B is already local.

Lemma 5.2.2.10. Let 𝜅 be a B-regular cardinal and let 𝐼 be a small set. For every
𝑖 ∈ 𝐼, let 𝑃𝑖 → 𝐴𝑖 be a relatively 𝜅-compact map in B. Then ⨆𝑖 𝑃𝑖 → ⨆𝑖 𝐴𝑖 is
relatively 𝜅-compact.

Proof. Let 𝐺 be 𝜅-compact, and let 𝑠∶ 𝐺 → ⨆𝑖 𝐴𝑖 be a map. Write 𝐼 = colim𝑗 𝐼𝑗
as a 𝜅-filtered union of its 𝜅-small subsets, so that one obtains equivalences

⨆𝑖 𝐴𝑖 ≃ colim𝑗 ⨆𝑖∈𝐼𝑗
𝐴𝑖 and ⨆𝑖 𝑃𝑖 ≃ colim𝑗 ⨆𝑖∈𝐼𝑗

𝑃𝑖. As 𝐺 is 𝜅-compact, there is

some 𝑗 such that 𝑠 factors through the inclusion ⨆𝑖∈𝐼𝑗
𝐴𝑖 ↪→ ⨆𝑖 𝐴𝑖. By descent, we

obtain a pullback diagram

⨆𝑖∈𝐼𝑗
𝑃𝑖 ⨆𝑖 𝑃𝑖

⨆𝑖∈𝐼𝑗
𝐴𝑖 ⨆𝑖 𝐴𝑖,
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which implies that the pullback of⨆𝑖 𝑃𝑖 → ⨆𝑖 𝐴𝑖 to 𝐺 is equivalent to the pullback

of ⨆𝑖∈𝐼𝑗
𝑃𝑖 → ⨆𝑖∈𝐼𝑗

𝐴𝑖 to 𝐺. By again using descent, this pullback can be identified

with the coproduct ⨆𝑖∈𝐼𝑗
𝑃𝑖 ×𝐴𝑖

𝐺𝑖, where 𝐺𝑖 = 𝐺 ×⨆𝑖 𝐴𝑖
𝐴𝑖. As 𝐺𝑖 is a subobject of

𝐺 and therefore 𝜅-compact, the fibre product 𝑃𝑖 ×𝐴𝑖
𝐺𝑖 is 𝜅-compact as well. Since

𝐼𝑗 is 𝜅-small, we conclude that also ⨆𝑖∈𝐼𝑗
𝑃𝑖 ×𝐴𝑖

𝐺𝑖 is 𝜅-compact, as desired.

Proposition 5.2.2.11. Let 𝜅 be a B-regular cardinal. Then every object in Grpd𝜅
B

is already relatively 𝜅-compact. In other words, the class of relatively 𝜅-compact
maps in B is local.

Proof. Let 𝑃 → 𝐴 be an object in Grpd𝜅
B
(𝐴). By definition, there is a cover

(𝑠𝑖)∶ ⨆𝑖∈𝐼 𝐴𝑖 � 𝐴 such that 𝑠∗𝑖 𝑃 → 𝐴𝑖 is relatively 𝜅-compact. By Lemma 5.2.2.10,

the map ⨆𝑖 𝑃𝑖 → ⨆𝑖 𝐴𝑖 is relatively 𝜅-compact. The result therefore follows once

we show that relatively 𝜅-compact maps are stable under Δop-indexed colimits

in Fun(Δ1,B). By [49, Lemma 6.1.6.6] they are stable under pushouts, so we

only need to consider the case of small coproducts, which again follows from

Lemma 5.2.2.10.

Remark 5.2.2.12. In [49, Proposition 6.1.6.7], Lurie shows that the class of

relatively 𝜅-compact maps in B is local already when B is 𝜅-accessible and B𝜅-cpt

is stable under finite limits in B. However, we failed to understand how Lurie

derives this result without the additional assumption that B𝜅-cpt is also stable

under subobjects in B. Therefore, we decided to reiterate Lurie’s proof with this

added assumption.

Next, we need to establish that every B-regular cardinal is also BΔ-regular.

This will be a consequence of the following characterisation of 𝜅-compact simpli-

cial objects in B:

Proposition 5.2.2.13. If 𝜅 is a B-regular cardinal, then the ∞-topos BΔ is 𝜅-
accessible, and if 𝐶 is a simplicial object in B, the following are equivalent:

1. 𝐶 is 𝜅-compact;

2. 𝐶𝑛 ∈ B𝜅-cpt for all 𝑛 ≥ 0;
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3. 𝐶 is contained in the smallest subcategory of BΔ that is spanned by objects of
the form Δ𝑛 ⊗ 𝐺 for 𝑛 ≥ 0 and 𝐺 ∈ B𝜅-cpt and that is closed under 𝜅-small
colimits;

Proof. Remark 5.2.2.7 implies that the inclusionBΔ ↪→ PSh(Δ×B𝜅-cpt) commutes

with 𝜅-filtered colimits, which immediately implies that BΔ is 𝜅-accessible. More-

over, since Δ is a 𝜅-small∞-category, every simplicial object inB that is level-wise

𝜅-compact is also 𝜅-compact inBΔ [49, Proposition 5.3.4.13], hence (2) implies (1).

If 𝐶 satisfies (3), the fact that for every 𝑘 ≥ 0 the functor (−)𝑘 commutes with

small colimits implies that 𝐶𝑘 is contained in the smallest full subcategory of B

that contains all objects of the form Δ𝑛
𝑘 × 𝐺 for 𝐺 ∈ B𝜅-cpt and 𝑛 ≥ 0 and that

is closed under 𝜅-small colimits. Since Δ𝑛
𝑘 is a finite set, this implies that 𝐶𝑘 is

𝜅-compact, hence (2) follows. Finally, suppose that 𝐶 is 𝜅-compact. We may write

𝐶 as a small colimit of objects of the form Δ𝑛 ⊗ 𝐺 for 𝑛 ≥ 0 and 𝐺 ∈ B𝜅-cpt and

therefore by [49, Corollary 4.2.3.10] as a 𝜅-filtered colimit 𝐶 ≃ colim𝑖 𝐶 𝑖 where

each 𝐶 𝑖 is a 𝜅-small colimits of objects of the form Δ𝑛 ⊗ 𝐺. As 𝐶 is 𝜅-compact,

there is some 𝑖0 such that the identity on 𝐶 factors through 𝐶 𝑖0 → C. In other

words, 𝐶 is a retract of 𝐶 𝑖0 . As retracts are countable and therefore a fortiori

𝜅-small colimits, (3) follows.

Corollary 5.2.2.14. If 𝜅 is a B-regular cardinal, then 𝜅 is BΔ-regular as well.
Moreover, a map in BΔ is relatively 𝜅-compact if and only if it is level-wise given
by a relatively 𝜅-compact morphism in B.

Lemma 5.2.2.15. If 𝜅 is a B-regular cardinal and if 𝐶 is a 𝜅-compact simplicial
object in B, then 𝐶𝐾 is 𝜅-compact for every 𝜔-compact simplicial ∞-groupoid 𝐾.

Proof. As 𝜅-compact objects in BΔ are stable under retracts and as every 𝜔-
compact simplicial ∞-groupoid is a retract of a finite colimit of 𝑛-simplices, we

may assume without loss of generality that 𝐾 is a finite colimit of 𝑛-simplices.

Therefore 𝐶𝐾 is a finite limit of objects of the form 𝐶Δ𝑛
, so that Corollary 5.2.2.14

implies that we may reduce to the case 𝐾 = Δ𝑛. Now on account of the identity

(𝐶Δ𝑛
)𝑘 ≃ (𝐶Δ𝑛×Δ𝑘

)0 and by using the fact that Δ𝑛 × Δ𝑘 is again 𝜔-compact, we

can identify (𝐶Δ𝑛
)𝑘 as a finite limit of objects of the form (𝐶Δ𝑙

)0 ≃ 𝐶𝑙, which

shows that (𝐶Δ𝑛
)𝑘 is 𝜅-compact. By Proposition 5.2.2.13, one concludes that 𝐶Δ𝑛

is 𝜅-compact in BΔ.
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Lemma 5.2.2.16. For every 𝜔-compact simplicial ∞-groupoid 𝐾, the functor

(−)𝐾 ∶ BΔ → BΔ

commutes with filtered colimits.

Proof. As every 𝜔-compact simplicial ∞-groupoid 𝐾 is a retract of a finite col-

imit of 𝑛-simplices, we may assume without loss of generality 𝐾 = Δ𝑛. As it

suffices to show that(−)Δ
𝑛

𝑘 commutes with filtered colimits for all 𝑘 ≥ 0, the
same argumentation as in the proof of Lemma 5.2.2.15 shows that we may re-

duce to showing that (−)Δ
𝑛

0 commutes with filtered colimits. On account of the

equivalence (−)Δ
𝑛

0 ≃ (−)𝑛, this is immediate.

Lemma 5.2.2.17. Let 𝜅 be a B-regular cardinal, let 𝐶 be a 𝜅-compact simplicial
object inBΔ and let 𝐶 → 𝐿(𝐶) be the unit of the adjunction (𝐿 ⊣ 𝑖)∶ Cat(B) ⇆ BΔ.
Then 𝐿(𝐶) is 𝜅-compact as well.

Proof. Wewill make use of the∞-categorical version of the small object argument

as developed in [5, § 2.3]. For the convenience of the reader, we briefly explain

the setup, at least in the special case that is relevant for this proof. Suppose

that 𝑆 is a finite set of maps in AniΔ such that for every map 𝑠∶ 𝐾 → 𝐿 in 𝑆 the

functors (−)𝐾 and (−)𝐿 commute with filtered colimits in BΔ. Let (L,R) be the

factorisation system in BΔ that is internally generated by the set 𝑆. To any object

𝐶 ∈ BΔ, we can now assign a sequence

ℕ → BΔ, 𝑘 ↦ 𝐶(𝑘)

by setting 𝐶(0) = 𝐶 and by recursively defining a map 𝐶(𝑘) → 𝐶(𝑘 + 1) via the

pushout

⨆𝑠∶ 𝐾→𝐿 𝐿 ⊗ 𝐶(𝑘)𝐿 ⊔𝐾⊗𝐶(𝑘)𝐿 𝐾 ⊗ 𝐶(𝑘)𝐾 𝐶(𝑘)

⨆𝑠∶ 𝐾→𝐿 𝐿 ⊗ 𝐶(𝑘)𝐾 𝐶(𝑘 + 1)

in which the coproduct ranges over all maps 𝑠∶ 𝐾 → 𝐿 in 𝑆. Then [5, Theo-

rem 2.3.4] shows that the object colim𝑘 𝐶(𝑘) is internally local with respect to the
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maps in 𝑆, i.e. contained in R/1, and that furthermore the map 𝐶 → colim𝑘 𝐶(𝑘)
is contained in L, so that it is equivalent to the unit of the adjunction R/1 ⇆ BΔ
evaluated at 𝐶 ∈ BΔ.

Now if we let 𝑆 be the set {𝐸1 → 1, 𝐼 2 ↪→ Δ2}, Lemma 5.2.2.16 shows that we

are in the above situation. Consequently, if 𝐶 is a 𝜅-compact object in BΔ, the

B-category 𝐿(𝐶) can be computed as a countable colimit of the objects 𝐶(𝑘) as
constructed above. Hence it suffices to show that each 𝐶(𝑘) is 𝜅-compact, which

easily follows from 𝜅 being BΔ-regular (Corollary 5.2.2.14) and Lemma 5.2.2.15.

Proof of Proposition 5.2.2.8. We first show that (2)–(5) are equivalent. By combin-

ing Proposition 5.2.2.13 with the Segal conditions, one finds that (4) and (5) are

equivalent. Moreover, since Cat(B) is an 𝜔-accessible localisation of BΔ, the

localisation functor preserves 𝜅-compact objects, which shows that (4) implies (2).

Suppose now that C is a 𝜅-compact object in Cat(B). As in the proof of Propo-

sition 5.2.2.13, we can find a 𝜅-filtered ∞-category J such that C ≃ colim𝑗∈J C
𝑗

where each C𝑗 is a 𝜅-small colimit of objects of the form Δ𝑛 ⊗ 𝐺, where 𝑛 ≥ 0 and

𝐺 ∈ B𝜅-cpt. Hence C is a retract of some C𝑗, so that (3) holds. Lastly, since we can

compute any small colimit in Cat(B) by first taking the colimit of the underlying

diagram inBΔ and then applying the reflector 𝐿∶ BΔ → Cat(B), Lemma 5.2.2.17

implies that every 𝜅-small colimit in Cat(B) of objects of the form Δ𝑛 ⊗ 𝐺 with

𝑛 ≥ 0 and 𝐺 ∈ B𝜅-cpt is also 𝜅-compact in BΔ. Thus (3) implies (4).

Finally, since Cat𝜅B is closed under both LConstCat𝜅∞ - and Grpd𝜅
B
-colimits and

sinceΔ𝑛⊗𝐺 can be regarded as the colimit of the constant 𝐺-indexed diagramwith

value Δ𝑛, it is clear that (3) implies (1). To show the converse, let V be the internal

class that is spanned by thoseB/𝐴-categories (for𝐴 ∈ B𝜅-cpt) that satisfy theB/𝐴-

categorical analogue of (3). Note that if⨆𝑖 𝐴𝑖 � 1 is a cover by 𝜅-compact objects

and if D is a B-category such that 𝜋∗
𝐴𝑖
D satisfies the B/𝐴𝑖

-categorical analogue

of condition (3), then D satisfies (3): in fact, since we have already established

that (3) and (4) are equivalent, this is a consequence of Proposition 5.2.2.11 and

Corollary 5.2.2.14. As a consequence, for every 𝜅-compact object 𝐴 ∈ B, we can

identify V(𝐴) with the class of B/𝐴-categories that satisfy the B/𝐴-categorical

version of condition (3). As V clearly contains both LConstCat𝜅∞ and Grpd𝜅
B
, the

proof will be complete once we show that V is closed under both LConstCat𝜅∞-
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and Grpd𝜅
B
-colimits. By our description of V(𝐴) for every 𝜅-compact 𝐴 ∈ B and

the fact that limits can be computed locally (Remark 3.2.1.7), this is clear for the

first case. To show the second case, we need to verify that for every relatively

𝜅-compact map 𝑝∶ 𝑃 → 𝐴, the functor 𝑝! ∶ Cat(B/𝑃) → Cat(B/𝐴) restricts to
a map V(𝑃) → V(𝐴). Using again that the class of relatively 𝜅-compact maps is

local, it is enough to consider the case where𝐴 (and therefore also 𝑃) is 𝜅-compact.

To show the claim, we may again use the explicit description of V(𝐴) and V(𝑃)
to deduce that it suffices to verify that 𝑝! carries 𝜅-small colimits of objects in

Cat(B/𝑃) of the form Δ𝑛⊗𝑄 (with 𝑄 → 𝑃 relatively 𝜅-compact) to 𝜅-small colimits

of objects in Cat(B/𝐴) of the form Δ𝑛 ⊗ 𝑄 (with 𝑄 → 𝐴 𝜅-compact). Since 𝑝!
preserves small colimits and acts by postcomposition with 𝑝, this follows from

the fact that relatively 𝜅-compact maps are closed under composition.

Corollary 5.2.2.18. For every B-regular cardinal 𝜅, the internal class Cat𝜅B is a
doctrine.

Proof. As B is generated by B𝜅, Remark 5.2.2.2 implies that we only need to

show that the collection of 𝜅-small B-categories is small, which is an immediate

consequence of (2) in Proposition 5.2.2.8

By construction, the internal class Cat𝜅B is regular for every cardinal 𝜅. We

conclude this section by proving that whenever 𝜅 is B-regular, the doctrine Cat𝜅B
is sound.

Lemma 5.2.2.19. Let 𝜅 be aB-regular cardinal, and let J be a 𝜅-filtered∞-category.
Then J is Cat𝜅B-filtered when viewed as a constant B-category.

Proof. By Proposition 5.1.1.5, we need to show that the inclusion

Fun
B
(J,Grpd

B
) ↪→ Fun

B
(J▷,Grpd

B
)

is Cat𝜅B-continuous. Since J is 𝜅-filtered, the inclusion section-wise preserves

𝜅-small limits. It therefore suffices to show that it is Grpd𝜅
B
-continuous. This

amounts to showing that for every𝐴 ∈ B and every 𝐺 ∈ Grpd𝜅
B
(𝐴) the geometric

morphism B/𝐺 → B/𝐴 commutes with J-indexed colimits. As the preservation

of colimits is a local condition (Remark 3.2.2.3) and as B is generated by the

332



5.2. Cardinality in internal higher category theory

𝜅-compact objects in B, we may assume that 𝐴 is 𝜅-compact. In light of Re-

mark 5.2.2.6, we may thus replace B with B/𝐴 and can therefore reduce to the

case 𝐴 ≃ 1. As 𝜅 is B-regular, the collection of 𝜅-compact objects in B is stable

under finite limits. Therefore, for every 𝐻 ∈ B𝜅-cpt the functor map
B
(𝐺 × 𝐻 , −)

preserves J-filtered colimits. By Yoneda’s lemma, this implies that the functor

Hom
B
(𝐺, −) also preserves J-filtered colimits. On account of the pullback square

(𝜋𝐺)∗ Hom
B
(𝐺, (𝜋𝐺)!(−))

diag(1) diag(Hom
B
(𝐺, 𝐺))

id𝐺

in Fun(B/𝐺,B) and the fact that the cospan in the lower right corner consists of

functors which preserve J-indexed colimits, the claim follows from the fact that

J-indexed colimits commute with finite limits.

Lemma 5.2.2.20. Let 𝜅 be a B-regular cardinal, and let J be a Cat𝜅B-cocomplete
B-category. Then the canonical functor ΓJ → J that is obtained from the counit of
the adjunction constB ⊣ Γ is final.

Proof. For every 𝐺 ∈ B𝜅-cpt, the functor J(1) → J(𝐺) admits a left adjoint and is

therefore in particular final. In other words, if 𝑖∶ B ↪→ PSh(B𝜅-cpt) denotes the
inclusion, then the functor 𝜖∶ ΓPSh(B𝜅-cpt)𝑖J → 𝑖J is section-wise final. But since the

local sections functor ev𝐺 ∶ PSh(B𝜅-cpt) → Ani defines an algebraic morphism

of ∞-topoi and since every algebraic morphism preserves both final functors

and right fibrations, applying ev𝐺 to any factorisation of 𝜖 in Cat(PSh(B𝜅-cpt))
into a final functor and a right fibration yields a factorisation of 𝜖(𝐺) into a final

functor and a right fibration in Cat∞. Consequently, the map 𝜖 must already

be final. As we recover the map ΓJ → J by applying the algebraic morphism

𝐿∶ PSh(B𝜅-cpt) → B to 𝜖, the claim follows.

Proposition 5.2.2.21. If 𝜅 is a B-regular cardinal, then Cat𝜅B is sound.

Proof. On account of Corollary 5.1.5.12, it suffices to show that Cat𝜅B is weakly

sound. Together with the fact that B is generated by its 𝜅-compact objects

and Remark 5.2.2.2, it is therefore enough to prove that every Cat𝜅B-cocomplete

333



5. Accessible and presentable B-categories

B-category J is Cat𝜅B-filtered. By Lemma 5.2.2.20 and Remark 5.1.1.7, we can fur-

thermore assume that J is the constantB-category associated with an ∞-category

that admits 𝜅-small colimits and that is therefore 𝜅-filtered [49, Proposition 5.3.3.3].

As a consequence, the result follows from Lemma 5.2.2.19.

Remark 5.2.2.22. As a consequence of Proposition 5.2.2.21, if C is an arbitrary

B-category, there is always a regular and sound doctrine U such that C ∈ U(1). In
fact, we only need to choose a B-regular cardinal 𝜅 such that C is 𝜅-compact (and

therefore 𝜅-small by Proposition 5.2.2.8) and set U = Cat𝜅B. More generally, if V is

a doctrine, we can find a B-regular cardinal 𝜅 such that V0 is 𝜅-compact and such

that the tautological object 𝜏∶ V0 → V corresponds to a 𝜅-small B/V0
-category.

As every object of V (in arbitrary context 𝐴 ∈ B) arises as a pullback of 𝜏, this
implies that V is contained in Cat𝜅B.

Corollary 5.2.2.23. For every B-regular cardinal 𝜅, there is an equivalence

GrpdCat
𝜅
B-cpt

B
≃ Grpd𝜅

B

of full subcategories in Grpd
B
.

Proof. Since Cat𝜅B is a sound doctrine by Proposition 5.2.2.21, it has the decom-

position property. We may therefore apply Proposition 5.1.5.10 to deduce an

equivalence

GrpdCat
𝜅
B-cpt

B
≃ RetGrpd

B
(SmallCat

𝜅
B

B
(1)).

Now if G∶ 1 → SmallCat
𝜅
B

B
(1) is an arbitrary object, there is a cover ⨆𝑖 𝐴𝑖 � 1

of B (without loss of generality by 𝜅-compact objects) and for each 𝑖 a 𝜅-small

B/𝐴𝑖
-category J such that 𝜋∗

𝐴𝑖
G ≃ Jgpd. Since 𝜅 is by definition uncountable,

we thus find that 𝜋∗
𝐴𝑖
G arises as a 𝜅-small colimit of 𝜅-compact objects in B/𝐴𝑖

(using the characterisation of 𝜅-small B/𝐴𝑖
-categories in Proposition 5.2.2.8) and

is therefore itself 𝜅-compact. Using Proposition 5.2.2.11, this implies that G is

𝜅-compact itself. By Remark 3.4.2.3, the same argument can be carried out for

every object in SmallCat
𝜅
B

B
(1) in context 𝐴 ∈ B𝜅-cpt, and since the collection of

𝜅-compact objects in B generate B under small colimits, this implies that we

have an inclusion

SmallCat
𝜅
B

B
(1) ↪→ Grpd𝜅

B
.
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Using again that 𝜅 is uncountable, the collection of 𝜅-compact objects in B is

closed under retracts, and as the same is true for the class of 𝜅-compact objects in

B/𝐴 for every 𝐴 ∈ B𝜅-cpt, we find that Grpd𝜅
B

is closed under retracts in Grpd
B
,

so that we obtain an inclusion

GrpdCat
𝜅
B-cpt

B
↪→ Grpd𝜅

B
.

Conversely, it is clear that whenever G is a 𝜅-small B-groupoid, the associated

object G∶ 1 → Grpd
B

is contained in SmallCat
𝜅
B

B
(1). Again, the same is true

for every 𝜅-small B/𝐴-groupoid whenever 𝐴 is 𝜅-compact. Hence we obtain an

inclusion

Grpd𝜅
B
↪→ GrpdCat

𝜅
B-cpt

B
,

which finishes the proof.

5.2.3. Finite B-categories

In this section we will discuss another important example of a regular and sound

doctrine. Recall that a quasicategory C is called finite if there is a finite simplicial

set and a Joyal equivalence 𝐾 → C. This is equivalent to C being contained

in the smallest subcategory of Cat∞ that contains ∅, Δ0 and Δ1 and is closed

under pushouts (see [83, Proposition 2.4]). We denote the associated doctrine of

∞-categories by FinAni. Let us denote by eq the local class of equivalences in B.

We may now define:

Definition 5.2.3.1. A B-category is said to be finite if it is (FinAni, eq)-small,

and we shall denote by FinB = Cat⟨FinAni,eq⟩
B

the associated regular doctrine of

finite B-categories. We will denote by Fin(B) the underlying ∞-category of

global sections. We say that a B-category I is filtered if it is FinB-filtered. We

will say that a B-category has finite (co)limits if it is FinB-(co)complete, and a

functor preserves finite (co)limits if it is FinB-(co)continuous. Dually, we say that

a B-category has filtered colimits if it is Filt-cocomplete, and a functor preserves
filtered colimits if it is Filt-cocontinuous. If C is a B-category that has filtered

colimits, an object 𝑐∶ 𝐴 → C is said to be compact if it is FiltFinB-compact, and

we denote the full subcategory of compact objects in C by Ccpt.

335



5. Accessible and presentable B-categories

Remark 5.2.3.2. By Remark 5.2.1.2 and the evident fact that 𝜋∗
𝐴 eq = eq as local

classes in B/𝐴, there is a canonical equivalence 𝜋∗
𝐴 FinB ≃ FinB/𝐴

for all 𝐴 ∈ B.

Remark 5.2.3.3. Every filtered B-category J satisfies Jgpd ≃ 1. In fact, by

Corollary 5.1.2.6 it is weakly filtered, thus in particular the unique functor

𝐼 → Fun
B
(∅, I) ≃ 1 is final.

Proposition 5.2.3.4. There is an equivalence FinB ≃ LConstFinAni
of internal

classes. In other words, a finite B-category is simply a locally constant sheaf of
finite ∞-categories.

Proof. Since Grpdeq ≃ 1Grpd
B

as full subcategories, we can describe FinB as the

regularisation of LConstFinAni
. But since Cat∞ is compactly generated, we may

apply Corollary A.2.0.4 and conclude that LConstFinAni
is already closed under

LConstFinAni
-colimits in CatB. Hence the claim follows.

By Proposition 5.2.1.3, finite limits and preservation of finite limits can be

checked section-wise:

Proposition 5.2.3.5. Let C be a B-category. Then

1. C has finite limits if and only if C(𝐴) has finite limits for every 𝐴 ∈ B and
for every 𝑠∶ 𝐵 → 𝐴 the functor 𝑠∗ ∶ C(𝐴) → C(𝐵) preserves finite limits.

2. A functor 𝑓∶ C → D between B-categories that have finite limits preserves
such limits if and only if 𝑓 (𝐴)∶ C(𝐴) → D(𝐴) preserves finite limits for
every 𝐴 ∈ B.

The dual statements about finite colimits hold as well.

One can construct an ample amount of filtered B-categories from presheaves
of filtered ∞-categories:

Proposition 5.2.3.6. Say that B is given as a left exact accessible localisation
𝐿∶ PSh(C) → B where C is a small∞-category. Let J be any PSh(C)-category such
J(𝑐) is filtered for every 𝑐 ∈ C. Then 𝐿J is a filtered B-category.
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Proof. Let 𝑖∶ B ↪→ PSh(C) be the inclusion. Since 𝐿 is left exact, it induces a func-

tor of PSh(C)-categories 𝐿∶ GrpdPSh(C) → 𝑖Grpd
B

that for every 𝐴 ∈ PSh(C) is
given by

𝐿/𝐴 ∶ PSh(C)/𝐴 → B/𝐿𝐴.

By Proposition 5.2.3.5, the functor 𝐿 thus preserves finite limits. Furthermore, it

readily follows from Proposition 3.1.2.9 that 𝐿 admits a right adjoint 𝑖 that is fully
faithful. Therefore, we have a commutative diagram

Fun
B
(J,GrpdPSh(C)) GrpdPSh(C)

Fun
B
(J, 𝑖Grpd

B
) 𝑖Grpd

B
.

colimJ

𝐿

colimJ

𝐿∗

Since there is an equivalence 𝑖Fun
B
(J, 𝑖Grpd

B
) ≃ Fun

B
(𝐿J,Grpd

B
) that is natural

in J, the lower colimit functor in the above diagram can be identified with the

functor

𝑖colim𝐿J ∶ 𝑖Fun
B
(𝐿J,Grpd

B
) → 𝑖Grpd

B
.

Using that 𝑖 is fully faithful, we get that this map is equivalent to the composition

𝐿 colimJ 𝑖∗. Therefore, it suffices to show that the upper colimit functor in the

above diagram preserves finite limits. To see this, since PSh(C)/𝑐 ≃ PSh(C/𝑐)
for every 𝑐 ∈ C and since C ↪→ PSh(C) generates PSh(C) under small colimits,

it suffices to show that the functor (−)gpd ∶ LFib(J) → PSh(C) commutes with

finite limits, cf. Proposition 5.2.3.5 and Proposition 3.2.5.1. Since for every 𝑐 ∈ C

the evaluation functor ev𝑐 ∶ PSh(C) → Ani commutes with small colimits, the

lax square

LFibPSh(C)(J) B

LFibAni(J(𝑐)) Ani

(−)gpd

ev𝑐 ev𝑐

(−)gpd

is commutative. By assumption and the fact that ev𝑐 preserves limits, the functor

(−)gpd ∘ ev𝑐 commutes with finite limits, hence so does ev𝑐 ∘(−)gpd. The claim

now follows from the fact that (ev𝑐)𝑐∈C ∶ PSh(C) → ∏𝑐∈C Ani is a conservative

functor.
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This leads to the main result of this section:

Proposition 5.2.3.7. The doctrine FinB is sound.

Proof. Since FinB is by definition regular, Corollary 5.1.5.12 implies that suffices

it to show that FinB is weakly sound. Using Remark 5.2.3.2, we only need to

show that every B-category J that has finite colimits is already filtered. But since

J in particular admits finite constant colimits, it is section-wise filtered, hence the

result follows from Proposition 5.2.3.6.

As a result of Proposition 5.2.3.7, we can now classify the compact objects of

Grpd
B
. To that end, Let us denote by LConstAnicpt the full subcategory of Grpd

B

that arises as the essential image of the map Anicpt → Grpd
B

(which is defined

as the transpose of constB ∶ Anicpt → B). We now obtain:

Corollary 5.2.3.8. There is an equivalence

Grpdcpt
B

≃ LConstAnicpt

of full subcategories in Grpd
B
.

Proof. Since FinB is a sound doctrine by Proposition 5.2.3.7, it has the decom-

position property. We may therefore apply Proposition 5.1.5.10 to deduce an

equivalence

Grpdcpt
B

≃ RetGrpd
B
(SmallFinB

B
(1)).

Hence, ifG∶ 𝐴 → Grpdcpt
B

is an arbitrary object, there is a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴
inB such that 𝑠∗𝑖 G is a retract of an object in SmallFinB

B
(1) in context 𝐴𝑖, for every

𝑖. By further refining this cover, we can furthermore assume that for each 𝑖 there
is a finite B/𝐴𝑖

-category J𝑖 such that 𝜋∗
𝐴𝑖
G is a retract of Jgpd𝑖 . Hence 𝑠∗𝑖 G is a

retract of an object in LConstAnicpt in context 𝐴𝑖, so that Corollary A.2.0.4 implies

that 𝑠∗𝑖 G is itself contained in LConstAnicpt , which necessarily implies that G is

contained in LConstAnicpt . Conversely, if G is an object of LConstAnicpt in context

𝐴 ∈ B, we can find a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B such that 𝑠∗𝑖 G is a constant

B/𝐴𝑖
-groupoid coming from a compact ∞-groupoid, which in turn implies that

𝑠∗𝑖 G is a retract of a constant B/𝐴𝑖
-groupoid coming from a finite ∞-groupoid.

As this implies that 𝑠∗𝑖 G is a retract of an object in SmallFinB(1) in context 𝐴𝑖,
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5.2. Cardinality in internal higher category theory

we conclude that 𝑠∗𝑖 G must be contained in Grpdcpt
B

, so that G is contained in

Grpdcpt
B

as well.

The goal for the remainder of this section is to discuss a more explicit descrip-

tion of filtered B-categories in the case where B is hypercomplete. To that end,

recall that the filtered ∞-categories can be characterised as those ∞-categories

C for which every map K → C from a finite ∞-category K can be extended to

a map from the cone K▷ → C. In other words, the ∞-category C is filtered if

and only if for any finite ∞-categoryK the functor 𝑗∗ ∶ Fun(K▷,C) → Fun(K,C)
induced by restricting along the inclusion 𝑗∶ K ↪→ K▷ is essentially surjective.

This characterisation admits an immediate internal analogue:

Definition 5.2.3.9. A B-category J is called quasi-filtered if for every finite ∞-

category K the functor 𝑗∗ ∶ Fun
B
(K▷, J) → Fun

B
(K, J) is essentially surjective.

As the terminology suggests, every filtered B-category is quasi-filtered. To

prove this, we require the following lemma, which gives a very explicit description

of the notion of quasi-filteredness:

Lemma 5.2.3.10. Let J be a B-category. Then J is quasi-filtered if and only if for
any 𝐴 ∈ B and any diagram K → J(𝐴) where K is a finite ∞-category there exists
a cover (𝑠𝑖)𝑖 ∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B such that for every 𝑖 we can find a mapK▷ → J(𝐴𝑖)
making the diagram

K J(𝐴)

K▷ J(𝐴𝑖)

𝑠∗𝑖𝑗

commute.

Proof. Let us first assume that J is quasi-filtered. Choose a diagram K → J(𝐴)
that corresponds to a map 𝐴 → Fun

B
(K, J), and let us form the pullback square

𝑃 Fun
B
(K▷, J)≃

𝐴 Fun
B
(K, J)≃.

(𝑗∗)≃𝑠
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Since 𝑗∗ is essentially surjective, (𝑗∗)≃ is a cover (Corollary 1.3.2.15), hence so

is the map 𝑠. Thus 𝑠∶ 𝑃 � 𝐴 gives the desired cover. For the converse, we

may pick the diagram K → J(Fun
B
(K, J)≃) that is determined by the identity

id∶ Fun
B
(K, J)≃ → Fun

B
(K, J)≃. By assumption we may now find a cover

(𝑠𝑖)𝑖 ∶ ⨆𝑖 𝐴𝑖 → Fun
B
(K, J)≃ such that the diagram

⨆𝑖 𝐴𝑖 Fun
B
(K▷, J)≃

Fun
B
(K, J)≃ Fun

B
(K, J)≃id

𝑗∗

commutes. Thus 𝑗∗ is also a cover, as desired.

Proposition 5.2.3.11. Every filtered B-category is quasi-filtered.

Proof. Suppose that J is a filtered B-category. In light of Lemma 5.2.3.10, it

suffices to show that for every finite ∞-category K, every diagram 𝑑∶ K → J

locally extends to a map K▷ → J. Note that J being filtered implies that Jgpd𝑑/ ≃ 1.
Therefore there is a cover 𝐴 � 1 inB such that J𝑑/(𝐴) is non-empty. Unwinding

the definitions, this exactly provides the desired local extension of 𝑑.

In [9, Éxpose V, Definition 8.11], Deligne chose (a 1-categorical analogue of)

Definition 5.2.3.9 to define filtered 1-categories internal to a 1-topos, so one might

be inclined to surmise that the notions of filteredness and quasi-filteredness

coincide. In light of Proposition 5.2.3.11, the second is always implied by the

first, and the converse is in fact true in the case where B ≃ Ani (see [49, Propo-

sition 5.4.1.22]). For general ∞-topoi, however, this is no longer the case, the

obstruction being the presence of non-trivial ∞-connected objects:

Proposition 5.2.3.12. Let G ∈ B be an ∞-connective object. Then G is a quasi-
filtered B-category.

Proof. It is well-known (see [62]) that G is ∞-connective if and only if for an

arbitrary finite ∞-category K, the diagonal map G → Fun
B
(K,G) is a cover.

This clearly implies the claim.
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As any filtered B-groupoid is necessarily equivalent to the final object, Propo-

sition 5.2.3.12 shows that any non-trivial ∞-connective object gives rise to a

B-category that is quasi-filtered but not filtered. In the remainder of this section

we will show that is essentially the only obstruction. More precisely we will

show that if B is hypercomplete, then any quasi-filtered B-category is filtered.

Lemma 5.2.3.13. Let C be a quasi-filtered B-category and assume that B is
hypercomplete. Then Cgpd ≃ 1.

Proof. Since B is by assumption hypercomplete, it will be sufficient to verify that

the diagonal map

Cgpd → mapGrpd
B

(𝐾,Cgpd)

is a cover for any finite ∞-groupoid 𝐾, as in this case Cgpd is ∞-connective (see

[62]). So it is enough to see that for every 𝐴 ∈ B, every map 𝑓∶ 𝐾 → Cgpd(𝐴)
from a finite ∞-groupoid 𝐾 locally factors through the point. Replacing B by

B/𝐴 we may assume that 𝐴 = 1, so that 𝑓 corresponds to a map 𝑔∶ 𝐾 → Cgpd.

Now recall that since the doctrine of finite B-categories is sound and regular, we

can find a filtered B-category J and a diagram 𝑑∶ J → FinB with colimit C. Since

(−)gpd is cocontinuous and 𝐾 is a compact object of Grpd
B

by Corollary 5.2.3.8,

we obtain an equivalence

mapGrpd
B

(𝐾,Cgpd) ≃ (CmapGrpdB
(𝐾,𝑑(−)gpd)/)

gpd.

Therefore, we may find a cover ⨆𝑘 𝐴𝑘 � 1 and objects 𝑗𝑘 ∶ 𝐴𝑘 → J for each 𝑘
such that 𝜋∗

𝐴𝑘
𝑔 factors through the canonical map 𝑑(𝑗𝑘)gpd → 𝜋∗

𝐴𝑘
Cgpd. Since

𝑑(𝑗𝑘) is a finite B/𝐴-category we may pass to a further cover and can therefore

assume that 𝑑(𝑗𝑘) is the constant B/𝐴𝑘
-category associated to a finite ∞-category.

Therefore, the assumption that C is quasi-filtered implies that locally the map

𝑑(𝑗𝑘)gpd → 𝜋∗
𝐴𝑘
Cgpd factors through the final object, hence the claim follows.

Proposition 5.2.3.14. Suppose that B is hypercomplete. Then any quasi-filtered
B-category is filtered.

Proof. Let C be quasi-filtered. Since FinB is sound, we only have to verify that

for any finite B-category K the diagonal functor C → Fun
B
(K,C) is final. Since
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being final is a local property, we may assume that K is the constant B-category

attached to some finite ∞-category K (see Proposition 5.2.3.4). Now for any

diagram 𝑑∶ K → C, we will show that the slice B-category C𝑑/ is again quasi-

filtered. To see this, let K′ be a finite ∞-category and consider an arbitrary

map 𝑓∶ K′ → C𝑑/(𝐴) for some 𝐴 ∈ B. Passing from B to B/𝐴 and using

that 𝜋∗
𝐴(C𝑑/) ≃ (𝜋∗

𝐴C)𝜋∗
𝐴𝑑/ we may assume that 𝐴 ≃ 1. Since K is constant,

the global sections of C/𝑑 recover the slice ∞-category (ΓC)𝑑/. Therefore 𝑓 is

given by a map 𝑓 ′ ∶ K ⋄ K′ → C(𝐴) out of the join such that the restriction

along K ↪→ K ⋄ K′ recovers 𝑑. But since finite ∞-categories are stable under

the join construction, we may find a covering (𝑠𝑖)𝑖 ∶ ⨆𝐴𝑖 � 1 and for every

𝑖 an extension (K ⋄ K′)▷ → C(𝐴𝑖) of 𝜋∗
𝐴𝑖
𝑓 ′. But these precisely correspond

to maps (K′)▷ → C(𝐴𝑖) extending 𝑠∗𝑖 ∘ 𝑓∶ C(1) → C(𝐴𝑖), which shows that

C𝑑/ is quasi-filtered and that therefore Cgpd
𝑑/ ≃ 1 by Lemma 5.2.3.13. Repeating

the above argument with B/𝐴 instead of B we get that the same holds for a

diagram 𝑑 in any context 𝐴, so the claim follows from Quillen’s Theorem A

(Corollary 2.1.4.10).

5.3. AccessibleB-categories

In the classical 1-categorical literature, a 𝜅-accessible 1-category is one that can

be obtained as the free cocompletion of a small 1-category under 𝜅-filtered colim-

its [46, 53]. In [49, § 5.4], Lurie generalises this concept to ∞-categories. In this

section we will introduce and study an analogous notion for B-categories, that

of a U-accessible B-category for any sound doctrine U. As with our discussion

of U-filteredness, we draw much of our inspiration from ideas in [1] and [71].

Our exposition is tailored to the study of presentable B-categories in Section 5.4,

so we will not provide an exhaustive treatment of accessibility for B-categories,

but rather set up only the basic machinery that we will need for our discussion

of presentability later on. We begin in Section 5.3.1 by giving the definition of

a U-accessible B-category and proving some basic results that will be useful

later. In Section 5.3.2, we discuss accessible functors. In Section 5.3.3, we give

a characterisation of U-accessible B-categories as those that are generated by

U-compact objects under U-filtered colimits. Finally, we discuss the notion of
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U-flatness in Section 5.3.4.

5.3.1. Accessibility

If U is an arbitrary internal class of B-categories and if C is a B-category, we will

use the notation IndU
B
(C) = PShFiltU

B
(C) to denote the free FiltU-cocompletion

of U. We write IndUB(C) for the underlying ∞-category of global sections. If

U = FinB, we will simply write Ind
B
(C) for the free FiltFinB-cocompletion and

IndB(C) for its underlying ∞-category of global sections. We may now define:

Definition 5.3.1.1. Let U be a sound doctrine. A large B-category D is U-
accessible if there is a B-category C and an equivalence D ≃ IndU

B
(C). A large

B-category is called accessible if it is U-accessible for some sound doctrine U.

Remark 5.3.1.2. By combining Remark 5.1.1.2 with Proposition 3.5.1.9, we find

that for every𝐴 ∈ B there is a canonical identification 𝜋∗
𝐴Ind

U
B
(C) ≃ Ind𝜋

∗
𝐴U
B/𝐴

(𝜋∗
𝐴C)

for every B-category C and every sound doctrine U.

Remark 5.3.1.3. In light of Proposition 5.1.3.6 one has IndU
B
(C) ≃ IndU

reg
←

B
(C) for

everyB-categoryC and every internal classU. In particular, a largeB-categoryD

is U-accessible if and only if it is Ureg
← -accessible. When arguing about accessible

B-categories, we can therefore always assume that U is in addition left regular
(cf. Corollary 5.1.3.7).

Suppose that D is a U-accessible B-category, i.e. that we have D ≃ IndU
B
(C)

for some B-category C. Recall from Section 3.5.1 that there is an inclusion

SmallFiltU
B

(C) ↪→ IndU
B
(C). The following proposition shows that this inclusion is

in fact an equivalence.

Proposition 5.3.1.4. For any internal class U of B-categories and any B-category
C, the fully faithful functor SmallFiltU

B
(C) ↪→ IndU

B
(C) is an equivalence. In other

words, the Yoneda embedding C ↪→ SmallFiltU
B

(C) exhibits SmallFiltU
B

(C) as the free
FiltU-cocompletion of C.

Proof. It will be enough to show that SmallFiltU
B

(C) is closed under FiltU-colimits

in PSh
B
(C). By combining Remark 5.1.1.2 and Remark 3.4.2.3, this follows
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once we prove that for any U-filtered B-category J, the colimit of any dia-

gram 𝑑∶ J → SmallFiltU
B

(C) in PSh
B
(C) is contained in SmallFiltU

B
(C). Let us

set 𝐹 = colim 𝑑 and let 𝑝∶ C/𝐹 → C be the associated right fibration. We need

to show that C/𝐹 is U-filtered. On account of the equivalence PSh
B
(C) ≃ RFibC

and in light of Lemma 3.5.4.9, we may regard 𝑑 as a diagram

𝑑∶ J → RFibC ↪→ (CatB)/C

that takes values in the full subcategory (FiltU)/C (as FiltU is a colimit class

by Remark 5.1.1.7). Let K → C be the colimit of 𝑑 in (CatB)/C. As the right

fibration 𝑝∶ C/𝐹 → C is the image of K → C along the localisation functor

𝐿∶ (CatB)/C → RFibC (see Proposition 3.3.2.10), there is a final map K → C/𝐹
over C. It therefore suffices to show that K is U-filtered. Now Proposition 3.2.4.3

implies that K is the colimit of the diagram (𝜋C)!𝑑∶ J → (CatB)/C → CatB. By

construction, this diagram takes values in FiltU. Therefore, the result follows

from Proposition 5.1.1.8.

Remark 5.3.1.5. In light of Proposition 5.3.1.4, if C is a B-category and if U is

a sound doctrine, Remark 5.1.1.7 implies that a presheaf 𝐹∶ 𝐴 → PSh
B
(C) in

context 𝐴 ∈ B is contained in IndU
B
(C) if and only if the B/𝐴-category C/𝐹 is

𝜋∗
𝐴U-filtered.

For later use, let us record that our notion of accessibility is stable under the

formation of slice B-categories:

Proposition 5.3.1.6. Let U be a sound doctrine and let D be a U-accessible B-
category. Then D/𝑑 is 𝜋∗

𝐴U-accessible, for any choice of object 𝑑∶ 𝐴 → D.

Proof. Using Remark 5.3.1.2, we may assume that 𝐴 ≃ 1. Choose a B-category C

such that D ≃ IndU
B
(C). Let 𝐹∶ Cop → Grpd

B
be the presheaf that corresponds

to 𝑑 under this equivalence. We then obtain a commutative diagram

C/𝐹 Ind
B
(C)/𝐹 PSh

B
(C)/𝐹

C Ind
B
(C) PSh

B
(C)

𝑝 (𝜋𝐹)! (𝜋𝐹)!
ℎC
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in which both squares are cartesian. By Lemma 3.4.1.4, the vertical map on the

right can be identified with 𝑝! ∶ PSh
B
(C/𝐹) → PSh

B
(C) such that the upper

row in the above diagram recovers the Yoneda embedding ℎC/𝐹
. With respect

to this identification, a presheaf on C/𝐹 is contained in Ind
B
(C)/𝐹 precisely if

the domain of the associated right fibration is U-filtered. We therefore obtain an

equivalence IndU
B
(C)/𝐹 ≃ IndU

B
(C/𝐹), hence the result follows.

5.3.2. Accessible functors

It will be convenient to also have a notion of accessibility for functors between

accessible B-categories at our disposal:

Definition 5.3.2.1. Let U be a sound doctrine. A functor 𝑓∶ C → D of large

B-categories is U-accessible if C and D are FiltU-cocomplete and 𝑓 is FiltU-

cocontinuous. We will call 𝑓 accessible if it isU-accessible for some sound doctrine

U. We denote by Funacc
B

(C,D) the full subcategory spanned by those objects

𝐴 → Fun
B
(C,D) such that the corresponding B/𝐴-functor 𝜋∗

𝐴C → 𝜋∗
𝐴D is ac-

cessible. We will denote by FunaccB (C,D) the underlying ∞-category of global

sections.

Remark 5.3.2.2. Let 𝑓∶ C → D be U-accessible for some sound doctrine U.

By Remark 5.2.2.22 we may find a B-regular cardinal 𝜅 such that U ⊂ Cat𝜅B. It

follows that a functor is accessible if and only if it is Cat𝜅B-accessible for some

B-regular cardinal 𝜅.

Remark 5.3.2.3. Let 𝑓∶ 𝐴 → Funacc
B

(C,D) be an arbitrary object. By definition,

this means that there is a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 in B such that the functors

𝑠∗𝑖 𝑓∶ 𝜋∗
𝐴𝑖
C → 𝜋∗

𝐴𝑖
D are accessible for all 𝑖 ∈ 𝐼. By Remark 5.3.2.2, we may find a

B/𝐴-regular cardinal 𝜅 such that all 𝐴𝑖 are 𝜅-compact (inB/𝐴) and 𝑠∗𝑖 𝑓 is Cat
𝜅
B/𝐴𝑖

-

accessible for every 𝜅. Hence Remark 5.1.1.2 and Remark 5.2.2.2 together with

Remark 3.3.2.3 imply that 𝑓 is FiltCat𝜅B/𝐴
-cocontinuous, so in particular accessible.

Thus, an object 𝑓∶ 𝐴 → Fun
B
(C,D) is contained in Funacc

B
(C,D) if and only if 𝑓

defines an accessible functor between B/𝐴-categories. In particular, one obtains

a canonical equivalence

𝜋∗
𝐴Fun

acc
B

(C,D) ≃ Funacc
B/𝐴

(𝜋∗
𝐴C, 𝜋∗

𝐴D)

345



5. Accessible and presentable B-categories

for every 𝐴 ∈ B.

Somewhat surprisingly, provided that both domain and codomain have a

sufficient amount of colimits, accessibility of a functor between B-categories is

an entirely section-wise concept:

Proposition 5.3.2.4. Let 𝜅 be a B-regular cardinal and let 𝑓∶ C → D be a functor
between cocomplete B-categories that is section-wise 𝜅-accessible. Then the functor
𝑓 is FiltCat𝜅B -accessible.

Proof. As 𝜅 is B-regular, Remark 5.2.2.2 and Remark 5.1.1.2 imply that it suffices

to show that 𝑓 preserves the colimit of every diagram 𝑑∶ J → C with J a Cat𝜅B-

filtered B-category. As C is cocomplete, there exists an extension

𝑑′ ∶ PSh
B
(J)Cat

𝜅
B-cpt → C

of 𝑑. By Corollary 5.1.5.11, the inclusion J ↪→ PSh
B
(J)Cat

𝜅
B-cpt is final, hence we

may replace J by PSh
B
(J)Cat

𝜅
B-cpt and 𝑑 by 𝑑′ and can thus assume that J is Cat𝜅B-

cocomplete (see Proposition 5.1.5.4). Using Lemma 5.2.2.20 and Remark 5.1.1.7, we

can further reduce to the case where J is the constantB-category that is associated

with an ∞-category with 𝜅-small colimits. As by [49, Proposition 5.3.3.3] every

such ∞-category is 𝜅-filtered, the result follows.

Corollary 5.3.2.5. Let 𝑓∶ C → D be a functor of cocomplete large B-categories.
Then 𝑓 is accessible if and only if 𝑓 is section-wise accessible.

Proof. By Remark 5.3.2.2, we can assume that 𝑓 is Cat𝜅B-accessible for some B-

regular cardinal 𝜅. Then it follows from Lemma 5.2.2.19 that 𝑓 commutes with

colimits indexed by constant B-categories attached to 𝜅-filtered ∞-categories.

In other words, 𝑓 (𝐴) commutes with 𝜅-filtered colimits for every 𝐴 ∈ B and is

thus section-wise accessible. For the converse, we pick a small full subcategory

G ↪→ B that generates B under small colimits. Then we may find a B-regular

cardinal 𝜅 such that 𝑓 (𝐺) is 𝜅-accessible for every 𝐺 ∈ G. Since the preservation

of colimits is a local condition (Remark 3.2.2.3) and since every object 𝐴 ∈ B

admits a cover by objects in G, we conclude that 𝑓 (𝐴) preserves 𝜅-filtered colimits

for all 𝐴 ∈ B. Therefore 𝑓 is accessible by Proposition 5.3.2.4.
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5.3.3. U-compact objects in accessibleB-categories

In [49, Proposition 5.4.2.2], Lurie characterises 𝜅-accessible ∞-categories as those

that are generated by a small collection of 𝜅-compact objects under 𝜅-filtered
colimits. In this section, our goal is to obtain an analogue of this statement for

accessible B-categories. We begin with the following characterisation of the

U-compact objects in a U-accessible B-category:

Proposition 5.3.3.1. Let U be an internal class of B-categories, let C be a B-
category and let D = IndU

B
(C). Then there is an equivalence DU-cpt ≃ RetD(C) of

full subcategories in D. In particular, DU-cpt is small.

Proof. In light of Remark 5.1.5.6, the second claim follows immediately from the

first. Now by Yoneda’s lemma and the fact that the inclusion D ↪→ PSh
B
(C)

is closed under FiltU-colimits, every representable presheaf on C defines a U-

compact object in D. In other words, one obtains an inclusion C ↪→ DU-cpt. By

combining this observation with Proposition 5.1.5.8, one obtains an inclusion

RetD(C) ↪→ DU-cpt. Conversely, let 𝐹∶ 𝐴 → DU-cpt be an arbitrary object. We

need to show that 𝐹 is contained in RetD(C). Upon replacing B with B/𝐴 (which

is made possible by Remark 5.1.5.2 and Remark 5.3.1.2), we can assume 𝐴 ≃ 1.
The desired result thus follows from Lemma 5.1.5.9.

We can now state and prove our characterisation of U-accessible B-categories.

To that end, ifD is a FiltU-cocompleteB-category andC ↪→ D is a full subcategory,

recall that we say that D is generated under FiltU-colimits by C if D is the smallest

full subcategory of itself that is closed under FiltU-colimits and contains C. We

now obtain:

Proposition 5.3.3.2. Let U be a sound doctrine and let D be a large B-category.
Then the following are equivalent:

1. D is U-accessible;

2. D is locally small and FiltU-cocomplete, the (a priori large)B-category DU-cpt

is small and generates D under FiltU-colimits;

3. D is FiltU-cocomplete, and there is a small full subcategory C ↪→ D such that
C ↪→ DU-cpt and such that C generates D under FiltU-colimits.
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Proof. If D is U-accessible, there is a small B-category C and an equivalence

D ≃ IndU
B
(C). In particular, D is locally small and FiltU-cocomplete. Further-

more, Proposition 5.3.3.1 implies that DU-cpt is small. Since D is generated by

C under FiltU-colimits and therefore by DU-cpt, we conclude that (1) implies (2).

Moreover, (2) trivially implies (3), and the fact that (3) implies (1) immediately

follows from Proposition 3.5.2.3.

Recall from Definition 3.1.4.7 that a localisation 𝐿∶ D → E is a Bousfield locali-
sation if 𝐿 admits a (necessarily fully faithful) right adjoint 𝑖. Proposition 5.3.3.2

now implies:

Corollary 5.3.3.3. LetU be a sound doctrine and letD be aU-accessibleB-category.
Suppose that E is a Bousfield localisation of D such that the inclusion 𝑖∶ E ↪→ D is
FiltU-cocontinuous. Then E is U-accessible as well.

Proof. Let C ↪→ E be the image of DU-cpt along the localisation functor 𝐿∶ D → E.

As E is locally small and DU-cpt is small by Proposition 5.3.3.2, the B-category C

is small as well (Lemma 2.3.1.6). In light of the adjunction 𝐿 ⊣ 𝑖, the assumption

that 𝑖 is FiltU-cocontinuous implies that 𝐿 preserves U-compact objects. In other

words, we have C ↪→ DU-cpt. By Proposition 5.3.3.2, the large B-category D is

generated by DU-cpt under FiltU-colimits, i.e. D is the smallest full subcategory

of itself that contains DU-cpt and that is closed under FiltU-colimits. Let E′ ↪→ E

be the smallest full subcategory that contains C and that is closed under FiltU-

colimits, and let us consider the commutative diagram

DU-cpt D′ D

C E′ E

𝐿

in which the right square is a pullback. Since 𝐿 is cocontinuous, the inclusion

D′ ↪→ D is closed under FiltU-colimits (using Lemma 3.5.1.11) and must therefore

be an equivalence. As the inclusion 𝑖 is a section of 𝐿, this implies that the

inclusion E′ ↪→ E is an equivalence as well. By using Proposition 5.3.3.2, we thus

conclude that D is U-accessible.
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Definition 5.3.3.4. A Bousfield localisation 𝐿∶ D → E of a U-accessible B-

category D is said to be U-accessible if the inclusion E ↪→ D is U-accessible.

More generally, a Bousfield localisation 𝐿∶ D → E is accessible if there is a

sound doctrine U such that D is U-accessible and the inclusion E ↪→ D is FiltU-

cocontinuous.

Remark 5.3.3.5. Proposition 5.3.3.2 also shows that accessibility is a local con-
dition: if ⨆𝑖 𝐴𝑖 � 1 is a cover in B and if U is a sound doctrine, then a large

B-categoryD beingU-accessible is equivalent to each 𝜋∗
𝐴𝑖
D being 𝜋∗

𝐴𝑖
U-accessible.

In fact, Remark 5.3.1.2 shows that we have an equivalence

𝜋∗
𝐴Ind

U
B
(C) ≃ Ind𝜋

∗
𝐴U
B/𝐴

(𝜋∗
𝐴C)

for every B-category C and every 𝐴 ∈ B, hence the condition is necessary. To

show that it is sufficient, first recall that since FiltU-cocompleteness is a local

condition (Remark 3.3.2.3), we deduce that D must be FiltU-cocomplete. More-

over, if E ↪→ D is the smallest full subcategory that is closed under FiltU-colimits

in D and that contains DU-cpt, the fact that 𝜋∗
𝐴𝑖
E is closed under Filt𝜋∗

𝐴𝑖
U-colimits

and Remark 5.1.5.2 imply that the inclusion E ↪→ D is locally an equivalence

and therefore already an equivalence. To show that D is U-accessible, Proposi-

tion 5.3.3.2 thus implies that it suffices to verify that also the condition of a large

B-category to be (locally) small is local in B, which is clear from the definitions.

Proposition 5.3.3.2 can furthermore be used to show that presheafB-categories

are U-accessible for every choice of a sound doctrine U:

Proposition 5.3.3.6. For every B-category C and every sound doctrine U, the
B-category PSh

B
(C) is U-accessible.

Proof. In light of Remark 5.3.1.3, we can assume that U is a left regular doctrine.

By Proposition 5.1.5.10, the B-category PSh
B
(C)U-cpt is small. Using Proposi-

tion 5.3.3.2, it therefore suffices to show that every object in PSh
B
(C) can be

obtained as a U-filtered colimit of U-compact objects. If 𝐹∶ Cop → Grpd
B

is an

arbitrary presheaf, Lemma 5.1.4.4 shows that 𝐹 is the colimit of the diagram

PSh
B
(C)U-cpt/𝐹 → PSh

B
(C)U-cpt ↪→ PSh

B
(C).
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By Lemma 3.5.1.11, the B-category PSh
B
(C)U-cpt/𝐹 is op(U)-cocomplete and there-

fore in particular U-filtered (Example 5.1.2.4). Hence the presheaf 𝐹 is contained

in IndU
B
(PSh

B
(C)U-cpt). Finally, upon replacing B with B/𝐴 (which is made pos-

sible by Remark 5.1.5.2), the same conclusion holds for objects in PSh
B
(C) in

context 𝐴, which finishes the proof.

5.3.4. Flatness

Recall from Section 3.5.1 that if C is a B-category, the functor of left Kan ex-

tension along the Yoneda embedding ℎCop ∶ Cop ↪→ Fun
B
(C,Grpd

B
) induces an

equivalence

(ℎCop)! ∶ PSh
B
(C) ≃ Funcc

B
(Fun

B
(C,Grpd

B
),Grpd

B
)

where the right-hand side denotes the large B-category of cocontinuous functors

between Fun
B
(C,Grpd

B
) and Grpd

B
.

Definition 5.3.4.1. Let C be aB-category and let U be an arbitrary internal class

of B-categories. A presheaf 𝐹∶ 𝐴 → PSh
B
(C) is said to be U-flat if the functor

Fun
B/𝐴

(𝜋∗
𝐴C,Grpd

B/𝐴
) → Grpd

B/𝐴

that is encoded by (ℎCop)!(𝐹 ) is 𝜋∗
𝐴U-continuous. We denote the full subcategory

of PSh
B
(C) that is spanned by the U-flat presheaves by FlatU

B
(C), and we denote

its underlying ∞-category of global sections by FlatUB(C).

Remark 5.3.4.2. In the situation of Definition 5.3.4.1, the fact thatU-continuity is

a local condition (Remark 3.3.2.3) together with Remark 3.4.3.2 and Remark 2.3.2.1

implies that the presheaf 𝐹 is U-flat if and only if for every cover (𝑠𝑖)∶ ⨆𝐴𝑖 � 𝐴
inB the presheaf 𝑠∗𝑖 𝐹 isU-flat. In particular, every object in FlatU

B
(C) isU-flat, and

there is a canonical equivalence 𝜋∗
𝐴Flat

U
B
(C) ≃ Flat𝜋

∗
𝐴U
B/𝐴

(𝜋∗
𝐴U) for every 𝐴 ∈ B.

Lemma 5.3.4.3. Let C be a B-category and let 𝐹∶ Cop → Grpd
B
be a presheaf.

Then the Yoneda extension (ℎCop)!(𝐹 ) is equivalent to the composition

Fun
B
(C,Grpd

B
) Fun

B
(C/𝐹,GrpdB) Grpd

B
,

𝑝∗ colim

where 𝑝∶ C/𝐹 → C is the right fibration that is classified by 𝐹.
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Proof. As both 𝑝∗ and colim are cocontinuous functors, the universal prop-

erty of presheaf B-categories implies that it suffices to find an equivalence

colim 𝑝∗ℎCop ≃ 𝐹. Let us denote by ℎ/𝐹 ∶ C/𝐹 ↪→ PSh
B
(C)/𝐹 the functor that is

induced by the Yoneda embedding ℎC by taking slice B-categories. Now there is

a commutative diagram

Cop PSh
B
(C)op

Fun
B
(C,Grpd

B
) Fun

B
(PSh

B
(C),Grpd

B
)

Fun
B
(C/𝐹,GrpdB) Fun

B
(PSh

B
(C)/𝐹,GrpdB)

Grpd
B

ℎCop

ℎopC

ℎPShB(C)

𝑝∗

(ℎC)!

(𝜋𝐹)∗!

colim

(ℎ/𝐹)!
id∗𝐹

in which the commutativity of the lower square follows from the straightening

equivalence for right fibrations (Theorem 2.2.1.1) together with 𝑝 being a right

fibration and therefore proper in the sense of Section 2.1.4, see Proposition 2.1.4.9.

In light of Yoneda’s lemma, it is now immediate that the composition of the

upper horizontal map with the right column in the above diagram recovers 𝐹, as
desired.

Recall from Example 3.2.1.10 that if C is a B-category that admits a final object

1C ∶ 1 → C, then this object is the limit of the unique diagram ∅ → C. In other

words, the map 1C ∶ 1 ≃ Fun
B
(∅,C) → C is right adjoint to the unique functor

𝜋C ∶ C → 1. We will denote by 𝜋∶ idC → 1C𝜋C the associated adjunction unit.

Lemma 5.3.4.4. If 𝑝∶ P → C is a right fibration of B-categories, the commutative
square

idPSh
B
(P) 𝑝∗𝑝!

1PSh
B
(P)𝜋PSh

B
(P) 𝑝∗𝑝!1PSh

B
(P)𝜋PSh

B
(P)

𝜋

𝜂

𝑝∗𝑝!𝜋
𝜂1PShB(P)𝜋PShB(P)

is a pullback square in Fun
B
(PSh

B
(P),PSh

B
(P)).
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Proof. By Proposition 3.2.3.2, it suffices to show that for every 𝐴 ∈ B and every

object 𝐹∶ 𝐴 → PSh
B
(P) the induced diagram

𝐹 𝑝∗𝑝!(𝐹 )

𝜋∗
𝐴(1PShB(C)) 𝑝∗𝑝!(𝜋∗

𝐴(1PShB(C)))

𝜋

𝜂𝐹

𝑝∗𝑝!𝜋
𝜂𝜋∗

𝐴(1PShB(C))

is a pullback. Upon replacing B with B/𝐴, we can assume 𝐴 ≃ 1. In light of the

straightening equivalence for right fibrations, this diagram corresponds to the

commutative square

P/𝐹 P/𝐹 ×C P

P P ×C P

of right fibrations over P. As this square is evidently a pullback, the claim

follows.

Lemma 5.3.4.5. Let I be a B-category and let

𝑑 ℎ

diag(G) diag(H)

𝜙

diag(𝑠)

be a pullback square in Fun
B
(I,Grpd

B
), where 𝑠∶ G → H is an arbitrary map of

B-groupoids. Then the commutative square

colim(𝑑) colim(ℎ)

G H

colim(𝜙)

𝑠

that is obtained by transposing the first square across the adjunction colim ⊣ diag

is a pullback square as well.
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Proof. In light of the Grothendieck construction, the above pullback square cor-

responds to a pullback square

I/𝑑 I/ℎ

G H𝑠

in Cat(B). By Proposition 3.2.5.1, we need to show that the groupoidification

functor carries this diagram to a pullback square in B. As 𝑠 is a right fibration

and therefore proper (Proposition 2.1.4.9) this is immediate.

Proposition 5.3.4.6. Let U be a sound internal class and let C be a B-category.
Then there is an equivalence FlatU

B
(C) ≃ IndU

B
(C) of full subcategories in PSh

B
(C).

Proof. In light of Remark 5.3.1.2 and Remark 5.3.4.2, it will be enough to show

that a presheaf 𝐹∶ Cop → Grpd
B

defines an object of IndU
B
(C) if and only if it is

U-flat. So suppose first that 𝐹 is contained in IndU
B
(C). Then C/𝐹 is U-filtered. Let

𝑝∶ C/𝐹 → C be the projection. By Lemma 5.3.4.3, the Yoneda extension (ℎCop)!𝐹
can be computed as the composition

Fun
B
(C,Grpd

B
) Fun

B
(C/𝐹,GrpdB) Grpd

B
,

𝑝∗ colim

and since both 𝑝∗ and colim are U-continuous, we deduce that 𝐹 is U-flat.

Conversely, suppose that 𝐹 isU-flat. By Lemma 5.3.4.4, the commutative square

ℎC/𝐹
𝑝∗𝑝!ℎC/𝐹

1PSh
B
(C/𝐹)𝜋C/𝐹

𝑝∗𝑝!1PSh
B
(C/𝐹)𝜋C/𝐹

diagC/𝐹
(1PSh

B
(C/𝐹)) diagC/𝐹

(𝑝∗𝐹)

𝜂ℎC/𝐹

𝜋ℎC/𝐹
𝑝∗𝑝!𝜋ℎC/𝐹

𝜂1PShB(C/𝐹)
𝜋C/𝐹

≃ ≃
diag

C/𝐹
(𝜂1PShB(C/𝐹)

)

is a pullback in Fun
B
(C/𝐹,PShB(C/𝐹)). By Proposition 3.4.1.1 the composition

of the two vertical maps on the left is a colimit cocone, hence so is the com-

position of the two vertical maps on the right, for 𝑝∗𝑝! preserves all colimits.
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Let 𝑑∶ K → (C/𝐹)op be a diagram with K ∈ U(1). By postcomposition with

limK 𝑑∗ ∶ PSh
B
(C) → Fun

B
(K,Grpd

B
) → Grpd

B
, the above pullback square

induces a cartesian square

limK 𝑑∗ℎC/𝐹
limK 𝑑∗𝑝∗𝑝!ℎC/𝐹

diagC/𝐹
(1Grpd

B
) diagC/𝐹

(limK 𝑑∗𝑝∗𝐹).

We claim that the right vertical map in the this last diagram is still a colimit

cocone. To see this, note that the equivalence

Fun
B
(C/𝐹, FunB(K,Grpd

B
) ≃ Fun

B
(K, Fun

B
(C/𝐹,GrpdB))

carries the diagram 𝑑∗𝑝∗𝑝!ℎC/𝐹
to the composition

K
𝑑
−→ (C/𝐹)op

𝑝op

−−−→ Cop
ℎCop
−−−−→ Fun

B
(C,Grpd

B
)

𝑝∗

−−→ Fun
B
(C/𝐹,GrpdB).

Now the functor limK preserving the colimit of 𝑑∗𝑝∗𝑝!ℎC/𝐹
is equivalent to the

colimit functor colimC/𝐹
preserving the limit of the diagram 𝑝∗ℎCop𝑝op𝑑 (cf. the

argument in Remark 5.1.1.4). As the functor 𝑝∗ commutes with all limits, this in

turn follows once colimC/𝐹
𝑝∗ preserves the limit of ℎCop𝑝op𝑑, which follows from

the equivalence colimC/𝐹
𝑝∗ ≃ (ℎCop)!(𝐹 ) from Lemma 5.3.4.3 and the assumption

that 𝐹 is U-flat. As a consequence, we now deduce from Lemma 5.3.4.5 that the

map

colim
C/𝐹

lim
K

𝑑∗ℎC/𝐹
→ 1Grpd

B

must be an equivalence. By Proposition 5.1.2.5, this means that (C/𝐹)
gpd
𝑑op/ ≃ 1.

As 𝑑 was chosen arbitrarily and as replacing B with B/𝐴 allows us to derive the

same conclusion for any diagram 𝑑∶ 𝐴 → Fun
B
(K, (C/𝐹)op) in context 𝐴 ∈ B,

this shows that C/𝐹 is weakly U-filtered and therefore U-filtered by soundness of

U. Hence 𝐹 is contained in IndU
B
(C).

5.4. Presentable B-categories

In this section we introduce and study presentable B-categories. Classically, a

(locally) presentable 1-category is one that is locally small and is generated by a
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small collection of 𝜅-compact objects under small colimits [23]. In [49, § 5.5], Lurie

generalised this concept to ∞-categories. In particular, his treatment contains a

multitude of equivalent characterisations of presentability [49, Theorem 5.5.1.1].

One of the main goals of this section is to obtain a comparable result for B-

categories. As a starting point, we chose to define a presentable B-category as

a Bousfield localisation of a presheaf B-category at a (small) subcategory. To

make sense of this, we need to study the notion of local objects in a B-category,

which we do in Section 5.4.1. In Section 5.4.2, we formally define presentable

B-categories and prove our main result about various different characterisations

of this condition (Theorem 5.4.2.5), building upon our work on accessible B-

categories. In Section 5.4.3, we discuss adjoint functor theorems for presentable

B-categories, and in Section 5.4.4 we construct large B-categories of presentable

B-categories and show that these are complete and cocomplete. Finally, we

discuss the notion of U-sheaves in Section 5.4.5: these are U-continuous functors

Cop → D, where C is an op(U)-cocomplete B-category and D is a large complete

B-category. We show that if D is presentable, such U-sheaves form a presentable

B-category as well, and that this provides yet another equivalent characterisation

of the notion of presentability.

5.4.1. Local objects

Recall from Section 1.3.3 the definition of a localisation of a B-category. If

𝑗∶ S → D is a functor of B-categories, we obtain a localisation functor

𝐿∶ D → S−1D = D ⊔S S
gpd.

If E is an arbitrary B-category, 𝐿 satisfies the universal property that

𝐿∗ ∶ Fun
B
(S−1D, E) → Fun

B
(D, E)

is fully faithful and identifies the domain with the full subcategory Fun
B
(D, E)S

that is spanned by those functors 𝜋∗
𝐴S → 𝜋∗

𝐴D whose restriction along 𝜋∗
𝐴(𝑗)

factors through the inclusion 𝜋∗
𝐴D

≃ ↪→ 𝜋∗
𝐴D. We may now define:

Definition 5.4.1.1. If S → D is a functor, we define the associated B-category
LocS(D) of S-local objects in D as the full subcategory of D that is defined via the

355



5. Accessible and presentable B-categories

pullback

LocS(D) PSh
B
(S−1D)

D PSh
B
(D)

𝑖 𝐿∗

ℎ

in Cat(B̂). We refer to an object 𝑑∶ 𝐴 → D as being S-local if it is contained in

LocS(D).

Remark 5.4.1.2. If 𝐴 ∈ B is an arbitrary object, we deduce from Proposi-

tion 1.2.5.4 and Remark 2.3.2.1 that there is a canonical equivalence

𝜋∗
𝐴 LocS(D) ≃ Loc𝜋∗

𝐴S
(𝜋∗

𝐴D)

of full subcategories in 𝜋∗
𝐴D. In particular, this implies that an object 𝑑∶ 𝐴 → D

is S-local if and only if its transpose 𝑑∶ 1B/𝐴
→ 𝜋∗

𝐴D defines a 𝜋∗
𝐴S-local object.

Remark 5.4.1.3. Explicitly, an object 𝑑∶ 1 → D is contained in LocS pre-

cisely if the restriction of the presheaf ℎ(𝑑) along 𝑗 factors through the inclusion

Grpd≃
B
↪→ Grpd

B
, which is the case if and only if for every map 𝑠∶ 𝑒 → 𝑒′ in S

in context 𝐴 ∈ B the morphism 𝑗(𝑠)∗ ∶ mapD(𝑗(𝑒
′), 𝜋∗

𝐴𝑑) → mapD(𝑗(𝑒), 𝜋
∗
𝐴𝑑) is

an equivalence of B/𝐴-groupoids (cf. Proposition 1.3.1.4). By Remark 5.4.1.2, an

analogous description holds for S-local objects in arbitrary context.

Remark 5.4.1.4. In the situation of Definition 5.4.1.1, we deduce from Propo-

sition 1.3.3.15 that if T ↪→ D is the 1-image of the map S → D (in the sense

of Definition 1.3.1.11), the canonical map S−1D → T−1D is an equivalence. Con-

sequently, the induced map LocT(D) → LocS(D) must be an equivalence as well.

Therefore, we may always assume that S is a subcategory of D.

