
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r e

le
kt

ro
ni

sk
e

sy
st

em
er

M
as
te
ro
pp

ga
ve

Patric André Berthelsen

Optimizing Routing Architectures for
Small-Scale
Heterogeneous Systems

Masteroppgave i Electronic Systems Design (MSELSYS)
Veileder: Snorre Aunet
Medveileder: Marchuk, Vitalii; Vestli, Snorre; Waagen, Johannes
Februar 2024

Patric André Berthelsen

Optimizing Routing Architectures for
Small-Scale
Heterogeneous Systems

Masteroppgave i Electronic Systems Design (MSELSYS)
Veileder: Snorre Aunet
Medveileder: Marchuk, Vitalii; Vestli, Snorre; Waagen, Johannes
Februar 2024

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for elektroniske systemer

Preface

This thesis concludes my M.Sc degree in the Electronic Systems Design (MSELSYS)
study programme, with a specialization in Embedded Systems at NTNU. The work
was started in September 2023, and concluded in February 2024.

Many of the tools used in this work, such as the generate_testarch script, are in part
borrowed from the python-fpga-interchange repository from CHIPS Alliance [1],
which are released under an ISC free software license. However, the findings and
modifications to the architectures and tools in question are entirely my own. The
parse_fasm script was in part generated with the help of ChatGPT, with my own
modifications to properly parse and analyze the data generated by the tools used
in this work. Much of the few initial months went to debugging the open-source
toolchain, where the code was adapted to fit both the repository mentioned, as
well as some requirements from Microchip Technology, who acted as an external
partner for this thesis.

i

Acknowledgments

There are a lot of people who deserve acknowledgment over the course of writing
this work. I would first like to extend my many thanks to Microchip Technology for
their generous hospitality and assistance. Not at least to my external supervisors:
Vitaly Marchuk, Snorre Vestli and Johannes Waagen, who showed a generous
amount of patience and guidance towards my many (many) questions. I would
also like to thank Eirik Hollingen, who I worked alongside during the course of this
work, for the many lovely chats and discussions, as well as the many coffee breaks.
It was an absolute joy working with you, and I deeply appreciate it. Lots of luck
with your thesis! At my alma mater, NTNU, I would like to thank my supervisor
Snorre Aunet for his help throughout this work, despite busy schedules and a heap
of other students with whom I had to share your time. Thank you all.

Additionally, I would like to thank Orbit NTNU for letting me use their office, the
endless amount of coffee, and the absolutely wonderful people in the organization.
You have shaped much of my time here at NTNU, and I am so grateful to have
had the chance to work on some pretty amazing projects, and not at least to get
to know all of you. I wish you all the luck in the future, and I am so excited to see
where you go from here! :orbitluv:

Finally, I would like to extend my deepest gratitude to my family and friends for
their love and support. Without you, this would not be possible. I love you all <3

ii

Abstract

This work aimed to find a routing architecture for a small FPGA integrated alongside
an MCU, based on specifications given by Microchip Technology. The design needed
to fit MUX-based technologies, with no tri-state buffers. It needed to be scalable
to some degree, could route most designs (within reason), and needed to be area
efficient (regarding the number of MUX2 gates). This work looked at 2 different
routing architectures, namely the route-through and bus architecture. In order
to evaluate these architectures, then 5 different Verilog test designs were used
(i.e., AND4, ADD2, SR4, SR8 and SR15), with the addition of a cost estimation
metric, as well as an estimated route-through and logic utilization percentage of
the architecture. The results showed that the route-through architecture could
route all test designs with a grid size of (4, 8), with 7 INTRA wires and 4 INTER
wires per tile. The architecture had around 6x the cost of previous architecture
used by Microchip. The bus architecture failed to route any design, with a cost
around 4x times that of the previous architecture used by Microchip. Most of
the tests performed on the route-through architecture had a higher percentage of
logic utilization for a grid size of (4, 8), and a higher percentage of route-through
utilization for a grid size of (8, 4). Some tests did not work for a grid size of
(8, 4) due to a lack of sufficient amount of inputs. This work also looked at
the relationship between the INTRA and INTER parameters for the route-through
architecture. The results showed a 37% variation in the total amount of placed
blocks for the various tests, primarily for a grid size of (4, 8). The question of
whether block placements or routing resources run out first on the device was also
discussed, where ideally, block placement should be the factor that runs out first.
Several observations were made that warrant further study. Occasional routing
loop errors could be mitigated by the use of automated test scripts. Further
development might also benefit from using a different PnR tool, with potentially
a working GUI. A new metric for blocks that have both route-through and logic
functionality could help gain more insight into routing congestion issues. Additional
observations were made in terms of the PWR block and device clock.

iii

Sammendrag

Dette arbeidet hadde som mål å finne en arkitektur for ruting av en liten FPGA
integrert ved en MCU, basert på spesifikasjoner gitt av Microchip Technology.
Designet måtte passe med MUX-baserte teknologier, uten noe form for tri-state
bufring. Designet måtte være skalerbart til en hvis grad, den måtte kunne rute
de fleste design og måtte være areal-effektivt med hensyn til antall MUX2 porter.
Dette arbeidet så på 2 forskjellige arkitekturer, det vil si route-through og
bus-arkitekturen. For å kunne evaluere de forskjellige arkitekturene, så ble det
benyttet 5 forskjellige Verilog test design (AND4, ADD2, SR4, SR8 og SR15), i
tillegg til en kost-estimator, samt en prosentverdi for estimert route-through og
logikk utnyttelse av arkitekturen. Resultatene viste at route-through arkitekturen
kunne rute de fleste design med en størrelse på (4, 8), med 7 INTRA ledninger
og 4 INTER ledninger per tile. Arkitekturen hadde ca 6x så stor kostnad som den
forrige arkitekturen fra Microchip. Bus-arkitekturen klarte ikke å rute noen design,
med en kostnad ca 4x så stor som den forrige arkitekturen fra Microchip. De fleste
testene gjennomført på route-through arkitekturen hadde en høyere prosentandel
logikk utnyttelse for en størrelse på (4, 8), samt en høyere prosentandel
route-through utnyttelse for størrelsen (8, 4). Noen tester funket ikke for størrelsen
(8, 4), gitt manglende antall innganger. Dette arbeidet har også sett på forholdet
mellom INTRA og INTER parameterene for route-through arkitekturen. Resultatene
viste en 37% variasjon i total mengde plasserte blokker for forskjellige tester,
primert for størrelsen (4, 8). Spørsmålet om enten antall plasseringer eller
rute-ressurser ble brukt opp først var også diskutert, hvor ideelt sett så burde antall
plasseringer bli brukt opp først. Flere observasjoner ble gjort under dette arbeidet
som burde være et tema for videre forskning. Sporadiske routing-løkke feil kan
bli unngått ved bruk av et form for automatisert test skript. Videre utvikling kan
også ta nytte av å bruke et annet PnR verktøy, med en potensielt funkende GUI.
En ny måleverdi for blokker som har både route-through og logikk funksjonalitet
kan være nytting for å få mere innsikt i tilfeller av kongestion av rute-ressurser.
Ytterligere observasjoner ble gjort i forhold til PWR blokker og enhetsklokken.

iv

Contents

Preface . i
Acknowledgments . ii
Abstract . iii
Sammendrag . iv
Contents . v
Figures . vii
Tables . viii
Acronyms . ix
Glossary . x
1 Introduction . 1

1.1 Motivations . 1
1.2 Objectives . 2
1.3 Sustainable Development Goals . 2
1.4 Structure . 3

2 Background . 4
2.1 F4PGA . 4
2.2 FPGA interchange format . 5

2.2.1 Mapping guidelines . 5
2.2.2 Cell placement and driver BEL pins 5

2.3 BEL . 5
2.4 PIP . 6
2.5 FASM . 6
2.6 Island-style FPGA . 7

3 Methods . 8
3.1 Cost estimation . 8
3.2 Scripts . 9

3.2.1 generate_testarch . 9
3.2.2 parse_fasm . 9

3.3 Test designs . 11
3.3.1 AND4 . 11
3.3.2 SR4 . 12
3.3.3 SR8 . 13
3.3.4 SR15 . 13
3.3.5 ADD2 . 13

v

Contents vi

4 Route-through architecture . 15
5 Bus architecture . 18
6 Results . 20

6.1 Place and route . 20
6.1.1 Route-through . 20
6.1.2 Bus . 21

6.2 Cost estimation . 21
6.2.1 Microchip design . 22
6.2.2 Route-through . 22
6.2.3 Bus . 23

7 Discussion . 25
7.1 Problem statement . 25
7.2 Bus design . 26
7.3 Resource bottlenecks . 26

7.3.1 Note on metrics . 26
7.3.2 Routing resource vs. placement 27

7.4 Future work . 28
8 Conclusion . 30
Bibliography . 32
A Additional Material . 34

A.1 Makefile . 34
A.2 generate_testarch (Route-through) . 38
A.3 generate_testarch (Bus) . 49
A.4 parse_fasm . 63
A.5 Grid plots . 65

Figures

2.1 Illustration of a BEL . 6
2.2 Illustration of an island-style FPGA routing architecture 7

3.1 Example of a grid plot generated using the parse_fasm file 10
3.2 Illustration of a 4-bit shift register (SR4) test design 12
3.3 Illustration of a 2-bit carry-adder (ADD2) test design 13

4.1 Illustration of tile architecture for the route-through test architecture 15
4.2 Illustration of SLICE architecture for the route-through test architecture 16
4.3 Illustration of device grid for the route-through test architecture . . 17

5.1 Illustration of tile architecture for the bus test architecture 18
5.2 Illustration of a part of the device grid for the bus test architecture . 19

A.1 Grid plot for PnR run of AND4 test for route-through architecture
with grid size (4, 8) . 66

A.2 Grid plot for PnR run of ADD2 test for route-through architecture
with grid size (4, 8) . 66

A.3 Grid plot for PnR run of SR4 test for route-through architecture
with grid size (4, 8) . 67

A.4 Grid plot for PnR run of SR4 test for route-through architecture
with grid size (8, 4) . 67

A.5 Grid plot for PnR run of SR8 test for route-through architecture
with grid size (4, 8) . 68

A.6 Grid plot for PnR run of SR8 test for route-through architecture
with grid size (8, 4) . 68

A.7 Grid plot for PnR run of SR15 test for route-through architecture
with grid size (4, 8) . 69

A.8 Grid plot for PnR run of SR15 test for route-through architecture
with grid size (8, 4) . 69

vii

Tables

6.1 Microchip CLB cost estimate . 22
6.2 Route-through architecture tile cost estimate 23
6.3 Bus architecture tile cost estimate . 24

viii

Acronyms

API Application Programming Interface. 9, 16

FASM FPGA Assembly. 4, 6, 9, 10, 63

FOSS Free and open-source software. 4, 34, 63

FPGA Field Programmable Gate Array. iii, iv, vii, ix, x, 1–7, 9, 28

GUI Graphical User Interface. iii, iv, 28, 31

HDL Hardware Description Language. 4

I/O Input / Output. 1, 7

IB Input buffer. 9, 10

IOB Input/Output buffer. 9

IoT Internet of Things. 2

IP Intellectual property. 4

LUT Lookup Table. 2, 5, 16, 27

MCU Microcontroller unit. iii, iv, 1, 2

MUX multiplexer. iii, iv, 2, 5, 8, 16, 22, 25

OB Output buffer. 9, 10

PnR place and route. iii, iv, vii, 4, 5, 9, 11, 19–21, 23, 25–29, 31, 34, 38, 49,
65–69

RTL Register Transfer Level. xi

SoC System on a chip. 1

VPR Versatile Place and Route. 28, 31

VTR Verilog-to-Routing. 4, 28

ix

Glossary

BEL CHIPS Alliance defines a BEL as an "abbreviation of basic logic element. A
BEL can be one of 3 types, site port, logic, routing. A BEL contains 1 or more
BEL pins" [2]. v, vii, x, 2, 5, 6, 9

bitstream Binary file with configuration data for logical elements on FPGA fabric
[3]. 4, 6

cell CHIPS Alliance defines a cell as "a logical element of a design that contains
some number of cell ports and some number of cell instances, and some
number of nets" [2]. 5, 9

CLB Configurable Logic Block. Same as BEL. viii, 6, 7, 9, 10, 13, 16, 19–23, 26–31

device CHIPS Alliance defines a device as "a set of tiles and package pins" [2]. 5,
9

logic BEL CHIPS Alliance defines a logic BEL as "a placeable logic element. May
be subject to 0 or more placement constraints" [2]. 5

net CHIPS Alliance defines a net as "a set of logically connected cell ports" [2]. 5

netlist A description of a circuit in terms of gates and connections, which meet
the timing and power requirements of the circuit [4]. xi, 4

node CHIPS Alliance defines a node as "a set of 1 or more wires that are connected.
Nodes can span multiple tiles. Nodes connect to PIPs or site pins via the wires
that are part of the node" [2]. 9

PIP CHIPS Alliance defines a PIP as "an abbreviation for programmable interconnect
point. A PIP provides a connection between two wires. PIPs can be unidirectional
or bidirectional. Unidirectional PIPs always connect wire0 to wire1. Bidirectional
PIPs can connect wire0 to wire1 or wire1 to wire0" [2]. 5–7, 16, 21, 22

routing BEL CHIPS Alliance explains that "a routing BEL connects at most 1 input
BEL pin to the output BEL pin" [2]. 5

x

Tables xi

site CHIPS Alliance defines a site as "a collection of site pins, site wires and BELs"
[2]. 5, 9, 10

site port BEL CHIPS Alliance explains that "a site port BEL represents a connection
to a site pin contained within the parent tile of the site" [2]. 5

techmap Transformation of RTL netlist into equivalent netlist using target architecture
cell mapping (i.e. cell substitution, sub-circuit substitution or gate-level technology
mapping) [5]. 4

tile CHIPS Alliance defines a tile as "an instance of a tile type which contains
wires and sites" [2]. 5, 9, 10

wire CHIPS Alliance defines a wire as "a piece of conductive material totally
contained within a tile. Wires can be part of nodes. Wires can connect to
PIPs or site pins" [2]. 9, 10

XDC Xilinx Design Constraint (XDC) file is based on Synopsis Design Constraints
format (SDC). Xilinx explains that the constraints "define the requirements
that must be met by the compilation flow in order for the design to be
functional on the board" [6]. 11–14

Chapter 1

Introduction

The capacity and popularity of Field Programmable Gate Array (FPGA) systems
have increased since they were first introduced by Xilinx in 1984. Trimberger [7]
explains that FPGA technology development has gone through 3 distinct ages. In
the first age, FPGA sizes were quite small, with equally as small design problems,
and were generally smaller than the applications that users wanted to run on
them. Most of the development was limited to manual placement of logical and
physical designs. The second age saw an increase of FPGA capacity relative to
Moore’s law, with an increased demand for design automation. Here, area could
be traded off for performance, enhanced features and ease of use. The third age
saw a change in the target application, with an adaption of FPGA technology for
communications infrastructure, with higher real-time performance requirements
(e.g., quick development, field-upgradable architecture) and a focus on high-
performance features (e.g., high-speed I/O, wide datapaths). The period also
began to see an end to Dennard scaling. Trimberger [7] further explains that
today, the industry has a desire for lower cost and power consumption. With
increased programmability for SoC devices, user-programmable logic typically
only occupies less than half the area of FPGA devices. Today, we have fewer gains
from technology scaling than before, with design effort and risk being more central
requirements, in part aided by more capable design tools and methods. [7]

1.1 Motivations

The motivations for this work come from the efforts of Microchip Technology
to scale down a traditional FPGA architecture for upcoming Microcontroller unit
(MCU) product lines. Here, the smaller, more limited FPGA fabric is tightly connected
to the MCU. This design aims to make programmable logic more available to users
who are not necessarily digital designers, both through simplified but sufficient
architecture design and through the use of open-source toolchains for logic design,
synthesis and placement/routing. Some applications include offloading tasks from
the main processor to small amounts of programmable logic (e.g., non-traditional
I/O operations that normally were dealt with by the use of software interrupt

1

Chapter 1: Introduction 2

routines on the main processor). It is important to note that these are low-cost
products with analog components that would not see much benefit from moving
to smaller technology nodes, as the nodes currently used for these products are as
small as possible without facing major development issues related to technology
downscaling. The size of the FPGA is limited to around 32 logical elements, based
on requirements from Microchip Technology.

