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Abstract 
 
 
This report concerns the use of snow storage information to improve hydropower scheduling. More 
specifically, a technique for embedding snow storage information in the stochastic dual dynamic 
programming (SDDP) is presented and numerically tested in the ProdRisk scheduling model. Snow 
storage information is applied as an exogenous state variable that can partly explain the inflows to 
hydropower reservoirs and plants. 
 
Three case studies representing different hydropower systems in Norway are used as test cases. Results 
show that the use of snow storage improves the scheduling in all cases, leading to better economic 
performance, more power production, and less spillage.    
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Sammendrag 
 
Denne rapporten omhandler bruk av informasjon om lagret snø for å forbedre vannkraftplanleggingen. 
Mer spesifikt er en teknikk for å legge inn snøinformasjon i stokastisk dual dynamisk programmering 
(SDDP) presentert og numerisk testet i ProdRisk-planleggingsmodellen. Informasjon om snølager brukes 
som en eksogen tilstandsvariabel som delvis kan forklare tilsigene til vannkraftmagasiner og 
kraftstasjoner. 
 
Tre casestudier som representerer ulike vannkraftsystemer i Norge brukes som testcase. Resultatene 
viser at bruk av snøinformasjon forbedrer planleggingen i alle tilfeller, noe som fører til mer økonomisk 
drift, mer kraftproduksjon og mindre flom. 
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1 Introduction 
 
1.1 Background 
 
Precipitation to hydropower catchment areas in the Nordic countries comes in the form of rain or snow. 
In areas with colder climates, precipitation may come solely as snow during the winter period. This snow 
accumulates, often referred to as snow storage (or snowpack). This storage cannot be used immediately 
for hydropower production but holds potential energy that should be accounted for when considering 
future production. Thus, including information about snow storage in the hydropower scheduling 
process will likely lead to better informed decision making.  
 
This work was carried out as a part of the HydroCen research center, associated with work package 3.4 
on environmental constraints. Previous research in this work package has focused on reservoir 
constraints [1] [2] [3] and ramping constraints [4] [5] constraints. This work was carried out in the 
project’s final phase and serves to shed light on the representation of snow storage in hydropower 
scheduling models. In particular, we investigate possibilities for including snow storage information in 
the stochastic dual dynamic programming algorithm applied in the model ProdRisk. 
 
We will not go into detail about the inflow modeling in ProdRisk here. Ther reader is referred to older [6] 
and newer [7] documents addressing the inflow model in ProdRisk for further information.  
 
 
1.2 Context 
 
A key task within hydropower scheduling is to valuate water resources. This is typically carried out 
in medium-term scheduling models, where ProdRisk [8] and EOPS are examples of such models used 
in the Nordic countries. Water valuation should be carried out in lieu of the many uncertainties that 
impact future market prices and availability of water resources.  
 
Inflow to the hydropower system is a key uncertainty that needs to be well represented in the 
scheduling. By the term inflow we refer to water (or energy) entering the reservoir (or power 
station) to be used for power production. 
 
Existing scheduling tools use a combination of historical inflow statistics and statistical models to 
represent inflow stochasticity. Inflow prognoses are based on the statistical properties of historical 
records, possibly adjusted for climatic changes. Snow storage provides additional information about 
future inflow. Given that information about the snow storage is available, future inflow will consist 
of a known part (melted snow storage) and an unknown part (future inflow). During the winter an 
increasing part of the spring flood consists of the known snow storage that accumulates, and a 
decreasing part from the unknown future inflow. Uncertainty in the spring flood prognosis is 
therefore continuously reduced as the snow storage builds up during wintertime. This is illustrated 
in Figure 1. 
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Figure 1 Illustration of how uncertainty in spring flood prognosis is reduced during the snow stor-
age accumulation period. [EOPS manual]. 

 
Knowledge about snow storage impacts our expectation about future inflow. For this reason, snow stor-
age, if known, should be considered as part of the system state in hydropower scheduling.    
 
 
1.2.1 Application of Snow Storage Information 
 
When applying ProdRisk for operational planning, in so-called parallel mode, snow storage information 
is normally used for spring flood prognosis, covering the first part of the scheduling horizon, as illustrated 
in Figure 2. The inflow forecast is therefore adjusted according to snow information for the first part of 
the scheduling horizon, i.e., until the end of the melting season.  
 