Remark 5.4.1.5. Suppose that (𝑓𝑖 ∶ 𝑐𝑖 → 𝑑𝑖)𝑖∈𝐼 is a (small) family of maps in

D, with 𝐴𝑖 ∈ B being the context of 𝑓𝑖. By the discussion in Section 1.3.1, the

subcategory S ↪→ D that is generated by this family is given by the 1-image of the

induced map ⨆𝑖 Δ
1 ⊗ 𝐴𝑖 → D. By combining Remark 5.4.1.3 and Remark 5.4.1.4,

an object 𝑑∶ 1 → D is S-local if and for each 𝑖 ∈ 𝐼 the map

𝑓 ∗
𝑖 ∶ mapD(𝑑𝑖, 𝜋

∗
𝐴𝑖
𝑑) → mapD(𝑐𝑖, 𝜋

∗
𝐴𝑖
𝑑)

is an equivalence in B/𝐴𝑖
.
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The theory of local objects is intimately connected to the notion of Bousfield
localisations, i.e. of reflective subcategories:

Proposition 5.4.1.6. Let D be a B-category and let 𝐿∶ D → C be a Bousfield
localisation. Let S = 𝐿−1(C≃) ↪→ D. Then the inclusion C ↪→ D of 𝐿 induces
an equivalence C ≃ LocS(D) of full subcategories in D. Furthermore, if D is U-
accessible and 𝐿 is a U-accessible Bousfield localisation, there is a small subcategory
T ↪→ S such that C ≃ LocT(D).

Proof. We begin with the first statement. By Proposition 3.1.4.6, the functor

𝐿∶ D → C identifies C with the localisation S−1D. In light of the very definition

of LocS(D), the claim thus follows once we show that the commutative square

C PSh
B
(C)

D PSh
B
(D)

ℎC

𝐿∗

ℎD

is a pullback. Using Remark 2.3.2.1, it will be enough to show that given any

presheaf 𝐹∶ Cop → Grpd
B

for which 𝐿∗(𝐹 )∶ Dop → Grpd
B

is representable

by an object 𝑑∶ 1 → Grpd
B
, then 𝐹 is representable as well. This immediately

follows from the computation

𝐹 ≃ 𝐿!𝐿∗𝐹 ≃ 𝐿!ℎD(𝑑) ≃ ℎC𝐿(𝑑),

cf. Corollary 3.1.3.3. Now if D is U-accessible and 𝐿 is a U-accessible Bousfield

localisation, let us set E = DU-cpt and T = 𝑖−1(S) ↪→ E, where 𝑖∶ E ↪→ D is the

inclusion. Since E is small by Proposition 5.3.3.1, so is T, and we obtain a full

inclusion LocS(D) ↪→ LocT(D). We need to show that this is an equivalence. By

Remark 5.4.1.2, it will be enough to show that every T-local object 𝑑∶ 1 → D is

already S-local. Let 𝜂∶ idD → 𝑖𝐿 be the adjunction unit. We then obtain a map

𝜂∗ ∶ mapD(𝑖𝐿(−), 𝑑) → mapD(−, 𝑑),

and since 𝑑 is T-local the restriction of 𝜂∗ to E is an equivalence. But as both do-

main and codomain of this map are FiltU-cocontinuous when viewed as functors

D → Grpdop
B
, the fact that we have D ≃ IndU

B
(E) immediately implies that 𝜂∗ is

already an equivalence, so that 𝑑 is S-local.
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In the situation of Proposition 5.4.1.6, the question naturally arises whether

the converse is true: namely, whether the inclusion 𝑖∶ LocS(D) ↪→ D always

defines a Bousfield localisation (i.e. admits a left adjoint) for every B-category

D and every functor S → D. In general, this is false, but there is a large class of

B-categories D and functors S → D for which this is nonetheless the case:

Proposition 5.4.1.7. Let D be a Grpd
B
-cocomplete large B-category that takes

values in the∞-category PrL∞ of presentable∞-categories. Let furthermore 𝑖∶ S → D

be a functor where S is small. Then the inclusion 𝑖∶ LocS(D) ↪→ D admits a left
adjoint and therefore exhibits LocS(D) as a Bousfield localisation of D. Moreover,
this Bousfield localisation is accessible.

Proof. By Remark 1.3.3.16, we may assume without loss of generality that S

is a subcategory of D, i.e. that 𝑖 is a monomorphism. Let us first show that

𝑖(𝐴)∶ LocS(D)(𝐴) ↪→ D(𝐴) admits a left adjoint for every object 𝐴 ∈ B. Choose

a small subcategory of generators G ↪→ B. Then an object 𝑑∶ 𝐴 → D is contained

in LocS(D)(𝐴) precisely if for every 𝑔∶ 𝐺 → 𝐴 with 𝐺 ∈ G and every map

𝑠∶ 𝑝 → 𝑞 in S(𝐺) the induced map

𝑠∗ ∶ mapD(𝐺)(𝑞, 𝑔
∗𝑑) → mapD(𝐺)(𝑝, 𝑔

∗𝑑)

is an equivalence in Ani (cf. Corollary 2.2.2.8). As 𝑔∗ admits a left adjoint 𝑔!, the
object 𝑑 is thus contained in LocS(D)(𝐴) if and only if 𝑑 is local with respect to

the set of maps

𝑇𝐴 = ⋃
𝐺→𝐴

{𝑔!(𝑠) | 𝑠 ∈ S(𝐺)Δ
1
}

in D(𝐴). By construction, 𝑇𝐴 is a small set, and since D(𝐴) is by assumption

a presentable ∞-category, we deduce from [49, Proposition 5.5.4.15] that 𝑖(𝐴)
admits a left adjoint 𝐿𝐴 and that 𝑖(𝐴) is accessible.

Next, we show that for every map 𝑝∶ 𝑃 → 𝐴 in B the map 𝐿𝐵𝑝∗ → 𝑝∗𝐿𝐴 is

an equivalence. By Remark 3.1.2.10, we only need to show that 𝑝∗𝐿𝐺 sends the

adjunction unit of 𝐿𝐴 ⊣ 𝑖(𝐴) to an equivalence. Recall from [49, Section 5.5.4]

that the set of maps in D(𝐴) that is inverted by 𝐿𝐴 coincides with the strong
saturation of 𝑇𝐴, which is the smallest set of maps in D(𝐴) containing 𝑇𝐴 that

is stable under pushouts, satisfies the two out of three property and is stable
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under small colimits in D(𝐴)Δ
1
. Therefore the adjunction unit 𝜂 is contained

in the strong saturation of 𝑇𝐴, and since 𝑝∗ commutes with colimits (being a

morphism in PrL∞) we conclude that it will suffice to show that 𝑝∗ sends maps in

𝑇𝐴 to maps in the strong saturation of 𝑇𝐺. Let us therefore fix a map 𝑔∶ 𝐺 → 𝐴
with 𝐺 ∈ G as well as a map 𝑠 ∈ S(𝐺)Δ

1
. Since D is Grpd

B
-cocomplete, we find

𝑝∗𝑔!(𝑠) ≃ ℎ!𝑞∗(𝑠), where ℎ and 𝑞 are defined via the pullback square

𝑄 𝑃

𝐺 𝐴.

ℎ

𝑞 𝑏
𝑔

Now 𝑞∗(𝑠) is a map in S(𝑃) and therefore inverted by 𝐿𝑃, hence ℎ!𝑞∗(𝑠) is inverted
by 𝐿𝐵 whenever ℎ! sends maps in 𝑇𝑃 to maps in the strong saturation of 𝑇𝐵, which

is immediate by definition of 𝑇𝑃.
Finally, we may employ Proposition 3.1.2.9 to deduce that 𝑖 admits a left adjoint

𝐿. Furthermore, as D is by assumption both Grpd
B
- and LConst-cocomplete and

therefore cocomplete (Corollary 3.5.4.2), and since every reflective subcategory

of a cocomplete B-category is cocomplete as well (Proposition 3.3.2.11), 𝑖 being
section-wise accessible already implies that 𝑖 is accessible (see Corollary 5.3.2.5).

Corollary 5.4.1.8. Let C and S be (small) B-categories and let 𝑗∶ S → PSh
B
(C)

be a functor. Then there is a sound doctrine U such that LocS(PShB(C)) is a U-
accessible Bousfield localisation of PSh

B
(C). Conversely, any U-accessible Bousfield

localisation of PSh
B
(C) can be identified with LocS(PShB(C)) for some small B-

category S and some functor S → PSh
B
(C).

Proof. By the straightening equivalence for right fibrations, for any 𝐴 ∈ B

there is a natural equivalence of ∞-categories PSh
B
(C)(𝐴) ≃ RFib(C × 𝐴),

and since the right-hand side is a localisation of the presentable ∞-category

Cat(B)/𝐴×C at a small set of objects, we find that PSh
B
(C) is section-wise given

by a presentable ∞-category. Moreover, if 𝑠∶ 𝐵 → 𝐴 is a map in B, the functor

𝑠∗ ∶ PSh
B
(C)(𝐴) → PSh

B
(C)(𝐵) admits a right adjoint 𝑠∗ by the theory of Kan

extensions (Section 3.4.3) and therefore in particular commutes with small col-

imits. As PSh
B
(C) is cocomplete, we can therefore apply Proposition 5.4.1.7 to
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deduce first claim. In light of Proposition 5.3.3.6, the second claim follows from

Proposition 5.4.1.6.

5.4.2. Presentability

In this section we define the concept of a presentable B-category and discuss

various characterisations of this notion.

Definition 5.4.2.1. A large B-category is said to be presentable if there exist

B-categories C and S as well as a functor S → PSh
B
(C) such that D is equivalent

to LocS(PShB(C)).

Remark 5.4.2.2. In the situation of Definition 5.4.2.1, the fact that PSh
B
(C) is

locally small implies that the 1-image S′ of the functor S → PSh
B
(C) (i.e. the

subcategory of PSh
B
(C) that is obtained by factoring the functor S → PSh

B
(C)

into a strong epimorphism and a monomorphism) is small as well. In fact, by

combining Proposition 1.3.3.9 and Proposition 2.3.1.3, it is clear that S′ is locally

small, hence Proposition 2.3.1.5 implies that S′ is small whenever S′0 is contained

in B, which follows in turn from the observation that S′ is a subcategory of

the essential image of S → PSh
B
(C), which is small by Lemma 2.3.1.6. As

a consequence, Remark 5.4.1.4 shows that we may always assume that S is a

subcategory of PSh
B
(C).

Definition 5.4.2.3. We call a large B-category C section-wise accessible if the

associated sheaf takes values in the subcategory Acc ↪→ Ĉat∞ of accessible ∞-

categories. Analogously, we call C section-wise presentable if it factors through

the inclusion PrL∞ ↪→ Ĉat∞.

We now come to the main characterisation of presentable B-categories. This

will require the following lemma

Lemma 5.4.2.4. LetD be a cocompleteB-category and let 𝜅 be aB-regular cardinal.
Then an object 𝑑∶ 1 → D is Cat𝜅B-compact if and only if for every 𝐴 ∈ B𝜅-cpt the
object 𝜋∗

𝐴𝑑 ∈ D(𝐴) is 𝜅-compact.

Proof. By definition, 𝑑 being Cat𝜅B-compact means that the functor

mapD(𝑑, −)∶ D → Grpd
B

360



5.4. Presentable B-categories

is FiltCat𝜅B-cocontinuous. As this is a functor between cocomplete B-categories,

we deduce from Proposition 5.3.2.4 that this functor being FiltCat𝜅B -cocontinuous

precisely if it section-wise preserves 𝜅-filtered colimits. Since Corollary 2.2.2.8

together with Remark 2.3.2.1 implies that we can recover mapD(𝐴)(𝜋
∗
𝐴(𝑑), −) as

the composition

D(𝐴)
mapD(𝑑,−)(𝐴)
−−−−−−−−−−−→ B/𝐴

ΓB/𝐴
−−−−→ Ani,

we find that 𝑑 being Cat𝜅B-compact implies that 𝜋∗
𝐴(𝑑) ∈ D(𝐴)𝜅-cpt. Conversely,

the fact that the inclusionB ↪→ PSh
B
(B𝜅-cpt) preserves 𝜅-filtered colimits implies

that the functor mapD(𝑑, −)(1) preserves 𝜅-filtered colimits if and only if the

functor map
B
(𝐴,mapD(𝑑, −)(1)) does for every 𝜅-compact 𝐴. In light of the

commutative diagram

D(1) B

D(𝐴) B/𝐴 Ani,

mapD(𝑑,−)(1)

𝜋∗
𝐴 𝜋∗

𝐴

map
B
(𝐴,−)

mapD(𝑑,−)(𝐴) ΓB/𝐴

we thus find that if 𝜋∗
𝐴(𝑑) ∈ D(𝐴)𝜅-cpt for every 𝐴 ∈ B𝜅-cpt, then mapD(𝑑, −)(1)

preserves 𝜅-filtered colimits. By replacing B with B/𝐴 (for 𝐴 ∈ B𝜅-cpt), the

same argument moreover shows that mapD(𝑑, −)(𝐴) preserves 𝜅-filtered colimits.

Now if 𝐴 ∈ B is arbitrary, we may find a cover (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 with each

𝐴𝑖 𝜅-compact. Since the induced map B/𝐴 → ∏𝑖 B/𝐴𝑖
is conservative and

D(𝐴) → ∏𝑖 D(𝐴𝑖) is cocontinuous, we conclude that mapD(𝑑, −)(𝐴) preserves
𝜅-filtered colimits even if 𝐴 is not 𝜅-compact. Together with Proposition 5.3.2.4,

this yields the claim.

Theorem 5.4.2.5. For a large B-category D, the following are equivalent:

1. D is presentable;

2. D arises as an accessible Bousfield localisation 𝐿∶ PSh
B
(C) → D for some

small B-category C;

3. D is accessible and cocomplete;

4. D is cocomplete, and there is a B-regular cardinal 𝜅 such that D is Cat𝜅B-
accessible;
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5. D is cocomplete and section-wise accessible;

6. D is Grpd
B
-cocomplete and section-wise presentable.

Proof. The fact that (1) and (2) are equivalent is an immediate consequence of

Corollary 5.4.1.8. Now if we assume that (2) is satisfied, we may find a B-regular

cardinal 𝜅 such that the inclusion D ↪→ PSh
B
(C) is FiltCat𝜅B-cocontinuous (see

Remark 5.3.2.2), which by Corollary 5.3.3.3 implies that D is Cat𝜅B-accessible. As

any reflective subcategory of a cocomplete B-category is cocomplete as well

(Proposition 3.3.2.11), we conclude that (4) is satisfied. Trivially, (4) implies (3).

Lastly, if D ≃ IndU
B
(C) for some sound doctrine U and some B-category C and if

D is furthermore cocomplete, we deduce from Corollary 3.5.1.13 that the inclusion

IndU
B
(C) ↪→ PSh

B
(C) admits a left adjoint, hence (3) implies (2).

To show that (2) implies (5), since Proposition 3.3.2.11 already shows that D is

cocomplete, it remains to see that D is section-wise accessible. For every 𝐴 ∈ B,

the ∞-category D(𝐴) is a Bousfield localisation of the presentable ∞-category

PSh
B
(C)(𝐴) ≃ RFib(C × 𝐴). Since Corollary 5.3.2.5 implies that this Bousfield

localisation is accessible, one concludes that D(𝐴) is an accessible ∞-category.

Furthermore, since D is also complete, the functor 𝑠∗ ∶ D(𝐴) → D(𝐵) preserves
colimits for any map 𝑠∶ 𝐵 → 𝐴 in B, so it is in particular accessible. Thus D is

section-wise accessible. The fact that (5) implies (6) is an immediate consequence

of Corollary 3.5.4.2 and Proposition 3.3.2.7.

To complete the proof, we show that (6) implies (3). Since D is already assumed

to be Grpd
B
-cocomplete and since the assumption that D takes values in PrL∞

in particular implies that D is LConst-cocomplete (see Proposition 3.3.2.7), we

deduce from Corollary 3.5.4.2 that D is cocomplete. Therefore, we only need to

show thatD isU-accessible for some doctrineU. To that end, let us choose a small

full subcategory G ↪→ B of generators (as in Remark 1.2.1.3). We can then find a

regular cardinal 𝜅 such D(𝐺) is 𝜅-accessible for each 𝐺 ∈ G and 𝑠∗ ∶ D(𝐻) → D(𝐺)
preserves 𝜅-compact objects for each 𝑠∶ 𝐻 → 𝐺 in G. By enlarging 𝜅 if necessary,

we can assume that 𝜅 is B-regular (in the sense of Definition 5.2.2.3, cf. also

Remark 5.2.2.5) and that every 𝐺 ∈ G is 𝜅-compact. Let C ↪→ D be the full

subcategory spanned by the Cat𝜅B-compact objects in arbitrary context. By

combining Remark 5.2.2.6 with Lemma 5.4.2.4, an object 𝑑∶ 𝐺 → D in context
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𝐺 ∈ G is contained in C if and only if 𝑑 ∈ D(𝐺)𝜅-cpt. In particular, C is small.

Since therefore every object in D(𝐺) is obtained as a 𝜅-filtered colimit of objects

in C(𝐺) and as the constantB/𝐺-category associated with a 𝜅-filtered ∞-category

is Cat𝜅B/𝐺
-filtered (see Lemma 5.2.2.19), we deduce from Proposition 5.3.3.2 that

D is Cat𝜅B-accessible.

We end this section by recording a few consequences of Theorem 5.4.2.5. We

begin by noting that as Theorem 5.4.2.5 implies that every presentableB-category

is a reflective subcategory of PSh
B
(C) for some B-category C, we deduce from

Proposition 3.3.2.11:

Corollary 5.4.2.6. Every presentable B-category is complete and cocomplete.

Corollary 5.4.2.7. Let D be a presentable B-category and let K be a B-category.
Then Fun

B
(K,D) is presentable.

Proof. By Theorem 5.4.2.5, we may choose a B-category C and a sound doctrine

U such that D is a U-accessible Bousfield localisation of PSh
B
(C). In light of

Proposition 3.3.2.12, this implies that the large B-category Fun
B
(K,D) is a U-

accessible Bousfield localisation of Fun
B
(K,PSh

B
(C)) ≃ PSh

B
(Kop × C), hence

the result follows.

Corollary 5.4.2.8. Let D be a presentable B-category and let 𝑑∶ 𝐴 → D be an
arbitrary object. Then D/𝑑 is a presentable B/𝐴-category.

Proof. We may assume that 𝐴 ≃ 1 (cf. Remark 5.4.2.10 below). Using Propo-

sition 3.3.2.13, one finds that D/𝑑 is cocomplete. By Theorem 5.4.2.5, it there-

fore suffices to show that D/𝑑 is accessible, which is a consequence of Proposi-

tion 5.3.1.6.

Corollary 5.4.2.9. Let D be a presentable B-category and let S → D be a functor
where S is small. Then there is a sound doctrineU such that LocS(D) is aU-accessible
Bousfield localisation of D. In particular, LocS(D) is presentable.

Proof. Since D is cocomplete by Corollary 5.4.2.6 and section-wise presentable

by Theorem 5.4.2.5, the claim follows from Proposition 5.4.1.7.
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Remark 5.4.2.10. As yet another consequence of Theorem 5.4.2.5, the condition

of a largeB-category to be presentable is a local condition: if⨆𝑖 𝐴𝑖 � 1 is a cover

in B, then a B-category D is presentable if and only if each 𝜋∗
𝐴𝑖
D is a presentable

B/𝐴𝑖
-category. This follows from condition (3) in Theorem 5.4.2.5, together with

cocompleteness being a local condition (cf. Remark 3.3.2.3) and Remark 5.3.3.5.

5.4.3. The adjoint functor theorem

Recall from Proposition 3.3.2.10 that any left adjoint functor between cocomplete

large B-categories is cocontinuous. Therefore, if D and E are cocomplete large

B-categories, there is a canonical inclusion

FunL
B
(D, E) ↪→ Funcc

B
(D, E).

If D is presentable and E is locally small, then this inclusion is in fact an equiva-

lence:

Proposition 5.4.3.1 (Adjoint functor theorem I). LetD and E be largeB-categories
such that D is presentable and E is cocomplete and locally small. Then every
cocontinuous functor 𝑓∶ D → E admits a right adjoint. In particular, there is an
equivalence

FunL
B
(D, E) ≃ Funcc

B
(D, E)

of (large) B-categories.

Proof. In light of Remark 5.4.2.10, it is clear that the second statement imme-

diately follows from the first. Now choose B-categories C and S as well as a

functor S → PSh
B
(C) such that D ≃ LocS(PShB(C)). If 𝑓∶ D → E is a cocontin-

uous functor, then 𝑓 𝐿∶ PSh
B
(C) → E is cocontinuous as well and therefore a

left adjoint by Remark 3.5.1.4. To show that 𝑓 admits a right adjoint, we there-

fore only need to verify that the right adjoint 𝑟 of 𝑓 𝐿 factors through D. Since

D ≃ LocS(PShB(C)) as full subcategories of PSh
B
(C) by Theorem 5.4.2.5, this is

in turn equivalent to ℎPSh
B
(C)𝑟 factoring through the functor

𝐿∗ ∶ PSh
B
(D) ↪→ PSh

B
(PSh

B
(C)),

which is clear on account of 𝑟 being right adjoint to 𝑓 𝐿.
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Recall from Corollary 5.4.2.9 that if D is a presentable B-category and S → D

is a functor where S is small, the B-category LocS(D) is an accessible Bousfield

localisation of D and therefore in particular presentable. We may now use

Proposition 5.4.3.1 to derive a universal property of LocS(D) among presentable

B-categories. To that end, recall from Section 1.3.3 that if E is another presentable

B-category, we denote by Fun
B
(D, E)S the full subcategory of Fun

B
(D, E) that

is spanned by those objects 𝐴 → Fun
B
(D, E) for which the restriction of the

associated functor 𝜋∗
𝐴D → 𝜋∗

𝐴E along 𝜋∗
𝐴S → 𝜋∗

𝐴D takes values in the subcategory

𝜋∗
𝐴E

≃. We will denote by Funcc
B
(D, E)S its intersection with the full subcategory

Funcc
B
(D, E). We now obtain:

Corollary 5.4.3.2. Let S → D be a functor of B-categories where S is small and D
is presentable, and let E be another presentable B-category. Then precomposition
with the left adjoint 𝐿∶ D → LocS(D) induces an equivalence

Funcc
B
(LocS(D), E) ≃ Funcc

B
(D, E)S.

Proof. To beginwith, note that as 𝐿 is in particular a localisation functor (cf. Propo-

sition 3.1.4.6), the universal property of localisations (Proposition 1.3.3.20) implies

that

𝐿∗ ∶ Funcc
B
(LocS(D), E) → Funcc

B
(D, E)

is fully faithful. Therefore, it suffices to identify the essential image of 𝐿∗ with

Funcc
B
(D, E)S. Since the restriction of 𝐿 along S → D takes values in LocS(D)≃, it

is clear that 𝐿∗ takes values in Funcc
B
(D, E)S, so that it suffices to show that every

object 𝐴 → Funcc
B
(D, S)S is contained in the essential image of 𝐿∗. By combining

Remark 5.4.1.2, Remark 3.3.3.4 and Remark 1.3.3.18, it will be enough to verify that

any cocontinuous functor 𝑓∶ D → E whose restriction along S → D takes values

in E≃ factors through 𝐿. Note that the assumption on 𝑓 precisely means that 𝑓
factors through the localisation 𝑙 ∶ D → S−1D, so that 𝑓 ∗ ∶ PSh

B
(E) → PSh

B
(D)

factors through 𝑙∗ ∶ PSh
B
(S−1D) ↪→ PSh

B
(D). Since 𝑓 ∗ ≃ 𝑔! where 𝑔 is the

right adjoint of 𝑓 that is provided by Proposition 5.4.3.1, the very definition of

LocS(D) implies that 𝑔 factors through the inclusion 𝑖∶ LocS(D) ↪→ D via a

functor 𝑔′ ∶ E → Loc(D). Since the composite 𝑓 𝑖 defines a left adjoint of 𝑔′, the

claim follows by passing to left adjoints.
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There is also a dual version to Proposition 5.4.3.1 that classifies right adjoint

functors between presentable B-categories.

Proposition 5.4.3.3 (Adjoint functor theorem II). Let 𝑓∶ D → E be a functor
between presentable B-categories. Then the following are equivalent:

1. 𝑓 admits a left adjoint;

2. 𝑓 is continuous and accessible;

3. 𝑓 is continuous and section-wise accessible.

Proof. By Corollary 5.3.2.5, (2) and (3) are equivalent. Moreover, since Theo-

rem 5.4.2.5 implies that 𝑓 is section-wise given by a functor between presentable

∞-categories, the adjoint functor theorem for presentable∞-categories [49, Corol-

lary 5.5.2.9] shows that (1) implies (3). For the converse, note that the same result

implies that 𝑓 (𝐴) admits a left adjoint 𝑙𝐴 for every 𝐴 ∈ B. By Proposition 3.1.2.9,

it now suffices to see that the natural map 𝑙𝐵𝑠∗ → 𝑠∗𝑙𝐴 is an equivalence for

every map 𝑠∶ 𝐵 → 𝐴 in B. This is equivalent to seeing that the transpose map

𝑓 (𝐴)𝑠∗ → 𝑠∗𝑓 (𝐵) that is given by passing to right adjoints is an equivalence. But

this is just another way of saying that 𝑓 is Grpd
B
-continuous.

5.4.4. The large B-category of presentableB-categories

Recall from Section 3.3.3 that we defined the (very large) B-category Catcc
B̂

of

cocomplete largeB-categories as the subcategory ofCat
B̂
which is determined by

the subobject of (Cat
B̂
)1 that is spanned by the cocontinuous functors between

cocomplete large B/𝐴-categories for every 𝐴 ∈ B. By Remark 3.3.3.2 a functor

of large B/𝐴-categories is contained in Catcc
B̂

precisely if it is a cocontinuous

functor between cocomplete large B-categories. We may now define:

Definition 5.4.4.1. The large B-category PrLB of presentable B-categories is

defined as the full subcategory of Catcc
B̂

that is spanned by the presentable B/𝐴-

categories for every 𝐴 ∈ B. We denote by PrL(B) the ∞-category of global

sections of PrLB.

Remark 5.4.4.2. As presentability is a local condition (Remark 5.4.2.10) and

by Remark 3.3.3.2, a large B/𝐴-category defines an object in PrLB if and only if it
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is presentable, and a functor between such large B/𝐴-categories is contained in

PrLB if and only if it is cocontinuous. Consequently, the inclusion PrLB ↪→ Cat
B̂

identifies PrLB with the sheaf PrL(B/−) onB. In particular, one obtains a canonical

equivalence 𝜋∗
𝐴 PrLB ≃ PrLB/𝐴

for every 𝐴 ∈ B.

Remark 5.4.4.3. A priori, PrLB is a very large B-category. However, note that

the set of equivalence classes of presentable B-categories is V-small as it admits

a surjection from the V-small union

⨆
C∈Cat(B)

Subsmall(PShB(C))

where Subsmall(PShB(C)) denotes the V-small poset of small subcategories of

PSh
B
(C). As Cat

B̂
is furthermore locally V-small, this shows that PrLB is in fact

only a large B-category.

Recall from Section 4.5.2 that we denote by CatL
B̂

the subcategory of Cat
B̂

that is determined by the subobject 𝐿 ↪→ (Cat
B̂
)1 of left adjoint functors. By

Proposition 5.4.3.1, the inclusion PrLB ↪→ Cat
B̂

factors through the inclusion

CatL
B̂

↪→ Cat
B̂
. Suppose now that D and E are presentable B-categories. By

combining Corollary 3.2.6.5 with the fact that 𝐿 ↪→ (Cat
B̂
)1 is closed under equiv-

alences and composition in the sense of Proposition 1.3.1.17 and by furthermore

making use of Remark 3.3.3.4, we find that the inclusion

mapPrLB
(D, E) ↪→ mapCatL

B̂

(D, E)

is obtained by applying the core B-groupoid functor to the equivalence

Funcc
B
(D, E) ≃ FunL

B
(D, E)

from Proposition 5.4.3.1. Upon replacing B with B/𝐴 and using Remark 5.4.4.2,

the same assertion holds for objects in PrLB in context 𝐴 ∈ B, so that we conclude:

Proposition 5.4.4.4. The inclusion PrLB ↪→ CatL
B̂
is fully faithful.

Dually, let us denote by CatR
B̂

the subcategory of Cat
B̂

that is determined by

the subobject 𝑅 ↪→ (Cat
B̂
)1 of right adjoint functors.
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Definition 5.4.4.5. TheB-category PrRB of presentableB-categories is defined as

the full subcategory of CatR
B̂

that is spanned by the presentable B/𝐴-categories

for every 𝐴 ∈ B. We denote by PrR(B) the underlying ∞-category of global

sections.

Remark 5.4.4.6. As in Remark 5.4.4.2, a large B/𝐴-category defines an object

in PrRB if and only if it is presentable, and a functor between such large B/𝐴-

categories is contained in PrRB if and only if it is a right adjoint. As a consequence,

the largeB-category PrRB corresponds to the sheaf PrR(B/−) onB that is spanned

by the presentable B/𝐴-categories and right adjoint functors. In particular, one

obtains a canonical equivalence 𝜋∗
𝐴 PrRB ≃ PrRB/𝐴

for every 𝐴 ∈ B.

Proposition 5.4.4.7. There is a canonical equivalence (PrRB)op ≃ PrLB that carries
a right adjoint functor between presentable B-categories to its left adjoint.

Proof. By Proposition 4.5.2.1, there is such an equivalence (CatR
B̂
)op ≃ CatL

B̂
,

and since this functor necessarily acts as the identity on the underlying core

B-groupoids, it restricts to the desired equivalence by virtue of Proposition 5.4.4.4.

Example 5.4.4.8. We are now in the position to provide a large class of examples

of presentableB-categories: recall fromConstruction 1.4.2.1 that there is a functor

− ⊗ Grpd
B
∶ PrR∞ → Cat(B̂)

that sends a presentable ∞-category E to E ⊗ Grpd
B

= E ⊗B/− (where − ⊗ −
is Lurie’s tensor product of presentable ∞-categories). By Example 3.5.4.6, the

B-category E ⊗ Grpd
B

is cocomplete, so that Theorem 5.4.2.5 implies that it is

presentable as it takes values in PrL∞. Moreover, we deduce from Example 3.1.2.12

that whenever 𝑔∶ E → E′ is a map in PrR∞, the induced functor 𝑔 ⊗ Grpd
B

is

a right adjoint. Consequently, we conclude that the functor − ⊗ Grpd
B

takes

values in PrR(B). In particular, by applying this observation to E = Cat∞, we

find that CatB is presentable.

Our next goal is to show that PrLB is complete and cocomplete. For complete-

ness, we first need a lemma:
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5.4. Presentable B-categories

Lemma 5.4.4.9. The B-category Cat
Grpd

B
-cc

B̂
of Grpd

B
-cocomplete B-categories

is LConst-complete, and the inclusion

Cat
Grpd

B
-cc

B̂
↪→ Cat

B̂

is LConst-continuous.

Proof. By Remark 3.3.3.2, it is enough to show that for any small ∞-category K

and any functor 𝑑∶ K → Cat
Grpd

B
-cc

B̂
↪→ Cat

B̂
, the following two conditions are

satisfied:

1. lim 𝑑 is Grpd
B
-cocomplete;

2. for every Grpd
B
-cocomplete large B-category C, a functor 𝑓∶ C → lim 𝑑

isGrpd
B
-cocontinuous precisely if the maps C → lim 𝑑 → 𝑑(𝑘) areGrpd

B
-

cocontinuous for all 𝑘 ∈ K.

Recall from [50, Corollary 4.7.4.18] that the subcategory

FunLAdj(Δ1, Ĉat∞) ↪→ Fun(Δ1, Ĉat∞)

that is spanned by the right adjoint functors and the left adjointable squares (i.e.

those commutative squares of ∞-categories whose associated mate transforma-

tion is an equivalence) admits small limits and that the inclusion preserves small

limits. Let us fix a map 𝑝∶ 𝑃 → 𝐴 in B. Now evaluation at 𝑝 defines a functor

Cat(B̂) → Fun(Δ1, Ĉat∞) that restricts to a map

Cat(B̂)GrpdB-cc → FunLAdj(Δ1, Ĉat∞).

Since limits in Cat(B̂) are computed section-wise, this already shows that

𝑝∗ ∶ lim 𝑑(𝐴) → lim 𝑑(𝑃)

admits a left adjoint. Similarly, if 𝑠∶ 𝐵 → 𝐴 is a map inB and if 𝑞∶ 𝑄 → 𝐵 denotes

the pullback of 𝑝 along 𝑠, evaluating large B-categories at this pullback square

yields a morphism Δ1 × Cat(B̂)GrpdB-cc → FunLAdj(Δ1, Ĉat∞). Consequently,

applying lim 𝑑 to the very same pullback square must yield a left-adjointable

square of ∞-categories, which implies that condition (1) is satisfied. By the same
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argument, if C is Grpd
B
-cocomplete and if 𝑓∶ C → lim 𝑑 is a functor, evaluating

𝑓 at 𝑝 yields a commutative square of ∞-categories that is left-adjointable if and

only if the evaluation of the composition C → lim 𝑑 → 𝑑(𝑘) at 𝑝 is left-adjointable

for all 𝑘 ∈ K. Hence (2) follows.

Proposition 5.4.4.10. The large B-category PrLB is complete, and the inclusion
PrLB ↪→ Cat

B̂
is continuous.

Proof. By the dual of Corollary 3.5.4.2, it suffices to show that PrLB is both Grpd
B
-

and LConst-complete and that the inclusion PrLB is both Grpd
B
- and LConst-

continuous. Using Remark 5.4.4.2, this follows once we show that whenever K

is either given by the constant B-category Λ2
0 or by a B-groupoid, the large B-

category PrLB admits K-indexed limits and the inclusion PrLB ↪→ Cat
B̂

preserves

K-indexed limits.

Let us first assume that K = Λ2
0, i.e. suppose that

Q P

D C

𝑞

𝑔

𝑝
𝑓

is a pullback diagram in Cat(B̂) in which 𝑓 and 𝑝 are cocontinuous functors

between presentable B-categories. By Theorem 5.4.2.5, the cospan determined

by 𝑓 and 𝑝 takes values in PrL∞. Therefore, [49, Proposition 5.5.3.13] implies that

Q takes values in PrL∞ and that 𝑔 and 𝑞 are section-wise cocontinuous. Moreover,

Lemma 5.4.4.9 shows that Q is Grpd
B
-cocomplete and that 𝑔 and 𝑞 are Grpd

B
-

cocomplete. By again making use of Theorem 5.4.2.5, we thus conclude that theQ

is presentable and that 𝑔 and 𝑞 are cocontinuous. Now if Z is another presentable

B-category, a similar argumentation shows that a functor Z → Q is cocontinuous

if and only if its composition with both 𝑔 and 𝑞 are cocontinuous. In total, this

shows that PrLB admits pullbacks and that the inclusion PrLB ↪→ Cat
B̂

preserves

pullbacks.

Let us now assume K = G for some B-groupoid G. In order to show that PrLB
has G-indexed limits and that the inclusion PrLB ↪→ Cat

B̂
preserves G-indexed

limits, another application of Remark 5.4.4.2 allows us to reduce to showing that
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the adjunction

(𝜋G)∗ ⊣ 𝜋∗
G))∶ Cat(B̂/G) ⇆ Cat(B̂)

restricts to an adjunction between PrL(B/G) and PrL(B). Recall that on the

level of Ĉat∞-valued sheaves, the functor (𝜋G)∗ is given by precomposition with

𝜋∗
G. By combining the characterisation of presentable B-categories as Grpd

B
-

cocomplete PrL∞-valued sheaves (Theorem 5.4.2.5) with the explicit description

of Grpd
B
-cocompleteness from Proposition 3.3.2.5 and the section-wise charac-

terisation of left adjoint functors (Proposition 3.1.2.9), it is therefore immediate

that (𝜋G)∗ restricts to a functor PrL(B/G) → PrL(B). Moreover, the adjunc-

tion unit id
Cat(B̂) → (𝜋G)∗𝜋∗

G is given by precomposition with the adjunction

counit (𝜋G)!𝜋∗
G → idB, and the adjunction counit 𝜋∗

G(𝜋G)∗ → id
Cat(B̂/𝐴)

is given

by precomposition with the adjunction unit idB/𝐴
→ 𝜋∗

G(𝜋G)!. Thus, by the

section-wise characterisation of left adjoint functors and the fact that presentable

B-categories are Grpd
B
-cocomplete, these two maps must also restrict in the

desired way, hence the result follows.

Proposition 5.4.4.11. The large B-category PrRB is complete, and the inclusion
PrRB ↪→ Cat

B̂
is continuous.

Proof. As in the proof of Proposition 5.4.4.10, it suffices to show that for either

K = Λ2
0 or K = G for G aB-groupoid, the largeB-category PrRB admits K-indexed

limits and the inclusion PrRB ↪→ Cat
B̂

preserves K-indexed limits. The first case

follows as in the proof of Proposition 5.4.4.10, by making use of the dual version

of Lemma 5.4.4.9, [49, Theorem 5.5.3.18] and the fact that a continuous and

section-wise accessible functor between presentable B-categories admits a left

adjoint (Proposition 5.4.3.3). The argument for the second case is carried out in

a completely analogous way as the one in the proof of Proposition 5.4.4.10, the

only difference being that one must use the Grpd
B
-completeness of presentable

B-categories and not their Grpd
B
-cocompleteness.

Remark 5.4.4.12. As a consequence of Proposition 5.4.4.11, we can furthermore

deduce that PrRB is generated under pullbacks by presheaf B-categories. In fact,

if D is a presentable B-category, we may find small B-categories C and S and

a functor 𝑗∶ S → PSh
B
(C) so that D ≃ LocS(PShB(C)). By definition of the
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5. Accessible and presentable B-categories

right-hand side, we therefore obtain a pullback square

D PSh
B
(Sgpd)

PSh
B
(C) PSh

B
(S)

𝛾 ∗
𝑗∗ℎPShB(C)

in Cat(B̂), where 𝛾∶ S → Sgpd is the natural map. By Remark 3.5.1.4, the functor

𝑗∗ℎPSh
B
(C) is a right adjoint: its left adjoint is the left Kan extension (ℎS)!(𝑗) of

𝑗 along the Yoneda embedding ℎS. Since 𝛾∗ is a right adjoint as well, Proposi-

tion 5.4.4.11 implies that this diagram is a pullback square in PrRB.

Finally, by combining Proposition 5.4.4.10 and Proposition 5.4.4.11 with Propo-

sition 5.4.4.7, we conclude:

Corollary 5.4.4.13. Both PrLB and PrRB are complete and cocomplete.

5.4.5. U-sheaves

The main goal in this section is to derived yet another characterisation of pre-

sentableB-categories: that ofB-categories of U-sheaves on an op(U)-cocomplete

B-category. These are defined as follows:

Definition 5.4.5.1. Let U be an internal class and suppose that C is an op(U)-
cocomplete B-category. For any (not necessarily small) U-complete B-category

E, we denote by ShUE (C) the full subcategory of Fun
B
(Cop, E) that is spanned

by those presheaves 𝐹∶ 𝐴 → Fun
B
(Cop, E) (in arbitrary context 𝐴 ∈ B) that

are 𝜋∗
𝐴U-continuous when viewed as functors 𝜋∗

𝐴C
op → 𝜋∗

𝐴E. We refer to such

presheaves as U-sheaves. For the case where U = CatB, we will simply call them

sheaves, and we will write ShE(C) = ShCatBE (C) for the associated B-category

Remark 5.4.5.2. By Remark 3.3.3.4, if 𝐴 ∈ B is an arbitrary object, we obtain a

canonical equivalence 𝜋∗
𝐴 ShUE (C) ≃ Sh𝜋

∗
𝐴U

𝜋∗
𝐴E

(𝜋∗
𝐴C).

We first focus on Grpd
B
-valued U-sheaves.

Proposition 5.4.5.3. Let D be a presentableB-category and let 𝐹∶ Dop → Grpd
B

be a presheaf on D. Then 𝐹 is representable if and only if 𝐹 is continuous. In
particular, the Yoneda embedding induces an equivalence D ≃ ShGrpd

B
(D).
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Proof. By Remark 5.4.5.2, the first claim implies the second, and by Proposi-

tion 3.3.2.15, every representable functor is continuous, so that it suffices to prove

that every continuous presheaf 𝐹∶ Cop → Grpd
B

is representable. Now 𝐹 being

continuous is equivalent to 𝐹op ∶ D → Grpdop
B

being cocontinuous, which by

Proposition 5.4.3.1 is in turn equivalent to it being a left adjoint. Hence 𝐹 is

continuous if and only if 𝐹 is a right adjoint. Let 𝑙 ∶ Grpd
B

→ Dop be the left

adjoint of 𝐹. Since the final B-groupoid 1Grpd
B
∶ 1 → Grpd

B
corepresents the

identity on Grpd
B
, we find equivalences

𝐹 ≃ mapGrpd
B

(1Grpd
B
, 𝐹 (−)) ≃ mapDop(𝑙(1Grpd

B
), −) ≃ mapD(−, 𝑙(1GrpdB)),

hence 𝐹 is represented by 𝑙(1Grpd
B
).

Next, we use Proposition 5.4.5.3 to deduce that whenever U is a doctrine, the
B-category of Grpd

B
-valued U-sheaves on a small B-category is presentable,

and that it satisfies a universal property:

Proposition 5.4.5.4. For any doctrine U, the large B-category ShUGrpd
B
(C) is

presentable. Moreover, for any complete large B-category E, restriction along the
Yoneda embedding ℎC induces an equivalence

ℎ∗C ∶ ShE(Sh
U
Grpd

B
(C)) ≃ ShUE (C)

of large B-categories.

Proof. Fix a small full subcategory G ↪→ B of generators, and define the small set

𝑅 = ⨆
𝐺∈G

{𝑓∶ colim ℎC𝑑 → ℎC colim 𝑑 | 𝑑∶ K → 𝜋∗
𝐺C, Kop ∈ U(𝐺)}

(where each 𝑓 is to be considered as a map in PSh
B
(C) in context 𝐺 ∈ G).

We let S𝑅 ↪→ PSh
B
(C) be the subcategory that is spanned by 𝑅. Note that

since 𝑅 is a small set, the subcategory S𝑅 is small, so that D = LocS𝑅(PShB(C))
is a presentable B-category. Moreover, if E is an arbitrary complete large B-

category, the construction of S𝑅 (together with the fact that the preservation

of limits can be checked locally, see Remark 3.2.2.3) makes it evident that a

cocontinuous functor PSh
B
(C) → Eop carries the maps in S𝑅 to equivalences
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precisely if its restriction to C is op(U)-cocontinuous. By replacing B with

B/𝐴, the same assertion holds for any object 𝐴 → Funcc
B
(PSh

B
(C), Eop). As a

consequence, the universal property of presheaf B-categories implies that re-

striction along the Yoneda embedding ℎC determines an equivalence of large

B-categories ℎ∗C ∶ Funcc
B
(PSh

B
(C), Eop)S𝑅 ≃ Funop(U)-cc

B
(C, Eop). Upon taking op-

posite B-categories and using Corollary 5.4.3.2, one thus obtains an equivalence

(𝐿ℎC)∗ ∶ ShE(D) ≃ ShUE (C). By plugging in E = Grpd
B

into this equivalence

and using Proposition 5.4.5.3, one ends up with an equivalence D ≃ ShUGrpd
B
(C)

of full subcategories of PSh
B
(C), which completes the proof.

Whenever U is a sound doctrine, we can identify the B-category of U-sheaves

on an op(U)-cocomplete B-category C with the free FiltU-cocompletion of C:

Proposition 5.4.5.5. Let U be a sound internal class and let C be an op(U)-
cocomplete B-category. Then there is an equivalence ShUGrpd

B
(C) ≃ IndU

B
(C) of

full subcategories of PSh
B
(C).

Proof. By Proposition 5.3.4.6 as well as Remark 5.4.5.2 and Remark 5.3.4.2, it

suffices to show that a presheaf 𝐹∶ Cop → Grpd
B

is U-flat if and only if 𝐹 is

U-continuous. As the inclusion ℎCop ∶ Cop ↪→ Fun
B
(C,Grpd

B
) commutes with

all limits that exist in C, the presheaf 𝐹 being U-flat immediately implies that 𝐹 is

U-continuous. Conversely, suppose that 𝐹 isU-continuous. By Proposition 5.3.4.6,

it suffices to show that C/𝐹 is weakly U-filtered. By applying Lemma 3.5.1.11 to

the pullback square

C/𝐹 (Grpd
B
)op/1GrpdB

C Grpdop
B

,𝐹 op

(which satisfies the conditions of the lemma by Proposition 3.2.4.3), we conclude

that C/𝐹 is op(U)-cocomplete, hence the claim follows from Example 5.1.2.4.

Corollary 5.4.5.6. Let U be a sound doctrine and let C be an op(U)-cocomplete
B-category. Then IndU

B
(C) is presentable. Moreover, for any cocomplete large

B-category E, restriction along the Yoneda embedding ℎC induces an equivalence

ℎ∗C ∶ Funcc
B
(IndU

B
(C), E) ≃ Funop(U)-cc

B
(C, E)
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of large B-categories.

Corollary 5.4.5.7. Let D be a large B-category. Then the following are equivalent:

1. D is presentable;

2. there is a sound doctrine U such that D is U-accessible and DU-cpt is op(U)-
cocomplete;

3. there is a doctrine U and a small op(U)-cocomplete B-category C such that
one has an equivalence D ≃ ShUGrpd

B
(C).

Proof. By combining Theorem 5.4.2.5 with Proposition 5.1.5.4, it is clear that (1)

implies (2). If (2) is satisfied, Proposition 5.3.3.2 implies that DU-cpt is small and

that there is an equivalence D ≃ IndU
B
(DU-cpt). In light of Proposition 5.4.5.5, this

shows that (3) is satisfied. Finally, Proposition 5.4.5.4 shows that (3) implies (1).

We complete this section by noting that as a consequence of the results that we

have established so far, we may deduce that the B-category of sheaves between

presentable B-categories is presentable as well:

Corollary 5.4.5.8. For every two presentableB-categories D and E, theB-category
ShE(D) is presentable as well.

Proof. By Corollary 5.4.5.7, there is a doctrine U and a small op(U)-cocomplete

B-category C such that D ≃ ShUGrpd
B
(C). Consequently, Proposition 5.4.5.4

gives rise to an equivalence ShE(D) ≃ ShUE (C). Therefore, it suffices to show

that the right-hand side is presentable. Choose a small B-category C′ such that

E ≃ LocS′(PShB(C′)) for some S′ → PSh
B
(C′) with S′ small. We obtain a

commutative square

ShUE (C) Fun
B
(Cop, E)

ShUPSh
B
(C′)(C) Fun

B
(Cop,PSh

B
(C′)).
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Wefirst claim that this square is a pullback. To see this, note that by Remark 5.4.5.2

and Remark 5.4.1.2, it will be enough to verify that a functor Cop → E is U-

continuous if Cop → E ↪→ PSh
B
(C′) is U-continuous. This is a straightforward

consequence of the fact that fully faithful functors are conservative. To proceed,

note that by Corollary 5.4.2.7, the vertical map on the right in the above diagram

defines a map in PrRB. Using Proposition 5.4.4.11, the proof is thus complete once

we verify that the lower horizontal map is a map in PrRB as well. To see this,

observe that by Lemma 5.5.1.3 below, we may identify this map with the inclusion

Fun
B
(Cop, ShUGrpd

B
(C)) ↪→ Fun

B
(Cop,PSh

B
(C′))

that is induced by postcomposition with the inclusion ShUGrpd
B
(C) ↪→ PSh

B
(C).

As the latter is a map in PrRB by Proposition 5.4.5.4, the claim thus follows by

again appealing to Corollary 5.4.2.7.

5.5. The tensor product of presentable B-categories

In [50], Lurie establishes a symmetric monoidal structure on the ∞-category

CatK-cc
∞ of K-cocomplete ∞-categories with K-cocontinuous functors, for any

class K of ∞-categories. In particular, his construction gives rise to a symmet-

ric monoidal structure on the ∞-category PrL∞ of presentable ∞-categories. In

this section, our goal is to obtain a B-categorical analogue of these results, i.e.

to construct a symmetric monoidal structure on the ∞-category Cat(B)U-cc of

U-cocomplete B-categories and U-cocontinuous functors, for any choice of in-

ternal class U, and in particular one for the ∞-category PrL(B) of presentable
B-categories. Our construction will be entirely analogous to the one in [50]:

we will define the desired symmetric monoidal ∞-category Cat(B)U-cc,⊗ → Fin∗
as the subcategory of the cartesian monoidal ∞-category Cat(B)× → Fin∗ that

is spanned by what we call U-multilinear functors. We define and study this

concept in Section 5.5.1. In order to show that the map Cat(B)U-cc,⊗ → Fin∗ that

we end up with indeed defines a symmetric monoidal ∞-category, we will need

a B-categorical analogue of cocompletions with relations, which we discuss in

Section 5.5.2. At last, we construct the desired symmetric monoidal structure on

Cat(B)U-cc in Section 5.5.3. In particular, our construction will yield a symmet-
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ric monoidal structure on the ∞-category PrL(B) of presentable B-categories.

In Section 5.5.4, we make use of this structure to identify B-modules as a full

subcategory of PrL(B).

Remark 5.5.0.1. The attentive reader may point out that a genuineB-categorical

version of Lurie’s theory should entail developing a notion of symmetric monoidal
B-categories and to prove that the large B-category CatU-ccB of U-cocomplete B-

categories admits a symmetric monoidal structure in this sense. This is certainly

possible, see [56]. However, as developing this theory in its full generality would

lead us too far away from the main theme of this thesis, we will content ourselves

with a more slimmed-down version, which will be sufficient for our purposes.

5.5.1. Bilinear functors

Recall that a bilinear functor of cocomplete ∞-categories C ×D → E is a functor

that preserves small colimits separately in each variable. We will now introduce

this notion in the internal setting. It will be useful to consider functors that only

preserve certain (internal) classes of colimits in each variable, so that we arrive

at the following general definition:

Definition 5.5.1.1. Let U and V be two internal classes ofB-categories. Suppose

that C,D and E are B-categories such that C is U-cocomplete, D is V-cocomplete

and E is U ∪ V-cocomplete. We will say that a functor 𝑓∶ C × D → E is (U,V)-
bilinear if for any 𝐴 ∈ B and any two objects 𝑐∶ 𝐴 → C and 𝑑∶ 𝐴 → D the

functor

𝑓 (𝑐, −)∶ 𝜋∗
𝐴D

𝑐×id
−−−→ 𝜋∗

𝐴C × 𝜋∗
𝐴D

𝜋∗
𝐴𝑓

−−−→ 𝜋∗
𝐴E

is 𝜋∗
𝐴V-cocontinuous and the functor

𝑓 (−, 𝑑)∶ 𝜋∗
𝐴C

id ×𝑑
−−−−→ 𝜋∗

𝐴C × 𝜋∗
𝐴D

𝜋∗
𝐴𝑓

−−−→ 𝜋∗
𝐴E

is 𝜋∗
𝐴U-cocontinuous. We write Fun(U,V)

B
(C × D, E) for the full subcategory

spanned by the (𝜋∗
𝐴U, 𝜋∗

𝐴V)-bilinear functors for every 𝐴 ∈ B, and we write

Fun(U,V)
B

(C × D, E) for the underlying ∞-category of global sections. In the case

where U = V = CatB (and C,D and E are large), we will simply say that 𝑓 is bilin-
ear and write Funbil

B
(C × D, E) for the associated B-category of bilinear functors

(and likewise FunbilB (C × D, E) for its underlying ∞-category of global sections).
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Remark 5.5.1.2. In the situation of Definition 5.5.1.1, the fact that U- and V-

cocontinuity are local conditions (Remark 3.3.2.3) implies that for any cover

⨆𝑖 𝐴𝑖 � 1 in B, a functor 𝑓 is (U,V)-bilinear if and only if for each 𝑖 the functor

𝜋∗
𝐴𝑖
𝑓 is (𝜋∗

𝐴𝑖
U, 𝜋∗

𝐴𝑖
V)-bilinear. In particular, an object 𝐴 → Fun

B
(C × D, E) in

context 𝐴 ∈ B is contained in Fun
B
(C × D, E)(U,V) if and only if it defines a

(𝜋∗
𝐴U, 𝜋∗

𝐴V)-bilinear functor, and there consequently is a canonical equivalence

𝜋∗
𝐴Fun

(U,V)
B

(C × D, E) ≃ Fun(𝜋
∗
𝐴U,𝜋∗

𝐴V)
B/𝐴

(𝜋∗
𝐴C × 𝜋∗

𝐴D, 𝜋∗
𝐴E)

of B/𝐴-categories.

Lemma 5.5.1.3. Let U and V be two internal classes and let C,D and E be B-
categories such that C is U-cocomplete, D is V-cocomplete and E is U ∪V-cocomplete.
Then FunV-cc

B
(D, E) is closed under U-colimits, FunU-cc

B
(C, E) is closed under V-

colimits, and there are natural equivalences

Fun(U,V)
B

(C × D, E) ≃ FunU-cc
B

(C, FunV-cc
B

(D, E)) ≃ FunV-cc
B

(D, FunU-cc
B

(C, E)).

Proof. By symmetry, it is enough to show that FunV-cc
B

(D, E) is closed under

U-colimits and to construct the first of the two equivalences. To begin with,

we claim that a functor 𝑓∶ C × D → E is (U,V)-bilinear if and only if its trans-

pose 𝑓 ′ ∶ C → Fun
B
(D, E) is U-cocontinuous and takes values in FunV-cc

B
(D, E).

To see this, note that for any 𝐴 ∈ B and any object 𝑐∶ 𝐴 → C, the functor

𝑓 ′(𝑐)∶ 𝜋∗
𝐴D → 𝜋∗

𝐴E is by definition given by 𝑓 (𝑐, −), which in turn implies that

𝑓 (𝑐, −) is V-cocontinuous if and only if 𝑓 ′ factors through the full subcategory

FunV-cc
B

(C, E). Moreover, given any object 𝑑∶ 𝐴 → D in context 𝐴 ∈ B, note that

the functor 𝑓 (−, 𝑑) is given by the composite

𝜋∗
𝐴C

𝜋∗
𝐴𝑓

′

−−−−→ 𝜋∗
𝐴FunB(D, E) ≃ Fun

B/𝐴
(𝜋∗

𝐴D, 𝜋∗
𝐴E)

𝑑∗
−−→ 𝜋∗

𝐴E.

Therefore, Proposition 3.2.3.2 implies that 𝑓 ′ is U-cocontinuous if and only if

𝑓 (−, 𝑑) is U-cocontinuous for all 𝑑∶ 𝐴 → D and all 𝐴 ∈ B. Hence the claim

follows. In light of Remark 5.5.1.2 and Remark 3.3.3.4, this already implies we
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have a pullback square

Fun(U,V)
B

(C × D, E) FunU-cc
B

(C, Fun
B
(D, E))

Fun
B
(C, FunV-cc

B
(D, E)) Fun

B
(C × D, E).

To complete the proof, it is now enough to show that FunV-cc
B

(D, E) is closed

under U-colimits. In light of Remark 3.3.3.4, this follows once we show that for

any I ∈ U(1) we have a commutative diagram

Fun
B
(I, FunV-cc

B
(D, E)) FunV-cc

B
(D, E)

Fun
B
(I, Fun

B
(D, E)) Fun

B
(D, E).

colimI

As colimI is cocontinuous, we get a commutative diagram

FunV-cc
B

(D, Fun
B
(I, E)) Fun

B
(D, Fun

B
(I, E))

FunV-cc
B

(D, E) Fun
B
(D, E).

(colimI)∗ (colimI)∗

By what we have already shown above, we have a commutative diagram

Fun
B
(I, FunV-cc

B
(D, E)) FunV-cc

B
(D, Fun

B
(I, E))

Fun
B
(I, Fun

B
(D, E)) Fun

B
(D, Fun

B
(I, E)).

≃

≃

Hence, upon combining the last two diagrams, we conclude that the colimit

functor colimI restricts as desired.

We now generalise the above situation to so-called multilinear functors. For

the sake of simplicity, we will only do this in the case of one fixed internal class.

Definition 5.5.1.4. Let U be an internal class of B-categories and suppose that

C1, … ,C𝑛, E are U-cocomplete B-categories. A functor 𝑓∶ C1 × .... × C𝑛 → E is
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said to be U-multilinear if for every 𝑖 = 1, … , 𝑛 and all objects 𝑐𝑗 ∶ 𝐴𝑗 → C𝑗 in

context 𝐴 ∈ B for 𝑖 ≠ 𝑗 the functor

𝜋∗
𝐴C𝑖

(𝑐1,…,id,…,𝑐𝑛)
−−−−−−−−−−→

𝑛
∏
𝑘=1

𝜋∗
𝐴C𝑘

𝑓
−→ 𝜋∗

𝐴D

is 𝜋∗
𝐴U-cocontinuous. We will write FunU-mult

B
(∏𝑛

𝑘=1 C𝑘, E) for the full subcate-

gory spanned by the 𝜋∗
𝐴U-multilinear functors for all 𝐴 ∈ B, and we furthermore

denote the underlying ∞-category of global sections by FunU-mult
B (∏𝑛

𝑘=1 C𝑘, E).

Remark 5.5.1.5. By a similar argument as in Remark 5.5.1.2, the condition of a

functor as in Definition 5.5.1.4 to be U-multilinear is local in B, which implies

that there is a canonical equivalence

𝜋∗
𝐴Fun

U-mult
B

(
𝑛

∏
𝑘=1

C𝑘, E) ≃ Fun𝜋
∗
𝐴U-mult
B/𝐴

(
𝑛

∏
𝑘=1

𝜋∗
𝐴C𝑘, 𝜋∗

𝐴E)

for each 𝐴 ∈ B.

5.5.2. Cocompletion with relations

Let U be an internal class, and let C be a B-category. In Section 3.5.1, we con-

structed the free U-cocompletion PShU
B
(C) of C, i.e. the universal U-cocomplete

B-category that is equipped with a functor C → PShU
B
(C). The goal of this

section is to generalise this result by imposing that a chosen collection of co-

cones in C (that are indexed by objects of U) become colimit cocones in the free

U-cocompletion. Our proof of this result is a straightforward adaptation of the

discussion in [49, § 5.3.6].

Let us fix a small collection 𝑅 = (𝑑𝑖 ∶ K▷
𝑖 → 𝜋∗

𝐴𝑖
C)𝑖∈𝐼 of cocones with 𝐴𝑖 ∈ B

and K𝑖 ∈ U(𝐴𝑖) for all 𝑖 ∈ 𝐼. Let S𝑅 ↪→ PSh
B
(C) be the (non-full) subcategory

that is spanned by the canonical maps (𝑓𝑖 ∶ colim ℎC𝑑𝑖 → ℎC𝑑𝑖(∞))𝑖∈𝐼 in PSh
B
(C)

(with each 𝑓𝑖 being in context 𝐴𝑖 for 𝑖 ∈ 𝐼), where 𝑑𝑖 denotes the restriction of 𝑑𝑖
along the inclusion K𝑖 ↪→ K▷

𝑖 and where ∞∶ 𝐴𝑖 → K▷
𝑖 denotes the cone point.

Let us set D = LocS𝑅(PShB(C)). By Corollary 5.4.1.8, the inclusion

𝑖∶ D ↪→ PSh
B
(C)
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admits a left adjoint 𝐿∶ PSh
B
(C) → D. In particular, D is cocomplete (Proposi-

tion 3.3.2.11). We define the (large) B-category PSh
B
(C)(U,𝑅)(C) as the smallest

full subcategory of D that contains the essential image of 𝐿ℎC ∶ C → D and that

is closed under U-colimits in D, and we let 𝑗C ∶ C → PSh(U,𝑅)
B

(C) be the map that

is obtained by composing 𝐿ℎC with the inclusion.

Remark 5.5.2.1. Given any object 𝐴 ∈ B, we denote by 𝜋∗
𝐴𝑅 the set of cocones

(𝜋∗
𝐴(𝑑𝑖))𝑖∈𝐼. We then obtain an equivalence 𝜋∗

𝐴S𝑅 ≃ S𝜋∗
𝐴𝑅 of subcategories in

PSh
B/𝐴

(𝜋∗
𝐴C). Hence Remark 5.4.1.2 and the same argument as in the proof

of Proposition 3.5.1.9 shows that one obtains a canonical equivalence of large

B/𝐴-categories

𝜋∗
𝐴PSh

(U,𝑅)
B

(C) ≃ PSh(𝜋
∗
𝐴U,𝜋∗

𝐴𝑅)
B/𝐴

(𝜋∗
𝐴C)

with respect to which 𝜋∗
𝐴𝑗C corresponds to the map 𝑗𝜋∗

𝐴C
.

For any U-cocomplete large B-category E, we will denote by Fun
B
(C, E)𝑅 the

full subcategory of Fun
B
(C, E) that arises as the pullback

Fun
B
(C, E)𝑅 Fun

B
(C, E)

Fun
B
(PSh

B
(C), E)S𝑅 Fun

B
(PSh

B
(C), E).

(ℎC)!

We now obtain:

Proposition 5.5.2.2. For every 𝑖 ∈ 𝐼 the cocone (𝑗C)∗(𝑑𝑖) is a colimit cocone in
PSh(U,𝑅)

B
(C), and for every U-cocomplete large B-category E, precomposition with

𝑗C induces an equivalence

𝑗∗C ∶ FunU-cc
B

(PSh(U,𝑅)
B

(C), E) ≃ Fun
B
(C, E)𝑅.

Proof. Note that by construction of D, the map 𝑗C carries each of the cocones

𝑑𝑖 to a colimit cocone in PSh(U,𝑅)
B

(C), hence the first claim follows immediately.

The proof of the second claim employs a similar strategy as in the proof of

Theorem 3.5.1.12. First, if E is an arbitrary U-cocomplete B-category, note that

the Yoneda embedding induces a U-cocontinuous functor

E ↪→ E′ = Fun
B
(E,Grpd

B
)op
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into a cocomplete B-category. By Corollary 5.4.3.2 and the universal property of

presheaf B-categories, we now obtain an equivalence

(𝐿ℎC)! ∶ Fun
B
(C, E′)𝑅 ≃ Funcc

B
(PSh

B
(C), E′)S𝑅 ≃ Funcc

B
(D, E′)

As the inclusion PSh(U,𝑅)
B

(C) ↪→ D is by construction U-cocontinuous, we there-

fore obtain an induced inclusion

(𝑗C)! ∶ Fun
B
(C, E′)𝑅 ↪→ FunU-cc

B
(PSh(U,𝑅)

B
(C), E′).

Now if 𝑓∶ PSh(U,𝑅)
B

(C) → E′ is a U-cocontinuous functor, precisely the same

argument as the one employed in the proof of Theorem 3.5.1.12 shows that the

adjunction counit 𝜖∶ (𝑗C)!𝑗∗C𝑓 → 𝑓 is an equivalence and that 𝑓 is therefore

contained in the essential image of (𝑗C)!. Together with Remark 5.5.2.1, this

shows that (𝑗C)! is an equivalence. Finally, the same argumentation as in the

proof of Theorem 3.5.1.12 also shows that this equivalence restricts to the desired

equivalence Fun
B
(C, E)𝑅 ≃ FunU-cc

B
(PSh(U,𝑅)

B
(C), E).

Remark 5.5.2.3. In the situation of Proposition 5.5.2.2, if U is assumed to be

small (i.e. a doctrine in the terminology of Section 5.1.3) implies that PSh(U,𝑅)
B

(C)
is small as well. In fact, as D is locally small, the essential image of

𝐿ℎC ∶ C → PSh
B
(C) → D

is small (Lemma 2.3.1.6), hence we can make use of the same argument as in

Remark 3.5.1.7 to deduce that PSh(U,𝑅)
B

(C) must also be small.

We will now use Proposition 5.5.2.2 to construct the universal U-multilinear

functor (in the sense of Definition 5.5.1.4). To that end, let us fix an internal class

U and U-cocomplete B-categories C1, … ,C𝑛.

Construction 5.5.2.4. Let G ⊂ B be a small subcategory of generators (in the

sense of Remark 1.2.1.3), and let us set

𝑅𝑘 = ⨆
𝐺∈G

{𝑑∶ K▷ → 𝜋∗
𝐺C

𝑘 | K ∈ U(𝐺), 𝑑 is a colimit cocone}

as well as

𝑆𝑘 = ⨆
𝐺∈G

{𝑑∶ K▷ → 𝜋∗
𝐺PSh

(U,𝑅𝑘)
B

(C𝑘) | K ∈ U(𝐺), 𝑑 is a colimit cocone} .
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Furthermore, let �𝑛
𝑘=1𝑅𝑘 be the set of all diagrams of the form

(𝑐1, … , 𝑐𝑙−1, id, 𝑐𝑙+1, … , 𝑐𝑛)𝑑∶ K▷ → 𝜋∗
𝐺C

𝑙 →
𝑛

∏
𝑘=1

𝜋∗
𝐺C

𝑘

where 𝑑 is an element of 𝑅𝑙 and 𝑐𝑘 ∶ 𝐺 → C𝑘 is an arbitrary object for each 𝑘 ≠ 𝑙.
Let �𝑛

𝑘=1𝑆𝑘 be defined analogously.

In the situation of Construction 5.5.2.4, observe that a functor ∏𝑛
𝑘=1 C𝑘 → E

(where E is an arbitrary U-cocomplete B-category) is U-multilinear if and only

if it is contained in the full subcategory Fun
B
(∏𝑛

𝑘=1 C𝑖, E)�𝑛
𝑘=1𝑅𝑘

. Using Proposi-

tion 5.5.2.2, we thus conclude:

Proposition 5.5.2.5. If U ↪→ V are internal classes and C1, … ,C𝑛, E are U-
cocomplete B-categories, the canonical functor

𝑗∶
𝑛

∏
𝑘=1

C𝑖 → PSh
(V,�𝑛

𝑘=1𝑅𝑘)
B

(
𝑛

∏
𝑘=1

C𝑖)

induces an equivalence

𝑗∗ ∶ FunV-cc
B

(PSh(V,�
𝑛
𝑘=1𝑅𝑘)

B
(

𝑛
∏
𝑖=1

C𝑖), E)
≃
−→ FunU-mult

B
(

𝑛
∏
𝑘=1

C𝑘, E).

of B-categories.

We conclude this section by noting that the construction of the universal U-

multilinear map is transitive: suppose that U ↪→ V are internal classes, where U

is a doctrine. Then, in the situation of Construction 5.5.2.4, the composition

C1 × ⋯ × C𝑛 → PSh(U,𝑅1)
B

(C1) × ⋯ × PSh(U,𝑅𝑛)
B

(C𝑛)

→ PSh
(V,�𝑛

𝑘=1𝑆𝑘)
B

(PSh(U,𝑅1)
B

(C1) × ⋯ × PSh(U,𝑅𝑛)
B

(C𝑛))

carries each cocone in �𝑛
𝑘=1𝑅𝑘 to a colimit cocone, hence Proposition 5.5.2.2

determines a functor

𝜙∶ PSh
(V,�𝑛

𝑘=1𝑅𝑘)
B

(C1×⋯×C𝑛) → PSh
(V,�𝑛

𝑘=1𝑆𝑘)
B

(PSh(U,𝑅1)
B

(C1)×⋯×PSh(U,𝑅𝑛)
B

(C𝑛)).

Proposition 5.5.2.6. The map 𝜙 is an equivalence.
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Proof. Note that in light of Remark 5.5.2.3, the map 𝜙 is a well-defined morphism

in the B-category CatV-ccB of V-cocomplete B-categories and V-cocontinuous

functors. By combining Yoneda’s lemma with Remark 5.5.2.1 and Remark 3.3.3.4,

the result thus follows once we verify that for every V-cocomplete B-category E

the restriction functor

FunV-cc
B

(PSh(V,�
𝑛
𝑘=1𝑆𝑘)

B
(PSh(U,𝑅1)

B
(C1) × ⋯ × PSh(U,𝑅𝑛)

B
(C𝑛)), E)

FunV-cc
B

(PSh(V,�
𝑛
𝑘=1𝑅𝑘)

B
(C1 × ⋯ × C𝑛), E)

𝜙∗

is an equivalence. Using Proposition 5.5.2.2, this is in turn equivalent to the map

Fun
B
(PSh(U,𝑅1)

B
(C1) × ⋯ × PSh(U,𝑅𝑛)

B
(C𝑛), E)�𝑛

𝑘=1𝑆𝑘
→ Fun

B
(C1 ×⋯ ×C𝑛, E)�𝑛

𝑘=1𝑅𝑘

being an equivalence. We will use induction on 𝑛 to show that this functor is

an equivalence. If 𝑛 = 1, this is precisely the content of Proposition 5.5.2.2. For

𝑛 > 1, the construction of�𝑛
𝑘=1𝑅𝑘 and�𝑛

𝑘=1𝑆𝑘 together with Lemma 5.5.1.3 imply

that the above map can be identified with the morphism

Fun
B
(PSh(U,𝑅1)

B
(C1) × ⋯ × PSh(U,𝑅𝑛−1)

B
(C𝑛−1), FunU-cc

B
(PSh(U,𝑅𝑛)

B
(C𝑛), E))�𝑛−1

𝑘=1𝑆𝑘

Fun
B
(C1 × ⋯ × C𝑛−1, Fun

B
(C𝑛, E)𝑅𝑛

)�𝑛−1
𝑘=1𝑅𝑘

.

As Proposition 5.5.2.2 implies that the map

Fun
B
(C𝑛, E)𝑅𝑛

→ FunU-cc
B

(PSh(U,𝑅𝑛)
B

(C𝑛), E)

is an equivalence, the claim thus follows by the induction hypothesis.

5.5.3. The tensor product of U-cocompleteB-categories

Throughout this section, let us fix a doctrine U. The goal of this section is to

extend the results from [50, § 4.8.1] to the setting of B-categories. Namely, we

will construct a symmetric monoidal structure Cat(B)U-cc,⊗ on the ∞-category
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Cat(B)U-cc of U-cocomplete B-categories and U-cocontinuous functors. For this

we will roughly follow the arguments in [50].

Let 𝑝∶ Cat(B)× → Fin∗ be the cartesian monoidal structure on Cat(B). We

define a subcategory Cat(B)U-cc,⊗ of Cat(B)× as follows: Let 𝑓∶ 𝑥 → 𝑦 be a mor-

phism in Cat(B)×, and assume that 𝑝(𝑓 ) is given by a map 𝛼∶ ⟨𝑛⟩ → ⟨𝑚⟩ in the 1-
category Fin∗. We now obtain equivalences 𝑥 ≃ (C1, … ,C𝑛) and 𝑦 ≃ (D1, … ,D𝑚)
where the C𝑖 and D𝑗 areB-categories, and the map 𝑓 is determined by a collection

of maps 𝑓𝑗 ∶ ∏𝑖∈𝛼−1(𝑗) C𝑖 → D𝑗 for 𝑗 = 1, … , 𝑚. We shall say that 𝑓 isU-multilinear
if the C𝑖 and D𝑗 are U-cocomplete and the functors 𝑓𝑗 are U-multilinear. We let

Cat(B)U-cc,⊗ be the subcategory of Cat(B)× that is spanned by the U-multilinear

maps.

Lemma 5.5.3.1. A map in Cat(B)× is contained in Cat(B)U-cc⊗ if and only if it is
U-multilinear.

Proof. We first show that U-multilinear maps are closed under composition. To

that end, suppose that 𝑓∶ 𝑥 → 𝑦 and 𝑓 ′ ∶ 𝑦 → 𝑧 are U-multilinear maps, and

consider the commutative diagram

𝑥 𝑦 𝑧

𝑥′ 𝑧′

𝑦 ′

𝑓 𝑓 ′

ℎ𝑦 𝑔𝑦

ℎ′𝑦 𝑔′
𝑦

ℎ𝑧 𝑔𝑧

in which ℎ𝑦, ℎ′𝑦 and ℎ𝑧 are cocartesian and the maps 𝑔𝑦, 𝑔′
𝑦 and 𝑔𝑧 are sent

to identity maps in Fin∗. Then 𝑓 ′𝑓 being U-multilinear precisely means that

𝑔𝑧𝑔′
𝑦 is determined by a tuple of U-multilinear functors between U-cocomplete

B-categories. Unwinding the definitions, this follows immediately from the ob-

servation that U-multilinear functors compose in the expected way. Together

with the fact that equivalences between U-cocomplete B-categories are automat-

ically U-cocontinuous, this already implies that the subspace of Cat(B)×1 that is

spanned by the U-multilinear maps is closed under composition and equivalences

in the sense of Proposition 1.3.1.17, hence the very same proposition (applied in

the case B = Ani) proves the claim.
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To proceed, let M⊗
U ↪→ Δ1 × Cat(B)× be the subcategory that is spanned by

those maps (𝜙, 𝑓 )∶ (𝜖,C) → (𝛿,D) in Δ1 × Cat(B)× that satisfy:

1. if 𝛿 = 1, then D is U-cocomplete, and

2. if furthermore 𝜖 = 1 (so that necessarily 𝜙 = id1), then 𝑓 is U-multilinear.