Previous works, such as the PIC16F13145 [8], uses much of the same concepts and
will be used as reference design throughout this work. An illustration of a basic
BEL can be found in Figure 2.1. A basic logical element in the PIC16 architecture
consists of a Lookup Table (LUT) with some routing. The design uses 22-input
MUXs per element for global routing. Note that the design is only optimized for
a grid with 32 total elements, with a limited global routing network that was not
meant for an island-style arrangement.

1.2 Objectives

This work aims to explore possible architectures for a small FPGA integrated
alongside an MCU. The design must fit MUX-based technologies, with no tri-state
buffers. The design needs to be scalable to some degree, can route most designs
(within reason), and must be area efficient (with regards to the number of MUX2
gates). Due to potential intellectual property rights, the architecture exploration
must be performed using open-source tools (i.e., yosys and nextpnr).

1.3 Sustainable Development Goals

In accordance to the UN Sustainable Development Goals [9], this work mainly
complies with goal 9 Industry, Innovation and Infrastructure, but can be extended
to goals 2, 3, 6, 7, 11, 12, 13, 14 and 15 due to the wide fields that apply to
microchip technologies. Applications include (but are not limited to) sensors and
monitoring with Internet of Things (IoT) devices (aquaculture, agriculture, pollution),
medical technology, energy monitoring etc.

Chapter 1: Introduction 3

1.4 Structure

The rest of this work is structured as follows:

Chapter 2 Background covers most of the theoretical background the reader needs
to know to understand the methods, results and discussion surrounding this work.

Chapter 3 Methods covers the methods used to produce the results used in the
discussion. Section 3.1 covers the technique used to produce the cost estimation
metric for each routing architecture. Section 3.2 covers the different scripts used
in this work to produce the test architecture definitions, as well as the FPGA grid
plot used for visual inspection and evaluation (with statistics for route-through vs
logical connections). Section 3.3 covers the test designs that are synthesized for
the purposes of evaluating the different routing architectures.

Chapters 4 and 5 cover the different routing architectures used in this work in
more detail.

Chapter 6 Results lays out the results obtained from running the different test
designs, as described in section 3.3, through the test architectures described in
chapters 4 and 5. The results are generated from the scripts in section 3.2.

Chapter 7 Discussion tries to evaluate the different test architectures laid out in
chapters 4 and 5 against the results laid out in chapter 6, as well as evaluating the
results against the design requirements presented in section 1.2. Recommendations
for future work are given in section 7.4, with a conclusion to these discussions in
Chapter 8 Conclusion.

Chapter 2

Background

2.1 F4PGA

The F4PGA toolchain [10] is developed by Chips Alliance, which is hosted by
The Linux Foundation, as a non-profit organization that develops and hosts high
quality, open source hardware code (Intellectual property (IP) cores), interconnect
IP (physical and logical protocols), and open source software development tools
for design, verification, and more.

The goal of the F4PGA toolchain is to create a complete Free and open-source
software (FOSS) FPGA toolchain, with several tools and projects to provide needed
components of a full open-source end-to-end flow. [10]

The frontend and backend tools in the toolchain (i.e., Yosys, nextpnr and Verilog-to-Routing
(VTR)) use certain resources as inputs, mainly the FPGA "architecture
definitions" (documents how the FPGAs work internally) and the interchange schema
(2.2) (logical and physical netlists)
The general flow [10] usually follows the outlined steps:

1. Prepares info about timing/resources available during the implementation
stage and techmaps for synthesis tools. This info is generally given through
the architecture definitions.

2. Logic synthesis is carried out by the Yosys framework, which translates user-provided
hardware description via a Hardware Description Language (HDL) into the
block and connection types available for the chosen architecture.

3. Implementation, where a place and route (PnR) tool will put individual
blocks from a synthesis description into specific chip locations and create
paths/routing between them. This is done through the nextpnr or VTR tools.

4. Design properties are translated into a set of features available for the given
chip, which is saved in the FPGA Assembly (FASM) (2.5) format. This file is
then translated into a bitstream that can be flashed to the given chip.

4

Chapter 2: Background 5

2.2 FPGA interchange format

The FPGA interchange format [2] describes the logical and physical placements
within an FPGA, and aims to give a complete description of an island-type FPGA
design. CHIPS Alliance [2] divides a device into 4 parts:

1. A device, which is defined as a set of tiles and package pins
2. Tiles, which contains wires and sites
3. Sites, which contains site pins, site wires and BELs.
4. BELs, which is a basic logic element. Can be one of 3 types: site port BEL,

logic BEL or routing BEL. Contains 1 or more BEL pins.

2.2.1 Mapping guidelines

Nets, as defined by CHIPS Alliance [2], can be placed into 3 categories:

• Signal net, where the signal is neither a constant logical 0 or constant logical
1
• Constant logical 0: listed as "GND" type
• Constant logical 1: listed as "VCC" type

Both constant logical 0 or constant logical 1 can have multiple drivers in the device
description. [2]

2.2.2 Cell placement and driver BEL pins

CHIPS Alliance [2] explains that BELs represent a placeable location for a cell,
and only one cell can be placed at a given BEL. This results in the fact that the cell
library and BEL design strongly affects what can be expressible by the place and
route tool. [2]

2.3 BEL

Trimberger [11] explains that a BEL is composed of a LUT, multiplexers and
wiring channels that connect to PIPs. If a block is unused, the output PIPs are
turned off to avoid driving other signals. A BEL can implement both sequential
and combinatorial logic. E.g. to build a latch, a LUT is configured with the proper
truth table, and the output of the block is routed back to the input. One can
also configure inputs for reset/set signals and clock inputs. These latches can be
combined to form other kinds of sequential elements like D-type flip-flops. An
illustration of a BEL is shown in Figure 2.1.

Chapter 2: Background 6

Figure 2.1: Illustration of a BEL

2.4 PIP

Trimberger [11] explains that a PIP controls the connection of wire segments in
a programmable interconnect, and is typically implemented as a pass-transistor
configured by a memory cell. The wire segments on each side of the transistor are
connected depending on the configuration set in the memory cell.

2.5 FASM

CHIPS Alliance [12] explains that the FPGA Assembly (FASM) file format is designed
to specify the bits in an FPGA bitstream that need to be set or cleared. This
is implemented by enabling different "features" within the bitstream. An empty
FASM file will generate a platform-specific "default" bitstream.

The following is an example of a FASM file output. Here, the different connections
within an FPGA are set by enabling the feature. Line 2 shows that the INTRA_4
wire within the CLB block is active and connected to the INP_N_6 wire within the
CLB via a PIP.

Chapter 2: Background 7

Created by the FPGA Interchange FASM Generator (v0.0.18)
CLB_X1Y0.INTRA_4.INP_N_6
CLB_X1Y0.INTRA_5.FROM_SLICE0_Q_0
CLB_X1Y0.INTRA_7.INP_N_7
CLB_X1Y0.OUT_E_2.INTRA_5
CLB_X1Y0.OUT_E_6.INTRA_7

2.6 Island-style FPGA

Betz et al. [13] state that an island-style routing architecture for FPGAs consists
of CLBs surrounded by routing channels (wire segments) on all four sides. I/O
pins connect to some or all wire segments via PIPs. Interconnect PIPs (also known
as switch blocks) connects between wire segments to form longer wires that can
span the FPGA. This is illustrated in Figure 2.2.

Figure 2.2: Illustration of an island-style FPGA routing architecture

Chapter 3

Methods

3.1 Cost estimation

In order to get a good basis for comparing the different architectures in this work,
we need an estimator that is architecture and technology independent. Note that
this estimator only gives a relative comparison between the different architectures
and will need to be supplemented with other forms of data to get a full overview
for comparing and evaluating different solutions.

The proposed cost estimator is based on the total number of MUX2 in the architecture,
which might give an indication as to the switching and routing complexity introduced
by an architecture. The list below shows the weight values used for the cost
estimation, which is based on the areal size of logical elements normalized to an
equivalent number of MUX2. Note that these values are based on data given by
Microchip Technology. These can give a rough estimate as to the cost of different
components.

Weight values:

• MUX2: 1
• DEMUX2: 1
• Config bit: 2
• Flip-flop: 3

A general cost function can be derived from looking at the construction of a MUX.
In this equation, N represents the number of inputs to the MUX. In addition, a
weight value of log2(N) must be added to represent the number of config bits that
are needed to switch between the different inputs to the MUX. Note that N also
needs to be normalized to a value of log2, which reflects the real-life MUX width
which is implemented on a physical device (i.e. N = 5 needs a MUX width of 8 to
realize in practice => N = 8)

MUX N => N + f loor(log2(N)) (3.1)

8

Chapter 3: Methods 9

3.2 Scripts

3.2.1 generate_testarch

The python-fpga-interchange repository from CHIPS Alliance [1] is used in this
work to generate an fpga-interchange format description of the desired FPGA
architecture. The workflow used in this work primarily focuses on the
generate_testarch.py script. This script sets up the test architecture by generating
the required site types (i.e., Input/Output buffer (IOB), power and slice), arranges
these tiles in a grid format, connects these different tiles via nodes and wires as
well as generating primitives, parameters and cell/BEL mappings for the different
tiles. The script acts as a frontend that generates a Python object model, which is
passed to a capnproto API [14] to generate serialized binary data that is passed
between different programs (i.e., nextpnr and other Python scripts).

Some modifications were made to the original architecture [1] in order to have
a successful run of the PnR tool. The modifications were mostly made in the
functions and methods related to the IOB cells, to reflect the more simplified
design currently used by Microchip as compared to the original test architecture
from CHIPS Alliance. The choice was also made to remove the IOB site types in
favor of a simpler scheme that only dealt with IB and OB cells. This led to a design
where the first and last column of the device grid was filled with IB and OB cells
respectively, and where the top and bottom rows were filled with CLBs instead of
IOB cells.

In order to represent the different architectures in this work, modifications were
made to the make_tile_type, make_device_grid and make_wires_and_nodes functions.
An additional function, make_bus_type, was made to represent the combined bus
and route-through architecture.

3.2.2 parse_fasm

The parse_fasm script is used in this work to process and visualize the connections
made in the FASM file, which is generated after a run of the PnR tool. This script
is divided into 3 main functions: plot, calc_util and parse_fasm_file. The entire
source code can be found in the Appendix section A.4. Note that this script is in
part generated with the help of ChatGPT.

The parse_fasm_file function is used to read from the FASM format file generated
by the PnR tool. The data from this file is read into the fasm_connections dictionary,
which is passed between the different functions in this script.

The calc_util function is primarily used to generate statistics regarding the percentage
of logic blocks vs. the percentage of generated route-through blocks in the design.
Here, a logic block is defined as a CLB tile that routes a path through the internal

Chapter 3: Methods 10

SLICE site where logical operation is performed, and a route-through is defined as
a block that is exclusively used to connect to different tiles without routing through
the SLICE site. These values are generated by looking at the different sections
for each tile placed in the FASM file. If a tile has a connection to a "TO_SLICE"
or "FROM_SLICE" wire, and is not specifically an IB or OB tile (i.e. exclusively
CLBs), then we increment the num_logic_blocks counter value. The block_counts
dictionary stores the total number of lines found per block type. These values are
used to get a total block count of the design, which is used to find the number of
route-throughs vs. the number of logic blocks.

The plot function is used to visualize the design using the matplotlib Python library.
An X-Y grid is generated based on the max values for the X and Y coordinates
listed for the different tiles in the fasm_connections dictionary. The different tiles
are illustrated as blue boxes, with red arrows illustrating the different directional
connections generated between the tiles. Note that only IB, OB and PWR tiles
are given a label in the figures generated by the script, in order to improve the
readability of the figure for bigger grid sizes. The arrows are drawn by evaluating
whether the current iterated element has an OUT wire pointing in the north,
south, east or west direction, which is given explicitly in the name of the wire.
In which case, a directional offset will be used to plot the connection.

Figure 3.1 shows an example of a grid plot generated using the parse_fasm file.

Figure 3.1: Example of a grid plot generated using the parse_fasm file

Chapter 3: Methods 11

3.3 Test designs

This work uses 5 separate Verilog test designs to evaluate the different test architectures.
This section will give a brief overview of how they function, with listings for the
Verilog source code, as well as the XDC description for each test design.

3.3.1 AND4

The AND4 test design is a Verilog design of a 4-input AND gate. The AND gate
utilizes 4 inputs compared to a regular 2-input design due to a bug in the nextpnr
PnR software regarding cell mapping for gates with floating inputs. The purpose
of the AND4 test is to have a simple design that works as a sort of baseline when
comparing the different tests.

The source code for the design is shown below in Listing 3.1.

Code listing 3.1: Listing of AND4 test Verilog source code

module top (
input wire a,
input wire b,
input wire c,
input wire d,
output wire y

);

assign y = a & b & c & d;

endmodule

The XDC file for the design is shown below in Listing 3.2.

Code listing 3.2: Listing of AND4 test XDC file

set_property PACKAGE_PIN I_0 [get_ports a]
set_property PACKAGE_PIN I_1 [get_ports b]
set_property PACKAGE_PIN I_2 [get_ports c]
set_property PACKAGE_PIN I_3 [get_ports d]
set_property PACKAGE_PIN O_0 [get_ports y]

Chapter 3: Methods 12

3.3.2 SR4

The SR4 test design is a Verilog design of a 4-bit Shift register. An illustration
of the design is given in Figure 3.2. Note that the design distributes the shared
enable signal (en) across all register elements. The purpose of the shift register
test designs in this work is to observe how the architectures under test respond to
designs with high fan-out signals, such as the enable signal (en).

Figure 3.2: Illustration of a 4-bit shift register (SR4) test design

The source code for the design is shown below in Listing 3.3.