For the remaining part of the scheduling horizon, ProdRisk fully relies on the historical inflow scenarios 
(forward simulation) and stochastic model (backward recursion).  Water values are therefore based on 
the current information of snow storage, but not the long-term correlations between inflow and snow 
storage. If used for investment studies, in so called serial mode, snow storage information is not used at 
all in ProdRisk. 
 
This work presents and tests an approach for adding snow storage information as an exogenous expla-
nation to inflow over the entire scheduling horizon shown in Figure 2. Since snow storage must be as-
sumed to be a known system state in the operational planning, it is reasonable to use this information in 
the longer-term planning, if available. Using this information will serve to reduce uncertainty in the inflow 
estimates and may thus improve the scheduling.   

Inflow uncertainty

Time

Relative uncertainty

1.0

0.0

Explained by snow storage
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Figure 2 Illustration of the scheduling horizon and the use of inflow/snow forecast. Illustration of 
reservoir trajectories (percentiles) for a four-year scheduling horizon. 

 
 
1.3 Statistics 
 
The energy content of snow in Norway is shown in Figure 3, measured in TWh for the years 1958-
2022. Snow storage accumulates until the melting season in spring. In the melting season 
(approximately week 15-35), snow storage gradually transforms to inflow that can be used for 
energy production. Although the seasonal pattern is predictable, the annual trajectories shown in 
Figure 3 show significant uncertainty in snow storage prior to the melting period, as well as the 
beginning and end of the melting period. 
 
The snow storage information in Figure 3 can be seen together with information about inflow in 
Norway Figure 4. For each inflow scenario one can find (or estimate) a corresponding snow scenario 
for a specific catchment area.  
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Figure 3 Snow storage per week for years 1958-2022. Scenarios in grey, mean value in red. 
[https://www.nve.no/energi/analyser-og-statistikk/hydrologiske-data-til-kraftsituasjonsrappor-
ten/] 

 

 
Figure 4 Inflow in Norway, derived from an EMPS dataset. Scenarios in grey, mean value in red.  
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1.4 Literature Review 
 
This review targets known methodologies that have been applied in the scheduling of hydropower 
systems and focuses on the use of snow storage information within those.  
 
 
1.4.1 Stochastic Dynamic Programming 
 
Short Description 
The dynamic programming (DP) was formally introduced by [9]. In DP one approaches the overall 
problem by decomposing the multistage decision-making problem into single-stage problems, 
which are then solved recursively. DP can accommodate both uncertainty and correlations in time 
in the hydrologic input by adding a hydrologic variable to the state space vector. The resulting 
stochastic dynamic programming (SDP) formulation, often referred to as a Markov decision process, 
may explicitly consider the streamflow lag-1 correlation found in the inflow records. A key challenge 
with SDP is that all state variables need to be discretized, and consequently the “curse of 
dimensionality” leads to unacceptable computation times for systems with many state variables. 
Typically, both reservoir volumes and inflows are considered state variables. 
 
To better capture the complex temporal and spatial correlations of streamflow processes the 
sampling stochastic dynamic programming algorithm (SSDP) was presented in [10]. Unlike SDP, SSDP 
follows inflow scenarios when computing the strategy (water values). Similar to SDP, SSDP is also 
limited by the “curse of dimensionality”.  
 
Review 
The documents [11] and [12] describe the applied technique for including snow storage as a state 
in the water value calculation in the EMPS model, which is based on a variant of SDP. The snow 
storage state is discretized, and the snow storage state is only used in weeks where it provides a 
significant (correlation larger than 0.5) explanation of future inflow. The algorithm is iterative in the 
sense that water values without snow information are computed first, followed by a re-computation 
for weeks where the snow information significantly explains future inflow. 
 
A model based on SDP with a hydrological state variable including snow storage information was 
presented in [13]. The added state variable is motivated by the concept of temporal persistence. 
The authors warn that the use of additional hydrological state variables does not always add value, 
as it affects both the description of hydrological processes and the predictive information available 
in making release decisions. The importance of including snow storage was found to depend heavily 
on the objective function, increasing importance with increasing water and firm-power targets.  
 