Since clearly the maps that satisfy this condition are closed under equivalences

and composition in the sense of Proposition 1.3.1.17, the very same proposition

implies that a map in Cat(B)× is contained in M⊗
U if and only if it satisfies the

above condition.

By construction, the pullback of the composition

𝑞∶ M⊗
U ↪→ Δ1 × Cat(B)× → Δ1 × Fin∗

along the inclusion 𝑑1 ∶ Fin∗ ↪→ Δ1 × Fin∗ recovers the cocartesian fibration

𝑝∶ Cat(B)× → Fin∗, and the pullback of 𝑞 along 𝑑0 ∶ Fin∗ ↪→ Δ1 × Fin∗ recovers

the restriction of 𝑝 to the subcategory CatU-cc,⊗
B

. We now obtain:

Proposition 5.5.3.2. The composition 𝑞∶ M⊗
U ↪→ Δ1 × Cat(B)× → Δ1 × Fin∗ is a

cocartesian fibration.

Proof. Let us begin by fixing maps 𝛼∶ ⟨𝑛⟩ → ⟨𝑚⟩ in the 1-category Fin∗ and

𝜖 ≤ 𝛿 in the poset Δ1, and let 𝑥 ∈ M⊗
U |(𝜖,⟨𝑛⟩) be an arbitrary object. Let us write

V0 = ∅ and V1 = U. By construction of M⊗
U , the object 𝑥 corresponds to a tuple

(𝜖,C1, … ,C𝑛) where C1, … ,C𝑛 are V𝜖-cocomplete B-categories. Let 𝑓∶ 𝑥 → 𝑦
be a cocartesian lift of 𝛼 in Cat(B)×. For each 𝑗 = 1, … , 𝑚, we can make use of

Construction 5.5.2.4 to define a map

𝑔𝑗 ∶ ∏
𝑖∈𝛼−1(𝑗)

C𝑖 → D𝑗 = PSh(V𝛿,�𝑖𝑅𝑖)
B

( ∏
𝑖∈𝛼−1(𝑗)

C𝑖),

and by setting 𝑧 = (𝛿,D1, … ,D𝑚), precomposing the tuple 𝑔 = (𝜖 ≤ 𝛿, 𝑔1, … , 𝑔𝑚)
with (id𝜖, 𝑓 ) defines a lift of (𝜖 ≤ 𝛿, 𝛼) in M⊗

U . By Proposition 5.5.2.5, precomposi-

tion with each 𝑔𝑗 induces an equivalence

𝑔∗
𝑗 ∶ FunV𝜖-mult

B
(∏

𝑖
C𝑖, E) ≃ FunV𝛿-cc

B
(D𝑗, E)
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for everyV𝛿-cocompleteB-category E. By construction ofM⊗
U , Lemma 5.5.3.1 and

Corollary 2.2.2.8, the underlying core B-groupoids of both domain and codomain

of 𝑔∗
𝑗 recover on global sections the mapping ∞-groupoids in the pullback of 𝑞

along id ×⟨1⟩∶ Δ1 → Δ1 × Fin∗. Consequently, the functor M⊗
U ×Δ1×Fin∗

Δ1 → Δ1

that is obtained as the pullback of 𝑞 along (𝜖 ≤ 𝛿, 𝛼)∶ Δ1 → Δ1 × Fin∗ must

be a cocartesian fibration. In other words, 𝑞 is a locally cocartesian fibration.

Since Proposition 5.5.2.6 shows that the locally cocartesian maps are closed under

composition, the result now follows.

Corollary 5.5.3.3. The functor Cat(B)U-cc,⊗ → Fin∗ is a cocartesian fibration
that gives rise to a symmetric monoidal structure on the ∞-category Cat(B)U-cc.

Proof. Since the map Cat(B)U-cc,⊗ → Fin∗ is a pullback of the functor 𝑞 from

Proposition 5.5.3.2, the same proposition immediately implies the first claim.

Moreover, the straightforward observation that for every 𝑛 ≥ 0 the equivalence

Cat(B)×𝑛 ≃
𝑛

∏
𝑖=1

Cat(B)×1

restricts to an equivalence

Cat(B)U-cc,⊗𝑛 ≃
𝑛

∏
𝑖=1

Cat(B)U-cc,⊗1

shows the second claim.

Remark 5.5.3.4. By unstraightening the cocartesian fibration 𝑞 from Proposi-

tion 5.5.3.2 we get a functor Δ1 → CMon(Cat(B)) and therefore a morphism

of symmetric monoidal ∞-categories 𝐿∶ Cat(B)× → Cat(B)U-cc,⊗. Note that

the pullback Δ1 ×Δ1×Fin∗
M⊗

U → Δ1 of 𝑞 along id ×⟨1⟩∶ Δ1 → Δ1 × Fin∗ is

also a cartesian fibration: in fact, by making use of Proposition 4.4.5.1 (in the

case where B ≃ Ani), this follows from the straightforward observation that

the adjunction (𝑑1 ⊣ 𝑠0)∶ Δ1 × Cat(B) ⇆ Cat(B) restricts to an adjunction

Δ1 ×Δ1×Fin∗
M⊗

U ⇆ Cat(B). By Corollary 4.4.5.5, this means that 𝐿 is the left ad-

joint of the inclusion Cat(B)U-cc ↪→ Cat(B) as provided by Corollary 3.5.1.14. In

particular, we see that the B-category underlying the tensor unit of Cat(B)U-cc,⊗

is equivalent to the free U-cocompletion of the point PShU
B
(1).
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Remark 5.5.3.5. By a similar argument as in Remark 5.5.3.4, the projection

M⊗
U → Δ1 is both cartesian and cocartesian. Therefore, one also obtains an

adjunction

(𝐿 ⊣ 𝑖)∶ Cat(B)× ⇆ Cat(B)U,⊗-cc

in which 𝑖 is simply the inclusion. Since the projection M⊗
U → Fin∗ carries every

map in M⊗
U that is cartesian over Δ1 to an equivalence, we end up with a relative

adjunction Cat(B)× ⇆ Cat(B)U-cc,⊗ over Fin∗. As both maps are morphisms of

∞-operads, we thus obtain an induced adjunction

(𝐿 ⊣ 𝑖)∶ CAlg(Cat(B)U-cc) ⇆ CAlg(Cat(B)) ≃ Cat(B)⊗

of ∞-categories. We refer to an object C ∈ CAlg(Cat(B)) as symmetric monoidal
B-category. By unwinding the definitions, we see that such a symmetric monoidal

B-category C lies in CAlg(Cat(B)U-cc) if and only if C is U-cocomplete and the

functor −⊗−∶ C×C → C that is provided by the commutative algebra structure

on C defines a U-bilinear map. In particular, it follows from Remark 5.5.3.4 that

PShU
B
(1) can be canonically equipped with the structure of a symmetric monoidal

B-category PShU
B
(1)⊗ such that − ⊗ −∶ PShU

B
(1) × PShU

B
(1) → PShU

B
(1) is U-

bilinear and that the canonical functor 1 → PShU
B
(1)⊗ induced by the adjunction

unit is symmetric monoidal (i.e. arises from amap in CAlg(Cat(B))). In particular,

this means that we have a commutative diagram

1 × 1 1

PShU
B
(1) × PShU

B
(1) PShU

B
(1).−⊗−

By the universal property of PShU
B
(1) and Lemma 5.5.1.3, there is a unique

such functor − ⊗ −, which must therefore coincide with the product functor

PShU
B
(1) × PShU

B
(1) → PShU

B
(1), see Proposition 3.5.3.8.

Example 5.5.3.6. Let B = PSh(C) for some small ∞-category C and let 𝑃 ⊆ C be

a subcategory that is closed under pullbacks. Then 𝑃 generates a local class 𝑊 in

PSh(C) and therefore a full subcategory Grpd𝑊 ↪ Grpd
B
. Then Remark 3.3.2.9

implies together with Remark 5.5.3.5 that the ∞-category CAlg(Cat(B)Grpd𝑊-cc)
is equivalent to the ∞-category of pullback formalisms in the sense of [21, §2.2].
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By Remark 5.5.3.4 and Remark 5.5.3.5 the initial object of CAlg(Cat(B)Grpd𝑊-cc)
is equivalent to the free Grpd𝑊-cocompletion of the point, equipped with the

cartesian monoidal structure. Together with Example 3.5.3.6, this gives a new

proof of [21, Theorem 3.25]. Furthermore, our proof yields a slightly more general

result as it does not require that C is a 1-category.

We will now move one universe up and consider the case where U = CatB
is the internal class of small B-categories in Cat

B̂
. By the above, we obtain a

symmetric monoidal structure Cat(B̂)cc,⊗ on the very largeB-category Cat(B̂)cc

of cocomplete large B-categories and cocontinuous functors.

Proposition 5.5.3.7. The tensor product−⊗−∶ Cat(B̂)cc×Cat(B̂)cc → Cat(B̂)cc

of cocompleteB-categories restricts to a functor−⊗−∶ PrL(B)×PrL(B) → PrL(B).
Therefore, PrL(B) inherits the structure of a symmetric monoidal ∞-category.

Proof. In light of the observation that the tensor unit in Cat(B̂)cc is given by

the presentable B-category Grpd
B
, the second claim follows from [50, Proposi-

tion 2.2.1.1], so it suffices to show the first one. We need to show that if D and E

are presentable then so is their tensor product D ⊗ E. By Corollary 5.4.5.7, we

may find a sound doctrine U and U-cocomplete (small) B-categories C and C′

such that D ≃ Shop(U)
Grpd

B

(C) and E ≃ Shop(U)
Grpd

B

(C′). If X is an arbitrary cocomplete

large B-category, we compute

Funcc
B
(D ⊗ E,X) ≃ Funcc

B
(D, Funcc

B
(E,X))

≃ FunU-cc
B

(C, FunU-cc
B

(C′,X))

≃ FunU-mult
B

(C × C′,X)

≃ FunU-cc
B

(C ⊗U C′,X),

where the first and third equivalence are consequences of Lemma 5.5.1.3, the

second equivalence follows from Corollary 5.4.5.6 and where −⊗U − denotes the

tensor product inCatU-ccB . NowU being a doctrine implies that the tensor product

C⊗UC′ is small (see Remark 5.5.2.3), hence another application of Corollary 5.4.5.6

gives rise to an equivalence FunU-cc
B

(C ⊗U C′,X) ≃ Funcc
B
(Shop(U)

Grpd
B

(C ⊗U C′),X).

As the same corollary shows that Shop(U)
Grpd

B

(C ⊗U C′) is presentable and as all of

the above equivalences are natural in X, the result follows.
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Proposition 5.5.3.8. Let D and E be presentable B-categories. Then there is an
equivalence of B-categories

FunL
B
(ShE(D),X) ≃ Funbil

B
(D × E,X)

that is natural in X ∈ PrL(B) and hence in particular an equivalence ShE(D) ≃ D⊗E.

Proof. Let Funcont
B

(−, −) ↪→ Fun
B
(−, −) be the full subcategory spanned by the

continuous functors in arbitrary context. We claim that we have a chain of

equivalences

Funbil
B

(D × E,X) ≃ FunL
B
(D, FunL

B
(E,X))

≃ Funcont
B

(Dop, FunL
B
(E,X)op)op

≃ Funcont
B

(Dop, FunR
B
(X, E))op

≃ FunR
B
(X, Funcont

B
(Dop, E))op

≃ FunL
B
(Funcont

B
(Dop, E),X)

≃ FunL
B
(ShE(D),X)

that are natural in E. The first equivalence follows from Lemma 5.5.1.3, the second

and the last equivalences are obvious and the third and fifth equivalences follow

from Proposition 5.4.3.3, so it remains to argue that the fourth equivalence holds.

We may choose a sound doctrine U such that D ≃ ShUGrpd
B
(C) for some small

U-cocomplete B-category C (cf. Corollary 5.4.5.7). Using Corollary 5.4.5.6, we

only need to see that the equivalence

Fun
B
(Cop, Fun

B
(X, E)) ≃ Fun

B
(X, Fun

B
(Cop, E))

restricts to an equivalence

FunU-cont
B

(Cop, FunR
B
(X, E)) ≃ FunR

B
(X, FunU-cont

B
(Cop, E))

(where FunU-cont
B

(−, −) denotes the full subcategory of Fun
B
(−, −) that is spanned

by the 𝜋∗
𝐴U-continuous functors of B/𝐴-categories, for all 𝐴 ∈ B). We already

know from (the dual version of) Lemma 5.5.1.3 that we have an equivalence

FunU-cont
B

(Cop, Funcont
B

(X, E)) ≃ Funcont
B

(X, FunU-cont
B

(Cop, E)),
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hence Proposition 5.4.3.3 together with Remark 3.3.3.4 and Remark 5.3.2.3 implies

that the proof is finished once we verify that a functor 𝑓∶ X → Fun
B
(Cop, E)

is accessible if only if its transpose 𝑓 ′ ∶ Cop → Fun
B
(X, E) takes values in

the full subcategory Funacc
B

(X, E) spanned by the accessible functors. If 𝑓 is

accessible there is some sound doctrine U such that 𝑓 is FiltU-cocontinuous.

But then it follows from Lemma 5.5.1.3 that 𝑓 ′ takes values in the B-category

FunFiltU-cc
B

(X, E) ↪→ Funacc
B

(X, E), as desired. For the converse, suppose that 𝑓 ′

takes values in Funacc
B

(X, E). Let 𝑧∶ C0 → C be the tautological object. Then

𝑓 ′(𝑧)∶ 𝜋∗
C0
X → 𝜋∗

C0
E is 𝜋∗

C0
U-accessible for some sound doctrine U. Since ev-

ery object in C is a pullback of 𝑧, this already shows that 𝑓 ′ takes values in

FunFiltU-cc
B

(X, E), hence Lemma 5.5.1.3 shows that 𝑓 is accessible.

5.5.4. B-modules as presentableB-categories

By the discussion in the previous section, there is a symmetric monoidal functor

𝐿∶ Cat(B̂)× → Cat(B)cc,⊗

which is left adjoint of the inclusion Cat(B̂)cc ↪→ Cat(B̂), so that the latter can be

promoted to a lax symmetric monoidal functor Cat(B)cc,⊗ ↪→ Cat(B̂)×, see [50,

Corollary 7.3.2.7]. In particular, we obtain a lax symmetric monoidal functor

PrL(B)⊗ ↪→ Cat(B̂)×. Moreover, as the global sections functor Γ preserves limits,

it defines a symmetric monoidal functor Cat(B̂)× → Ĉat
×
∞. Since a multilinear

functor in Cat(B) induces a multilinear functor on the underlying ∞-categories

of global sections, it is evident that the induced map Cat(B)cc,⊗ → Ĉat
×
∞ takes

values in Ĉat
cc,⊗
∞ ↪→ Ĉat

×
∞ and therefore defines a lax symmetric monoidal

functor Γcc,⊗ ∶ Cat(B)cc,⊗ → Ĉat
cc,⊗
∞ . Upon restricting this functor to pre-

sentable B-categories, we now end up with a lax symmetric monoidal functor

Γcc,⊗ ∶ PrL(B)⊗ → (PrL∞)⊗ that in turn induces a map

Γlin ∶ PrL(B) ≃ ModGrpd
B
(PrL(B)) → ModB(PrL∞)

(where B is regarded as the algebra in PrL∞ that is given by image of the trivial

algebra Grpd
B

in PrL(B) along Γcc,⊗, which is is precisely the cartesian monoidal

structure on B as the product bifunctor Grpd
B
×Grpd

B
→ Grpd

B
is bilinear,

cf. Proposition 3.2.5.10).
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The main goal of this section is to show that Γlin admits a fully faithful left

adjoint that embeds ModB(PrL∞) into PrL(B) and to give an explicit description of

this embedding. As a preliminary step, we need to show that the global sections

functor Γ∶ PrL(B) → PrL∞ admits a left adjoint. Recall from Example 5.4.4.8

that there is a functor − ⊗ Grpd
B
∶ PrR∞ → PrR(B) that assigns to a presentable

∞-category D the presentable B-category that is given by the sheaf D ⊗ B/−.

Using Proposition 5.4.4.7, we may equivalently regard this map as a functor

PrL∞ → PrL(B). We now obtain:

Proposition 5.5.4.1. The functor − ⊗ Grpd
B
is left adjoint to the global sections

functor Γ∶ PrL(B) → PrL∞.

Proof. The composition Γ ∘ (− ⊗ Grpd
B
) can be identified with the endofunctor

− ⊗B∶ PrL∞ → PrL∞, hence Γ∗ ∶ ShB(−) → idPrR∞ defines a natural transforma-

tion 𝜂∶ idPrL∞ → −⊗B upon passing to opposite ∞-categories. We need to show

that the composition

mapPrL(B)(D ⊗ Grpd
B
, E) → mapPrL∞

(D ⊗B, ΓE)
𝜂∗D
−−→ mapPrL∞

(D, ΓE) (∗)

is an equivalence. Choose a regular cardinal 𝜅 such that D ≃ Sh𝜅Ani(C) for some

small ∞-category C that admits 𝜅-small colimits. Using Proposition 5.4.5.4, we

obtain an equivalence D ⊗ Grpd
B

≃ ShLConst𝜅Grpd
B

(C) with respect to which the

map 𝜂D corresponds to the left adjoint of Γ∗ ∶ Sh𝜅B(C) → Sh𝜅Ani(C). Again using

Proposition 5.4.5.4, we have equivalences

mapPrL(B)(D ⊗ Grpd
B
, E)

(ℎBC )∗
−−−−−→ map

Cat(B̂)LConst𝜅-cc(C, E)

≃ map
Ĉat

𝜅-cc
∞

(C, ΓE)

(ℎAni
C )∗

−−−−−→ mapPrL∞
(D, ΓE)

where ℎBC is the Yoneda embedding in Cat(B̂) and ℎAni
C is the Yoneda embedding

in Ĉat∞. On account of the commutative square

C Sh𝜅Ani(C)

ΓC Sh𝜅B(C)

ℎAni
C

𝜂D
Γ(ℎBC )
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in which the vertical map on the left is the unit of constB ⊣ Γ (see Lemma 4.4.4.6),

the composition of the above chain of equivalences recovers the map in (∗), hence
the claim follows.

Proposition 5.5.4.2. The functor Γlin ∶ PrL(B) → ModB(PrL∞) admits a fully
faithful left adjoint.

Proof. Note that since PrL(B) ≃ PrR(B)op it follows from Proposition 5.4.4.11

that the global sections functor Γ∶ PrL(B) → PrL∞ preserves colimits. So in light

of Proposition 5.5.4.1 we may apply [50, Corollary 4.7.3.16] to the commutative

triangle

PrL(B) ModB(PrL∞)

PrL∞

Γ

Γlin

𝑈

(where 𝑈 denotes the forgetful functor), which yields the claim.

We will now give a more explicit description of the left adjoint from Proposi-

tion 5.5.4.2. To that end, observe that the functor

Fun
B
(−,Grpd

B
)∶ Grpdop

B
→ Cat

B̂

takes values in PrRB and therefore determines a limit-preserving map

Bop → PrR(B) ≃ (PrL(B))op

which by postcomposition with Γlin results in a limit-preserving functor

B/− ∶ Bop → ModB(PrL∞)op.

We now get a map

ModB(PrL∞)op ×Bop
(−⊗BB/−)op
−−−−−−−−−−→ ModB(PrL∞)op → (PrL∞)op ≃ PrR∞ ↪→ Ĉat∞

and hence by adjunction a functor ModB(PrL∞)op → PShĈat∞
(B).

Lemma 5.5.4.3. The functorModB(PrL∞)op → PShĈat∞
(B) factors through PrR(B)

and thus defines a functor

− ⊗B Grpd
B
∶ ModB(PrL∞) → PrL(B).
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Proof. First we prove that the functor factors through Cat(B̂). This amounts

to showing that the functor D ⊗B B/− ∶ Bop → Ĉat∞ is continuous for every

D ∈ ModB(PrL∞). As the functor B/− ∶ Bop → ModB(PrL∞)op preserves limits,

this follows from the fact thatD⊗B−, viewed as an endofunctor onModB(PrL∞)op,
preserve limits as well [50, Corollary 4.4.2.15]. Next, we show that the resulting

B-category D ⊗B Grpd
B

is presentable. As it by construction takes values in

PrR∞, Theorem 5.4.2.5 implies that it suffices to show that D⊗B Grpd
B

is Grpd
B
-

cocomplete and that the transition functors are cocontinuous. Both statements fol-

low from the observation that the functor D⊗B −∶ ModB(PrL∞) → ModB(PrL∞)
can be upgraded to an (∞, 2)-functor (see [37, §4.4] for details) and that for any

𝑠∶ 𝐵 → 𝐴 in B the adjunction 𝑠! ⊣ 𝑠∗ is B-linear, see [50, Corollary 7.3.2.7]. To

finish the proof, it remains to see that for any map of B-modules D → E the

induced map E⊗BGrpd
B

→ D⊗BGrpd
B

admits a left adjoint. By construction,

it has one section-wise, so it suffices to check that for any map 𝑠∶ 𝐵 → 𝐴 in B

the induced lax square

D ⊗B B/𝐵 E ⊗B B/𝐵

D ⊗B B/𝐴 E ⊗B B/𝐴

commutes. Using again (∞, 2)-functoriality of the relative tensor product, this

follows by essentially the same argument as in the proof of Lemma 3.2.2.12.

Remark 5.5.4.4. It also seems natural to consider the functor

ModB(PrL∞) ×Bop
id ×B/−
−−−−−−→ ModB(PrL∞) × ModB(PrL∞)
−⊗B−
−−−−−→ ModB(PrL∞)

→ Cat∞

which by transposition also gives rise to a functorModB(PrL∞) → Fun(Bop,Cat∞).
We expect that this functor takes values in Cat(B) and is equivalent to−⊗BGrpdB.

It is easy to see that for fixed C ∈ ModB(PrL∞) the two resulting presheaves of

categories on B have the same value on objects and morphisms. However, a

proof that they agree as functors seems two require (∞, 2)-categorical techniques
that are not quite available yet.
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Lemma 5.5.4.5. The functor − ⊗B Grpd
B
∶ ModB(PrL∞) → PrL(B) preserves

colimits.

Proof. As limits in Cat(B̂) are computed section-wise, it suffices to show that for

every 𝐴 ∈ B the functor

ModB(PrL∞)op
(−⊗BB/𝐴)op
−−−−−−−−−−→ ModB(PrL∞)op → (PrL∞)op ≃ PrR∞ → Ĉat∞

preserves limits, which is obvious.

Proposition 5.5.4.6. The functor − ⊗B Grpd
B
defines a left adjoint of Γlin.

Proof. We show that − ⊗B Grpd
B

is equivalent to the left adjoint 𝐿 of Γlin from

Proposition 5.5.4.2. Let us denote by −⊗B∶ PrL∞ → ModB(PrL∞) the left adjoint

to the forgetful functor. Then by the associativity of the relative tensor product

([50, Proposition 4.4.3.14] we have equivalences

(− ⊗B Grpd
B
) ∘ (− ⊗B) ≃ − ⊗ Grpd

B
≃ 𝐿 ∘ (− ⊗B) (∗)

of functors from PrL∞ to PrL(B). By [50, Remark 4.7.3.15] we may find a functor

𝐹∶ ModB(PrL∞) → Fun(Δop, PrL∞)

such that the composite

ModB(PrL∞)
𝐹
−→ Fun(Δop, PrL∞)
(−⊗B)∗
−−−−−−→ Fun(Δop,ModB(PrL∞))
colimΔop
−−−−−−−→ ModB(PrL∞)

is equivalent to the identity. From (∗) and Lemma 5.5.4.5 it follows that the

diagram

Fun(Δop, PrL∞ Fun(Δop,ModB(PrL∞)) ModB(PrL∞)

Fun(Δop,ModB(PrL∞)) Fun(Δop, PrL(B)) PrL(B)

(−⊗B)∗

(−⊗B)∗

colimΔop

(−⊗BGrpd
B
)∗ −⊗BGrpd

B

𝐿∗ colimΔop

commutes. Since 𝐿 commutes with colimits as well, we get an equivalence

𝐿 ≃ (− ⊗B Grpd
B
), as desired.
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5. Accessible and presentable B-categories

The functor−⊗BGrpdB can be naturally extended to a strongmonoidal functor.

To see this, observe that since the global sections functor Γ∶ PrL(B) → PrL∞
admits an extension to a lax monoidal functor Γcc,⊗ ∶ PrL(B)⊗ → (PrL)⊗, the
commutative diagram

PrL(B) ModB(PrL∞)

PrL∞

Γ

Γlin

𝑈

can be naturally extended to a diagram of lax monoidal functors. By passing to

left adjoints, we thus obtain a commutative triangle

PrL(B)⊗ ModB(PrL∞)⊗

(PrL)⊗
−⊗Grpd

B

−⊗BGrpd
B

−⊗B

of oplax monoidal functors, see [34]. In order to show that the functor−⊗BGrpdB
is strong monoidal, it thus suffices to show that the natural map

(− ⊗B −) ⊗B Grpd
B

→ (− ⊗B Grpd
B
) ⊗ (− ⊗B Grpd

B
)

is an equivalence. As both sides of this map preserve colimits in both variables

and since everyB-module can be written as a colimit of objects that are contained

in the image of − ⊗B, it suffices to show that the natural map

(− ⊗ −) ⊗ Grpd
B

→ (− ⊗ Grpd
B
) ⊗ (− ⊗ Grpd

B
)

is an equivalence, i.e. that − ⊗ Grpd
B

is strong monoidal. Recall (e.g. from Re-

mark 5.4.4.12) that every presentable ∞-category can be obtained as a pushout (in

PrL∞) of presheaf ∞-categories. The claim therefore follows from the observation

that − ⊗ Grpd
B

fits into a commutative square

Cat(B̂)× Ĉat
×
∞

PrL(B)⊗ (PrL)⊗
𝐿

constB

𝐿
−⊗Grpd

B
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5.5. The tensor product of presentable B-categories

of oplax monoidal functors (which is again constructed from the associated

commutative square of lax monoidal functors by passing to left adjoints) in which

both vertical maps as well as constB are strong monoidal. We conclude:

Proposition 5.5.4.7. The functor − ⊗B Grpd
B
∶ ModB(PrL∞) ↪→ PrL(B) admits

a natural enhancement to a strong monoidal functor.

The functor − ⊗B Grpd
B

being fully faithful raises the question what can be

said about its essential image. First, we observe that there is an explicit criterion

when a presentable B-category arises from a B-module:

Remark 5.5.4.8. Let C be a presentable B-category. Then the unit of the ad-

junction − ⊗B Grpd
B

⊣ Γlin gives a canonical map Γlin(C) ⊗B Grpd
B

→ C. For

𝐴 ∈ B the induced map 𝜀(𝐴)∶ B/𝐴 ⊗B Γlin(C) → C(𝐴) is the map underlying

the essentially unique map of B/𝐴-modules that makes the diagram

C(1) ⊗B B/𝐴 C(𝐴))

C(1) C(1)id

𝜋∗
𝐴

𝜀(𝐴)

commute. It follows that a presentable B-category is in the essential image of

− ⊗B Grpd
B

if and only if 𝜀(𝐴) is an equivalence for all 𝐴 ∈ B.

Using the criterion from Remark 5.5.4.8, we are now able to write down an ex-

ample of a presentableB-category that is not in the essential image of−⊗BGrpdB.

We learned about this example from David Gepner and Rune Haugseng.

Example 5.5.4.9. Let Fin be the category of finite sets and let B = PSh(Fin). Let
𝑋 be a set with more than one element that we consider as an object in B via the

Yoneda embedding. Then Fun
B
(𝑋 ,Grpd

B
) is a presentable B-category that is

not in the essential image of − ⊗B Grpd
B
. In fact, by Remark 5.5.4.8 this would

imply that the canonical map 𝜀(𝑋) being an equivalence. In our specific situation

𝜀(𝑋) is the canonical left adjoint functor

PSh(Fin/𝑋) ⊗PSh(Fin) PSh(Fin/𝑋) → PSh(Fin/𝑋×𝑋).
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5. Accessible and presentable B-categories

Explicitly this functor is constructed by applying PSh(−) to the augmented cosim-

plicial diagram

Fin/𝑋×𝑋 → Fin/𝑋 × Fin/𝑋 ⇉ Fin/𝑋 × Fin × Fin/𝑋 ⋯

and then taking the induced map

colim
𝑛∈Δop

PSh(Fin/𝑋 × Fin𝑛 × Fin/𝑋) → PSh(Fin/𝑋×𝑋)

in PrL∞. Thus, upon passing to right adjoints, we conclude that if the B-category

Fun
B
(𝑋 ,Grpd

B
) is contained in the essential image of − ⊗B Grpd

B
, the cosim-

plicial diagram

PSh(Fin/𝑋×𝑋) → PSh(Fin/𝑋 × Fin/𝑋) ⇉ PSh(Fin/𝑋 × Fin × Fin/𝑋)⋯

in PrR∞ must be a limit diagram. We show that this cannot be true. Let us

denote the map Fin/𝑋×𝑋 → Fin/𝑋 × Fin𝑛 × Fin/𝑋 by 𝑓𝑛. It is given explicitly by

the assignment

(𝐴 → 𝑋 × 𝑋) ↦ (𝐴 → 𝑋 × 𝑋
pr0
−−−→ 𝑋,𝐴,… , 𝐴, 𝐴 → 𝑋 × 𝑋

pr1
−−−→ 𝑋).

Now for any 𝑛 ≥ 1 the map PSh(Fin/𝑋×𝑋) → PSh(Fin/𝑋 × Fin𝑛 × Fin/𝑋) is the

functor of right Kan extension (𝑓 op
𝑛 )∗ along 𝑓 op

𝑛 . Hence, if the above cosimplicial

diagram is a limit cone, the counit of the adjunctions (𝑓 op
𝑛 )∗ ⊣ (𝑓 op

𝑛 )∗ yields an

equivalence colim𝑛∈Δ𝑜𝑝(𝑓 op
𝑛 )∗(𝑓 op

𝑛 )∗𝐹 → 𝐹 for any 𝐹 ∈ PSh(Fin/𝑋×𝑋). For any

object

𝑎 = (𝐴 → 𝑋, 𝐵1, ..., 𝐵𝑛, 𝐶 → 𝑋) ∈ Fin/𝑋 × Fin𝑛 × Fin/𝑋

we can compute (𝑓 op
𝑛 )∗𝐹(𝑎) via the point-wise formula for right Kan extensions

as a limit indexed by (Fin/𝑋×𝑋)
op
𝑎/ . But 𝐴 × 𝐵1 × ... × 𝐵𝑛 × 𝑋 → 𝑋 × 𝑋 defines an

initial object of this category, hence we find

𝐹(𝐴 → 𝑋 × 𝑋) ≃ colim
𝑛∈Δop

𝐹(𝐴 × 𝐴𝑛 × 𝐴 → 𝑋 × 𝑋).

In particular, this shows that the map 𝐹(𝐴×𝐴 → 𝑋 ×𝑋) → 𝐹(𝐴 → 𝑋 ×𝑋) induced
by 𝐴 → 𝐴 × 𝐴 is a cover in Ani. By taking 𝐹 to be the presheaf represented by

the diagonal 𝑋 → 𝑋 × 𝑋, it in turn follows that the map

mapFin/𝑋×𝑋
(𝑋 × 𝑋 , 𝑋) → mapFin/𝑋×𝑋

(𝑋 , 𝑋)
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5.5. The tensor product of presentable B-categories

is surjective. In particular, there is a preimage of the identity 𝑋 → 𝑋. But since
𝑋 has at least two elements there is no map 𝛼 making the diagram

𝑋 × 𝑋 𝑋

𝑋 × 𝑋

𝛼

Δid

commute, which yields the desired contradiction.

There is, however, a class of ∞-topoi B for which the functor −⊗B turns out

to be essentially surjective: those that are generated by (−1)-truncated objects:

Proposition 5.5.4.10. Assume thatB is generated by (−1)-truncated objects under
colimits. Then − ⊗B Grpd

B
is an equivalence.

Proof. By Proposition 5.5.4.2 and Proposition 5.5.4.6 it remains to show essen-

tial surjectivity. Since − ⊗B Grpd
B

preserves colimits and every presentable

B-category is a pushout of presheaf B-categories (see Remark 5.4.4.12) it suffices

to see that PSh
B
(C) is in the essential image for any small B-category C. Fur-

thermore, we can write C as a colimit of B-categories of the form Δ𝑛 ⊗ 𝑈, where

𝑈 ∈ B is (−1)-truncated. Since the functor PSh
B
(−)∶ Cat(B) → PrL(B) that is

determined by the universal property of presheaf B-categories is a (partial) left

adjoint (see Corollary 3.5.1.14) and therefore preserves colimits, it suffices to see

that the PSh
B
(Δ𝑛⊗𝑈) is in the essential image. Since PSh

B
(−) is also symmetric

monoidal by Remark 5.5.3.4, we have a canonical equivalence

PSh
B
(Δ𝑛 ⊗ 𝑈) ≃ PSh

B
(Δ𝑛) ⊗ PSh

B
(𝑈 ).

Furthermore, we may compute

PSh
B
(Δ𝑛) ≃ PSh(Δ𝑛) ⊗ Grpd

B
≃ (PSh(Δ𝑛) ⊗ Grpd

B
) ⊗B Grpd

B
,

and since − ⊗B Grpd
B

is symmetric monoidal by Proposition 5.5.4.7, it thus

suffices to see that PSh
B
(𝑈 ) is in the essential image. By Remark 5.5.4.8, it

follows that we need to check that for any 𝐴 ∈ B the canonical map

B/𝐴 ⊗B PSh
B
(𝑈 )(1) → PSh

B
(𝑈 )(𝐴)
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5. Accessible and presentable B-categories

of B/𝐴-modules is an equivalence. Since B is generated under colimits by (−1)-
truncated objects, we may assume that 𝐴 = 𝑉 is also (−1)-truncated. Thus, we

have to show that the canonical map

B/𝑉 ⊗B B/𝑈 → B/𝑈×𝑉

is an equivalence. For this, note that because 𝑈 is (−1)-truncated, we have a

canonical commutative square

Δ1 B

B B/𝑈

𝑈→1

−×𝑈id1

−×𝑈

By adjunction and the universal property of presheaf ∞-categories, this induces

a commutative square

PSh(Δ1) ⊗B B

B B/𝑈

(𝑈→1)⊗B

−×𝑈(id1)⊗B

−×𝑈

in ModB(PrL∞). We claim that this square is a pushout. For this it suffices to see

that the underlying square in PrL∞ is a pushout, i.e. it is a pullback after passing to

right adjoints. The right adjoint of id1 ⊗B is simply the diagonal map B → BΔ1
,

and the right adjoint of (𝑈 → 1) ⊗B sends an object 𝐴 ∈ B to the arrow

𝐴 → Hom
B
(𝑈 , 𝐴).

Thus, we may identify the pullback, with the full subcategory of B spanned by

those objects for which the canonical map 𝐴 → Hom
B
(𝑈 , 𝐴) is an equivalence.

But because 𝑈 is (−1)-truncated, this subcategory is canonically equivalent to

B/𝑈, so that the above square is indeed a pushout. Repeating the same argument

with B/𝑉 in place of B and 𝑈 × 𝑉 in place of 𝑈, we get a similar pushout in

ModB/𝑈
(PrL∞) with B/𝑈×𝑉 in the lower right corner. But applying − ⊗B B/𝑉 to
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5.5. The tensor product of presentable B-categories

the above square, we also get a pushout

PSh(Δ1) ⊗B/𝑉 B/𝑉

B/𝑉 B/𝑈 ⊗B B/𝑉

(𝑈×𝑉→𝑉 )⊗B/𝑉

(id1)⊗B/𝑉

and thus an equivalence of B/𝑉-modules B/𝑈×𝑉 ≃ B/𝑈 ⊗B B/𝑉. Furthermore

this equivalence is by construction compatible with the canonical map from B.

Thus it is indeed the map of Remark 5.5.4.8, and the claim follows.
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6. B-topoi

In this chapter, we develop the theory of B-topoi, i.e. of the analogue of ∞-

topoi themselves in the B-categorical world. There are several equivalent ways

to approach the subject of ∞-topoi: via the Giraud axioms, as left exact and

accessible localisations of presheaf ∞-categories, or via the notion of descent. We

firmly believe that it is the latter concept that is the distinguishing element in

the theory of higher topoi. Consequently, our definition of a B-topos will be that

of a presentable B-category that satisfies a suitable B-categorical analogue of

the descent property.

We will begin this chapter by setting up the theory of descent for B-categories

in Section 6.1. In Section 6.2, we then proceed by developing the main concepts

of B-topos theory. Using the results from Section 6.1, we characterize B-topoi in

terms of an internal version of the Giraud axioms as well as via explicit sheaf-

theoretic criteria, see Theorem 6.2.1.5. We furthermore prove that any B-topos

can be presented by a left exact and accessible Bousfield localisation of a presheaf

B-category (Theorem 6.2.3.1).

We then establish one of the main results of this thesis: relating the theory

of B-topoi with that of relative ∞-topoi over B, by which we simply mean geo-

metric morphisms of ∞-topoi with fixed codomain B. In 1-topos theory, these
two notions are well-known to be entirely equivalent to one another [60]. In

Theorem 6.2.5.1, we prove the same result in the ∞-categorical context.

The correspondence between B-topoi on the one hand and geometric mor-

phisms into B on the other allows us to seamlessly translate between properties

of B-topoi and properties of geometric morphisms of ∞-topoi. For example, it

allows us to derive a formula for the pullback of ∞-topoi by means of the tensor

product of presentableB-categories, see Proposition 6.2.7.1. It will also imply that

the localisation functor of every subtopos of B admits a quite explicit description
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6. B-topoi

in terms of an internal colimits, akin to Lurie’s sheafification formula for sheaf

∞-topoi (Proposition 6.2.10.14).

In the final section of this chapter (Section 6.3), we study localic B-topoi, which

are the analogue of localic ∞-topoi in internal higher category theory. This will

require setting up the basic theory of internal locales, which we call B-locales,
within our framework. We associate to every such B-locale its localic B-topos of
sheaves, and we show that every localic B-topos is of this form. If the base ∞-

topos is itself localic, we then show that the theory of localicB-topoi is equivalent

to that of localic ∞-topoi with a structure map into B (Proposition 6.3.6.1). In

light of this correspondence, the B-topos of sheaves on a B-locale corresponds

to the ∞-topos of sheaves on the underlying locale of global sections.

6.1. Descent

Recall that if C is an ∞-category with pullbacks, then the codomain fibration

𝑑0 ∶ Fun(Δ1,C) → C is a cartesian fibration and therefore classified by a functor

C/− ∶ Cop → Cat∞. If C furthermore has all colimits, one says that C satisfies

descent if C/− preserves limits [49, § 6.1.3]. The goal of this section is to discuss

an analogous concept for B-categories. We begin in Section 6.1.1 with some

preliminaries on pullbacks inB-categories, before we define the descent property

in Section 6.1.2. In Section 6.1.3, we bring this condition into a more explicit

form using the notion of cartesian transformations. As we later want to compare

descent with a B-categorical version of the Giraud axioms, we use the remainder

of this section to relate the descent property with the notions of universality

(Section 6.1.4) and disjointness (Section 6.1.5) of colimits as well as effectivity of

groupoid objects (Section 6.1.6).

6.1.1. Pullbacks inB-categories

The goal of this section is to investigate the relation between the existence

of pullbacks in a B-category and adjunctions between its slices. Everything

discussed in this section is well-known for ∞-categories, and our proofs are

straightforward adaptations of their ∞-categorical counterparts.
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6.1. Descent

Lemma 6.1.1.1. Let C be a B-category and let 𝑐∶ 1 → C be an arbitrary object.
For any map 𝑓∶ 𝑑 → 𝑐, there is a pullback square

mapC/𝑐
(−, 𝑓 ) mapC((𝜋𝑐)!(−), 𝑑)

diag(1Grpd
B
) mapC((𝜋𝑐)!(−), 𝑐)

(𝜋𝑐)!

𝑓∗

in PSh
B
(C/𝑐).

Proof. Since (𝜋𝑐)! is a right fibration and therefore a cartesian fibration in which

every map is a cartesian morphism (see the discussion in Section 4.1.2), the claim

follows from the very definition of cartesian morphisms and the fact that id𝑐 is

final in C/𝑐.

Proposition 6.1.1.2. Let C be a B-category with a final object 1C ∶ 1 → C. Then
the following are equivalent:

1. C admits finite products;

2. for every 𝐴 ∈ B and every object 𝑐∶ 1 → 𝜋∗
𝐴C, the forgetful functor

(𝜋𝑐)! ∶ (𝜋∗
𝐴C)/𝑐 → 𝜋∗

𝐴C admits a right adjoint 𝜋∗
𝑐 .

Moreover, if either of these conditions is satisfied, the composition (𝜋𝑐)!𝜋∗
𝑐 is equiva-

lent to the endofunctor − × 𝑐 on 𝜋∗
𝐴C.

Proof. Let us first assume that C admits finite products. As this implies that 𝜋∗
𝐴

admits finite products as well, we may replace B with B/𝐴 and C with 𝜋∗
𝐴C, so

that we can reduce to 𝐴 ≃ 1. Suppose that 𝑑∶ 1 → C is an arbitrary object. On

account of the equivalence 1C × 𝑐 ≃ 𝑐, we have a commutative square

1 1 C/𝑐

Δ1 C C

id

𝑑0 1C

id𝑐

(𝜋𝑐)!
𝜋𝑑 −×𝑐

𝜋∗
𝑐

(in which 𝜋𝑑 ∶ 𝑑 → 1C denotes the unique map), and since 1C is final, the lift 𝜋∗
𝑐

exists. Note that the projection pr0 ∶ −×𝑐 → idC defines a map 𝜖∶ (𝜋𝑐)!𝜋∗
𝑐 → idC.
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Now the fact that 𝜋∗
𝑐 by construction preserves final objects implies that this func-

tor carries the unique map 𝜋𝑑 ∶ 𝑑 → 1C to the unique map 𝜋𝜋∗
𝑐 (𝑑) ∶ 𝜋∗

𝑐 (𝑑) → id𝑐.

As this implies that the image of 𝜋𝜋∗
𝑐 (𝑑) along (𝜋𝑐)! recovers the projection

pr1 ∶ 𝑑 × 𝜋∗
𝐴(𝑐) → 𝑐, the commutative square

mapC(−, (𝜋𝑐)!𝜋
∗
𝑐 (𝑑)) mapC(−, 𝑑)

mapC(−, 𝑐) diag(1Grpd
B
)

𝜖∗

(𝜋𝑐)!(𝜋𝜋∗𝑐 (𝑑))∗

is a pullback in PSh
B
(C). Together with Lemma 6.1.1.1, this shows that the

composition

mapC/𝑐
(−, 𝜋∗

𝑐 (𝑑))
(𝜋𝑐)!
−−−→ mapC((𝜋𝑐)!(−), (𝜋𝑐)!𝜋

∗
𝑐 (𝑑))

𝜖∗
−−→ mapC((𝜋𝑐)!(−), 𝑑)

is an equivalence. By replacing B with B/𝐴 and C with 𝜋∗
𝐴C, the same assertion

is true for any object 𝑑∶ 𝐴 → C. Hence 𝜋∗
𝑐 is right adjoint to (𝜋𝑐)!.

Conversely, suppose that for every 𝐴 ∈ B and every 𝑐∶ 1 → 𝜋∗
𝐴C the map

(𝜋𝑐)! admits a right adjoint 𝜋∗
𝑐 . Our goal is to show that C admits finite products.

By induction, it suffices to consider binary products. Given any pair of objects

(𝑐, 𝑑)∶ 𝐴 → C × C, we need to show that the presheaf map𝜋∗
𝐴C

(diag(−), (𝑐, 𝑑)) is
representable. By replacing C with 𝜋∗

𝐴C and 𝑐, 𝑑 with their transpose, we may

again assume that 𝐴 ≃ 1. Let us show that the object (𝜋𝑐)!𝜋∗
𝑐 (𝑑) represents this

presheaf. Note that there is a pullback square

mapC×C(diag(−), (𝑐, 𝑑)) mapC(−, 𝑑)

mapC(−, 𝑐) diag(1Grpd
B
).

To complete the proof, it therefore suffices to show that the maps

mapC(−, 𝑐)
((𝜋𝑐)!𝜋𝜋∗𝑐 (𝑑))∗
←−−−−−−−−−− mapC(−, (𝜋𝑐)!𝜋

∗
𝑐 (𝑑))

𝜖∗
−−→ mapC(−, 𝑑)

exhibit mapC(−, (𝜋𝑐)!𝜋
∗
𝑐 (𝑑)) as a product of mapC(−, 𝑐) and mapC(−, 𝑑). By the

object-wise criterion for equivalences and Corollary 3.1.1.9, this follows once we
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show that for every 𝑧∶ 1 → C the commutative square

mapC(𝑧, (𝜋𝑐)!𝜋
∗
𝑐 (𝑑)) mapC(𝑧, 𝑑)

mapC(𝑧, 𝑐) 1

𝜖∗

((𝜋𝑐)!𝜋𝜋∗𝑐 (𝑑))∗

is a pullback square in B. By descent in B and Lemma 6.1.1.1, this is the case

as soon as we verify that for any map 𝑓∶ 𝜋∗
𝐴(𝑧) → 𝜋∗

𝐴(𝑐) in context 𝐴 ∈ B the

composition

mapC/𝑐
(𝑓 , 𝜋∗

𝐴𝜋
∗
𝑐 (𝑑))

(𝜋𝑐)!
−−−→ mapC(𝜋

∗
𝐴(𝑧), 𝜋

∗
𝐴(𝜋𝑐)!𝜋

∗
𝑐 (𝑑))

𝜋∗
𝐴(𝜖)∗

−−−−−→ mapC(𝜋
∗
𝐴(𝑧), 𝜋

∗
𝐴(𝑑))

is an equivalence. Since this is just the adjunction property of (𝜋𝑐)! ⊣ 𝜋∗
𝑐 , the

claim follows.

Remark 6.1.1.3. In the situation of Proposition 6.1.1.2, the proof shows that in

light of the equivalence (𝜋𝑐)!𝜋∗
𝑐 ≃ − × 𝑐, the counit of the adjunction (𝜋𝑐)! ⊣ 𝜋∗

𝑐
can be identified with pr0 ∶ − ×𝑐 → id𝜋∗

𝐴C
. Similarly, if 𝑑 → 𝑐 is an arbitrary map

in context 𝐴 ∈ B, the unit 𝑑 → 𝜋∗
𝑐 (𝜋𝑐)! is characterised by the condition that the

composition

(𝜋𝑐)!𝑑 → (𝜋𝑐)!𝜋∗
𝑐 (𝜋𝑐)!𝑑 ≃ ((𝜋𝑐)!𝑑) × 𝑐 → (𝜋𝑐)!𝑑

is equivalent to the identity. It is thus determined by the map (𝜋𝑐)!𝑑 → ((𝜋𝑐)!𝑑)× 𝑐
that is given by the identity on the first factor and the structure map 𝑑 → 𝑐 on
the second factor.

Corollary 6.1.1.4. For any B-category C, the following are equivalent:

1. C admits pullbacks;

2. for every map 𝑓∶ 𝑐 → 𝑑 in C in context 𝐴 ∈ B, the projection 𝑓! ∶ C/𝑐 → C/𝑑
admits a right adjoint 𝑓 ∗.

Moreover, if either of these conditions are satisfied, then the composition 𝑓!𝑓 ∗ can
be identified with the pullback functor − ×𝑑 𝑐.
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Proof. In light of Proposition 6.1.1.2, it will be enough to show that C admits

pullbacks if and only if for every object 𝑐∶ 𝐴 → C theB/𝐴-categoryC/𝑐 admits bi-

nary products. Using Example 3.2.1.13, this is easily reduced to the corresponding

statement for ∞-categories, which appears as [18, Theorem 6.6.9].

Corollary 6.1.1.5. Let (𝑙 ⊣ 𝑟)∶ C → D be an adjunction between B-categories,
and suppose that C admits pullbacks. Then for any object 𝑑∶ 𝐴 → D in D in context
𝐴 ∈ B, the induced functor 𝑙/𝑑 ∶ D/𝑑 → C/𝑙(𝑐) admits a right adjoint 𝑟𝑑 that is
explicitly given by the composition

𝑟𝑑 ∶ C/𝑙(𝑑)
𝑟/𝑙(𝑑)
−−−−→ D/𝑟 𝑙(𝑑)

(𝜂𝑑)∗
−−−−→ D/𝑑

in which (𝜂𝑑)∗ is the pullback functor along the adjunction unit 𝜂𝑑∶ 𝑑 → 𝑟𝑙(𝑑).

Proof. SinceC has pullbacks, Corollary 6.1.1.4 shows that the functor (𝜂𝑑)∗ indeed

exists and is right adjoint to the projection (𝜂𝑑)!. Now by Proposition 3.1.1.15,

the functor 𝑟/𝑙(𝑑) ∶ C/𝑙(𝑑) → D/𝑟 𝑙(𝑑) admits a left adjoint 𝑙𝑟(𝑑) that is given by

the composition (𝜖𝑙(𝑑))!𝑙/𝑟 𝑙(𝑑). Therefore, the functor 𝑟𝑑 is right adjoint to the

composition

𝐷/𝑑
(𝜂𝑑)!
−−−−→ D/𝑟 𝑙(𝑑)

𝑙/𝑟 𝑙(𝑑)
−−−−→ 𝐶/𝑙𝑟 𝑙(𝑑)

(𝜖𝑙(𝑑))!
−−−−−−→ C/𝑙(𝑑).

It now suffices to notice that on account of the triangle identities, this functor is

equivalent to 𝑙/𝑑.

Next, our goal is to describe the property that aB-category C admits pullbacks

in terms of the codomain fibration 𝑑0 ∶ CΔ1
→ C. We begin with establishing

that this map is always a cocartesian fibration:

Lemma 6.1.1.6. For any B-category C, the codomain fibration 𝑑0 ∶ CΔ1
→ C is a

cocartesian fibration.

Proof. In light of the identification Δ1 × Δ1 ≃ Δ2 ⊔Δ1 Δ2, the restriction functor

res𝑑0 ∶ CΔ1×Δ1
→ CΔ1

↓C C

can be identified with the map

CΔ2⊔Δ1Δ
2
→ CΔ2
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that is given by precomposition with the inclusion Δ2 ↪→ Δ2 ⊔Δ1 Δ2 of the first

summand. The latter admits a retraction

(id, 𝑠2)∶ Δ2 ⊔Δ1 Δ2 → Δ2

which is right adjoint to the inclusion. Hence precomposition with this retraction

defines the desired fully faithful left adjoint lift𝑑1 of res𝑑1 .

By the B-categorical straightening equivalence (Theorem 4.4.3.1), the cocarte-

sian fibration 𝑑0 ∶ CΔ1
→ C gives rise to a functor C/− ∶ C → CatB. Note

that the map (𝑑1, 𝑑0)∶ CΔ1
→ C × C can be regarded as a morphism of cocarte-

sian fibrations over C, where we regard the codomain as a cocartesian fibration

over C by virtue of the projection onto the second factor. Therefore, one ob-

tains an induced map C/− → diag(C) in Fun
B
(C,CatB), where diag(C) is the

constant functor with value C. Equivalently, we may regard C/− as a functor

C → (CatB)/C. By construction, if 𝑐∶ 𝐴 → C is an arbitrary object in context

𝐴 ∈ B, the induced map C/𝑐 → 𝜋∗
𝐴C is precisely given by the projection (𝜋𝑐)!

and therefore in particular a right fibration. Thus, the functor C/− takes values

in RFibC. In particular, this implies that for any map 𝑓∶ 𝑐 → 𝑑 in C (in arbitrary

context), the induced functor C/𝑐 → C/𝑑 is a right fibration. On account of the

orthogonality between right fibrations and final functors, this map is uniquely

determined by the image of the final object id𝑐. As it is moreover evident from

the construction of C/− that the image of id𝑐 is given by 𝑓, we thus conclude that

C/− acts on maps by carrying 𝑓 to the functor 𝑓! ∶ C/𝑐 → C/𝑑 that is obtained as

the image of 𝑓 under the Yoneda embedding C ↪→ RFibC.

Proposition 6.1.1.7. Let C be a B-category. Then the following are equivalent:

1. The codomain fibration 𝑑0 ∶ CΔ1
→ C is a cartesian fibration;

2. for every map 𝑓∶ 𝑐 → 𝑑 in C, the functor 𝑓! ∶ C/𝑐 → C/𝑑 admits a right
adjoint 𝑓 ∗;

3. C admits pullbacks.

Proof. By combining Lemma 6.1.1.6 and Lemma 4.5.2.2 with Corollary 4.4.5.5, the

functor 𝑑0 is a cartesian fibration if and only if for every map 𝑓∶ 𝑐 → 𝑑 in C in
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context 𝐴 ∈ B the functor 𝑓! ∶ C/𝑐 → C/𝑑 admits a right adjoint 𝑓 ∗. Hence (1)

and (2) are equivalent. The fact that (2) and (3) are equivalent has already been

established in Corollary 6.1.1.4.

Remark 6.1.1.8. In the situation of Proposition 6.1.1.7, note that if 𝑑0 ∶ CΔ1
→ C

is a cartesian fibration, then a morphism in 𝜎∶ Δ1 ⊗ 𝐴 → CΔ1
in context 𝐴 ∈ B

is cartesian if and only if it transposes to a pullback square in C. In fact, by

Remark 4.1.2.8 the map 𝜎 is cartesian precisely if it is in the essential image of

lift𝑑0 ∶ C ↓C CΔ1
↪→ CΔ1×Δ1

. Unwinding the definitions, we can identify this map

with the inclusion

𝜄∗ ∶ Fun
B
(Λ2

2,C) ↪→ Fun
B
((Λ2

2)
◁,C),

so that the claim follows from Proposition 3.4.4.1.

6.1.2. The definition of descent

In order to define the descent property of a B-category C, we first need to con-

struct the functor C/− ∶ Cop → CatB. As we have the straightening equivalence

for cartesian fibrations at our disposal (Theorem 4.4.3.1), we may proceed in the

same fashion as in [49].

If C is a B-category with pullbacks, Proposition 6.1.1.7 implies that the functor

𝑑0 ∶ CΔ1
→ C is a cartesian fibration. By applying the straightening functor to

this map, we therefore obtain a functor C/− ∶ Cop → CatB. By the discussion in

Section 4.5.2, this functor is equivalently obtained by observing that the straight-

ening of the cocartesian fibration CΔ1
→ C takes values in CatLB and by applying

the equivalence CatLB ≃ (CatRB)op from Proposition 4.5.2.1. We may now define:

Definition 6.1.2.1. Let U be an internal class of B-categories and let C be a

U-cocomplete B-category with finite limits. We say that C satisfies U-descent if
the functor C/− ∶ Cop → Cat

B̂
is op(U)-continuous. If X is a cocomplete large

B-category, we simply say that C satisfies descent if C satisfies CatB-descent.

Remark 6.1.2.2. The property of a U-cocomplete B-category C with pullbacks

to satisfy U-descent is local in B: if ⨆𝑖 𝐴𝑖 � 1 is a cover in B, then C satisfies

U-descent if and only if 𝜋∗
𝐴𝑖
C satisfies 𝜋∗

𝐴𝑖
U-descent for all 𝑖. This follows immedi-

ately from the locality of U-continuity (Remark 3.3.2.3) and from Remark 1.4.2.4.
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Example 6.1.2.3. Let K be a class of ∞-categories and let C be an LConstK-

cocomplete B-category with pullbacks (where LConstK is the B-category of

locally K-constant B-categories, see Example 3.3.1.4). Then C satisfies LConstK-

descent if and only if for all 𝐴 ∈ B the ∞-category C(𝐴) satisfies K-descent. In

fact, by Corollary 4.4.4.11 the composition ΓB/𝐴
∘ C/−(𝐴) recovers the functor

C(𝐴)/− ∶ C(𝐴)op → Ĉat∞.

Consequently, if 𝑠∶ 𝐵 → 𝐴 is an arbitrary map in B, postcomposing C/−(𝐴)
with the evaluation functor ev𝐵 ∶ Cat(B/𝐴) → Ĉat∞ recovers the composition

C/−(𝐵) ∘ 𝑠∗. Using that C is LConstK-cocomplete, we find that the restriction

functor 𝑠∗ ∶ C(𝐴)op → C(𝐵)op is op(K)-continuous, and since limits in Cat(B/𝐴)
are detected section-wise, the claim follows.

6.1.3. Cartesian transformations

The main goal of this section is to obtain a more explicit description of the descent

property which will rely on the notion of cartesian morphisms of functors:

Definition 6.1.3.1. Let I and C be B-categories such that C admits pullbacks.

We say that a map 𝜙∶ 𝑑 → 𝑑′ in Fun
B
(I,C) in context 1 ∈ B is cartesian if for

every map 𝑖 → 𝑖′ in I in context 𝐴 ∈ B the induced commutative square

𝑑(𝑖) 𝑑′(𝑖)

𝑑(𝑖′) 𝑑′(𝑖′)

is a pullback in C(𝐴). A map 𝑑 → 𝑑′ in context 𝐴 ∈ B is called cartesian if it is

cartesian when viewed as a map in Fun
B/𝐴

(𝜋∗
𝐴I, 𝜋

∗
𝐴C) in context 1 ∈ B/𝐴. We

denote by Fun
B
(I,C)cart/𝑑 the full subcategory of Fun

B
(I,C)cart/𝑑 that is spanned by

the cartesian maps in arbitrary context 𝐴 ∈ B.

Remark 6.1.3.2. In the situation of Definition 6.1.3.1, the property of a map

𝜙𝑑 → 𝑑′ in context 𝐴 ∈ B being cartesian is local in B: if (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 is a

cover in B, then 𝜙 is cartesian if and only if each 𝑠∗𝑖 (𝜙) is. In fact, by unwinding

the definition, this follows from the fact that the property of a commutative
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square being a pullback is local in that sense. As a consequence, every object of

Fun
B
(I,C)cart/𝑑 in context 𝐴 encodes a cartesian map 𝑑 → 𝑑′, and there is a canon-

ical equivalence 𝜋∗
𝐴FunB(I,C)cart/𝑑 ≃ Fun

B/𝐴
(𝜋∗

𝐴I, 𝜋
∗
𝐴C)cart/𝜋∗

𝐴𝑑
of B/𝐴-categories.

Lemma 6.1.3.3. Let I and C be B-categories, and suppose that C admits pullbacks.
Then a map 𝑑 → 𝑑′ in Fun

B
(I,C) (in arbitrary context) is cartesian if and only

if the associated object in Fun
B
(I,CΔ1

) is contained in Fun
B
(I, (CΔ1

)♯), where
(CΔ1

)♯ ↪→ CΔ1
is the subcategory that is spanned by the cartesian morphisms over

𝑑0 ∶ CΔ1
→ C.

Proof. This follows immediately from the description of the cartesian morphisms

in CΔ1
as pullback squares in C, see Remark 6.1.1.8.

Themain goal of this section is to prove the following description of the descent

property:

Proposition 6.1.3.4. Let C be a cocomplete B-category with pullbacks and let
𝑑∶ I → C be a diagram that admits a colimit in C. Let 𝑑∶ I▷ → C be the correspond-
ing colimit cocone. Then the functor C/− ∶ Cop → CatB carries 𝑑 to a limit cone in
CatB if and only if the restriction map Fun

B
(I▷,C)/𝑑 → Fun

B
(I,C)/𝑑 restricts to

an equivalence
Fun

B
(I▷,C)cart

/𝑑
≃ Fun

B
(I,C)cart/𝑑

of B-categories.

The main idea for the proof of Proposition 6.1.3.4 is to identify the left-hand

side of the equivalence with C/ colim 𝑑 and the right-hand side with limC/𝑑(−).

In order to do so, we will need the formula for limits in CatB that we derived

in Proposition 4.5.1.2. For the convenience of the reader, we will briefly recall

the main setup from Chapter 4. The ∞-topos of marked simplicial objects in

B is defined as B+
Δ = Fun(Δop

+ ,B), where Δ+ denotes the marked simplex 1-
category. Precomposition with the inclusion Δ ↪→ Δ+ induces a forgetful functor

(−)|Δ ∶ B+
Δ → BΔ which admits a left adjoint (−)♭ and a right adjoint (−)♯. Every

cartesian fibration 𝑝∶ P → C can be equivalently encoded by a marked cartesian
fibration 𝑝♮ ∶ P♮ → C♯, where P♮ is the marked simplicial object that is obtained

from P by marking the cartesian arrows and where a marked cartesian fibration is
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by definition a map that is internally right orthogonal to the collection of marked
right anodyne maps (see Definition 4.2.2.1). Now if 𝑑∶ Iop → CatB is a functor

and if 𝑝∶ P → I is the associated cartesian fibration, one obtains a canonical

equivalence

lim 𝑑 ≃ (Hom
B+

Δ
(I♯,P♮)/I♯)|Δ,

where the right-hand side is defined via the pullback diagram

(Hom
B+

Δ
(I♯,P♮)/I♯)|Δ Hom

B+
Δ
(I♯,P♮)|Δ

1 Hom
B+

Δ
(I♯, I♯)|Δ

idI♯

(in which Hom
B+

Δ
(−, −) denotes the internal hom in B+

Δ).

Lemma 6.1.3.5. Let 𝐾 be a simplicial object in B and let 𝑝∶ P → C be a cartesian
fibration. Then the canonical map 𝐾♭ → 𝐾 ♯ of marked simplicial objects in
B induces a fully faithful functor Hom

B+
Δ
(𝐾♯,P♮)|Δ ↪→ Hom

B+
Δ
(𝐾♭,P♮)|Δ of B-

categories.

Proof. Let𝑀 be the marked simplicial object inB that fits into the pushout square

(Δ0 ⊔ Δ0)♭ ⊗ 𝐾♭ (Δ0 ⊔ Δ0)♭ ⊗ 𝐾♯

(Δ1)♭ ⊗ 𝐾♭ 𝑀.

Unwinding the definitions, we need to show that P♮ is internally local with

respect to the induced map 𝜙∶ 𝑀 → (Δ1)♭ ⊗ 𝐾 ♯. Since C♯ is easily seen to be

internally local with respect to 𝜙, this follows once we show that 𝑝♮ is internally

right orthogonal to this map. We therefore need to verify that 𝜙 is marked right

anodyne. Writing𝐾 as a colimit of objects of the form Δ𝑛⊗𝐴, we may assume that

𝐾 = Δ𝑛 ⊗𝐴. Moreover, since marked right anodyne morphisms are closed under

products, we can assume that 𝐴 ≃ 1. Using that the two maps (𝐼 𝑛)♭ ↪→ (Δ𝑛)♭ and

(𝐼 𝑛)♯ ↪→ (Δ𝑛)♯ that are induced by the spine inclusions are marked right anodyne,

we may further reduce this to 𝐾 = Δ1. In this case, one can apply Lemma 4.2.2.3

to deduce that 𝜙 is an equivalence. Hence the claim follows.
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Lemma 6.1.3.6. Let 𝑠∶ 𝐵 → 𝐴 be a map in B, and let 𝑃 → 𝐴 be an arbitrary
map. Let 𝜂𝑠 ∶ idB/𝐴

→ 𝑠∗𝑠∗ be the adjunction unit. Then the value of the natural

transformation (𝜋𝐴)∗
(𝜋𝐴)∗𝜂𝑠
−−−−−−→ (𝜋𝐴)∗𝑠∗𝑠∗ ≃ (𝜋𝐵)∗𝑠∗ at an object 𝑝∶ 𝑃 → 𝐴 in B/𝐴

can be identified with the map

Hom
B
(𝐴, 𝑃)/𝐴 → Hom

B
(𝐵, 𝑠∗𝑃)/𝐵

that is induced by precomposition with 𝑠. Here Hom
B
(𝐴, 𝑃)/𝐴 is the fibre of the

morphismHom
B
(𝐴, 𝑃) → Hom

B
(𝐴, 𝐴) over id𝐴, andHom

B
(𝐵, 𝑠∗𝑃)/𝐵 is the fibre

of the morphism Hom
B
(𝐵, 𝑠∗𝑃) → Hom

B
(𝐵, 𝐵) over id𝐵.

Proof. Since the morphism id ×𝑠∶ − ×𝐵 → − × 𝐴 can be identified with the

composition

(𝜋𝐵)!𝜋∗
𝐵

≃
−→ (𝜋𝐴)!𝑠!𝑠∗𝜋∗

𝐴
(𝜋𝐴)!𝜖𝑠𝜋∗

𝐴
−−−−−−−→ (𝜋𝐴)!𝜋∗

𝐴

(in which 𝜖𝑠 is the counit of the adjunction 𝑠! ⊣ 𝑠∗), it follows by adjunction that

the map (𝜋𝐴)∗𝜂𝑠𝜋∗
𝐴 can be identified with 𝑠∗ ∶ Hom

B
(𝐴, −) → Hom

B
(𝐵, −). Now

if 𝑝∶ 𝑃 → 𝐴 is any map, the unique morphism 𝑝 → idB/𝐴
in B/𝐴 is the pullback

of 𝜋∗
𝐴(𝜋𝐴)!𝑝 → 𝜋∗

𝐴(𝜋𝐴)!1B/𝐴
. Together with naturality of 𝜂𝑠, this implies that the

map (𝜋𝐴)∗𝜂𝑠(𝑝) fits into a commutative diagram

𝑠∗𝑠∗(𝜋𝐴)∗(𝑝) Hom
B
(𝐵, 𝑃)

(𝜋𝐴)∗(𝑝) Hom
B
(𝐴, 𝑃)

1 Hom
B
(𝐵, 𝐴)

1 Hom
B
(𝐴, 𝐴)

𝑝∗

(𝜋𝐴)∗𝜂𝑠(𝑝) 𝑠∗

𝑠

id𝐴

𝑝∗

𝑠∗

in which the front and the back square are pullbacks. As the fibre of

𝑝∗ ∶ Hom
B
(𝐵, 𝑃) → Hom

B
(𝐵, 𝐴)

over 𝑠 can be identified with Hom
B
(𝐵, 𝑠∗𝑃)/𝐵, the claim follows.

Proof of Proposition 6.1.3.4. Let 𝜄 ∶ I ↪→ I◁ be the inclusion. Since CatB is com-

plete, the theory of Kan extensions gives rise to an adjunction

(𝜄∗ ⊣ 𝜄∗)∶ Fun
B
(I◁,CatB) ⇆ Fun

B
(I,CatB),
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see Section 3.4.3. Given any diagram ℎ∶ I◁ → CatB, we will let ℎ = 𝜄∗ℎ, and we

denote by 𝜂ℎ ∶ ℎ → 𝜄∗ℎ the adjunction unit. Now let us set ℎ = C/𝑑(−), so that we

get ℎ = C/𝑑(−). Furthermore, let 𝑝∶ P → I▷ be the pullback of 𝑑0 ∶ CΔ1
→ C along

𝑑, and let 𝑞∶ Q → I be the pullback of 𝑑0 along 𝑑. According to Proposition 4.5.1.2

and Lemma 6.1.3.6 (applied to the ∞-topos B+
Δ and the map 𝜄♯), the canonical

map lim 𝜂ℎ ∶ lim ℎ → lim 𝜄∗ℎ can be identified with the functor

Hom
B+

Δ
((I▷)♯,P♮)/(I▷)♯ |Δ → Hom

B+
Δ
(I♯,Q♮)/I♯ |Δ (∗)

that is induced by precomposition with the inclusion 𝜄 ∶ I ↪→ I▷. As C/− preserv-

ing the limit of 𝑑 is therefore equivalent to (∗) being an equivalence, we only

need to identify this map with the functor Fun
B
(I▷,C)cart

/𝑑
→ Fun

B
(I,C)cart/𝑑 .

To see this, first note that there is an equivalence

Hom
B+

Δ
((−)♭, −)|Δ ≃ Fun

B
(−, (−)|Δ).

Therefore, we obtain a commutative diagram

Hom
B+

Δ
((I▷)♯,P♮)/(I▷)♯ |Δ Hom

B+
Δ
((I▷)♯,P♮)|Δ Hom

B+
Δ
((I▷)♯, (CΔ1

)♮)|Δ

Fun
B
(I▷,C)/𝑑 Fun

B
(I▷,P) Fun

B
(I▷,CΔ1

)

1 Fun
B
(I▷, I▷) Fun

B
(I▷,C)

idI▷ 𝑑∗

in which the upper three vertical maps are induced by precomposition with the

canonical map (I▷)♭ → (I▷)♯. By Lemma 6.1.3.5, they are fully faithful. Further-

more, all but the upper right square are pullbacks. But since themap (𝐼 ▷)♭ → (𝐼 ▷)♯

is internally right orthogonal to every map that is contained in the image of

(−)♯ ∶ BΔ ↪→ B+
Δ, it must also be internally right orthogonal to P♮ → (CΔ1

)♮

as the latter is the pullback of 𝑑
♯
. Therefore, the upper right square must also

be a pullback. Note, furthermore, that since the map (−)♭ → (−)♯ is an equiva-

lence when restricted along the inclusion B ↪→ BΔ, the upper right inclusion

in the above diagram identifies the domain with the essential image of the map

Hom
B+

Δ
(I▷, (CΔ1

)♯) ↪→ Hom
B+

Δ
(I▷,CΔ1

). Therefore, Lemma 6.1.3.3 implies that
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there is an equivalence Hom
B+

Δ
((I▷)♯,P♮)/(I▷)♯ |Δ ≃ Fun

B
(I▷,C)cart

/𝑑
. By an analo-

gous argument, one obtains an equivalence Hom
B+

Δ
(I♯,Q♮)/I♯ |Δ ≃ Fun

B
(I,C)cart/𝑑 ,

hence the claim follows.

Remark 6.1.3.7. In the situation of Proposition 6.1.3.4, let ∞∶ 1 → I◁ be the

cone point, and let

(∞∗ ⊣ ∞∗)∶ Fun
B
(I◁,CatB) ⇆ Cat

be the induced adjunction. Let 𝜂∶ idFun
B
(I◁,CatB) → ∞∗∞∗ be the adjunction

unit. By the same argument as in the proof of Proposition 6.1.3.4, evaluating

limI◁ 𝜂 at the cone C/𝑑 recovers the restriction map

Fun
B
(I▷,C)cart

/𝑑
→ C/𝑐.

Since limI◁ can be identified with ∞∗ (owing to ∞∶ 1 → I◁ being initial), the

triangle identities imply that this map must be an equivalence. Furthermore, note

that by Corollary 6.1.1.5 the restriction functor Fun
B
(I▷,C)/𝑑 → C/𝑐 admits a

right adjoint that is is given by the composition

C/𝑐

diag/𝑐
−−−−−→ Fun

B
(I▷,C)/ diag(𝑐)

𝜂∗
−−→ Fun

B
(I▷,C)/𝑑

(where 𝜂∶ 𝑑 → diag(𝑐) denotes the adjunction unit). Now if 𝑐′ → 𝑐 is a map

in C, Corollary 6.1.1.4 implies that the counit 𝜂!𝜂∗ diag(𝑐′) → diag(𝑐′) of the

adjunction 𝜂! ⊣ 𝜂∗ is given by the pullback of 𝜂 along diag(𝑐′) → diag(𝑐). Since
evaluation at ∞ preserves pullbacks and since diag/𝑐 is fully faithful, we conclude

that evaluating the counit of the adjunction C/𝑐 ⇆ Fun
B
(I▷,C)/𝑑 at 𝑐′ → 𝑐

must result in an equivalence. Upon replacing B with B/𝐴 and repeating the

same argument, we conclude that the entire counit must be an equivalence,

so that the functor C/𝑐 → Fun
B
(I▷,C)/𝑑 is fully faithful. Now combining the

evident observation that this map takes values in Fun
B
(I▷,C)cart

/𝑑
with the fact that

the restriction functor Fun
B
(I▷,C)cart

/𝑑
→ C/𝑐 is an equivalence, one concludes

that the inclusion C/𝑐 ↪→ Fun
B
(I▷,C)/𝑑 identifies C/𝑐 with Fun

B
(I▷,C)cart

/𝑑
. In

particular, the inclusion Fun
B
(I▷,C)cart

/𝑑
↪→ Fun

B
(I▷,C)/𝑑 admits a left adjoint.
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Remark 6.1.3.8. In the situation of Remark 6.1.3.7, let 𝑑
′
→ 𝑑 be a map in

Fun
B
(I▷,C), and let us set 𝑐′ = ∞∗(𝑑

′
). Then the unit of the adjunction

C/𝑐 ⇆ Fun
B
(I▷,C)/𝑑

evaluates at 𝑑
′
→ 𝑑 to the natural map 𝑑

′
→ 𝜂∗ diag(𝑐′). Therefore, the map

𝑑
′
→ 𝑑 is cartesian precisely if the square

𝑑
′

diag(𝑐′)

𝑑 diag(𝑐)

is a pullback. As the functor (𝜄∗, ∞∗)∶ Fun
B
(I▷,C) → Fun

B
(I,C) × C is conser-

vative (on account of the map (𝜄, ∞)∶ I ⊔ 1 � I▷ being essentially surjective) and

as the image of the above square along ∞∗ is always a pullback, the map 𝑑
′
→ 𝑑

is cartesian precisely if the square

𝑑′ diag(𝑐′)

𝑑 diag(𝑐)

in Fun
B
(I,C) is a pullback.