Code listing 3.3: Listing of SR4 test Verilog source code

module top (
input clk, in, en,
output out);

parameter WIDTH = 4;

reg [WIDTH-1:0] shreg;

always @(posedge clk)
begin

if (en)
shreg <= {shreg[WIDTH-2:0], in};

end

assign out = shreg[WIDTH-1];
endmodule

The XDC file for the design is shown below in Listing 3.4.

Code listing 3.4: Listing of SR4 test XDC file

set_property PACKAGE_PIN I_0 [get_ports clk]
set_property PACKAGE_PIN I_1 [get_ports in]
set_property PACKAGE_PIN I_2 [get_ports en]
set_property PACKAGE_PIN O_0 [get_ports out]

Chapter 3: Methods 13

3.3.3 SR8

The SR8 test design is a Verilog design of an 8-bit Shift register. The design is
identical to the SR4 test design, but with the WIDTH parameter adjusted for 8
elements. This does not affect the XDC file for the design.

3.3.4 SR15

The SR15 test design is a Verilog design of a 15-bit Shift register. The design is
identical to the SR4 and SR8 test designs, but with the WIDTH parameter adjusted
for 15 elements, which covers the maximum amount of placeable area for CLBs
on the device. This does not affect the XDC file for the design.

3.3.5 ADD2

The ADD2 test design is a Verilog design of a 2-bit carry adder. An illustration of
the design is given in Figure 3.3. The purpose of ADD2 test design is to have an
application that occupies a significant amount of total block placements on the
device.

Figure 3.3: Illustration of a 2-bit carry-adder (ADD2) test design

The source code for the design is shown below in Listing 3.5.

Chapter 3: Methods 14

Code listing 3.5: Listing of ADD2 test Verilog source code

module fulladd(
input [1:0] a,
input [1:0] b,
input c_in,
output c_out,
output [1:0] sum

);

assign {c_out, sum} = a + b + c_in;
endmodule

The XDC file for the design is shown below in Listing 3.6.

Code listing 3.6: Listing of ADD2 test XDC file

set_property PACKAGE_PIN I_0 [get_ports c_in]
set_property PACKAGE_PIN I_1 [get_ports a[0]]
set_property PACKAGE_PIN I_2 [get_ports a[1]]
set_property PACKAGE_PIN I_3 [get_ports b[0]]
set_property PACKAGE_PIN I_4 [get_ports b[1]]

set_property PACKAGE_PIN O_0 [get_ports c_out]
set_property PACKAGE_PIN O_1 [get_ports sum[0]]
set_property PACKAGE_PIN O_2 [get_ports sum[1]]

Chapter 4

Route-through architecture

The route-through architecture consists of 2 major parts:

1. The tile, which sets up connections between the SLICE and inputs/outputs
2. The device grid, where the individual tiles are placed and routed

The tile is illustrated in Figure 4.1. The architecture allows configuring N number
of INTER-connections (input/output arrows) per direction. Inside the tile, we
can configure W number of INTRA wires, which can connect to all TO, FROM,
INP (input) and OUT (output) wires, where it partly acts as an internal bus.
This enables the tile to route signals both directly to the SLICE, and through the
tile, where an input from any direction can be routed to an output in any other
direction.

Figure 4.1: Illustration of tile architecture for the route-through test architecture

15

Chapter 4: Route-through architecture 16

The SLICE contains a modified CLB (see section 2.3), which gives the option to
override the LUT in favor of supplying a separate D signal which goes into the AFF
flip-flop. Figure 4.2 depicts the modified SLICE, where input L0-L3 represents the
inputs to the LUT, signal D is the signal which can be swapped out for the output
of the LUT, and signal Q is the output of the AFF flip-flop. Both signals named
O are intermediate signals between the LUT, MUX and flip-flop, respectively. The
O signal in the top right corner of the figure is meant to be used as an output
for different PIPs positioned between the inputs and outputs of the MUX. The
mechanism for this is omitted in the context of this work.

Figure 4.2: Illustration of SLICE architecture for the route-through test architec-
ture

The design is in part borrowed from the CHIPS Alliance GitHub repository
pyhton-fpga-interchange [1]. This repository provides an intermediate step between
the generate_testarch Python script, and the capnporoto API that converts the Pythonic
object model into a binary file (see section 3.2). The script, and hence the architecture,
is modified to fit some of the technical requirements of the previous architecture
from Microchip, especially regarding input and output buffers.

The architecture is arranged in an island-style format (2.6), with tiles arranged
in a square. This is illustrated in Figure 4.3. Each tile can connect directly to
its neighbors in each cardinal direction (north, south, east and west), with the
exception of the IB and OB tiles. This contributes to the lack of long-range global
routing, where signals need to be routed through the different tiles instead of
routing them through a form of global network (e.g., busses). This assumes that
each tile has enough INTRA and INTER-connections to enable all the required
signals to be routed through.

Chapter 4: Route-through architecture 17

Figure 4.3: Illustration of device grid for the route-through test architecture

This architecture has some underlying assumptions and simplifications that are
important to address:

1. Each tile has an excessive routing capability, which may introduce a more
significant cost than might be needed. This must be taken into account when
configuring the number of INTRA and INTER-connections per tile.

2. The INTRA wires scheme can introduce cases where input and output signals
to a tile can be routed to the same type of signals (i.e., input to input,
output to output). This work attempts to solve this problem with the second
architecture detailed in the next chapter.

3. The clock (CLK) signals are routed as a general signal, meaning that the
signals get routed through the same cardinal directional mechanism in each
tile. In order for the design to fit some of the technical requirements of
the previous architecture from Microchip, then the clock signals need to be
routed in parallel to each individual tile, to ensure that all tiles are equally
supplied with the same clock reference.

The listing for this script is located in appendix A.2.

Chapter 5

Bus architecture

The bus architecture consists of two major parts:

1. The tile, which sets up connections between the SLICE and input/outputs,
with the addition of a BUS input/output.

2. The device grid, where the individual tiles are placed and routed, with the
addition of the BUS tile which enables a common bus across individual
rows/columns in the grid.

The tile is illustrated in Figure 5.1. The tile architecture is almost identical to the
tile illustrated in chapter 4, Figure 4.1, with the notable exception of the BUS lines
connected to the SLICE FROM wires, which enable some global routing across
multiple tiles. We can also note that the outputs from the tile are connected to
the SLICE FROM wires, in order to avoid the problems mentioned in chapter 4
regarding input/output signals where they potentially can be routed to signals
of the same type. A solution for route-through signals is introduced by means of
wires that directly connect the INP and OUT wires of the tile via route-through
(RT) wires. The left-hand side of the figure shows the same INTRA wire scheme
as mentioned in chapter 4. For this architecture, only the inputs to the tile and the
TO wires use the INTRA wires scheme.

Figure 5.1: Illustration of tile architecture for the bus test architecture

18

Chapter 5: Bus architecture 19

The architecture follows the same island-style grid system as in chapter 4. In
addition, BUS tiles have been added that provide a common bus for tiles in both
horizontal and vertical directions, depending on what produces the best results.
The common bus is primarily used to enable routing of some global signals (e.g.,
high fan-out signals). Each tile has an individual BUS input and output wire. The
BUS tile can switch between individual outputs that get fed into the common bus,
depending on what configuration is set. This scheme is illustrated in Figure 5.2.

Figure 5.2: Illustration of a part of the device grid for the bus test architecture

This architecture has some underlying assumptions and simplifications that are
important to address:

1. The grid needs an extra row/column to accommodate the BUS tile, depending
on whether the design needs a vertical or horizontal bus.

2. Some route-through (RT) wires have been introduced in order to solve the
problem of INP and OUT wires connecting to other wires of the same type,
as described in chapter 4.

3. The BUS tiles can not switch between the different CLB tiles at run-time.
The configuration of the BUS tile is exclusively decided by the PnR tool
depending on the most optimal routing configuration.

4. The architecture has the same clock distribution problem as chapter 4.

The listing for this script is located in appendix A.3.

Chapter 6

Results

6.1 Place and route

The following section gives an overview of the results from the place and route
(PnR) runs for the different test designs as described in section 3.3. The following
grid plots generated by the parse_fasm script (see section 3.2) are located in
appendix A.5. Note that the total number of placed blocks for each test design
does not include IB and OB tiles, which results in a total number of CLB blocks
equal to 16 for a grid size of (4, 8), and 24 for a grid size of (8, 4).

6.1.1 Route-through

The following list shows the results obtained from the different PnR runs for the
different test designs as described in section 3.3.

• AND4: The AND4 test produced a successful run of the PnR tool given a
grid size of (4, 8), with 5 INTRA wires and 2 INTER wires. This produced
an estimated 87.5% of route-through tiles, where the remaining 12.5% were
logic tiles. The tool placed a total of 8 blocks. This amounts to 50% of the
total number of available CLBs. Note that the design did not give a successful
run with the grid size of (8, 4), as the tools produced warnings of insufficient
amount of input tiles in the design.
• ADD2: The ADD2 test produced a successful run of the PnR tool given a

grid size of (4, 8), with 7 INTRA wires and 4 INTER wires. This produced
an estimated 44.44% of route-through tiles, where the remaining 55.55%
were logic tiles. The tool placed a total of 9 blocks. This amounts to ca 56%
of the total number of available CLBs. Note that the design did not give a
successful run with the grid size of (8, 4), as the tools produced warnings
of insufficient amount of input tiles in the design.
• SR4: The SR4 test produced a successful run of the PnR tool given a grid

size of (4, 8) and (8, 4), with 5 INTRA wires and 2 INTER wires. This
produced an estimated 33.33-69.23% of route-through tiles, whereas the
remaining 30.77-66.66% were logic tiles. The tool placed a total of 12 and

20

Chapter 6: Results 21

13 blocks for each relative grid size. This amounts to ca 75% and 54% of the
total number of available CLBs, respectively. Note that the tools produced
occasional routing loop errors across the different runs.
• SR8: The SR8 test produced a successful run of the PnR tool given a grid

size of (4, 8) and (8, 4), with 6 INTRA wires and 2 and 3 INTER wires
for each relative grid size. This produced an estimated 42.86-52.94% of
route-through tiles, whereas the remaining 47.06-57.14% were logic tiles.
The tool placed a total of 14 and 17 blocks for each relative grid size.
This amounts to ca 87% and 70% of the total number of available CLBs,
respectively.
• SR15: The SR15 test produced a successful run of the PnR tool given a

grid size of (4, 8) and (8, 4), with 6 INTRA wires and 2 and 3 INTER
wires for each relative grid size. This produced an estimated 6.25-37.5%
of route-through tiles, where the remaining 62.5-93.75% were logic tiles.
The tool placed a total of 16 and 24 blocks for each relative grid size. This
amounts to 100% of the total number of available CLBs.

All designs are shown to work with a grid size of (4, 8), with 7 INTRA wires per
TO/FROM wire, and 4 INTER wires per tile. The designs produced an estimated
6.25-87.5% route-through tiles, with 12.5-93.75% of the tiles including logic.
Note that these vary per run given the random seed that is provided at that
moment to the toolchain. Some tests also produced occasional routing loop errors
across different runs.

6.1.2 Bus

The current version of the bus architecture does not compile for any grid size.
The output of the PnR tools shows that the main router loop in nextpnr runs
continuously, and can not manage to successfully route any design.

6.2 Cost estimation

The following section shows the cost estimates for the different test architectures
evaluated in this work. The estimates are derived from the formulas and tables
in section 3.1. The left-hand column of the different rows shows the name of the
specific elements. The middle column shows what type of element, in terms of the
number of MUX2 in which the different parts of the design are translated into. The
right-hand column shows the estimated cost of the specific element. The bottom
of the table shows the total sum of the estimated costs. Note that all costs are
estimated based on tile data (i.e., structure of a single tile in the design), as PIPs
can only be placed at tile level, which limits the placement of MUX2 elements to
a per tile basis.

Chapter 6: Results 22

6.2.1 Microchip design

The cost estimates for the CLB architecture in the PIC16F13145 [8] are shown
in Table 6.1. Using the formula for cost estimation of an N-input MUX as shown
in equation 3.1, a cost for a 22-input MUX is estimated to a value of 27. When
adding the values for the DFF and DFFMUX, a total sum of 114 is estimated for the
entire tile. This value will be used as a reference against the different architecture
designs presented in this work.

DFF Flip-flop 3
DFFMUX MUX2 3

LUT0 MUX22 27
LUT1 MUX22 27
LUT2 MUX22 27
LUT3 MUX22 27

Sum 114

Table 6.1: Microchip CLB cost estimate

6.2.2 Route-through

The cost estimates for the route-through architecture are shown in Table 6.2. Note
that the first 10 rows show the cost for the SLICE, while the remaining rows
show the cost for the design specific to the route-through architecture. Using the
parameters for the INTRA and INTER wires given in section 6.1.1, then each TO
and FROM wire will be split between 7 different connections, which would need a
MUX8 to realize in practice. The INTER parameter would need a MUX4 to realize
in practice. The cost of a MUX8 is estimated to a value of 11 using equation 3.1,
while the cost of a MUX4 is estimated to a value of 6. The input/output and
TO/FROM wires will also need a cost value for the different PIPs introduced in
the make_tile_type function. With a number of PIPs equivalent to the INTRA and
INTER parameters for each cardinal direction, then we get a cost estimate of 528
for the INP and OUT wires. For the TO and FROM wires, then each number of
wire has INTRA number of PIPs attached, which gives a cost value of 88.

The total sum is estimated to 710, which is around 6.2x times the cost of the PIC16
CLB tile.

Chapter 6: Results 23

TO_CLK MUX8 11
TO_D MUX8 11
TO_L0 MUX8 11
TO_L1 MUX8 11
TO_L2 MUX8 11
TO_L3 MUX8 11

FROM_O MUX8 11
FROM_Q MUX8 11

DFF Flip-flop 3
DFFMUX MUX2 3
INP/OUT 2(INP/OUT)*INTRA*INTER*4(DIR) 528
TO/FROM (6(TO)+2(FROM))*INTRA 88

Sum 710

Table 6.2: Route-through architecture tile cost estimate

6.2.3 Bus

The cost estimates for the bus architecture are shown in Table 6.3. Note that the
first 10 rows show the cost for the SLICE, while the remaining rows show the
cost for the design specific to the bus architecture. As no parameter for the bus
architecture produces a successful run of the PnR tool, as stated in section 6.1.2,
then we need to base our estimates on parameters used in the route-through
architecture. The cost estimation uses an INTRA value of 7, INTER value of 4
including a bus width of 2, and a number of bus ports equivalent to the height of
the device (i.e., y value of 8).

Table 6.3 shows that the cost of the BUS_OUT connections is equivalent to the
number of bus ports multiplied by the bus width, which gives a cost estimate of
33. The route-through wires that exclusively connect the tile inputs to the tile
outputs are calculated for each cardinal direction, for both inputs and outputs,
and multiplied with the INTER parameter, which gives a cost estimate of 48.
The inputs produce a cost estimate for each cardinal direction, with the product
between the number of INTRA and INTER wires, which gives a cost estimate of
264. The outputs follow much of the same equation, but have to account for the
OUT_FROM wires compared to the number of INTRA wires, which gives a cost
estimate of 48.