In [14] it is explained how the inclusion of a hydrologic variable in stochastic and dynamic 
formulations of the hydropower scheduling problem allows incorporation of information about the 
state of the hydrologic process. Examples are SDP where inflow from the previous stage is a 
hydrologic state variable and SSDP where the state variable is a forecast of the total inflow towards 
the end of the planning horizon. The authors use a combination of snow storage and soil moisture 
to capture temporal persistence not explained by the traditional inflow model and uses this variable 
in an SSDP model to find the probabilities of switching from one inflow scenario to another.  
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In [15] compares an SDP model with three different representations of the hydrological state: inflow 
in PAR(1), inflow in PAR(5), and snow water equivalent (SWE). The latter proved to be most 
successful in their case study. 
 
 
1.4.2 Stochastic Dual Dynamic Programming 
 
Short Description 
The uncertainty in a multi-stage stochastic decision-making process can be described by a scenario 
tree, leading to the formulation of a stochastic optimization problem. Such problems can be solved 
by decomposition, such as the multi-stage Benders decomposition (MSBD) algorithm [16] for 
stochastic linear programming problems. In a similar fashion to SDP, the decision-making problems 
are divided in single-stage problems that are solved iteratively, but unlike SDP the state variables 
remain continuous, thus circumventing the state of dimensionality. The key challenge with MSBD 
applied to hydropower scheduling is however the size of the scenario trees needed to cover the 
panning horizon. To deal with this challenge, a sampling-based variant of MSBD known as stochastic 
dual dynamic programming (SDDP) was presented in [17]. SDDP efficiently “collapses” the scenario 
tree by sampling [18] and cut sharing [19].  
 
SDDP inflow uncertainty is usually modeled using statistical time-series models belonging to the 
family of periodic autoregressive (PAR) models. As the state variables are continuous in SDDP, the 
stochastic inflow model may be formulated as PAR(p) (of order p). In SINTEFs SDDP-based model 
ProdRisk a PAR(1) model has been found to be appropriate. In contrast, a higher order model is used 
in the NEWAVE model applied in Brazil [20]. As the inflow model carries information about the state, 
it should be linear (or at least convex) to meet the convexity requirement of SDDP.     
 
 
Review 
Exogenous hydrological variables were added to the SDDP model in [21]. The endogenously defined 
reservoir inflows are seen as dependent on exogenous hydrological state variables, and not the 
other way around, motivating the proposed SDDPX model. X represents the exogenous input to the 
inflow model, going from MPAR(p) to MPARX(p,b), where b is the order of exogenous variables. In 
a case study snow storage and winter precipitation were considered exogenous variables. 
 
A different approach was followed in [22] where a periodic autoregressive moving average (PARMA) 
model was introduced in SDDP. The additional moving average component of PARMA models over 
PAR allows a more complex correlation structure and thus provides a deeper memory of the inflow 
process. It is briefly mentioned that the moving average component could potentially capture 
contributions from snowmelts. 
 
 
1.4.3 Others 
 
Review 
The work in [23] models snow storage explicitly as an additional upstream storage to the reservoir 
and solves the scheduling problem as a stochastic optimization problem by use of multi-stage 
Benders decomposition. For this purpose, input data classified as “inflow” is split into “rain” and 
“snow”. However, it is not clear from the presentation how data for “rain” and “snow” were 
obtained. The author demonstrates that the modeling of snow storage reduces uncertainty in future 
inflow.   
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In [24] the benefit for the system of including snow storage information was investigated by use of 
the fundamental market model FanSi. FanSi is described in detail in [25] and can be characterized 
as a rolling-horizon simulator, repeatedly solving two-stage stochastic optimization problems by use 
of Benders decomposition. The experiments are run under the assumption that simultaneous time-
series for snow storage and inflow are available. Typically, observed time series for snow storage do 
not exist, but it is possible to generate such series from, e.g., an HBV-type model based on observed 
inflows, temperatures, and precipitation. The procedure involves i) estimating the correlation 
between normalized snow storage and average accumulated inflow until the last week of the snow-
melting period, and ii) adjusting inflows in second-stage scenarios according to snow state and the 
estimated correlation. Historical time series for snow storage were provided by NVE. Results show 
that generation increases, and spillage decreases with use of snow information.   
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2 Modeling Approach 
 
In the context of SDDP, the SDDPX modeling approach reviewed in Section 1.4.2 is appealing in the 
ease of including snow storage information as part of the stochastic inflow model and the state 
space in SDDP. 
 