Suppose that U is an internal class ofB-categories and let C be a U-cocomplete

B-category with pullbacks. Given any I ∈ U(1) and any diagram 𝑑∶ I → C with

colimit cocone 𝑑∶ I▷ → C, Proposition 3.1.1.15 implies that the functor

𝜄∗/𝑑 ∶ Fun
B
(I▷,C)/𝑑 → Fun

B
(I,C)/𝑑

has a left adjoint that is given by (𝜄!)/𝑑. Combining this observation with Re-

mark 6.1.3.7, we thus end up with a left adjoint Fun
B
(I,C)cart/𝑑 → Fun

B
(I▷,C)cart

/𝑑
to the restriction functor Fun

B
(I▷,C)cart

/𝑑
→ Fun

B
(I,C)cart/𝑑 that we will refer to

as the glueing functor. In light of Proposition 6.1.3.4, the functor C/− preserves

the limit of 𝑑 precisely if both unit and counit of this adjunction are equivalences,

i.e. if both the restriction functor and the glueing functor are fully faithful. We

may therefore split up the notion of U-descent into two separate conditions:
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Definition 6.1.3.9. Let U be an internal class and let C be a U-cocomplete B-

category with pullbacks. We say that C has faithful U-descent if for every 𝐴 ∈ B,

every I ∈ U(𝐴) and every diagram 𝑑∶ I → 𝜋∗
𝐴Cwith colimit cocone 𝑑∶ I▷ → 𝜋∗

𝐴C,

the restriction functor Fun
B/𝐴

(I▷, 𝜋∗
𝐴C)

cart
/𝑑

→ Fun
B/𝐴

(I, 𝜋∗
𝐴C)

cart
/𝑑 is fully faithful.

We say that C has effective U-descent if for every 𝐴 ∈ B, every I ∈ U(𝐴) and every

diagram 𝑑∶ I → 𝜋∗
𝐴C with colimit cocone 𝑑∶ I▷ → 𝜋∗

𝐴C, the glueing functor

Fun
B/𝐴

(I, 𝜋∗
𝐴C)cart/𝑑 → Fun

B/𝐴
(I▷, 𝜋∗

𝐴C)cart
/𝑑

is fully faithful. If C is a cocomplete

large B-category, we simply say that C has faithful/effective descent if it has

faithful/effective CatB-descent.

Remark 6.1.3.10. As a consequence of Remark 6.1.3.2, the property of C having

faithful/effective U-descent is local in B, in the sense that whenever ⨆𝑖 𝐴𝑖 � 1
is a cover in B, the B-category C satisfies faithful/effective U-descent precisely if

for each 𝑖 the B/𝐴𝑖
-category 𝜋∗

𝐴𝑖
C has faithful/effective 𝜋∗

𝐴𝑖
U-descent.

By unwinding how the unit and counit of the adjunction

Fun
B
(I▷,C)cart

/𝑑
⇆ Fun

B
(I,C)cart/𝑑

are computed (cf. Remark 6.1.1.3) and by using Remark 6.1.3.8, we may charac-

terise the notion of faithful and effective U-descent as follows:

Proposition 6.1.3.11. Let U be an internal class and let C be a U-cocomplete
B-category with pullbacks. Then the following are equivalent:

1. C has faithful U-descent;

2. for every 𝐴 ∈ B, every I ∈ U(𝐴) and every cartesian map 𝑑
′

→ 𝑑 in
Fun

B/𝐴
(I▷, 𝜋∗

𝐴C) in which 𝑑 is a colimit cocone, 𝑑
′
is a colimit cocone as

well;

3. for every 𝐴 ∈ B, every I ∈ U(𝐴) and every pullback diagram

𝑑′ diag(𝑐′)

𝑑 diag colim 𝑑

diag(𝑔)
𝜂

in Fun
B/𝐴

(I, 𝜋∗
𝐴C) in which 𝜂 is the unit of the adjunction colim ⊣ diag, the

transpose map colim 𝑑′ → 𝑐′ is an equivalence.
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Proposition 6.1.3.12. Let U be an internal class and let C be a U-cocomplete
B-category with pullbacks. Then the following are equivalent:

1. C has effective U-descent;

2. for every 𝐴 ∈ B, every I ∈ U(𝐴) and every cartesian map 𝑑′ → 𝑑 in
Fun

B/𝐴
(I, 𝜋∗

𝐴C), the induced map between colimit cocones 𝑑
′
→ 𝑑 is cartesian

as well;

3. for every 𝐴 ∈ B, every I ∈ U(𝐴) and every cartesian map 𝑑′ → 𝑑 in
Fun

B/𝐴
(I, 𝜋∗

𝐴C), the naturality square

𝑑′ diag(colim 𝑑′)

𝑑 diag colim 𝑑

𝜂

𝜂

is a pullback.

Corollary 6.1.3.13. Let 𝑆 be a local class of maps in B and let C be an Grpd𝑆-
cocomplete B-category with pullbacks. Then the following are equivalent:

1. C has Grpd𝑆-descent;

2. for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆 the functor 𝑝! ∶ C(𝑃) → C(𝐴) is a right
fibration;

3. for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆 the functor (𝑝!)/1C(𝑃)
∶ C(𝑃) → C(𝐴)/𝑝!(1C(𝑃))

is an equivalence.

Proof. Since (𝑝!)/1C(𝑃)
is always final, this functor is an equivalence if and only

if it is a right fibration, which is in turn equivalent to 𝑝! being a right fibration.

Hence (2) and (3) are equivalent conditions. Now in light of the adjunction

𝑝! ⊣ 𝑝∗, a map 𝑓∶ 𝑐′ → 𝑐 in C(𝑃) is cartesian with respect to 𝑝! precisely if the

naturality square
𝑐′ 𝑝∗𝑝!𝑐′

𝑐 𝑝∗𝑝!𝑐

𝑓 𝑝∗𝑝!𝑓
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is a pullback. Therefore, Proposition 6.1.3.12 and the fact that every map of

diagrams indexed by a B-groupoid is cartesian imply that C has effective Grpd𝑆-

descent if and only if for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆, every morphism in C(𝑃) is
cartesian with respect to 𝑝!. By the same observation, Proposition 6.1.3.11 shows

that C has faithful Grpd𝑆-descent if and only if for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆,
every object 𝑐 ∈ C(𝑃) and every morphism 𝑔∶ 𝑐′′ → 𝑝!(𝑐) in C(𝐴), the pullback

of 𝑝∗(𝑔) along the adjunction unit 𝑐 → 𝑝∗𝑝!𝑐 defines a cartesian lift of 𝑔. In

other words, C has faithful Grpd𝑆-descent if and only if 𝑝! is a cartesian fibration.

Hence (1) and (2) are equivalent.

For the next corollary, recall from Section 5.2.1 that if K is a class of ∞-

categories and 𝑆 is a local class of morphisms in B, we denote by Cat⟨K,𝑆⟩
B

the left
regularisation of the internal class LConstK ∪Grpd𝑆, i.e. the smallest internal class

that contains Δ∪LConstK ∪Grpd𝑆 and that is closed under LConstop(K) ∪Grpd𝑆-
colimits in CatB (where op(K) is the image of K under (−)op ∶ Cat∞ ≃ Cat∞).

We now obtain:

Corollary 6.1.3.14. Let K be a class of ∞-categories and let 𝑆 be a local class of
maps in B. Let C be a Cat⟨K,𝑆⟩

B
-cocomplete B-category with pullbacks. Then CatB

satisfies Cat⟨K,𝑆⟩
B

-descent if and only if

1. for all 𝐴 ∈ B the ∞-category C(𝐴) satisfies K-descent, and

2. for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆 the functor 𝑝! is a right fibration.

Proof. By Proposition 5.1.3.4, the B-category C has Cat⟨K,𝑆⟩
B

-descent if and only

if it satisfies both LConstK- and Grpd𝑆-descent. By Example 6.1.2.3 the first con-

dition is equivalent to (1), and by Corollary 6.1.3.13 the second one is equivalent

to (2).

Example 6.1.3.15. Let 𝑆 be a local class of morphisms in B that is closed under

pullbacks in Fun(Δ1,B) and that is left cancellable, i.e. satisfies the condition that

whenever there is a composable pair of morphisms 𝑓 and 𝑔 in B for which 𝑔 is

contained in 𝑆, then 𝑔𝑓 is contained in 𝑆 if and only if 𝑓 is. Then the associated

subuniverseGrpd𝑆 ↪→ Grpd
B
is closed under pullbacks and underGrpd𝑆-colimits,

and for every map 𝑠∶ 𝐵 → 𝐴 in 𝑆 the functor 𝑠! ∶ Grpd𝑆(𝐵) → Grpd𝑆(𝐴) is a right
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fibration. Hence Grpd𝑆 has Grpd𝑆-descent. These conditions are for example

satisfied if 𝑆 is the right complement of a factorisation system.

6.1.4. Universality of colimits

The goal of this section is to establish that the notion of faithful U-descent is

equivalent to universality of U-colimits:

Definition 6.1.4.1. Let U be an internal class of B-categories and let C be a

U-cocomplete B-category with pullbacks. We say that U-colimits are universal
in C if for every map 𝑓∶ 𝑐 → 𝑑 in C in context 𝐴 ∈ B the functor 𝑓 ∗ ∶ C/𝑑 → C/𝑐
is 𝜋∗

𝐴U-cocontinuous. If C is a cocomplete large B-category, we simply say that

colimits are universal in C if CatB-colimits are universal in C.

Remark 6.1.4.2. In the situation of Definition 6.1.4.1, note that by Proposi-

tion 3.3.2.13 the B/𝐴-category C/𝑐 ≃ (𝜋∗
𝐴C)/ ̄𝑐 (where ̄𝑐 ∶ 1 → 𝜋∗

𝐴C is the trans-

pose of 𝑐) is 𝜋∗
𝐴U-cocomplete for every 𝑐∶ 𝐴 → C. Therefore, asking for 𝑓 ∗ to be

𝜋∗
𝐴U-cocontinuous makes sense.

Remark 6.1.4.3. The condition that U-colimits are universal in C is local in B:

if ⨆𝑖 𝐴𝑖 � 1 is a cover in B, then U-colimits are universal in C if and only if

𝜋∗
𝐴𝑖
U-colimits are universal in 𝜋∗

𝐴𝑖
C for each 𝑖. This is easily seen using the fact

that U-cocontinuity is a local condition (Remark 3.3.2.3).

Example 6.1.4.4. Let K be a class of ∞-categories and let C be an LConstK-

cocomplete B-category with pullbacks. Then LConstK-colimits are universal

in C if and only if K-colimits are universal in C(𝐴) for all 𝐴 ∈ B. In fact, this

follows immediately from the observation that for every map 𝑓∶ 𝑐 → 𝑑 in C

in context 𝐴 ∈ B and for every map 𝑠∶ 𝐵 → 𝐴 in B the functor 𝑓 ∗(𝐵) can be

identified with (𝑠∗𝑓 )∗ ∶ C(𝐵)/𝑑 → C(𝐵)/𝑐.

Proposition 6.1.4.5. Let U be an internal class of B-categories and let C be a
U-cocomplete B-category with pullbacks. Then U-colimits are universal in C if and
only if C has faithful U-descent.

Proof. Let I be an object in U(1), and let 𝑓∶ 𝑐′ → 𝑐 be an arbitrary map in

C in context 1 ∈ B. Suppose that 𝑑∶ I → C/𝑐 is a diagram with colimit co-

cone 𝑑∶ 𝑑 → diag colim 𝑑, which we may equivalently regard as a diagram
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𝑑∶ I → C/ colim 𝑑. Let 𝑔∶ colim 𝑑 → 𝑐 be the induced map. On account of the

fact that the (vertical) mate of the commutative square

C/𝑓 ∗(colim 𝑑) C/𝑐′

C/ colim 𝑑 C/𝑐

(𝑓 ∗(𝑔))!

(𝑔∗𝑓 )! 𝑓!
𝑔!

commutes and since the horizontal maps in this diagram are conservative and U-

cocontinuous, the functor 𝑓 ∗ preserves the colimit of 𝑑 if and only if the functor

(𝑔∗𝑓 )∗ preserves the colimit of 𝑑∶ I → C/ colim 𝑑. By (the proof of) Proposi-

tion 3.2.4.3, the colimit of the latter is the final object in C/ colim 𝑑. Therefore,

in order to show that C has U-universal colimits, it suffices to consider those

diagrams in C/𝑐 whose colimit is the final object.

Now on account of the commutative square

Fun
B
(I,C)/ diag(𝑐′) Fun

B
(I,C/𝑐′)

Fun
B
(I,C)/ diag(𝑐) Fun

B
(I,C/𝑐)

diag(𝑓 )!

≃

(𝑓!)∗
≃

wemay identify diag(𝑓 )∗ with (𝑓 ∗)∗. Therefore, if 𝑑 → diag(𝑐) is a colimit cocone,

the upper horizontal equivalence in the above diagram identifies its pullback

𝑑′ → diag(𝑐′) along diag(𝑓 ) with the composition I
𝑑
−→ C/𝑐

𝑓 ∗

−−→ C/𝑐′ . Thus, by

again using Proposition 3.2.4.3, the map 𝑑′ → diag(𝑐′) is a colimit cocone if and

only if the colimit of 𝑓 ∗𝑑 is the final object in C/𝑐′ , which is in turn equivalent to

𝑓 ∗ preserving the colimit of 𝑑. As replacing B with B/𝐴 allows us to arrive at

the same conclusion for any I ∈ U(𝐴), Proposition 6.1.3.11 yields the claim.

Example 6.1.4.6. Let 𝑆 be a local class of morphisms in B and let C be a Grpd𝑆-

cocomplete B-category with pullbacks. Then Grpd𝑆-colimits are universal in C

if and only if for every map 𝑝∶ 𝑃 → 𝐴 in 𝑆 the functor 𝑝! ∶ C(𝑃) → C(𝐴) is a

cartesian fibration. In fact, in light of Proposition 6.1.4.5 this follows from the

argument in the proof of Corollary 6.1.3.13.

We end this section by relating universality of colimits with the property of

being locally cartesian closed :
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Proposition 6.1.4.7. Let X be a presentable B-category. Then X has Grpd
B
-

universal colimits if and only if for every object 𝑥∶ 𝐴 → X, the B/𝐴-category
(𝜋∗

𝐴X)/𝑥 is cartesian closed, which is to say that there exists a bifunctor

Hom𝜋∗
𝐴X

(−, −)∶ (𝜋∗
𝐴X)

op
/𝑥 × (𝜋∗

𝐴X)/𝑥 → (𝜋∗
𝐴X)/𝑥

that fits into an equivalence

map(𝜋∗
𝐴X)/𝑥

(− × −, −) ≃ map(𝜋∗
𝐴X)/𝑥

(−,Hom𝜋∗
𝐴X

(−, −)).

Proof. It will be enough to show that X is cartesian closed if and only if for every

𝑦∶ 𝐴 → X the functor (𝜋𝑦)∗ ∶ 𝜋∗
𝐴X → (𝜋∗

𝐴X)/𝑦 is Grpd
B/𝐴

-cocontinuous. Using

Remark 6.1.4.3, we can assume that 𝐴 ≃ 1. Recall that the forgetful functor

(𝜋𝑦)! ∶ X/𝑦 → Y is Grpd
B
-cocontinuous (Proposition 3.3.2.13). As this functor is

moreover a right fibration and therefore in particular conservative, we find that

𝜋∗
𝑦 isGrpd

B
-cocontinuous if and only if the composition (𝜋𝑦)!𝜋∗

𝑦 is. Together with

Proposition 6.1.1.2, this shows that 𝜋∗
𝑦 being Grpd

B
-cocontinuous is equivalent

to 𝑦 ×− being Grpd
B
-cocontinuous. As X is presentable, this is in turn equivalent

to 𝑦 × − having a right adjoint HomX(𝑦 , −) (see Proposition 5.4.3.1). Clearly, this

holds if X is cartesian closed. Conversely, if 𝑦 × − admits a right adjoint for all

𝑦∶ 𝐴 → X, then mapX(− × −, −), viewed as a functor Xop × X → PSh
B
(X), takes

values in X ↪→ PSh
B
(X) and therefore gives rise to the desired internal hom.

6.1.5. Disjoint colimits

If C is an ∞-category with pullbacks and finite coproducts, one says that a

coproduct 𝑐0 ⊔ 𝑐1 in C is disjoint if the fibre product 𝑐𝑖 ×𝑐0⊔𝑐1 𝑐𝑗 is equivalent to 𝑐𝑖 if
𝑖 = 𝑗 and the initial object otherwise. In this section, our goal is to study an internal

analogue of this concept. In fact, we will define what it means for arbitrary B-
groupoidal colimits to be disjoint. To that end, recall that if 𝑆 is an arbitrary local

class of morphisms in B, the associated subuniverse Grpd𝑆 is contained in the

free Grpd𝑆-cocompletion PSh
Grpd𝑆
B

(1), cf. Example 3.5.3.5. Therefore, if C is an

arbitrary Grpd𝑆-cocomplete B-category, the tensoring bifunctor

− ⊗ −∶ Grpd𝑆 ×C → C
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(see Proposition 3.5.3.8) is well-defined. Furthermore, note that 𝑆 is closed un-

der diagonals if and only if for every G ∈ Grpd𝑆(𝐴) and every pair of objects

𝑔, 𝑔′ ∶ 𝐴 ⇉ G the mapping B/𝐴-groupoid mapG(𝑔, 𝑔
′) is contained in Grpd𝑆(𝐴)

as well. Therefore, we may define:

Definition 6.1.5.1. Let 𝑆 be a local class of morphisms in B that is closed under

diagonals, and let C be an Grpd𝑆-cocomplete B-category with pullbacks. If

G ∈ Grpd𝑆(1) is an arbitrary object, we say that G-indexed colimits are disjoint in
C if for all diagrams 𝑑∶ G → C and for every pair of objects 𝑔, 𝑔′ in G in context

1 ∈ B the diagram

mapG(𝑔, 𝑔
′) ⊗ 𝑑(𝑔) 𝑑(𝑔′)

𝑑(𝑔) colim 𝑑

is a pullback. We say that Grpd𝑆-colimits are disjoint in C if for all 𝐴 ∈ B and all

G ∈ U(𝐴) all G-indexed colimits are disjoint in 𝜋∗
𝐴C.

Remark 6.1.5.2. In the situation of Definition 6.1.5.1, let 𝑑∶ G▷ → C be the

colimit cocone associated with 𝑑. Then the commutative square in the definition

is obtained by transposing the commutative diagram

mapG▷(𝑔, 𝑔′) mapC(𝑑(𝑔), 𝑑(𝑔
′))

mapG▷(𝑔, ∞) mapC(𝑑(𝑔), colim 𝑑)

𝑑

𝑑

across the equivalence mapC(−⊗−, −) ≃ mapGrpd
B

(−,mapC(−, −)), noting that

since 𝜄 ∶ G ↪→ G▷ is fully faithful the upper left corner can be identified with

mapG(𝑔, 𝑔
′) and since ∞∶ 1 → G▷ is final the lower left corner is equivalent to

the final object.

Example 6.1.5.3. Let us unwind Definition 6.1.5.1 in the case where B = Ani

and where G = {0, 1}. Then a diagram 𝑑∶ {0, 1} → C in an ∞-category C is simply

given by a pair (𝑐0, 𝑐1) of objects in C, and its colimit is the coproduct 𝑐0 ⊔ 𝑐1.
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Furthermore, the square in Definition 6.1.5.1 is explicitly given by

map{0,1}(𝑖, 𝑗) × 𝑐𝑖 𝑐𝑗

𝑐𝑖 𝑐0 ⊔ 𝑐1

(for 𝑖, 𝑗 ∈ {0, 1}) and is therefore a pullback for all pairs (𝑖, 𝑗) precisely if coproducts

are disjoint in C in the usual sense.

Remark 6.1.5.4. The property of Grpd𝑆-colimits to be disjoint in C is a local

condition. More precisely, if G ∈ U(1) is an arbitrary object and if ⨆𝑖 𝐴𝑖 � 1 is a

cover in B, then G-indexed colimits are disjoint in C if and only if 𝜋∗
𝐴𝑖
G-indexed

colimits are disjoint in 𝜋∗
𝐴𝑖
C for all 𝑖. This follows immediately from the fact

that both limits and colimits are determined locally, cf. Remark 3.2.1.7. As a

consequence, if Grpd𝑆 is generated by a family of objects (G𝑖 ∶ 𝐴𝑖 → Grpd𝑆)𝑖,
then Grpd𝑆-colimits are disjoint in C precisely if G𝑖-indexed colimits are disjoint

in 𝜋∗
𝐴𝑖
C for all 𝑖.

Example 6.1.5.5. Let 𝑆 be the local class of morphisms in B that is generated

by ∅, 1 and 2 = 1 ⊔ 1. Then 𝑆 is closed under diagonals. By using Remark 6.1.5.4

and Example 6.1.5.3, one finds that Grpd𝑆-colimits are disjoint in C if and only if

coproducts are disjoint in C(𝐴) for all 𝐴 ∈ B.

The main goal of this section is to show:

Proposition 6.1.5.6. Let 𝑆 be a local class of morphisms in B that is closed under
diagonals, and let C be an Grpd𝑆-cocomplete B-category with pullbacks in which
Grpd𝑆-colimits are universal. Then C has effective Grpd𝑆-descent if and only if
Grpd𝑆-colimits are disjoint.

In order to prove Proposition 6.1.5.6, we will need a more explicit description of

the notion of disjointGrpd𝑆-colimits. The key input is the following construction:

Construction 6.1.5.7. Let 𝑆 be a local class of morphisms in B that is closed

under diagonals, and let C be an Grpd𝑆-cocomplete B-category with pullbacks.

Suppose that 𝑝∶ 𝑃 → 𝐴 is a map in 𝑆, and let 𝑐∶ 𝑃 → C be an arbitrary object.
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6. B-topoi

Let 𝜂∶ 𝑐 → 𝑝∗𝑝!𝑐 be the adjunction unit, and consider the pullback square

𝑧 pr∗1(𝑐)

pr∗0(𝑐) pr∗0 𝑝
∗𝑝!(𝑐)

pr∗1(𝜂)
pr∗0(𝜂)

in C(𝑃 ×𝐴 𝑃) (where we implicitly identify pr∗0 𝑝
∗ ≃ pr∗1 𝑝

∗). Note that if

Δ𝑝 ∶ 𝑃 → 𝑃 ×𝐴 𝑃 is the diagonal map, the pullback of the above square along Δ𝑝
yields the pullback square

𝑐 ×𝑝∗𝑝!(𝑐) 𝑐 𝑐

𝑐 𝑝∗𝑝!(𝑐)

in C(𝑃). Therefore, the diagonal map 𝑐 → 𝑐 ×𝑝∗𝑝!(𝑐) 𝑐 transposes to a map

𝛿𝑝(𝑐)∶ (Δ𝑝)!(𝑐) → 𝑧.

Proposition 6.1.5.8. Let 𝑆 be a local class of morphisms in B that is closed under
diagonals, and let C be an Grpd𝑆-cocomplete B-category with pullbacks. Then
Grpd𝑆-colimits are disjoint in C if and only if for all maps 𝑝∶ 𝑃 → 𝐴 and all objects
𝑐∶ 𝑃 → C the map 𝛿𝑝(𝑐) from Construction 6.1.5.7 is an equivalence.

Proof. By identifying 𝑝∶ 𝑃 → 𝐴 with a B/𝐴-groupoid G, the object 𝑐∶ 𝑃 → C

corresponds to a diagram 𝑑∶ G → 𝜋∗
𝐴C. Also, the two maps pr0, pr1 ∶ 𝑃 ×𝐴 𝑃 ⇉ 𝑃

correspond to objects 𝑔 and 𝑔′ in G in context 𝑃 ×𝐴 𝑃. In light of these identifica-

tions, the two cospans

pr∗1(𝑐) 𝑑(𝑔′)

pr∗0(𝑐) pr∗0 𝑝
∗𝑝!(𝑐) 𝑑(𝑔) pr∗0 𝑝

∗(colim 𝑑)

pr∗1(𝜂𝑃)
pr∗0(𝜂𝑃)

(in context 𝑃 ×𝐴 𝑃) are translated into each other. Next, we note that pulling back

𝑔 and 𝑔′ along the diagonal Δ∶ 𝑃 → 𝑃 ×𝐴 𝑃 recovers the tautological object 𝜏 of
G (i.e. the one corresponding to id𝑃). As there is a section id𝜏 ∶ 𝑃 → mapG(𝜏 , 𝜏 ),
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6.1. Descent

we thus obtain a commutative diagram

𝑑(𝜏)

mapG(𝜏 , 𝜏 ) ⊗ 𝑑(𝜏) 𝑑(𝜏 )

𝑑(𝜏 ) 𝑝∗(colim 𝑑)

id

id

in context 𝑃. Observe that value of the unit of the adjunction

(Δ! ⊣ Δ∗)∶ B/𝑃 ⇆ B/𝑃×𝐴𝑃

at the final object precisely recovers the map id𝜏 ∶ 𝑃 → mapG(𝜏 , 𝜏 ). Hence, as

the functor

− ⊗ 𝑑(𝜏)∶ 𝜋∗
𝑃 Grpd

B
→ 𝜋∗

𝑃C

is by construction 𝜋∗
𝑃U-cocontinuous, one finds that 𝑑(𝜏) → mapG(𝜏 , 𝜏 ) ⊗ 𝑑(𝜏)

can be identified with the unit of the adjunction

(Δ! ⊣ Δ∗)∶ C(𝑃) ⇆ C(𝑃 ×𝐴 𝑃).

But this precisely means that the transpose map Δ!𝑑(𝜏) → mapG(𝑔, 𝑔
′) ⊗ 𝑑(𝑔)

must be an equivalence. As 𝑑(𝜏) is simply 𝑐, we therefore find that the two

diagrams

Δ!(𝑐) pr∗1(𝑐) mapG(𝑔, 𝑔
′) ⊗ 𝑑(𝑔) 𝑑(𝑔′)

pr∗0(𝑐) pr∗0 𝑝
∗𝑝!(𝑐) 𝑑(𝑔) pr∗0 𝑝

∗(colim 𝑑)

pr∗1(𝜂)
pr∗0(𝜂)

are equivalent. To complete the proof, we still need to show that the right square

being cartesian is equivalent to Grpd𝑆-colimits being disjoint in C. Certainly, this

is a necessary condition since this square is precisely of the form as in Defini-

tion 6.1.5.1 (after identifying pr∗0 𝑝
∗(colim 𝑑) with colim pr∗0 𝑝

∗𝑑 and regarding 𝑔
and 𝑔′ as objects of pr∗0 𝑝

∗G in context 1 ∈ B/𝑃×𝐴𝑃). The converse follows from

the observation that every pair of objects ℎ, ℎ′ ∶ 𝐴 ⇉ G must be a pullback of 𝑔
and 𝑔′, i.e. that the above diagram is the universal one.
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6. B-topoi

Proof of Proposition 6.1.5.6. We will freely make use of the setup from Proposi-

tion 6.1.5.8. Therefore, let us fix a map 𝑝∶ 𝑃 → 𝐴 in 𝑆, and let us denote the

unit and counit of the associated adjunction 𝑝! ⊣ 𝑝∗ by 𝜂𝑝 and 𝜖𝑝, respectively.
We first assume that C has effective Grpd𝑆-descent. Choose an arbitrary object

𝑐∶ 𝑃 → C and consider the pullback

𝑧 pr∗1(𝑐)

pr∗0(𝑐) pr∗0 𝑝
∗𝑝!(𝑐)

𝑔

pr∗1(𝜂𝑝)
pr∗0(𝜂𝑝)

in C(𝑃 ×𝐴 𝑃). By making use of the commutative diagram

pr∗0(𝑐) pr∗1 𝑝
∗𝑝!(𝑐)

pr∗1(pr1)! pr
∗
0(𝑐),

pr∗0 𝜂𝑝𝑐

𝜂pr1 pr
∗
0(𝑐)

pr∗1(𝛼)

(where 𝛼 is an equivalence owing to C having Grpd𝑆-colimits), we may identify

the above square with the pullback square

𝑧 pr∗1(𝑐)

pr∗0(𝑐) pr∗1(pr1)! pr
∗
0(𝑐).

𝑔

pr∗1(𝛼𝜂𝑝)
𝜂pr1 pr

∗
0(𝑐)

Since by assumption Grpd𝑆-colimits are universal in C, Proposition 6.1.4.5 im-

plies that C has faithful Grpd𝑆-descent. Hence Proposition 6.1.3.11 implies that

the transpose (pr1)!(𝑧) → 𝑐 of 𝑔 must be an equivalence. Together with the

commutative diagram

(pr1)!Δ!(𝑐) (pr1)!Δ!Δ∗(𝑧) (pr1)!(𝑧)

𝑐 Δ∗(𝑧) 𝑐,

≃

(pr1)!(𝛿𝑝(𝑐))

≃

(pr1)!𝜖Δ𝑧

id

Δ∗(𝑔)

428



6.1. Descent

this observation implies that (pr1)!(𝛿𝑝(𝑐)) is an equivalence. But since C has

effective and faithful Grpd𝑆-descent, Corollary 6.1.3.13 implies that (pr1)! is a

right fibration and therefore in particular conservative. Hence 𝛿𝑝(𝑐) is already an

equivalence.

Conversely, suppose that Grpd𝑆-colimits in C are disjoint and let 𝑓∶ 𝑐 → 𝑑 be

an arbitrary map in C in context 𝑃. Consider the diagram

𝑐

𝑒 𝑝∗𝑝!(𝑐)

𝑑 𝑝∗𝑝!(𝑑)

𝜙

𝜂𝑃𝑐

𝑓

𝑝∗𝑝!(𝑓 )
𝜂𝑑

in C(𝑃) in which the square is a pullback. By Proposition 6.1.3.12, the result

follows once we show that 𝜙 is an equivalence. We now obtain a pullback diagram

𝑥 pr∗1(𝑐)

pr∗0(𝑒) pr∗0 𝑝
∗𝑝!(𝑐)

𝑦 pr∗1(𝑑)

pr∗0(𝑑) pr∗0 𝑝
∗𝑝!(𝑑)

(∗)

in Fun(Δ1,C(𝑃 ×𝐴 𝑃)) in which the front square is obtained by applying pr∗0 to

the pullback square in the previous diagram and the right square is given by

applying pr∗1 to the outer square in the previous diagram. Note that by applying

the functor Δ∗ to this cube, we obtain a commutative diagram

𝑐

Δ∗(𝑥) 𝑐

𝑒 𝑝∗𝑝!(𝑐)

𝑑

Δ∗(𝑦) 𝑑

𝑑 𝑝∗𝑝!(𝑑)

id
𝜙

id
id
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6. B-topoi

in which the cube defines a pullback in Fun(Δ1,C(𝑃)). Now by disjointness of

Grpd𝑆-colimits, the map Δ!(𝑑) → 𝑦 must be an equivalence. Since this map fits

into a commutative diagram

𝑑 Δ∗Δ!(𝑐)

Δ∗(𝑦)

𝜂′𝑑

≃

(in which 𝜂′ denotes the unit of the adjunction Δ! ⊣ Δ∗) and since we have a

pullback square
𝑐 Δ∗(𝑥)

𝑑 Δ∗(𝑦),

the assumption that Grpd𝑆-colimits are universal in C and Proposition 6.1.3.11

imply that the transpose map Δ!(𝑐) → 𝑥 is an equivalence as well. By the

argument in the beginning of the proof, applied to the top square in (∗), the
commutative diagram

pr∗1(𝑐) pr∗0 𝑝
∗𝑝!(𝑐)

pr∗0(pr0)! pr
∗
1(𝑐)

pr∗1 𝜂𝑝𝑐

𝜂pr0 pr
∗
1(𝑐)

≃

implies that the map (pr0)!(𝑥) → 𝑒 is an equivalence too. Taken together, we

thus conclude that the composition

𝑐
≃
−→ (pr0)!Δ!(𝑐) → (pr0)!(𝑥) → 𝑒

is an equivalence. By its very construction, this map can be identified with 𝜙,
hence the claim follows.

6.1.6. Effective groupoid objects

In this section we briefly review the notion of groupoid objects and their relation

to descent (as discussed in [49, § 6.1]) in the context of B-category theory.
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6.1. Descent

Definition 6.1.6.1. Let C be a B-category with pullbacks. A groupoid object in
C is a functor 𝐺• ∶ Δop → C such that for all 𝑛 ≥ 0 and every decomposition

⟨𝑛⟩ ≃ ⟨𝑘⟩⊔⟨0⟩ ⟨𝑙⟩ the map 𝐺𝑛 → 𝐺𝑘 ×𝐺0
𝐺𝑙 is an equivalence. We denote by Seg≃(C)

the full subcategory of Fun
B
(Δop,C) spanned by the groupoid objects in 𝜋∗

𝐴C for

every 𝐴 ∈ B.

Definition 6.1.6.2. Let C be a B-category that admits Δop-indexed colimits

and pullbacks. We say that a groupoid object 𝐺• in C is effective if the map

𝐺1 → 𝐺0 ×colim𝐺•
𝐺0 is an equivalence in C. We denote by Seg≃eff(C) the full

subcategory of Seg≃(C) that is spanned by the effective groupoid objects in 𝜋∗
𝐴C

for every 𝐴 ∈ B. We say that groupoid objects are effective in C if the inclusion

Seg≃eff(C) ↪→ Seg≃(C) is an equivalence.

Remark 6.1.6.3. Since the property of a map being an equivalence is local in B,

it follows immediately from the definition that an object 𝐴 → Fun
B
(Δop,C) is

contained in Seg≃(C) if and only if it encodes a groupoid object in 𝜋∗
𝐴C, which is

in turn equivalent to its transpose Δop → C(𝐴) being a groupoid object in the

conventional sense. An analogous remark can be made for effective groupoid

objects. In particular, groupoid objects are effective in C if and only if they are

effective in C(𝐴) for each 𝐴 ∈ B.

Let Pos be the 1-category of posets, which we always identify with 0-categories.
Observe that the functor (−)▷ ∶ Pos → Pos that freely adjoins a final object

to a partially ordered set restricts to a functor (−)▷ ∶ Δ◁ → Δ, and the map

idPos ↪→ (−)▷ restricts to a map idΔ → (−)▷𝜄, where 𝜄 ∶ Δ ↪→ Δ◁ is the inclusion.

By precomposition, we thus obtain a functor

(−)+1 ∶ Fun
B
(Δop,C) → Fun

B
((Δop)▷,C)

together with a morphism 𝜄∗(−)+1 → idFun
B
(Δop,C). Now using Remark 6.1.6.3,

one finds:

Proposition 6.1.6.4 ([49, Lemma 6.1.3.7 and Remark 6.1.3.18]). Let C be a B-
category that admits Δop-indexed colimits and pullbacks, and let 𝐺• ∶ Δop → C be
a simplicial object. Then 𝐺•+1 is a colimit cocone, and 𝐺• is a groupoid object if and
only if the morphism of functors 𝜄∗𝐺•+1 → 𝐺• is cartesian.
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6. B-topoi

By combining Proposition 6.1.6.4 with Proposition 6.1.3.12, we conclude:

Corollary 6.1.6.5. Let U be the internal class that is spanned by Δop ∶ 1 → CatB
and let C be a U-cocomplete B-category with pullbacks that has effective U-descent.
Then groupoid objects are effective in C.

6.2. Foundations of B-topos theory

In this section we develop the basic theory of B-topoi. We begin in Section 6.2.1

by giving an axiomatic definition of this concept using the notion of descent

that has been established in the previous section. By unwinding the descent

condition, we furthermore establish an explicit characterisation of B-topoi in

terms of the underlying Ĉat∞-valued sheaves onB. In Section 6.2.2, we construct

the free B-topos on an arbitrary B-category, which we use in Section 6.2.3 to

establish a characterisation of B-topoi as left exact and accessible Bousfield

localisations of presheaf B-categories. In Section 6.2.4, we make use of this

characterisation to show that the B-category of B-topoi is tensored and powered

over CatB. In Section 6.2.5, we prove that B-topoi are entirely determined by

their global sections, in the sense that the ∞-category of B-topoi is equivalent to

that of geometric morphisms of ∞-topoi with codomain B. Having this simple

description ofB-topoi at our disposal, it is straightforward to construct limits and

colimits ofB-topoi, which is the topic of Section 6.2.6. Also, we provide an explicit

formula for the coproduct of B-topoi in Section 6.2.7, which in particular yields

a formula for the pushout in TopL∞. In Section 6.2.8, we discuss a B-categorical

version of Diaconescu’s theorem for B-topoi, from which we deduce a universal

property of étale B-topoi in Section 6.2.9. Lastly, we discuss subterminal B-topoi

in Section 6.2.10, where we derive a general formula for left exact localisations in

terms of internal colimits.

6.2.1. Definition and characterisation of B-topoi

In this section we introduce the notion of a B-topos and prove several equivalent

characterisations of this concept.

Recall from Proposition 5.2.3.5 that a B-category C admits finite limits if and
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only if for all 𝐴 ∈ B the ∞-category C(𝐴) admits finite limits and for each map

𝑠∶ 𝐵 → 𝐴 in B the functor 𝑠∗ ∶ C(𝐴) → C(𝐵) preserves finite limits. Similarly, a

functor 𝑓∶ C → D between such B-categories preserves finite limits precisely if

it does so section-wise. We may now define:

Definition 6.2.1.1. A large B-category X is a B-topos if it is presentable and

satisfies descent. A functor 𝑓 ∗ ∶ X → Y between B-topoi is called an algebraic
morphism if 𝑓 is cocontinuous and preserves finite limits. A functor 𝑓∗ ∶ Y → X

between B-topoi is called a geometric morphism if 𝑓∗ admits a left adjoint 𝑓 ∗ that

defines an algebraic morphism.

The large B-category TopL
B

of B-topoi is defined as the subcategory of Cat
B̂

that is spanned by the algebraic morphisms between B/𝐴-topoi, for all 𝐴 ∈ B.

Dually, the large B-category TopR
B

of B-topoi is defined as the subcategory

of Cat
B̂

that is spanned by the geometric morphisms between B/𝐴-topoi, for

all 𝐴 ∈ B. We denote by TopL(B) and TopR(B), respectively, the underlying

∞-categories of global sections.

If X and Y are B-topoi, we will denote by Funalg
B

(X,Y) the full subcategory

of Fun
B
(X,Y) that is spanned by the algebraic morphisms 𝜋∗

𝐴X → 𝜋∗
𝐴Y for each

𝐴 ∈ B. We define the B-category Fungeom
B

(Y,X) of geometric morphisms in the

evident dual way.

Remark 6.2.1.2. The fact that both TopL
B

and TopR
B

are large and not very large

follows from Remark 5.4.4.3.

Remark 6.2.1.3. The subobject of (Cat
B̂
)1 that is spanned by the algebraic

morphisms between B/𝐴-topoi (for each 𝐴 ∈ B) is stable under composition

and equivalences in the sense of Proposition 1.3.1.17. Since moreover coconti-

nuity and the property that a functor preserves finite limits are local conditions

(Remark 3.3.2.3) and on account of Remark 6.2.1.8 below, we conclude that a

map 𝐴 → (Cat
B̂
)1 is contained in (TopL

B
)1 if and only if it defines an algebraic

morphism between B/𝐴-topoi. In particular, if X and Y are B/𝐴-topoi, the image

of the monomorphism

mapTopL
B

(X,Y) ↪→ mapCat
B̂

(X,Y) (∗)
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is spanned by the algebraic morphisms. Moreover, the sheaf associated to TopL
B

is given by sending 𝐴 ∈ B to the subcategory TopL(B/𝐴) ↪→ Cat(B̂/𝐴), and
there is consequently a canonical equivalence 𝜋∗

𝐴 TopL
B

≃ TopL
B/𝐴

. Analogous

observations can be made for the B-category TopR
B
.

By the same argument, we have a canonical equivalence

𝜋∗
𝐴Fun

alg
B

(X,Y) ≃ Funalg
B/𝐴

(𝜋∗
𝐴X, 𝜋

∗
𝐴Y)

for all B-topoi X and Y and all 𝐴 ∈ B. Furthermore, by using Corollary 3.2.6.5,

we deduce that the inclusion in (∗) is obtained by applying the core B-groupoid

functor to the inclusion of Funalg
B

(X,Y) into Fun
B
(X,Y). Again, analogous obser-

vations can be made for geometric morphisms.

By restricting the equivalence CatR
B̂

≃ (CatL
B̂
)op from Proposition 4.5.2.1, one

finds:

Proposition 6.2.1.4. There is an equivalence (TopL
B
)op ≃ TopR

B
that acts as the

identity on objects and that carries an algebraic morphism to its right adjoint.

Let us denote by TopL,ét∞ the subcategory of TopL∞ that is spanned by the étale

algebraic morphisms (i.e. those that are of the form 𝜋∗
𝑈 ∶ X → X/𝑈 for some

∞-topos X and some 𝑈 ∈ X). By [49, Theorem 6.3.5.13], this ∞-category admits

small limits, and the inclusion TopL,ét∞ ↪→ TopL∞ preserves small limits. The main

goal of this section is to prove the following characterisation of B-topoi:

Theorem 6.2.1.5. For a large B-category X, the following are equivalent:

1. X is a B-topos;

2. X satisfies the internal Giraud axioms:

a) X is presentable;

b) X has universal colimits;

c) groupoid objects in X are effective;

d) Grpd
B
-colimits in X are disjoint.

3. X is Grpd
B
-cocomplete and takes values in TopL,ét∞ ;
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4. X is a TopL,ét∞ -valued sheaf that preserves pushouts.

Remark 6.2.1.6. It is crucial to include the condition that all Grpd
B
-groupoidal

colimits are disjoint into the internal Giraud axioms, instead of just all coproducts.

As a concrete example, let 𝜅 be an uncountable regular cardinal and let C ↪→ Cat∞
be the subcategory spanned by the 𝜅-small∞-categories and cocartesian fibrations

between them. Let us setB = PSh(C) and let X ∈ Cat(B̂) be the largeB-category

that is determined by the presheaf PSh(−)∶ Cop → Ĉat∞. Since X takes values

in TopL∞ and since cocartesian fibrations are smooth [49, Proposition 4.1.2.15],

we deduce from Theorem 5.4.2.5, Remark 6.1.6.3 and Example 6.1.5.5 that X is

presentable, has effective groupoid objects and that coproducts in X are disjoint.

Moreover, again by using that cocartesian fibrations are smooth, one easily finds

that X has universal colimits. Yet, the B-category X cannot be a B-topos since

the transition functors are in general not étale.

Before we prove Theorem 6.2.1.5, let us us first record the following immediate

consequence:

Corollary 6.2.1.7. The universe Grpd
B
is a B-topos.

Remark 6.2.1.8. As another consequence of Theorem 6.2.1.5, a largeB-category

X is a B-topos if and only if there is a cover ⨆𝑖 𝐴𝑖 � 1 in B such that for all 𝑖 the
large B/𝑖-category 𝜋∗

𝐴𝑖
X is a B/𝐴𝑖

-topos. In fact, this most easily follows from

part (3) of the theorem, together with the fact that Grpd
B
-cocompleteness can

be checked locally (Remark 3.3.2.3).

The proof of Theorem 6.2.1.5 requires the following lemma:

Lemma 6.2.1.9. Let
X Z

Y W

ℎ∗

𝑓 ∗ 𝑔∗

𝑘∗

be a commutative square in TopL∞, and suppose that ℎ
∗ and 𝑘∗ are étale. Then the

square is a pushout in TopL∞ if and only if the mate transformation 𝑘!𝑔∗ → 𝑓 ∗ℎ! is
an equivalence.
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6. B-topoi

Proof. Since ℎ∗ is étale, we may replace Z with X/𝑈 and ℎ∗ with 𝜋∗
𝑈 , where we set

𝑈 = ℎ!(1Z). By using [49, Remark 6.3.5.8], the pushout of 𝜋∗
𝑈 along 𝑓 ∗ is given

by the commutative diagram

X X/𝑈

Y Y/𝑓 ∗(𝑈 ).

𝜋∗
𝑈

𝑓 ∗ 𝑓 ∗
/𝑈

𝜋∗
𝑓 ∗(𝑈 )

It is immediate that the mate of this square is an equivalence, so it suffices to

prove the converse. Since 𝑘∗ is étale, we may replace 𝑘∗ with 𝜋∗
𝑉 ∶ Y → Y/𝑉,

where 𝑉 = 𝑘!(1W). By [49, Remark 6.3.5.7], the induced map Y/𝑓 ∗(𝑈 ) → Y/𝑉 is

uniquely determined by a morphism 𝑉 → 𝑓 ∗(𝑈 ) in Y. Unwinding the definitions,

this map is precisely the value of the mate transformation (𝜋𝑉)!𝑔∗ → 𝑓 ∗(𝜋𝑈)! at
1X/𝑈

and therefore an equivalence. Hence the functor Y/𝑓 ∗(𝑈 ) → Y/𝑉 must be an

equivalence as well, which finishes the proof.

Proof of Theorem 6.2.1.5. Let X be a B-topos. By combining Proposition 6.1.4.5

and Proposition 6.1.5.6 with Corollary 6.1.6.5, we find that X satisfies the internal

Giraud axioms, so that (1) implies (2). If X satisfies the internal Giraud axioms,

then X being presentable implies that it is Grpd
B
-cocomplete. Moreover, Ex-

ample 6.1.4.4 and Example 6.1.5.5 together with Remark 6.1.6.3 imply that X(𝐴)
satisfies the ∞-categorical Giraud axioms in the sense of [49] for all 𝐴 ∈ B, so

that each X(𝐴) is an ∞-topos. Now by Proposition 6.1.5.6 and Proposition 6.1.4.5,

the B-category X has Grpd
B
-descent, hence Corollary 6.1.3.13 implies that for

every map 𝑠∶ 𝐵 → 𝐴 in B the functor 𝑠! is a right fibration. This implies that 𝑠∗

is an étale geometric morphism, hence (3) holds. The equivalence between (3)

and (4), on the other hand, is an immediate consequence of Lemma 6.2.1.9. Finally,

if X satisfies condition (3), then X is presentable (see Theorem 5.4.2.5), hence the

claim follows from Corollary 6.1.3.14.

6.2.2. Free B-topoi

The goal of this section is to construct a partial left adjoint to the inclusion

TopL
B

↪→ Cat
B̂

that is defined on the full subcategory CatB ↪→ Cat
B̂

and that
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6.2. Foundations of B-topos theory

carries a B-category C to the associated free B-topos Grpd
B
[C]. To that end,

first note that if CatlexB ↪→ CatB denotes the subcategory spanned by the left

exact (i.e. FinB/𝐴
-continuous) functors between B/𝐴-categories with finite lim-

its for all 𝐴 ∈ B, then the dual of Corollary 3.5.1.14 implies that the inclu-

sion admits a left adjoint (−)lex ∶ CatB → CatlexB that carries a B-category C

to its free FinB-completion Clex. Moreover, the same result implies that we

have a functor PSh
B
(−)∶ CatB → PrLB that is obtained by restricting the

free cocompletion functor Cat
B̂

→ Catcc
B̂

in the appropriate way. By com-

bining these two constructions, we thus end up with a well-defined functor

Grpd
B
[−] = PSh

B
((−)lex)∶ CatB → PrLB. Our goal is to show:

Proposition 6.2.2.1. For any B-category C, the large B-category Grpd
B
[C] is a

B-topos. Moreover, if X is another B-topos, precomposition with the canonical map
C → Grpd

B
[C] induces an equivalence

Funalg
B

(Grpd
B
[C] ,X) ≃ Fun

B
(C,X)

of B-categories.

The proof of Proposition 6.2.2.1 requires a few preparations and will be given

at the end of this section. For now, let us record a few consequences of this result.

Corollary 6.2.2.2. The functor Grpd
B
[−] takes values in TopL

B
and fits into an

equivalence
mapTopL

B

(Grpd
B
[−] , −) ≃ mapCat

B̂

(−, −)

of bifunctors Catop
B

× TopL
B

→ Grpd
B̂
.

Proof. Note that if𝐴 ∈ B is an arbitrary object, we deduce from Proposition 3.5.1.9

that the base change of the canonical map C → Grpd
B
[C] along 𝜋∗

𝐴 can be

identified with the canonical map 𝜋∗
𝐴C → Grpd

B
[[]B/𝐴]𝜋∗

𝐴C. Thus, in light of

Remark 6.2.1.3, the result is an immediate consequence of Proposition 6.2.2.1.

Corollary 6.2.2.2 already implies the existence of certain colimits in TopL
B
:

Corollary 6.2.2.3. For any diagram 𝑑∶ I → CatB, the induced cocone

Grpd
B
[𝑑(−)] → Grpd

B
[colim 𝑑]

is a colimit cocone in TopL
B
.
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6. B-topoi

Proof. Combine Proposition 6.2.2.1 with Proposition 3.2.5.8.

By combining Corollary 6.2.2.3 with the evident equivalence 1 ≃ ∅lex, we in

particular obtain:

Corollary 6.2.2.4. The universe Grpd
B
defines an initial object in TopL

B
.

In light of Corollary 6.2.2.4, we may now define:

Definition 6.2.2.5. Let X be a B-topos. Then the unique algebraic morphism

constX ∶ Grpd
B

→ X is referred to as the constant sheaf functor, and its right

adjoint ΓX ∶ X → Grpd
B

is called the global sections functor.

Remark 6.2.2.6. If X is a B-topos, then the global sections functor ΓX is equiv-

alent to mapX(1X, −), where 1X denotes the final object in X. In fact, since

the unique algebraic morphism constX ∶ Grpd
B

→ X is left exact and since

mapGrpd
B

(1Grpd
B
, −) ≃ idGrpd

B
by Proposition 2.2.2.4, this follows immediately

from the adjunction constB ⊣ ΓB.

We now turn to the proof of Proposition 6.2.2.1. As a first step, we need to

establish that presheaf B-categories are B-topoi:

Proposition 6.2.2.7. For every B-category C, the large B-category PSh
B
(C) is a

B-topos.

Proof. Since PSh
B
(C) is presentable, we only need to show that it satisfies descent.

Let us first show that PSh
B
(C) has universal colimits. Let therefore 𝑓∶ 𝐹 → 𝐺 be

an arbitrary map of presheaves on C in context𝐴 ∈ B. By Remark 2.3.2.1, we may

replace B with B/𝐴, so that we can assume that 𝐴 ≃ 1. By Lemma 3.4.1.4 there

are equivalences PSh
B
(C)/𝐹 ≃ PSh

B
(C/𝐹) and PSh

B
(C)/𝐺 ≃ PSh

B
(C/𝐺) with

respect to which the functor PSh
B
(C/𝐹) → PSh

B
(C/𝐺) that corresponds to 𝑓!

carries the final presheaf on C/𝐹 to the presheaf that classifies the right fibration

𝑓! ∶ C/𝐹 → C/𝐺. As the functor PSh
B
(C/𝐹) → PSh

B
(C/𝐺) is a morphism of

right fibrations over PSh
B
(C), this map is uniquely specified by the image of

the final object. We thus conclude that this functor must be equivalent to the

functor of left Kan extension along 𝑓! ∶ C/𝐹 → C/𝐺. Its right adjoint is simply

given by precomposition with 𝑓!, which defines a cocontinuous functor. Hence

438



6.2. Foundations of B-topos theory

𝑓 ∗ ∶ PSh
B
(C)/𝐺 → PSh

B
(C)/𝐹 must be cocontinuous as well, and we conclude

that PSh
B
(C) has universal colimits.

To conclude the proof, we need to show that PSh
B
(C) has effective descent. By

Proposition 6.1.3.12, this is equivalent to the condition that for every𝐴 ∈ B, every

small B/𝐴-category I and every cartesian map 𝑑′ → 𝑑 in Fun
B/𝐴

(I, 𝜋∗
𝐴PShB(C)),

the naturality square

𝑑′ diag(colim 𝑑′)

𝑑 diag(colim 𝑑)

𝜂

𝜂

is a pullback. Upon replacingB byB/𝐴, wemay assumewithout loss of generality

𝐴 ≃ 1. Moreover, since limits and colimits in functor B-categories are detected

object-wise (Proposition 3.2.3.2), we can reduce to C ≃ 1. In this case, the result

follows from Corollary 6.2.1.7.

Next, we need to establish an internal analogue of the well-known statement

that left exact functors with values in an∞-topos are equivalently flat functors [49,
Proposition 6.1.5.2]. The key ingredient to this result is the following lemma:

Lemma 6.2.2.8. Let C be a B-category, let X be a B-topos and let 𝑓∶ C → X be a
functor. Suppose that the Yoneda extension ℎ!(𝑓 )∶ PSh

B
(C) → X of this functor

preserves the limit of every cospan in PSh
B
(C) (in arbitrary context 𝐴 ∈ B) that is

contained in the essential image of the Yoneda embedding ℎ∶ C ↪→ PSh
B
(C). Then

ℎ!(𝑓 ) preserves pullbacks.

Proof. Suppose that
𝑄 𝑃

𝐺 𝐹

is a pullback square in PSh
B
(C). We need to show that the image of this square

along (ℎC)!(𝑓 ) is a pullback in X. By combining Remark 2.3.2.1 and Remark 3.4.3.2,

we may assume without loss of generality that the above square is in context

1 ∈ B.

Let us first show that the claim is true whenever 𝐹 is representable by an

object 𝑐∶ 1 → C. In this case, Lemma 3.4.1.4 implies that there is an equivalence
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6. B-topoi

PSh
B
(C)/ℎ(𝑐) ≃ PSh

B
(C/𝑐) with respect to which the composition (ℎ!𝑓 )(𝜋ℎ(𝑐))!

can be identified with the left Kan extension of 𝑓 (𝜋𝑐)! along the Yoneda embedding

C/𝑐 ↪→ PSh
B
(C/𝑐). Therefore, by replacing C with C/𝑐, one can assume that

𝐹 ≃ 1PSh
B
(C). Now the product functor 𝐺 × −∶ PSh

B
(C) → PSh

B
(C) being

cocontinuous (by Proposition 6.2.2.7) implies that the canonical map

ℎ!𝑓 (𝐺 × −) → ℎ!𝑓 (𝐺) × ℎ!𝑓 (−)

is a morphism between cocontinuous functors. On account of the universal

property of presheaf B-categories, this means that we may further reduce to the

case where 𝐻 is representable. By the same argument, the presheaf 𝐺 can also be

assumed to be representable. In this case, the claim follows from the assumption

on ℎ!(𝑓 ).
We now turn to the general case. By Proposition 3.4.1.1, there is a dia-

gram 𝑑∶ I → PSh
B
(C) such that 𝐹 ≃ colim 𝑑 and such that 𝑑 takes values

in C ↪→ PSh
B
(C). Let us write 𝑑 for the associated colimit cocone. In light of

the equivalence PSh
B
(C)/𝐹 ≃ Fun

B
(I,PSh

B
(C))cart

/𝑑
from Remark 6.1.3.7 and by

identifying the above pullback square with a diagram in PSh
B
(C)/𝐹, we obtain a

pullback diagram
𝑞 𝑝

𝑔 𝑑

in Fun
B
(I▷,PSh

B
(C))cart

/𝑑
. By the above and the fact that limits in functor B-

categories can be computed object-wise (Proposition 3.2.3.2), the composition

Fun
B
(I▷,PSh

B
(C))cart

/𝑑
→ Fun

B
(I,PSh

B
(C))cart/𝑑

(ℎ!𝑓 )∗
−−−−−→ Fun

B
(I,X)/(ℎ!𝑓 )∗𝑑

carries the above pullback diagram of cocones to a pullback and therefore in par-

ticular to a diagram in Fun
B
(I,X)cart/(ℎ!𝑓 )∗𝑑

. By using descent in X and in PSh
B
(C)

(cf. Proposition 6.2.2.7) together with the fact that ℎ!(𝑓 ) is cocontinuous, this im-

plies that the functor (ℎ!𝑓 )∗ ∶ Fun
B
(I▷,PSh

B
(C))cart

/𝑑
→ Fun

B
(I▷,X)/𝑑 preserves

the above pullback. Upon evaluating the latter at the cone point ∞∶ 1 → I▷, we

recover the image of the original pullback square along ℎ!(𝑓 ), hence the claim

follows.

440



6.2. Foundations of B-topos theory

Proposition 6.2.2.9. Let C be a B-category with finite limits, and let X be a
B-topos. Then a functor 𝑓∶ C → X preserves finite limits if and only if its left Kan
extension ℎ!(𝑓 )∶ PSh

B
(C) → X preserves finite limits.

Proof. Since the Yoneda embedding ℎ∶ C ↪→ PSh
B
(C) preserves finite limits, it

is clear that the condition is sufficient. Conversely, suppose that 𝑓 preserves finite
limits. Since the final object in PSh

B
(C) is contained in C, it is clear that ℎ!(𝑓 )

preserves final objects. We therefore only need to show that this functor also

preserves pullbacks, which is an immediate consequence of Lemma 6.2.2.8.

By combining Proposition 6.2.2.9 with the universal property of presheaf B-

categories and Remark 6.2.1.3 and Remark 3.3.3.4, we now conclude:

Corollary 6.2.2.10. For any B-category C with finite limits and any B-topos X,
the functor of left Kan extension along the Yoneda embedding C ↪→ PSh

B
(C) gives

rise to an equivalence

Funlex
B

(C,X) ≃ Funalg
B

(PSh
B
(C),X),

where Funlex
B

(C,X) is the full subcategory of Fun
B
(C,X) that is spanned by the left

exact functors in arbitrary context.

Proof of Proposition 6.2.2.1. Combine Proposition 6.2.2.7 with Corollary 6.2.2.10

and the universal property of free FinB-completion, cf. Theorem 3.5.1.12.

6.2.3. Presentations of B-topoi

Recall from Definition 5.3.3.4 that a Bousfield localisation 𝐿∶ PSh
B
(C) → D is

said to be accessible if the inclusion D ↪→ PSh
B
(C) is FiltU-cocontinuous for

some choice of sound doctrine U (see Definition 5.1.3.8 and Definition 5.1.2.7). We

will say that the localisation is left exact if 𝐿 preserves finite limits. The main

goal of this section is to prove the following characterisation of B-topoi:

Theorem 6.2.3.1. A large B-category X is a B-topos if and only if there is a B-
category C such that X arises as a left exact and accessible localisation of PSh

B
(C).

The proof of Theorem 6.2.3.1 relies on the following two lemmas:
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Lemma 6.2.3.2. Suppose that

X X/𝑈

Y Z

𝜋∗
𝑈

𝐿 𝐿′

ℎ∗

is a commutative square in TopL∞ in which 𝐿 and 𝐿′ are Bousfield localisations. Sup-
pose furthermore that ℎ∗ admits a left adjoint ℎ! and that the mate transformation
𝜙∶ ℎ!𝐿′ → 𝐿(𝜋𝑈)! is an equivalence. Then ℎ∗ is étale.

Proof. We would like to apply [49, Proposition 6.3.5.11], which says that the

functor ℎ∗ is étale precisely if ℎ! is conservative and if for every map 𝑓∶ 𝑊 → 𝑉
in Y and every object 𝑃 ∈ Z/ℎ∗(𝑉 ), the canonical map

𝛼∶ ℎ!(ℎ∗(𝑊 ) ×ℎ∗(𝑉 ) 𝑃) → 𝑊 ×𝑉 ℎ!(𝑃)

is an equivalence.

Let us begin by showing that ℎ! is conservative. To that end, note that if

𝑓∶ 𝑉 → 𝑊 is a map in X/𝑈 such that 𝐿(𝜋𝑈)!(𝑓 ) is an equivalence, then 𝐿′(𝑓 ) is an
equivalence. In fact, since the adjunction unit of (𝜋𝑈)! ⊣ 𝜋∗

𝑈 exhibits 𝑓 as a pullback
of 𝜋∗

𝑈 (𝜋𝑈)!(𝑓 ), the localisation functor 𝐿′ being left exact implies that 𝐿′(𝑓 ) is
a pullback of 𝐿′𝜋∗

𝑈 (𝜋𝑈)!(𝑓 ) ≃ ℎ∗𝐿(𝜋𝑈)!(𝑓 ). Since the latter is an equivalence,

the claim follows. Applying this observation to a map 𝑓 that is contained in Z

and using the assumption that the mate transformation 𝜙∶ ℎ!𝐿′ → 𝐿(𝜋𝑈)! is an
equivalence, we deduce that ℎ! is indeed conservative.

To conclude the proof, we show that the map 𝛼 is an equivalence. From the

map 𝑓∶ 𝑊 → 𝑉 in Y we obtain a commutative diagram

X/𝑉 X/𝑈×𝑉

Y/𝑉 Z/ℎ∗(𝑉 )

X/𝑊 X/𝑈×𝑊

Y/𝑊 Z/ℎ∗(𝑊 )

(𝜋∗
𝑈 )/𝑉

𝑓 ∗

𝐿/𝑉

(𝜋∗
𝑈𝑓 )∗

𝐿′
/𝜋∗𝑈(𝑉 )ℎ∗/𝑉

𝑓 ∗

(𝜋∗
𝑈 )/𝑊

𝐿/𝑊 𝐿′
/𝜋∗𝑈(𝑊 )ℎ∗/𝑊

(ℎ∗𝑓 )∗
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in TopL∞ in which all of the four maps pointing to the right admit a left adjoint.

Note that 𝛼 being an equivalence for all 𝑃 ∈ Z/ℎ∗(𝑉 ) precisely means that the

front square is left adjointable (i.e. has an invertible mate transformation). Now

since the mate 𝜙∶ ℎ!𝑖′ → 𝑖(𝜋𝑈)! is by assumption an equivalence, it follows that

both the top and the bottom square in the above diagram are left adjointable.

Since 𝜋∗
𝑈 is an étale algebraic morphism, the back square is left adjointable as

well. Therefore, by combining the functoriality of the mate construction with the

fact that the four maps in the above diagram pointing to the front are localisation

functors and thus in particular essentially surjective, we conclude that the front

square must be left adjointable as well, as desired.

Lemma 6.2.3.3. Let D be a presentable B-category. Then there exists a sound
doctrine U such that D is U-accessible and DU-cpt is closed under finite limits in D.

Proof. Since D is presentable, there exists a B-category C and a sound doctrine

U such that D arises as a U-accessible Bousfield localisation of PSh
B
(C) (cf. The-

orem 5.4.2.5). In particular, for every sound doctrine V that contains U, the

B-category D is V-accessible (Corollary 5.3.3.3). Therefore, for any cardinal 𝜅 we

can always find a B-regular cardinal 𝜏 ≥ 𝜅 such that D is Cat𝜏B-accessible. By

Remark 5.2.2.5, we can always choose 𝜏 such that 𝜏 ≫ 𝜅. NowD being presentable

implies that D is section-wise accessible (Theorem 5.4.2.5). Therefore, if G ↪→ B

is a small generating subcategory, we may find a regular cardinal 𝜅 such that

D(𝐺) is 𝜅-accessible for all 𝐺 ∈ G. Let us choose a B-regular cardinal 𝜏 ≫ 𝜅 such

that

1. G is contained in B𝜏-cpt;

2. D is Cat𝜏B-accessible;

3. D(𝐺)𝜅-cpt is 𝜏-small for all 𝐺 ∈ G.

Then [49, Proposition 5.4.7.4] implies that the inclusion D(𝐺)𝜏-cpt ↪→ D(𝐺) is

closed under finite limits for all 𝐺 ∈ G. Recall from Corollary 2.2.2.8 that for every

object 𝑑∶ 𝐴 → D the mapping functor mapD(𝐴)(𝑑, −) can be identified with the

composition

D(𝐴)
mapD(𝑑,−)(𝐴)
−−−−−−−−−−−→ B/𝐴

ΓB/𝐴
−−−−→ Ani .
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By combining this observation with Proposition 5.3.2.4 and the fact that B is

generated by G, we find that for any 𝐺 ∈ G an object 𝑑∶ 𝐺 → D is contained

in DCat𝜏B-cpt if and only if for every 𝐻 ∈ G and every map 𝑠∶ 𝐻 → 𝐺 the object

𝑠∗(𝑑) ∈ D(𝐻) is contained in D(𝐻)𝜏-cpt. Since 𝑠∗ commutes with limits, this

implies that the inclusion DCat𝜏B-cpt ↪→ D is closed under finite limits.

Proof of Theorem 6.2.3.1. Suppose first that X is a left exact and U-accessible local-

isation of PSh
B
(C), and let us show that X is a B-topos. We would like to apply

Theorem 6.2.1.5. First, note that by choosing a B-regular cardinal 𝜅 such that

U ↪→ Cat𝜅B, we may assume that X is a Cat𝜅B-accessible Bousfield localisation

of PSh
B
(C). Therefore, for every 𝐴 ∈ B the ∞-category X(𝐴) is a 𝜅-accessible

and left exact Bousfield localisation of PSh
B
(C)(𝐴), and since the latter is an

∞-topos by Proposition 6.2.2.7, it follows that X(𝐴) is an ∞-topos as well. More-

over, if 𝑠∶ 𝐵 → 𝐴 is a map in B, the fact that X is a presentable B-category (see

Theorem 5.4.2.5) implies that 𝑠∗ ∶ X(𝐴) → X(𝐵) is continuous and cocontinu-

ous and therefore in particular an algebraic morphism that admits a left adjoint

𝑠! ∶ X(𝐵) → X(𝐴). We are therefore in the situation of Lemma 6.2.3.2 and may

thus conclude that 𝑠∗ is an étale algebraic morphism. Theorem 6.2.1.5 thus implies

that X is a B-topos.

Conversely, suppose that X is a B-topos. Then X is presentable, consequently

Lemma 6.2.3.3 implies that there exists a sound doctrine U such that X is U-

accessible and XU-cpt is closed under finite limits in X. Then we may identify

X ≃ IndU
B
(XU-cpt), and since X is cocomplete the inclusion X ↪→ PSh

B
(XU-cpt)

admits a left adjoint 𝐿∶ PSh
B
(XU-cpt) → Xwhich is obtained as the left Kan exten-

sion of the inclusion XU-cpt ↪→ X (see Corollary 3.5.1.13). By Proposition 6.2.2.9,

the functor 𝐿 is left exact, hence the claim follows.

Corollary 6.2.3.4. For any B-topos X and any B-category D, the functor B-
category Fun

B
(D,X) is again a B-topos.

Proof. Choose a left exact and accessible Bousfield localisation 𝐿∶ PSh
B
(C) → X.

Then the postcomposition functor 𝐿∗ ∶ PSh
B
(C × Dop) → Fun

B
(D,X) is again

an accessible and left exact Bousfield localisation, hence the claim follows.
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Corollary 6.2.3.5. A large B-category X is a B-topos if and only if there is a B-
category C and a left exact and accessible Bousfield localisation 𝐿∶ Grpd

B
[C] → X.

Proof. By Theorem 6.2.3.1, it suffices to show that every presheaf B-topos arises

as a left exact and accessible Bousfield localisation of a free B-topos. But if

C is a B-category, the fact that 𝑖∶ C ↪→ Clex is fully faithful implies that

𝑖∗ ∶ PSh
B
(C) ↪→ Grpd

B
[C] is fully faithful too (by the dual of Theorem 3.4.3.5),

hence 𝑖∗ is a left exact and accessible Bousfield localisation.

Corollary 6.2.3.6. Any B-topos X is a pushout of free B-topoi.

Proof. By Corollary 6.2.3.5, we may choose a small B-category C and a left

exact and accessible Bousfield localisation 𝐿∶ Grpd
B
[C] → X. We can therefore

find a small subcategory W ↪→ Grpd
B
[C] such that 𝐿 induces an equivalence

LocW(Grpd
B
[C]) ≃ X (see Theorem 5.4.2.5). Note that a functor X → Y between

B-topoi is an algebraic morphism if and only if its precomposition with 𝐿 is

one (this is easily deduced from Remark 6.2.1.3 and the explicit computation

of colimits in a Bousfield localisation, cf. Proposition 3.2.2.14. Therefore, by

combining Corollary 5.4.3.2 with Proposition 6.2.2.1, we deduce that the induced

square
Grpd

B
[W] Grpd

B
[C]

Grpd
B
[Wgpd] X

is a pushout in TopL(B).

6.2.4. The Cat
B̂
-enrichment of TopL

B

Recall from Proposition 3.2.6.3 that Cat
B̂

is cartesian closed, i.e. that forming

functor B-categories defines a bifunctor Fun
B
(−, −)∶ Catop

B̂
×Cat

B̂
→ Cat

B̂

and therefore in particular a bifunctor (TopL
B
)op × TopL

B
→ Cat

B̂
. Let us denote

by 𝑝∶ P → (TopL
B
)op × TopL

B
the unstraightening of the latter (in the sense of

Theorem 4.4.3.1). Explicitly, an object 𝐴 → P is given by a functor 𝜋∗
𝐴X → 𝜋∗

𝐴Y

between B/𝐴-topoi. Let Q ↪→ P be the full subcategory that is spanned by those

objects that correspond to algebraic morphisms. By Lemma 6.2.4.1 below, the
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6. B-topoi

induced functor 𝑞∶ Q → (TopL
B
)op × TopL

B
is a cocartesian fibration as well and

therefore classified by a bifunctor Funalg
B

(−, −)∶ (TopL
B
)op × TopL

B
→ Cat

B̂
.

Lemma 6.2.4.1. Let 𝑝∶ P → C be a cocartesian fibration of B-categories. Let
Q ↪→ P be a full subcategory such that for each map 𝑓∶ 𝑐 → 𝑑 in C in context
𝐴 ∈ B the induced functor 𝑓! ∶ P|𝑐 → P|𝑑 restricts to a functor Q|𝑐 → Q|𝑑. Then
the induced functor 𝑞∶ Q → C is a cocartesian fibration as well, and the inclusion
Q ↪→ P is a cocartesian functor.

Proof. Using Proposition 4.1.2.7, it will be enough to show that for any cocartesian

lift 𝜙∶ 𝑥 → 𝑦 of 𝑓 in P in which 𝑥 is contained inQ|𝑐, the object 𝑦 is contained inQ|𝑑.
But this immediately follows from the assumptions, using Remark 4.4.5.4.

Definition 6.2.4.2. We define the functor of B-points as the functor

Pt
B

= Funalg
B

(−,Grpd
B
)∶ TopR

B
→ Cat

B̂
.

Recall that if C is a B-category and X is a B-topos, then XC = Fun
B
(C,X) is a

B-topos as well (Corollary 6.2.3.4). Moreover, as precomposition and postcom-

position preserves all limits and colimits, the bifunctor Fun
B
(−, −) restricts to a

bifunctor (−)(−) ∶ Catop
B

× TopL
B

→ TopL
B

which we refer to as the powering of

TopL
B

over CatB. This terminology is justified by the following proposition:

Proposition 6.2.4.3. The powering bifunctor (−)(−) fits into an equivalence

mapTopL
B

(−, (−)(−)) ≃ mapalgCat
B̂
(−, Fun

B
(−, −)).