The total sum is estimated to 487, which is around 4.3x times the cost of the PIC16
CLB tile.

Chapter 6: Results 24

TO_CLK MUX8 11
TO_D MUX8 11
TO_L0 MUX8 11
TO_L1 MUX8 11
TO_L2 MUX8 11
TO_L3 MUX8 11

FROM_O MUX8 11
FROM_Q MUX8 11

DFF Flip-flop 3
DFFMUX MUX2 3
BUS_OUT BUS_PORTS*BUS_WIDTH 33

RT 4(DIR)*2(INP/OUT)*INTER 48
INP 4(DIR)*INTER*INTRA 264
OUT 4(DIR)*INTER*2(OUT_FROM) 48

Sum 487

Table 6.3: Bus architecture tile cost estimate

Chapter 7

Discussion

7.1 Problem statement

In order to evaluate the different test architectures, we need to determine whether
or not they satisfy the design requirements laid out in section 1.2. In summary, the
design needs to fit a MUX-based technology (this excludes tri-state technology),
it needs to be scalable, should be able to route most designs and needs to be
area-efficient. In addition, the design should be mostly limited to 32 elements to
reflect the previous Microchip design, as described in section 1.1.

The different routing architectures presented in this work do not specifically require
any tri-state technology to function correctly. The architectures are scalable, but
have an impact on cost estimation. Comparatively, the route-through architecture
has around 6.2x higher cost than the PIC architecture, while the bus design has
around 4.3x higher cost than the PIC architecture. This would make the bus
architecture a more viable candidate simply based on cost.

As stated in section 6.1.1, all the designs presented in this work produce a successful
PnR run with a grid size of (4, 8) with 7 INTRA wires per TO/FROM wire, and 4
INTER wires per tile. Some tests (i.e., AND4 and ADD2) did not work with the grid
size of (8, 4), where the tools reported that they lacked a sufficient amount of input
tiles. This is to be expected as the designs in question require a significant amount
of inputs compared to the relative device grid size. Note that these parameters act
as the minimum amount of INTRA and INTER wires for a successful run of the
PnR tool. However, these might not be optimal for all applications that the user
wants to upload to the device, as the test designs used in this work are relatively
simple in terms of complexity. There is also an open question regarding the effects
of modifying the INTRA and INTER parameters and their relative effect on each
other. This topic is further discussed in section 7.3.

25

Chapter 7: Discussion 26

7.2 Bus design

As stated in section 6.1.2, then the current version of the bus architecture does
not give a successful run of the PnR tool for any grid size. The tools report that the
main router loop in nextpnr runs continuously, and can not manage to successfully
route any design. At the time of writing, the reasons for this is unknown. Some
observations made when running the PnR tool point to a failure point being
introduced when adding the BUS tile, as well as the OUT_FROM and RT wires to
the route-through architecture. A leading theory is that the tools can not properly
utilize the available routing resources in the BUS tile and OUT_FROM/RT wires.
However, providing evidence for this theory is difficult, given the lack of insight
into how the tools solve these problems.

Do note that despite the current lack of a successful implementation in this work,
one might still benefit from trying to implement a similar solution in potential
future work. The major benefits here are centered around future designs requiring
less INTRA and INTER resources for routing signals with high fan-out (such as the
enable signal present in the SR test designs).

7.3 Resource bottlenecks

7.3.1 Note on metrics

Before we can properly begin to discuss the resource usage of the architectures
in question, then we first need to make a few notes regarding the metrics that
we use in this work and how these are utilized. In general, it is quite difficult to
measure the effectiveness of a system solely based on a single metric. Utilization,
for example, only takes into account the effectiveness of the PnR tool, and how
successful it has been when utilizing the available resources in the architecture. A
higher route-through percentage in this case could indicate that the architecture
has too few routing resources in a tile, and thus has to spread the datapath across
more tiles than necessary (type of "routing congestion"). However, this depends
on the size of the application that you want to run on the device. If the application
takes up very little space on the device (say a few tiles near the input blocks), then
a higher route-through percentage would only show the relative distance from the
application to the output tiles, as more route-through blocks needs to be placed
in order to reach the OB tile. Here, the percentage of logic blocks as a metric is
a bit easier to interpret, as it can only indicate the number of placements on the
device, which shows the size of the application that the user wants to run.

When looking more closely at a single tile, one can observe, depending on the
amount of INTRA resources available, that there is no functional difference between
pure logic and route-through blocks. The same route-through blocks can be used
as logic blocks and vice versa, i.e., there is no functional lock in a CLB tile. This lack

Chapter 7: Discussion 27

of a functional difference between the types of blocks might affect the utilization
statistics of a device, especially in regards to routing congestion issues as explained
above.

The relationship between the INTRA and INTER parameters also has an impact
on routing. Optimally, the INTRA parameter should increase the internal routing
capabilities of a tile (especially for route-through signals), and the INTER parameter
should increase the parallel routing capacity to neighbor tiles. Both parameters are
interdependent in terms of routing, where a tile needs to have a sufficient amount
of internal resources available to route signals both to the LUT and neighbor
tiles, and it needs to have a sufficient amount of parallel resources available for
applications that have a high amount of routing congestion. This is reflected in
the CLB SLICE, which requires a minimum number of 4 INTRA wires to connect
the inputs of the tile to the SLICE LUT. Additional INTRA wires are required to
enable further route-through signals. Both the INTRA and INTER parameters also
have an impact on the cost of the system.

7.3.2 Routing resource vs. placement

When looking at the variation in the total number of placed CLBs for each test
design, we can observe a variation between 50% and 87% between the different
tests (i.e., around 37% variation). This is excluding the SR15 test, which is designed
to utilize the whole device to test for routing congestion. Most of the high percentage
of placed blocks seems to come when using a grid size of (4, 8), where there is
a shorter relative distance between the IB and OB tiles. It could be that the PnR
tool needs to extend the routing of the design throughout the columns, but this
does not match the relatively low percentage of route-through utilization for the
different test designs with the given grid size. There is a higher percentage of
route-through utilization when using the grid size (8, 4), although with a lower
percentage of total placed blocks.

In an ideal situation when it comes to routing resources vs. placement, then the
available amount of placed blocks should run out first, as a user application should
be able to occupy the whole device while facilitating for more routing between
the different blocks. This is supported by the results for the SR15 test with a grid
size of (4, 8), which is designed to occupy the whole area of the device. This test
has a high logic utilization percentage and a small route-through percentage (this
excludes placed tiles that have route-through and logic utilization), with 6 INTRA
wires and 3 INTER wires per tile. The design uses more route-through utilization
when using a grid size of (8, 4), which is most likely in order to reach the OB tiles.
This is visualized in the grid plots for the (4, 8) test (A.7) and for the (8, 4) test
(A.8).

The ADD2 test seems to be a special case regarding routing resources. When

Chapter 7: Discussion 28

running a test for grid size (4, 8), then the design needs 7 INTRA wires and 4
INTER wires per tile in order to route successfully. In addition, the design uses a
majority of logic utilization for only around 56% of the total amount of placed
CLBs. This could be a result of routing congestion issues where the design might
need more routing resources in order to spread the routing paths throughout
neighboring tiles, although this sort of behavior is usually expected for designs
that use almost 100% of the available amount of CLB blocks.

When it comes to the question of routing resources vs. placement, then it is quite
difficult to draw any firm conclusions based on the data presented in this work.
In general, it seems like available placements run out first, but there are some
cases where more routing resources are required than what is strictly necessary
(especially regarding the ADD2 test as mentioned above). This is also dependent
on the relative grid size, where more blocks seem to be placed when using a grid
size of (4, 8), with a majority percentage of logic utilization. The test designs also
show a higher route-through percentage when using a grid size of (8, 4), where
they most likely need more CLB blocks in order to reach an OB tile. However,
more tests are needed to see how routing behaves in edge cases, as the tests used
in this work are generally quite small in size (with the exception of the SR15 test
design).

7.4 Future work

Several observations were made during the course of the creation of this work
that warrant further study. One such observation was the occasional routing loop
errors that appeared on some seeds of the test designs, as explained in section
6.1.1. These errors add more difficulty when trying to find the minimal parameters
needed for routing a design, as it adds a level of uncertainty to the data. It is also
optimal to find parameter values that work across all seeds, especially from a user
perspective, where one would want an architecture that can route as many designs
as possible. One way to test this is to use a form of automated test tool that can
run different test designs (with a varying amount of total block placement) across
as many different seeds as possible, while sweeping through different parameter
combinations. This is especially true if the route-through architecture is chosen
for further study

Some of the problems that appeared when using the chosen PnR tool might be
mitigated by changing to a new tool for further studies. Shah et al. [15] explains
that Versatile Place and Route (VPR) is a PnR tool that is part of the Verilog-to-Routing
(VTR) open-source framework, which in part focuses on FPGA architecture exploration
and research. This tool is more used in academia, and might offer more support
in terms of debugging and architecture exploration compared to nextpnr, which
worked better at the time of writing this work. Getting a working GUI for the PnR
tool might also be helpful when trying to debug further routing architectures.

Chapter 7: Discussion 29

One tool that might help when looking at routing congestion issues (see section
7.3) might be to add a new utilization metric. The current metrics used in this
work do help to gain more insight into the relationship between exclusive route-through
and logic tiles, but come short in cases where we have blocks that have both
route-through and logic enabled by the PnR tool. A metric that shows the percentage
of such blocks in a system can be quite helpful in edge cases where most available
CLB blocks have been placed by the tool, but some signals still need to be routed
to neighboring tiles without the help of exclusive route-through blocks.

Some additional observations that were made when running the different test
designs through the PnR tools is that the PWR block, which is supposed to connect
the working design to VCC and GND respectively, seems to be included in several
cases as a route-through block. In some cases, the PWR block serves a dual purpose,
where it both connects the design to VCC/GND, and serves as a route-through
block. This is part of the generate_testarch design borrowed from CHIPS Alliance
[1], which is used in this work. This is a feature that might not be wanted for
further designs, and might need some revisions. The same applies to the device
clock, which gets routed as a standard signal (i.e., sent through an IB tile and
routed through CLB tiles until reaching an OB tile). It might be more beneficial to
run the clock parallel to all CLB tiles for further designs, to avoid cases where the
clock signal has a lower routing priority than other signals.

Chapter 8

Conclusion

In conclusion, the route-through architecture presented in this work meets the
problem statement detailed in section 1.2. The architecture is MUX-based, mostly
scalable and has relatively low cost compared to the bus architecture. It can route
most designs with a grid size of (4, 8), with 7 INTRA wires and 4 INTER wires
per tile. Note that these are the minimal parameters needed for a successful run.
However, the architecture is still around 6x as costly as the previous architecture
used by Microchip (see section 1.1). Most of the tests had a higher percentage of
logic utilization for a grid size of (4, 8), and a higher percentage of route-through
utilization for a grid size of (8, 4). This might be due to the longer distances
between the input and output tiles, where more route-through blocks must be
added for a design to reach the output, especially for smaller designs placed closer
to the input tiles. Some tests (i.e., AND4 and ADD2) did not work with a grid size
of (8, 4), where the tools reported that the device lacked a sufficient amount of
input tiles to accommodate the test designs.

The bus architecture did not work for any test design, with a cost around 4x times
that of the previous architecture used by Microchip. The architecture might have
a failure point when introducing the BUS tile and OUT_FROM and RT wires.
However, further work can still draw some benefits from this architecture for
signals with high fan-out.

In general, it is quite hard to measure the effectiveness of a system with a single
metric. This work used cost, device utilization and INTRA/INTER parameters
as metrics to evaluate different architectures. Some of the discussion related to
this work focused on the effects of high route-through utilization vs. high logic
utilization. Other parts of the discussion focused on CLB blocks that have no
functional lock, especially in terms of exclusive route-through or logic functionality,
which can affect further results. Routing effects resulting from changing INTRA
and INTER parameters were also discussed. Here, the INTRA parameter should
increase the internal routing capabilities of a tile, and the INTER parameter should
increase the parallel routing capacity to neighboring tiles.

30

Chapter 8: Conclusion 31

The results from running the test designs through the PnR tool showed around
37% variation in terms of the total number of placed CLB blocks, mostly using a
grid size of (4, 8). This might be caused by the tools having to extend the routing
path through the device column, but this is not supported by the relatively low
percentage of route-through tiles present.

When it comes to the question of routing resources vs. placement, then ideally
placement should be the factor that runs out first. This is supported by the findings
of the SR15 test using a grid size of (4, 8). The ADD2 test is a special case, where
the design needs more routing resources than necessary in order to successfully
route the design. This might be due to routing congestion issues, especially when
factoring in the relatively few amount of placed blocks in the design. It is quite
difficult to draw any firm conclusions when it comes to the question of routing
resources vs. placement. More tests are needed to see how routing behaves in
edge cases, as the test designs used in this work are generally quite small in size.

During the course of this work, several observations were made that warrant
further study. Occasional routing errors appeared when running several test designs.
These can be mitigated by using a form of automated test tool that can run different
test designs (with a varying amount of total block placement) across many different
seeds, while sweeping through different parameter combinations. Further development
might also benefit from using a different PnR tool like VPR, which is more supported
in academia. A working GUI is also quite helpful when debugging different routing
architectures. When it comes to routing resources vs. placement, adding a new
metric for tiles that have both route-through and logic utilization can lead to more
insight into edge cases that show routing congestion issues. Additional observations
were made regarding the PWR block, which in some cases acted as a route-through
block, which might not be wanted behavior for future designs. In addition, the
current architectures route the device clock as a standard signal. This should be
sent in parallel to all CLB tiles.

Bibliography

[1] Python-fpga-interchange/fpga_interchange/testarch_generators/generate_testarch.py
at master · chipsalliance/python-fpga-interchange, en. [Online]. Available:
https://github.com/chipsalliance/python-fpga-interchange/blob/
master/fpga_interchange/testarch_generators/generate_testarch.
py (visited on 05/10/2023).

[2] Device Resources — FPGA Interchange Format 0.0-99-gc985b46 documenta-
tion. [Online]. Available: https://fpga-interchange-schema.readthed
ocs.io/device_resources.html (visited on 26/09/2023).

[3] Bitstream format — Project X-Ray 0.0-3807-g72e6371b documentation. [Online].
Available: https://f4pga.readthedocs.io/projects/prjxray/en/
latest/architecture/bitstream_format.html (visited on 29/12/2023).

[4] M. G. Jaiswal, V. S. Bendre and V. Sharma, ‘Verilog Netlist Rearrangement
Technique in Microwind,’ in 2017 International Conference on Computing,
Communication, Control and Automation (ICCUBEA), Aug. 2017, pp. 1–4.
DOI: 10.1109/ICCUBEA.2017.8463881. [Online]. Available: https://ieee
xplore.ieee.org/document/8463881 (visited on 29/12/2023).

[5] 9. Technology mapping. [Online]. Available: https://yosyshq.readthedo
cs.io/projects/yosys/en/latest/CHAPTER_Techmap.html (visited on
29/12/2023).