Although not explicitly stated in [21], the inclusion of exogenous information can be done in any 
SDDP model (likely) without further implementation effort, as will be elaborated below. Increasing 
the state space with exogenous information does not increase computational complexity much. For 
example, the algorithmic structure and the number of decision variables in the stage-problems are 
not affected.  
 
The modeling approach presented in the following is very similar to [21], but we will emphasize the 
integration and use within the ProdRisk model. 
 
 
2.1 Mathematical Description 
 
The existing inflow model used in ProdRisk follows a PAR(1) formulation: 
 
 1t p t tz zφ ε−= +  (1) 

Where tz is a vector of normalized inflows for week t, pφ the correlation matrix for period p, and tε
is the vector of white noise for week t. 
 
Assume that time series for inflow and SWE for the same sites are available. We simply extend the 
dimensionality of (1) to include both inflow and SWE time series. That is, the PAR(1) estimated pa-
rameters ( pφ and tε ) are based on both the inflow and snow time series. 
 
Consider a single-reservoir system with a corresponding inflow (i) and snow (s) time series. The 
PAR(1) model then becomes:  
 

 
, , 1 , ,, ,

, ,, , 1 , ,

i t i t i t i tii p is p

si p ss ps t s t s t s t

z z
z z

ε µφ φ
φ φ ε µ

−

−

        
= × + ←        
        

 (2) 

 
Where µ are the dual values to be used in Benders cuts. 
 
Normalized inflow can be expressed as: 
 i, , , 1 1 i, ,,st ii p i tis tt pz z zφ εφ− −= + +  (3) 
 
The second term (red color) shows how the snow storage information ( , 1s tz − ) impacts the inflow 

according to the correlation ( ,is pφ ) between inflow and snow storage in the current week. As we 
shall see later, this correlation is notable in the melting period. 
 
Normalized snow storage can be expressed as:  
 , , , 1 1 i,, ,ss t si p i tss tt pz z zφ εφ− −= + +  (4) 
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The snow storage has a high autocorrelation ( ,ss pφ ) in the winter season when snow is accumulated. 
 
The Benders cuts comprise state information related to the reservoir volume( v  with coefficient cπ
), the normalized inflow ( , 1i tz − with coefficient i,cµ ), and the normalized snow storage ( , 1s tz − with 

coefficient ,s cµ ). 

 ( ) ( )i, , , 1 , , 11 , , , 1,is p s t cts c ss p st c c ii p i t si tiv z zz zα µ µ φφ φπ φ β− − −−− − + − + ≤  (5) 

  
We observe the following from the above expressions: 

- [red]: Snow storage information explains the inflow in the current week which in turn enters 
the reservoir balances of the optimization problem. A high snow storage will increase the 
inflow in the current week and impact the expectation for the future inflow positively, due 
to inflow autocorrelation.  

- [blue]: Autocorrelation in snow storage provides an important recursive contribution, car-
rying the value of a high snow storage from the melting season backwards in time towards 
the winter season.  

  
 
2.2 Statistical Investigations 
 
From Section 2.1 we realized that the correlation between inflow and snow storage for a specific week 
and the snow autocorrelation both add to the impact of snow information on hydropower scheduling 
results. These correlations are studied for a selected set of hydropower sites in the following. These sites 
are later used as case studies in Section 3.  
 

- Bergsdalen, using inflow and snow storage time series for Bulken, marked (1) in Figure 5. 
- Lysebotn, using inflow and snow storage time series for Jogla, marked (2) in Figure 5. 
- Rjukan, using inflow and snow storage time series for Kvenna, marked (3) in Figure 5. 

 
Data obtained from NVE covers the years 1958-2022. 
 

 
Figure 5 Location of inflow sites (Map obtained from https://atlas.nve.no/). 

https://atlas.nve.no/
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Time series of inflow and snow storage (snow water equivalent) for the 3 sites are presented in Figure 6, 
Figure 7,  and Figure 8. 
 