Proof. If C is a B-category and X and Y are B-topoi, then Lemma 5.5.1.3 and its

dual imply that a functor X → YC defines an algebraic morphism if and only if

the transpose functor C → Fun
B
(X,Y) takes values in Funalg

B
(X,Y). By replacing

B by B/𝐴 (which is made possible by Remark 6.2.1.3 and Proposition 1.2.5.4) ,

one obtains that the same is true for any object 𝐴 → Catop
B

×(TopL
B
)op × TopL

B
.

Hence, the equivalence

mapCat
B̂

(𝑖(−), Fun
B
(−, −)) ≃ mapCat

B̂

(−, Fun
B
(𝑖(−), −))

of functors Catop
B

×Catop
B̂

×Cat
B̂

→ Grpd
B̂

(where 𝑖∶ CatB ↪→ Cat
B̂

is the

inclusion) restricts in the desired way.
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Corollary 6.2.4.4. The functor of B-points Pt
B
is a partial right adjoint of the

functor

Grpd(−)
B

∶ CatB → TopR
B
,

in the sense that there is an equivalence

mapTopR
B

(Grpd(−)
B

, −) ≃ mapCat
B̂

(−,Pt
B
(−))

of functors Catop
B

× TopR
B

→ Grpd
B̂
.

In light of Corollary 6.2.4.4, it is reasonable to define:

Definition 6.2.4.5. If C is a B-category, we refer to the B-topos Cdisc = GrpdC
B

as the discrete B-topos associated with C.

Lastly, we note that the large B-category TopL
B

is also tensored over CatB:

Proposition 6.2.4.6. There is a bifunctor −⊗−∶ CatB × TopL
B

→ TopL
B
that fits

into an equivalence

mapTopL
B

(− ⊗ −, −) ≃ mapTopL
B

(−, (−)(−))

of functors Catop
B

×(TopL
B
)op × TopL

B
→ Grpd

B̂
.

Proof. As an immediate consequence of the constructions, if C and D are B-

categories, we obtain a chain of equivalences

mapTopL
B

(Grpd
B
[C] , (−)D) ≃ mapCat

B̂

(C, Fun
B
(D, −))

≃ mapCat
B̂

(C × D, −)

≃ mapTopL
B

(Grpd
B
[C × D] , −),

which implies that the functor mapTopL
B

(X, (−)D) is representable whenever X is

in the image of Grpd
B
[−]. But since every B-topos is a pushout of such B-topoi

(see Corollary 6.2.3.6), this functor must be representable for any B-topos X. As

by Remark 6.2.1.3 the same argument shows that this is the case for every object

X∶ 𝐴 → TopL
B

and every B/𝐴-category D, the result follows.
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6.2.5. Relative ∞-topoi asB-topoi

By Theorem 6.2.1.5 and the evident fact that an algebraic morphism between

B-topoi induces an algebraic morphism of ∞-topoi upon taking global sections,

we obtain a functor Γ∶ TopL(B) → TopL∞. By making use of the fact that the

universe Grpd
B

is an initial object in TopL(B) (Corollary 6.2.2.4), this functor

factors through the projection (TopL∞)B/ → TopL, so that we end up with a

functor

Γ∶ TopL(B) → (TopL∞)B/.

The main goal in this section is to prove:

Theorem 6.2.5.1. The global sections functor Γ∶ TopL(B) → (TopL∞)B/ is an
equivalence of ∞-categories.

Remark 6.2.5.2. Theorem 6.2.5.1 implies that the datum of a B-topos X is

equivalent to that of a geometric morphism 𝑓∗ ∶ X → B. We will refer to the

latter as the geometric morphism that is associated with X.

Remark 6.2.5.3. The inverse to the equivalence Γ∶ TopL(B) ≃ (TopL∞)B/ from

Theorem 6.2.5.1 can be described explicitly as follows: Given an algebraic mor-

phism 𝑓 ∗ ∶ B → X, recall that we get an induced functor 𝑓∗ ∶ Cat(X̂) → Cat(B̂).
Then Theorem 6.2.1.5 easily implies that the large B-category X = 𝑓∗(GrpdX) is
aB-topos (since the associated sheaf onB is simply given by X/𝑓 ∗(−)). Moreover,

the functor 𝑓 ∗ induces a map B/− → X/𝑓 ∗(−) of sheaves on B that recovers

the unique algebraic morphism constX ∶ Grpd
B

→ X. This implies that X is the

image of 𝑓 ∗ ∶ B → X under the equivalence from Theorem 6.2.5.1.

The proof of Theorem 6.2.5.1 requires a few preparations. We begin with the

following lemma:

Lemma 6.2.5.4. LetC be an∞-category with an initial object∅C, and letD be an∞-
category that admits pushouts. Then the evaluation functor ev∅C

∶ Fun(C,D) → D

is a cocartesian fibration. Moreover, a morphism 𝜙∶ 𝐹 → 𝐺 in Fun(C,D) is co-
cartesian if and only if for every map 𝑓∶ 𝑐 → 𝑐′ in C the induced commutative
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6.2. Foundations of B-topos theory

square

𝐹(𝑐) 𝐺(𝑐)

𝐹 (𝑐′) 𝐺(𝑐′)

𝛼(𝑐)

𝐹 (𝑓 ) 𝐺(𝑓 )
𝛼(𝑐′)

is a pushout in D.

Proof. Note that the diagonal functor diag∶ D → Fun(C,D) defines a left adjoint

to ev∅C
. Therefore, we deduce from [32, Proposition 4.51] that a map 𝛼∶ 𝐹 → 𝐺

in Fun(C,D) is cocartesian if and only if for every 𝑐 ∈ C the square

𝐹(∅C) 𝐺(∅C)

𝐹 (𝑐) 𝐺(𝑐)

𝛼(∅C)

𝛼(𝑐)

is a pushout in D. The assumption that D admits pushouts guarantees that there

are enough such cocartesian maps, see [32, Corollary 4.52].

By Lemma 6.2.5.4, the global sections functor Γ∶ PShTopL
∞
(B) → TopL∞ is a

cocartesian fibration and therefore determines a left fibration

Γ∶ PShTopL
∞
(B)cocart → TopL∞,

where PShTopL
∞
(B)cocart ↪→ PShTopL

∞
(B) is the subcategory that is spanned by

the cocartesian morphisms. Moreover, observe that by Theorem 6.2.1.5 we may

regard the ∞-category TopL(B) as a (non-full) subcategory of PShTopL
∞
(B). Now

the key step towards the proof of Theorem 6.2.5.1 consists of the following

proposition:

Proposition 6.2.5.5. The (non-full) inclusion TopL(B) ↪→ PShTopL
∞
(B) fits into a

commutative diagram

TopL(B) PShTopL
∞
(B)cocart

PShTopL
∞
(B)
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6. B-topoi

in which the horizontal map is fully faithful. Moreover, if X is a B-topos and if
X → 𝐹 is a map in PShTopL

∞
(B)cocart, then 𝐹 is contained in TopL(B).

Proof. If 𝑓 ∗ ∶ X → Y is an algebraic morphism between B-topoi, Lemma 6.2.1.9

and the fact that 𝑓 ∗ is cocontinuous imply that for every map 𝑠∶ 𝐵 → 𝐴 in B the

induced commutative square

X(𝐴) Y(𝐴)

X(𝐵) Y(𝐵)

𝑓 ∗(𝐴)

𝑠∗ 𝑠∗

𝑓 ∗(𝐵)

is a pushout in TopL∞. By Lemma 6.2.5.4, this means that the underlying map

of TopL∞-valued presheaves on B defines a cocartesian morphism over TopL∞.

Hence the inclusion TopL(B) ↪→ PShTopL
∞
(B) factors through the inclusion

PShTopL
∞
(B)cocart ↪→ PShTopL

∞
(B). To finish the proof, it now suffices to show

that for any cocartesian morphism 𝑓∶ X → 𝐹 of TopL∞-valued presheaves on

B, the presheaf 𝐹 is contained in TopL(B) and the map 𝑓 defines an algebraic

morphism ofB-topoi. Since 𝑓 is a cocartesian morphism and since étale algebraic

morphisms are closed under pushouts in TopL∞, we find that for every 𝑠∶ 𝐵 → 𝐴
in B the induced functor 𝑠∗ ∶ 𝐹(𝐴) → 𝐹(𝐵) is an étale algebraic morphism of ∞-

topoi. Moreover, the pasting lemma for pushouts (and the fact that X is aB-topos)

imply that 𝐹∶ Bop → TopL,ét∞ preserves pushouts. Hence Theorem 6.2.1.5 implies

that 𝐹 must be contained in TopL(B) whenever 𝐹 is a sheaf. But if 𝑑∶ 𝐼 → B

is an arbitrary diagram, then we deduce from [50, Corollary 4.7.4.18] that the

commutative square

X(colim 𝑑) 𝐹(colim 𝑑)

limX ∘ 𝑑 lim 𝐹 ∘ 𝑑

is left adjointable and therefore a pushout in TopL∞, using Lemma 6.2.1.9. Hence,

since the left vertical map is an equivalence, so is the right one, whichmeans that 𝐹
is a sheaf. Finally, since 𝑓 is already section-wise given by an algebraic morphism

of ∞-topoi, the map defines an algebraic morphism of B-topoi precisely if it is

Grpd
B
-cocontinuous, which again follows from Lemma 6.2.1.9.
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6.2. Foundations of B-topos theory

Corollary 6.2.5.6. The global sections functor Γ∶ TopL(B) → TopL∞ is a left
fibration.

Proof. By the first part of Proposition 6.2.5.5, every map in TopL(B) is cocartesian.
By its second part, if X is a B-topos and 𝑓 ∗ ∶ Γ(X) → Z is an arbitrary algebraic

morphism, the codomain of the cocartesian lift X → 𝐹 of 𝑓 ∗ in PShTopL
∞
(B) is

again a B-topos. Hence the claim follows.

Proof of Theorem 6.2.5.1. By Corollary 6.2.5.6, the functor Γ∶ TopL(B) → TopL∞
is a left fibration, hence so is the functor Γ∶ TopL(B) → (TopL∞)B/. Since this

functor carries the initial object Grpd
B

to the initial object idB, it must be an

initial functor as well. Hence Γ is an equivalence.

6.2.6. Limits and colimits ofB-topoi

In this section, we discuss how one can construct limits and colimits in the B-

category TopL
B

of B-topoi. The construction of limits in TopL
B

is rather easy:

they are simply computed in Cat
B̂
. This is analogous to how limits are computed

in the B-category PrLB of presentable B-categories, cf. Proposition 5.4.4.10. The

proof of this statement follows along similar lines as well.

Proposition 6.2.6.1. The large B-category TopL
B
is complete, and the inclusion

TopL
B
↪→ Cat

B̂
is continuous.

Proof. As in the proof of Proposition 5.4.4.10, it will be enough to show that

whenever K is either given by the constantB-category Λ2
0 or by aB-groupoid, the

large B-category TopL
B

admits K-indexed limits and the inclusion TopL
B
↪→ Cat

B̂

preserves K-indexed limits.

We begin with the case were K is a B-groupoid. Let us set 𝐴 = K0. Since

the functor (𝜋𝐴)∗ ∶ Cat(B̂/𝐴) → Cat(B̂) is given by precomposition with 𝜋∗
𝐴,

Theorem 6.2.1.5 implies that (𝜋𝐴)∗ takes objects in TopL(B/𝐴) to objects in

TopL(B). Furthermore it easily follows fromCorollary 3.5.4.4 that (𝜋𝐴)∗ therefore

defines a functor TopL(B/𝐴) → TopL(B). Moreover, since the adjunction unit

id
Cat(B̂) → (𝜋𝐴)∗𝜋∗

𝐴 is given by precomposition with the adjunction counit

(𝜋𝐴)!𝜋∗
𝐴 → idB and vice versa for the adjunction counit, the same argument shows

together with the fact that B-topoi are Grpd
B
-cocomplete that these two maps
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6. B-topoi

must also restrict in the desired way. Hence (𝜋𝐴)∗ ∶ TopL(B/𝐴) → TopL(B)
defines a right adjoint of 𝜋∗

𝐴.

Now let us assume that K = Λ2
0, i.e. let

X ×Z Y Y

X Z

pr1

pr0 𝑔
𝑓

be a pullback square in Cat(B̂) in which the cospan in the lower right corner

is contained in TopL(B). By Proposition 5.4.4.10 this square defines a pullback

in PrL(B), and [49, Proposition 6.3.2.3] implies that both pr0 and pr1 preserve

finite limits. Hence the above pullback square is contained in TopL(B) whenever

X ×Z Y satisfies descent. But the codomain fibration (X ×Z Y)Δ
1
→ X ×Z Y can be

identified with the pullback of the cospan

pr∗0(X
Δ1) → pr∗0 𝑓

∗(ZΔ1
) ← pr∗1(Y

Δ1
)

of cartesian fibrations over X×Z Y, which implies that we may identify (X×Z Z)/−
with the pullback X/pr∗0(−)

×Z/pr∗0 𝑓 ∗(−)
Y/pr∗1(−)

in Fun
B
((X×Z Y)op,CatB̂). Since all

four functors in the initial pullback square are continuous, we conclude that X×ZY
satisfies descent provided that continuous functors are closed under pullbacks

in Fun
B
((X ×Z Y)op,Cat

B̂
), which follows immediately from the fact that limit

functors are themselves continuous (see the proof of Lemma 5.1.5.3 for more

details). We complete the proof by showing that if we are given another B-

topos E and algebraic morphisms ℎ∶ E → X and 𝑘∶ E → Z together with an

equivalence 𝑓 ∘ ℎ ≃ 𝑔 ∘ 𝑘, the induced map E → X ×Y Z is an algebraic morphism

as well. That this map is cocontinuous follows from Proposition 5.4.4.10, and

that it preserves finite limits is a consequence of the fact that this property can

be checked section-wise.

As a consequence of Proposition 6.2.6.1, we can now upgrade the equivalence

from Theorem 6.2.5.1 to a functorial one:

Corollary 6.2.6.2. Let (TopL∞)(B/−)/ be the Ĉat∞-valued presheaf on B whose
associated cocartesian fibration on Bop is given by the pullback of the domain
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6.2. Foundations of B-topos theory

fibration 𝑑1 ∶ Fun(Δ1,TopL∞) → TopL∞ along B/− ∶ Bop → TopL∞. Then this
presheaf is a sheaf whose associated large B-category is equivalent to TopL

B
.

Proof. To begin with, note that the functor (Grpd
B
)/− ∶ Grpdop

B
→ Cat

B̂
takes

values in TopL
B

(see the discussion before Definition 6.2.9.1 below). Thus, by

combining descent with Proposition 6.2.6.1, we obtain an Grpd
B
-continuous

functor Grpdop
B

→ TopL
B
. Hence, the underlying map of Ĉat∞-valued presheaves

on B can be regarded as a morphism in FunLAdj(Bop, Ĉat∞) (in the sense of [50,

§ 4.7.4]). On account of the equivalence

FunLAdj(Bop, Ĉat∞) ≃ FunRAdj(B, Ĉat∞)

from [50, Corollary 4.7.4.18] that is furnished by passing to right adjoints, we

thus obtain a morphism of functors Φ∶ (B/−)op → TopL(B/−) in which the

functoriality on both sides is given by the right adjoints of the transition functors.

Let 𝜂∶ 𝜙 → diag
B
(𝜙(1)) be the commutative square in Fun(B, Ĉat∞) that is

obtained from the unit of the adjunction

ev1 ⊣ diag
B
∶ Fun(B, Ĉat∞) ⇆ Ĉat∞.

We may regard 𝜂 as a morphism in Fun(B, Ĉat
Δ1

∞ ). Note that for every map

𝑠∶ 𝐵 → 𝐴 in B one has a commutative triangle

TopL(B/𝐵) TopL(B/𝐴)

TopL∞,

𝑠∗

ΓB/𝐵
ΓB/𝐴

hence Corollary 6.2.5.6 implies that 𝑠∗ is a left fibration. As the functor

𝑠op! ∶ B
op
/𝐵 → B

op
/𝐴

is a left fibration too, the map 𝜂 thus defines a morphism in Fun(B, LFib) (where

LFib is the full subcategory of Fun(Δ1, Ĉat∞) that is spanned by the left fibra-

tions). Explicitly, this morphism carries 𝐴 ∈ B to the commutative square

𝜂(𝐴)∶ 𝜙(𝐴) → 𝜙(1). Now observe that the domain of 𝜂 is contained in the fibre

LFib(Bop) ↪→ LFib
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6. B-topoi

and the codomain is contained in the fibre

LFib(TopL(B)) ↪→ LFib .

Moreover, for each 𝐴 ∈ B the functor Φ(𝐴)∶ (B/𝐴)op → TopL(B/𝐴) carries the
final object in B/𝐴 to the initial object B/𝐴 ∈ TopL(B/𝐴) (see Corollary 6.2.2.4),

hence Φ is section-wise initial. Altogether, these observations imply that

TopL(B/−)∶ B → LFib(TopL(B))

is equivalent to the composition of (B/−)op ∶ B → LFib(Bop) (which is just the

Yoneda embedding) with the functor of left Kan extension

Φ(1)! ∶ LFib(Bop) → LFib(TopL(B))

along Φ(1)∶ Bop → TopL(B). But the latter composition is equivalent to the

composition

B
Φ(1)op
−−−−−→ TopL(B)op

ℎTopL(B)op

↪−−−−−−−−→ LFib(TopL(B)).

By making use of the commutative diagram

B TopL(B)op (TopL∞)op

LFib(TopL(B)) LFib(TopL∞),

Φ(1)

B/−

Γ

Γ!

the claim now follows.

Remark 6.2.6.3. Corollary 6.2.6.2 implies that for any map 𝑠∶ 𝐵 → 𝐴 in B

the transition functor 𝑠∗ ∶ TopL(B/𝐴) → TopL(B/𝐵) can be identified with the

pushout functor

− ⊔B/𝐴
B/𝐵 ∶ (TopL∞)B/𝐴/ → (TopL∞)B/𝐵/.

As opposed to limits in TopL
B
, general colimits ofB-topoi can not be computed

on the underlyingB-categories, not even after passing to the oppositeB-category

TopR
B
. The existence of constant colimits follows easily from Theorem 6.2.5.1:
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6.2. Foundations of B-topos theory

Lemma 6.2.6.4. The large B-category TopL
B
is LConst-cocomplete.

Proof. In light of Remark 6.2.6.3, this follows from the fact that for any map

𝑠∶ 𝐵 → 𝐴 in B the ∞-categories (TopL∞)B/𝐴/ and (TopL∞)B/𝐵/ have colimits by

[49, Proposition 6.3.4.6] and − ⊔B/𝐴
B/𝐵 preserves all colimits.

Lemma 6.2.6.5. The B-category TopL
B
is Grpd

B
-cocomplete.

Proof. By Remark 6.2.1.3, it suffices to show that whenever 𝑑∶ G → TopL
B

is a

diagram indexed by a B-groupoid G, the functor mapFun
B
(G,TopL

B
)(𝑑, diag(−))

is corepresentable. Note that we have an equivalence Fun
B
(G, −) ≃ (𝜋G)∗𝜋∗

G.

Therefore, Corollary 6.2.3.6 implies that we can assume that 𝑑 is in the image of

Grpd
B
[−]∗ ∶ Fun

B
(G,Cat

B̂
) → Fun

B
(G, TopL

B
). In this case, the claim follows

from Corollary 6.2.2.3.

Proposition 6.2.6.6. The B-category TopL
B
is cocomplete.

Proof. By Corollary 3.5.4.2, this follows from Lemma 6.2.6.4 and Lemma 6.2.6.5.

6.2.7. A formula for the coproduct of B-topoi

The goal of this section is to give an explicit description of the coproduct in

TopL
B
. To that end, recall that by the discussion in Section 5.5.3 the ∞-category

PrL(B) of presentable B-categories is symmetric monoidal. Explicitly, if D

and E are presentable B-categories, their tensor product D ⊗ E is equivalent

to the B-category ShE(D) of E-valued sheaves on D (i.e. the full subcategory

of Fun
B
(Dop, E) spanned by the continuous functors 𝜋∗

𝐴D
op → 𝜋∗

𝐴E for each

𝐴 ∈ B). In light of this identification, the proof of Proposition 5.5.3.8 shows

that if 𝑓 ∗ ∶ D → D′ and 𝑔∗ ∶ E → E′ are maps in PrLB with right adjoints 𝑓∗
and 𝑔∗, then the functor id⊗𝑓 ∗ ∶ D ⊗ E → D ⊗ E′ can be identified with the

left adjoint of the postcomposition functor (𝑓∗)∗ ∶ ShE′(D) → ShE(D), and the

functor 𝑔∗ ⊗ id∶ D ⊗ E → D′ ⊗ E can be identified with the left adjoint of the

precomposition functor (𝑔∗)∗ ∶ ShE(D′) → ShE(D).
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6. B-topoi

Proposition 6.2.7.1. If X and Y are B-topoi, then their tensor product X ⊗ Y is a
B-topos as well. Moreover, the cospan

X ≃ X ⊗ Grpd
B

id⊗ constY
−−−−−−−−−→ X ⊗ Y

constX ⊗ id
←−−−−−−−−− Grpd

B
⊗Y ≃ Y

exhibits X ⊗ Y as the coproduct of X and Y in TopL
B
.

Combining the above result with Proposition 5.5.4.10, we obtain the following

generalisation of [6, Corollary 1.10]:

Corollary 6.2.7.2. Assume that B is generated under colimits by (−1)-truncated
objects. Then for X,Y ∈ TopL

B/ the canonical map

X ⊗B Y → X ⊔B Y

is an equivalence.

The proof of Proposition 6.2.7.1 requires a few preparations and will be given

at the end of this section. First, let us observe that this result provides an explicit

formula for the pushout of ∞-topoi:

Corollary 6.2.7.3. Given a cospan X
𝑓 ∗

←−− Z
𝑔∗

−−→ Y in TopL∞, there is a canonical
equivalence

X ⊔Z Y ≃ FuncontZ (𝑓∗(GrpdX)
op, 𝑔∗ GrpdY)

where the right-hand side is the full subcategory of FunZ(𝑓∗(GrpdX)
op, 𝑔∗ GrpdY)

that is spanned by the continuous functors.

Remark 6.2.7.4. In light of Corollary 6.2.7.3, the ∞-topos X ⊔Z Y admits the fol-

lowing explicit description: It is the full subcategory of the ∞-category of natural

transformations between the two Ĉat∞-valued sheaves X/𝑓 ∗(−) and Y/𝑔∗(−) on Z

that is spanned spanned by those maps 𝜙∶ (X/𝑓 ∗(−))op → Y/𝑔∗(−) which satisfy

that

1. the functor 𝜙(𝐴) preserves limits for all 𝐴 ∈ Z, and

2. for any map 𝑠∶ 𝐵 → 𝐴 in Z the canonical lax square

(X/𝑓 ∗(𝐵))op Y/𝑔∗(𝐵)

(X/𝑓 ∗(𝐴))op Y/𝑔∗(𝐴)

𝜙(𝐵)

𝑔∗(𝑠)∗𝑓 ∗(𝑠)!

𝜙(𝐴)
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6.2. Foundations of B-topos theory

commutes.

Admittedly, the description of the pushout of ∞-topoi in Remark 6.2.7.4 is

rather unwieldy in general. However, we can paint a more concrete picture in

the following case:

Example 6.2.7.5. Let X be a B-topos and let C be an arbitrary B-category. Then

Proposition 6.2.7.1 implies that the commutative square

Grpd
B

PSh
B
(C)

X Fun
B
(Cop,X)

constX

diag

(constX)∗
diag

is a pushout in TopL
B
. Furthermore, if 𝑓∶ X → B is the geometric morphism

associated to X, then the lower horizontal map can be identified with the image

of diag∶ Grpd
X

→ PSh
X
(𝑓 ∗C) along 𝑓∗.

We now turn to the proof of Proposition 6.2.7.1. It is a straightforward adaption

of the proof presented in [4, §2.3] to the setting of B-categories. We begin with

the following lemma:

Lemma 6.2.7.6. Let C and D be B-categories with finite limits. Then precompo-
sition with the canonical maps idC ×1D ∶ C → C × D and 1C × idD ∶ D → C × D
induces an equivalence

Funlex
B

(C × D, E) ≃ Funlex
B

(C, E) × Funlex
B

(D, E)

for anyB-category E with finite limits. In other words, these two maps exhibit C×D
as the coproduct of C and D in CatlexB .

Proof. The composition

Funlex
B

(C, E) × Funlex
B

(D, E)
pr∗0 × pr∗1
−−−−−−−→ Funlex

B
(C × D, E) × Funlex

B
(C × D, E)

≃
−→ Funlex

B
(C × D, E × E)

(−×−)∗
−−−−−−→ Funlex

B
(C × D, E)

defines an inverse.
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6. B-topoi

The rough strategy of the proof of Proposition 6.2.7.1 is to first prove the claim

for free B-topoi, which will follow from Lemma 6.2.7.6. In order to reduce the

general case to this setting we need to understand the compatibility of tensor

products with localisations:

Lemma 6.2.7.7. Suppose that C and D are presentable B-categories and that
W ↪→ C and S ↪→ D are small subcategories. LetC′ ↪→ C be a small full subcategory
that exhibits C as the free FiltU-cocompletion of C′ for some sound doctrine U. Let
D′ ↪→ D be chosen similarly. We write 𝜏∶ C ×D → C⊗D for the universal bilinear
functor. Let us set W ⊠ S = (W × (D′)≃) ⊔ ((C′)≃ × S). Then the canonical map
C ⊗ D → LocW(C) ⊗ LocS(D) induces an equivalence

LocW⊠S(C ⊗ D)
≃
−→ LocW(C) ⊗ LocS(D),

where the left-hand side is the B-category of local objects with respect to the map
(𝜏 , 𝜏 )∶ W ⊠ S → C ⊗ D.

Proof. Let E be any other presentable B-category and let Funbil
B

(C × D, E)W⊠S be

the full subcategory of Funbil
B

(C ×D, E) that is spanned by those bilinear functors

𝜋∗
𝐴C × 𝜋∗

𝐴D → 𝜋∗
𝐴E (in arbitrary context 𝐴 ∈ B) whose precomposition with

𝜋∗
𝐴(W ⊠ S) → 𝜋∗

𝐴C × 𝜋∗
𝐴D factors through 𝜋∗

𝐴E
≃. By combining the universal

property of the tensor product with Corollary 5.4.3.2, we now obtain a chain of

equivalences

Funcc
B
(LocW⊠S(C ⊗ D), E) ≃ Funcc

B
(C ⊗ D, E)W⊠S ≃ Funbil

B
(C × D, E)W⊠S.

Note that a bilinear functor 𝑓∶ C ×D → E is contained in Funbil
B

(C ×D, E)W⊠D if

and only if

1. for any 𝑐∶ 𝐴 → C′ in context 𝐴 ∈ B the functor 𝜋∗
𝐴S ↪→ 𝜋∗

𝐴D
𝑓 (𝑐,−)
−−−−−→ 𝜋∗

𝐴E

factors through 𝜋∗
𝐴E

≃, and

2. for any 𝑑∶ 𝐴 → D′ in context 𝐴 ∈ B the functor 𝜋∗
𝐴W ↪→ 𝜋∗

𝐴C
𝑓 (−,𝑑)
−−−−−→ 𝜋∗

𝐴E

factors through 𝜋∗
𝐴E

≃.

Let 𝑓 ′ ∶ C → Funcc
B
(D, E) be the transpose of 𝑓. By Lemma 5.5.1.3, 𝑓 ′ is cocontin-

uous. Now the first condition is equivalent to the composition

C′ ↪→ C
𝑓 ′

−−→ Funcc
B
(D, E)
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6.2. Foundations of B-topos theory

taking values in Funcc
B
(LocS(D), E). Note that the inclusion

Funcc
B
(LocS(D), E) ↪→ Funcc

B
(D, E)

is given by precomposition with D → LocS(D) and is therefore cocontinuous.

Since C′ generates C under FiltU-colimits, it follows that (1) is equivalent to 𝑓 ′ be-

ing contained in Funcc
B
(C, Funcc

B
(LocS(D), E)). Similarly, if 𝑓 ′′ ∶ D → Funcc

B
(C, E)

is the other transpose of 𝑓, condition (2) is equivalent to 𝑓 ′′ taking values in

Funcc
B
(LocW(C), E). Therefore, the naturality of the equivalence in Lemma 5.5.1.3

implies that 𝑓 satisfies (1) and (2) if and only if 𝑓 is contained in the full sub-

category Funbil
B

(LocW(C) × LocS(D), E). As the same argument can be carried

out for bilinear functors in arbitrary context, this shows that the equivalence

Funcc
B
(C ⊗ D, E) ≃ Funbil

B
(C × D, E) restricts to an equivalence

Funcc
B
(LocW⊠S(C ⊗ D), E) ≃ Funbil

B
(LocW(C) × LocS(D), E),

which proves the claim.

A similar argument as above shows the following:

Lemma 6.2.7.8. Let C and D be presentable B-categories and let W ↪→ C and
S ↪→ D be small subcategories. Then the commutative square

C ⊗ D C ⊗ LocS(D)

LocW(C) ⊗ D LocW(C) ⊗ LocS(D)

is a pushout in PrLB.

Proof of Proposition 6.2.7.1. To simplify notation, we shall write 𝑖0 = id⊗ constY
as well as 𝑖1 = constX ⊗ id. First, let us show the claim in the special case where

X = Grpd
B
[C] and Y = Grpd

B
[D]. In this situation, we have an equivalence

X⊗ Y ≃ PSh
B
(Clex × Dlex) with respect to which the functors 𝑖0 and 𝑖1 are given

by left Kan extension along the two maps

id ×1Dlex ∶ Clex → Clex × Dlex and 1Clex × id∶ Dlex → Clex × Dlex.
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6. B-topoi

By Lemma 6.2.7.6, the latter two functors exhibit Clex × Dlex as the coproduct

Clex ⊔ Dlex in CatlexB . As the functor (−)lex is a left adjoint and thus preserves

coproducts, we end up with an equivalence X ⊗ Y ≃ Grpd
B
[C ⊔ D] with re-

spect to which 𝑖0 and 𝑖1 correspond to the image of the inclusions C ↪→ C ⊔ D

and D ↪→ C ⊔ D along the functor Grpd
B
[−]. The claim thus follows from

Corollary 6.2.2.3.

In the general case, Corollary 6.2.3.5 implies that we may choose left exact and

accessible Bousfield localisations 𝐿∶ Grpd
B
[C] → X and 𝐿′ ∶ Grpd

B
[D] → Y.

By Lemma 6.2.7.8 we have a pushout square

Grpd
B
[C] ⊗ Grpd

B
[D] X ⊗ Grpd

B
[D]

Grpd
B
[C] ⊗ Y X ⊗ Y

in PrL(B). The upper horizontal functor is equivalent to the functor

𝐿∗ ∶ Fun
B
((Dlex)op,Grpd

B
[C]) → Fun

B
((Dlex)op,X)

and therefore a left exact and accessible Bousfield localisation. By symmetry, the

same holds for the left vertical functor. Thus X⊗Y is equivalent to the intersection

of two accessible and left exact Bousfield localisations of Grpd
B
[C] ⊗ Grpd

B
[D]

and therefore by [49, Lemma 6.3.3.4] in particular a B-topos. Since the square

Grpd
B
[C] X

Grpd
B
[C] ⊗ Grpd

B
[D] X ⊗ Grpd

B
[D]

𝑖0 𝑖0

commutes, it follows that 𝑖0 ∶ X → X⊗Grpd
B
[D] is left exact. Since 𝑖0 ∶ X → X⊗Y

factors as the composite X
𝑖0
−→ X ⊗ Grpd

B
[D] → X ⊗ Y it is therefore also left

exact. The same argument shows that 𝑖1 ∶ Y → X ⊗ Y is left exact. Finally, note

that 𝐿 and 𝐿′ induce a commutative square

Funalg
B

(X ⊗ Y,Z) Funalg
B

(Grpd
B
[C] ⊗ Grpd

B
[D] ,Z)

Funalg
B

(X,Z) × Funalg
B

(Y,Z) Funalg
B

(Grpd
B
[C] ,Z) × FunalgB (Grpd

B
[D] ,Z)

(𝑖∗0 ,𝑖∗1) ≃
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6.2. Foundations of B-topos theory

for any B-topos Z. As the right vertical map being an equivalence implies

that (𝑖∗0 , 𝑖
∗
1) is fully faithful, it thus suffices to see that this functor is also es-

sentially surjective. Using Remark 6.2.1.3, it will be enough to show that for

any two algebraic morphisms 𝑓∶ X → Z and 𝑔∶ Y → Z the induced map

Grpd
B
[C] ⊗ Grpd

B
[D] → Z factors through Grpd

B
[C] ⊗ Grpd

B
[D] → X ⊗ Y.

This is a direct consequence of Lemma 6.2.7.7.

6.2.8. Diaconescu’s theorem

In classical category theory, Diaconescu’s theorem states that for any 1-category
C and any 1-topos X, a functor 𝑓∶ C → X is internally flat if and only if its left

Kan extension ℎ!𝑓∶ PShSet(C) → X preserves finite limits, see for example [39,

Theorem B.3.2.7]. Here 𝑓 being internally flat precisely means that its internal

unstraightening results in a filtered internal category in X. For ∞-categories, a

comparable result has been proved by Lurie [49, Proposition 6.1.5.2] in the special

case where the ∞-category C already admits finite limits. In the general case,

Raptis and Schäppi proved Diaconescu’s theorem under the assumption that the

codomain X is a hypercomplete ∞-topos [67].

The main goal of this section is to establish a general version of Diaconescu’s

theorem forB-topoi and therefore also a general version of Diaconescu’s theorem

for ∞-topoi, without any hypercompleteness assumptions. To that end, let us

say that a presheaf 𝐹∶ Cop → Grpd
B

on an arbitrary B-category C is flat if it
is FinB-flat in the sense of Definition 5.3.4.1. We will denote by Flat

B
(C) the

associated B-category of flat functors. Recall from Proposition 5.2.3.7 that the

doctrine FinB is sound. Therefore, Proposition 5.3.4.6 implies:

Proposition 6.2.8.1. For any B-category C, a functor 𝐹∶ Cop → Grpd
B
is flat if

and only if the B-category C/𝐹 is filtered.

Diaconescu’s theorem for B-topoi can now be stated as follows:

Theorem 6.2.8.2. Let X be a B-topos and let 𝑓∗ ∶ X → B be the associated
geometric morphism. Let C be an arbitrary B-category. Then precomposition with
the Yoneda embedding induces an equivalence

Funalg
B

(PSh
B
(C),X) ≃ 𝑓∗FlatX(𝑓

∗Cop).
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6. B-topoi

Specialising to the case where B ≃ Ani, Theorem 6.2.8.2 implies:

Corollary 6.2.8.3. For any small ∞-category C, a functor 𝑓∶ C → B is flat if
and only if its Yoneda extension ℎ!𝑓∶ PShAni(C) → B preserves finite limits. In
particular, the functor of left Kan extension along ℎC induces an equivalence

ℎ! ∶ FlatB(Cop) ≃ Funalg(PShAni(C),B)

of ∞-categories.

Remark 6.2.8.4. Corollary 6.2.8.3 can be used to define morphisms of general

∞-sites: if C and D are ∞-sites, a functor 𝑓∶ C → D is a morphism of ∞-sites

if the associated functor 𝑓 ′ ∶ C → Sh(D) (which is obtained by composing 𝑓
with the sheafified Yoneda embedding 𝐿ℎ∶ D → Sh(D)) is flat and if for every

covering (𝑐𝑖 → 𝑐)𝑖∈𝐼 in C the induced functor ⨆𝑖 𝑓
′(𝑐𝑖) → 𝑓 ′(𝑐) is a cover in

Sh(D). Using this definition, Corollary 6.2.8.3 and [49, Lemma 6.2.3.19] imply

that every morphism of ∞-sites 𝑓∶ C → D induces an algebraic morphism

𝐹∶ Sh(C) → Sh(D).

The proof of Theorem 6.2.8.2 relies on the following two elementary lemmas:

Lemma 6.2.8.5. Let 𝑓∶ X → B be a geometric morphism. Suppose that 𝑝∶ P → C

is a left fibration of X-categories that is classified by a functor 𝑔∶ C → Grpd
X
.

Then the left fibration 𝑓∗(𝑝) of B-categories is classified by the composition

𝑓∗C
𝑓∗(𝑔)
−−−−→ X

ΓX
−−→ Grpd

B
.

Proof. Since 𝑓∗ commutes with pullbacks and with powering by ∞-categories

(cf. Remark 1.2.5.6), the image of the universal left fibration (Grpd
X
)1/ → Grpd

X

along 𝑓∗ can be identified with (𝜋1X)! ∶ X1X/ → X and is therefore classified by

mapX(1X, −) ≃ ΓX. Hence the claim follows.

Lemma 6.2.8.6. Let X be a B-topos and let 𝑓∶ X → B be the corresponding
geometric morphism. Then for any B-category C, there is a commutative square

C PSh
B
(C)

𝑓∗𝑓 ∗C Fun
B
(Cop,X).

ℎC

𝜂 (constX)∗
𝑓∗(ℎ𝑓 ∗C)
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Proof. Transposing the Yoneda embedding ℎ𝑓 ∗C ∶ 𝑓 ∗C ↪→ PSh
X
(𝑓 ∗C) across the

adjunction 𝑓 ∗ ⊣ 𝑓∗ yields the composition

C
𝜂
−→ 𝑓 ∗𝑓∗C

𝑓∗(ℎ𝑓 ∗C)
↪−−−−−−→ Fun

B
(Cop,X)

in which 𝜂 is the adjunction unit. By transposing the above map across the

adjunction Cop × − ⊣ Fun
B
(Cop, −), one ends up with the functor

Cop × C
𝜂
−→ 𝑓∗𝑓 ∗(Cop × C)

𝑓∗(map𝑓 ∗C)
−−−−−−−−−→ X.

On the other hand, the transpose of the composition

C ↪→ PSh
B
(C) → Fun

B
(Cop,X)

yields

Cop × C
mapC
−−−−−→ Grpd

B

constX
−−−−−→ X,

so it suffices to show that these two functors are equivalent. By Lemma 6.2.8.5

the functor map𝑓∗𝑓 ∗C is equivalent to the composition

ΓX ∘ 𝑓∗(map𝑓 ∗C)∶ 𝑓∗Cop × 𝑓∗C → X → Grpd
B
.

As a consequence, the morphism of functors mapC → map𝑓∗𝑓 ∗C ∘𝜂 that is in-

duced by the action of 𝜂 on mapping B-groupoids determines a morphism

mapC → ΓX ∘ 𝑓∗(map𝑓 ∗C) ∘ 𝜂 which in turn transposes to a map

constX ∘mapC → 𝑓∗(map𝑓 ∗C) ∘ 𝜂.

To show that this is an equivalence, it will be enough to show that it induces

an equivalence when evaluated at (𝜏 , 𝜏 ), where 𝜏 is the tautological object in C,

i.e. the one given by the identity of C0. But by construction, the resulting map

is simply the transpose of 𝜂∶ C1 → 𝑓∗𝑓 ∗C1 across the adjunction 𝑓 ∗ ⊣ 𝑓∗ and

therefore an equivalence, as desired.

Proof of Theorem 6.2.8.2. To begin with, we note that the universal property of

presheaf B-categories together with Remark 6.2.1.3 and Remark 5.3.4.2 implies

that it suffices to show that a functor 𝑔∶ C → X transposes to a flat functor
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𝑔′ ∶ 𝑓 ∗C → Grpd
X

if and only if its Yoneda extension (ℎC)!(𝑔)∶ PSh
B
(C) → X

preserves finite limits. Note that by Lemma 6.2.8.6 (and the fact that base change

along 𝑓∗ preserves cocontinuity), we have a commutative diagram

PSh
B
(C)

Fun
B
(Cop,X) X.

(constX)∗

(ℎC)!(𝑔)

𝑓∗(ℎ𝑓 ∗C)!(𝑔′)

Therefore, 𝑔′ being flat immediately implies that (ℎC)!(𝑔) is an algebraic mor-

phism, so it suffices to consider the converse implication. Suppose therefore that

the left Kan extension (ℎC)!(𝑔) preserves finite limits. We wish to show that

the functor (ℎ𝑓 ∗C)!(𝑔′) preserves finite limits as well. In light of the previous

commutative diagram and the fact that (constX)∗ preserves finite limits, it is clear

that it preserves the final object, so we only need to consider the case of pullbacks.

By Lemma 6.2.2.8, we may reduce to pullbacks of cospans in PSh
X
(𝑓 ∗C) (in arbi-

trary context 𝑈 ∈ X) which are contained in the essential image of the Yoneda

embedding ℎ𝑓 ∗C. Since any such cospan is determined by a map 𝑈 → (𝑓 ∗C)Λ
2
0 ,

it factors through the core inclusion 𝜏𝑓 ∗C ∶ 𝑓 ∗(C1 ×C0
C1) → (𝑓 ∗C)Λ

2
0 , which

we may regard as the tautological cospan. Therefore, it is enough to show that

the pullback of 𝜏𝑓 ∗C is preserved by (ℎ𝑓 ∗C)!(𝑔′). As this diagram is in context

𝑓 ∗(C1 ×C0
C1), we may make use of the adjunction 𝑓 ∗ ⊣ 𝑓∗ to regard 𝜏𝑓 ∗C as

a cospan in 𝑓∗𝑓 ∗C in context C1 ×C0
C1. As such, it is precisely the cospan

that arises as the image of the tautological cospan 𝜏C in C (i.e. the one given

by the core inclusion 𝜏C ∶ C1 ×C0
C1 ↪→ CΛ2

0 ) along 𝜂∶ C → 𝑓∗𝑓 ∗C. By again

making use of Lemma 6.2.8.6, we thus conclude that the image of 𝜏𝑓 ∗C along

𝑓∗(ℎ𝑓 ∗C)∶ 𝑓∗𝑓 ∗C ↪→ Fun
B
(Cop,X) can be identified with the image of 𝜏C along

the composition (constX)∗ ∘ ℎC. In particular, the cospan 𝑓∗(ℎ𝑓 ∗C)(𝜏𝑓 ∗C) is con-
tained in the image of (constX)∗, hence the above commutative diagram yields

the claim.

In the remainder of this sectionwewill explain how our version of Diaconescu’s

theorem for ∞-topoi (Corollary 6.2.8.3) relates to that of Raptis and Schäppi [67]

when B is hypercomplete. More precisely, in [67, Theorem 1.1 (3)] Raptis and

Schäppi give an explicit characterisation of flat functors C → X valued in a
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hypercomplete∞-toposX, and a priori it is not clear how to relate this description

to our substantially less explicit characterisation of flat functors in terms of

internal filteredness (Proposition 6.2.8.1). Therefore, our goal is to recover the

description in [67, Theorem 1.1 (3)] from Proposition 6.2.8.1. To that end, suppose

that there is a left exact and accessible localisation 𝐿∶ PSh(D) → B for some

small ∞-category D, and let 𝑖∶ B ↪→ PSh(D) be its right adjoint. We denote by

C𝑓 / → C the left fibration (in Cat(B)) that is classified by 𝑓∶ C → Grpd
B
. By

definition, it sits inside a pullback square

C𝑓 / (Grpd
B
)1/

C Grpd
B

𝑓

in Cat(B). If B is hypercomplete, we deduce from Proposition 6.2.8.1 and Propo-

sition 5.2.3.14 that 𝑓 being flat is equivalent to (C𝑓 /)op being quasi-filtered. In

order to obtain a more explicit understanding of the latter condition, let us first

consider the constant presheaf C∶ Dop → Cat∞ with value C and compute the

pullback
C𝑓 ′/ 𝑖((Grpd

B
)1/)

C 𝑖(Grpd
B
)

𝑓 ′

in Cat(PSh(D)) ≃ Fun(Dop,Cat∞). Here 𝑓 ′ is the transpose of 𝑓∶ C → Grpd
B

across the adjunction 𝐿 ⊣ 𝑖. Note that 𝐿(C𝑓 ′/) ≃ C𝑓 / since 𝐿 is left exact. Upon

evaluating the previous pullback square at any 𝑑 ∈ D, we obtain a commutative

rectangle
C𝑓 ′/(𝑑) B𝐿𝑑/ B𝐿(𝑑)𝐿(𝑑)

C B B/𝐿𝑑
𝑓 𝜋∗

𝐿(𝑑)

where the lower composite is is equivalent to 𝑓 ′(𝑑) and all squares are pullback

squares. Here B𝐿(𝑑)𝐿(𝑑) denotes the ∞-category of pointed objects in B/𝐿(𝑑). It

follows that we can explicitly describe C𝑓 ′/(𝑑) as the pullback in the left square

such that for any map 𝑠∶ 𝑑 → 𝑒 in D the functor 𝑠∗ ∶ C𝑓 ′/(𝑒) → C𝑓 ′/(𝑑) is
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6. B-topoi

induced by pulling back the canonical functor 𝑠∗ ∶ B𝐿𝑒/ → B𝐿𝑑/ along 𝑓. To

proceed, we now need the following lemma that characterises those Cat∞-valued

presheaves on D which yield quasi-filtered B-categories upon sheafification:

Lemma 6.2.8.7. Let C ∈ Cat(PSh(D)). Then 𝐿C is a quasi-filtered B-category if
and only if for any finite ∞-category K, any 𝑑 ∈ D and any map 𝛽∶ K → C(𝑑)
there exist morphisms (𝑠𝑖 ∶ 𝑑𝑖 → 𝑑)𝑖 such that (𝐿𝑠𝑖)∶ ⨆𝑖 𝐿(𝑑𝑖) � 𝐿(𝑑) is a cover
in B, and there are maps 𝛼𝑖 ∶ K▷ → C(𝑑𝑖) for every 𝑖 that fit into commutative
diagrams

K▷ C(𝑑𝑖)

K C(𝑑)
𝛽

𝑠∗𝑖

𝛼𝑖

of ∞-categories.

Proof. The if part of the statement is a direct consequence of Proposition A.2.0.2.

For the converse we note that for any finite ∞-category K the canonical map

𝐿FunPSh(D)(K,C)≃ → Fun
B
(K, 𝐿C)≃

is an equivalence. Now for some 𝛽∶ K → C(𝑑) corresponding via Yoneda’s

lemma to a morphism 𝑑 → Fun
B
(K,C)≃ this shows that the projection map

pr1 ∶ 𝑑 ×FunPSh(D)(K,C)≃ FunPSh(D)(K
▷,C)≃ → 𝑑

becomes a cover after applying 𝐿. We now pick a cover

(𝑡𝑖)∶ ⨆
𝑖
𝑑𝑖 → 𝑑 ×FunPSh(D)(K,C)≃ FunPSh(D)(K

▷,C)≃

in PSh(D) by representables. Then the 𝑠𝑖 = pr1 ∘𝑡𝑖 yield a cover after applying 𝐿,
and by Yoneda’s lemma every 𝑠𝑖 gives a commutative square as in the claim.

By combining Lemma 6.2.8.7 with the discussion preceding it, we recover the

following characterisation of flat functors in the hypercomplete case:

Proposition 6.2.8.8 ([67, Definition 3.1 and Theorem 3.5]). Suppose that B is
hypercomplete, and let 𝑓∶ C → B be a functor. Then 𝑓 is flat if and only if for every
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𝑑 ∈ D, every functor 𝛼∶ K → C (where K is a finite ∞-category) and every map
𝛽∶ K◁ → B with cone point 𝐿(𝑑) such that 𝑓 𝛼 ≃ 𝛽|K, there are maps (𝑠𝑖 ∶ 𝑑𝑖 → 𝑑)𝑖
in D such that

1. 𝐿(𝑠𝑖)∶ ⨆𝑖 𝐿(𝑑𝑖) � 𝑑 is a cover in B;

2. for each 𝑖 there is a cocone 𝛼𝑖 ∶ K◁ → C extending 𝛼, together with amorphism
of cones ℎ∶ Δ1 ⋄ K → B from the cocone 𝛽 ∘ 𝑠𝑖 (which is given by composing
the cone point of 𝛽 with 𝑠𝑖) to 𝑓 ∘ 𝛼𝑖.

6.2.9. ÉtaleB-topoi

By Theorem 6.2.5.1, geometric morphisms 𝑓∗ ∶ X → B are in correspondence

with B-topoi 𝑓∗(GrpdX). In this section, we study those B-topoi that corre-

spond to étale geometric morphisms. To prepare our discussion, note that Corol-

lary 6.2.4.4 implies that the functor (−)disc = Grpd(−)
B

∶ Grpd
B
↪→ CatB → TopR

B

from Definition 6.2.4.5 is cocontinuous. Moreover, as this functor carries the

final object 1Grpd
B

to Grpd
B

itself, the universal property of Grpd
B

implies that

we have a functorial equivalence (−)disc ≃ (Grpd
B
)/−. In particular, the functor

(Grpd
B
)/− takes values in TopR

B
too. We may therefore define:

Definition 6.2.9.1. AB-topos X is étale if there is an equivalence X ≃ (Grpd
B
)/G

for some B-groupoid G.

In [49, Proposition 6.3.5.5], Lurie proved a universal property for étale geo-

metric morphisms of ∞-topoi. In light of Theorem 6.2.5.1, such étale geometric

morphisms precisely correspond to étale B-topoi. The main goal of this sec-

tion is to discuss how Lurie’s result can also be deduced from Diaconescu’s

theorem. To that end, note that if X is a B-topos with associated geometric

morphism 𝑓∗ ∶ X → B and if G is a B-groupoid, the fact that we may iden-

tify X ≃ 𝑓∗(GrpdX) implies that precomposition with the Yoneda embedding

ℎG ∶ G ↪→ Fun
B
(G,Grpd

B
) ≃ (Grpd

B
)/G induces a map

Fun
B
((Grpd

B
)/G,X) → 𝑓∗FunX(𝑓

∗G,Grpd
X
) ≃ X/ constX G.

The universal property of étale B-topoi can now be formulated as follows:
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Proposition 6.2.9.2. LetG be aB-groupoid and let X be aB-topos. Precomposition
with the Yoneda embedding ℎG induces a fully faithful functor

ℎ∗G ∶ Funalg
B

((Grpd
B
)/G,X) ↪→ X/ constX G

that fits into a pullback square

Funalg
B

((Grpd
B
)/G,X) X/ constX G

1 X.

ℎ∗G

(𝜋constX G)!
1X

In particular, there is a canonical equivalence

Funalg
B

((Grpd
B
)/G,X) ≃ mapX(1X, constX G).

The proof of Proposition 6.2.9.2 requires the following lemma:

Lemma 6.2.9.3. For any B-groupoid G, the full embedding G ↪→ (Grpd
B
)/G that

is obtained by combining the Yoneda embedding ℎG with the equivalence

Fun
B
(G,Grpd

B
) ≃ (Grpd

B
)/𝐺

fits into a pullback square

G (Grpd
B
)/G

1 Grpd
B
.

(𝜋G)!
1GrpdB

Proof. Since we have a commutative diagram

(Grpd
B
)/G Fun

B
(G,Grpd

B
)

Grpd
B
,

≃

(𝜋G)!
colimG

the claim follows once we show that a copresheaf 𝐹∶ G → Grpd
B
is representable

if and only if colimG 𝐹 ≃ 1Grpd
B
. But 𝐹 is representable if and only if G/𝐹 admits

an initial object, and since the latter is a B-groupoid, this is in turn equivalent

to G/𝐹 ≃ 1. Since by Proposition 3.2.5.1 we have G/𝐹 ≃ colimG 𝐹, the claim

follows.
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Proof of Proposition 6.2.9.2. Let 𝑓∗ ∶ X → B be the geometric morphism that

corresponds to the B-topos X. Since for every 𝑈 ∈ X an X/𝑈-groupoid is

filtered if and only if it is final (see Remark 5.2.3.3), the Yoneda embedding

ℎ𝑓 ∗G ∶ 𝑓 ∗G ↪→ Fun
X
(𝑓 ∗G,Grpd

X
) induces an equivalence 𝑓 ∗G ≃ Flat

X
(𝑓 ∗G).

By combining this observation with Theorem 6.2.8.2, we thus find that precompo-

sition with the Yoneda embedding G ↪→ Fun
B
(G,Grpd

B
) yields an equivalence

Funalg
B

((Grpd
B
)/G,X) ≃ 𝑓∗(𝑓 ∗G).

Hence the claim follows from Lemma 6.2.9.3.

Corollary 6.2.9.4. The functor (Grpd
B
)/− ∶ Grpd

B
→ PrLB factors through a

cocontinuous and fully faithful embedding (Grpd
B
)/− ∶ Grpd

B
↪→ TopR

B
whose

essential image is spanned by the étale B-topoi.

Proof. It is clear that this functor takes values in TopR
B
, and by combining the

descent property of Grpd
B

with Proposition 6.2.6.1, this functor must be co-

continuous. It therefore suffices to show that it is fully faithful. As we have

seen above, we may identify (Grpd
B
)/− with the restriction of the functor

(−)disc ∶ CatB → TopR
B

from Section 6.2.4 along the inclusion Grpd
B
↪→ CatB.

Using Corollary 6.2.4.4, the claim thus follows once we show that for every

B-groupoid G the (partial) adjunction unit G → Pt
B
(Gdisc) is an equivalence.

By construction, this map is obtained by the transpose of the evaluation map

ev∶ G × Fun
B
(G,Grpd

B
) → Grpd

B
, which by Yoneda’s lemma is precisely the

inverse of the equivalence from Proposition 6.2.9.2. This finishes the proof.

Remark 6.2.9.5. The functor (Grpd
B
)/− ∶ Grpd

B
↪→ TopR

B
also preserves

finite limits. In fact, this is clear for the final object, and the case of binary

products is an immediate consequence of the formula from Example 6.2.7.5

(together with the fact that the étale base change of this functor along 𝜋∗
𝐴 recovers

the functor (Grpd
B/𝐴

)/−). This is already enough to deduce that (Grpd
B
)/−

preserves pullbacks: in fact, since Corollary 6.2.6.2 and Corollary 6.1.3.13 imply

that TopR
B

has Grpd
B
-descent, this follows from the argument in the second part

of the proof of Lemma 6.2.2.8.
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6.2.10. Subterminal B-topoi

The goal of this section is to study subterminal B-topoi. To begin with, observe

that if 𝑓∗ ∶ X → B and 𝑔∗ ∶ Y → B are geometric morphism where 𝑓∗ is fully

faithful, then the formula that we derived in Section 6.2.7 immediately implies

that the geometric morphism X ×B Y → Y (whose domain is the pullback in

TopR∞) is fully faithful as well. Thus, we may define:

Definition 6.2.10.1. A B-topos X is said to be subterminal if the global sections

functor ΓX is fully faithful, or equivalently if the associated geometric morphism

𝑓∗ ∶ X → B is fully faithful.

By Theorem 6.2.5.1, any subterminal B-topos X determines and is determined

by a left exact and accessible Bousfield localisation ofB and therefore in particular

by a class of maps 𝑆 inB for which Γ(X) ≃ Loc𝑆(B). The main goal of this section

is to characterise those collections of maps 𝑆 that arise from and give rise to a

subterminal B-topos X in this way, and to describe the associated endofunctor

ΓX constX ∶ Grpd
B

→ Grpd
B

by an explicit colimit formula in terms of 𝑆, akin to Lurie’s sheafification formula

from [49, § 6.2.2].

We begin with the following definition:

Definition 6.2.10.2. Let 𝑑∶ I → Grpd
B

be a functor of B-categories, where I is

small. We define the +-construction (−)+𝑑 ∶ Grpd
B

→ Grpd
B

relative to 𝑑 as the

composition

Grpd
B

ℎGrpdB
↪−−−−−→ PSh

B
(Grpd

B
)

𝑑∗
−−→ PSh

B
(C)

colimCop
−−−−−−−→ Grpd

B
,

i.e. by the formula (−)+𝑑 = colimIop mapGrpd
B

(𝑑(−), −).

Remark 6.2.10.3. If I is cofiltered, i.e. if Iop is filtered, then the +-construction
(−)+𝑑 is left exact.

Remark 6.2.10.4. If I is cofiltered, then the diagonal functor

diagIop ∶ Grpd
B

→ PSh
B
(I)
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is fully faithful (which follows from I beingweakly contractible, see Remark 5.2.3.3,

and from the explicit formula of the colimit in Grpd
B

from Proposition 3.2.5.1).

Therefore, by applying the limit functor limIop ∶ PSh
B
(I) → Grpd

B
to the adjunc-

tion unit id → diagIop colimIop , we end up with a natural map limIop → colimIop .

Now suppose furthermore that the colimit of 𝑑∶ I → Grpd
B

is the final object

1Grpd
B
∶ 1B → Grpd

B
. Then the composition

Grpd
B

ℎGrpdB
↪−−−−−→ PSh

B
(Grpd

B
)

𝑑∗
−−→ PSh

B
(I)

limIop
−−−−−→ Grpd

B

is equivalent to the identity: in fact, this follows from the observation that its left

adjoint is given by the composition of diagIop with the Yoneda extension of 𝑑 (see

Remark 3.5.1.4) and therefore preserves final objects. Thus, we obtain a natural

map 𝜙∶ idGrpd
B

→ (−)+𝑑 .

To proceed, fix a (small) cofiltered B-category I and a functor 𝑑∶ I → Grpd
B

whose colimit is the final object. Since I is small, there is a B-regular cardi-

nal 𝜅 such that the essential image of 𝑑 is contained in the full subcategory

Grpd𝜅
B
↪→ Grpd

B
determined by the local class of relatively 𝜅-compact objects in

B (cf. Proposition 5.2.2.11). We will call such a B-regular cardinal 𝜅 adapted to 𝑑.
We will identify 𝜅 with the linearly ordered set of ordinals < 𝜅. Using transfinite

induction, we may now construct a diagram 𝑇 𝑑
• ∶ 𝜅 → Fun

B
(Grpd

B
,Grpd

B
) by

setting 𝑇 𝑑
0 = id, by defining themap 𝑇𝜏 → 𝑇𝜏+1 to be themorphism 𝜙∶ 𝑇 𝑑

𝜏 → (𝑇 𝑑
𝜏 )+𝑑

from Remark 6.2.10.4 and finally by setting 𝑇 𝑑
𝜏 = colim𝜏 ′<𝜏 𝑇 𝑑

𝜏 ′ whenever 𝜏 is a

limit ordinal.

Definition 6.2.10.5. Let 𝑑∶ I → Grpd
B

be a functor whose colimit is the fi-

nal object and whose domain is a cofiltered small B-category. We define the

sheafification functor (−)sh𝑑 relative to the functor 𝑑∶ I → Grpd
B

as the colimit

(−)sh𝑑 = colim𝜏<𝜅 𝑇 𝑑
𝜏 in Fun

B
(Grpd

B
,Grpd

B
), where 𝜅 is an arbitrary B-regular

cardinal that is adapted to 𝑑.

Remark 6.2.10.6. A priori, the sheafification functor (−)sh𝑑 depends on the choice

of B-regular cardinal 𝜅. However, since 𝑑 takes values in Grpd𝜅
B

and therefore in

𝜅-compact objects in Grpd
B

(see Corollary 5.2.2.23), and since 𝜅 (when viewed as

a linearly ordered set) is 𝜅-filtered, one can show that whenever 𝜏 ≥ 𝜅 is another
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B-regular cardinal, the sheafification functor that is constructed with respect to

𝜏 is equivalent to the one constructed with respect to 𝜅.

Remark 6.2.10.7. In the situation of Definition 6.2.10.5, the sheafification functor

(−)sh𝑑 is left exact since by Remark 6.2.10.4 it is a filtered colimit of left exact

functors (see the argument in the proof of Lemma 5.1.5.3).

Example 6.2.10.8. Let 𝑆 be a bounded local class of morphisms in B which

is closed under finite limits in Fun(Δ1,B), and let 𝜄 ∶ Grpd𝑆 ↪→ Grpd
B

be the

associated inclusion. ThenGrpd𝑆 is small and closed under finite limits in Grpd
B
.

In particular, Grpd𝑆 is cofiltered by Proposition 5.2.3.7 and contains the final

object of Grpd
B
, so that the sheafification functor (−)sh𝜄 is well-defined.

Example 6.2.10.9. Let 𝑓∗ ∶ X → B be a geometric morphism, and let 𝑆 and 𝜄 be
as in Example 6.2.10.8. Then the functor const𝑓∗(GrpdX) 𝜄 ∶ Grpd𝑆 → 𝑓∗(GrpdX)
transposes to a map 𝜄′ ∶ 𝑓 ∗(Grpd𝑆) → Grpd

X
ofX-categories. As const𝑓∗(GrpdX) 𝜄

preserves the final object, its colimit is 1𝑓∗(GrpdX), hence the colimit of 𝜄′ is the
final object as well. Moreover, the fact that Grpd𝑆 is a cofiltered B-category

implies that 𝑓 ∗ Grpd
X

is a cofiltered X-category: in fact, the colimit functor

colim𝑓 ∗(Grpd𝑆)
op ∶ PSh

X
(𝑓 ∗(Grpd𝑆)) → Grpd

X
preserves finite limits if and only

if the underlying functor of ∞-categories PShX(𝑓 ∗(Grpd𝑆)) → X preserves finite

limits, and as the latter can be identified with the global sections of

colimGrpdop𝑆
∶ Fun

B
(Grpdop𝑆 , 𝑓∗(GrpdX)) → 𝑓∗(GrpdX),

the claim follows from the fact that filtered colimits commute with finite limits in

every B-topos (which one can see by reducing to the case of a presheaf B-topos

where it readily follows from the definitions). Thus, we are in the situation of

Definition 6.2.10.5, so that (−)sh𝜄′ is well-defined.

Construction 6.2.10.10. Suppose that 𝑆 is a bounded local class of maps in B.

Since 𝑆 is bounded, there is aB-regular cardinal 𝜅 adapted to 𝜄 ∶ Grpd𝑆 ↪→ Grpd
B
.

Let 𝑆𝜅 ⊂ 𝑆 be the class of maps in 𝑆 between 𝜅-compact objects. Let 𝐸 ↪→ (Grpd
B
)1

be the subobject that is spanned by the maps 𝑓∶ 𝑃 → 𝑄 in B/𝐴 (for arbitrary

𝐴 ∈ B) for which (𝜋𝐴)!(𝑓 ) is contained in 𝑆 and the two maps 𝑃 → 𝐴 and 𝑄 → 𝐴
are relatively 𝜅-compact. Since both 𝑆 and the class of relatively 𝜅-compact
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maps are local, a map 𝑓 in Grpd
B

in context 𝐴 is contained in 𝐸 if and only if

(𝜋𝐴)!(𝑓 ) ∈ 𝑆 and both 𝑃 → 𝐴 and 𝑄 → 𝐴 are relatively 𝜅-compact. In particular,

𝐸 is small. We define W ↪→ Grpd
B

as the subcategory that is generated by 𝐸 in

the sense of Definition 1.3.1.14. Note that as 𝐸 is small, the subcategory W is

small as well.

We can now state the first main result of this section:

Proposition 6.2.10.11. Let 𝑆 be a bounded local class of morphisms inB such that
𝑆 is closed under finite limits in Fun(Δ1,B). Let W ↪→ Grpd

B
be as in Construc-

tion 6.2.10.10. Then X = LocW(Grpd
B
) is a subterminal B-topos with the property

that Γ(X) ≃ Loc𝑆(B). Moreover, the adjunction unit 𝜂∶ id → ΓX constX can be
identified with the map id → (−)sh𝜄 , where 𝜄 ∶ Grpd𝑆 ↪→ Grpd

B
is the inclusion.

Lemma 6.2.10.12. Let 𝑆 be a bounded local class of morphisms in B and let
W ↪→ Grpd

B
be as in Construction 6.2.10.10. Then there is an equivalence

Γ(LocW(Grpd
B
)) ≃ Loc𝑆(B)

of full subcategories in B.

Proof. By Corollary 5.4.1.8, the inclusion 𝑖∶ LocW(Grpd
B
) ↪→ Grpd

B
admits a

left adjoint 𝐿 that exhibits LocW(Grpd
B
) as an accessible Bousfield localisation

of Grpd
B
. Note that every map in 𝑆 can be written as a colimit of maps in 𝑆𝜅,

which implies that every map in 𝑆 is inverted by 𝐿. Consequently, we have an

inclusion Γ(LocW(Grpd
B
)) ↪→ Loc𝑆(B), so that the claim follows once we verify

that every 𝑆-local object 𝐺 ∈ B is W-local. This amounts to showing that for

every 𝐴 ∈ B and and every map 𝑠∶ 𝑃 → 𝑄 in B/𝐴 for which (𝜋𝐴)!(𝑓 ) ∈ 𝑆 and

both 𝑃 → 𝐴 and 𝑄 → 𝐴 are relatively 𝜅-compact, the map

𝑠∗ ∶ mapGrpd
B

(𝑄, 𝜋∗
𝐴𝐺) → mapGrpd

B

(𝑃, 𝜋∗
𝐴𝐺)

is an equivalence (cf. Remark 5.4.1.5). By Proposition 3.2.5.11, we may identify

this morphism with the map

Hom
B/𝐴

(𝑄, 𝜋∗
𝐴𝐺) → Hom

B/𝐴
(𝑃, 𝜋∗

𝐴𝐺).
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By evaluating the latter at any object 𝐵 → 𝐴 in B/𝐴, we recover the morphism

map
B
(𝑄 ×𝐴 𝐵, 𝐺) → map

B
(𝑃 ×𝐴 𝐵, 𝐺),

which is indeed an equivalence as the maps in 𝑆 are closed under base change.

Hence 𝐺 is W-local, as claimed.

Before we can prove Proposition 6.2.10.11, we first need to make a few remarks

on the internal hom of a B-topos X. Recall from Proposition 6.1.4.7 that colimits

being universal in X precisely means that X is cartesian closed. We denote by

HomX(−, −)∶ Xop × X → X

the internal hom of X that results from this observation. Note that if 𝑓∗ ∶ X → B

is the geometric morphism associated with X, we deduce from combining Propo-

sition 3.2.5.10 with Corollary 3.1.1.9 and Remark 2.1.2.5 that HomX(−, −) is ex-
plicitly given by the image of the bifunctor of X-categories

mapGrpd
X

(−, −)∶ Grpdop
X

×Grpd
X

→ Grpd
X

along 𝑓∗.

Remark 6.2.10.13. If X is a B-topos, then the composition ΓX ∘ HomX(−, −)
recovers the mapping bifunctor mapX(−, −). In fact, as Remark 6.2.2.6 implies

that ΓX is corepresented by 1X, we deduce that there is a pullback square

X1X/ (Grpd
B
)1GrpdB/

X Grpd
B
.

ΓX

On the other hand, Remark 2.1.2.5 implies that there also is a pullback square

Tw(X) X1X/

Xop × X X.

𝑝X
HomB

X (−,−)

By pasting these two pullback squares together, the claim follows.
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Proof of Proposition 6.2.10.11. Let 𝜅 be the cardinal and W ↪→ Grpd
B

be the sub-

category from Construction 6.2.10.10, and let us denote by

(𝐿 ⊣ 𝑖)∶ Grpd
B

⇆ LocW(Grpd
B
)

the associated Bousfield localisation provided by Corollary 5.4.1.8. In light of

Lemma 6.2.10.12, we only need to show that LocW(Grpd
B
) is a subterminal B-

topos and to identify the adjunction unit id → 𝑖𝐿 with the sheafification map

id → (−)sh𝜄 . In light of Theorem 6.2.3.1 and Example 6.2.10.8, the former claim is

implied by the latter one, so that the proof is finished once we identify id → 𝑖𝐿
with id → (−)sh𝜄 .

We only need to show that for every object 𝐺∶ 𝐴 → Grpd
B

in arbitrary

context 𝐴 ∈ B, the object 𝐺sh
𝜄 is W-local and the map 𝐺 → 𝐺sh

𝜄 is inverted by the

localisation functor 𝐿. Note that asB is generated by its 𝜅-compact objects (as 𝜅 is

assumed to be B-regular), we may assume that 𝐴 is 𝜅-compact. In this case, note

that 𝜅 is alsoB/𝐴-regular and adapted to 𝜋∗
𝐴(𝜄) (by Remark 5.2.2.6) and that wemay

identify the base change of (−)+𝜄 along 𝜋∗
𝐴 with (−)+𝜋∗

𝐴(𝜄)
∶ Grpd

B/𝐴
→ Grpd

B/𝐴
.

Therefore, we may also identify the base change of (−)sh𝜄 along 𝜋∗
𝐴 with (−)sh𝜋∗

𝐴(𝜄)
.

Together with Remark 5.4.1.2, this implies that we may replace B with B/𝐴 and

𝐺 with its transpose �̂� ∶ 1B/𝐴
→ Grpd

B/𝐴
, so that we may assume without loss

of generality that 𝐴 ≃ 1B.

We first show that the map 𝐺 → 𝐺sh
𝜄 is inverted by 𝐿, for which it will be

enough to show that the map 𝜙∶ 𝐺 → 𝐺+
𝜄 is inverted by 𝐿, or equivalently that

the map

𝜙∗ ∶ mapGrpd
B

(𝐺+
𝜄 , 𝑖(−)) → mapGrpd

B

(𝐺, 𝑖(−))

is an equivalence. Note that by the triangle identities, the map

lim
Grpdop𝑆

→ colim
(Grpd𝑆)

op

can be identified with the composition

lim
Grpdop𝑆

≃ colim
Grpdop𝑆

diagGrpdop𝑆
lim

Grpdop𝑆
→ colim

Grpdop𝑆

where the first map is induced by the counit of colim(Grpd𝑆)
op ⊣ diagGrpdop𝑆

and

the second map is induced by the counit of diagGrpdop𝑆
⊣ limGrpdop𝑆

. Moreover,
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6. B-topoi

observe that as limGrpdop𝑆
can be identified with evaluation at the final object

1Grpd
B
∶ 1 → Grpd𝑆, this functor is cocontinuous and therefore given by the left

Kan extension of its restriction along the Yoneda embedding

ℎGrpd𝑆 ∶ Grpd𝑆 ↪→ PSh
B
(Grpd𝑆).

As the restriction of limGrpdop𝑆
along ℎGrpd𝑆 yields mapGrpd𝑆

(1Grpd
B
, −) and the

latter is equivalent to the inclusion 𝜄, it follows that the left adjoint of limGrpdop𝑆
is given by 𝜄∗ℎGrpd

B
(see Remark 3.5.1.4). Altogether, these observations imply

that we may decompose 𝜙∗ into the chain of morphisms

mapGrpd
B

(𝐺+
𝜄 , 𝑖(−)) ≃ mapGrpd

B

(colim
Grpdop𝑆

𝜄∗ℎGrpd
B
(𝐺), 𝑖(−))

≃ mapPSh
B
(Grpd𝑆)

(𝜄∗ℎGrpd
B
(𝐺), diag

Grpdop𝑆

𝑖(−))

→ mapPSh
B
(Grpd𝑆)

(𝜄∗ℎGrpd
B
(𝐺), 𝜄∗ℎGrpd

B
lim

Grpdop𝑆
diag
Grpdop𝑆

𝑖(−))

≃ mapGrpd
B

(𝐺, 𝑖(−))

in which the penultimate map is induced by composition with the adjunction

unit id → 𝜄∗ℎGrpd
B
limGrpdop𝑆

and where the last equivalence follows from both

diagGrpdop𝑆
and 𝜄∗ℎGrpd

B
being fully faithful functors. Hence, it suffices to show

that the map

diagGrpdop𝑆
𝑖 → 𝜄∗ℎGrpd

B
lim

Grpdop𝑆
diagGrpdop𝑆

𝑖

is an equivalence, i.e. that diagGrpdop𝑆
𝑖 takes value in the essential image of

𝜄∗ℎGrpd
B
. To see this, note that as the restriction of 𝐿∶ Grpd

B
→ LocW(Grpd

B
)

to Grpd𝑆 factors through 1Grpd
B
∶ 1 ↪→ LocW(Grpd

B
), it follows that we may

identify 𝜄∗ℎGrpd
B
𝑖 ≃ mapGrpd

B

(𝜄(−), 𝑖(−)) with the transpose of the composition

Grpdop𝑆 × LocW(Grpd
B
)

pr1
−−−→ LocW(Grpd

B
)

mapLocW
(1GrpdB ,−)

−−−−−−−−−−−−−−−→ Grpd
B
,

which is precisely diagGrpdop𝑆
𝑖, as desired.