[6] Migrating From UCF Constraints to XDC Constraints • Vivado Design Suite
User Guide: Using Constraints (UG903) • Reader • AMD Adaptive Computing
Documentation Portal. [Online]. Available: https://docs.xilinx.com/
r/en- US/ug903- vivado- using- constraints/Migrating- From- UCF-
Constraints-to-XDC-Constraints (visited on 12/01/2024).

[7] S. M. Trimberger, ‘Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology: This Paper Reflects on How Moore’s Law Has
Driven the Design of FPGAs Through Three Epochs: The Age of Invention,
the Age of Expansion, and the Age of Accumulation,’ IEEE Solid-State Cir-
cuits Magazine, vol. 10, no. 2, pp. 16–29, Jun. 2018, MAG ID: 2809370239.
DOI: 10.1109/mssc.2018.2822862.

32

https://github.com/chipsalliance/python-fpga-interchange/blob/master/fpga_interchange/testarch_generators/generate_testarch.py
https://github.com/chipsalliance/python-fpga-interchange/blob/master/fpga_interchange/testarch_generators/generate_testarch.py
https://github.com/chipsalliance/python-fpga-interchange/blob/master/fpga_interchange/testarch_generators/generate_testarch.py
https://fpga-interchange-schema.readthedocs.io/device_resources.html
https://fpga-interchange-schema.readthedocs.io/device_resources.html
https://f4pga.readthedocs.io/projects/prjxray/en/latest/architecture/bitstream_format.html
https://f4pga.readthedocs.io/projects/prjxray/en/latest/architecture/bitstream_format.html
https://doi.org/10.1109/ICCUBEA.2017.8463881
https://ieeexplore.ieee.org/document/8463881
https://ieeexplore.ieee.org/document/8463881
https://yosyshq.readthedocs.io/projects/yosys/en/latest/CHAPTER_Techmap.html
https://yosyshq.readthedocs.io/projects/yosys/en/latest/CHAPTER_Techmap.html
https://docs.xilinx.com/r/en-US/ug903-vivado-using-constraints/Migrating-From-UCF-Constraints-to-XDC-Constraints
https://docs.xilinx.com/r/en-US/ug903-vivado-using-constraints/Migrating-From-UCF-Constraints-to-XDC-Constraints
https://docs.xilinx.com/r/en-US/ug903-vivado-using-constraints/Migrating-From-UCF-Constraints-to-XDC-Constraints
https://doi.org/10.1109/mssc.2018.2822862

Bibliography 33

[8] ‘PIC16F13145 Family Full-Featured 8/14/20-Pin Microcontrollers,’ en, Tech.
Rep., 2023. [Online]. Available: https://ww1.microchip.com/downlo
ads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/
PIC16F13145-Family-Microcontroller-Data-Sheet-DS40002519.pdf.

[9] UN General Assembly, Transforming our world : The 2030 Agenda for Sus-
tainable Development, Oct. 2015. [Online]. Available: https://documents-
dds- ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?
OpenElement.

[10] How it works — F4PGA documentation. [Online]. Available: https://f4pg
a.readthedocs.io/en/latest/how.html (visited on 21/09/2023).

[11] Stephen M. Trimberger, ‘Field-Programmable Gate Array Technology,’ Jan.
1994, MAG ID: 1604136049.

[12] CHIPS Allience, FPGA Assembly (FASM) — FPGA Assembly (FASM) 0.0.2-
100-gffafe82 documentation. [Online]. Available: https://fasm.readthed
ocs.io/en/latest/ (visited on 25/10/2023).

[13] V. Betz, J. Rose, Alexander Marquardt and A. Marquardt, ‘Architecture and
CAD for Deep-Submicron FPGAS,’ The Springer International Series in En-
gineering and Computer Science, Mar. 1999. DOI: 10.1007/978-1-4615-
5145-4.

[14] Cap’n Proto: Introduction. [Online]. Available: https://capnproto.org/
(visited on 13/11/2023).

[15] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist and M. Milanović,
‘Yosys+nextpnr: An Open Source Framework from Verilog to Bitstream for
Commercial FPGAs,’ 2019, Publisher: arXiv Version Number: 1. DOI: 10.
48550/ARXIV.1903.10407. [Online]. Available: https://arxiv.org/abs/
1903.10407 (visited on 23/01/2024).

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/PIC16F13145-Family-Microcontroller-Data-Sheet-DS40002519.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/PIC16F13145-Family-Microcontroller-Data-Sheet-DS40002519.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/PIC16F13145-Family-Microcontroller-Data-Sheet-DS40002519.pdf
https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement
https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement
https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement
https://f4pga.readthedocs.io/en/latest/how.html
https://f4pga.readthedocs.io/en/latest/how.html
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://doi.org/10.1007/978-1-4615-5145-4
https://doi.org/10.1007/978-1-4615-5145-4
https://capnproto.org/
https://doi.org/10.48550/ARXIV.1903.10407
https://doi.org/10.48550/ARXIV.1903.10407
https://arxiv.org/abs/1903.10407
https://arxiv.org/abs/1903.10407

Appendix A

Additional Material

A.1 Makefile

The following listing shows the makefile for the FOSS toolchain used in this work
for synthesis and PnR (see section 3.2).

Code listing A.1: Makefile for FOSS toolchain

PYTHON ?= $(shell which python3)
FASMGEN ?= fasm_clhs.py
FASMGEN ?= fasm.py
SCHEMA ?= fpga-interchange-schema/interchange
ARCHBUILDER ?= generate_testarch.py
ARCHBUILDER ?= arch.py
YOSYS ?= $(shell which yosys)
NEXTPNR ?= $(shell which nextpnr-fpga_interchange)
BBASM ?= nextpnr/bba/bbasm
VPR ?= $(shell which vpr)
DEVICE ?= cla_cpld_v1
DESIGN ?= design
CNP_PATH ?= capnproto-java/compiler/src/main/schema

FIXME: VPR commandline args are subject to change!
VPR_ARGS ?= \

--arch_format fpga-interchange \
--circuit_format fpga-interchange \
--timing_analysis off \
--timing_driven_clustering off \
--echo_file on \
--netlist_verbosity 999 \
--pack_verbosity 999 \
--clustering_pin_feasibility_filter off \
--route_chan_width 100 \
--constant_net_method route \
--clock_modeling route \
--check_rr_graph off \
--generate_rr_node_overuse_report on\
--timing_report_detail detailed\
--write_block_usage block_usage.txt\
--save_routing_per_iteration off

PNR_EXTRA_ARGS ?= -v

34

Chapter A: Additional Material 35

PNR_EXTRA_ARGS ?= -v --debug
PNR_EXTRA_ARGS ?= -v --gui

DESIGN_DIR = /home/app/plugin/clhs-plugin/tests
DESIGN_NAME = $(DESIGN)
DESIGN_DIR = /home/app/design
DESIGN_VERILOG = $(DESIGN_DIR)/and.v
DESIGN_XDC = $(DESIGN_DIR)/and.xdc
DESIGN_XDC = $(wildcard $(DESIGN_DIR)/design.xdc)
DESIGN_VERILOG = $(wildcard $(DESIGN_DIR)/design.v)
DESIGN_VERILOG = $(wildcard $(DESIGN_DIR)/mult.v)

PNR_TOOL ?= nextpnr
BUILD ?= build
WORK = $(BUILD)/$(DESIGN_NAME)

IN_ENV = if [-e env/bin/activate]; then . env/bin/activate; fi;

===

all: $(WORK)/$(DESIGN_NAME).fasm parse

parse:
$(PYTHON) parse_fasm.py

ifeq ($(PNR_TOOL),nextpnr)
arch: $(BUILD)/$(DEVICE)/chipdb.device
$(BUILD)/$(DEVICE)/chipdb.bba $(BUILD)/$(DEVICE)/chipdb.bin
endif
ifeq ($(PNR_TOOL),vpr)
arch: $(BUILD)/$(DEVICE)/chipdb.device
endif

clean:
@rm -rf build

fullclean: clean
@rm -rf env
@rm -rf capnproto-c++-1.0.1

===

install: fullclean arch-defs

deps:
@cd plugin/ && ./debian-deps.sh
pip install matplotlib

fpga-interchange:
@$(IN_ENV) pip install -e python-fpga-interchange
@$(IN_ENV) $(PYTHON) --version; pip freeze

requirements:
@$(IN_ENV) pip install -r requirements.txt
@$(IN_ENV) pip install -e python-fpga-interchange
@$(IN_ENV) $(PYTHON) --version; pip freeze
$(MAKE) fpga-interchange

env:
@$(PYTHON) -mvenv env

Chapter A: Additional Material 36

$(MAKE) requirements

plugin:
cd plugin/ && $(MAKE) clean all install

nextpnr:
cd nextpnr && cmake . -DARCH=fpga_interchange

-DTHREADS_HAVE_PTHREADS_ARG=TRUE; cd ..
cd nextpnr && cmake . -DARCH=fpga_interchange -DBUILD_GUI=ON; cd ..
$(MAKE) -C nextpnr install
$(MAKE) -C nextpnr
install -D nextpnr/bba/bbasm /usr/local/bin/bbasm

capnproto:
curl -O https://capnproto.org/capnproto-c++-1.0.1.tar.gz &&\
tar zxf capnproto-c++-1.0.1.tar.gz &&\
cd capnproto-c++-1.0.1 &&\
./configure &&\
make -j6 check &&\
make install

capnproto-java: capnproto
$(MAKE) -C capnproto-java
$(MAKE) -C capnproto-java install

arch-defs: deps capnproto capnproto-java nextpnr plugin
$(MAKE) requirements

===

$(BUILD):
@mkdir -p $@

$(BUILD)/$(DEVICE):
@mkdir -p $@

$(BUILD)/$(DEVICE)/chipdb.device: $(ARCHBUILDER) | $(BUILD)/$(DEVICE)
$(IN_ENV) CAPNP_PATH=$(CNP_PATH) $(PYTHON)

$(ARCHBUILDER) --schema-dir $(SCHEMA) --out-file $@

ifeq ($(PNR_TOOL),nextpnr)

$(BUILD)/$(DEVICE)/chipdb.bba:
$(BUILD)/$(DEVICE)/chipdb.device $(DEVICE)_config.yaml | $(BUILD)/$(DEVICE)

$(IN_ENV) CAPNP_PATH=$(CNP_PATH) $(PYTHON) -m fpga_interchange.nextpnr_emit
--schema_dir $(SCHEMA)
--output_dir $(BUILD)/$(DEVICE)
--device_config $(DEVICE)_config.yaml --device $<

$(BUILD)/$(DEVICE)/chipdb.bin:
$(BUILD)/$(DEVICE)/chipdb.bba $(BBASM) | $(BUILD)/$(DEVICE)

$(BBASM) -l --files $< $@

endif

===

$(WORK):
@mkdir -p $@

Chapter A: Additional Material 37

$(WORK)/$(DESIGN_NAME).json: $(DESIGN_VERILOG) $(YOSYS) | $(WORK)
$(YOSYS) -p "read_verilog␣-sv␣-I$(DESIGN_DIR)

␣␣␣␣$(DESIGN_VERILOG);␣plugin␣-i␣clhs-plugin;
␣␣␣␣synth_clhs␣-auto-top;␣clean␣-purge;␣show␣-width␣-signed
␣␣␣␣-format␣png␣-prefix␣rtlil;␣write_json␣$@;␣write_verilog
␣␣␣␣$@.v" -l $@.log

$(WORK)/$(DESIGN_NAME).netlist:
$(WORK)/$(DESIGN_NAME).json $(BUILD)/$(DEVICE)/chipdb.device | $(WORK)

$(IN_ENV) CAPNP_PATH=$(CNP_PATH) $(PYTHON) -m
fpga_interchange.yosys_json --schema_dir $(SCHEMA)
--device $(BUILD)/$(DEVICE)/chipdb.device $< $@

ifeq ($(PNR_TOOL),nextpnr)

$(WORK)/$(DESIGN_NAME).phys: $(WORK)/$(DESIGN_NAME).netlist
$(DESIGN_XDC) $(BUILD)/$(DEVICE)/chipdb.bin $(NEXTPNR) |
$(WORK)

$(NEXTPNR) -r --chipdb $(BUILD)/$(DEVICE)/chipdb.bin
--netlist $< --xdc $(DESIGN_XDC) --phys $@ --log
$@_nextpnr.log $(PNR_EXTRA_ARGS)

endif
ifeq ($(PNR_TOOL),vpr)

$(WORK)/$(DESIGN_NAME).phys: $(WORK)/$(DESIGN_NAME).netlist
$(BUILD)/$(DEVICE)/chipdb.device $(DESIGN_XDC) $(VPR) |
$(WORK)

cd $(WORK) && $(VPR) $(abspath $(BUILD)/$(DEVICE)
/chipdb.device) $(abspath $<) $(VPR_ARGS)
$(PNR_EXTRA_ARGS) --xdc_files $(abspath $(DESIGN_XDC))
--pack --place --route --analysis

endif

$(WORK)/$(DESIGN_NAME).phys.yaml: $(WORK)/$(DESIGN_NAME).phys | $(WORK)
$(IN_ENV) $(PYTHON) -m fpga_interchange.convert

--schema_dir $(SCHEMA) --schema physical --input_format
capnp --output_format pyyaml $< $@

$(WORK)/$(DESIGN_NAME).fasm: $(BUILD)/$(DEVICE)/chipdb.device
$(WORK)/$(DESIGN_NAME).netlist $(WORK)/$(DESIGN_NAME).phys |
$(WORK)

$(IN_ENV) $(PYTHON) $(FASMGEN) --schema_dir $(SCHEMA)
$(BUILD)/$(DEVICE)/chipdb.device
$(WORK)/$(DESIGN_NAME).netlist
$(WORK)/$(DESIGN_NAME).phys $@

$(WORK)/$(DESIGN_NAME).txt: $(WORK)/$(DESIGN_NAME).fasm | $(WORK)
$(IN_ENV) $(PYTHON) $(FASMASM) $< $@

===

.PHONY: fullclean clean all arch requirements nextpnr
capnproto arch-defs plugin env install fpga-interchange

Chapter A: Additional Material 38

A.2 generate_testarch (Route-through)

The following listing shows the generate_testarch Python script, which defines the
route-through architecture that is used in the PnR toolchain (see section 3.2).