 

  
Figure 6 Inflow (left) and snow storage (right) for Bulken. 

 
Figure 7 Inflow (left) and snow storage (right) for Jogla. 
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Figure 8 Inflow (left) and snow storage (right) for Kvenna. 

 
Inflow and snow storage data clearly differ for the three metering stations. Whereas Bulken and Jogla 
are located at modest altitudes where inflow may be significant throughout the year, Kvenna is located 
at a higher altitude where precipitation primarily comes as snow at wintertime.  
 
Correlations between snow storage and inflow per week is shown in Figure 9. These correlations indicate 
how much of the current week’s inflow can be explained by the prevailing snow storage. It makes sense 
that these correlations are higher in the melting season. From inspection of the snow storage profiles 
and the correlations in Figure 9, it is reasonable to define a snow melting season as follows: 
 
Table 1 Definition of snow melting seasons. 

SERIES NAME START WEEK  END WEEK 
BULKEN 20 35 
JOGLA 18 32 
KVENNA 22 35 
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Figure 9 Correlation between snow storage and inflow. 

 
The correlation between snow storage and accumulated inflow towards the end of the melting season is 
plotted in Figure 10. As one approaches the melting season, a gradually higher share of the accumulated 
inflow till the end of the melting season is explained by snow storage. This point was also illustrated in 
Figure 1.   
 
The three sites show similar pattern in that the correlation gradually increases towards the melting sea-
son. Since melting starts later for Kvenna, the correlation peaks later and at a higher value than the other 
two. 
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Figure 10 Correlation between snow storage and accumulated inflow towards the end of the melt-
ing season.  

 
 
2.3 Adding Snow Information in ProdRisk 
 
Assume availability of historical records for both inflow and snow storage for the relevant metering sta-
tions needed to schedule the operation of a given hydropower system. We seek to use the snow storage 
information to better predict the inflow, and thus improve the scheduling. Snow storage thus becomes 
an exogenous variable which serves the sole purpose of explaining inflow. Although snow storage has no 
direct representation in the optimization problems formulated in the ProdRisk SDDP-algorithm, it can 
serve as an exogenous state variable with a strong autocorrelation which explains parts of the inflow 
through melting (shown in Figure 9). 
 
In the following we present a practical way of turning the SDDP model in ProdRisk an SDDPX model, with 
similar properties to [21]. Although our focus is snow storage as an exogenous state in this work, we 
underline that this approach is valid for other exogenous states that could explain the inflow. 
 
Consider a hydropower system as illustrated in Figure 11, comprising hydropower modules (reservoir 
and plant) connected to form a cascade. Each module may have its own regulated (to reservoir) and/or 
unregulated (to plant) inflow, according to an individual or shared time series of inflow obtained from a 
metering station. At start-up ProdRisk will identify the number of inflow time series being used and set 
up the PAR(1) formulation discussed in Section 2.1.  
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Figure 11 Illustration of modeling technique. 

 
In addition to these inflow time series, we now introduce one or more snow-storage time series in Pro-
dRisk. This can be done by adding one extra dummy module per times series of snow storage, as illus-
trated by the module named Snowfall in Figure 11. This module is giving a small reservoir volume, to 
avoid being treated as a reservoir state variable, and a power station with zero capacity. The sole purpose 
is to read the snow storage time series and embed it into the PAR(1) inflow model, as shown mathemat-
ically in Section 2.1.  
 
The computationally complexity of the computer model will not increase much, since now new variables 
or constraints are added to the decomposed optimization problems per decision stage. However, a new 
state variable (the snow storage) is added which may impact overall convergence properties. 
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3 Computational Experiments 
 
Three hydropower systems were selected as study cases. ProdRisk V10 was run on all cases. The param-
eterization of the inflow model followed three seasons: before, during, and after the snow melting sea-
sons, according to definitions in Table 1. 
 
For all three cases we used inflow data obtained from the NVE website1 and snow data obtained in cor-
respondence with NVE.  
 
The same case matrix was used for all cases:  

- Base-1ses – Similar to default ProdRisk use, e.g., with inflow model parameter estimates per 
year and without snow storage. 