We finish the proof by showing that 𝐺sh
𝜄 is W-local. By the same reduction

steps as above, it is enough to show that for every map 𝑠∶ 𝑃 → 𝑄 in 𝑆 between
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6.2. Foundations of B-topos theory

𝜅-compact objects, the map 𝑠∗ ∶ mapGrpd
B

(𝑄, 𝐺sh
𝜄 ) → mapGrpd

B

(𝑃, 𝐺sh
𝜄 ) is an

equivalence. Note that in light of the adjunction

(𝜋𝑄)! ⊣ 𝜋∗
𝑄 ∶ (Grpd

B
)/𝑄 ⇆ Grpd

B
,

the map 𝑠∗ can be interpreted as the morphism

𝑠∗ ∶ map(Grpd
B
)/𝑄

(𝑄, 𝜋∗
𝑄𝐺

sh
𝜄 ) → map(Grpd

B
)/𝑄

(𝑃, 𝜋∗
𝑄𝐺

sh
𝜄 ).

By Remark 6.2.10.13, we can identify map(Grpd
B
)/𝑄

(−, −) with the global sections

of the internal hom Hom(Grpd
B
)/𝑄

(−, −). Hence we may as well show that the

map

𝑠∗ ∶ Hom(Grpd
B
)/𝑄

(𝑄, 𝜋∗
𝑄𝐺

sh
𝜄 ) → Hom(Grpd

B
)/𝑄

(𝑃, 𝜋∗
𝑄𝐺

sh
𝜄 )

is an equivalence. In other words, by replacing B with B/𝑄, we can reduce to the

case where 𝑄 ≃ 1. Thus, what is left to show is that 𝑡∗ ∶ 𝐺sh
𝜄 → mapGrpd

B

(𝑃, 𝐺sh
𝜄 )

is an equivalence for every 𝜅-compact 𝑃∶ 1 → Grpd𝑆, where 𝑡∶ 𝐺 → 1Grpd
B

is

the terminal map. Note that by Corollary 5.2.2.23, the fact that 𝑃 is 𝜅-compact

even implies that 𝑃 is Cat𝜅B-compact when viewed as an object of Grpd
B
. Hence,

the map 𝑡∗ can be identified with the colimit

colim
𝜏<𝜅

𝑡∗𝜏 ∶ colim
𝜏<𝜅

𝑇 𝜄
𝜏𝐺 → colim

𝜏<𝜅
mapGrpd

B

(𝑃, 𝑇 𝜄
𝜏𝐺).

To show that this map is an equivalence, it will be sufficient to prove that for

every ordinal 𝜏 < 𝜅 the map colim𝑛∈ℕ 𝑡∗𝜏+𝑛 is one. To see the latter claim, observe

that for every 𝐻 ∈ B we have a commutative diagram

𝐻 mapGrpd
B

(𝑃, 𝐻)

colim
(Grpdop𝑆 )𝑃/

mapGrpd
B

(𝜄(𝜋𝑃)!(−), 𝐻) colim
(Grpd𝑆)

op
mapGrpd

B

(𝜄(−), 𝐻)

colim
(Grpd𝑆)

op
mapGrpd

B

(𝜄(−), 𝐻) mapGrpd
B

(𝑃, colim
(Grpd𝑆)

op
mapGrpd

B

(𝜄(−), 𝐻)).

𝑡∗

𝛼

≃

≃ 𝛽

𝑡∗

Here the composition of the two vertical maps on the left and right can be

identified by 𝜙 and 𝜙∗, respectively. Moreover, the equivalences in this diagram
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are induced by the initial map (𝜋𝑃)! ∶ (Grpd𝑆)/𝑃 → Grpd𝑆, the map 𝛼 is induced

by 𝑃∶ 1 → Grpd𝑆 and 𝛽 is given by the composition

colim
(Grpd𝑆)

op
mapGrpd

B

(𝜄(−), 𝐻) → colim
(Grpd𝑆)

op
mapGrpd

B

(𝑃,mapGrpd
B

(𝜄(−), 𝐻))

→ mapGrpd
B

(𝑃, colim
(Grpd𝑆)

op
mapGrpd

B

(𝜄(−), 𝐻)).

By substituting 𝐻 = 𝑇 𝜄
𝜏+𝑛𝐺 for any 𝑛 ∈ ℕ, we deduce that the map 𝑡∗𝜏+𝑛 → 𝑡∗𝜏+𝑛+1

is a retract of an equivalence and must therefore be an equivalence itself.

We finish this section with the following converse of Proposition 6.2.10.11:

Proposition 6.2.10.14. Let X be a subterminal B-topos. Then there is a bounded
local class 𝑆 that is closed under finite limits in Fun(Δ1,B) such that Γ(X) ≃ Loc𝑆(B).
Moreover, for any such local class 𝑆, we obtain an equivalence X ≃ LocW(Grpd

B
),

whereW is as in Construction 6.2.10.10, and the adjunction unit 𝜂∶ id → ΓX constX
can be identified with the map id → (−)sh𝜄 , where 𝜄 ∶ Grpd𝑆 ↪→ Grpd

B
is the

inclusion.

Proof. Let us denote by 𝑗∗ ∶ X ↪→ B the geometric morphism associated with

X. We begin by proving the second statement, i.e. suppose that 𝑆 is a bounded

local class closed under finite limits in Fun(Δ1,B) such that X ≃ Loc𝑆(B). Let
W ↪→ Grpd

B
be as in Construction 6.2.10.10. By Lemma 6.2.10.12, we may

identify Γ(LocW(Grpd
B
)) with X. As Proposition 6.2.10.11 moreover implies that

LocW(Grpd
B
) is a subterminal B-topos, Theorem 6.2.5.1 implies that we must

necessarily have LocW(Grpd
B
) ≃ X. Hence the same proposition gives rise to

the desired identification of the adjunction unit 𝜂∶ id → ΓX constX.

To complete the proof, it is therefore enough to show that there always exists

a bounded local class 𝑆 that is closed under finite limits in Fun(Δ1,B) such that

X ≃ Loc𝑆(B). To that end, choose a B-regular cardinal 𝜅 for which ΓX is FiltCat𝜅B -

cocontinuous. We let 𝑆 be the class of relatively 𝜅-compact maps in B that are

inverted by 𝑗∗. Since by Proposition 5.2.2.11 the class of relatively 𝜅-compact

maps in B is local, we find that 𝑆 is local as well. Moreover, 𝑆 is closed under

finite limits in Fun(Δ1,B) as 𝑗∗ is left exact and as 𝜅-compact objects in B are

closed under finite limits (by choice of 𝜅). Since 𝑆 is inverted by 𝑗, we already

have an inclusion X ↪→ Loc𝑆(B), so that it suffices to prove that every 𝑆-local

478



6.2. Foundations of B-topos theory

object in B is contained in B. Since X is a 𝜅-accessible localisation of B (using

Proposition 5.3.2.4) and B itself is 𝜅-accessible, we deduce from the proof of [49,

Proposition 5.5.4.2] (or alternatively the proof of Proposition 5.4.1.6 applied in

the case B = Ani) that X is the Bousfield localisation at the class 𝑆′ of those

maps in B between 𝜅-compact objects which are inverted by 𝑗. Since every such

map must be relatively 𝜅-compact (using that 𝜅-compact objects are closed under

finite limits inB), every such map is contained in 𝑆. Hence the claim follows.

Remark 6.2.10.15. We can use our understanding of subterminal B-topoi to

obtain a quite explicit understanding of pushouts in TopL∞ in which one of the

two maps is a Bousfield localisation. In fact, suppose that 𝑓∗ ∶ X → B and

𝑖∗ ∶ Z ↪→ B be geometric morphisms, where 𝑖∗ is fully faithful. Then 𝑖∗(GrpdZ)
is a subterminal B-topos, so that Proposition 6.2.10.14 implies that we can find

a bounded local class 𝑆 that is closed under compositions and finite limits in

Fun(Δ1,B) such that Z = Loc𝑆(B). Let 𝑓 ∗𝑆 denote the smallest local class of

maps in X that contains 𝑓 ∗(𝑆). Then we claim that the functor 𝑗∗ ∶ Z ×B X ↪→ X

exhibits Z ×B X as the Bousfield localisation of X at 𝑓 ∗𝑆. To see this, note that

Proposition 6.2.7.1 and Lemma 6.2.7.7 imply that the morphism in TopR
B

corre-

sponding to 𝑗∗ is given by LocW⊠𝑓∗(GrpdX)≃(GrpdB ⊗𝑓∗(GrpdX)) ↪→ 𝑓∗(GrpdX),
where W ↪→ Grpd

B
is the subcategory from Construction 6.2.10.10. Since

Grpd
B
⊗𝑓∗(GrpdX) ≃ 𝑓∗(GrpdX), the left-hand side can be identified with the

full subcategory of local objects with respect to

W × 𝑓∗(GrpdX)
≃

const𝑖∗ GrpdX(−)×−
−−−−−−−−−−−−−−−→ 𝑓∗(GrpdX).

By the same argument as in the proof of Lemma 6.2.10.12, this means that an

object 𝑈 ∈ X is contained in Z ×B X if and only if it is local with respect to every

map in X of the form

𝑓 ∗(𝑠) ×𝑓 ∗𝐴 𝑋∶ 𝑓 ∗(𝑃) ×𝑓 ∗𝐴 𝑋 → 𝑓 ∗(𝑄) ×𝑓 ∗𝐴 𝑋

where 𝑠∶ 𝑃 → 𝑄 is a map in W(𝐴) and 𝑋 is an arbitrary object in X/𝑓 ∗𝐴. By

construction of W, the map (𝜋𝐴)!(𝑓 ) is contained in 𝑆, which in turn implies that

𝑓 ∗(𝑠) ×𝑓 ∗𝐴 𝑋 is in 𝑓 ∗𝑆. Hence the claim follows.
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6. B-topoi

6.3. Localic B-topoi

In higher topos theory, the 1-category of locales (with left exact left adjoints as

maps) arises as a coreflective subcategory of the ∞-category TopL∞ of ∞-topoi.

The inclusion is given by sending a locale 𝐿 to the ∞-topos Sh(𝐿) of sheaves on
𝐿, and the coreflection carries an ∞-topos X to the locale Sub(X) = SubX(1X) of
subterminal (i.e. (−1)-truncated) objects in X. An ∞-topos X is said to be localic

if it is equivalent to Sh(Sub(X)).
In this section, we give an exposition of the analogous story in the world of

B-topoi. We do not aim to provide a comprehensive study of localic B-topoi, but

rather restrict our attention to those aspects of the theory that allow us to define
the notion of a localic B-topos and to provide an external characterisation of this

concept in the case where B is itself localic.

We begin in Section 6.3.1 and Section 6.3.2 by providing the necessary back-

ground material on B-posets. In Section 6.3.3 we define and characterise B-

locales, and in Section 6.3.4 we construct the B-topos of sheaves on a B-locale,

which we use in Section 6.3.5 to show thatB-locales are a coreflective localisation

of B-topoi. In Section 6.3.6 we discuss how localic B-topoi correspond to localic

∞-topoi over B in the case where B is itself localic.

6.3.1. B-posets

Recall that an∞-category C is (equivalent to) a poset precisely if if for all objects 𝑐
and 𝑑 in C the mapping ∞-groupoid map

C
(𝑐, 𝑑) is (−1)-truncated. In this section

we discuss a generalisation of this concept to B-categories.

Recall that the class of (−1)-truncated maps in B is precisely the collection

of morphisms that are internally right orthogonal to the map 1 ⊔ 1 → 1 (see

Example 1.1.5.10).Since the internal saturation of the latter map is given by the

covers in B and therefore closed under pullbacks in B, the resulting factorisa-

tion system is a modality, so that the class of (−1)-truncated maps is local (see

Example 3.1.4.5) We may therefore define:

Definition 6.3.1.1. The subuniverse SubB ↪→ Grpd
B

of subterminalB-groupoids
is the full subcategory of Grpd

B
that is determined by the local class of (−1)-
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6.3. Localic B-topoi

truncated morphisms in B. A B/𝐴-groupoid G is said to be a subterminal B/𝐴-

groupoid if it defines an object of SubB (in context 𝐴).

Remark 6.3.1.2. As the functor (𝜋𝐴)! ∶ B/𝐴 → B creates pullbacks, a map

𝑃 → 𝐵 in B/𝐴 defines an object 𝐵 → SubB/𝐴
if and only if the underlying map

in B defines an object (𝜋𝐴)!(𝐵) → SubB. As a consequence, the equivalence

𝜋∗
𝐴 Grpd

B
≃ Grpd

B/𝐴
restricts to an equivalence 𝜋∗

𝐴 SubB ≃ SubB/𝐴
for every

𝐴 ∈ B.

Proposition 6.3.1.3. The B-category SubB is an accessible Bousfield localisation
of Grpd

B
(in the sense of Definition 5.3.3.4) and therefore in particular presentable.

Proof. By Example 3.1.4.5 the subcategory SubB ↪→ Grpd
B

is reflective. Since

the inclusion SubB ↪→ Grpd
B

is section-wise accessible, we deduce from Corol-

lary 5.3.2.5 implies that the localisation must be accessible.

Definition 6.3.1.4. A B-category C is said to be a B-poset if the mapping

bifunctor mapC takes values in SubB. The full subcategory of CatB that is

spanned by theB/𝐴-posets for each 𝐴 ∈ B is denoted by PosB and its underlying

∞-category of global sections by Pos(B).

Remark 6.3.1.5. AB-category C is aB-poset precisely if the map C1 → C0 ×C0
is (−1)-truncated. In fact, since this map exhibits C1 as the mapping B/C0×C0

-

groupoid between the two objects pr0, pr1 ∶ C0 × C0 ⇉ C, this is clearly a

necessary condition. The fact that it is also sufficient follows from the observation

that every mapping B/𝐴-groupoid of C is a pullback of this map.

Remark 6.3.1.6. Since the class of (−1)-truncated maps in B is local, we deduce

from Remark 6.3.1.5 that if (𝑠𝑖)∶ ⨆𝑖 𝐴𝑖 � 𝐴 is a cover in B, a B/𝐴-category

C∶ 𝐴 → CatB defines a B/𝐴-poset if and only if the B/𝐴𝑖
-category 𝑠∗𝑖 C defines

a B/𝐴𝑖
-poset for every 𝑖. In particular, every object of PosB in context 𝐴 ∈ B

encodes a B/𝐴-poset, and one has a canonical equivalence 𝜋∗
𝐴 PosB ≃ PosB/𝐴

.

Remark 6.3.1.7. Remark 6.3.1.5 and the fact that a map is (−1)-truncated pre-

cisely if it is so section-wise imply that a B-category C is a B-poset if and only if

C(𝐴) is an poset for every 𝐴 ∈ B. Together with Remark 6.3.1.6, this implies that

we obtain an equivalence PosB ≃ Pos⊗Grpd
B

(where Pos is the 1-category of

posets).
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Remark 6.3.1.8. Recall that if C is a B-category, then the map 𝑠0 ∶ C0 → C1
is a monomorphism in B (see Example 1.3.1.3). Together with Remark 6.3.1.5,

this implies that if P is a B-poset, then each P𝑛 is contained in the underlying

1-topos Disc(B) ↪→ B of 0-truncated objects. Consequently, we may identify

Pos(B) with the full subcategory of Disc(B)Δ that is spanned by the complete

Segal objects P for which the map P1 → P0 × P0 is a monomorphism. Hence

Pos(B) is equivalent to the 1-category of internal posets in the 1-topos Disc(B)
in the sense of [39, § B2.3].

6.3.2. Presentable B-posets

In this section we study presentable B-posets. We begin with the following

definition:

Definition 6.3.2.1. If C is a B-category, the full subcategory Sub(C) ↪→ C of

subterminal objects is defined as the pullback C ×PSh
B
(C) FunB(Cop, SubB).

Remark 6.3.2.2. If C is a B-category and 𝐴 ∈ B is an arbitrary object, then

Remark 6.3.1.2 and Remark 5.4.5.2 imply that there is a canonical equivalence

𝜋∗
𝐴 Sub(C) ≃ Sub(𝜋∗

𝐴C) of full subcategories in 𝜋∗
𝐴C.

Proposition 6.3.2.3. For every presentable B-category D there is a canonical
equivalence Sub(D) ≃ D ⊗ SubB of full subcategories in D. In particular, Sub(D)
is an accessible Bousfield localisation of D and therefore presentable as well.

Proof. Recall from Proposition 5.4.5.3 that the Yoneda embedding D ↪→ PSh
B
(D)

identifies D with the full subcategory ShGrpd
B
(D) ↪→ PSh

B
(D) that is spanned

by the continuous functors (in arbitrary context). Therefore, it will be enough to

show that the square

D ⊗ SubB Fun
B
(Dop, SubB)

ShGrpd
B
(D) PSh

B
(D)

is a pullback. Together with Remark 5.4.5.2 and Remark 6.3.1.2, this means that we

only need to check that a functor 𝐹∶ Dop → SubB is continuous if and only if its
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postcomposition with the inclusion SubB ↪→ Grpd
B

is. This follows immediately

from the fact that the inclusion SubB ↪→ Grpd
B

has a left adjoint and is therefore

continuous and conservative.

For every presentable B-category D, we will denote the left adjoint of the

inclusion Sub(D) ↪→ D by (−)Sub and refer to it as the subterminal truncation
functor.

Example 6.3.2.4. If C is an arbitrary B-category, then Proposition 6.3.2.3 pro-

vides us with an equivalence of B-categories

Sub(PSh
B
(C)) ≃ Fun

B
(Cop, SubB).

In light of the equivalence PSh
B
(C) ≃ RFibC, we may identify Fun

B
(Cop, SubB)

with the full subcategory of RFibC spanned by the right fibrations 𝑝∶ P → 𝜋∗
𝐴C

(in arbitrary context 𝐴 ∈ B) which are fully faithful, i.e. which are sieves in the

B/𝐴-category 𝜋∗
𝐴C. To see the latter claim, first note that by Remark 6.3.2.2, we

may replace B with B/𝐴 so that we can assume that 𝐴 ≃ 1. In this case, since

𝑝0 ∶ P0 → C0 can be identified with the image of the tautological object C0 → C

along the functor 𝐹∶ Cop → Grpd
B

that classifies 𝑝 and since every object in C

(in arbitrary context) arises as a pullback of the tautological object, 𝐹 takes values

in SubB if and only if 𝑝0 is a monomorphism. Therefore it suffices to show that

𝑝0 is monic if and only if 𝑝 is fully faithful. This follows from considering the

commutative diagram

P1 P1 C1

P0 × P0 C0 × P0 C0 × C0

(𝑑1,𝑑0)

id

(𝑑1,𝑑0)
𝑝0×id id ×𝑝0

in which the right square is a pullback as 𝑝 is a right fibration and where the left

square is a pullback since 𝑝0 is a monomorphism.

Furthermore, the above observation implies that we may compute the sub-

terminal truncation functor (−)Sub ∶ PSh
B
(C) → Sub(PSh

B
(C)) on the level of

right fibrations by taking essential images: If 𝐹∶ Cop → Grpd
B

is a presheaf,

then 𝐹Sub classifies the essential image of the right fibration C/𝐹 → C. In fact,
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this is a consequence of the straightforward observation that the essential image

is still a right fibration.

By definition, if C is a B-category, then Sub(C) is a B-poset. Our next goal is

to show that if C is presentable, then Sub(C) can be characterised as the largest
accessible Bousfield localisation of C with that property.

Lemma 6.3.2.5. Let (𝑙 ⊣ 𝑟)∶ D ⇆ C be an adjunction of B-categories. Then there
is a commutative square

Sub(D) Sub(C)

D C

𝑟

𝑟

which is a pullback when 𝑟 is fully faithful.

Proof. Unwinding the definitions, it will be enough to show that we have a

commutative square

Fun
B
(Dop, SubB) Fun

B
(Cop, SubB)

PSh
B
(D) PSh

B
(C)

𝑟!

𝑟!

that is a pullback when 𝑟 is fully faithful. The existence of this square follows

from observing that 𝑟! can be identified with 𝑙∗. If 𝑟 is moreover fully faithful, then

𝑙 is a localisation and therefore in particular essentially surjective. As essentially

surjective functors are internally left orthogonal to fully faithful functors and as

the inclusion SubB ↪→ Grpd
B

is fully faithful, the second claim follows.

Proposition 6.3.2.6. Let D be a presentable B-category and P be a presentable
B-poset. Then composition with the inclusion SubB(D) ↪→ D induces an equivalence

FunR
B
(P, Sub(D)) ↪→ FunR

B
(P,D).

Proof. By Remark 6.3.2.2 and Remark 3.1.3.6, it will be enough to show that every

right adjoint functor P → D factors through Sub(D). This follows immediately

from Lemma 6.3.2.5.
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In light of Remark 6.3.2.2, Remark 3.1.3.6 and Remark 5.4.4.6, Proposition 6.3.2.6

implies:

Corollary 6.3.2.7. The full subcategory of PrLB that is spanned by the presentable
B/𝐴-posets for all 𝐴 ∈ B is reflective, with the left adjoint given by sending a
presentable B-category D to Sub(D).

Remark 6.3.2.8. Lemma 6.3.2.5 furthermore implies that if D is a presentable

B-category and 𝑑∶ 1 → D is an arbitrary object, then 𝑑 is subterminal if and only

if the diagonal 𝑑 → 𝑑 × 𝑑 is an equivalence. In fact, by choosing a presentation of

D as an accessible Bousfield localisation of a presheaf B-category and making

use of Lemma 6.3.2.5, we may assume that D ≃ PSh
B
(C) and hence that 𝑑 can

be identified with a right fibration over C. Then the claim follows immediately

from Example 6.3.2.4. In particular, this observation implies that Sub(D) can be

identified with the sheaf Sub(D(−)) on B.

Finally, we arrive at the following characterisation of presentable B-posets:

Proposition 6.3.2.9. For an (a priori large) B-category D, the following are equiv-
alent:

1. D is a presentable B-poset;

2. D ≃ Sub(E) for some presentable B-category E;

3. D is small and cocomplete;

4. D is small, and the Yoneda embedding ℎ∶ D ↪→ PSh
B
(D) admits a left

adjoint;

5. D is a small B-poset, and the Yoneda embedding ℎ∶ D ↪→ Fun
B
(Dop, SubB)

admits a left adjoint.

Proof. (1) and (2) are equivalent by Corollary 6.3.2.7. IfD is a presentableB-poset,

then Lemma 6.3.2.5 combined with Example 6.3.2.4 shows that there is a small

B-category C such that D arises as a Bousfield localisation of Fun
B
(Cop, SubB)

for some small B-category C. Hence, as the latter is small, so is D. Therefore (1)

implies (3). Conversely, every small and cocomplete B-category is presentable

485



6. B-topoi

(this follows from our characterisation of presentable B-categories as the ac-

cessible and cocomplete ones, see Theorem 5.4.2.5), and since every small and

cocomplete ∞-category is a poset, we conclude by employing Remark 6.3.1.7

that (3) implies (1). Furthermore, (3) and (4) are equivalent by the universal

property of presheaf B-categories (see Corollary 3.5.1.13). Finally, (4) implies (5)

by Lemma 6.3.2.5 (and since we already know that (3) forces D to be a B-poset),

and (5) implies (3) since SubB is cocomplete.

We end this section with the observation that all colimits in a presentable

B-poset are B-groupoidal and can be computed by an explicit formula:

Proposition 6.3.2.10. Let D be a presentable B-poset and let 𝑑∶ I → D be a
diagram. Then the inclusion I≃ → I induces an equivalence colim 𝑑|I≃ ≃ colim 𝑑.
Moreover, this colimit can be explicitly computed as

colim 𝑑 ≃ ⋁
𝑖∶ 𝐺→I
𝐺∈G

(𝜋𝐺)!(𝑑(𝑖)),

where G ↪→ B is a small dense full subcategory and where the right-hand side
denotes the join in the poset ΓB(D).

Proof. Consider the full subcategory E ⊂ Cat(B)/D that is spanned by those

diagrams 𝑑∶ I → D for which the inclusion I≃ → I induces an equivalence

colim 𝑑|I≃ ≃ colim 𝑑. To prove the first statement, we need to show that we have

E = Cat(B)/D.
To that end, first observe that if ℎD ∶ D ↪→ PSh

B
(D) denotes the Yoneda

embedding, then colim ℎD𝑑 classifies the right fibration 𝑝∶ P → D that arises

from factoring 𝑑 into a final functor and a right fibration. In other words, 𝑝 is

the image of 𝑑 under the localisation functor 𝐿∶ Cat(B)/D → RFib(D) from

Lemma 3.5.4.9, and we may compute the colimit of 𝑑 by applying the left adjoint

𝑙 ∶ RFib(D) → D (which exists by Proposition 6.3.2.9) to 𝑝. Since both 𝑙 and 𝐿
are cocontinuous, it follows that for every ∞-category K and every diagram

𝜙∶ K → Cat(B)/D with colimit 𝑑∶ I → D, we have a canonical equivalence

colim 𝑙𝐿𝜙 ≃ colim 𝑑.
Now let 𝜙≃ ∶ K → Cat(B)/D be the composition of 𝜙with the coreB-groupoid

functor (−)≃. We then obtain a natural comparison map colim 𝜙≃ → I≃ which
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has the property that the composition of this map with the inclusion I≃ → I

can be identified with the colimit of the canonical morphism 𝜙≃ → 𝜙. As a

consequence, we obtain maps

colim 𝑙𝐿𝜙≃ → colim 𝑑|I≃ → colim 𝑑

in which the composition can be identified with colim 𝑙𝐿𝜙≃ → colim 𝑙𝐿𝜙. Hence,

if 𝜙 takes values in E, the latter map is an equivalence, which implies that the

map colim 𝑑|I≃ → colim 𝑑 is one as well since D is a poset. Thus, we conclude

that E is closed under colimits in Cat(B)/D.
Consequently, as every B-category can be written as a colimit of B-categories

of the form 𝐺 ⊗Δ𝑛 for 𝐺 ∈ B and 𝑛 ∈ ℕ (cf. Remark 1.2.1.3), it suffices to see that

every diagram of the form 𝑑∶ 𝐺 ⊗ Δ𝑛 → D is in E. To that end, note that the

colimit of a diagram 𝑑∶ 𝐺 ⊗ Δ𝑛 → D is given by applying (𝜋𝐺)! ∶ D(𝐺) → D(1)
to the colimit of the transposed map 𝑑′ ∶ Δ𝑛 → D(𝐺), which is simply 𝑑′(𝑛).
Likewise, the colimit of the induced diagram ⨆𝑛 𝐺 = (𝐺 ⊗ Δ𝑛)≃ → D is given by

applying (𝜋𝐺)! to the supremum of the objects 𝑑′(𝑖) for 𝑖 ∈ Δ𝑛. Since 𝑑′(𝑖) ≤ 𝑑′(𝑛)
for all 𝑖 ∈ Δ𝑛, we deduce that 𝑑 ∈ E, as desired.

As for the second statement of the proposition, note that we have an equiva-

lence

I≃ ≃ colim
𝑖∶ 𝐺→I
𝐺∈G

𝐺

since G is dense in B. Thus the description of colim 𝑑|I≃ follows from the obser-

vation at the beginning of the proof.

6.3.3. B-locales

In this section we define what it means for aB-poset to be aB-locale and provide

a first characterisation of this notion.

Definition 6.3.3.1. A B-category L is said to be a B-locale if

1. L is a B-poset,

2. L is presentable, and

3. colimits are universal in L (in the sense of Definition 6.1.4.1).
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A functor 𝑓∶ 𝐾 → 𝐿 between B-locales is called an algebraic morphism of B-

locales if it is cocontinuous and preserves finite limits. We let LocLB ↪→ PosB be

the subcategory that is spanned by the algebraic morphisms of B/𝐴-locales for

all 𝐴 ∈ B.

Remark 6.3.3.2. In the situation of Definition 6.3.3.1, note that colimits are

universal in L if and only if for every 𝐴 ∈ B and every 𝑈∶ 𝐴 → L the functor

𝑈 × −∶ 𝜋∗
𝐴L → 𝜋∗

𝐴L is cocontinuous. In fact, note that for any map 𝑈 → 𝑉 in L in

context 𝐴, the fact that L is a B-poset implies that the diagram

(𝜋∗
𝐴L)/𝑉 (𝜋∗

𝐴L)/𝑉

𝜋∗
𝐴L 𝜋∗

𝐴L

𝑈×𝑉−

(𝜋𝑉)! (𝜋𝑉)!
𝑈×−

commutes. Therefore, the composition (𝜋𝑉)!(𝑈 ×𝑉 −) is cocontinuous. As (𝜋𝑉)! is
conservative, this implies that 𝑈 ×𝑉 − is already cocontinuous.

Remark 6.3.3.3. By Remark 6.3.1.6, Remark 5.4.2.10 and Remark 6.1.4.3, the

condition of aB-category to be aB-locale is local inB: for every cover⨆𝐴𝑖 � 1
in B, a B-category L is a B-locale if and only if the B/𝐴𝑖

-category 𝜋∗
𝐴𝑖
L is a

B/𝐴𝑖
-locale.

Remark 6.3.3.4. The subobject of (Cat
B̂
)1 that is spanned by the algebraic

morphisms between B/𝐴-locales (for each 𝐴 ∈ B) is stable under composition

and equivalences in the sense of Proposition 1.3.1.17. Sincemoreover cocontinuity

and the property that a functor preserves finite limits are local conditions and on

account of Remark 6.3.3.3, we conclude that a map 𝐴 → (Cat
B̂
)1 is contained in

(LocLB)1 if and only if it defines an algebraic morphism between B/𝐴-locales. In

particular, if L and M are B/𝐴-locales, the image of the monomorphism

mapLocLB
(L,M) ↪→ mapCat

B̂

(L,M)

is spanned by the algebraic morphisms, and there is furthermore a canonical

equivalence 𝜋∗
𝐴 LocLB ≃ LocLB/𝐴

.
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Remark 6.3.3.5. By Remark 6.3.1.8, it is easy to see that LocL(B) ↪→ Pos(B)
can be identified with the category of internal locales in Disc(B) in the sense

of [39, § C1.6]. In other words, our notion of an internal locale coincides with

the classical one.

Lemma 6.3.3.6. Let D be a presentable B-category with universal colimits, and
let 𝑙 ∶ D → L be a Bousfield localisation that preserves binary products. Suppose
furthermore that L is a B-poset. Then L is a B-locale.

Proof. We need to show that colimits are universal in L, i.e. that for every 𝐴 ∈ B

and every object 𝑈∶ 𝐴 → L the functor 𝑈 × −∶ 𝜋∗
𝐴L → 𝜋∗

𝐴L is cocontinuous, or

equivalently has a right adjoint. Now 𝑙 preserving binary products implies that

𝑈 ×− carries every map in D (in arbitrary context) that is inverted by 𝑙 to one that

is inverted by 𝑙 as well. Hence the functor HomD(𝑖(𝑈 ), 𝑖(−)) (where HomD(−, −)
is the internal hom in D) takes values in L, which yields the claim.

Proposition 6.3.3.7. For a B-category L, the following are equivalent:

1. L is a B-locale.

2. a) L takes values in the 1-category LocL of locales;

b) L is Grpd
B
-cocomplete;

c) for every map 𝑠∶ 𝐵 → 𝐴 in B, the functor 𝑠! ∶ L(𝐵) → L(𝐴) is a
cartesian fibration.

3. L is small, and the Yoneda embedding L ↪→ PSh
B
(L) admits a left adjoint

which preserves finite products;

4. L is a small B-poset, and the Yoneda embedding L ↪→ Fun
B
(Lop, SubB)

admits a left exact left adjoint.

Proof. First, we show that (1) and (2) are equivalent. To that end, if L is aB-locale,

then for each 𝐴 ∈ B the ∞-category L(𝐴) is a presentable poset in which colimits

are universal. Therefore, L(𝐴) is a locale. Moreover, L being cocomplete implies

that for every map 𝑠∶ 𝐵 → 𝐴 in B the transition functor 𝑠∗ ∶ L(𝐴) → L(𝐵) is co-
continuous. Likewise, L having finite limits implies that 𝑠∗ preserves finite limits.
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Therefore (2a) follows. Moreover, condition (2b) is part of the definition of a B-

locale, and condition (2c) is a reformulation of the condition that Grpd
B
-colimits

are universal in L (see Example 6.1.4.6). Conversely, if the three conditions in (2)

are satisfied, then L is Grpd
B
-cocomplete and section-wise presentable, so that

Theorem 5.4.2.5 implies that L is presentable. By Remark 6.3.1.7, the assumption

that L is section-wise given by a poset implies that L is a B-poset. Finally, the

fact that L takes values in Loc implies that LConst-colimits are universal in L (see

Example 6.1.4.4), so that it suffices to verify that Grpd
B
-colimits are universal in

L as well. Again, this is a consequence of Example 6.1.4.6.

Next, if L is a B-locale, then Proposition 6.3.2.9 implies that the Yoneda em-

bedding L ↪→ PSh
B
(L) has a left adjoint 𝑙. Moreover, as colimits are universal

in L and as PSh
B
(L) is generated by L under colimits, the comparison map

𝑙(− × −) → 𝑙(−) × 𝑙(−) is an equivalence already when its restriction to L is one,

which is trivially true. Hence (1) implies (3). If we assume (3), then Proposi-

tion 6.3.2.9 implies that L is a small B-poset and that the Yoneda embedding

L ↪→ Fun
B
(Lop, SubB) has a left adjoint. Explicitly, this left adjoint arises as

the restriction of the left adjoint PSh
B
(L) → L and therefore preserves finite

products. But since pullbacks in B-posets coincide with binary products, this

is already enough to conclude that this functor is left exact. Hence (4) follows.

Finally, if (4) holds, then L is presentable by Proposition 6.3.2.9. Moreover, using

Lemma 6.3.3.6 it will be enough to show that the subterminal truncation functor

(−)Sub ∶ PSh
B
(L) → Fun

B
(Lop, SubB) preserves binary products, which is an

immediate consequence of Example 6.3.2.4.

Using Proposition 6.3.3.7, it is now easy to show that theB-poset of subterminal

objects in a B-topos is a B-locale. More precisely, one has:

Proposition 6.3.3.8. The functor Sub∶ PrLB → PrLB from Corollary 6.3.2.7 restricts
to a functor Sub∶ TopL

B
→ LocLB.

Proof. By combining Remark 6.3.2.2 and Remark 6.3.3.4, it is enough to show

that for every algebraic morphism 𝑓 ∗ ∶ X → Y of B-topoi the induced map

Sub(𝑓 ∗)∶ Sub(X) → Sub(Y) is an algebraic morphism of B-locales. First, let us

show that Sub(X) (and therefore by symmetry also Sub(Y)) is a B-locale. To that

end, choose a presentation of X as a left exact and accessible Bousfield localisation
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𝐿∶ PSh
B
(C) → X. Then Remark 6.3.2.8 implies that 𝐿 restricts to a left exact and

accessible Bousfield localisation Fun
B
(Cop, SubB) → Sub(X), hence the claim

follows from Proposition 6.3.3.7. Second, since we already know that Sub(𝑓 ∗) is
cocontinuous, it is enough to show that it is left exact as well. But on account of

Remark 6.3.2.8, this functor arises as the restriction of 𝑓 ∗ to subterminal objects,

which immediately yields the claim.

6.3.4. Sheaves on aB-locale

In Proposition 6.3.3.8, we saw that the functor Sub(−) lets us pass from B-topoi

from B-locales. The goal of this section is to discuss how one can conversely

associate to every B-locale a B-topos: that of sheaves on the B-locale.

Definition 6.3.4.1. Let L be aB-locale and let 𝑈∶ 𝐴 → L be an object. A covering
of 𝑈 is a diagram 𝑑∶ G → 𝜋∗

𝐴L with colimit 𝑈, where G is a B/𝐴-groupoid.

Remark 6.3.4.2. Explicitly, a covering of 𝑈 is given by a map 𝑠∶ 𝐵 → 𝐴 in B

together with an object 𝑉∶ 𝐵 → L such that 𝑠!(𝑉 ) ≃ 𝑈.

Example 6.3.4.3. Let L be a B-locale and 𝑈∶ 𝐴 → L be an object. Then every

covering (𝑗𝑖 ∶ 𝑈𝑖 → 𝑈)𝑖∈𝐼 in L(𝐴) (in the conventional sense) can be regarded as a

covering in the sense of Definition 6.3.4.1 by setting G = 𝐼 and 𝑑 = (𝑗𝑖)𝑖∈𝐼.

Recall from Proposition 6.3.3.7 that if L is aB-locale, then the associated Yoneda

embedding ℎL ∶ L ↪→ Fun
B
(Lop, SubB) admits a (left exact) left adjoint 𝑙. We shall

denote by 𝜂∶ idFun
B
(Lop,SubB) → ℎL𝑙 the adjunction unit.

Definition 6.3.4.4. Let L be a B-locale and let 𝑑∶ G → 𝜋∗
𝐴L be a covering of an

object 𝑈∶ 𝐴 → L. Then the induced map 𝜂 colim ℎL𝑑∶ 𝑆𝑑 = colim ℎL𝑑 ↪→ ℎL(𝑈 )
in Fun

B
(Lop, SubB) is referred to as the covering sieve associated with 𝑑.

Remark 6.3.4.5. Let L be a B-locale and 𝑑∶ G → 𝜋∗
𝐴L be a covering of an object

𝑈∶ 𝐴 → L. Then, for every map 𝑠∶ 𝐵 → 𝐴 in B, we obtain an equivalence

𝑠∗𝑆𝑑 ≃ 𝑆𝑠∗𝑑 that commutes with the canonical equivalence 𝑠∗ℎL(𝑈 ) ≃ ℎL(𝑠∗𝑈 ).

Definition 6.3.4.6. If L is a B-locale, we denote by

Cov ↪→ Fun
B
(Lop, SubB) ↪→ PSh

B
(L)

the subcategory that is spanned by the covering sieves in arbitrary context.
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Remark 6.3.4.7. For every 𝐴 ∈ B, one may identify

𝜋∗
𝐴 Cov ↪→ Fun

B
(𝜋∗

𝐴L
op, SubB/𝐴

)

with the subcategory of covering sieves in 𝜋∗
𝐴L.

Remark 6.3.4.8. The B-category Cov is small. In fact, first note that by Re-

mark 6.3.4.5, the subcategory Cov ↪→ PSh
B
(L) is already spanned by all covering

sieves of objects in context 𝐺 ∈ G, where G is a small full subcategory of B that

generates B under colimits. Furthermore, since L is small, the collection of all

coverings of objects in fixed context 𝐺 is parametrised by a small set. Hence,

the full subcategory of PSh
B
(𝐿)Δ

1
that is spanned by the covering sieves must

be small. In light of the very construction of a subcategory from a collection of

morphisms (see Definition 1.3.1.14), the claim thus follows from the fact that the

1-image of a small B-category in a locally small B-category must also be small

(being a subcategory of the essential image, which is small by Lemma 2.3.1.6).

Definition 6.3.4.9. Let L be a B-locale. We define the B-category Sh
B
(L) of

sheaves on L to be the Bousfield localisation LocCov(PShB(L)) of PSh
B
(L). We

will furthermore denote the underlying ∞-category of global sections of Sh
B
(L)

by ShB(L).

Remark 6.3.4.10. By Remark 6.3.4.7 and Remark 5.4.1.2, for every 𝐴 ∈ B there

is a canonical equivalence 𝜋∗
𝐴ShB(L) ≃ Sh

B/𝐴
(𝜋∗

𝐴L) of full subcategories of

PSh
B/𝐴

(𝜋∗
𝐴L).

Remark 6.3.4.11. If L is a B-locale, then Proposition 6.3.3.7 implies that the

Yoneda embedding L ↪→ PSh
B
(L) admits a left adjoint 𝑙 ∶ PSh

B
(L) → L. By

construction, this functor carries Cov into L≃. By Corollary 5.4.3.2, this implies

that 𝑙 factors through the sheafification functor PSh
B
(L) → Sh

B
(L). By passing

to right adjoints, this implies that the Yoneda embedding factors through the

inclusion Sh
B
(L) ↪→ PSh

B
(L), which means that every representable presheaf

on L is already a sheaf.

The main goal of this section is to prove that Sh
B
(L) is a B-topos. More

precisely, we will show:
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Proposition 6.3.4.12. For any B-locale L, the localisation functor

PSh
B
(L) → Sh

B
(L)

preserves finite limits. In particular, Sh
B
(L) is a B-topos.

The proof of Proposition 6.3.4.12 is based on the following three lemmas:

Lemma 6.3.4.13. For every B-locale L, the ∞-category ShB(L) is the Bousfield
localisation of PShB(L) at the set

𝑊 = {(𝜋𝐴)!(𝑆) ↪→ (𝜋𝐴)!ℎ(𝑈 ) | 𝐴 ∈ B, 𝑈∶ 𝐴 → L, 𝑆 ↪→ ℎ(𝑈 ) covering sieve}

of morphisms in PShB(L).

Proof. A presheaf 𝐹∶ Lop → Grpd
B

is a sheaf if and only if for every 𝐴 ∈ B and

every covering sieve 𝑆 ↪→ ℎ(𝑈 ) in context 𝐴 the morphism

𝜙∶ mapPSh
B
(L)(ℎ(𝑈 ), 𝜋∗

𝐴𝐹) → mapPSh
B
(L)(𝑆, 𝜋

∗
𝐴𝐹)

is an equivalence in B/𝐴. Recall from Corollary 2.2.2.8 that if 𝑠∶ 𝐵 → 𝐴 is a map

in B, then on local sections over 𝐴 the map 𝜙 recovers the morphism

mapPSh
B
(L)(𝐵)(𝑠

∗ℎ(𝑈 ), 𝜋∗
𝐵𝐹) → mapPSh

B
(L)(𝐵)(𝑠

∗𝑆, 𝜋∗
𝐵𝐹)

of mapping ∞-groupoids, which by adjunction can in turn be identified with the

map

mapPShB(L)((𝜋𝐵)!𝑠
∗ℎ(𝑈 ), 𝐹 ) → mapPShB(L)(𝜋𝐵)!𝑠

∗𝑆, 𝐹 ).

Hence 𝐹 is a sheaf precisely if the latter map is an equivalence for every covering

sieve 𝑆 ↪→ ℎ(𝑈 ) in context 𝐴 and every map 𝑠∶ 𝐵 → 𝐴 in B. Together with

Remark 6.3.4.5, this yields the claim.

Lemma 6.3.4.14. Let L be a locale and let 𝑆 ↪→ ℎ(𝑈 ) be a covering sieve on an
object 𝑈∶ 𝐴 → L. Then for every map 𝑉 → 𝑈 in L(𝐴) the map ℎ(𝑉 ) ×ℎ(𝑈 ) 𝑆 ↪→ ℎ(𝑉 )
is a covering sieve.

Proof. By replacing B with B/𝐴, we may assume without loss of generality that

𝐴 ≃ 1. Now if 𝑑∶ G → L is a covering of 𝑈 giving rise to the covering sieve 𝑆,
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6. B-topoi

then universality of colimits in Fun
B
(Lop, SubB) and the fact that ℎ preserves

limits implies that 𝑆 ×ℎ(𝑈 ) ℎ(𝑉 ) is the colimit of the diagram

G
𝑑
−→ L

−×𝑉
−−−→ L

ℎ
↪−→ Fun

B
(Lop, SubB).

Since universality of colimits in L implies that the diagram 𝑑(−) × 𝑉∶ G → L is a

covering of 𝑉, the claim follows.

Lemma 6.3.4.15. Let L be a B-locale and let 𝑆0 ↪→ ℎ(𝑈 ) and 𝑆1 ↪→ ℎ(𝑈 ) be
covering sieves on an object 𝑈∶ 𝐴 → L. Then 𝑆0 ×ℎ(𝑈 ) 𝑆1 ↪→ ℎ(𝑈 ) is a covering sieve
as well.

Proof. By replacing B with B/𝐴, we may assume without loss of generality that

𝐴 ≃ 1. Let 𝑑0 ∶ G0 → L be a covering giving rise to the covering sieve 𝑆0, and let

𝑑1 ∶ G1 → L be a covering giving rise to 𝑆1. Define G = G0 ×G1 and let 𝑑∶ G → L

be the diagram given by the composition

G0 × G1
𝑑0×𝑑1
−−−−→ L × L

−×−
−−−−→ L.

Then we have colim 𝑑 ≃ 𝑈 since colimits are universal in L and since 𝑈 × 𝑈 ≃ 𝑈
in L. Therefore, it is enough to show that the induced map colim ℎL𝑑 ↪→ ℎ(𝑈 ) in
Fun

B
(Lop, SubB) can be identified with 𝑆0 ×ℎ(𝑈 ) 𝑆1 ↪→ ℎ(𝑈 ). This follows from

the fact that ℎL𝑑 is given by the composition

G0 × G1
ℎL𝑑0×ℎL𝑑1
−−−−−−−−→ Fun

B
(Lop, SubB) × Fun

B
(Lop, SubB)

−×−
−−−−→ Fun

B
(Lop, SubB)

and the very same argument as above, using that colimits are universal in

Fun
B
(Lop, SubB) as well.

Proof of Proposition 6.3.4.12. Since the localisation is already accessible by Propo-

sition 5.4.1.7, the second claim follows from the first by Theorem 6.2.3.1. To prove

the first, given 𝐴 ∈ B, let 𝑇 ′(𝐴) be the class of monomorphisms 𝑓∶ 𝐺 ↪→ 𝐻 in the

∞-topos PSh
B
(L)(𝐴) satisfying the condition that for every map 𝑠∶ 𝐵 → 𝐴 in B,

every 𝑈∶ 𝐵 → L and every map ℎ(𝑈 ) → 𝑠∗𝐻 the pullback 𝑠∗𝐺 ×𝑠∗𝐻 ℎ(𝑈 ) ↪→ ℎ(𝑈 )
is a covering sieve in context 𝐵. Then 𝑇 ′(𝐴) has the following properties:

1. the maps in 𝑇 ′(𝐴) are closed under pullbacks in PSh
B
(L)(𝐴);
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6.3. Localic B-topoi

2. the maps in 𝑇 ′(𝐴) are closed under finite limits in Fun(Δ1,PSh
B
(L)(𝐴));

3. every map in 𝑇 ′(𝐴) is inverted by PSh
B
(L)(𝐴) → Sh

B
(L)(𝐴);

4. every covering sieve in context 𝐴 ∈ B is contained in 𝑇 ′(𝐴).

In fact, the first property is evident, and the second property follows from combin-

ing the first one with Lemma 6.3.4.15. Property (3) follows from the observation

that by descent in the B/𝐴-topos PShB/𝐴
(𝜋∗

𝐴L), every map in 𝑇 ′(𝐴) is a (B/𝐴-

internal) colimit of covering sieves, which implies (using Remark 6.3.4.10) that

it is inverted by the localisation functor PSh
B
(L)(𝐴) → Sh

B
(L)(𝐴). The last

property is an immediate consequence of Lemma 6.3.4.14.

Let us set 𝑇 ′ = ⋃𝐴∈B(𝜋𝐴)!𝑇 ′(𝐴) and let 𝑇 be the smallest local class of mor-

phisms in PShB(L) that contains 𝑇 ′. Explicitly, a map 𝑓∶ 𝐹 → 𝐺 is contained in 𝑇
precisely if there is a cover⨆𝑖 𝐺𝑖 � 𝐺 in PShB(L) such that for each 𝑖 the pullback

𝐺𝑖 ×𝐺 𝐹 → 𝐺𝑖 is in 𝑇 ′. Then 𝑇 is bounded since it only contains monomorphisms.

Moreover, 𝑇 is closed under finite limits in Fun(Δ1, PShB(L)). To see this, the fact

that every map in 𝑇 is locally (in the ∞-topos PShB(L)) contained in 𝑇 ′ implies

that it suffices to show that for every cospan 𝑓0 → 𝑓 ← 𝑓1 with 𝑓0 and 𝑓1 in 𝑇 ′,

their pullback is in 𝑇 ′ as well. Note that if 𝑠∶ 𝐵 → 𝐴 is a map in B and if 𝑔 is a

map in PSh
B
(L)(𝐵) such that 𝑠!(𝑔) ∈ 𝑇 ′(𝐴), we have 𝑔 ∈ 𝑇 ′(𝐵). Therefore, we

may assume that both 𝑓0 and 𝑓1 are in 𝑇 ′(𝐴) for some 𝐴 ∈ B. In this case, the

claim immediately follows from properties (1) and (2) of 𝑇 ′(𝐴). The same argu-

ment moreover shows that every map in 𝑇 is inverted by the localisation functor

PShB(L) → ShB(L) as it can be written as a Δop-indexed colimit of coproducts

of maps in 𝑇 ′.

By employing Lemma 6.3.4.13 and property (4) above, we now conclude that

there is an equivalence ShB(L) ≃ Loc𝑇(PShB(L)) of Bousfield localisations of

PShB(L). Using Proposition 6.2.10.11, we thus obtain that PShB(L) → ShB(L) is
left exact. In light of Remark 6.3.4.10, this is already sufficient to conclude that

the entire functor of B-categories PSh
B
(L) → Sh

B
(L) is left exact.

6.3.5. The localic reflection ofB-topoi

In the previous section, we introduced the B-topos of sheaves on a B-locale.

In this section, we show that this construction is the universal way to attach a
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B-topos to a B-locale. More precisely, we show:

Proposition 6.3.5.1. Suppose that L is a B-locale. Then the Yoneda embedding
ℎ∶ L ↪→ Sh

B
(L) induces an equivalence L ≃ Sub(Sh

B
(L)), and for every B-topos

X precomposition with ℎ induces an equivalence

Funalg
B

(Sh
B
(L),X) ≃ Funalg

B
(L, Sub(X)),

where the left-hand side denotes theB-category of algebraic morphisms between the
B-topoi Sh

B
(L) and X and the right-hand side denotes the B-category of algebraic

morphisms between the B-locales L and Sub(X).

Proof. We begin by showing the first claim. To that end, Lemma 6.3.2.5 im-

plies that a sheaf 𝐹∶ Lop → Grpd
B

is subterminal if and only if it takes values

in SubB. Together with Remark 2.3.2.1, Remark 6.3.2.2 and Remark 6.3.4.10,

this implies that the first claim follows once we verify that every such sheaf

𝐹∶ Lop → SubB is representable. Note that by Example 6.3.2.4, the associated

right fibration 𝑝∶ L/𝐹 → L is fully faithful. Let 𝑈∶ 1 → L be the colimit of

𝑝. We then obtain a canonical map 𝐹 → ℎ(𝑈 ) in SubB(Sh
B
(L)). To show the

claim, it is therefore enough to produce a map in the opposite direction, which

by Yoneda’s lemma is equivalent to show that 𝐹(𝑈 ) ≃ 1Grpd
B
. To see this, note

that by Proposition 6.3.2.10 the object 𝑈 is the colimit of the restriction of 𝑝
to G = (L/𝐹)≃. In other words, we have a covering of 𝑈 given by 𝑝|G. Let

𝑆 ↪→ ℎ(𝑈 ) be the associated covering sieve. Then, since 𝐹 is a sheaf, we obtain

an equivalence 𝐹(𝑈 ) ≃ mapPSh
B
(L)(𝑆, 𝐹 ). To complete the proof of the first

claim, we therefore need to show that the right-hand side can be identified with

1Grpd
B
. But as 𝐹 is subterminal, we may in turn identify mapPSh

B
(L)(𝑆, 𝐹 ) with

mapFun
B
(Lop,SubB)(𝑆, 𝐹 ) ≃ lim 𝐹𝑝|G. Thus, the claim follows once we show that

𝐹𝑝|G ∶ G → SubB is final in Fun
B
(G, SubB). Note that the associated object

𝑃 ↪→ G in Sub(B/G) is explicitly obtained as the fibre of 𝑝∶ L/𝐹 → Grpd
B

over

𝑝|G. Thus, the inclusion G ↪→ L/𝐹 induces a section G → 𝑃, which immediately

yields the claim.

We now show the second claim. Let 𝑙 ∶ PSh
B
(L) → Sh

B
(L) be the localisation
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functor. We now have maps

Funalg
B

(Sh
B
(L),X) Funalg

B
(L, Sub(X))

Funalg
B

(PSh
B
(L),X) Funlex

B
(L, Sub(X))

𝑙∗

≃

in which the fact that 𝑙∗ is fully faithful follows from 𝑙 being a localisation func-

tor, and where the equivalence in the middle follows from Corollary 6.2.2.10

and the straightforward observation that by Remark 6.3.2.8 every left exact

functor 𝜋∗
𝐴L → 𝜋∗

𝐴X necessarily factors through 𝜋∗
𝐴 Sub(X). Thus, by using Re-

mark 6.3.4.10, Remark 6.3.2.2 and Remark 3.3.3.4 together with Corollary 5.4.3.2,

the claim follows once we show that a left exact functor 𝑓∶ L → Sub(X) is co-

continuous if and only if the left Kan extension ℎ!(𝑖𝑓 )∶ PSh
B
(L) → X (where

𝑖∶ Sub(X) ↪→ X is the inclusion) carries Cov into X≃. To see this, note that as

ℎ!(𝑖𝑓 ) is an algebraic morphism, it restricts to a map Fun
B
(Lop, SubB) → Sub(X)

which is cocontinuous as well. Consequently, for every object 𝑈∶ 𝐴 → L

and every covering 𝑑∶ G → 𝜋∗
𝐴L of 𝑈, the image of the associated covering

sieve 𝑆𝑑 ↪→ ℎ(𝑈 ) along ℎ!(𝑖𝑓 ) can be identified with the canonical morphism

colim 𝑓 𝑑 → 𝑓 (𝑈 ). In other words, ℎ!(𝑖𝑓 ) carries Cov into X≃ precisely if 𝑓 is

Grpd
B
-cocontinuous. But by using Proposition 6.3.2.10, this already implies that

𝑓 is cocontinuous. Hence the claim follows.

Corollary 6.3.5.2. The B-category LocLB is a coreflective subcategory of TopL
B
,

where the inclusion is given by carrying a B-locale to its associated sheaf B-topos
and the coreflection sends aB-topos to its underlyingB-locale of subterminal objects.

Proof. In light of Remark 2.3.2.1 and Remark 6.3.4.10, this follows immediately

from combining Proposition 6.3.3.8 with Proposition 6.3.5.1.

Definition 6.3.5.3. A B-topos X is localic if it is contained in the essential image

of the fully faithful functor Sh
B
(−)∶ LocLB ↪→ TopL

B
.

6.3.6. LocalicB-topoi as relative locales

Observe that as a consequence of Corollary 6.3.5.2 and Corollary 6.2.2.4, the B-

locale SubB is the initial B-locale. Since the global sections functor ΓB restricts
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to a functor LocL(B) → LocL (by Proposition 6.3.3.7), we thus obtain an induced

functor LocL(B) → LocLSub(B)/.

Proposition 6.3.6.1. If B is a localic ∞-topos, then the functor

Γ∶ LocL(B) → LocLSub(B)/

is an equivalence of ∞-categories.

Proof. Since by Remark 6.3.3.5 the∞-category LocL(B) can be identified with the

1-category of internal locales in Disc(B), the statement reduces to the analogous

result in 1-topos theory, see [39, Theorem C1.6.3].

Corollary 6.3.6.2. If B is a localic ∞-topos, then for every B-locale L, the ∞-topos
ShB(L) can be canonically identified with Sh(ΓL).

Proof. As a result of Remark 6.3.2.8, we have a commutative diagram

TopL(B) (TopL∞)B/

LocL(B) LocLSub(B)/

Sub

Γ

Sub

Γ

(where we note that as LocL is a 1-category coherence issues do not arise). There-

fore, the claim follows from Proposition 6.3.6.1 and the fact that by Theorem 6.2.5.1

the upper horizontal map is an equivalence as well.

Remark 6.3.6.3. The inverse to the equivalence from Proposition 6.3.6.1 can be

described explicitly: given an algebraic morphism of locales 𝑓 ∗ ∶ Sub(B) → 𝐿,
let 𝑓 ∗ ∶ B → Sh(𝐿) be the associated algebraic morphism of ∞-topoi. Then

𝑓∗ SubSh(𝐿) is a B-locale (as can be easily verified using Proposition 6.3.3.7),

and the canonical algebraic morphism SubB → 𝑓∗ SubSh(𝐿) recovers the map

𝑓 ∗ ∶ Sub(B) → 𝐿 upon passing to global sections. Therefore, we can identify

𝑓∗ SubSh(𝐿) as the image of 𝑓 ∗ ∶ Sub(B) → 𝐿 under the equivalence from Propo-

sition 6.3.6.1. Explicitly, this B-locale can be described as the sheaf 𝐿/𝑓 ∗(−) on

Sub(B), i.e. the Ĉat∞-valued functor that is classified by the cartesian fibration

Sub(B) ×𝐿 Fun(Δ1, L) → Sub(B).
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7. Smooth and proper geometric
morphisms

Suppose that

𝑄 𝑃

𝑌 𝑋

𝑘

𝑞 𝑝

ℎ

is a pullback square of topological spaces. The proper base change theorem asserts

that, provided all of the spaces in the above square are locally compact Hausdorff

and the map 𝑝 is proper, the induced square

Sh(𝑄) Sh(𝑃)

Sh(𝑌 ) Sh(𝑋)

𝑘∗

𝑞∗ 𝑝∗

ℎ∗

of ∞-topoi is horizontally left adjointable, in the sense that the natural map

ℎ∗𝑝∗ → 𝑞∗𝑘∗ is an equivalence. Dually, the smooth base change theorem asserts

that provided 𝑝 is a topological submersion, the induced square of ∞-topoi is

vertically left adjointable.

In [49, § 7.3], Lurie defined the notion of a proper morphism of ∞-topoi by

turning the proper base change theorem into a definition:

Definition 7.0.0.1 ([49, Definition 7.3.1.4]). Let 𝑝∗ ∶ X → B be a geometric

morphism of ∞-topoi. We say that 𝑓∗ is proper if for every commutative diagram

Y′ Y X

A′ A B

𝑔∗

𝑝∗𝑞∗

𝑓 ′
∗

𝑞′∗

𝑔′
∗

𝑓∗
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in TopR∞ in which both squares are cartesian, the left square is left adjointable, in

the sense that the mate transformation (𝑓 ′)∗𝑞∗ → 𝑞′∗(𝑔′)∗ is an equivalence.

Example 7.0.0.2. It follows from [49, Proposition 7.3.12 and Corollary 7.3.2.13]

that any closed immersion of ∞-topoi, in the sense of [49, Definition 7.3.2.6], is

proper.

Example 7.0.0.3. Let 𝑝∶ 𝑌 → 𝑋 be a proper and separated morphism of topo-

logical spaces. In Section 7.3.2 we will prove that then the geometric morphism

𝑝∗ ∶ Sh(𝑌 ) → Sh(𝑋) is proper, generalising a result of Lurie [49, Theorem

7.3.1.16].

Since properness in topology ought to capture a relative notion of compactness,
the natural question arises in what sense ∞-toposic properness can be thought

of in the same way. There is a well-established notion of compactness in higher

topos theory: an ∞-topos X is said to be compact if the global sections functor ΓX
commutes with filtered colimits. Since the ∞-topos Ani of∞-groupoid is the final

object in TopR∞, one would expect that this is the case precisely of ΓX is proper.

However, it is not clear at all how this would follow from the definitions. One of

the main goals in this chapter is to establish this result. More generally, in light

of the correspondence between geometric morphisms 𝑓∗ ∶ X → B and B-topoi

that we established in the previous chapter, one should expect that 𝑓∗ is proper

precisely if the associated B-topos is compact in the evident B-categorical sense:

that is, if the internal global sections functor Γ𝑓∗(GrpdX) ∶ 𝑓∗(GrpdX) → Grpd
B

preserves filtered colimits, i.e. is Filt-cocontinuous. The 1-toposic analogue of

this statement has been shown to be true by Moerdijk and Vermeulen [61]. In

Theorem 7.2.5.1, we will establish its ∞-categorical version.

One can define the notion of a smooth geometric morphism in the evident dual

way:

Definition 7.0.0.4. Let 𝑓∗ ∶ X → B be a geometric morphism of ∞-topoi. We

say that 𝑓∗ is smooth if for every commutative diagram

Y′ Y X

A′ A B

𝑘′∗

𝑔′
∗ 𝑔∗

𝑘∗

𝑓∗
ℎ′∗ ℎ∗
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in TopR∞ in which both squares are pullbacks, the mate 𝑔∗ℎ′∗ → 𝑘′∗(𝑔′)∗ is an

equivalence.

Example 7.0.0.5. Every étale geometric morphism is smooth. In fact, this

follows immediately from the explicit description of pullbacks of such geometric

morphisms in TopR∞, see [49, Remark 6.3.5.8].

Example 7.0.0.6. Every shape submersion 𝑓∶ 𝑌 → 𝑋 of topological spaces

induces a smooth geometric morphism 𝑓∗ ∶ Sh(𝑋) → Sh(𝑌 ). We prove this claim

in Section 7.3.1 below.

Again, in light of the correspondence between geometric morphisms into

B and B-topoi, the question arises which B-toposic property the smoothness

condition corresponds to. In 1-topos theory, it is a classical result (see [39,

Corollary C.3.3.16]) that smooth geometric morphisms are precisely the locally
connected maps, i.e. those geometric morphisms 𝑓∗ ∶ X → B for which the left

adjoint 𝑓 ∗ has a further left adjoint 𝑓! that satisfies a projection formula. In

other words, a geometric morphism of 1-topoi 𝑓∗ ∶ X → B is smooth precisely

if it exhibits X as a locally connected B-topos. In Theorem 7.1.3.1, we establish

the ∞-toposic analogue of this statement: we show that a geometric morphism

𝑓∗ ∶ X → B is smooth precisely if the associated B-topos is locally contractible.

We begin this chapter with the discussion of locally contractible B-topoi and

their relation to smooth geometric morphisms in Section 7.1. In Section 7.2.1, we

study compact B-topoi and their relation to proper geometric morphisms. Lastly,

in Section 7.3 we discuss how our characterisations of smooth and proper maps

of ∞-topoi can be used to detect when a continuous map of topological spaces

induces a smooth or proper map between the associated sheaf ∞-topoi.

7.1. Locally contractibleB-topoi

An ∞-topos X is said to be locally contractible if the constant sheaf functor

constX ∶ Ani → X admits a left adjoint 𝜋X ∶ X → Ani which is to be thought

of as the functor that carries an object 𝑈 ∈ X to its homotopy type (or shape)
𝜋X(𝑈 ). In 1-topos theory, the corresponding notion is that of a locally connected
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7. Smooth and proper geometric morphisms

1-topos E, in which the additional left adjoint carries an object 𝑈 ∈ E to its set of

connected components 𝜋0(𝐸).
In this section, we study the analogous concept for B-topoi. We begin in

Section 7.1.1 by defining the notion of a locally contractibleB-topos and providing

a few characterisations of this concept. In Section 7.1.2, we show that every locally

contractibleB-topos is generated by its contractible objects in a quite strong sense.

Finally, in Section 7.1.3 we provide a characterisation of locally contractible

B-topoi in terms of smoothness of the associated geometric morphisms.

7.1.1. Local contractibility in B-topos theory

The goal of this section is to define the condition of a B-topos to be locally

contractible and to derive a few explicit characterisations of this concept. We

begin with the following definition, which is a straightforward generalisation of

the notion of a locally contractible ∞-topos to the world of B-topoi:

Definition 7.1.1.1. A B-topos X is locally contractible if the unique algebraic

morphism constX ∶ Grpd
B

→ X admits a left adjoint 𝜋X ∶ X → Grpd
B
. We call

a geometric morphism 𝑓∗ ∶ X → B locally contractible if 𝑓∗(GrpdX) is a locally

contractible B-topos, in which case we denote by 𝑓! the additional left adjoint of

𝑓 ∗ (i.e. the functor Γ(𝜋𝑓∗(GrpdX))).

Remark 7.1.1.2. As the property of a functor being a right adjoint is local in B

(see Remark 3.1.3.6) and by making use of Remark 6.2.1.3, we find that for any

cover ⨆𝑖 𝐴𝑖 → 1 inB, theB-topos X is locally contractible if and only if for every

𝑖 the B/𝐴𝑖
-topos 𝜋∗

𝐴𝑖
X is locally contractible.

Remark 7.1.1.3. Explicitly, a geometric morphism 𝑓∗ ∶ X → B is locally con-

tractible precisely if 𝑓 ∗ ∶ B → X admits a left adjoint 𝑓! ∶ X → B such that for

every map 𝑠∶ 𝐵 → 𝐴 in B the induced map

𝑓!(𝑓 ∗𝐵 ×𝑓 ∗𝐴 −) → 𝐵 ×𝐴 𝑓!(−)

is an equivalence. In fact, this follows from the section-wise characterisation of

internal adjunctions (Proposition 3.1.2.9) together with the fact that if 𝑓 ∗ admits
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a left adjoint 𝑓!, one obtains an induced left adjoint (𝑓!)𝐴 of 𝑓 ∗
/𝐴 ∶ B/𝐴 → X/𝑓 ∗𝐴

for every 𝐴 ∈ B which is simply given by the composition

X/𝑓 ∗𝐴
(𝑓!)/𝐴
−−−−−→ B/𝑓!𝑓 ∗𝐴

𝜖!
−→ B/𝐴

(in which 𝜖∶ 𝑓!𝑓 ∗ → idB is the adjunction counit).

Example 7.1.1.4. Every étaleB-topos is locally contractible. More precisely, one

can characterise the class of étale B-topoi as those locally contractible B-topoi

X for which the additional left adjoint 𝜋X is a conservative functor. This is an

immediate consequence of [49, Proposition 6.3.5.11].

Recall from Theorem 6.2.5.1 and Remark 6.2.5.3 that every B-topos X corre-

sponds uniquely to a geometric morphism 𝑓∗ ∶ X → B such that X can be recov-

ered by 𝑓∗(GrpdX). The goal of this section is to characterise the property that X is

locally contractible in terms of the geometric morphism 𝑓∗. To that end, recall that

a product-preserving functor 𝑔∶ C → D between cartesian closed∞-categories is

said to be cartesian closed if the natural map 𝑔(Hom(−, −)) → Hom(𝑔(−), 𝑔(−))
(in which Hom(−, −) denotes the internal hom in C and D, respectively) is an

equivalence. If C and D are even locally cartesian closed and 𝑔 preserves fi-

nite limits, one says that 𝑔 is locally cartesian closed if the induced functor

𝑔/𝑐 ∶ C/𝑐 → D/𝑔(𝑑) is cartesian closed for every 𝑐 ∈ C. We now obtain:

Proposition 7.1.1.5. Let X be a B-topos and let 𝑓∗ ∶ X → B be the associated
∞-topos over B. Then the following are equivalent:

1. X is locally contractible;

2. the unique algebraic morphism constX ∶ Grpd
B

→ X is Grpd
B
-continuous;

3. the functor constX ∶ 𝑓 ∗(Grpd
B
) → Grpd

X
(which is obtained by transposing

the algebraic morphism constX ∶ Grpd
B

→ X across the adjunction 𝑓 ∗ ⊣ 𝑓∗)
is fully faithful.

4. the functor 𝑓 ∗ ∶ B → X is locally cartesian closed.

Before we can prove Proposition 7.1.1.5, we need the following lemma:
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7. Smooth and proper geometric morphisms

Lemma 7.1.1.6. Let X be a B-topos and let 𝑓∗ ∶ X → B be the associated ∞-topos
over B. Let 𝐴 ∈ B be an arbitrary object and let 𝑃 → 𝐴 and 𝑄 → 𝐴 be two
B/𝐴-groupoids. Then the morphism of X/𝑓 ∗𝐴-groupoids

map𝑓 ∗(Grpd
B
)(𝑃, 𝑄) → mapGrpd

X

(constX(𝑃), constX(𝑄))

that is induced by the action of constX recovers the map

𝑓 ∗(Hom
B/𝐴

(𝑃, 𝑄)) → Hom
X/𝑓 ∗𝐴

(𝑓 ∗𝑃, 𝑓 ∗𝑄).

Proof. Using Remark 6.2.1.3, wemay assumewithout loss of generality that𝐴 ≃ 1.
Furthermore, by transposing across the adjunction 𝑓 ∗ ⊣ 𝑓∗, it suffices to show

that the map

Hom
B
(𝑃, 𝑄) → 𝑓∗Hom

X
(𝑓 ∗𝑃, 𝑓 ∗𝑄)

can be identified with the morphism of B-groupoids

mapGrpd
B

(G,H) → mapX(constX(G), constX(H)).

Now the latter can be identified with

𝜂∗ ∶ mapGrpd
B

(G,H) → mapGrpd
B

(G, ΓX constX H)

(where ΓX ∶ X → Grpd
B

denotes the unique geometric morphism and where 𝜂 is

the adjunction unit). We can also identify the former map with

𝜂∗ ∶ Hom
B
(𝑃, 𝑄) → Hom

X
(𝑃, 𝑓∗𝑓 ∗𝑄).

by using the equivalence 𝑓∗Hom(𝑓 ∗𝑃, 𝑓 ∗𝑄) ≃ Hom(𝑃, 𝑓∗𝑓 ∗𝑃). Therefore, the

claim follows from Proposition 3.2.5.11.

Proof of Proposition 7.1.1.5. Since constX is cocontinuous and preserves finite lim-

its, one deduces from Proposition 3.5.4.1 and the adjoint functor theorem (Propo-

sition 5.4.3.1) that (1) and (2) are equivalent. In light of Lemma 7.1.1.6, it is

moreover clear that (3) and (4) are equivalent. To complete the proof, we will

show that (2) and (4) are equivalent. To that end, given any map 𝑝∶ 𝑃 → 𝐴 in B,

consider the commutative diagram

X/𝑓 ∗𝐴 X/𝑓 ∗𝑃 X/𝑓 ∗𝐴

B/𝐴 B/𝑃 B/𝐴.

𝑝∗

𝑓 ∗
/𝐴 𝑓 ∗

/𝑃

𝑝!

𝑓 ∗
/𝐴

𝑝∗ 𝑝!
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7.1. Locally contractible B-topoi

Given 𝑞∶ 𝑄 → 𝐴, the natural map 𝑓 ∗Hom
B/𝐴

(𝑃, 𝑄) → Hom
X/𝑓 ∗𝐴

(𝑓 ∗𝑃, 𝑓 ∗𝑄) is
precisely obtained by evaluating the (horizontal) mate of the composite square at

𝑞. Since the horizontal mate of the left square being an equivalence (for every

such map 𝑝) precisely means that constX is Grpd
B
-continuous, we only need to

show that the mate of the left square is an equivalence if and only if the mate of

the composite square is one. One direction is trivial. As for the other direction,

if we know that the map 𝜙∶ 𝑓 ∗
/𝐴𝑝∗ → 𝑝∗𝑓 ∗

/𝑃 is an equivalence for every object

in the image of 𝑝∗ ∶ B/𝐴 → B/𝑃, then the entire map has to be an equivalence

since every object in B/𝑃 can be written as a pullback of such objects and since

both domain and codomain of 𝜙 preserves finite limits.

7.1.2. Contractible objects

A topological space 𝑋 is by definition locally contractible if it admits a basis

of contractible open subsets. A priori, the definition of a locally contractible

B-topos does not appear to be related to this condition at all. In this section,

we reconcile the two notions by showing that local contractibility of a B-topos

can be characterised by the property of it being generated under colimits by its

contractible objects. We begin with the following definition:

Definition 7.1.2.1. Let X be a B-topos. An object 𝑈∶ 𝐴 → X is said to be con-
tractible if the functor mapX(𝑈 , constX(−))∶ Grpd

B/𝐴
→ Grpd

B/𝐴
is an equiva-

lence. We define the full subcategory Contr(X) ↪→ X as the fibre of the functor

const∗X ℎopXop ∶ X ↪→ Fun
B
(X,Grpd

B
)op → Fun

B
(Grpd

B
,Grpd

B
)op

over the identity id∶ Grpd
B

→ Grpd
B
.

Remark 7.1.2.2. Note that as Grpd
B

is the initial B-topos, we find that the

inclusion of the identity idGrpd
B
∶ 1 → Fun

B
(Grpd

B
,Grpd

B
) determines a fully

faithful functor that identifies the domain with Funalg
B

(Grpd
B
,Grpd

B
). There-

fore, the functorContr(X) ↪→ X is indeed fully faithful. Moreover, as the universal

property of Grpd
B/𝐴

implies that a functor Grpd
B/𝐴

→ Grpd
B/𝐴

is an equiva-

lence if and only if it is equivalent to the identity, we find that an object 𝑈∶ 𝐴 → X

is contained in Contr(X) if and only if it is contractible.
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7. Smooth and proper geometric morphisms

Remark 7.1.2.3. If 𝐴 ∈ B is an arbitrary object, we may combine Remark 6.2.1.3

with Remark 2.3.2.1 and Proposition 1.2.5.4 to deduce that there is a canonical

equivalence

𝜋∗
𝐴 Contr(X) ≃ Contr(𝜋∗

𝐴X)

of full subcategories in 𝜋∗
𝐴X.