Code listing A.2: generate_testarch Python script for route-through architecture

#!/usr/bin/env python3
-*- coding: utf-8 -*-
#
Copyright (C) 2020 The F4PGA Authors.
#
Use of this source code is governed by a ISC-style
license that can be found in the LICENSE file or at
https://opensource.org/licenses/ISC
#
SPDX-License-Identifier: ISC

import argparse
import math

from fpga_interchange.logical_netlist import Library, Cell, Direction, CellInstance
, LogicalNetlist

from fpga_interchange.interchange_capnp import Interchange, CompressionFormat,
write_capnp_file

from fpga_interchange.parameter_definitions import ParameterFormat

from fpga_interchange.testarch_generators.device_resources_builder import
BelCategory, ConstantType

from fpga_interchange.testarch_generators.device_resources_builder import
DeviceResources, DeviceResourcesCapnp

from fpga_interchange.testarch_generators.device_resources_builder import
CellBelMapping, CellBelMappingEntry, Parameter, LutBel, PseudoCell

===

class TestArchGenerator():
"""
Test architecture generator
"""

def __init__(self, args):
self.device = DeviceResources("testarch")

self.grid_size = (8, 8)

Number of connections within tiles
self.num_intra_nodes = 8
Number of connections between tiles
self.num_inter_nodes = 3

self.args = args

def make_slice_site_type(self):
"""
Generates a simple SLICE site type.
"""

Chapter A: Additional Material 39

The site
site_type = self.device.add_site_type("SLICE")

Site pins (with BELs added automatically)
site_type.add_pin("L0_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("L1_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("L2_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("L3_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("O_0", Direction.Output,

(None, 1.7, None, None, None, None))

site_type.add_pin("D_0", Direction.Input,
(None, 2e-16, None, None, None, None))

site_type.add_pin("Q_0", Direction.Output,
(None, 1.9, None, None, None, None))

Unique clock input
site_type.add_pin("CLK", Direction.Input,

(None, 2e-16, None, None, None, None))

LUT4 BEL
a_lut_bel = LutBel("ALUT", ["A1", ’A2’, ’A3’, ’A4’], ’O’, 0, 15)
site_type.add_lut_element(16, [a_lut_bel])
bel_lut = site_type.add_bel("ALUT", "LUT4", BelCategory.LOGIC)
bel_lut.add_pin("A1", Direction.Input)
bel_lut.add_pin("A2", Direction.Input)
bel_lut.add_pin("A3", Direction.Input)
bel_lut.add_pin("A4", Direction.Input)
bel_lut.add_pin("O", Direction.Output)

DFF BEL
bel_ff = site_type.add_bel("AFF", "DFF", BelCategory.LOGIC)
bel_ff.add_pin("C", Direction.Input)
bel_ff.add_pin("D", Direction.Input)
bel_ff.add_pin("Q", Direction.Output)

if not self.args.no_ffmux:
bel_mux = site_type.add_bel("AFFMUX", "MUX2", BelCategory.ROUTING)
bel_mux.add_pin("I0", Direction.Input)
bel_mux.add_pin("I1", Direction.Input)
bel_mux.add_pin("O", Direction.Output)

LUT wires
w = site_type.add_wire("L0_0_to_A1", [("L0_0", "L0_0"),

("ALUT", "A1")])
w = site_type.add_wire("L1_0_to_A2", [("L1_0", "L1_0"),

("ALUT", "A2")])
w = site_type.add_wire("L2_0_to_A3", [("L2_0", "L2_0"),

("ALUT", "A3")])
w = site_type.add_wire("L3_0_to_A4", [("L3_0", "L3_0"),

("ALUT", "A4")])

if not self.args.no_ffmux:
w = site_type.add_wire("DIN_0", [("D_0", "D_0"), ("AFFMUX", "I1")])

Chapter A: Additional Material 40

Clock wire
w = site_type.add_wire("CLK", [("CLK", "CLK"), ("AFF", "C")])

w = site_type.add_wire("ALUT_O")
w.connect_to_bel_pin("ALUT", "O")
w.connect_to_bel_pin("O_0", "O_0")

if not self.args.no_ffmux:
w.connect_to_bel_pin("AFFMUX", "I0")

else:
w.connect_to_bel_pin("AFF", "D")

if not self.args.no_ffmux:
w = site_type.add_wire("AMUX_O")
w.connect_to_bel_pin("AFFMUX", "O")
w.connect_to_bel_pin("AFF", "D")

w = site_type.add_wire("AFF_OUT", [("AFF", "Q"), ("Q_0", "Q_0")])

Site PIPs
if not self.args.no_ffmux:

site_type.add_pip(("AFFMUX", "I0"), ("AFFMUX", "O"),
(None, 5e-12, None, None, None, None))

site_type.add_pip(("AFFMUX", "I1"), ("AFFMUX", "O"),
(None, 5e-12, None, None, None, None))

for i in range(4):
site_type.add_pip(("ALUT", f"A{i+1}"), ("ALUT", "O"),

(None, 5e-12, None, None, None, None))

def make_iob_site_type(self):
"""
Builds site types for input and output pads
"""

Input site type
site_type = self.device.add_site_type("IPAD")

bel = site_type.add_bel("IPAD", "PAD", BelCategory.LOGIC)
bel.add_pin("P", Direction.Output)

bel = site_type.add_bel("IB", "IB", BelCategory.LOGIC)
bel.add_pin("P", Direction.Input)
bel.add_pin("O", Direction.Output)

site_type.add_pin("I", Direction.Output)

site_type.add_wire("P_to_I", [("IB", "P"), ("IPAD", "P")])
site_type.add_wire("P", [("I", "I"), ("IB", "O")])

Output site type
site_type = self.device.add_site_type("OPAD")

bel = site_type.add_bel("OPAD", "PAD", BelCategory.LOGIC)
bel.add_pin("P", Direction.Input)

bel = site_type.add_bel("OB", "OB", BelCategory.LOGIC)
bel.add_pin("P", Direction.Output)
bel.add_pin("I", Direction.Input)

Chapter A: Additional Material 41

site_type.add_pin("O", Direction.Input)

site_type.add_wire("P", [("OB", "P"), ("OPAD", "P")])
site_type.add_wire("O_to_P", [("O", "O"), ("OB", "I")])

def make_power_site_type(self):

The site
site_type = self.device.add_site_type("POWER")

Site pins (with BELs added automatically)
site_type.add_pin("V", Direction.Output)
site_type.add_pin("G", Direction.Output)

VCC bel
bel_vcc = site_type.add_bel("VCC", "VCC", BelCategory.LOGIC)
bel_vcc.add_pin("V", Direction.Output)
self.device.add_const_source(site_type.name, bel_vcc.name, ’V’,

ConstantType.VCC)

GND bel
bel_gnd = site_type.add_bel("GND", "GND", BelCategory.LOGIC)
bel_gnd.add_pin("G", Direction.Output)
self.device.add_const_source(site_type.name, bel_gnd.name, ’G’,

ConstantType.GND)

Wires
site_type.add_wire("V", [("VCC", "V"), ("V", "V")])
site_type.add_wire("G", [("GND", "G"), ("G", "G")])

def make_tile_type(self, tile_type_name, site_types):
"""
Generates a simple CLB tile type
"""

The tile
tile_type = self.device.add_tile_type(tile_type_name)

Sites and stuff
for site_type_name in site_types:

site_type = self.device.site_types[site_type_name]

Add the site
site = tile_type.add_site(site_type.name)

Add tile wires for the site and site pin to tile wire mapping
for pin in site_type.pins.values():

if pin.direction == Direction.Input:
wire_name = "TO_{}_{}".format(site.ref, pin.name.upper())

elif pin.direction == Direction.Output:
wire_name = "FROM_{}_{}".format(site.ref, pin.name.upper())

else:
assert False

tile_type.add_wire(wire_name, ("Tile-Site", "general"))
site.primary_pins_to_tile_wires[pin.name] = wire_name

if tile_type_name == "NULL":

Chapter A: Additional Material 42

return

Add tile wires for intra nodes
for i in range(self.num_intra_nodes):

name = "INTRA_{}".format(i)
tile_type.add_wire(name, ("Local", "general"))

Add tile wires for incoming and outgoin inter-tile connections
for direction in ["N", "S", "E", "W"]:

for i in range(self.num_inter_nodes):
name = "OUT_{}_{}".format(direction, i)
tile_type.add_wire(name, ("Interconnect", "general"))

for i in range(self.num_inter_nodes):
name = "INP_{}_{}".format(direction, i)
tile_type.add_wire(name, ("Interconnect", "general"))

Add PIPs that connect tile wires for the site with intra wires
wires_for_site = [w for w in tile_type.wires if w.startswith("TO_")]
for dst_wire in wires_for_site:

for i in range(self.num_intra_nodes):
src_wire = "INTRA_{}".format(i)
tile_type.add_pip(

src_wire, dst_wire, "intraTilePIP",
is_buffered21=False)

wires_for_site = [w for w in tile_type.wires if w.startswith("FROM_")]
for src_wire in wires_for_site:

for i in range(self.num_intra_nodes):
dst_wire = "INTRA_{}".format(i)
tile_type.add_pip(

src_wire, dst_wire, "intraTilePIP",
is_buffered21=False)

Input tile wires to intra wires and vice-versa
for direction in ["N", "S", "E", "W"]:

for i in range(self.num_inter_nodes):

src_wire = "INP_{}_{}".format(direction, i)
for j in range(self.num_intra_nodes):

dst_wire = "INTRA_{}".format(j)
tile_type.add_pip(src_wire, dst_wire, "tilePIP")

dst_wire = "OUT_{}_{}".format(direction, i)
for j in range(self.num_intra_nodes):

src_wire = "INTRA_{}".format(j)
tile_type.add_pip(src_wire, dst_wire, "tilePIP")

if tile_type_name == "PWR":
tile_type.add_const_source(ConstantType.VCC, "FROM_POWER0_V")
tile_type.add_const_source(ConstantType.GND, "FROM_POWER0_G")

TODO: const. wires

def make_device_grid(self):
width = self.grid_size[0] - 1
height = self.grid_size[1] - 1

for y in range(height + 1):

Chapter A: Additional Material 43

for x in range(width + 1):
is_0_0 = x == 0 and y == 0

is_left = x == 0
is_right = x == width

is_centre = y == height // 2 and x == width // 2

suffix = "_X{}Y{}".format(x, y)

if is_0_0:
self.device.add_tile("NULL", "NULL", (x, y))

elif is_left:
self.device.add_tile("IB" + suffix, "IB", (x, y))

elif is_right:
self.device.add_tile("OB" + suffix, "OB", (x, y))

elif is_centre:
self.device.add_tile("PWR" + suffix, "PWR", (x, y))

else:
self.device.add_tile("CLB" + suffix, "CLB", (x, y))

def make_wires_and_nodes(self):

Add wires for all tiles
for tile_name in self.device.tiles_by_name:

self.device.add_wires_for_tile(tile_name)

Add nodes for internal tile wires
for tile in self.device.tiles.values():

tile_type = self.device.tile_types[tile.type]

for wire in tile_type.wires:
if wire.startswith("TO_") or wire.startswith("FROM_"):

wire_id = self.device.get_wire_id(tile.name, wire)
self.device.add_node([wire_id], "toSite")

elif wire.startswith("INTRA_"):
wire_id = self.device.get_wire_id(tile.name, wire)
self.device.add_node([wire_id], "internal")

Add nodes for inter-tile connections.
def offset_loc(pos, ofs):

return (pos[0] + ofs[0], pos[1] + ofs[1])

for loc, tile_id in self.device.tiles_by_loc.items():
if loc == (0, 0):

continue
tile = self.device.tiles[tile_id]
tile_type = self.device.tile_types[tile.type]

OPPOSITE = {
"N": "S",
"S": "N",
"E": "W",
"W": "E",

}

for direction, offset in [("N", (0, +1)), ("S", (0, -1)),
("E", (+1, 0)), ("W", (-1, 0))]:

for i in range(self.num_inter_nodes):
wire_name = "INP_{}_{}".format(direction, i)

Chapter A: Additional Material 44

wire_ids = [self.device.get_wire_id(tile.name, wire_name)]

other_loc = offset_loc(loc, offset)
if other_loc == (0, 0):

continue
if other_loc[0] >= 0 and other_loc[0] < self.grid_size[0] and \

other_loc[1] >= 0 and other_loc[1] < self.grid_size[1]:

other_tile_id = self.device.tiles_by_loc[other_loc]
other_tile = self.device.tiles[other_tile_id]

if (tile_type.name.startswith("IB") and other_tile.name.
startswith("IB") \

or tile_type.name.startswith("OB") and other_tile.name.
startswith("OB")):
break

other_wire_name = "OUT_{}_{}".format(OPPOSITE[direction], i
)

wire_ids.append(self.device.get_wire_id(other_tile.name,
other_wire_name))

self.device.add_node(wire_ids, "external")

def make_package_data(self):

package = self.device.add_package(self.args.package)

ipad_id = 0
opad_id = 0
for site in self.device.sites.values():

if site.type == "OPAD":
pad_name = f"O_{opad_id}"
opad_id += 1

elif site.type == "IPAD":
pad_name = f"I_{ipad_id}"
ipad_id += 1

else:
continue

package.add_pin(pad_name, site.name, site.type)

def make_primitives_library(self):

Primitives library
library = Library("primitives")
self.device.cell_libraries["primitives"] = library

def make_luts(max_size):
for lut_size in range(1, max_size + 1):

name = f"LUT{lut_size}"
init = f"{2␣**␣lut_size}’h0"
cell = Cell(name=name, property_map={"INIT": init})

print(name, init)

in_ports = list()
for port in range(lut_size):

port_name = f"I{port}"
cell.add_port(port_name, Direction.Input)
in_ports.append(port_name)

Chapter A: Additional Material 45

cell.add_port("O", Direction.Output)
library.add_cell(cell)

param = Parameter("INIT", ParameterFormat.VERILOG_HEX, init)
self.device.add_parameter(name, param)
self.device.add_lut_cell(name, in_ports, ’INIT’)

make_luts(4)

def make_dffs(rst_types):
for rst_type in rst_types:

cell = Cell(f"DFF{rst_type}")
cell.add_port("D", Direction.Input)
cell.add_port("C", Direction.Input)
cell.add_port("Q", Direction.Output)
library.add_cell(cell)

make_dffs([""])

cell = Cell("IB")
cell.add_port("O", Direction.Output)
cell.add_port("P", Direction.Input)
library.add_cell(cell)

cell = Cell("OB")
cell.add_port("I", Direction.Input)
cell.add_port("P", Direction.Output)
library.add_cell(cell)

cell = Cell("VCC")
cell.add_port("V", Direction.Output)
library.add_cell(cell)

cell = Cell("GND")
cell.add_port("G", Direction.Output)
library.add_cell(cell)

Macros library
library = Library("macros")
self.device.cell_libraries["macros"] = library

def make_cell_bel_mappings(self):

TODO: Pass all the information via device.add_cell_bel_mapping()
delay_mapping = [

(’A1’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),
(’A2’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),
(’A3’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),
(’A4’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),

]

def make_lut_mapping(max_size):
bel_pins = [f"A{pin}" for pin in range(1, max_size + 1)]
cell_pins = [f"I{pin}" for pin in range(max_size)]

for lut_size in range(1, max_size + 1):
name = f"LUT{lut_size}"
pin_map = dict(

zip(cell_pins[0:lut_size], bel_pins[0:lut_size]))

Chapter A: Additional Material 46

pin_map["O"] = "O"

mapping = CellBelMapping(name)
mapping.entries.append(

CellBelMappingEntry(
site_type="SLICE",
bels=["ALUT"],
pin_map=pin_map,
delay_mapping=delay_mapping[0:lut_size]))

self.device.add_cell_bel_mapping(mapping)

make_lut_mapping(4)

delay_mapping = [
(’D’, (’C’, ’rise’), (None, 5e-12, None, None, None, None),
’setup’),
(’D’, (’C’, ’rise’), (None, 8e-12, None, None, None, None),
’hold’),
((’C’, ’rise’), ’Q’, (None, 6e-12, None, None, None, None),
’clk2q’),