- Base-3ses – With inflow model parameter estimates per season, but without snow storage. 
- Snow-1ses – With inflow model parameter estimates per year and with snow storage. 
- Snow-3ses – With inflow model parameter estimates per season and with snow storage. 

 
All cases where run in parallel mode (defined initial state) and head optimization was not considered. 
 
 
  

 
1 https://www.nve.no/vann-og-vassdrag/hydrologiske-data/historiske-data/historiske-vannfoeringsdata-til-
produksjonsplanlegging/  

https://www.nve.no/vann-og-vassdrag/hydrologiske-data/historiske-data/historiske-vannfoeringsdata-til-produksjonsplanlegging/
https://www.nve.no/vann-og-vassdrag/hydrologiske-data/historiske-data/historiske-vannfoeringsdata-til-produksjonsplanlegging/
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3.1 Bergsdalen 
 
The Bergsdalen system was modelled using 4 hydropower modules, comprising two larger reservoirs 
(Torfinnsvatn and Hamlagrøvatn) and one major downstream power plant (Dale). The inflow to all res-
ervoirs in the system was defined to follow the statistical properties of the Bulken inflow series. In addi-
tion, we model a separate snow storage using the Bulken time series for snow storage. An illustration of 
the system topology with the additional snow storage module is shown in Figure 12. 
 

 
Figure 12 Topology of Bergsdalen system. 

 
 
3.1.1 Inflow Model 
 
First, we study the parameters estimated for the PAR(1) model constructed by ProdRisk. Correlation ma-
trices per case and per season are presented in Table 2. Some observations that are relevant for the 
following analyses: 

- The inflow autocorrelation shows a non-negligible seasonal variation. 
- The inflow autocorrelation in Base-3ses differs significantly from Snow-3ses in the melting sea-

son.  
- Cross-correlation between snow and inflow (snow explaining inflow in a given week) is signifi-

cantly higher in the melting period in case Snow-3ses. 
 

 
Table 2 Correlation matrices for Bergsdalen. 

Base-1ses 
 Weeks 1-19 Weeks 20-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.5379 - 0.5379 - 0.5379 - 
Snow - - - - - - 

Base-3ses 
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 Weeks 1-19 Weeks 20-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.5701 - 0.5814 - 0.4620 - 
Snow - - - - - - 

Snow-1ses 
 Weeks 1-19 Weeks 20-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.4851 0.1490 0.4851 0.1490 0.4851 0.1490 
Snow 0.0282 0.9325 0.0282 0.9325 0.0282 0.9325 

Snow-3ses 
 Weeks 1-19 Weeks 20-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.5409 0.0980 0.4194 0.3220 0.4416 0.0718 
Snow 0.0155 0.9882 -0.0343 1.0102 0.0766 0.8199 

 
 
As a test of the PAR(1) inflow model’s ability to capture the correlation between snow storage and accu-
mulated inflow in Bergsdalen/Bulken, we sampled 1000 scenarios of inflow and snow storage using the 
PAR(1) and compared the computed correlation with that reported using observed data in Figure 10. The 
result is shown in Figure 13. The results show that correlations found in the sampled series follow the 
observed patterns, although underestimated. 
 

 
Figure 13 Observed and simulation correlation between snow storage and accumulated inflow for 
Bergsdalen/Bulken. 

 
 
3.1.2 Simulation Results 
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The system was run in parallel mode with a scheduling horizon of 156 weeks, using 53 inflow and snow 
storage scenarios. The expected values for net profit, spillage and production are presented in Table 3. 
 

Table 3 Performance indicators for Bergsdalen. 

 Base-1ses Base-3ses Snow-1ses Snow-3ses 
Exp. net profit [MNOK] 66.9 66.8 67.2 67.4 
Exp. spillage [GWh] 103.4 103.8 83.3 82.6 
Exp. production [GWh] 3124.4 3123.1 3143.2 3137.9 

 
 
The simulated reservoir trajectories for Hamlagrøvatn and Torfinnsvatn are shown in Figure 14 and Fig-
ure 15, respectively, for cases Base-3ses and Snow-3ses. Trajectories differ only marginally, e.g., with 
Snow-3ses being more careful towards the top of the reservoir for Torfinnsvatn.  
 