Remark 7.1.2.4. In the situation of Definition 7.1.2.1, suppose that X is locally

contractible. Then we obtain an equivalence const∗X ℎopXop ≃ ℎopGrpdop
B

𝜋X. Since

ℎopGrpdop
B

is fully faithful and since the identity on Grpd
B

is corepresented by

1Grpd
B

(see Proposition 2.2.2.4), we thus find that Contr(X) arises as the fibre of

𝜋X ∶ X → Grpd
B

over 1Grpd
B
∶ 1 ↪→ Grpd

B
. In particular, this means that an

object 𝑈∶ 𝐴 → X is contractible precisely if 𝜋X(𝑈 )∶ 𝐴 → Grpd
B

transposes to

the final object in Grpd
B/𝐴

.

For the remainder of this section, fix a B-topos X. Recall from Lemma 6.2.3.3

that we may always find a sound doctrine U such that X is U-accessible and

XU-cpt is closed under finite limits in X. We will denote by ContrU-cpt(X) ↪→ X the

intersection of Contr(X) with XU-cpt. The main goal of this section is to prove

the following proposition:

Proposition 7.1.2.5. Let X be a B-topos and let U be a sound doctrine such that X
is U-accessible and XU-cpt is closed under finite limits in X. Then the following are
equivalent:

1. X is locally contractible;

2. the left Kan extension

ℎ!(𝑗)∶ PSh
B
(ContrU-cpt(X)) → X

of 𝑗∶ ContrU-cpt(X) ↪→ X along the Yoneda embedding defines a left exact
and accessible Bousfield localisation;

3. X is generated by Contr(X) under colimits.

The proof of Proposition 7.1.2.5 is based on the following two lemmas:
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7.1. Locally contractible B-topoi

Lemma 7.1.2.6. Let 𝑗∶ C ↪→ X be a (small) full subcategory such that the identity
on X is the left Kan extension of 𝑗 along itself. Then 𝑗 is flat.

Proof. We need to show that ℎ!(𝑗)∶ PSh
B
(C) → X preserves finite limits. By

virtue of Proposition 3.4.1.1, the final object 1PSh
B
(C) ∶ 1 → PSh

B
(C) is given by

the colimit of the Yoneda embedding ℎ∶ C ↪→ PSh
B
(C), hence ℎ!(𝑗)(1PSh

B
(C)) is

the colimit of 𝑗. But as the left Kan extension of 𝑗 along itself is by assumption the

identity on X, the formula from Remark 3.4.3.6 implies that every object 𝑈∶ 1 → X

is the colimit of the composition C/𝑈 ↪→ X/𝑈 → X. In particular, the final object

in X must be the colimit of 𝑗 itself. Hence ℎ!(𝑗) preserves the final object. To

complete the proof, it therefore suffices to show that ℎ!(𝑗) also preserves pullbacks.

By Lemma 6.2.2.8 and in light of Remark 3.4.3.2 and Remark 2.3.2.1, it will be

enough to show that if 𝜎 is an arbitrary cospan in C in context 1 ∈ B, the functor

ℎ!(𝑗) preserves the pullback 𝑃 of ℎ(𝜎). In other words, we need to prove that the

induced functor ℎ!(𝑗)∗ ∶ PSh
B
(C)/ℎ(𝜎) → X/𝑗(𝜎) preserves the final object. Let

𝑄∶ 1 → X be the pullback of 𝑗(𝜎). We then have a commutative diagram

C/𝑃 PSh
B
(C)/𝑃 X/𝑄

C/𝜎 PSh
B
(C)/ℎ(𝜎) X/𝑗(𝜎)

≃ ≃ ≃
ℎ!(𝑗)∗

in which the upper right horizontal functor can be identified with the composition

of ℎ!(𝑗)/𝑃 ∶ PSh
B
(C)/𝑃 → X/ℎ!(𝑗)(𝑃) with the forgetful functor X/ℎ!(𝑗)(𝑃) → X/𝑄

along the natural map ℎ!(𝑗)(𝑃) → 𝑄. As both of these functors are cocontin-

uous (see Corollary 6.1.1.5 and Proposition 6.1.1.2), the upper right horizontal

functor must be cocontinuous as well. By combining this observation with the

identification PSh
B
(C)/𝑃 ≃ PSh

B
(C/𝑃) from Lemma 3.4.1.4 and the universal

property of presheaf B-categories, we conclude that this functor is equivalent to

the Yoneda extension of the inclusion C/𝑃 ↪→ X/𝑄. Therefore, by using the first

part of the proof, it will be enough to show that the identity on X/𝑗(𝜎) is the left

Kan extension of the inclusion C/𝜎 ↪→ X/𝑗(𝜎) along itself. By using the criterion

from Remark 3.4.3.6 together with the fact that any slice B-category over X/𝑗(𝜎)
can be identified with a slice B-category over X, this in turn follows from the

assumption that the identity on X is the left Kan extension of 𝑗 along itself.
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7. Smooth and proper geometric morphisms

Lemma 7.1.2.7. If X is locally contractible, the identity on X is the left Kan extension
of the inclusion ContrU-cpt(X) ↪→ X along itself.

Proof. Note that we have inclusions ContrU-cpt(X) ↪→ XU-cpt ↪→ X in which

the left Kan extension of the second inclusion along itself is the identity on

X. Consequently, it will be enough to show that the left Kan extension of the

inclusion ContrU-cpt(X) ↪→ X along the inclusion ContrU-cpt(X) ↪→ XU-cpt recov-

ers the inclusion XU-cpt ↪→ X. By using Remark 3.4.3.6 and Remark 7.1.2.3,

this follows once we verify that for any U-compact object 𝑈∶ 1 → X, the

colimit of the induced inclusion ContrU-cpt(X)/𝑈 ↪→ X/𝑈 is the final object.

Now observe that the functor (𝜋X)/𝑈 ∶ X/𝑈 → (Grpd
B
)/𝜋X(𝑈 ) restricts to a

functor (𝜋X)/𝑈 ∶ ContrU-cpt(X)/𝑈 → 𝜋X(𝑈 ). We claim that the right adjoint

(constX)𝜋X(𝑈 ) ∶ (Grpd
B
)/𝜋X(𝑈 ) → X/𝑈 (which is constructed by composing the

functor (constX)/𝜋X(𝑈 ) ∶ (Grpd
B
)/𝜋X(𝑈 ) → X/ constX 𝜋X(𝑈 ) with the pullback mor-

phism 𝜂∗ ∶ X/ constX 𝜋X(𝑈 ) → X/𝑈 along the adjunction unit 𝜂∶ 𝑈 → constX 𝜋X(𝑈 ),
see Corollary 6.1.1.5) restricts to a map 𝜋X(𝑈 ) → ContrU-cpt(X)/𝑈. In fact, by

making use of Remark 7.1.2.3, it will be enough to verify that if 𝑥∶ 1 → 𝜋X(𝑈 ) is
an arbitrary object in context 1 ∈ B, its image along (constX)𝜋X(𝑈 ) is U-compact

and contractible. By construction, this object fits into a pullback square

(constX)𝜋X(𝑈 )(𝑥) 1X

𝑈 constX 𝜋X(𝑈 ).

constX(𝑥)
𝜂

Note that both 𝜋X and constX are left adjoint to FiltU-cocontinuous functors and

therefore preserve U-compact objects. In combination with our assumption that

the full subcategory of U-compact objects in X is closed under finite limits, we

thus find that (constX)𝜋X(𝑈 )(𝑥) is U-compact too. Furthermore, note that we

may regard 𝜂 as an object in X/𝑓 ∗(𝜋X(𝑈 )) = X(𝜋X(𝑈 )), i.e. as an object in X in

context 𝜋X(𝑈 ). As such, 𝜂 is contractible: in fact, by Remark 7.1.1.3 the object

𝜋X(𝜂) ∈ Grpd
B
(𝜋X(𝑈 )) is explicitly computed as the composition

𝜋X(𝑈 )
𝜋X(𝜂)
−−−−→ 𝜋X constX 𝜋X(𝑈 )

𝜖
−→ 𝜋X(𝑈 )

(where in the first map 𝜂 is regarded as a morphism in X in context 1 ∈ B and

where 𝜖 is the counit of the adjunction 𝜋X ⊣ constX), hence the claim follows
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7.1. Locally contractible B-topoi

from the triangle identities. Now viewing 𝜂 as an object in X in context 𝜋X(𝑈 ),
the above pullback square exhibits the global object (constX)𝜋X(𝑈 )(𝑥) ∈ X(1) = X

as the image of 𝜂 ∈ X(𝜋X(𝑈 )) along the transition map 𝑥∗ ∶ X(𝜋X(𝑈 )) → X(1).
Therefore, 𝜂 being a contractible object implies that (constX)𝜋X(𝑈 )(𝑥) must be

contractible as well. Thus we conclude that (constX)𝜋X(𝑈 )(𝑥) is contained in

ContrU-cpt(X)/𝑈, as claimed.

So far, our arguments have shown that we have a commutative square

ContrU-cpt(X)/𝑈 X/𝑈

𝜋X(𝑈 ) (Grpd
B
)/𝜋X(𝑈 ).

(constX)𝜋X(𝑈 )

Since the vertical maps in this diagram are right adjoints, they are in particular

final. Since furthermore (constX)𝜋X(𝑈 ) is cocontinuous, the colimit of the upper

horizontal map is the image of the colimit of the lower horizontal map along

(constX)𝜋X(𝑈 ). To complete the proof, it is therefore enough to prove that the

colimit of the lower horizontal map is the final object in (Grpd
B
)/𝜋X(𝑈 ). But

this is simply the statement that 𝜋X(𝑈 ) is the colimit of the constant diagram

𝜋X(𝑈 ) → 1 ↪→ Grpd
B

with value 1Grpd
B
, which is clear.

Proof of Proposition 7.1.2.5. Let us first assume that X is locally contractible. By

combining Lemma 7.1.2.7 and Lemma 7.1.2.6, the map

ℎ!(𝑗)∶ PSh
B
(ContrU-cpt(X)) → X

is left exact, so it suffices that this functor is a Bousfield localisation. Since it is

cocontinuous, it has a right adjoint 𝑟 (which is automatically accessible). The

counit of this adjunction carries an object 𝑈∶ 𝐴 → X to the canonical map from

the colimit of (𝜋∗
𝐴C)/𝑈 → 𝜋∗

𝐴X to 𝑈. By again using Lemma 7.1.2.7, this map is an

equivalence, hence (2) follows. Trivially, (2) implies (3). Finally, suppose that (3)

holds, i.e. X is the smallest full subcategory of itself that contains Contr(X) and
that is closed under CatB-colimits. Now consider the commutative diagram

Contr(X) P X

1 Grpd
B

Fun
B
(Grpd

B
,Grpd

B
)op

const∗X ℎopXop
1GrpdB

ℎop
Grpdop

B
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in which both squares are pullbacks. Since ℎopGrpdop
B

and ℎopXop are cocontinuous func-

tors (Proposition 3.3.2.15) the inclusion P ↪→ X is closed underGrpd
B
-colimits (see

Lemma 3.5.1.11) and must therefore be an equivalence. Hence const∗X ℎopXop factors

through the Yoneda embedding Grpd
B
↪→ Fun

B
(Grpd

B
,Grpd

B
)op, which pre-

cisely means that constX has a left adjoint 𝜋X. Hence X is locally contractible.

7.1.3. Classification of smooth geometric morphisms

In this section, our goal is to prove that smooth geometric morphisms precisely

correspond to the locally contractible ones:

Theorem 7.1.3.1. Let X be a B-topos and let 𝑓∗ ∶ X → B be the associated
geometric morphism. Then X is locally contractible if and only if 𝑓∗ is smooth.

The proof of Theorem 7.1.3.1 relies on a few reduction steps. Our first goal is

to establish that the property of a geometric morphism to be locally contractible

is stable under taking powers by B-categories: Recall from Proposition 6.2.4.3

that the large B-category TopL
B

admits a powering bifunctor

(−)(−) ∶ Catop
B

× TopL
B

→ TopL
B
.

We now find:

Lemma 7.1.3.2. Let C be a B-category and let X be a locally contractible B-topos.
Then the geometric morphism (ΓX)∗ ∶ XC → GrpdC

B
exhibits FunB(C,X) as a

locally contractible FunB(C,Grpd
B
)-topos.

Proof. Since the algebraic morphism associated with (ΓX)∗ is given by (constX)∗,
the functor (𝜋X)∗ defines a further left adjoint of (constX)∗. Therefore, Re-

mark 7.1.1.3 implies that we only need to show that for every map 𝐹 → 𝐺 in

FunB(C,Grpd
B
) and every map 𝐻 → (constX)∗(𝐺) in FunB(C,X), the canonical

morphism

(𝜋X)∗((constX)∗𝐹 ×(constX)∗𝐺 𝐻) → 𝐹 ×𝐻 (𝜋X)∗𝐻

is an equivalence. It will be enough to show that this map becomes an equivalence

after being evaluated at an arbitrary object 𝑐∶ 𝐴 → C in context 𝐴 ∈ B. In light

of Remark 7.1.1.2 and Proposition 1.2.5.4, we can replace B with B/𝐴, so that
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7.1. Locally contractible B-topoi

we can reduce to the case 𝐴 ≃ 1. But as pullbacks in functor B-categories are

computed object-wise (Proposition 3.2.3.2) and as evaluating the unit and counit

of the adjunction (𝜋X)∗ ⊣ (constX)∗ at 𝑐 recovers the unit and counit of the

adjunction 𝜋X ⊣ constX, the claim follows from the assumption that X is locally

contractible and Remark 7.1.1.3.

Before we can prove Theorem 7.1.3.1, we also need the following result:

Lemma 7.1.3.3. Let X be a locally contractible B-topos and let U be a sound
doctrine such that X is U-accessible and XU-cpt is closed under finite limits in X.
Then the diagonal map diag∶ Grpd

B
→ PSh

B
(ContrU-cpt(X)) takes values in

X ↪→ PSh
B
(ContrU-cpt(X)).

Proof. Let 𝐿 ⊣ 𝑖∶ X ⇆ PSh
B
(ContrU-cpt(X)) be the adjunction induced by the

Yoneda extension of the inclusion ContrU-cpt(X) ↪→ X, and let 𝜂 be its unit. We

need to show that the induced morphism 𝜂 diag∶ diag → 𝑖𝐿 diag is an equiv-

alence. As we may check this object-wise and by using Remark 7.1.1.2, Re-

mark 5.1.5.2, Remark 5.3.1.2 and Remark 7.1.2.3 together with Proposition 1.2.5.4,

we only need to show that for any object 𝑈∶ 1 → ContrU-cpt(X) the map

𝑈 ∗𝜂 diag∶ 𝑈 ∗ diag → 𝑈 ∗𝑖𝐿 diag is an equivalence in Grpd
B
. Note that we have

a chain of equivalences

𝑈 ∗𝑖𝐿 diag ≃ mapX(𝑈 , constX) ≃ mapGrpd
B

(𝜋X(𝑈 ), −).

As 𝜋X(𝑈 ) ≃ 1Grpd
B
, we thus find that 𝑈 ∗𝑖𝐿 diag ≃ id. Since also 𝑈 ∗ diag is

equivalent to the identity and since the universal property of Grpd
B

implies that

mapFun
B
(Grpd

B
,Grpd

B
)(id, id) ≃ 1Grpd

B
,

the claim follows.

Proof of Theorem 7.1.3.1. Suppose first that 𝑓∗ is smooth. Then 𝑓∗ in particular

satisfies condition (2) of Proposition 7.1.1.5 and is therefore locally contractible.

To prove the converse direction, suppose that we have two pullback squares

Y′ Y X

A′ A B

𝑘′∗

𝑔′
∗

𝑘∗

𝑔∗ 𝑓∗
ℎ′∗ ℎ∗
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of ∞-topoi in which 𝑓∗ is locally contractible. By viewing A as a B-topos and

using Theorem 6.2.3.1, we may factor ℎ∗ into a composition

A ↪→ FunB(Cop,Grpd
B
) → B.

Since the commutative square

Fun
B
(Cop,X) X

PSh
B
(C) Grpd

B

lim

(ΓX)∗ ΓX

lim

is a pullback in TopR
B

(see Example 6.2.7.5) and on account of Lemma 7.1.3.2, this

allows us to reduce to the case where ℎ∗ is already an embedding. But then 𝑘∗
must be an embedding as well, so that the mate of the left square is an equivalence

if and only if the mates of the right one and the composite one are equivalences.

Hence, to complete the proof, it will be enough to show that if we are given any

pullback square

Y X

A B

𝑘∗

𝑔∗ 𝑓∗
ℎ∗

in which 𝑓∗ is locally contractible, the mate transformation 𝑓 ∗ℎ∗ → 𝑔∗𝑘∗ is

an equivalence. By the same argument as above (and the fact that constX is

continuous), we can moreover still assume that ℎ∗ and 𝑘∗ are embeddings. To

proceed, we make use of Proposition 7.1.2.5 to obtain a commutative diagram

Y X

FunB(ContrU-cpt(X)op, ℎ∗(GrpdA)) FunB(ContrU-cpt(X)op,Grpd
B
)

A B

𝑘∗

lim lim
ℎ∗

in which both squares are pullbacks. Since the mate of the lower square is

evidently an equivalence and since Lemma 7.1.3.3 implies that the diagonal map

diag∶ B → FunB(ContrU-cpt(X)op,Grpd
B
)
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7.2. Compact B-topoi

takes values in X, it will be enough to show that the diagonal map

diag∶ A → FunB(ContrU-cpt(X)op, ℎ∗(GrpdA))

likewise takes values in Y. Let us therefore pick an arbitrary object 𝐴 ∈ A.

By [49, Lemmas 6.3.3.4], the upper square in the above diagram is a pullback

square of ∞-categories, hence it suffices to show that the image of diag(𝐴) in
FunB(ContrU-cpt(X)op,Grpd

B
) is contained in X. But as the mate of the lower

square is an equivalence, this latter object is equivalent to diag ℎ∗(𝐴), hence
another application of Lemma 7.1.3.3 yields the claim.

7.2. CompactB-topoi

The goal of this section is to study the concept of a compact B-topos and to

show that this notion is equivalent to the condition that the associated geometric

morphism is proper. In Section 7.2.1, we give the definition of a compact B-topos

and discuss a few examples. In Section 7.2.2, we study how certain compactness

conditions on B-locales lead to their associated localic B-topoi being compact.

We will spend Section 7.2.3 to Section 7.2.5 to prove the aforementioned result

that compactB-topoi precisely correspond to proper geometric morphisms. More

precisely, in Section 7.2.3 and Section 7.2.4, we discuss two auxiliary steps that

are required for the proof: the ∞-toposic cone construction and the fact that

compact geometric morphisms commute with left exact localisations of ∞-topoi.

Lastly, we put everything together in Section 7.2.5 to finish the proof. Finally, in

Section 7.2.6 we discuss a variant of this result in which we allow coefficients in

an arbitrary compactly generated ∞-category.

7.2.1. Compactness in B-topos theory

Recall that an ∞-topos X is said to be compact if the global sections functor

ΓX ∶ X → Ani preserves filtered colimits. In this section, we study the B-toposic

analogue of this notion.

Definition 7.2.1.1. A B-topos X is said to be compact if the global sections

functor ΓX ∶ X → Grpd
B

preserves filtered colimits, i.e. is Filt-cocontinuous. We
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7. Smooth and proper geometric morphisms

say that a geometric morphism 𝑝∗ ∶ X → B is compact if the associated B-topos

𝑝∗(GrpdX) is compact.

Example 7.2.1.2. If 𝐴 ∈ B is an arbitrary object, then the associated étale

geometric morphism (𝜋𝐴)∗ ∶ B/𝐴 → B is compact if and only if 𝐴 is internally
compact in B, i.e. if the functor mapGrpd

B

(𝐴, −)∶ Grpd
B

→ Grpd
B

preserves

filtered colimits. To see this, first note that (𝜋𝐴)∗ corresponds to the étaleB-topos

Fun
B
(𝐴,Grpd

B
) (see Section 6.2.9) and the unique geometric morphism into

Grpd
B

is given by the limit functor lim𝐴 ∶ Fun
B
(𝐴,Grpd

B
) → Grpd

B
(as its left

adjoint diag𝐴 is again a right adjoint and therefore preserves all limits. Moreover,

since 𝐴 ≃ colim𝐴 diag𝐴 1Grpd
B
, the adjunctions colim𝐴 ⊣ diag𝐴 ⊣ lim𝐴 imply

that we obtain an identification

mapGrpd
B

(𝐴, −) ≃ mapGrpd
B

(1Grpd
B
, lim𝐴 diag𝐴(−)) ≃ lim𝐴 diag𝐴(−)

(since mapGrpd
B

(1Grpd
B
, −) is equivalent to the identity, see Proposition 2.2.2.4).

Hence lim𝐴 preserving filtered colimits implies that 𝐴 is internally compact. To

see the converse, note that by Corollary 5.2.3.8, the object 𝐴 being internally

compact is equivalent to 𝐴 being locally constant with compact values. If this

is the case, then the fact that Filt-cocontinuity can be checked locally in B (see

Remark 3.3.2.3) allows us to reduce to the case where 𝐴 is constant with compact

value. In other words, 𝐴 is a retract of a finiteB-groupoid, so that we may further

reduce to the case where 𝐴 is already finite. In this case, lim𝐴 preserves filtered

colimits by the very definition of filteredness.

Example 7.2.1.3. Let X be a subterminal B topos such that the associated

geometric morphism 𝑗∗ ∶ X ↪→ B is a closed immersion in the sense of [49,

Definition 7.3.2.6]. Then X is compact. In fact, since by [49, Corollary 7.3.2.13]

the geometric morphism X(𝐴) ↪→ B/𝐴 is a closed immersion for every 𝐴 ∈ B,

this follows once we verify that for every filtered B-category I, the composition

FunB(I,X)
(ΓX)∗
↪−−−−→ FunB(I,Grpd

B
)

colim
−−−−→ B
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7.2. Compact B-topoi

takes values in X. Note that we have a commutative diagram

X FunB(I,X) X

B FunB(I,Grpd
B
) B

diag

𝑗∗

lim

(ΓX)∗ 𝑗∗
diag lim

in which both squares are pullbacks in TopR∞ by Example 6.2.7.5 and the fact

that diag is fully faithful as I is filtered and therefore in particular weakly con-

tractible (see Remark 5.2.3.3). Now as 𝑗∗ is a closed immersion, there is an object

𝑈 ∈ SubB(1) such that X ≃ B\𝑈, where the right-hand side denotes the full sub-

category of B spanned by the objects 𝐴 ∈ B for which there is a map 𝑈 → 𝐴 for

which (id, 𝑔)∶ 𝑈 → 𝑈 × 𝐴 is an equivalence. Then we deduce from [49, Proposi-

tion 7.3.2.12] that (ΓX)∗ identifies FunB(I,X) with FunB(I,Grpd
B
)\ diag(𝑈 ). Since

colim∶ Fun
B
(I,Grpd

B
) → B preserves finite limits, we now deduce that when-

ever 𝑑∶ I → Grpd
B

takes values in X, the colim 𝑑 must be contained in X. Hence

X is compact.

Warning 7.2.1.4. In the context of Definition 7.2.1.1, it is essential that we require

for the entire global sections functor ΓX ∶ X → Grpd
B

to be Filt-cocontinuous

instead of just asking for its underlying geometric morphism 𝑝∗ to preserve

filtered colimits. In fact, if 𝐴 ∈ B is an arbitrary object, we saw in Exam-

ple 7.2.1.2 that (𝜋𝐴)∗ ∶ B/𝐴 → B is compact if and only if𝐴 is internally compact.

On the other hand, (𝜋𝐴)∗ preserves filtered colimits if and only if the functor

Hom
B
(𝐴, −)∶ B → B preserves filtered colimits. By Proposition 3.2.5.11, 𝐴

being internally compact implies that Hom
B
(𝐴, −) preserves filtered colimits,

but the converse is not true in general. For example, if 𝑋 is a coherent space, then

any quasi-compact open 𝑈 ⊂ 𝑋 defines an object in the ∞-topos Sh(𝑋) satisfying
the latter condition (since quasi-compact opens in 𝑋 define compact objects in

Sh(𝑋) and generate this ∞-topos under colimits). On the other hand, 𝑈 is in

general quite far from being locally constant and can therefore not be internally

compact.

Remark 7.2.1.5. Let X be a 1-localic ∞-topos. If X is compact, the associated 1-
topos Disc(X) of 0-truncated objects inX is tidy in the sense of [61]. However, the
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7. Smooth and proper geometric morphisms

converse it not true in general. For example, any coherent 1-topos is tidy, but 1-
localic coherent ∞-topoi are not compact in general. An explicit counterexample

is Spec(ℝ)ét ≃ Fun(𝐵(ℤ/2ℤ),Ani), which cannot be tidy since 𝐵(ℤ/2ℤ) ≃ ℝℙ∞

is not compact in Ani.

Example 7.2.1.6. Any ∞-topos of the form Sh𝜏(C) where C is an ∞-category

with an initial and a terminal object and 𝜏 a topology generated by a cd-structure

is compact. This follows since under these assumption Sh𝜏(C) → PSh(C) com-

mutes with filtered colimits and PSh(C) is always compact if C has a terminal

object. Examples of such topologies from algebraic geometry include the Zariski-,

Nisnevich- and cdh-topology.

7.2.2. Compactness of localic B-topoi

In this section, we study how certain compactness properties of B-locales are

inherited by their associated localic B-topoi, which will lead us to an important

class of compact B-topoi. To that end, if D is a presentable B-category, we shall

say thatD is compactly generated if the inclusionDcpt ↪→ D of the full subcategory

of compact objects induces via left Kan extension an equivalence Ind
B
(Dcpt) ≃ D.

We will furthermore say that D is compactly assembled if D is a retract (in PrLB)

of a compactly generated B-category. We may now define:

Definition 7.2.2.1. A B-locale L is said to be locally coherent if it is compactly

generated and if Lcpt is closed under binary products in L. We say that L is

coherent if it is locally coherent and 1L is compact.

Furthermore, L is said to be (locally) stably compact if it is a retract in LocLB of

a (locally) coherent B-locale.

Remark 7.2.2.2. Since the existence and preservation of limits is local in B (Re-

mark 3.3.2.3) and one has 𝜋∗
𝐴IndB(Lcpt) ≃ Ind

B/𝐴
(𝜋∗

𝐴L
cpt) by Remark 5.3.1.2 and

Remark 5.1.5.2 for every 𝐴 ∈ B, we deduce that for any cover (𝜋𝐴𝑖
)∶ ⨆𝑖 𝐴𝑖 � 1

in B, a B-locale L is (locally) coherent if and only if 𝜋∗
𝐴𝑖
L is a (locally) coherent

B/𝐴𝑖
-locale for every 𝑖.

The main goal of this section is to show:
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Proposition 7.2.2.3. If L is a locally coherent B-locale, then Sh
B
(L) is compactly

generated. If L is moreover coherent, then Sh
B
(L) is a compact B-topos.

Before we prove Proposition 7.2.2.3, let us record the following important

consequence of this result:

Corollary 7.2.2.4. If L is locally stably compact, then Sh
B
(L) is compactly assem-

bled. If L is even stably compact, then Sh
B
(L) is a compact B-topos.

Proof. Choose a locally coherentB-locale L′ such that L is a retract of L′ in LocLB.

Applying the functor Sh
B
(−), we thus obtain that Sh

B
(L) is a retract of Sh

B
(L′)

in TopL
B
. By Proposition 7.2.2.3, the latter is compactly generated, hence Sh

B
(L)

is compactly assembled. If L is even stably compact, we may choose L′ to be

coherent. Then Proposition 7.2.2.3 implies that Sh
B
(L′) is compact. Now as

Sh
B
(L) is a retract of Sh

B
(L′) by algebraic morphisms, we deduce that ΓSh

B
(L)

is a retract in Fun
B
(Sh

B
(L),Grpd

B
) of a Filt-cocontinuous functor, which by

Lemma 5.1.5.7 implies that ΓSh
B
(L) is Filt-cocontinuous as well. Hence Sh

B
(L) is

compact.

We now turn to the proof of Proposition 7.2.2.3. We will need the notion of a

finitary sheaf :

Definition 7.2.2.5. Let P be a B-poset with finite colimits and binary products.

A presheaf 𝐹∶ Pop → Grpd
B

is said to be a finitary sheaf if

1. 𝐹(∅P) ≃ 1Grpd
B
;

2. for every two objects 𝑈 , 𝑉∶ 𝐴 ⇉ P in arbitrary context 𝐴 ∈ B, the commu-

tative square
𝐹(𝑈 ∨ 𝑉 ) 𝐹(𝑉 )

𝐹(𝑈 ) 𝐹(𝑈 ∧ 𝑉 )

is a pullback.

We let Shfin
B

(P) be the full subcategory of PSh
B
(P) that is spanned by those

presheaves 𝜋∗
𝐴P

op → Grpd
B/𝐴

(in arbitrary context 𝐴 ∈ B) which are finitary

sheaves on 𝜋∗
𝐴P.
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Remark 7.2.2.6. As preservation of (co)limits is a local property (Remark 3.3.2.3),

we deduce that for every cover ⨆𝑖 𝐴𝑖 � 1 in B a presheaf 𝐹∶ Pop → Grpd
B

is a finitary sheaf if and only if the presheaf 𝜋∗
𝐴𝑖
(𝐹 ) is a finitary sheaf on 𝜋∗

𝐴P.

In particular, an object 𝐴 → PSh
B
(P) is contained in Shfin

B
(P) if and only if it

transposes to a finitary sheaf on 𝜋∗
𝐴P, and we obtain a canonical equivalence of

B-categories 𝜋∗
𝐴Sh

fin
B

(P) ≃ Shfin
B/𝐴

(𝜋∗
𝐴P) for every 𝐴 ∈ B.

Recall from Section 5.4.5 that ifC is a Filt-cocompleteB-category, we denote by

ShFiltGrpd
B
(C) the full subcategory of PSh

B
(C) that is spanned by the Filt-sheaves,

i.e. by those functors 𝜋∗
𝐴C

op → Grpd
B/𝐴

(in arbitrary context 𝐴 ∈ B) whose

opposite is Filt-cocontinuous. We now obtain the following characterisation of

sheaves on a B-locale:

Proposition 7.2.2.7. Let L be a B-locale. Then Sh
B
(L) ≃ Shfin

B
(L) ∩ ShFiltGrpd

B
(L)

as full subcategories in PSh
B
(L).

Before proving Proposition 7.2.2.7, we need the following small lemma:

Lemma 7.2.2.8. The inclusion SubB ↪→ Grpd
B
preserves filtered colimits

Proof. Using Remark 6.3.2.2 and Example 6.3.2.4, it suffices to show that for every

filtered B-category I, the functor colimI ∶ Fun
B
(I,Grpd

B
) → Grpd

B
restricts to

subterminal objects. By Remark 6.3.2.8, this is an immediate consequence of

colimI being left exact.

Proof. By combining Remark 7.2.2.6, Remark 6.3.4.10 and Remark 5.4.5.2, we need

to show that for every 𝐴 ∈ B, a presheaf 𝐹∶ 𝜋∗
𝐴L

op → Grpd
B/𝐴

is a sheaf if and

only if

1. 𝐹op ∶ 𝜋∗
𝐴L → Grpdop

B/𝐴
is 𝜋∗

𝐴 Filt-cocontinuous;

2. 𝐹(∅𝜋∗
𝐴L

) ≃ 1Grpd
B/𝐴

;

3. for every two objects 𝑈 , 𝑉∶ 𝐵 ⇉ L in arbitrary context 𝐵 ∈ B/𝐴, the

commutative square

𝐹(𝑈 ∨ 𝑉 ) 𝐹(𝑉 )

𝐹(𝑈 ) 𝐹(𝑈 ∧ 𝑉 )
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is a pullback.

By replacing B with B/𝐴, we may assume that 𝐴 ≃ 1. Now suppose first that 𝐹
is a sheaf. To show that (1) is satisfied, we need to verify that for every diagram

𝑑∶ I → 𝜋∗
𝐴L where I is a filtered B/𝐴-category and 𝐴 ∈ B is arbitrarily chosen,

the natural map

(𝜋∗
𝐴𝐹)(colim 𝑑) → lim(𝜋∗

𝐴𝐹)𝑑

is an equivalence. By replacing B with B/𝐴, we may again assume without loss

of generality that 𝐴 ≃ 1. As I is filtered, we deduce from Lemma 7.2.2.8 that

colim ℎL𝑑 is subterminal. Now by Proposition 6.3.2.10, we may replace I by I≃ and

can thus assume that I is a B-groupoid. Therefore, the sheaf condition implies

that we obtain an equivalence

𝐹(colim 𝑑) ≃ mapPSh
B
(L)(colim ℎL𝑑, 𝐹 ) ≃ lim 𝐹𝑑.

This shows that 𝐹 is a Filt-sheaf. Condition (2) follows from the observation that

as ∅L is the colimit of the unique diagram ∅ → L, we obtain an equivalence

𝐹(∅L) ≃ mapPSh
B
(L)(∅PSh

B
(L), 𝐹 ) ≃ 1Grpd

B

Lastly, to show that condition (3) is met, we may again replace B with B/𝐵 and

can therefore assume that 𝐵 ≃ 1. Now as 𝑈 ∨ 𝑉 is the coproduct of 𝑈 and 𝑉 in L,

the claim follows from the fact that the pushout ℎL(𝑈 ) ⊔ℎL(𝑈 ∧𝑉 ) ℎL(𝑉 ) in PSh
B
(L)

computes the coproduct of ℎL(𝑈 ) and ℎL(𝑉 ) in Fun
B
(Lop, SubB).

Conversely, suppose that 𝐹 satisfies the three conditions. To show that 𝐹 is

a sheaf, we need to verify that for every covering 𝑑∶ G → 𝜋∗
𝐴L of an object

𝑈∶ 𝐴 → L, the functor mapPSh
B
(L)(−, 𝐹 ) carries the induced covering sieve

𝑆𝑑 ↪→ ℎ(𝑈 ) to an equivalence. By replacing B with B/𝐴, we may again assume

that 𝐴 ≃ 1. First, let us show the claim in the case where G is finite, i.e. a locally

constant sheaf of finite ∞-groupoids (see Proposition 5.2.3.4). Upon passing to

a suitable cover, we can assume that G is (the constant B-category associated

with) a finite ∞-groupoid. Since L is a B-poset, we can even assume that G is a

finite set. By induction, it suffices to cover the cases G = ∅ and G = 1 ⊔ 1. By the

above argumentation, these two cases follow immediately from conditions (2)

and (3).
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For the general case, let FinB be the internal class of finite B-categories. Since

FinB being a sound and regular doctrine (Proposition 5.2.3.7) implies that it has

the decomposition property (see Section 5.1.4), we may find a filtered B-category

I and a diagram 𝑘∶ I → FinB ↪→ CatB such that G ≃ colim 𝑘. Note that since

G is a B-groupoid and since the groupoidification of a finite B-category is a

finite B-groupoid, postcomposing 𝑘 with the groupoidification functor yields

a diagram 𝑘′ ∶ I → Grpd
B
∩ FinB ↪→ CatB that also has colimit G. Therefore,

we deduce from Proposition 3.5.4.10 and by making use of the subterminal trun-

cation functor (−)Sub ∶ PSh
B
(L) → Fun

B
(Lop, SubB) that there is a diagram

𝑑′ ∶ I → Fun
B
(Lop, SubB) such that (a) we have colim 𝑑′ ≃ colim ℎL𝑑 and such

that (b) for every object 𝑖∶ 𝐴 → I in arbitrary context 𝐴 ∈ B there is a finiteB/𝐴-

groupoid H𝑖 together with a diagram 𝑑𝑖 ∶ H𝑖 → 𝜋∗
𝐴L such that 𝑑′(𝑖) ≃ colim ℎL𝑑𝑖.

From (a) we deduce that if 𝑙 ∶ Fun
B
(Lop, SubB) → L is the left adjoint of the

Yoneda embedding, the unit of the adjunction 𝑙 ⊣ ℎL determines morphisms

colim ℎL𝑑 ≃ colim 𝑑′
𝛼
−→ colim ℎL𝑙𝑑′

𝛽
−→ ℎL(colim 𝑙𝑑′) ≃ ℎL(colim 𝑑)

in Fun
B
(Lop, SubB). As I is filtered, Lemma 7.2.2.8 implies that the colimit in

the middle is already the colimit in PSh
B
(L). Thus condition (1) implies that

mapPSh
B
(L)(−, 𝐹 ) carries 𝛽 to an equivalence. To finish the proof, it is therefore

enough to show that this functor also sends 𝛼 to an equivalence. For this, we only

need to show that for every object 𝑖∶ 𝐴 → I in arbitrary context 𝐴 ∈ B the map

𝑑′(𝑖) → ℎL𝑙𝑑′(𝑖) is sent to an equivalence. By (b), we find that 𝑑′(𝑖) is of the form

colim ℎL𝑑𝑖 for some diagram 𝑑𝑖 ∶ H𝑖 → 𝜋∗
𝐴L where H𝑖 is a finite B/𝐴-groupoid.

Since this case has already been shown above, the result follows.

Lemma 7.2.2.9. Let L be a locally coherent B-locale and let 𝐹∶ Lop → Grpd
B
be

a Filt-sheaf on L. Then 𝐹 is a sheaf on L if and only if 𝐹 |Lcpt is a finitary sheaf on
Lcpt.

Proof. By Proposition 7.2.2.7, we need to show that 𝐹 is a finitary sheaf on L if

and only if 𝐹 |Lcpt is a finitary sheaf on Lcpt. As L is locally coherent and therefore

Lcpt is closed under binary products in L, it is clear that the condition is necessary.

Moreover, as Lcpt contains the initial object, it is clear that 𝐹 satisfies condition (1)

of the definition of a finitary sheaf if and only if 𝐹 |Lcpt does. Therefore, we
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only need to show that if 𝐹 |Lcpt is a finitary sheaf, then for every pair of objects

𝑈 , 𝑉∶ 𝐴 ⇉ L, the map 𝐹(𝑈 ∨ 𝑉 ) → 𝐹(𝑈 ) ×𝐹(𝑈 ∧𝑉 ) 𝐹(𝑉 ) is an equivalence. Using

Remark 7.2.2.6 and Remark 5.1.5.2, we may replaceBwithB/𝐴 and can therefore

assume that 𝐴 ≃ 1. Note that it follows from the bifunctoriality of −∧− that for a

fixed 𝑈, both the map 𝑈 ∧𝑉 → 𝑉 and the map 𝑈 ∧𝑉 → 𝑈 are natural in 𝑉, i.e. define
morphisms in Fun

B
(L, L). Therefore, we obtain a cospan diag(𝑈 ) ← 𝑈 ∧ − → idL

in Fun
B
(L, L) (where diag∶ L → Fun

B
(L, L) is the diagonal map). By taking the

colimit of this diagram, we end up with a commutative square

𝑈 ∧ − idL

diag(𝑈 ) 𝑈 ∨ −

in Fun
B
(L, L). Since colimits are universal in L, the functor 𝑈 ∧ − is cocontin-

uous. Furthermore, the functor diag(𝑈 ) is Filt-cocontinuous: in fact, as it can

be identified with 𝑈 ∧ diag(1L)(−), it suffices to see that diag(1L) ≃ 1Fun
B
(L,L)

is Filt-cocontinuous. As in the proof of Lemma 5.1.5.3, this is a consequence

of the fact that filtered colimits in L are left exact, which is easily shown using

Lemma 7.2.2.8 and the fact that L is a left exact localisation of Fun
B
(Lop, SubB),

see Proposition 6.3.3.7. Thus, as Filt-cocontinuous functors are clearly closed

under pushouts in Fun
B
(L, L), the above commutative diagram is a square of

Filt-cocontinuous functors. By again using that filtered colimits in L are left exact,

this observation now implies that by postcomposition with (the opposite of) 𝐹,
we end up with a morphism 𝐹(𝑈 ∨ −) → 𝐹(𝑈 ) ×𝐹(𝑈 ∧−) 𝐹(−) of Filt-cocontinuous
functors L → Grpdop

B
. Since L ≃ Ind

B
(Lcpt), the universal property of Ind

B
(Lcpt)

thus implies that this morphism is an equivalence already when its restriction to

Lcpt is one. Together with our assumption on 𝐹, it follows that if 𝑈 is compact,

then the map 𝐹(𝑈 ∨ 𝑉 ) → 𝐹(𝑈 ) ×𝐹(𝑈 ∧𝑉 ) 𝐹(𝑉 ) is an equivalence for all 𝑉∶ 1 → L.

By symmetry and the fact that the context of 𝑈 and 𝑉 has been arbitrarily chosen,

this now implies that the morphism 𝐹(− ∨ 𝑉 ) → 𝐹(−) ×𝐹(−∧𝑉 ) 𝐹(𝑉 ) is an equiva-

lence when restricted to Lcpt and must therefore be an equivalence on all of L.

Hence the claim follows.

Proposition 7.2.2.10. For any locally coherent B-locale L, restriction along the
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7. Smooth and proper geometric morphisms

inclusion Lcpt ↪→ L induces an equivalence

Sh
B
(L) ≃ Shfin

B
(Lcpt).

Proof. By Proposition 7.2.2.7, we have an identification

Sh
B
(L) ≃ Shfin

B
(L) ∩ ShFiltGrpd

B
(L)

of full subcategories of PSh
B
(L). In particular, we obtain an inclusion

Sh
B
(L) ↪→ ShFiltGrpd

B
(L) ≃ PSh

B
(Lcpt)

(where we use that we have L ≃ Ind
B
(Lcpt) and the universal property of

Ind
B
(Lcpt)). Using Remark 6.3.4.10 and Lemma 7.2.2.9, we now find that an object

𝐴 → PSh
B
(Lcpt) is contained in Sh

B
(L) if and only if its transpose restricts to

a finitary sheaf on 𝜋∗
𝐴L

cpt. In other words, we obtain the desired equivalence

Sh
B
(L) ≃ Shfin

B
(Lcpt).

Lemma 7.2.2.11. Let P be a poset with finite colimits and binary products. Then
Shfin

B
(P) is closed under Filt-colimits in PSh

B
(P).

Proof. We need to show that for every diagram 𝑑∶ I → 𝜋∗
𝐴Sh

fin
B

(P) in context

𝐴 ∈ B, where I is a filteredB/𝐴-category, the colimit of 𝑑 is contained in Shfin
B

(P).
Using Remark 7.2.2.6, we may replace B with B/𝐴 and can therefore assume that

𝐴 ≃ 1. We may compute the colimit of 𝑑 as the composition

Pop
𝑑′
−−→ Fun

B
(I,Grpd

B
)

colimI
−−−−−→ Grpd

B

where 𝑑′ is the transpose of 𝑑∶ I → PSh
B
(P). As I is filtered, the functor on

the right preserves finite limits. Moreover, the assumption that 𝑑 takes values in

Shfin
B

(P) together with Lemma 5.5.1.3 implies that 𝑑′ is a Fun
B
(I,Grpd

B
)-valued

finitary sheaf on P. Hence the claim follows.

Proof of Proposition 7.2.2.3. Suppose first that L is locally coherent. Then Propo-

sition 7.2.2.10 implies that restriction along Lcpt ↪→ L gives rise to an equivalence

Sh
B
(L) ≃ Shfin

B
(Lcpt). Together with Lemma 7.2.2.11, this implies that the inclu-

sion Sh
B
(L) ↪→ PSh

B
(Lcpt) is Filt-cocontinuous. Hence, its left adjoint exhibits
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7.2. Compact B-topoi

Sh
B
(L) as a FinB-accessible Bousfield localisation of PSh

B
(Lcpt), so that Proposi-

tion 5.3.3.6 and Corollary 5.3.3.3 together imply that Sh
B
(L) is compactly gener-

ated. Now if L is even coherent, the B-category Lcpt has a final object. Therefore,

PSh
B
(Lcpt) is a compact B-topos. As the inclusion Sh

B
(L) ↪→ PSh

B
(Lcpt) is

Filt-cocontinuous, this immediately implies that Sh
B
(L) is compact as well.

7.2.3. The toposic cone

Every topological space 𝑋 admits a closed immersion into a contractible and

locally contractible space 𝑌, for example by setting 𝑌 = 𝐶(𝑋), where 𝐶(𝑋) is the
cone of 𝑋. In this section, we discuss a B-toposic analogue of this observation,

which will give rise to a factorisation of every geometric morphism into a compact

and a locally contractible one. To that end, if X is aB-topos, recall that the comma
B-category X ↓X Grpd

B
is defined via the pullback square

X ↓X Grpd
B

Fun
B
(Δ1,X)

Grpd
B

X

𝑒∗

𝑑0

constX

𝑗∗

in Cat(B), where constX denotes the unique algebraic morphism Grpd
B

→ X,

i.e. the left adjoint of ΓX. By Proposition 6.2.6.1, this is a pullback diagram in

TopL(B), so that X ↓X Grpd
B

is aB-topos and 𝑗∗ and 𝑒∗ are algebraic morphisms.

Definition 7.2.3.1. For any B-topos X, we refer to the B-topos X ↓X Grpd
B

as

its B-toposic right cone and denote it by X▷.

If X is a B-topos, let 𝑖∗ ∶ X▷ → X be the algebraic morphism that is obtained

by composing the functor 𝑑1 ∶ Fun
B
(Δ1,X) → X with the upper horizontal map

in the defining pullback square of X▷.

Remark 7.2.3.2. Suppose that X is a B-topos and let 𝑓∗ ∶ X → B be the asso-

ciated geometric morphism of ∞-topoi. Then the ∞-topos Cone(𝑓 ) = ΓB(X▷)
recovers the comma ∞-category X ↓X B and is therefore the recollement of B
and X along 𝑓 ∗ in the sense of [50, § A.8]. In particular, 𝑗∗ ∶ B → Cone(𝑓 ) is an
open and 𝑖∗ ∶ X → Cone(𝑓 ) a closed immersion of ∞-topoi. In particular, the

latter is a compact geometric morphism (by Example 7.2.1.3).
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7. Smooth and proper geometric morphisms

Remark 7.2.3.3. In the situation of Remark 7.2.3.2, the ∞-topos Cone(𝑓 ) sits
inside a pushout square

X B

X ⊗ Δ1 Cone(𝑓 )

𝑓∗

id⊗𝑠0

in TopR∞, where X ⊗ Δ1 denotes the tensoring in TopR∞ over Cat∞. Therefore

Cone(𝑓 ) is to be thought of as the mapping cone of 𝑓∗.

Recall from Section 7.1 that a B-topos X is said to be locally contractible if the

algebraic morphism constX ∶ Grpd
B

→ X has a left adjoint 𝜋X. The following

proposition expresses the fact that the B-toposic right cone X▷ is contractible

and locally contractible (in the B-toposic sense):

Proposition 7.2.3.4. For every B-topos X, the B-topos X▷ is locally contractible,
and the additional left adjoint 𝜋X of constX▷ is equivalent to 𝑗∗. In particular, 𝜋X
preserves finite limits.

Proof. Since 𝑠0 ∶ X → Fun
B
(Δ1,X) is right adjoint to 𝑑0 (for example by using

Proposition 3.1.1.14) and by the dual of Lemma 3.4.4.2, the functor 𝑗∗ is the pullback

of 𝑠0 along 𝜖∗. Since 𝑠0 is cocontinuous and as PrL(B) ↪→ Cat(B) preserves limits,

this implies that 𝑗∗ must be cocontinuous as well and therefore equivalent to

constX▷ (by the universal property of Grpd
B
). As this shows that 𝑗∗ is left adjoint

to constX▷ , the claim follows.

Corollary 7.2.3.5. Every geometric morphism 𝑓∗ ∶ X → B can be factored into
a closed immersion followed by a contractible and locally contractible geometric
morphism.

Proof. By Remark 7.2.3.2, the geometric morphism 𝑖∗ ∶ X → Cone(𝑓 ) is a closed

immersion, and it follows from Proposition 7.2.3.4 that the geometric morphism

ℎ∗ ∶ Cone(𝑓 ) → B is contractible and locally contractible.

Remark 7.2.3.6. For 1-topoi, the factorisation in Corollary 7.2.3.5 appears in the

proof of [39, Theorem C.3.3.14].
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7.2. Compact B-topoi

7.2.4. Compact geometric morphisms and localisations

The goal of this section is to establish that compact geometric morphisms com-

mute with localisations of subtopoi:

Proposition 7.2.4.1. Consider a pullback square in TopR∞

Z′ X

Z B

𝑗′∗

𝑝∗𝑝′
∗

𝑗∗

where 𝑗∗ is fully faithful and 𝑝∗ is compact. Then the mate natural transformation
𝑝′
∗(𝑗′)∗ → 𝑗∗𝑝∗ is an equivalence.

Intuitively, Proposition 7.2.4.1 should hold because the localisation functor

(𝑗′)∗ ∶ X → Z′ is given by an (internally) filtered colimit. Indeed, we may pick

a bounded local class 𝑆′ of morphisms in X that is closed under finite limits in

Fun(Δ1,X) such that (𝑗′)∗ exhibits Z′ as the Bousfield localisation of X at 𝑆′ (see
Proposition 6.2.10.14). We denote by 𝜄′ ∶ Grpd𝑆′ ↪→ Grpd

X
the associated full

subcategory. Then 𝑆′ being bounded implies that Grpd𝑆′ is a small X-category,

and 𝑆′ being closed under finite limits in Fun(Δ1,X) implies thatGrpd𝑆′ has finite

limits and is therefore cofiltered by Proposition 5.2.3.7 (i.e. its opposite Grpdop𝑆′
is filtered). Now by the formula in Proposition 6.2.10.14, we find that for every

𝑋 ∈ X we obtain a canonical equivalence

𝑗′∗(𝑗′)∗(𝑋) ≃ 𝑋 sh
𝜄′ = colim

𝜏<𝜅
𝑇 𝜄′
𝜏 𝑋

where 𝜅 is a suitably large regular cardinal and 𝑇 𝜄′
𝜏 𝑋 is defined recursively by

the condition that we have 𝑇 𝜄′
𝜏+1𝑋 = colimGrpdop𝑆′

mapGrpd
X

(𝜄′(−), 𝑇 𝜄′
𝜏 𝑋) and that

𝑇 𝜄′
𝜏 𝑋 = colim𝜏 ′<𝜏 𝑇 𝜄′

𝜏 ′𝑋 when 𝜏 is a limit ordinal. In particular, the endofunctor

𝑗′∗(𝑗′)∗ is given by an (iterated) filtered colimit. So intuitively, 𝑝∗ being compact

should imply that this functor carries 𝑗′∗(𝑗′)∗(𝑋) to 𝑗∗𝑗∗𝑝∗(𝑋), which precisely

means that the mate transformation 𝑝′
∗(𝑗′)∗(𝑋) → 𝑗∗𝑝∗(𝑋) is an equivalence.

However, we have to be a bit careful at this point: the above formula for 𝑗′∗(𝑗′)∗

exhibits 𝑗′∗(𝑗′)∗(𝑋) as a filtered colimit internal to X, whereas 𝑝∗ being compact
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7. Smooth and proper geometric morphisms

only implies that this functor commutes with filtered colimits internal toB. Hence,

the main challenge is to rewrite the above formula in terms of a filtered colimit

internal to B.

Observation 7.2.4.2. Let 𝑓∗ ∶ X → B be a geometric morphism, I a B-category

and C an X-category. On account of the commutative diagram

𝑓∗C Fun
B
(I, 𝑓∗C)

𝑓∗FunX(𝑓
∗I,C),

diag
I

𝑓∗(diag𝑓 ∗I)
≃

the B-category 𝑓∗C admits I-indexed colimits if and only if the X-category C

admits 𝑓 ∗I-indexed colimits, and we may identify colimI ∶ Fun
B
(I, 𝑓∗C) → 𝑓∗C

with the composition

Fun
B
(I, 𝑓∗C) ≃ 𝑓∗FunX(𝑓

∗I,C)
𝑓∗(colim𝑓 ∗I)
−−−−−−−−−→ 𝑓∗C.

By passing to global sections, this implies that for every diagram 𝑑∶ I → 𝑓∗Cwith

transpose ̄𝑑 ∶ 𝑓 ∗I → C, we have a canonical equivalence colimB
I 𝑑

≃
−→ colimX

𝑓 ∗I
̄𝑑

in the ∞-category ΓX(C) = ΓB(𝑓∗C) (where the superscripts emphasise internal

to which ∞-topos the colimits are taken). We will repeatedly use this observation

throughout this section.

Suppose now that 𝑆 is a bounded local class of morphisms in B that is closed

under finite limits in Fun(Δ1,B), and let 𝜄 ∶ Grpd𝑆 ↪→ Grpd
B

be the associated

(cofiltered) full subcategory. If 𝑓∗ ∶ X → B is a geometric morphism, we let

𝜄′ ∶ 𝑓 ∗(Grpd𝑆) → Grpd
X

be the functor of X-categories that arises from trans-

posing const𝑓∗(GrpdX) 𝜄 ∶ Grpd𝑆 → 𝑓∗(GrpdX) across the adjunction 𝑓 ∗ ⊣ 𝑓∗. By
Example 6.2.10.9, this is a cofiltered X-category, and the colimit of 𝜄′ is the final

object in Grpd
X
. Therefore, we are in the situation of Definition 6.2.10.5 and thus

obtain an endofunctor (−)sh𝜄′ ∶ Grpd
X

→ Grpd
X

via (−)sh𝜄′ = colim𝜏<𝜅 𝑇 𝜄′
𝜏 , where

𝜅 is a suitableX-regular cardinal and where 𝑇 𝜄′
• ∶ 𝜅 → FunX(GrpdX,GrpdX) is de-

fined via transfinite induction by setting 𝑇 𝜄′
0 = id, by defining the map 𝑇 𝜄′

𝜏 → 𝑇 𝜄′
𝜏+1

to be the morphism 𝜙∶ 𝑇 𝜄′
𝜏 → (𝑇𝜏)+𝜄′ = colim𝑓 ∗(Grpd𝑆)

op mapGrpd
X

(𝜄′(−), −) from

Remark 6.2.10.4 and finally by setting 𝑇 𝜄′
𝜏 = colim𝜏 ′<𝜏 𝑇 𝜄′

𝜏 ′ whenever 𝜏 is a limit
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7.2. Compact B-topoi

ordinal. We will slightly abuse notation and also denote by (−)sh𝜄′ the underlying

endofunctor on X that is obtained by passing to global sections. It will always be

clear from the context which variant we refer to.

Proposition 7.2.4.3. Consider a pullback square Q in TopR∞

Z′ X

Z B

𝑗′∗

𝑓∗𝑔∗

𝑗∗

where 𝑗∗ (and therefore also 𝑗′∗) is fully faithful. Let 𝑆 be a bounded local class of
morphisms, closed under finite limits in Fun(Δ1,B), such that 𝑗∗ is the Bousfield
localisation at 𝑆 (such a local class always exists by Proposition 6.2.10.14), and
let 𝜄 ∶ Grpd𝑆 ↪→ Grpd

B
be the associated full subcategory. Then we obtain an

equivalence 𝑗′∗(𝑗′)∗ ≃ (−)sh𝜄′ , where 𝜄′ ∶ 𝑓 ∗(Grpd𝑆) → Grpd
X
is the transpose of

const𝑓∗(GrpdX) 𝜄.

Remark 7.2.4.4. The above proposition can be thought of as an ∞-toposic

version of [39, Theorem C.3.3.14].

We first prove this proposition in a special case:

Lemma 7.2.4.5. Consider a pullback square Q in TopR∞

Z′ X

Z B

𝑗′∗

ℎ∗ℎ′∗

𝑗∗

where 𝑗∗ is fully faithful and ℎ∗ is locally contractible such that the additional
left adjoint ℎ! of ℎ∗ preserves finite limits. Let 𝑆 and 𝜄 be as in Proposition 7.2.4.3.
Then there is an equivalence 𝑗′∗(𝑗′)∗ ≃ (−)sh𝜄′ , where 𝜄

′ ∶ ℎ∗(Grpd𝑆) → Grpd
X
is the

transpose of constℎ∗(GrpdX) 𝜄.

Proof. By Proposition 7.1.1.5, the functor 𝜄′ is fully faithful, and since ℎ∗ is locally

contractible the X-category ℎ∗(Grpd𝑆) is given by the sheaf Grpd𝑆(ℎ!(−)). It
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7. Smooth and proper geometric morphisms

follows that a map 𝑠∶ 𝑋 → 𝑌 in X defines an object of ℎ∗(Grpd𝑆)(𝑌 ) if and only

if ℎ!(𝑠) ∈ 𝑆 and the square

𝑋 ℎ∗ℎ!𝑋

𝑌 ℎ∗ℎ!𝑌

is a pullback. Let 𝑊 be the class of maps in X that satisfies these two conditions.

Then, since ℎ! is cocontinuous and preserves finite limits, it easily follows that

𝑊 is local. Hence we find ℎ∗(Grpd𝑆) = Grpd𝑊 as full subcategories of Grpd
X
.

Moreover, by the explicit description of 𝑊, it is clear that 𝑊 is closed under

finite limits in Fun(Δ1,X). Thus, by appealing to Proposition 6.2.10.14, we only

need to verify that Z′ is the Bousfield localisation of X at 𝑊. We know from

Remark 6.2.10.15 that Z′ ↪→ X is obtained as the Bousfield localisation of X at the

smallest local class ℎ∗𝑆 that contains the image ℎ∗𝑆 of 𝑆 along ℎ∗. Since we clearly

have ℎ∗𝑆 ⊂ 𝑊, this immediately implies 𝑊 = 𝑓 ∗𝑆, hence the claim follows.

Lemma 7.2.4.6. Let 𝑝∗ ∶ X → B be a compact geometric morphism and let
𝜄 ∶ I → Grpd

B
be a functor where I is cofiltered and where colim 𝜄 is the final object.

Let 𝜄′ ∶ 𝑝∗I → Grpd
X
be the transpose of const𝑝∗(GrpdX) 𝜄 ∶ I → 𝑝∗(GrpdX). Then

there is an equivalence 𝑝∗(−)sh𝜄′ ≃ (−)sh𝜄 𝑝∗.

Proof. Since (−)sh𝜄′ and (−)sh𝜄 are obtained as filtered colimits of iterations of (−)+𝜄′
and (−)+𝜄 , respectively, and as 𝑝∗ commutes with filtered colimits, it suffices to

produce an equivalence 𝑝∗(−)+𝜄′ ≃ (−)+𝜄 𝑝∗. Now for every 𝑋 ∈ X, we have a

natural chain of equivalences

(𝑝∗𝑋)+𝜄 = colimB
Iop mapGrpd

B

(𝜄(−), Γ𝑝∗(GrpdX)𝑋)

≃ colimB
Iop map𝑝∗(GrpdX)(const𝑝∗(GrpdX) 𝜄(−), 𝑋)

≃ colimB
Iop Γ𝑝∗(GrpdX)(HomB

𝑝∗(GrpdX)(const𝑝∗(GrpdX) 𝜄(−), 𝑋))

≃ Γ𝑝∗(GrpdX)(colim
B
Iop HomB

𝑝∗(GrpdB)(const𝑝∗(GrpdX) 𝜄(−), 𝑋))

≃ Γ𝑝∗(GrpdX)(colim
X
𝑝∗Iop map𝑝∗(GrpdX)(𝜄

′(−), 𝑋))

≃ 𝑝∗𝑋+
𝜄′
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7.2. Compact B-topoi

where the third step follows from Remark 6.2.10.13, the fourth step is a conse-

quence of the fact that Γ𝑝∗(GrpdX) preserves filtered colimits and the fifth step

follows from Observation 7.2.4.2. Hence the result follows.

Proof of Proposition 7.2.4.3. Using Proposition 7.2.3.4, we may factor the pullback

square Q into two squares

Z′ X

Z′′ Y

Z B
𝑗∗

𝑗′′∗

𝑖∗

𝑗′∗

ℎ∗
⌟

⌟

where ℎ∗ is as in Lemma 7.2.4.5 and 𝑖∗ is a closed immersion (and therefore

compact, see Example 7.2.1.3). By Lemma 7.2.4.5, we have an equivalence

𝑗′′∗ (𝑗′′)∗ ≃ (−)sh𝜄′′ , where 𝜄′′ ∶ ℎ∗(Grpd𝑆) → Grpd
Y
is obtained as the transpose of

constℎ∗(GrpdY)
𝜄. Furthermore, since 𝑖∗ is a closed immersion and therefore proper

(by Example 7.0.0.2), the upper square is horizontally left adjointable. Therefore,

we have an equivalence 𝑗′∗(𝑗′)∗ ≃ 𝑖∗𝑗′′∗ (𝑗′′)∗𝑖∗ and therefore 𝑗′∗(𝑗′)∗ ≃ 𝑖∗(−)sh𝜄′′ 𝑖∗.
Now as 𝑖∗ is compact, we may apply Lemma 7.2.4.6 to deduce (−)sh𝜄′′ 𝑖∗ ≃ 𝑖∗(−)sh𝜄′ ,

which yields the claim.

We are finally ready to prove Proposition 7.2.4.1:

Proof of Proposition 7.2.4.1. It suffices to construct a natural equivalence

𝑝∗𝑗′∗(𝑗′)∗ ≃ 𝑗∗𝑗∗𝑝∗.

Pick a local class 𝑆 in B, as in Proposition 7.2.4.3, and let 𝜄 ∶ Grpd𝑆 ↪→ Grpd
B

be the associated full subcategory. Furthermore, we let 𝜄′ ∶ 𝑝∗(Grpd𝑆) → Grpd
X

be the transpose of const𝑝∗(GrpdX) 𝜄 ∶ Grpd𝑆 → 𝑝∗(GrpdX). We then have equiv-

alences 𝑗∗𝑗∗ ≃ (−)sh𝜄 (by Proposition 6.2.10.14) and 𝑗′∗(𝑗′)∗ ≃ (−)sh𝜄′ (by Proposi-

tion 7.2.4.3). Hence the claim follows from Lemma 7.2.4.6.

7.2.5. Classification of proper geometric morphism

The goal of this section is to put together the preparations made in Section 7.2.3

and Section 7.2.4 in order to show:
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7. Smooth and proper geometric morphisms

Theorem 7.2.5.1. A geometric morphism 𝑝∗ ∶ X → B is proper if and only if it is
compact.

One direction of Theorem 7.2.5.1 is (almost) trivial:

Lemma 7.2.5.2. Let 𝑝∗ ∶ X → B be a proper geometric morphism. Then 𝑝∗ is
compact.

Proof. Let us denote by X = 𝑝∗(GrpdX) theB-topos that corresponds to 𝑝∗. Note

that if 𝐴 ∈ B is an arbitrary object, the induced morphism X/𝑝∗𝐴 → B/𝐴 is

proper as well. As this is the geometric morphism which corresponds to the

B/𝐴-topos 𝜋∗
𝐴X, we may (after replacing B with B/𝐴) reduce to the case where

we have to show that if I is a filtered B-category, then ΓX preserves I-filtered

colimits. We now obtain a commutative diagram

X Fun
B
(I,X) X

Grpd
B

Fun
B
(I,Grpd

B
) Grpd

B

ΓX

lim

(ΓX)∗

lim

diag

ΓX

diag

in TopR(B) in which both squares are pullbacks (see Example 6.2.7.5). As for

every 𝐴 ∈ B the geometric morphism ΓX(𝐴)∶ X/𝑝∗𝐴 → B/𝐴 is proper, it follows

that the mate of the left square is an equivalence. This precisely means that ΓX
commutes with I-indexed colimits, as desired.

The converse direction of Theorem 7.2.5.1 takes far more effort. We begin with

the following small but useful observation:

Lemma 7.2.5.3. Let
Q P

Y X

𝑔∗

𝑞∗ 𝑝∗

𝑓∗

be a commutative square in TopR(B). Then the mate 𝜙∶ 𝑓 ∗𝑝∗ → 𝑔∗𝑞∗ is an
equivalence if and only if it induces an equivalence on global sections.
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Proof. Since the condition is clearly necessary, it suffices to show that it is suffi-

cient too. To that end, we need to show that for any object 𝐴 ∈ B, the horizontal

mate 𝜙(𝐴) of the back square in the commutative diagram

Q(𝐴) P(𝐴)

Q(1) P(1)

Y(𝐴) X(𝐴)

Y(1) X(1)

𝑔∗(𝐴)

𝑞∗(𝐴)

(𝜋𝐴)∗
(𝜋𝐴)∗

𝑝∗(𝐴)
𝑔∗(1)

𝑞∗(1) 𝑓∗(𝐴)(𝜋𝐴)∗
(𝜋𝐴)∗

𝑓∗(1)

𝑝∗(1)

is an equivalence, given that the mate 𝜙(1) of the front square is one. But since

the horizontal mate of both the left and the right square is an equivalence, it

follows that 𝜙(𝐴) is an equivalence when evaluated at any object in the image

of 𝜋∗
𝐴. Since X(𝐴) is étale over X(1), every object in X(𝐴) is a pullback of objects

that are contained in the image of 𝜋∗
𝐴. Therefore, the claim follows from the fact

that 𝜙(𝐴) is a morphism of left exact functors.

In order to prove Theorem 7.2.5.1, we in particular need to show that compact

morphisms are stable under pullback. In fact it will suffice to prove this in a

special case (see Corollary 7.2.5.6), which we will turn to now.

Lemma 7.2.5.4. Let 𝑓∗ ∶ X → B be a geometric morphism of ∞-topoi. Suppose
we are given a commutative square

W X

Z B

𝑓∗

𝑝∗

𝑔∗

𝑞∗

whose horizontal mate is an equivalence and such that 𝑔∗ is compact. Then, for
every filtered B-category I, the functor 𝑝∗ ∶ B → Z carries the horizontal mate of
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7. Smooth and proper geometric morphisms

the commutative square

X FunB(I, 𝑓∗(GrpdX))

B FunB(I,Grpd
B
)

diag

𝑓∗ (Γ𝑓∗(GrpdX))∗
diag

to an equivalence.

Proof. Note that we have a commutative diagram of ∞-topoi

FunB(I, 𝑓∗(GrpdX)) FunB(I, 𝑝∗𝑔∗(GrpdW))

X W

FunB(I,Grpd
B
) FunB(I, 𝑝∗(GrpdZ))

B Z

𝑓∗

𝑔∗

𝑝∗

(𝑝∗)∗

(𝑞∗)∗

(𝑓∗)∗

𝑞∗ (𝑔∗)∗

diag

diag diag

diag

where the horizontal mates of the front and the back square are invertible (the

latter using Lemma 7.2.5.3 and the 2-functoriality of FunB(I, −)). Furthermore,

the adjunction 𝑝∗ ⊣ 𝑝∗ allows us to identify the right square with

W FunZ(𝑝∗I, 𝑔∗(GrpdW))

Z FunZ(𝑝∗I,Grpd
Z
)

(𝑔∗)∗
diag

𝑔∗

diag

whose horizontal mate is invertible since 𝑔∗ was assumed to be compact and

𝑝∗I is filtered. Therefore, the functoriality of mates implies that the functor

𝑝∗ ∶ B → Z carries the horizontal mate of the left square to the mate of the right

square, which is an equivalence.

As a consequence of Lemma 7.2.5.4, we obtain that compactness can be checked

locally on the base in the following strong sense:
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7.2. Compact B-topoi

Proposition 7.2.5.5. Let 𝑓∗ ∶ X → B be a geometric morphism of∞-topoi. Assume
that there is a family of commutative squares

W𝑖 X

Z𝑖 B

𝑓∗
𝑝𝑖
∗

𝑔 𝑖
∗

whose mates are equivalences and in which each (𝑝𝑖)∗ is conservative and each 𝑔 𝑖
∗

is compact. Then 𝑓∗ is compact.

Proof. First, let us verify that for any filtered B-category I the mate of the com-

mutative square

𝑓∗(GrpdX) Fun
B
(I, 𝑓∗(GrpdX))

Grpd
B

Fun
B
(I,Grpd

B
)

diag

𝑓∗ (Γ𝑓∗(GrpdX))∗
diag

is an equivalence. By Lemma 7.2.5.3 it suffices to see this on global sections. Our

assumptions guarantee that we can check that the mate is an equivalence after

applying each (𝑝𝑖)∗ ∶ B → Z?𝑖. But then the claim follows from Lemma 7.2.5.4.

Now if𝐴 ∈ B and I is a filteredB/𝐴-category, we observe that the square obtained

by pulling back along (𝜋𝐴)∗ ∶ B/𝐴 → B again satisfies the assumptions of the

proposition. Thus we can replace B by B/𝐴 in the first part of the proof, and the

result follows.

Corollary 7.2.5.6. Let 𝑝∗ ∶ X → B be a compact geometric morphism and let C
be a B-category. Then the geometric morphism

(Γ𝑝∗(GrpdX))∗ ∶ FunB(C, 𝑝∗(GrpdX)) → FunB(C,Grpd
B
)

is again compact.

Proof. The core inclusion 𝜄 ∶ C≃ ↪→ C gives rise to a geometric morphism

𝜄∗ ∶ B/C≃ ≃ FunB(C≃,Grpd
B
) → FunB(C,Grpd

B
)

533



7. Smooth and proper geometric morphisms

whose left adjoint is given by restriction along 𝜄 and is therefore conservative

(which is easily seen using the straightening equivalence for left fibrations and

Proposition 2.1.1.12). Since in the commutative diagram

X/𝑝∗(C≃) FunB(C, 𝑝∗(GrpdX)) X

B/C≃ FunB(C,Grpd
B
) B

lim

𝑝∗

lim

both squares are pullbacks (the one on the right by Example 6.2.7.5), it follows

that the left vertical morphism is compact as an étale base change of a com-

pact morphism. As a consequence, the left square satisfies the assumptions of

Proposition 7.2.5.5, which immediately yields the claim.

Proof of Theorem 7.2.5.1. Suppose that 𝑝∗ ∶ X → B is a compact geometric mor-

phism. First, we show that for any pullback square

Z′ X

Z B

𝑝∗

𝑓∗

𝑔∗

𝑞∗

in TopR∞ the mate natural transformation 𝑞∗𝑔∗ → 𝑓 ∗𝑝∗ is invertible. To see this,

we factor the above square as

Z′ FunB(Cop, 𝑝∗(GrpdX)) X

Z FunB(Cop,Grpd
B
) B.

𝑝∗(𝑝∗)∗
𝑗∗

limCop𝑗′∗

𝑞∗
limCop

(using again Example 6.2.7.5). It is clear that the mate of the right square is an

equivalence, hence it suffices to show the claim for the left square. In other words,

by Corollary 7.2.5.6 we may reduce to the case where 𝑓∗ is already fully faithful,

which follows from Proposition 7.2.4.1.

To complete the proof, we now have to show that given a second pullback

W′ Z′ X

W Z B

𝑝∗

𝑓∗

𝑔∗

𝑞∗
𝑟∗

̄𝑞∗

𝑠∗
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7.2. Compact B-topoi

in TopR∞ the mate of the left square is an equivalence. For this we again use the

factorisation from above and consider the diagram

W′ Z′ FunB(Cop, 𝑝∗(GrpdX))

W Z FunB(Cop,Grpd
B
)

(𝑝∗)∗
𝑗∗

𝑗′∗

𝑞∗
𝑟∗

𝑞′∗

𝑠∗

By Corollary 7.2.5.6 the geometric morphism (𝑝∗)∗ is compact. Together with

what we have already shown so far, this implies that both the outer square and

the right square is left adjointable. As 𝑗′∗ is fully faithful it now immediately

follows that the left square is also left adjointable, as desired.

7.2.6. E-compactB-topoi

The goal of this section is to discuss a generalisation of Theorem 7.2.5.1 where

we allow coefficients in an arbitrary compactly generated ∞-category E. The

proof is essentially the same as the one of Theorem 7.2.5.1, however this level of

generality allows us to apply the result to a wider range of examples.