]

def make_dff_mapping(rst_types):
for rst_type in rst_types:

mapping = CellBelMapping(f"DFF{rst_type}")
mapping.entries.append(

CellBelMappingEntry(
site_type="SLICE",
bels=["AFF"],
pin_map={

"D": "D",
"C": "C",
"Q": "Q",

},
delay_mapping=delay_mapping))

self.device.add_cell_bel_mapping(mapping)

make_dff_mapping([""])

def make_iob_mapping(sites, bel, pin_map):
mapping = CellBelMapping(bel)

for site in sites:
mapping.entries.append(

CellBelMappingEntry(
site_type=site, bels=[bel], pin_map=pin_map))

self.device.add_cell_bel_mapping(mapping)

make_iob_mapping(["IPAD"],
"IB",
pin_map={

"O": "O",
"P": "P"

})

make_iob_mapping(["OPAD"],
"OB",
pin_map={

Chapter A: Additional Material 47

"I": "I",
"P": "P"

})

mapping = CellBelMapping("GND")
self.device.add_cell_bel_mapping(mapping)

mapping = CellBelMapping("VCC")
self.device.add_cell_bel_mapping(mapping)

def make_parameters(self):
pass

def generate(self):
self.make_iob_site_type()
self.make_slice_site_type()
self.make_power_site_type()

self.make_tile_type("CLB", ["SLICE"])
self.make_tile_type("IB", ["IPAD"])
self.make_tile_type("OB", ["OPAD"])
self.make_tile_type("PWR", ["POWER"])
self.make_tile_type("NULL", [])

self.make_device_grid()
self.make_wires_and_nodes()

self.make_package_data()

self.make_primitives_library()
self.make_cell_bel_mappings()
self.make_parameters()

Add pip imings
Values are taken at random, resisitance, input and output capacitance are

chosen
to be samewhat inline with values calculated from skaywater PDK
self.device.add_PIPTiming("tilePIP", 3e-16, 1e-16, 5e-10, 0.5, 4e-16)
self.device.add_PIPTiming("intraTilePIP", 1e-16, 4e-17, 3e-10, 0.1,

2e-16)

Add node timing
Value taken from skywater PDK for metal layer 1,
Tile-to-Tile length 30 um, internal 15 um and to site 2 um
Wire width of 0.14 um
self.device.add_nodeTiming("external", 26.8, 1.14e-14)
self.device.add_nodeTiming("internal", 13.4, 5.7e-15)
self.device.add_nodeTiming("toSite", 1.8, 7.6e-16)

self.device.print_stats()

===

def main():

parser = argparse.ArgumentParser(description="Generates␣testarch␣FPGA")
parser.add_argument(

"--schema-dir",

Chapter A: Additional Material 48

required=True,
help="Path␣to␣FPGA␣interchange␣capnp␣schema␣files")

parser.add_argument(
"--out-file", default="test_arch.device", help="Output␣file␣name")

parser.add_argument("--package", default="TESTPKG", help="Package␣name")
parser.add_argument(

"--no-ffmux",
action="store_true",
help=
"Do␣not␣add␣the␣mux␣that␣selects␣FF␣input␣forcing␣it␣to␣require␣LUT-thru"

)

args = parser.parse_args()

Run the test architecture generator
gen = TestArchGenerator(args)
gen.generate()

Initialize the writer (or "serializer")
interchange = Interchange(args.schema_dir)
writer = DeviceResourcesCapnp(

gen.device,
interchange.device_resources_schema,
interchange.logical_netlist_schema,

)

Serialize
device_resources = writer.to_capnp()
with open(args.out_file, "wb") as fp:

write_capnp_file(
device_resources,
fp) #, compression_format=CompressionFormat.UNCOMPRESSED)

===

if __name__ == "__main__":
main()

Chapter A: Additional Material 49

A.3 generate_testarch (Bus)

The following listing shows the generate_testarch Python script, which defines the
bus architecture that is used in the PnR toolchain (see section 3.2).

Code listing A.3: generate_testarch Python script for bus architecture

#!/usr/bin/env python3
-*- coding: utf-8 -*-
#
Copyright (C) 2020 The F4PGA Authors.
#
Use of this source code is governed by a ISC-style
license that can be found in the LICENSE file or at
https://opensource.org/licenses/ISC
#
SPDX-License-Identifier: ISC

import argparse
import math

from fpga_interchange.logical_netlist import Library, Cell, Direction, CellInstance
, LogicalNetlist

from fpga_interchange.interchange_capnp import Interchange, CompressionFormat,
write_capnp_file

from fpga_interchange.parameter_definitions import ParameterFormat

from fpga_interchange.testarch_generators.device_resources_builder import
BelCategory, ConstantType

from fpga_interchange.testarch_generators.device_resources_builder import
DeviceResources, DeviceResourcesCapnp

from fpga_interchange.testarch_generators.device_resources_builder import
CellBelMapping, CellBelMappingEntry, Parameter, LutBel, PseudoCell

===

class TestArchGenerator():
"""
Test architecture generator
"""

def __init__(self, args):
self.device = DeviceResources("testarch")

self.grid_size = (9, 9)
self.width = self.grid_size[0] - 1
self.height = self.grid_size[1] - 1

Number of connections within tiles
self.num_intra_nodes = 6
Number of connections between tiles
self.num_inter_nodes = 6

self.bus_ports = self.height
self.bus_width = 2

self.args = args

Chapter A: Additional Material 50

def make_slice_site_type(self):
"""
Generates a simple SLICE site type.
"""

The site
site_type = self.device.add_site_type("SLICE")

Site pins (with BELs added automatically)
site_type.add_pin("L0_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("L1_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("L2_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("L3_0", Direction.Input,

(None, 2e-16, None, None, None, None))
site_type.add_pin("O_0", Direction.Output,

(None, 1.7, None, None, None, None))

site_type.add_pin("D_0", Direction.Input,
(None, 2e-16, None, None, None, None))

site_type.add_pin("Q_0", Direction.Output,
(None, 1.9, None, None, None, None))

Unique clock input
site_type.add_pin("CLK", Direction.Input,

(None, 2e-16, None, None, None, None))

LUT4 BEL
a_lut_bel = LutBel("ALUT", ["A1", ’A2’, ’A3’, ’A4’], ’O’, 0, 15)
site_type.add_lut_element(16, [a_lut_bel])
bel_lut = site_type.add_bel("ALUT", "LUT4", BelCategory.LOGIC)
bel_lut.add_pin("A1", Direction.Input)
bel_lut.add_pin("A2", Direction.Input)
bel_lut.add_pin("A3", Direction.Input)
bel_lut.add_pin("A4", Direction.Input)
bel_lut.add_pin("O", Direction.Output)

DFF BEL
bel_ff = site_type.add_bel("AFF", "DFF", BelCategory.LOGIC)
bel_ff.add_pin("C", Direction.Input)
bel_ff.add_pin("D", Direction.Input)
bel_ff.add_pin("Q", Direction.Output)

if not self.args.no_ffmux:
bel_mux = site_type.add_bel("AFFMUX", "MUX2", BelCategory.ROUTING)
bel_mux.add_pin("I0", Direction.Input)
bel_mux.add_pin("I1", Direction.Input)
bel_mux.add_pin("O", Direction.Output)

LUT wires
w = site_type.add_wire("L0_0_to_A1", [("L0_0", "L0_0"),

("ALUT", "A1")])
w = site_type.add_wire("L1_0_to_A2", [("L1_0", "L1_0"),

("ALUT", "A2")])
w = site_type.add_wire("L2_0_to_A3", [("L2_0", "L2_0"),

("ALUT", "A3")])
w = site_type.add_wire("L3_0_to_A4", [("L3_0", "L3_0"),

Chapter A: Additional Material 51

("ALUT", "A4")])

if not self.args.no_ffmux:
w = site_type.add_wire("DIN_0", [("D_0", "D_0"), ("AFFMUX", "I1")])

Clock wire
w = site_type.add_wire("CLK", [("CLK", "CLK"), ("AFF", "C")])

w = site_type.add_wire("ALUT_O")
w.connect_to_bel_pin("ALUT", "O")
w.connect_to_bel_pin("O_0", "O_0")

if not self.args.no_ffmux:
w.connect_to_bel_pin("AFFMUX", "I0")

else:
w.connect_to_bel_pin("AFF", "D")

if not self.args.no_ffmux:
w = site_type.add_wire("AMUX_O")
w.connect_to_bel_pin("AFFMUX", "O")
w.connect_to_bel_pin("AFF", "D")

w = site_type.add_wire("AFF_OUT", [("AFF", "Q"), ("Q_0", "Q_0")])

Site PIPs
if not self.args.no_ffmux:

site_type.add_pip(("AFFMUX", "I0"), ("AFFMUX", "O"),
(None, 5e-12, None, None, None, None))

site_type.add_pip(("AFFMUX", "I1"), ("AFFMUX", "O"),
(None, 5e-12, None, None, None, None))

for i in range(4):
site_type.add_pip(("ALUT", f"A{i+1}"), ("ALUT", "O"),

(None, 5e-12, None, None, None, None))

def make_iob_site_type(self):
"""
Builds site types for input and output pads
"""

Input site type
site_type = self.device.add_site_type("IPAD")

bel = site_type.add_bel("IPAD", "PAD", BelCategory.LOGIC)
bel.add_pin("P", Direction.Output)

bel = site_type.add_bel("IB", "IB", BelCategory.LOGIC)
bel.add_pin("P", Direction.Input)
bel.add_pin("O", Direction.Output)

site_type.add_pin("I", Direction.Output)

site_type.add_wire("P_to_I", [("IB", "P"), ("IPAD", "P")])
site_type.add_wire("P", [("I", "I"), ("IB", "O")])

Output site type
site_type = self.device.add_site_type("OPAD")

bel = site_type.add_bel("OPAD", "PAD", BelCategory.LOGIC)

Chapter A: Additional Material 52

bel.add_pin("P", Direction.Input)

bel = site_type.add_bel("OB", "OB", BelCategory.LOGIC)
bel.add_pin("P", Direction.Output)
bel.add_pin("I", Direction.Input)

site_type.add_pin("O", Direction.Input)

site_type.add_wire("P", [("OB", "P"), ("OPAD", "P")])
site_type.add_wire("O_to_P", [("O", "O"), ("OB", "I")])

def make_power_site_type(self):

The site
site_type = self.device.add_site_type("POWER")

Site pins (with BELs added automatically)
site_type.add_pin("V", Direction.Output)
site_type.add_pin("G", Direction.Output)

VCC bel
bel_vcc = site_type.add_bel("VCC", "VCC", BelCategory.LOGIC)
bel_vcc.add_pin("V", Direction.Output)
self.device.add_const_source(site_type.name, bel_vcc.name, ’V’,

ConstantType.VCC)

GND bel
bel_gnd = site_type.add_bel("GND", "GND", BelCategory.LOGIC)
bel_gnd.add_pin("G", Direction.Output)
self.device.add_const_source(site_type.name, bel_gnd.name, ’G’,

ConstantType.GND)

Wires
site_type.add_wire("V", [("VCC", "V"), ("V", "V")])
site_type.add_wire("G", [("GND", "G"), ("G", "G")])

def make_bus_type(self):
Input site type
site_type = self.device.add_site_type("BUS")

for n in range(self.bus_ports):
for w in range(self.bus_width):

site_type.add_pin(f"BUS_SITE_IN_{n}_{w}", Direction.Input)
site_type.add_pin(f"BUS_SITE_OUT_{n}_{w}", Direction.Output)
site_type.add_wire(f"BUS_{n}_{w}", [(f"BUS_SITE_IN_{n}_{w}", f"

BUS_SITE_IN_{n}_{w}"), (f"BUS_SITE_OUT_{n}_{w}", f"
BUS_SITE_OUT_{n}_{w}")])

def make_tile_type(self, tile_type_name, site_types):
"""
Generates a simple CLB tile type
"""

The tile
tile_type = self.device.add_tile_type(tile_type_name)

Sites and stuff
for site_type_name in site_types:

site_type = self.device.site_types[site_type_name]

Chapter A: Additional Material 53

Add the site
site = tile_type.add_site(site_type.name)

Add tile wires for the site and site pin to tile wire mapping
for pin in site_type.pins.values():

if pin.direction == Direction.Input:
wire_name = "TO_{}_{}".format(site.ref, pin.name.upper())

elif pin.direction == Direction.Output:
wire_name = "FROM_{}_{}".format(site.ref, pin.name.upper())

else:
assert False

tile_type.add_wire(wire_name, ("Tile-Site", "general"))
site.primary_pins_to_tile_wires[pin.name] = wire_name

if tile_type_name == "NULL":
return

if tile_type_name == "BUS":

Add BUS interconnect wires
for w in range(self.bus_width):

for n in range(self.bus_ports):
name = f"BUS_IN_{n}_{w}"
tile_type.add_wire(name, ("Interconnect", "general"))

name = f"BUS_OUT_{w}"
tile_type.add_wire(name, ("Interconnect", "general"))

PIPs for BUS_OUT_n and BUS_SITE_OUT_n_w
for w in range(self.bus_width):

dst_wire = f"BUS_OUT_{w}"

for n in range(self.bus_ports):
src_wire = f"FROM_BUS0_BUS_SITE_OUT_{n}_{w}"
tile_type.add_pip(

src_wire, dst_wire, "intraTilePIP",
is_buffered21=False)

return

Add tile wires for intra nodes
for i in range(self.num_intra_nodes):

name = "INTRA_{}".format(i)
tile_type.add_wire(name, ("Local", "general"))

if tile_type_name == "CLB":
Add BUS interconnect wires
for w in range(self.bus_width):

name = f"BUS_IN_{w}"
tile_type.add_wire(name, ("Interconnect", "general"))
name = f"BUS_OUT_{w}"
tile_type.add_wire(name, ("Interconnect", "general"))

PIPs for BUS and INTRA wires
wires_for_site = [w for w in tile_type.wires if w.startswith("BUS_IN")]
for dst_wire in wires_for_site:

for i in range(self.num_intra_nodes):
src_wire = "INTRA_{}".format(i)
tile_type.add_pip(src_wire, dst_wire, "tilePIP")

Chapter A: Additional Material 54

wires_for_site = [w for w in tile_type.wires if w.startswith("BUS_OUT")
]

for src_wire in wires_for_site:
for i in range(self.num_intra_nodes):

dst_wire = "INTRA_{}".format(i)
tile_type.add_pip(src_wire, dst_wire, "tilePIP")

Add tile wires for incoming and outgoin inter-tile connections
for direction in ["N", "S", "E", "W"]:

for i in range(self.num_inter_nodes):
name = "OUT_{}_{}".format(direction, i)
tile_type.add_wire(name, ("Interconnect", "general"))

for i in range(self.num_inter_nodes):
name = "INP_{}_{}".format(direction, i)
tile_type.add_wire(name, ("Interconnect", "general"))