 

 
Figure 14 Reservoir trajectories for Hamlagrøvatn, for Base-3ses (left) and Snow-3ses (right). 

 

 
Figure 15 Reservoir trajectories for Storfinnsvatn, for Base-3ses (left) and Snow-3ses (right). 
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The strategy computed in Snow-3ses clearly motivates less spillage, as shown from the simulated results 
for the sum system in Figure 16. 

 
Figure 16 Spillage for the sum system presented as a duration curve sorted according to results 
from the case Base-3ses. 

 
Cut coefficients for the Hamlagrøvatn reservoir for cases Base-3ses and Snow-3ses are presented in Fig-
ure 17. The figure presents the 5% highest and 5% lowest values of the duration curves for all cut coeffi-
cients generated during ProdRisk runs for cases Base-3ses (black) and Snow-3ses (red). We observe that 
coefficients are lower when considering snow storage information in the high end of the duration curve 
and the opposite in the low end.  
 

 
Figure 17 Cut coefficients for Hamlagrøvatn, showing tails of duration curve. 
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3.2 Lysebotn 
 
The Lysebotn system was modelled using 6 hydropower modules. It comprises one large reservoir 
(Lyngsvatn) and one major power plant (Lysebotn). 
 
 
3.2.1 Inflow Model 
 
The inflow to all reservoirs in the system was defined to follow the statistical properties of the Jogla 
inflow series. In addition, we model a separate snow storage using the Jogla time series for snow storage. 
 
Correlation matrices per case and per season are presented in Table 4. Some observations that are rele-
vant for the following analyses: 

- Inflow autocorrelation is significantly higher in the winter/spring season (weeks 1-17) than in 
autumn/winter (weeks 33-52). 

 
 

Table 4 Correlation matrices for Lysebotn. 

Base-1ses 
 Weeks 1-17 Weeks 18-32 Weeks 33-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.4338 - 0.4338 - 0.4338 - 
Snow - - - - - - 

Base-3ses 
 Weeks 1-17 Weeks 18-32 Weeks 33-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.5722 - 0.4824 - 0.2899 - 
Snow - - - - - - 

Snow-1ses 
 Weeks 1-17 Weeks 18-32 Weeks 33-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.4118 0.1195 0.4118 0.1195 0.4118 0.1195 
Snow -0.0031 0.8873 -0.0031 0.8873 -0.0031 0.8873 

Snow-3ses 
 Weeks 1-17 Weeks 18-32 Weeks 33-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.5609 0.0843 0.3467 0.3109 0.2886 0.0292 
Snow -0.0190 0.9912 -0.0585 1.0048 0.0033 0.7352 
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Figure 18 Observed and simulation correlation between snow storage and accumulated inflow for 
Lysebotn/Jogla. 

 
3.2.2 Simulation Results 
The system was run in parallel mode for a scheduling horizon of 260 weeks, using 30 inflow and snow 
storage scenarios. Expected values for net profit, spillage and production are presented Table 5. 
 
Table 5 Performance indicators for Lysebotn. 

 Base-1ses Base-3ses Snow-1ses Snow-3ses 
Exp. net profit [MNOK] 4244.5 4250.8 4253.3 4252.0 
Exp. spillage [GWh] 393.2 390.8 385.1 388.1 
Exp. production [GWh] 7362.9 7368.1 7380.2 7373.9 

 
 
Reservoir trajectories for Lyngsvatn from ProdRisk runs without and with snow storage information are 
shown in Figure 19. A maximum reservoir storage constraint was enforced in the middle of the scheduling 
period. The trajectories are marginally different, where Snow-3ses is more careful towards the top of the 
reservoir and visits the lower part of the reservoir more frequently than Base-3ses.  
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Figure 19 Reservoir trajectories for Lyngsvatn, for Base-3ses (left) and Snow-3ses (right). 

 
Spillage for the sum system is lower when considering snow information, as shown in Figure 20. 
 

 
Figure 20 Spillage for the Lysebotn system presented as a duration curve sorted according to re-
sults from the case Base-3ses. 