Definition 7.2.6.1. Let E be a presentable ∞-category. Let 𝑓∗ ∶ X → B be a

geometric morphism of ∞-topoi. We say that 𝑓∗ is E-proper if for every diagram

W′ W X

Z′ Z B

𝑓∗

𝑠∗

𝑔∗

𝑡∗

𝑠′∗

𝑡′∗

ℎ∗

in TopR∞ in which both squares are pullbacks, the square

W′ ⊗ E W ⊗ E

Z′ ⊗ E Z ⊗ E

𝑔∗⊗E

𝑝′
∗⊗E 𝑓∗⊗E

𝑞∗⊗E

is horizontally left adjointable. Here − ⊗ −∶ PrR∞ × PrR∞ → PrR∞ denotes Lurie’s

tensor product of presentable ∞-categories.
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7. Smooth and proper geometric morphisms

There is a natural way to enhance Lurie’s tensor products to presentable B-

categories, which we will need to formulate our version of compactness with

coefficients:

Construction 7.2.6.2. Recall from Construction 1.4.2.1 and Example 5.4.4.8 that

there is a functor−⊗Grpd
B
∶ PrL → PrL(B) that sends a presentable∞-category

E to the B-category

E ⊗ Grpd
B
∶ Bop → Cat∞; 𝐴 ↦ E ⊗B/𝐴.

We can therefore define a presentable B-category C ⊗ E ≔ C ⊗B (E ⊗ Grpd
B
)

for every presentable B-category C. Here − ⊗B − denotes the tensor product of

presentable B-categories introduced in Section 5.5.3. In particular, − ⊗ E defines

a functor PrL(B) → PrL(B).

Remark 7.2.6.3. If I is a B-category, C a presentable B-category and E is a

presentable ∞-category, it follows from the explicit description of the tensor

product of presentable B-categories from Proposition 5.5.3.8 that we have a

canonical equivalence

Fun
B
(I,C) ⊗ E ≃ Fun

B
(I,C ⊗ E)

and therefore in particular an equivalence C(𝐴) ⊗ E ≃ (C ⊗ E)(𝐴) for every

𝐴 ∈ B.

Definition 7.2.6.4. Let 𝑝∗ ∶ X → B be a geometricmorphism andE a presentable

∞-category. Then 𝑝∗ is called E-compact if

Γ𝑝∗(GrpdX) ⊗ E∶ 𝑝∗(GrpdX) ⊗ E → Grpd
B
⊗E

commutes with filtered colimits.

We now come to the main result of this section, the E-linear version of Theo-

rem 7.2.5.1:

Theorem 7.2.6.5. Let 𝑝∗ ∶ X → B be a geometric morphism and E a compactly
generated ∞-category. Then 𝑝∗ is E-proper if and only if it is E-compact.
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7.2. Compact B-topoi

Remark 7.2.6.6. More generally one could define 𝑝∗ ∶ X → B to be E-compact

for a presentable B-category E whenever 𝑝∗(GrpdX) ⊗
B E → E commutes with

filtered colimits. Similarly, one can also define a notion of E-properness. Then

the analogue of Theorem 7.2.6.5 still holds whenever E is compactly generated

(in the B-categorical sense). We decided to only prove the result in the case

where E = Grpd
B
⊗E, since the proof is slightly less technical and since this case

already contains most examples of interest.

Remark 7.2.6.7. Let E be a compactly generated ∞-category and X a B-topos.

Then for any 𝐴 ∈ B we may identify the tensor product X(𝐴) ⊗ E with the

∞-category Funlex((Ecpt)op,X(𝐴)) (where Ecpt ↪→ E is the full subcategory of

compact objects). Furthermore, since for any map 𝑠∶ 𝐵 → 𝐴 the transition

functor 𝑠∗ ∶ X(𝐴) → X(𝐵) is a left exact left adjoint, it follows that we may

identify the transition map 𝑠∗ ⊗ E∶ (X ⊗ E)(𝐴) → (X ⊗ E)(𝐵) with the functor

Funlex((Ecpt)op,X(𝐴)) → Funlex((Ecpt)op,X(𝐵))

given by postcomposition with 𝑠∗. Now let 𝑓∗ ∶ X → Y be a geometric morphism

of B-topoi. Since 𝑓∗ and 𝑓 ∗ are both left exact if follows as in [30, Observation

2.9] that the induced morphism 𝑓∗ ⊗ E is given by pointwise postcomposition

with 𝑓∗ and its left adjoint is given by postcomposition with 𝑓 ∗.

We begin by establishing the E-linear analogue of Corollary 7.2.5.6. This

requires a few preparations:

Proposition 7.2.6.8. Let 𝑓∗ ∶ X → B be a geometric morphism of ∞-topoi and
let E be a compactly generated ∞-category. Assume that there exists a family of
commutative squares

W𝑖 X

Z𝑖 B

𝑓∗
𝑝𝑖
∗

𝑔 𝑖
∗

such that for every 𝐴 ∈ B the functor (− ×B B/𝐴) ⊗ E carries these squares to a
left adjointable square, each (𝑝𝑖)∗ ⊗ E is conservative, and each 𝑔 𝑖

∗ is E-compact.
Then 𝑓∗ is E-compact.
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7. Smooth and proper geometric morphisms

Proof. The proof is essentially the same as the one of Proposition 7.2.5.5. We first

check that for every filtered B-category I the mate of the commutative square

𝑓∗(GrpdX) ⊗ E Fun
B
(I, 𝑓∗(GrpdX) ⊗ E)

Grpd
B
⊗E Fun

B
(I,Grpd

B
⊗E)

diag

𝑓∗⊗E (Γ𝑓∗(GrpdX)⊗E)∗
diag

is an equivalence. Let us first show that the mate

colim
I

(Γ𝑓∗(GrpdX) ⊗ E)∗ → (𝑓∗ ⊗ E) colim
I

is an equivalence after passing to global sections. For this, it suffices to see that

the mate is an equivalence after composing with each (𝑝𝑖)∗ ⊗ E, which follows

from an E-linear version of Lemma 7.2.5.4 that can be shown in exactly the same

way. To see that the mate is an equivalence after evaluating at 𝐴 ∈ B, we may

replace B by B/𝐴 and the above square by its base change along 𝜋∗
𝐴 to reduce to

the case treated above. Finally, we have to see that for every 𝐴 ∈ B the functor

of B/𝐴-categories

𝜋∗
𝐴(𝑓∗(GrpdX) ⊗ E)∶ 𝜋∗

𝐴(𝑓∗(GrpdX) ⊗ E) → 𝜋∗
𝐴(GrpdB ⊗E)

commutes with colimits indexed by filtered B/𝐴-categories. But this follows

again from the above after replacing B with B/𝐴.

Remark 7.2.6.9. Note that in Proposition 7.2.6.8, we require that the assump-

tions also hold locally on B, while for the version without coefficients (Proposi-

tion 7.2.5.5) this was automatic by Lemma 7.2.5.3. To illustrate why Lemma 7.2.5.3

may fail when using coefficients, consider the example where E = Sub(Ani) ≃ Δ1

is the ∞-category of (−1)-truncated spaces. Then, a square

W𝑖 Y

Z𝑖 B

𝑓∗
𝑝𝑖
∗

(𝑔 𝑖)∗

being horizontally left adjointable after tensoring with Sub(Ani) simply means

that the mate transformation is an equivalence on (−1)-truncated objects in Y.
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7.2. Compact B-topoi

However, after passing to a slice X/𝑋, the mate transformations now involves

(−1)-truncated objects in X/𝑋, i.e. subobjects of 𝑋. These need not be (−1)-
truncated in general, therefore there is no reason for the mate transformation to

be an equivalence.

Remark 7.2.6.10. The proof of Proposition 7.2.6.8 shows that more generally

we do not need the existence of such squares for every 𝐴 ∈ B, but it suffices to

find these for a set of objects 𝐴𝑖 ∈ B that generates B under colimits.

Lemma 7.2.6.11. For anyB-category C and any geometric morphism 𝑓∗ ∶ X → B,
there is a commutative square

FunB(C,Grpd
B
) LFibB(C)

FunB(C, 𝑓∗(GrpdX)) LFibX(𝑓 ∗C)

≃

const𝑓∗(GrpdX) 𝑓 ∗

≃

where 𝑓 ∗ is the restriction of 𝑓 ∗ ∶ Cat(B)/C → Cat(X)/𝑓 ∗C to left fibrations and
the horizontal equivalences are induced by the straightening equivalences for left
fibrations (internal to both B and X). Moreover, this commutative square is natural
in C.

Proof. This is shown in exactly the same fashion as Lemma 6.2.8.5.

Corollary 7.2.6.12. Let 𝑓∗ ∶ X → B be an E-compact geometric morphism and C
a B-category. Then the geometric morphism

(Γ𝑓∗(GrpdX))∗ ∶ FunB(C, 𝑓∗(GrpdX)) → FunB(C,Grpd
B
)

is E-compact.

Proof. Pick any 𝐹 ∈ FunB(C,Grpd
B
) and let 𝐺 = const𝑓∗(GrpdX) 𝐹. Furthermore,

let C𝐹/ → C be the left fibration associated to 𝐹 via the straightening equivalence.
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7. Smooth and proper geometric morphisms

We then deduce from Lemma 7.2.6.11 that we have a commutative diagram

FunB(C,Grpd
B
)/𝐹 FunB(C,Grpd

B
)/𝐺

LFibB(C)/(C𝐹/) LFibX(𝑓 ∗C)/𝑓 ∗(C𝐹/)

LFibB(C𝐹/) LFibX(𝑓 ∗(C𝐹/))

FunB(C𝐹/,GrpdB) FunB(C𝐹/, 𝑓∗(GrpdX))

(const𝑓∗(GrpdX))∗

≃ ≃
𝑓 ∗

≃ ≃

≃

𝑓 ∗

≃
(const𝑓∗(GrpdX))∗

which is natural in C. Thus, by passing to right adjoints, the base change of

(Γ𝑓∗(GrpdX))∗ along the geometric morphism

(𝜋𝐹)∗ ∶ FunB(C,Grpd
B
)/𝐹 → FunB(C,Grpd

B
)

can be identified with the geometric morphism

(Γ𝑓∗(GrpdX))∗ ∶ FunB(C𝐹/, 𝑓∗(GrpdX)) → FunB(C𝐹/,GrpdB).

Also, the base change of the right adjoint of the restriction functor

FunB(C,Grpd
B
) → FunB(C≃,Grpd

B
) ≃ B/C≃

along (𝜋𝐴)∗ can be identified with the right adjoint of the restriction functor

FunB(C𝐹/,GrpdB) → B/(C𝐹/)≃

(using that the pullback of C𝐹/ → C along C≃ → C is (C𝐹/)≃, see Corol-

lary 1.3.3.5). Consequently, we conclude that the pullback square

X/𝑓 ∗C≃ FunB(C, 𝑓∗(GrpdX))

B/C≃ FunB(C,Grpd
B
)

satisfies the assumptions of Proposition 7.2.6.8. Thus the claim follows.
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Proof of Theorem 7.2.6.5: By Remark 7.2.6.3, the same proof as in Lemma 7.2.5.2

shows that an E-proper morphism is E-compact. Hence it remains to prove

the converse. By Corollary 7.2.6.12, the same reduction steps as in the proof of

Theorem 7.2.5.1 imply that it suffices to see that for every pullback square of

B-topoi

Z′ X

Z B

𝑝∗

𝑗∗

𝑗′∗

in which 𝑗∗ is fully faithful, the square is left adjointable after tensoring with E.

By Remark 7.2.6.7, it suffices to see that the square

Funlex((Ecpt)op,X) Funlex((Ecpt)op,X)

Funlex((Ecpt)op,B) Funlex((Ecpt)op,B)

(𝑗′∗(𝑗′)∗)∗

(𝑝∗)∗(𝑝∗)∗
(𝑗∗𝑗∗)∗

commutes. We pick a local class 𝑆 of maps in B as in Proposition 7.2.4.3, so that

we obtain equivalences 𝑗′∗(𝑗′)∗ ≃ (−)sh𝜄′ and 𝑗∗𝑗∗ ≃ (−)sh𝜄 . Now since the two

inclusions

Funlex((Ecpt)op,X) ↪→ Fun((Ecpt)op,X)

and

Funlex((Ecpt)op,B) ↪→ Fun((Ecpt)op,B)

both preserve filtered colimits and since colimits in functor ∞-categories are

computed object-wise, it follows that (𝑗′∗(𝑗′)∗)∗ and (𝑗∗𝑗∗)∗ are given by the 𝜅-
fold iteration of postcomposition with the functors (−)+𝜄′ and (−)+𝜄 , respectively.
Therefore, it suffices to provide an equivalence (𝑝∗(−)+𝜄′ )∗ ≃ ((−)+𝜄 𝑝∗)∗.

To obtain such an equivalence, note that Remark 7.2.6.3 implies that we may

identify the map colimGrpdop𝑆
⊗E with

colim
Grpdop𝑆

∶ Fun
B
(Grpdop𝑆 ,Grpd

B
⊗E) → Grpd

B
⊗E.

Therefore, we deduce that postcomposition with (−)+𝜄 is equivalently given by
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7. Smooth and proper geometric morphisms

the composition

Funlex((Ecpt)op,B) → Funlex((Ecpt)op, PShB(Grpd𝑆))

≃ FunB(Grpdop𝑆 ,Grpd
B
⊗E)

colim
−−−−→ Funlex((Ecpt)op,B)

in which the first functor is given by postcomposition with (the global sections

of)

mapGrpd
B

(𝜄(−), −)∶ Grpd
B

→ PSh
B
(Grpd𝑆).

Similarly, postcomposition with (−)+𝜄′ can be identified with the composition

Funlex((Ecpt)op,X) → Funlex((Ecpt)op, FunB(Grpdop𝑆 , 𝑝∗(GrpdX)))

≃ FunB(Grpdop𝑆 , 𝑝∗(GrpdX) ⊗ E)
colim
−−−−→ Funlex((Ecpt)op,X)

where the first functor is given by postcomposition with (the global sections of)

Hom𝑝∗(GrpdX)(const𝑝∗(GrpdX) 𝜄(−), −)∶ 𝑝∗(GrpdX) → Fun
B
(Grpdop𝑆 , 𝑝∗(GrpdX))

since this is precisely the map we obtain when composing the global sections of

mapGrpd
X

(𝜄′(−), −)∶ Grpd
X

→ PSh
X
(𝑝∗(Grpd𝑆))

with the equivalence

PShX(𝑝∗(Grpd𝑆)) ≃ FunB(Grpdop𝑆 , 𝑝∗(GrpdX)).

Thus, since Γ𝑝∗(GrpdX) ⊗ E commutes with colimGrpdop𝑆
, it is enough to provide a

commutative diagram

X FunB(Grpdop𝑆 , 𝑝∗(GrpdX))

B PShB(Grpd𝑆),

𝑝∗

Hom𝑝∗(GrpdX)(const𝑝∗(GrpdX) 𝜄(−),−)

(Γ𝑝∗(GrpdX))∗
mapGrpdX

(𝜄(−),−)

which is evident from Remark 6.2.10.13.
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Example 7.2.6.13. For a scheme 𝑋, let us denote by 𝑋hyp
ét the ∞-topos of étale

hypersheaves of spaces on 𝑋. If 𝑓∶ 𝑋 → 𝑆 is a proper morphism of schemes,

then the geometric morphism 𝑓∗ ∶ 𝑋hyp
ét → 𝑆hypét is D(𝑅)-proper for any torsion

ring 𝑅. In fact, since 𝑋hyp
ét has enough points by [51, Theorem A.4.0.5], the

family of all points ̄𝑠∗ ∶ S → 𝑋hyp
ét yields a family of jointly conservative functors

̄𝑠∗ ⊗ D(𝑅). Furthermore, proper base change for unbounded derived categories

of étale sheaves (see [19, Theorem 1.2.1]) implies that the squares

𝑋hyp
̄𝑠,ét 𝑋hyp

ét

S 𝑆hypét

are left adjointable after applying − ⊗ D(𝑅). Finally, [19, Corollary 1.1.15] im-

plies that 𝑋hyp
̄𝑠, ́et is D(𝑅)-compact, so that we may apply Proposition 7.2.6.8 and

Theorem 7.2.6.5 to conclude that 𝑓∗ is D(𝑅)-proper.

Definition 7.2.6.14. We call a geometric morphism 𝑓∗ ∶ Y → X 𝑛-proper if it is

S≤𝑛-proper, where Ani≤𝑛 denotes the ∞-category of 𝑛-truncated spaces. We call

𝑓∗ almost proper if it is 𝑛-proper for all 𝑛.

Example 7.2.6.15. Recall that by [50, Example 4.8.1.22] one has X⊗ S≤𝑛 ≃ X≤𝑛.

Thus it follows from [51, Proposition A.2.3.1] and Theorem 7.2.6.5 that for an

𝑛-coherent ∞-topos X the geometric morphism Γ∗ ∶ X → S is 𝑛-proper. In

particular it is almost proper if X is coherent. However it is not proper in general

(see Remark 7.2.1.5).

Example 7.2.6.16. A geometric morphism 𝑓∗ ∶ X → B is Set-proper if and only

if the underlying morphism of 1-topoi is tidy in the sense of [61, § 3].

7.3. Smooth and proper maps in topology

In this section, we will apply our classification of smooth and proper geometric

morphisms to obtain examples of such maps coming from topology. In Sec-

tion 7.3.1, we show that shape submersions are a class of continuous maps for
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7. Smooth and proper geometric morphisms

which the associated geometric morphisms of sheaf ∞-topoi is smooth. In Sec-

tion 7.3.2, we show that proper and separated continuous maps induce proper

geometric morphisms between their associated sheaf ∞-topoi.

7.3.1. Shape submersions

In this section, we show that every shape submersion of topological spaces induces

a smooth geometric morphism between their associated sheaf ∞-topoi. Barring

this result, we make no claim to originality in this section. All ideas are adopted

from [82].

Definition 7.3.1.1. A topological space 𝑋 is called essential if Sh(𝑋) is locally
contractible.

Example 7.3.1.2 ([82, Corollary 3.19]). Any topological space 𝑋 that is hyper-

complete and locally contractible (meaning it admits a basis of contractible open

subsets) is essential. If the basis of contractible open subsets can be chosen to be

closed under finite intersections (i.e. if 𝑋 admits a good cover ), one can moreover

omit the hypercompleteness assumption. In fact, by [7, Corollaries A.7 and A.8]

these assumptions guarantee that the inclusion of the poset of contractible open

subsets Opencontr(𝑋) ⊂ Open(𝑋) into the poset of all open subsets of 𝑋 gives

rise to an equivalence

Sh(Opencontr(𝑋)) ≃ Sh(𝑋),

so that in particular every sheaf on 𝑋 can be written as a colimit of contractible

open subsets of 𝑋. Consequently, Proposition 7.1.2.5 implies the claim once we

verify that every contractible open subset of 𝑋 defines a contractible object in

Sh(𝑋). Unwinding the definitions, this precisely means that whenever 𝑈 is a

contractible topological space, the functor constSh(𝑈 ) ∶ Ani → Sh(𝑈 ) is fully

faithful, which follows from [50, Remark A.4.7].

Definition 7.3.1.3. A continuous map 𝑓∶ 𝑌 → 𝑋 of topological spaces is a shape
submersion if there is an open cover 𝑌 = ⋃𝑖 𝑉𝑖 and for each 𝑖 an essential space 𝑌𝑖
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7.3. Smooth and proper maps in topology

such that 𝑓 (𝑉𝑖) is open and we have commutative diagram

𝑓 (𝑉𝑖) × 𝑌𝑖 𝑉𝑖 𝑌

𝑓 (𝑉𝑖) 𝑋 .

≃

pr0 𝑓 |𝑉𝑖 𝑓

Example 7.3.1.4 ([82, Example 3.22]). Every topological submersion is a shape

submersion.

Theorem 7.3.1.5. If 𝑓∶ 𝑌 → 𝑋 is a shape submersion, then 𝑓∗ ∶ Sh(𝑌 ) → Sh(𝑋)
is smooth.

Proof. In light of Remark 7.1.1.3, we deduce from [82, Corollary 3.26] that 𝑓∗ is

locally contractible, hence the result follows from Theorem 7.1.3.1.

7.3.2. Proper and separated maps

Recall that amap 𝑝∶ 𝑌 → 𝑋 of topological spaces is called proper if it is universally
closed (i.e. if every pullback of 𝑝 is a closed map). In [49, Theorem 7.3.1.6],

Lurie shows that every such proper map in which 𝑌 is moreover assumed to be

completely regular (i.e. a subspace of a compact Hausdorff space) induces a proper

morphism between the associated sheaf ∞-topoi. Since (toposic) properness is an

entirely relative notion, it is somewhat surprising that there are constraints on

the space 𝑌 and not just on the map 𝑝. Instead, by relativising the fact that the ∞-

topos of sheaves on a compact Hausdorff space is compact [49, Corollary 7.3.4.12],

one would expect that every proper and separated map 𝑝∶ 𝑌 → 𝑋 of topological

spaces gives rise to a proper morphism of ∞-topoi (where 𝑝 being separated

means that the diagonal 𝑌 → 𝑌 ×𝑋 𝑌 is closed). In this section, our goal is to show

that this is indeed the case:

Theorem 7.3.2.1. Let 𝑝∶ 𝑌 → 𝑋 be a proper and separated map of topological
spaces. Then the induced geometric morphism 𝑝∗ ∶ Sh(𝑌 ) → Sh(𝑋) is proper.

Remark 7.3.2.2. A continuous map 𝑝∶ 𝑌 → 𝑋 is separated as soon as 𝑌 is

Hausdorff. Since any completely regular topological space is Hausdorff, it follows

that Theorem 7.3.2.1 subsumes [49, Theorem 7.3.1.6].
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7. Smooth and proper geometric morphisms

Example 7.3.2.3. It follows from [39, Example C.3.4.1] that the separatedness

assumption in Theorem 7.3.2.1 cannot be dropped. We briefly recall the example

for the convenience of the reader. Consider the topological space 𝑌 that is given

by taking two copies of the interval [0, 1] and identifying both copies of 𝑥 for

0 < 𝑥 < 1. Then 𝑌 is compact, but Sh(𝑌 ) is not. Indeed, consider the sequence

that takes 𝑛 ∈ ℕ to the sheaf represented by the map 𝑌𝑛 → 𝑌 in which 𝑌𝑛 is given

by two copies of [0, 1] where we identify both copies of 𝑥 for 2−𝑛 < 𝑥 < 1 − 2−𝑛.
We note that all the maps 𝑌𝑛 → 𝑌𝑛+1 and 𝑌𝑛 → 𝑌 are local homeomorphisms,

which implies that the colimit of the sheaves represented by (𝑌𝑛 → 𝑌)𝑛∈ℕ is the

sheaf represented by colim𝑛 𝑌𝑛 = 𝑌. In particular, we have Γ𝑌(colim𝑛 𝑌𝑛) = 1, but
since colim𝑛 Γ𝑌(𝑌𝑛) = ∅, the global sections functor Γ𝑌 does not commute with

filtered colimits.

Before we prove Theorem 7.3.2.1, let us record that it implies the proper base

change theorem in topology, at least for sober spaces:

Corollary 7.3.2.4. For every pullback square

𝑄 𝑃

𝑌 𝑋

𝑞

𝑔

𝑝
𝑓

of sober topological spaces in which 𝑝 is proper and separated, the induced commu-
tative square

Sh(𝑄) Sh(𝑃)

Sh(𝑌 ) Sh(𝑋)

𝑞∗

𝑔∗

𝑝∗

𝑓∗

is horizontally left adjointable.

Proof. Using Theorem 7.3.2.1, it suffices to show that the second square is a

pullback in TopR∞, or equivalently that the underlying square of locales is a

pullback. The latter fact follows from combining [40, Corollary 3.6] with [40,

Lemmas 2.1].

We now move on to the proof of Theorem 7.3.2.1. First, let us give an informal

outline of our strategy. We begin with the special case where 𝑋 is the point, so
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that 𝑌 is a compact Hausdorff space. Let Open(𝑌 ) be the associated locale of open

subsets in 𝑌. It is then a classical fact that 𝑌 is a retract (in the category of locales)

of a coherent locale (see for example [39, § C4.1]). In fact, recall that an ideal in
Open(𝑌 ) is a full subposet which is downward closed (i.e. a sieve) and that is closed

under finite unions. Then the poset of ideals Id(Open(𝑌 )) is a coherent locale: its

quasi-compact objects are precisely the principal ideals generated by the opens

in 𝑌 (i.e. those of the form {𝑈 ∈ Open(𝑌 ) | 𝑈 ⊂ 𝑈0} for some 𝑈0 ⊂ 𝑌), which are

clearly closed under finite meets and generate Id(Open(𝑌 )) under arbitrary joins.

Using that 𝑌 is compact Hausdorff and therefore in particular locally compact,

the canonical map Id(Open(𝑌 )) → Open(𝑌 ) (which takes an ideal to its union)

admits a section sending 𝑈 ⊂ 𝑌 to the ideal {𝑉 ∈ Open(𝑌 ) | 𝑉 ⊂ 𝑈 }. Moreover,

both the map Id(Open(𝑌 )) → Open(𝑌 ) and its section define morphisms in the

category of locales. Hence, one obtains that Open(𝑌 ) is a retract of a coherent

locale. Consequently, the ∞-topos Sh(𝑌 ) is a retract of the ∞-topos of sheaves

on a coherent locale, which by [49, Corollary 7.3.5.4] implies that Sh(𝑌 ) is a

retract of a compact ∞-topos and therefore compact as well. Finally, by applying

Theorem 7.2.5.1, the result follows (see also Remark 7.3.2.5.)

We will prove the general case in exactly the same way. The only difference is

that all steps now have to be carried out internally in Sh(𝑋). More specifically, if

now 𝑝∶ 𝑌 → 𝑋 is a proper and separated map of topological spaces, we obtain

a Sh(𝑋)-locale Open𝑋(𝑌 ) by means of the sheaf 𝑈 ↦ Open(𝑝∗(𝑈 )) on 𝑋. Recall
from Remark 6.3.3.5 that such a Sh(X)-locale is equivalently an internal locale

in the 1-topos ShSet(𝑋). Now by a result of Johnstone [40], the above proof

that the locale of opens on a compact Hausdorff space is a retract of a coherent

locale can be interpreted internally in any 1-topos. Consequently, one obtains

that Open𝑋(𝑌 ) is a retract (in the category of internal locales in ShSet(𝑋)) of a
coherent internal locale. Thus, by using (1) that we can functorially assign to

each internal locale L in ShSet(𝑋) a Sh(𝑋)-topos ShSh(𝑋)(L), and that (2) this

assignment carries coherent internal locales to compact Sh(𝑋)-topoi, we can

derive the desired result from Theorem 7.2.5.1. As we have already developed

all the necessary ingredients in previous sections, the proof is now remarkably

short:

Proof of Theorem 7.3.2.1. Let 𝑝∗ ∶ Open(𝑋) → Open(𝑌 ) be the algebraic mor-
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phism of locales that carries 𝑈 ⊂ 𝑋 to 𝑝−1(𝑈 ) ⊂ 𝑌. By Proposition 6.3.6.1, this

map corresponds to a Sh(𝑋)-locale Open𝑋(𝑌 ) that is explicitly given by the sheaf

𝑈 ↦ Open(𝑝−1(𝑈 )) (see Remark 6.3.6.3). In light of Remark 6.3.3.5, we can

equivalently regard Sh(𝑋)-locales as internal locales in the 1-topos ShSet(𝑋).
Therefore, we deduce from [40, Proposition 1.2 and Lemma 2.1] that Open𝑋(𝑌 )
is a stably compact Sh(𝑋)-locale (in the sense of Definition 7.2.2.1), i.e. a retract

of a coherent Sh(𝑋)-locale in LocL(Sh(𝑋)). By Corollary 7.2.2.4, this implies that

the Sh(𝑋)-topos ShSh(𝑋)(Open𝑋(𝑌 )) is compact. As this Sh(𝑋)-topos recovers
the geometric morphism 𝑝∗ ∶ Sh(𝑌 ) → Sh(𝑋) when passing to global sections

(Corollary 6.3.6.2), the claim now follows from Theorem 7.2.5.1.

Remark 7.3.2.5. If one assumes that the topological space 𝑌 is completely regular
(see [49, Definition 7.3.1.12]), one can alternatively apply a number of geometric

reduction steps, as in the proof of [49, Theorem 7.3.16], to reduce to the case

where 𝑋 = ∗ and then use that any compact Hausdorff space is a retract of a

coherent topological space, as outlined above. The author learned about this

proof strategy for Theorem 7.3.2.1 from Ko Aoki. In comparison, Lurie shows that

Sh(𝑌 ) is compact in [49, Corollary 7.3.4.12] by using the theory of K-sheaves.

Remark 7.3.2.6. If 𝑝∶ 𝑌 → 𝑋 is only assumed to be locally proper (see Defini-

tion 7.3.2.7 below for a precise definition), the same argumentation as in the proof

of Theorem 7.3.2.1 shows that the Sh(𝑋)-topos ShSh(𝑋)(Open𝑋(𝑌 )) is compactly
assembled. Therefore, by suitably internalising the arguments in [51, § 21.1.6]

(or alternatively those in [4]), one can deduce that 𝑝∗ is exponentiable (i.e. that

− ×Sh(𝑋) Sh(𝑌 )∶ TopR∞ → TopR∞ has a right adjoint). Moreover, this result im-

plies that the stable ∞-category ShSp(𝑌 ) of spectral sheaves on 𝑌 is a dualisable

ShSp(𝑋)-module.

For the convenience of the reader, we will use the remainder of this section

to provide a self-contained proof of Johnstone’s result that every proper and

separated map 𝑌 → 𝑋 of topological spaces gives rise to a stably compact Sh(𝑋)-
locale Open𝑋(𝑌 ). With future applications in mind, we will prove a slightly more

general statement about locally proper and separated maps of topological spaces

(which Johnstone also mentions in [39, § C4.1] but never explicitly spells out).

We begin by recalling the definition of a locally proper map from [74]:
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7.3. Smooth and proper maps in topology

Definition 7.3.2.7. A continuous map 𝑓∶ 𝑌 → 𝑋 of topological spaces is said to

be locally proper if for every 𝑦 ∈ 𝑌 and every open neighbourhood 𝑉 of 𝑦 there

is a neighbourhood 𝐾 ⊂ 𝑉 of 𝑦 and an open neighbourhood 𝑈 of 𝑓 (𝑦) such that

𝑓 (𝐾) ⊂ 𝑈 and such that the induced map 𝐾 → 𝑈 is proper (i.e. universally closed).

Remark 7.3.2.8. The property of a map 𝑓∶ 𝑌 → 𝑋 being locally proper and

separated is local in the target: if 𝑋 = ⋃𝑖 𝑈𝑖 is an open covering, then 𝑓 is locally

proper and separated if and only if each of the restrictions 𝑓 −1(𝑈𝑖) → 𝑈𝑖 has that
property [74, Lemma 2.7].

Remark 7.3.2.9. Every proper and separated morphism is also locally proper [74,

Proposition 2.12]. This is the relative version of the fact that compact Hausdorff

spaces are locally compact as well.

Remark 7.3.2.10. In the situation of Definition 7.3.2.7, if 𝑓 is separated and

locally proper, then for every 𝑦 ∈ 𝑌 and every open neighbourhood 𝑉 of 𝑦 there

is an open neighbourhood 𝑉 ′ ⊂ 𝑉 and an open neighbourhood 𝑈 of 𝑓 (𝑦) such
that 𝑓 (𝑉 ′) ⊂ 𝑈 and such that the closure of 𝑉 ′ in 𝑓 −1(𝑈 ) is proper over 𝑈. In fact,

𝑓 being separated implies that its restriction 𝑓 −1(𝑈 ) → 𝑈 is separated as well.

Therefore, [74, Lemma 9.12] implies that if 𝐾 ⊂ 𝑉 is as in Definition 7.3.2.7, then

𝐾 is closed in 𝑓 −1(𝑈 ). Hence the closure of the interior of 𝐾 (again in 𝑓 −1(𝑈 )) is
a closed subset of 𝐾 and therefore also proper over 𝑈.

To proceed, recall that if 𝑓∶ 𝑌 → 𝑋 is a map of topological spaces, we obtain an

algebraic morphism of locales 𝑓 ∗ ∶ Open(𝑋) → Open(𝑌 ), where Open(𝑋) and
Open(𝑌 ) denote the locales of open subsets of 𝑋 and 𝑌, respectively. By Propo-

sition 6.3.6.1, 𝑓 ∗ gives rise to a Sh(𝑋)-locale Open𝑋(𝑌 ) that is explicitly given

by the sheaf on 𝑋 that carries an open 𝑈 ∈ Open(𝑋) to the locale Open(𝑓 −1(𝑈 ))
(see Remark 6.3.6.3). Recall, furthermore, that we refer to a B-locale L as (locally)

stably compact if it arises as a retract in LocLB of a (locally) coherent B-locale

(see Definition 7.2.2.1). Our goal is to show:

Proposition 7.3.2.11. If 𝑓∶ 𝑌 → 𝑋 is a locally proper and separated morphism of
topological spaces, then Open𝑋(𝑌 ) is a locally stably compact Sh(𝑋)-locale. If 𝑓 is
even proper, then Open𝑋(𝑌 ) is stably compact.
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The proof of Proposition 7.3.2.11 requires a few preparations first. To begin

with, we need to construct a candidate for a (locally) coherent Sh(𝑋)-locale of

which Open𝑋(𝑌 ) is a retract. We will use the following general observation:

Proposition 7.3.2.12. Let L be a B-locale and let 𝑗∶ P ↪→ L be a full subposet that
is closed under binary products and finite colimits. Then

1. the left Kan extension ℎ!(𝑗)∶ Ind
B
(P) → L is cocontinuous;

2. Ind
B
(P) is a locally coherent B-locale which is coherent if P contains the

final object of L;

3. a right fibration over P (in arbitrary context 𝐴 ∈ B) is contained in the
essential image of the inclusion Ind

B
(P) ↪→ RFibP if and only if it is the

inclusion of a sieve in 𝜋∗
𝐴P (i.e. a fully faithful right fibration) that is closed

under finite colimits.

The proof of Proposition 7.3.2.12 requires the following lemma:

Lemma 7.3.2.13. Let C be a B-poset with finite colimits and let 𝑝∶ P ↪→ C be a
sieve (i.e. a fully faithful right fibration). Then P is filtered if and only if it is closed
under finite colimits in C.

Proof. It will be sufficient to show that whenever 𝑑∶ K → P is a finite dia-

gram, then P𝑑/ admits an initial object which is carried to the initial object in

C𝑝𝑑/ along the induced functor 𝑝∗ ∶ P𝑑/ → C𝑝𝑑/. Note that 𝑝∶ P → C being

a sieve implies that 𝑝∗ is one as well. Now since C has finite colimits, C𝑝𝑑/
admits an initial object colim(𝑝𝑑). Since 𝑝∗ is a right fibration, the inclusion

P𝑑/|colim(𝑝𝑑) ↪→ P𝑑/ of 𝑝∗ over colim(𝑝𝑑) is initial (cf. Proposition 2.1.4.9). Since

P is assumed to be filtered, we furthermore have (P𝑑/)gpd ≃ 1. Therefore, we

must have P𝑑/|colim(𝑝𝑑) ≃ 1 as this is already a subterminal B-groupoid (since 𝑝
is fully faithful, see Example 6.3.2.4). Hence P𝑑/ admits an initial object which is

preserved by 𝑝∗.

Proof of Proposition 7.3.2.12. The fact that P has finite colimits implies that the

B-category Ind
B
(P) is presentable and that ℎ!(𝑗)∶ Ind

B
(P) → L is cocontinuous

(Corollary 5.4.5.6), which shows (1).
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To show (2), since Ind
B
(P) is by definition compactly generated and since

we may always identify Ind
B
(P)cpt ≃ P (as P is a B-poset), we only need to

verify that Ind
B
(P) is indeed a B-locale. To that end, note that Ind

B
(P) being

presentable implies that the inclusion Ind
B
(P) ↪→ PSh

B
(P) admits a left ad-

joint 𝑙 ∶ PSh
B
(P) → Ind

B
(P) (see Corollary 3.5.1.13). Moreover, Lemma 7.2.2.8

implies that the inclusion Fun
B
(Pop, SubB) ↪→ PSh

B
(P) preserves filtered col-

imits. Therefore, Ind
B
(P) must be contained in Fun

B
(Pop, SubB) and is there-

fore in particular a B-poset. Hence, we only need to check that 𝑙 preserves
binary products (see Lemma 6.3.3.6). This is equivalent to Ind

B
(P) being an

exponential ideal in PSh
B
(P), i.e. that for every object 𝐹∶ 𝐴 → Ind

B
(P) and

every object 𝐺∶ 𝐴 → PSh
B
(P) (in arbitrary context 𝐴 ∈ B), the internal hom

HomPSh
B
(P)(𝐺, 𝐹 ) is contained in Ind

B
(P). By using Proposition 3.5.1.9, we can

assume that 𝐴 ≃ 1. Upon writing 𝐺 as a colimit of representables and using

that the inclusion Ind
B
(P) ↪→ PSh

B
(P) is continuous, we may assume without

loss of generality that 𝐺 is itself representable by an object 𝑈∶ 1 → P. Thus,

Yoneda’s lemma and the fact that the Yoneda embedding is continuous imply

that HomPSh
B
(P)(𝐺, 𝐹 ) can be identified with the presheaf 𝐹(𝑈 × −). Note that

by Proposition 5.4.5.5 a presheaf is contained in Ind
B
(P) if and only if it carries

finite colimits in P to limits. Thus, as 𝐹 by assumption has this property and since

colimits are universal in L, the claim follows.

Lastly, in light of Example 6.3.2.4 and Remark 5.3.3.5, statement (3) is an

immediate consequence of Lemma 7.3.2.13.

In light of Proposition 7.3.2.12, our task is now to find a full subposet of

Open𝑋(𝑌 ) that is closed under binary products and finite colimits. To that end,

note that the datum of an object in Open𝑋(𝑌 ) in context 𝑈 ⊂ 𝑋 is precisely given

by an open subset 𝑉 ⊂ 𝑓 −1(𝑈 ). With that in mind, we may now define:

Definition 7.3.2.14. Let 𝑓∶ 𝑌 → 𝑋 be a locally proper and separated map of topo-

logical spaces. We say that an object 𝑉 ⊂ 𝑓 −1(𝑈 ) has proper closure if its closure

𝑉 in 𝑓 −1(𝑈 ) is proper over 𝑈. We define the subposet Openpc𝑋 (𝑌 ) ↪→ Open𝑋(𝑌 )
as the full subposet of Open𝑋(𝑌 ) that is spanned by these objects.

Remark 7.3.2.15. In the situation of Definition 7.3.2.14, note that 𝑓 being sep-

arated implies that if 𝑉 is proper over 𝑈, then 𝑉 is also closed in 𝑌 (see [74,
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Lemma 9.12]). Therefore, 𝑉 is also the closure of 𝑉 in 𝑌 in this case.

A priori, the subposet Openpc𝑋 (𝑌 ) is only spanned by the objects with proper

closure, so there could potentially be more objects. Our next result shows that

this cannot happen:

Lemma 7.3.2.16. An object 𝑉 ⊂ 𝑓 −1(𝑈 ) in Open𝑋(𝑌 ) is contained in Openpc𝑋 (𝑌 )
if and only if it has proper closure.

Proof. By definition, the condition is sufficient, so it suffices to prove that it is also

necessary. This amounts to showing that the property of having proper closure

is local on the target: if 𝑈 = ⋃𝑖 𝑈𝑖 is a covering and if 𝑉 ∩ 𝑓 −1(𝑈𝑖) ⊂ 𝑓 −1(𝑈𝑖) is
proper over 𝑈𝑖, then 𝑉 ⊂ 𝑓 −1(𝑈 ) is proper over 𝑈. Since properness is local on the

target [74, § 9.5], this follows from the identity 𝑉 ∩ 𝑓 −1(𝑈𝑖) = 𝑉 ∩ 𝑓 −1(𝑈𝑖).

Remark 7.3.2.17. Note that if 𝑈 ⊂ 𝑋 is an arbitrary open subset, we may identify

Sh(𝑋)/𝑈 with Sh(𝑈 ). In light of this identification, the Sh(𝑈 )-locale 𝜋∗
𝑈 Open𝑋(𝑌 )

can be identified withOpen𝑈(𝑓
−1(𝑈 )). Moreover, Lemma 7.3.2.16 implies that we

obtain a canonical equivalence 𝜋∗
𝑈 Openpc𝑋 (𝑌 ) ≃ Openpc𝑈 (𝑓 −1(𝑈 )) of full subposets

in Open𝑈(𝑓
−1(𝑈 )) (see also Remark 7.3.2.8).

Having an explicit description of the full subposet Openpc𝑋 (𝑌 ) ↪→ Open𝑋(𝑌 ),
we now proceed by showing that it satisfies the conditions of Proposition 7.3.2.12:

Lemma 7.3.2.18. Openpc𝑋 (𝑌 ) is closed under binary products and finite colimits in
Open𝑋(𝑌 ).

Proof. Since the map ∅ → 𝑋 is always proper, Lemma 7.3.2.16 implies that it

is enough to show that for every two objects 𝑉 ⊂ 𝑓 −1(𝑈 ) and 𝑉 ′ ⊂ 𝑓 −1(𝑈 )
whose closure (in 𝑓 −1(𝑈 )) is proper over 𝑈, both 𝑉 ∪ 𝑉 ′ → 𝑈 and 𝑉 ∩ 𝑉 ′ → 𝑈
are proper. The first map is proper by [74, § 9.7] and the fact that union and

closure commute. The second map is proper as it can be decomposed into the

composition 𝑉 ∩ 𝑉 ′ ↪→ 𝑉 → 𝑈 where the first map is a closed embedding (hence

proper) and the second map is proper by assumption.

Proposition 7.3.2.19. The Sh(𝑋)-category IndSh(𝑋)(Open
pc
𝑋 (𝑌 )) is a locally co-

herent Sh(𝑋)-locale, and the left Kan extension IndSh(𝑋)(Open
pc
𝑋 (𝑌 )) → Open𝑋(𝑌 )

of the inclusion is a Bousfield localisation.
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Proof. In light of Lemma 7.3.2.18, the first claim follows from Proposition 7.3.2.12,

so that it suffices to show the second one. We need to prove that the counit of

the adjunction

Open𝑋(𝑌 ) ⇆ IndSh(𝑋)(Open
pc
𝑋 (𝑌 ))

is an equivalence. By making use of Remark 7.3.2.17 and Remark 5.3.1.2, it will be

enough to check this on a global object 𝑉 ⊂ 𝑌. By Remark 3.4.3.6, this amounts to

showing that 𝑉 is the colimit of the diagram Openpc𝑋 (𝑌 )/𝑉 → Open𝑋(𝑌 ). Using

Proposition 6.3.2.10, we only need to verify that 𝑉 ≃ ⋃𝑉 ′⊂𝑓 −1(𝑈 )∩𝑉 𝑉
′, where 𝑈

runs though all open subsets of𝑋 and 𝑉 ′ runs through all objects inOpenpc𝑋 (𝑌 )(𝑈 )
which are contained in 𝑉. This is an immediate consequence of the fact that 𝑌 is

locally proper and separated over 𝑋 (see Remark 7.3.2.10).

The following Lemma is a suitable relative analogue of the fact that in a locally

compact Hausdorff space, every open covering of a compact subset has a finite

refinement:

Lemma 7.3.2.20. Let 𝑉 ⊂ 𝑓 −1(𝑈 ) be an object in Openpc𝑋 (𝑌 )(𝑈 ), choose an arbi-
trary family (𝑉 ′

𝑗 ⊂ 𝑓 −1(𝑈𝑗))𝑗∈𝐽 of objects inOpen𝑋(𝑌 ) and suppose that 𝑉 ⊂ ⋃𝑗∈𝐽 𝑉
′
𝑗 .

Then there is a covering 𝑈 = ⋃𝑖 𝑈𝑖 in 𝑋 such that for each 𝑖 there is a finite subset
𝐽𝑖 ⊂ 𝐽 such that 𝑈𝑖 ⊂ 𝑈𝑗 for all 𝑗 ∈ 𝐽𝑖 and such that 𝑉 ∩ 𝑓 −1(𝑈𝑖) ⊂ ⋃𝑗∈𝐽𝑖

𝑉 ′
𝑗 .

Proof. In light of Remark 7.3.2.17, we may replace 𝑌/𝑋 by 𝑓 −1(𝑈 )/𝑈 and each

𝑉 ′
𝑗 ⊂ 𝑓 −1(𝑈𝑗) by its intersection 𝑉 ′

𝑗 ∩ 𝑓 −1(𝑈 ) ⊂ 𝑓 −1(𝑈𝑗 ∩ 𝑈 ) and can thus assume

without loss of generality that 𝑈 = 𝑋. Now since 𝑉 is proper over 𝑋, its fibre

𝑉|𝑥 over every 𝑥 ∈ 𝑋 is compact (as being proper is stable under base change).

Therefore, for each 𝑥 ∈ 𝑋 we have a finite subset 𝐽𝑥 ⊂ 𝐽 such that 𝑉|𝑥 ⊂ ⋃𝑗∈𝐽𝑥
𝑉 ′
𝑗 .

We can assume that 𝑥 ∈ 𝑈𝑗 for all 𝑗 ∈ 𝐽𝑥, since otherwise 𝑉 ′
𝑗 |𝑥 would be empty.

Now let 𝑍 be the complement of ⋃𝑗∈𝐽𝑥
𝑉 ′
𝑗 in 𝑌. Then 𝑉 ∩ 𝑍 is closed in 𝑌, hence

𝑓 (𝑉 ∩ 𝑍) is closed in 𝑋 (as proper maps are always closed). By construction,

a point 𝑥′ ∈ 𝑋 is contained in 𝑓 (𝑉 ∩ 𝑍) precisely if 𝑉|𝑥′ is not contained in

⋃𝑗∈𝐽𝑥
𝑉 ′
𝑗 . Therefore, if 𝑈 is the complement of 𝑓 (𝑉 ∩ 𝑍) in 𝑋, then 𝑈 contains

precisely those points 𝑥′ ∈ 𝑋 for which 𝑉|𝑥′ ⊂ ⋃𝑗∈𝐽𝑥
𝑉 ′
𝑗 . In other words, we have

𝑉 ∩ 𝑓 −1(𝑈 ) ⊂ ⋃𝑗∈𝐽𝑥
𝑉 ′
𝑗 . Since 𝑥 ∈ 𝑈, we may shrink 𝑈 if necessary so that it is

contained in ⋂𝑗∈𝐽𝑥
𝑈𝑥. Now the claim follows.
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Proof of Proposition 7.3.2.11. By Proposition 7.3.2.19, the left Kan extension

𝑙 ∶ Ind
B
(Openpc𝑋 (𝑌 )) → Open𝑋(𝑌 )

is a Bousfield localisation. Therefore, we only need to show that 𝑙 admits a left

adjoint 𝜆 which preserves finite limits.

We begin by showing that 𝑙(𝑋 ) has a left adjoint 𝜆𝑋. On account of Propo-

sition 7.3.2.12, this amounts to showing that for every 𝑉 ⊂ 𝑌, there is sieve

𝜆𝑋(𝑉 )∶ P ↪→ Openpc𝑋 (𝑌 ) which is closed under finite colimits such that for

every other sieve 𝑞∶ Q ↪→ Openpc𝑋 (𝑌 ) with the same property and for which

𝑉 ⊂ colim 𝑞, we have P ↪→ Q. We define P to be the full subposet of Openpc𝑋 (𝑌 )
which is spanned by those 𝑉 ′ ⊂ 𝑓 −1(𝑈 ) whose closure is contained in 𝑉. This
property is clearly local in 𝑋, so that every object of P in context 𝑈 ⊂ 𝑋 will

be of this form. Moreover, if 𝑉 ′′ ⊂ 𝑉 ′ and 𝑉 ′ is in P(𝑈 ), so is 𝑉 ′′. There-

fore, P ↪→ Openpc𝑋 (𝑌 ) is a sieve. Furthermore, P is closed under finite colimits.

Now let 𝑉 ′ ⊂ 𝑓 −1(𝑈 ) be an arbitrary object in P in context 𝑈 ⊂ 𝑋 and let

𝑞∶ Q ↪→ Openpc𝑋 (𝑌 ) be a sieve which is closed under finite colimits such that

𝑉 ⊂ colim 𝑞. We need to show that 𝑉 ′ is contained in Q. By assumption, the

closure 𝑉 ′ is contained in colim 𝑞. Using Proposition 6.3.2.10, we may identify

colim 𝑞 ≃ ⋃
𝑉 ′′∈Q(𝑈 )

𝑈⊂𝑋

𝑉 ′′.

Therefore, Lemma 7.3.2.20 implies that there is a covering 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 such that

for each 𝑖 there are finitely many 𝑉 ′′
𝑖1 , … , 𝑉 ′′

𝑖𝑛 ∈ Q(𝑈𝑖) with the property that

𝑉 ′ ∩ 𝑓 −1(𝑈𝑖) ⊂ ⋃𝑛
𝑗=1 𝑉

′′
𝑖𝑗 . As Q is closed under finite colimits, the right-hand

side is contained in Q(𝑈𝑖). Consequently, 𝑉 ′ is locally contained in Q and must

therefore also be globally contained in Q.

Now by carrying out the above argument with 𝑓 |𝑓 −1(𝑈 ) in place of 𝑓, Re-
mark 7.3.2.17 implies that 𝑙(𝑈 ) admits a left adjoint 𝜆𝑈 for every 𝑈 ⊂ 𝑋. Further-
more, for every pair of opens 𝑈 ⊂ 𝑈 ′ ⊂ 𝑋 and every 𝑉 ′ ⊂ 𝑓 −1(𝑈 ′), it follows

readily from the constructions that the restriction of 𝜆𝑈 ′(𝑉 ′) to 𝑈 can be identified

with 𝜆𝑈(𝑉 ′ ∩ 𝑓 −1(𝑈 )). Therefore, we deduce from Corollary 3.1.2.11 that 𝑙 admits

a left adjoint, as desired. It is then clear from its explicit construction that this

left adjoint preserves finite limits.
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Lastly, if 𝑓 is proper, then Openpc𝑋 (𝑌 ) contains the final object of Open𝑋(𝑌 ),
which immediately implies that Open𝑋(𝑌 ) is stably compact.
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Appendix

A.1. The marked simplex ∞-category

Recall that we denote by 𝜎0 ∶ ⟨1⟩ → ⟨0⟩ the unique map in Δ. Let us also denote

by 𝜎0 ∶ Δ1 → Δ the associated functor that picks out this map.

Definition A.1.0.1. Themarked simplex∞-category Δ+ is defined as the pushout

Δ1 Δ2

Δ Δ+

𝜎0

𝑑{0,2}

𝜈
𝜄

in Cat∞.

Note that the functor 𝜄 ∶ Δ ↪→ Δ+ is fully faithful by Lemma 3.4.4.3. Note,

furthermore, that an object in Δ+ is either of the form 𝜄⟨𝑛⟩ for some ⟨𝑛⟩ ∈ Δ or

the image of {1} ∈ Δ2 along the map 𝜈∶ Δ2 → Δ+, which we will denote by +.
Observe that the functor 𝑑{0,2} admits both a left adjoint 𝑠{1,2} and a right adjoint

𝑠{0,1}. The pushout of these adjoints along Δ1 ↪→ Δ then define a left adjoint

♭∶ Δ+ → Δ and a right adjoint ♯∶ Δ+ → Δ to the inclusion 𝜄. This follows from

the following lemma and its dual version, applied to the case B = Ani:

Lemma A.1.0.2. If

C E

D F

𝑓

ℎ

𝑔

𝑘

is a pushout square in Cat(B) such that 𝑓 is fully faithful and admits a left adjoint
𝑙, then the pushout of 𝑙 along 𝑘 defines a left adjoint of 𝑔.
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Proof. Let 𝑙 ∶ D → C be the left adjoint of 𝑓 and let 𝜂∶ Δ1 ⊗ D → D be the

adjunction unit. We define 𝑙′ ∶ F → E to be the pushout of 𝑙 along 𝑘. Consider
the commutative diagram

Δ1 ⊗ E Δ1 ⊗ F F

Δ1 ⊗ C Δ1 ⊗ D D

E F E

C D C

id⊗𝑔

𝑠0

𝑠0⊗𝑔

𝜂′

𝑠0⊗id

𝑙′
id⊗𝑓

𝑠0

id⊗ℎ id⊗𝑘
𝑠0⊗id

𝑘

𝑔 𝑙′

ℎ
𝑓

𝜂

𝑘
𝑙

𝑙

ℎ

which is constructed as the left Kan extension of its solid part. Since 𝜂 ∘ (𝑑1 ⊗ id)
is equivalent to the identity and 𝜂 ∘ (𝑑0 ⊗ id) is equivalent to 𝑓 𝑙, the same must

be true when replacing 𝜂 by 𝜂′ and 𝑓 𝑙 by 𝑔𝑙′. In other words, 𝜂′ encodes a map

id → 𝑔𝑙′. The two squares in the back of the above diagram now precisely express

the two conditions that 𝜂′𝑘 and 𝑙′𝜂′ are equivalences. Using Corollary 3.1.4.3,

this shows that 𝑙′ is left adjoint to 𝑔.

A priori, the ∞-category Δ+ need not be a 1-category, so it is not clear that this

definition recovers the usual marked simplex 1-category (which can be defined

as the homotopy 1-category of Δ+, i.e. as the pushout Δ ⊔Δ1 Δ2 in Cat1). The

main goal of this appendix is to show that this is nonetheless the case.

Proposition A.1.0.3. The ∞-category Δ+ is a 1-category.

To show Proposition A.1.0.3, note that since + ∈ Δ+ is the only object that

is not contained in the essential image of the inclusion 𝜄 ∶ Δ ↪→ Δ+, it suffices

to show that the two functors mapΔ+
(+, −) and mapΔ+

(−, +) take values in sets.

Furthermore, by making use of the adjunctions ♭ ⊣ 𝜄 and 𝜄 ⊣ ♯, there are

equivalences

mapΔ+
(𝜄⟨𝑛⟩, +) ≃ mapΔ(⟨𝑛⟩, ⟨1⟩)

mapΔ+
(+, 𝜄⟨𝑛⟩) ≃ mapΔ(⟨0⟩, ⟨𝑛⟩)
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for all 𝑛 ≥ 0. Consequently, we only need to show that mapΔ+
(+, +) is a set.

We will do so by explicitly constructing a simplicial model of this ∞-groupoid

using the approach via necklaces due to Dugger and Spivak [22]. We will review

the Dugger-Spivak model in Appendix A.1.1, and we will use it to compute the

mapping ∞-groupoid mapΔ+
(+, +) in Appendix A.1.2

A.1.1. The Dugger-Spivak model for mapping ∞-groupoids

A necklace is defined to be a simplicial set 𝑇 of the form

𝑇 = Δ𝑛0 ∨ ⋯ ∨ Δ𝑛𝑘

with 𝑛𝑖 ≥ 0 and where in each wedge the final vertex of Δ𝑛𝑖 has been glued to

the initial vertex of Δ𝑛𝑖+1 . Note that in the case 𝑛𝑖 = 1 for all 𝑖 = 0, … , 𝑘, the
above necklace is precisely the 𝑘-spine 𝐼 𝑘. Every necklace is naturally bi-pointed

by its initial and final vertex and will therefore be regarded as an object in the

1-category (SetΔ)𝜕Δ1/. We let Nec be the full subcategory of (SetΔ)𝜕Δ1/ that is

spanned by the necklaces. Now if 𝑆 is a simplicial set and if 𝑠, 𝑡 ∈ 𝑆 are vertices,

we denote by 𝑆(𝑠,𝑡) the associated bi-pointed simplicial set. The main input to our

proof of Proposition A.1.0.3 is the following theorem:

Theorem A.1.1.1 ([22, Theorem 1.2]). Let 𝑆 be a simplicial set and let 𝑆 → C be a
fibrant replacement in the Joyal model structure on SetΔ. Given two vertices 𝑠, 𝑡 ∈ 𝑆,
the mapping ∞-groupoid map

C
(𝑠, 𝑡) is equivalent to (Nec/𝑆(𝑠,𝑡))

gpd.

Now let 𝐾 be the simplicial set that is defined by the pushout

Δ1 Δ2

Δ 𝐾

𝜎0

𝑑{0,2}

in SetΔ, where we implicitly identify the three 1-categories with their associated

nerves. We will again denote by + the image of {1} ∈ Δ2 in K, and we will

implicitly identify Δ with its image in 𝐾. Any fibrant replacement of 𝐾 in the

Joyal model structure on SetΔ will be a model for Δ+, so that we may regard 𝐾 as

an explicit simplicial model of the marked simplex∞-category. As a consequence,
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by making use of Theorem A.1.1.1, the ∞-groupoid mapΔ+
(+, +) is presented

by the nerve of the 1-category Nec/𝐾(++)
. Proposition A.1.0.3 will thus be an

immediate consequence of the following proposition:

Proposition A.1.1.2. The ∞-groupoid (Nec/𝐾(++)
)gpd is a set.

In order to prove Proposition A.1.1.2, we need to understand the 1-category
Nec/𝐾(++)

in more detail. This is the content of the next section.

A.1.2. Necklaces in the simplicial model of Δ+

By construction, there is a unique non-degenerate edge 𝛼∶ ⟨1⟩ → + in 𝐾 with

codomain +. Similarly, there is a unique non-degenerate edge 𝛽∶ + → ⟨0⟩ in 𝐾
with domain +. Therefore, an arbitrary object 𝑓∶ Δ𝑛0 ∨⋯ ∨ Δ𝑛𝑘 → 𝐾 in Nec/𝐾(+,+)

satisfies exactly one of the two disjoint conditions:

1. for all 0 ≤ 𝑖 ≤ 𝑘, the 𝑛𝑖-simplex 𝜎𝑘 ∶ Δ𝑛𝑘 → 𝐾 factors through +∶ Δ0 → 𝐾;

2. there are indices 0 ≤ 𝑙 < 𝑟 ≤ 𝑘 such that

a) for all 𝑖 < 𝑙 and all 𝑖 > 𝑟 the simplex 𝜎𝑖 ∶ Δ𝑛𝑖 → 𝐾 factors through

+∶ Δ0 → 𝐾,

b) the simplex 𝜎𝑙 ∶ Δ𝑛𝑙 → 𝐾 factors uniquely into a surjection Δ𝑛𝑙 � Δ1

followed by 𝛽∶ Δ1 → 𝐾,

c) the simplex 𝜎𝑟 ∶ Δ𝑛𝑟 → 𝐾 factors uniquely into a surjection Δ𝑛𝑟 � Δ1

followed by 𝛼∶ Δ1 → 𝐾.

We say that an object in Nec/𝐾(++)
is degenerate if it satisfies condition (1), and

non-degenerate otherwise.

Lemma A.1.2.1. There are no maps between a degenerate and a non-degenerate
object in Nec/𝐾(++)

.

Proof. Let us fix a degenerate object 𝑓∶ Δ𝑛0 ∨ ⋯ ∨ Δ𝑛𝑘 → 𝐾 and a non-degenerate

object 𝑔∶ Δ𝑛0 ∨⋯∨Δ𝑛𝑙 → 𝐾. Note that there is always a unique map from 𝑓 to the

degenerate object +∶ Δ0 → 𝐾. Therefore, if there were a map 𝑔 → 𝑓 in Nec/𝐾(+,+)
,

we would in particular obtain a map 𝑔 → +, which would however imply that

560



A.1. The marked simplex ∞-category

𝑔 is degenerate. Conversely, note that if we set 𝑛 = ∑𝑘
𝑖=0 𝑛𝑖, the inclusion of

the spine 𝐼 𝑛𝑖 ↪→ Δ𝑛𝑖 for all 𝑖 = 0, … 𝑘 induces an inclusion 𝐼 𝑛 ↪→ Δ𝑛0 ∨ ⋯ ∨ Δ𝑛𝑘 of

bi-pointed simplicial sets that in turn gives rise to a degenerate object 𝑓 ′ ∶ 𝐼 𝑛 → 𝐾
in Nec/𝐾(+,+)

. Therefore, any map 𝑓 → 𝑔 in Nec/𝐾(+,+)
restricts to a map 𝑓 ′ → 𝑔,

which is clearly not possible as this would imply that the image of 𝑓 ′ in𝐾 contains

objects that are different from +.

As a consequence of Lemma A.1.2.1, there is a decomposition

Nec/𝐾(+,+)
≃ Necdeg/𝐾(+,+)

⊔Necnondeg/𝐾(+,+)

of Nec/𝐾(+,+)
into its degenerate and non-degenerate part. Together with the fact

that the groupoidification functor (−)gpd ∶ Cat∞ → Ani commutes with colimits,

this implies that we may treat the degenerate and the non-degenerate part of

Nec/𝐾(+,+)
separately.

The computation of the groupoidification of Necdeg/𝐾(+,+)
is easy: as observed in

the proof of Lemma A.1.2.1, this category has a final object +∶ Δ0 → 𝐾, which

immediately implies:

Lemma A.1.2.2. There is an equivalence (Necdeg/𝐾(+,+)
)gpd ≃ 1.

In order to compute the groupoidification of Necnondeg/𝐾(+,+)
, on the other hand, we

need one additional step. Recall that we denote by 𝛽∶ Δ1 → 𝐾 the map that picks

out the unique 1-simplex + → ⟨0⟩. We obtain an evident functor

𝛽 ∨ −∶ Nec/𝐾(0,+)
→ Necnondeg/𝐾(+,+)

, (𝑓∶ 𝑇 → 𝐾) ↦ (𝛽 ∨ 𝑓∶ Δ1 ∨ 𝑇 → 𝐾).

Lemma A.1.2.3. The functor 𝛽 ∨ − is homotopy final.

Proof. Let us fix an arbitrary object 𝑓∶ Δ𝑛0 ∨ ⋯ ∨ Δ𝑛𝑘 → 𝐾 in Necnondeg/𝐾(+,+)
. By

Quillen’s theorem A, it suffices to show that the category (Nec/𝐾(0,+)
)𝑓 / admits

an initial object. Recall that we denote by 0 ≤ 𝑙 the largest index such that for

all 𝑖 < 𝑙 the simplex 𝜎𝑖 ∶ Δ𝑛𝑖 → 𝐾 factors through +∶ Δ0 → 𝐾 and such that 𝜎𝑙
factors into a surjection 𝜏∶ Δ𝑛𝑙 � Δ1 followed by 𝛽∶ Δ1 → 𝐾. We may therefore

construct a map

Δ𝑛0 ∨ ⋯ ∨ Δ𝑛𝑘 → Δ1 ∨ Δ𝑛𝑙+1 ∨ ⋯ ∨ Δ𝑛𝑘
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over 𝐾 that sends Δ𝑛𝑖 to the initial object for all 𝑖 < 𝑙, that sends Δ𝑛𝑙 to Δ1 via the

degeneracy map 𝜏 and that acts as the identity on the remaining summands. This

map defines the desired initial object in (Nec/𝐾(0,+)
)𝑓 /.

Proof of Proposition A.1.1.2. By Lemma A.1.2.2, the ∞-groupoid (Necdeg/𝐾(+,+)
)gpd is

a set. By Lemma A.1.2.3, the functor 𝛽 ∨ − induces an equivalence

(Necnondeg/𝐾(+,+)
)gpd ≃ (Nec/𝐾(⟨0⟩,+)

)gpd.

Since the right-hand side is equivalent to mapΔ+
(⟨0⟩, +) by Theorem A.1.1.1, this

is a set as well.

A.2. Locally constant sheaves

This section is devoted to the study of locally constant sheaves in ∞-topoi. For

the entire section, let us fix a compactly generated ∞-category E. Recall that

we write ShE(B) for the tensor product B ⊗ E of presentable ∞-categories. By

applying − ⊗ E to the constant sheaf functor constB ∶ S → B we obtain an

adjunction

(constB ⊣ ΓB)∶ ShE(B) ⇆ E.

Similarly, by applying −⊗E to the adjunction (𝜋∗
𝐴 ⊣ (𝜋𝐴)∗)∶ B/𝐴 ⇆ B for some

𝐴 ∈ B, we obtain an induced adjunction

(𝜋∗
𝐴 ⊣ (𝜋𝐴)∗)∶ ShE(B/𝐴) ⇆ ShE(B).

Furthermore, if there is an accessible left exact localisation 𝐿 ⊣ 𝑖∶ PSh(C) → B

we get an induced localisation 𝐿E ⊣ 𝑖E ∶ PShE(C) → ShE(B).

Definition A.2.0.1. Let us fix the following terminology:

1. We call constB(𝐾) the constant sheaf associated to 𝐾 ∈ E. The objects in

the essential image of constB are called constant E-valued sheaves.

2. We call an E-valued sheaf 𝐹 constant with compact values if it is of the form

constB(𝐾) for some compact object 𝐾 ∈ E.
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3. An E-valued sheaf 𝐹 is locally constant if there is a cover (𝜋𝐴𝑖
)∶ ⨆𝑖 𝐴𝑖 � 1

in B such that for every 𝑖 the E-valued sheaf 𝜋∗
𝐴𝑖
𝐹 ∈ ShE(B/𝐴𝑖

) is constant.

4. We call an E-valued sheaf 𝐹 locally constant with compact values if we can

find a cover (𝑠𝑖)𝑖 ∶ ⨆𝑖 𝐴𝑖 � 1 in B such that 𝑠∗𝑖 𝐹 is constant with compact

values.

5. We denote by LConstE(B) the full subcategory of ShE(B) spanned by the

locally constant sheaves, and by LConstEcpt(B) the full subcategory spanned

by the locally constant sheaves with compact values.

The key result that we will show in this section is the following:

Proposition A.2.0.2. Suppose that 𝐿∶ PSh(C) → B is a left exact and accessible
localisation, and let 𝐹 be an E-valued presheaf on C. Then for any 𝑐 ∈ C and
any map 𝐾 → 𝐿E𝐹(𝑐) there is a collection of morphisms (𝑠𝑖 ∶ 𝑐𝑖 → 𝑐)𝑖∈𝐼 in C

such that (𝐿𝑠𝑖)∶ ⨆𝑖 𝐿(𝑐𝑖) � 𝐿(𝑐) is a cover in B and for any 𝑖 ∈ 𝐼 the composite

𝐾 → 𝐿E𝐹(𝑐)
𝑠∗𝑖
−−→ 𝐿E𝐹(𝑐𝑖) factors as a composite 𝐾

𝑚𝑖
−−→ 𝐹(𝑐𝑖)

𝜀𝐹(𝑐𝑖)
−−−−→ 𝐿E𝐹(𝑐𝑖) for some

𝑚𝑖 ∶ 𝐾 → 𝐹(𝑐𝑖).

As an immediate consequence we obtain the following:

Corollary A.2.0.3. Let 𝑓∶ constB(𝐾) → constB(𝑀) be a morphism in ShE(B)
where 𝐾 is compact. Then there is a cover (𝜋𝐴𝑖

)∶ ⨆𝑖 𝐴𝑖 � 1 in B and maps
𝑓𝑖 ∶ 𝐾 → 𝑀 in E for each 𝑖 such that 𝜋∗

𝐴𝑖
𝑓 is equivalent to constB/𝐴𝑖

(𝑓𝑖).

Proof. We may pick a left exact accessible localisation 𝐿∶ PSh(C) → B where C

has a final object 1. The morphism 𝑓 corresponds to a map

̃𝑓 ∶ 𝐾 → Γ constB(𝑀) = constB(𝑀)(1).

By Proposition A.2.0.2 we may now find a covering (𝜋𝐿𝑐𝑖)∶ ⨆𝑖 𝐿(𝑐𝑖) � 1 and

commutative squares

𝑀 = 𝑀(𝑐𝑖) constB(𝑀)(𝑐𝑖)

𝐾 constB(𝑀)(1)
̃𝑓

𝜋∗
𝐿𝑐𝑖𝑚𝑖
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where 𝑀 denotes the constant 𝑀-valued presheaf. Let 𝑓𝑖 = constB(𝑚𝑖). Then the

above square translates to the statement that 𝜋∗
𝐿𝑐𝑖(𝑓𝑖) is equivalent to constB/𝐿𝑐𝑖

(𝑓𝑖),
and the claim follows.

Corollary A.2.0.4. The full subcategory LConstEcpt(B) ↪→ E ⊗B is closed under
finite colimits and retracts.

Proof. We start by showing the claim about finite colimits. Since LConstEcpt(B)
contains the final object it suffices to see that it is closed under pushouts. So

let us consider a span 𝐹 ← 𝐺 → 𝐻 in LConstEcpt(B). We may pass to a cover in

B to assume that 𝐹 , 𝐺 and 𝐻 are constant. Thus by Corollary A.2.0.3 we may

further pass to a cover so that we can assume that the span above is given by

applying constB to a span in Ecpt. So the claim follows since Ecpt is closed under

finite colimits and constB preserves finite colimits. The proof that LConstEcpt(B)
is closed under retracts proceeds in the same way.

In order to prove Proposition A.2.0.2, we first need to treat the special case

where E = Ani and 𝐾 = 1:

Lemma A.2.0.5. Let 𝐹 ∈ PSh(C) and let 𝑓∶ 1 → 𝐿𝐹(𝑐) be a map for some
𝑐 ∈ C. Then there is a collection of morphisms (𝑠𝑖 ∶ 𝑐𝑖 → 𝑐)𝑖∈𝐼 in C such that
(𝐿𝑠𝑖)∶ ⨆𝑖 𝐿(𝑐𝑖) � 𝐿(𝑐) is a cover inB and maps 𝑚𝑖 ∶ 1 → 𝐹(𝑐𝑖) for each 𝑖 such that
𝑠∗𝑖 𝑓 is equivalent to the composite

1
𝑚𝑖
−−→ 𝐹(𝑐𝑖)

𝜀𝐹(𝑐𝑖)
−−−−→ 𝐿𝐹(𝑐𝑖).

Proof. We pick a cover (𝑡𝑗)∶ ⨆𝑗 𝑑𝑗 � 𝐹 in PSh(C). Consider the pullback square

⨆𝑗 𝐴𝑗 ⨆𝑖 𝑑𝑗

𝑐 𝐿𝐹
𝑓

in PSh(C). Covering each 𝐴𝑗 ∈ PSh(C) with representables 𝑐𝑗𝑘 then yields the

desired collection of maps (𝑠𝑗𝑘)∶ ⨆𝑗,𝑘 𝑐
𝑗
𝑘 � 𝑐.
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To reduce the general case to the above lemma we use the ideas of [30, § 2].

Indeed, the fact that E is by assumption compactly generated means that we may

identify E with Funlex((Ecpt)op,Ani). Consequently, we obtain an equivalence

ShB(E) ≃ Funlex((Ecpt)op,B).

In light of these identifications, the adjunction 𝐿E ⊣ 𝑖E ∶ PShE(C) → ShE(B)
translates into the adjunction Funlex((Ecpt)op, PSh(C)) ⇆ Funlex((Ecpt)op,B)
that is obtained by postcomposition with 𝐿 ⊣ 𝑖. An analogous observation shows

that for 𝑐 ∈ C the evaluation functor evE𝑐 ∶ ShE(B) → E is equivalent to the

functor

ev𝑐,∗ ∶ Funlex((Ecpt)op,B) → Funlex((Ecpt)op,Ani)

given by composing with ev𝑐 ∶ B → Ani.

Proof of Proposition A.2.0.2. Since𝐾 is compact, the preceding discussion together

with Yoneda’s lemma allows us to identify 𝐾 → 𝐿E𝐹(𝑐) with a map

𝑓∶ 1 → 𝐿E𝐹(𝑐)(𝐾) ≃ 𝐿(𝐹(𝐾))(𝑐).

Therefore we are in the situation of Lemma A.2.0.5 and get a collection of mor-

phisms (𝑠𝑖 ∶ 𝑐𝑖 → 𝑐)𝑖∈𝐼 in C such that (𝐿𝑠𝑖)∶ ⨆𝑖 𝐿(𝑐𝑖) � 𝐿(𝑐) is a cover in B and

maps 𝑛𝑖 ∶ 1 → 𝐹(𝐾)(𝑐) such that for each 𝑖 we have a commutative square

𝐹(𝐾)(𝑐𝑖) 𝐿(𝐹(𝐾))(𝑐𝑖)

1 𝐿(𝐹(𝐾))(𝑐).
𝑓

𝑠∗𝑖𝑛𝑖

Via Yoneda’s lemma the maps 𝑛𝑖 now yield the desired maps 𝑚𝑖 ∶ 𝐾 → 𝐹(𝑐𝑖).
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