 
Cut coefficients for the Lyngsvatn reservoir for cases Base-3ses and Snow-3ses are presented in Figure 
21. The figure presents the 5% highest and 5% lowest values of the duration curves for all cut coefficients 
generated during ProdRisk runs for cases Base-3ses (black) and Snow-3ses (red). We observe that coef-
ficients are higher when considering snow storage information in both ends of the duration curve. 
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Figure 21 Cut coefficients for Lyngsvatn, showing tails of duration curve. 
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3.3 Rjukan 
 
The Rjukan system is modelled using 10 hydropower modules. It comprises one large (Møsvatn) and two 
medium-sized (Mårvatn and Kalhovd) reservoirs, and has several power stations with significant capacity 
downstream. 
 
 
3.3.1 Inflow Model 
The inflow to all reservoirs in the system was defined to follow the statistical properties of the Kvenna 
inflow series. In addition, we model a separate snow storage using the Kvenna time series for snow stor-
age. 
 
Correlation matrices per case and per season are presented in Table 6. Some observations that are rele-
vant for the following analyses: 

- Variations in inflow autocorrelation across seasons are less than for the previous cases. 
 

 
 
Table 6 Correlation matrices for Rjukan. 

Base-1ses 
 Weeks 1-21 Weeks 22-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.6352  0.6352  0.6352  
Snow       

Base-3ses 
 Weeks 1-21 Weeks 22-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.5883  0.6661  0.6668  
Snow       

Snow-1ses 
 Weeks 1-21 Weeks 22-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.6233 0.0581 0.6233 0.0581 0.6233 0.0581 
Snow 0.0294 0.8872 0.0294 0.8872 0.0294 0.8872 

Snow-3ses 
 Weeks 1-21 Weeks 22-35 Weeks 36-52 
 Inflow Snow Inflow Snow Inflow Snow 
Inflow 0.5879 0.0027 0.5034 0.3290 0.6686 -0.0276 
Snow 0.0194 0.9847 -0.0385 1.0010 0.0401 0.7034 
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Figure 22 Observed and simulation correlation between snow storage and accumulated inflow for 
Rjukan/Kvenna. 

 
3.3.2 Simulation Results 
The system was run in parallel mode from week 36 to 260 using 54 inflow and snow storage scenarios.  
 
 
Table 7 Performance indicators for Rjukan. 

 Base-1ses Base-3ses Snow-1ses Snow-3ses 
Exp. net profit [MNOK] 3080.8 3078.7 3080.3 3084.5 
Exp. spillage [GWh] 582.3 605.4 411.8 346.8 
Exp. production [GWh] 14821.3 14794.7 15033.2 15092.5 

 
Reservoir trajectories from ProdRisk runs without and with snow storage information are shown in Figure 
23. The trajectories are marginally different, where Snow-3ses is more careful towards the lower part of 
the reservoir than Base-3ses, indicating higher water values.  
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Figure 23 Reservoir trajectories for Møsvatn, for Base-3ses (left) and Snow-3ses (right). 

 
Spillage for the sum system is lower when considering snow information, as shown in Figure 24. 

 
Figure 24 Spillage for the Rjukan system presented as a duration curve sorted according to results 
from the case Base-3ses. 
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Figure 25 Cut coefficients for Møsvatn, duration curve. 
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4 Conclusions 
 
For hydropower systems in col cold climate zones, snow storage information may serve as an exogenous 
state variable that can partly explain the inflows to hydropower reservoirs and plants. In this work we 
tested a technique for embedding snow storage information as an exogenous state variable in the 
ProdRisk hydropower scheduling model which is based on the SDDP-algorithm.  
 
A review detected that a similar approach, known as SDDPX in [21], has been presented earlier in the 
scientific literature. Despite the lack of scientific novelty, the presented approach introduces an easy 
integration of snow storage information in the widely used SDDP-based scheduling model ProdRisk. It 
can be seen as a practical advice for ProdRisk users but may also be useful for similar type of scheduling 
models.  By associating time series with snow storage information with a so-called “dummy module”, 
the estimated PAR(1) model jointly represents snow storage and inflow as state variables in SDDP. 
 
Three case studies representing different hydropower systems in Norway were used as test cases. 
Results showed that the use of snow storage improves the scheduling in all cases, leading to better 
economic performance, more power production, and less spillage.    
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