Add PIPs that connect tile wires for the site with intra wires
wires_for_site = [w for w in tile_type.wires if w.startswith("TO_")]
for dst_wire in wires_for_site:

for i in range(self.num_intra_nodes):
src_wire = "INTRA_{}".format(i)
tile_type.add_pip(

src_wire, dst_wire, "intraTilePIP",
is_buffered21=False)

wires_for_site = [w for w in tile_type.wires if w.startswith("FROM_")]
for src_wire in wires_for_site:

dst_wire = "OUT_{}".format(src_wire)
tile_type.add_wire(dst_wire, ("Local", "general"))
tile_type.add_pip(

src_wire, dst_wire, "intraTilePIP",
is_buffered21=False)

Input tile wires to intra wires and vice-versa
for direction in ["N", "S", "E", "W"]:

Route-through
for i in range(self.num_inter_nodes):

src_wire = "INP_{}_{}".format(direction, i)
tile_type.add_pip(src_wire, "RT", "tilePIP")

dst_wire = "OUT_{}_{}".format(direction, i)
tile_type.add_pip("RT", dst_wire, "tilePIP")

for i in range(self.num_inter_nodes):
src_wire = "INP_{}_{}".format(direction, i)
for j in range(self.num_intra_nodes):

dst_wire = "INTRA_{}".format(j)
tile_type.add_pip(src_wire, dst_wire, "tilePIP")

wires_for_site = [w for w in tile_type.wires if w.startswith("
OUT_FROM_")]

for src_wire in wires_for_site:
dst_wire = "OUT_{}_{}".format(direction, i)
tile_type.add_pip(src_wire, dst_wire, "tilePIP")

if tile_type_name == "PWR":
tile_type.add_const_source(ConstantType.VCC, "FROM_POWER0_V")

Chapter A: Additional Material 55

tile_type.add_const_source(ConstantType.GND, "FROM_POWER0_G")

def print_grid(self):
for loc, tile_id in self.device.tiles_by_loc.items():

tile = self.device.tiles[tile_id]

print(str(loc) + "␣" + tile.name, end="␣")
if (loc[0] == 8):

print("")

def make_device_grid(self):

for y in range(self.height + 1):
for x in range(self.width + 1):

is_vert = y == self.height
is_horiz = x == self.width
is_0_0 = x == 0 and y == 0
is_left = x == 0
is_right = x == self.width - 1
is_centre = y == (self.height - 1) // 2 and x == (self.width - 1)

// 2
is_bus = (x, y) in [(2, 8), (5, 8), (7, 8)]
is_bus = (x, y) in [(2, 8), (8, 6)]
is_bus = (x, y) in [(2, 8)]

suffix = "_X{}Y{}".format(x, y)

if is_0_0:
self.device.add_tile("NULL", "NULL", (x, y))

elif is_left and not is_vert:
self.device.add_tile("IB" + suffix, "IB", (x, y))

elif is_right and not is_vert:
self.device.add_tile("OB" + suffix, "OB", (x, y))

elif is_centre:
self.device.add_tile("PWR" + suffix, "PWR", (x, y))

elif is_bus:
self.device.add_tile("BUS" + suffix, "BUS", (x, y))
elif not (is_vert or is_horiz):

self.device.add_tile("CLB" + suffix, "CLB", (x, y))
else:

self.device.add_tile("PWR" + suffix, "PWR", (x, y))

self.print_grid()

def make_route_through(self):
Add nodes for inter-tile connections.
def offset_loc(pos, ofs):

return (pos[0] + ofs[0], pos[1] + ofs[1])

for loc, tile_id in self.device.tiles_by_loc.items():
if loc == (0, 0):

continue
tile = self.device.tiles[tile_id]
tile_type = self.device.tile_types[tile.type]
if tile_type.name.startswith("BUS"):

break

OPPOSITE = {
"N": "S",
"S": "N",

Chapter A: Additional Material 56

"E": "W",
"W": "E",

}

for direction, offset in [("N", (0, +1)), ("S", (0, -1)),
("E", (+1, 0)), ("W", (-1, 0))]:

for i in range(self.num_inter_nodes):

wire_name = "INP_{}_{}".format(direction, i)
wire_ids = [self.device.get_wire_id(tile.name, wire_name)]

other_loc = offset_loc(loc, offset)
if other_loc == (0, 0):

continue
if other_loc[0] >= 0 and other_loc[0] < self.width and \

other_loc[1] >= 0 and other_loc[1] < self.height:

other_tile_id = self.device.tiles_by_loc[other_loc]
other_tile = self.device.tiles[other_tile_id]
if other_tile.name.startswith("BUS"):

break
other_wire_name = "OUT_{}_{}".format(OPPOSITE[direction], i

)
wire_ids.append(self.device.get_wire_id(other_tile.name,

other_wire_name))

self.device.add_node(wire_ids, "external")

def make_bus_vert(self, loc, tile_id):
tile = self.device.tiles[tile_id]

BUS_IN
Seperate node per bus channel
for w in range(self.bus_width):

for n in range(0, loc[1]): # Move up left column

bus_in = f"BUS_IN_{n}_{w}"
bus_inputs = [self.device.get_wire_id(tile.name, bus_in)]

other_loc = (loc[0] - 1, n) # Iterate through left column pos
if other_loc == (0, 0):

continue
if other_loc[0] >= 0 and other_loc[0] < self.width and \

other_loc[1] >= 0 and other_loc[1] < self.height:

other_tile_id = self.device.tiles_by_loc[other_loc]
other_tile = self.device.tiles[other_tile_id]
other_bus_in = f"BUS_IN_{w}"

We done goofed up
assert(self.device.tile_types[other_tile.type].name.startswith(

"CLB"))

bus_inputs.append(self.device.get_wire_id(other_tile.name,
other_bus_in))

self.device.add_node(bus_inputs, "external")

BUS OUT
Connect bus output to all tiles with same node

Chapter A: Additional Material 57

for w in range(self.bus_width):
bus_output = f"BUS_OUT_{w}"
bus_outputs = [self.device.get_wire_id(tile.name, bus_output)]

for n in range(0, loc[1]): # Move up left column

other_loc = (loc[0] - 1, n)
if other_loc == (0, 0):

continue
if other_loc[0] >= 0 and other_loc[0] < self.width and \

other_loc[1] >= 0 and other_loc[1] < self.height:

other_tile_id = self.device.tiles_by_loc[other_loc]
other_tile = self.device.tiles[other_tile_id]

bus_outputs.append(self.device.get_wire_id(other_tile.name,
bus_output))

self.device.add_node(bus_outputs, "external")

def make_bus_horiz(self, loc, tile_id):
tile = self.device.tiles[tile_id]
tile_type = self.device.tile_types[tile.type]

if tile_type.name.startswith("BUS"):

BUS_IN
Seperate node per bus channel
for w in range(self.bus_width):

for n in range(0, loc[0]): # Move through above row

bus_in = f"BUS_IN_{n}_{w}"
bus_inputs = [self.device.get_wire_id(tile.name, bus_in)]

other_loc = (n, loc[1] + 1) # Moving through top yes very good
if other_loc == (0, 0):

continue
if other_loc[0] >= 1 and other_loc[0] < self.width - 1 and \

other_loc[1] >= 0 and other_loc[1] < self.height:

other_tile_id = self.device.tiles_by_loc[other_loc]
other_tile = self.device.tiles[other_tile_id]
other_bus_in = f"BUS_IN_{w}"

We done goofed up
assert(self.device.tile_types[other_tile.type].name.

startswith("CLB"))

bus_inputs.append(self.device.get_wire_id(other_tile.name,
other_bus_in))

self.device.add_node(bus_inputs, "external")

BUS OUT
Connect bus output to all tiles with same node
for w in range(self.bus_width):

bus_output = f"BUS_OUT_{w}"
bus_outputs = [self.device.get_wire_id(tile.name, bus_output)]

for n in range(0, loc[1]): # Move up left column

Chapter A: Additional Material 58

other_loc = (n, loc[1] + 1) # Moving through top yes very good
if other_loc == (0, 0):

continue
if other_loc[0] >= 1 and other_loc[0] < self.width - 1 and \

other_loc[1] >= 0 and other_loc[1] < self.height:

other_tile_id = self.device.tiles_by_loc[other_loc]
other_tile = self.device.tiles[other_tile_id]

bus_outputs.append(self.device.get_wire_id(other_tile.name,
bus_output))

self.device.add_node(bus_outputs, "external")

def make_wires_and_nodes(self):

Add wires for all tiles
for tile_name in self.device.tiles_by_name:

self.device.add_wires_for_tile(tile_name)

Add nodes for internal tile wires
for tile in self.device.tiles.values():

tile_type = self.device.tile_types[tile.type]

for wire in tile_type.wires:
if wire.startswith("TO_") or wire.startswith("FROM_"):

wire_id = self.device.get_wire_id(tile.name, wire)
self.device.add_node([wire_id], "toSite")

elif wire.startswith("INTRA_"):
wire_id = self.device.get_wire_id(tile.name, wire)
self.device.add_node([wire_id], "internal")

self.make_route_through()

for loc, tile_id in self.device.tiles_by_loc.items():
tile = self.device.tiles[tile_id]
tile_type = self.device.tile_types[tile.type]

if tile_type.name.startswith("BUS"):
if (loc[1] == self.height) and (loc[0] < self.width):

self.make_bus_vert(loc, tile_id)
elif (loc[1] < self.height) and (loc[0] == self.width):

self.make_bus_horiz(loc, tile_id)

def make_package_data(self):

package = self.device.add_package(self.args.package)

ipad_id = 0
opad_id = 0
for site in self.device.sites.values():

if site.type == "OPAD":
pad_name = f"O_{opad_id}"
opad_id += 1

elif site.type == "IPAD":
pad_name = f"I_{ipad_id}"
ipad_id += 1

else:
continue

Chapter A: Additional Material 59

package.add_pin(pad_name, site.name, site.type)

def make_primitives_library(self):

Primitives library
library = Library("primitives")
self.device.cell_libraries["primitives"] = library

def make_luts(max_size):
for lut_size in range(1, max_size + 1):

name = f"LUT{lut_size}"
init = f"{2␣**␣lut_size}’h0"
cell = Cell(name=name, property_map={"INIT": init})

print(name, init)

in_ports = list()
for port in range(lut_size):

port_name = f"I{port}"
cell.add_port(port_name, Direction.Input)
in_ports.append(port_name)

cell.add_port("O", Direction.Output)
library.add_cell(cell)

param = Parameter("INIT", ParameterFormat.VERILOG_HEX, init)
self.device.add_parameter(name, param)
self.device.add_lut_cell(name, in_ports, ’INIT’)

make_luts(4)

def make_dffs(rst_types):
for rst_type in rst_types:

cell = Cell(f"DFF{rst_type}")
cell.add_port("D", Direction.Input)
cell.add_port("C", Direction.Input)
cell.add_port("Q", Direction.Output)
library.add_cell(cell)

make_dffs([""])

cell = Cell("IB")
cell.add_port("O", Direction.Output)
cell.add_port("P", Direction.Input)
library.add_cell(cell)

cell = Cell("OB")
cell.add_port("I", Direction.Input)
cell.add_port("P", Direction.Output)
library.add_cell(cell)

cell = Cell("VCC")
cell.add_port("V", Direction.Output)
library.add_cell(cell)

cell = Cell("GND")
cell.add_port("G", Direction.Output)
library.add_cell(cell)

Chapter A: Additional Material 60

Macros library
library = Library("macros")
self.device.cell_libraries["macros"] = library

def make_cell_bel_mappings(self):

TODO: Pass all the information via device.add_cell_bel_mapping()
delay_mapping = [

(’A1’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),
(’A2’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),
(’A3’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),
(’A4’, ’O’, (None, 50e-12, None, None, None, None), ’comb’),

]

def make_lut_mapping(max_size):
bel_pins = [f"A{pin}" for pin in range(1, max_size + 1)]
cell_pins = [f"I{pin}" for pin in range(max_size)]

for lut_size in range(1, max_size + 1):
name = f"LUT{lut_size}"
pin_map = dict(

zip(cell_pins[0:lut_size], bel_pins[0:lut_size]))
pin_map["O"] = "O"

mapping = CellBelMapping(name)
mapping.entries.append(

CellBelMappingEntry(
site_type="SLICE",
bels=["ALUT"],
pin_map=pin_map,
delay_mapping=delay_mapping[0:lut_size]))

self.device.add_cell_bel_mapping(mapping)

make_lut_mapping(4)

delay_mapping = [
(’D’, (’C’, ’rise’), (None, 5e-12, None, None, None, None),
’setup’),
(’D’, (’C’, ’rise’), (None, 8e-12, None, None, None, None),
’hold’),
((’C’, ’rise’), ’Q’, (None, 6e-12, None, None, None, None),
’clk2q’),

]

def make_dff_mapping(rst_types):
for rst_type in rst_types:

mapping = CellBelMapping(f"DFF{rst_type}")
mapping.entries.append(

CellBelMappingEntry(
site_type="SLICE",
bels=["AFF"],
pin_map={

"D": "D",
"C": "C",
"Q": "Q",

},
delay_mapping=delay_mapping))

self.device.add_cell_bel_mapping(mapping)

Chapter A: Additional Material 61

make_dff_mapping([""])

def make_iob_mapping(sites, bel, pin_map):
mapping = CellBelMapping(bel)

for site in sites:
mapping.entries.append(

CellBelMappingEntry(
site_type=site, bels=[bel], pin_map=pin_map))

self.device.add_cell_bel_mapping(mapping)

make_iob_mapping(["IPAD"],
"IB",
pin_map={

"O": "O",
"P": "P"

})

make_iob_mapping(["OPAD"],
"OB",
pin_map={

"I": "I",
"P": "P"

})

mapping = CellBelMapping("GND")
self.device.add_cell_bel_mapping(mapping)

mapping = CellBelMapping("VCC")
self.device.add_cell_bel_mapping(mapping)

def make_parameters(self):
pass

def generate(self):
self.make_iob_site_type()
self.make_slice_site_type()
self.make_power_site_type()
self.make_bus_type()

self.make_tile_type("CLB", ["SLICE"])
self.make_tile_type("BUS", ["BUS"])
self.make_tile_type("IB", ["IPAD"])
self.make_tile_type("OB", ["OPAD"])
self.make_tile_type("PWR", ["POWER"])
self.make_tile_type("NULL", [])

self.make_device_grid()
self.make_wires_and_nodes()

self.make_package_data()

self.make_primitives_library()
self.make_cell_bel_mappings()
self.make_parameters()

Add pip imings
Values are taken at random, resisitance, input and output capacitance are

chosen

Chapter A: Additional Material 62

to be samewhat inline with values calculated from skaywater PDK
self.device.add_PIPTiming("tilePIP", 3e-16, 1e-16, 5e-10, 0.5, 4e-16)
self.device.add_PIPTiming("intraTilePIP", 1e-16, 4e-17, 3e-10, 0.1,

2e-16)

Add node timing
Value taken from skywater PDK for metal layer 1,
Tile-to-Tile length 30 um, internal 15 um and to site 2 um
Wire width of 0.14 um
self.device.add_nodeTiming("external", 26.8, 1.14e-14)
self.device.add_nodeTiming("internal", 13.4, 5.7e-15)
self.device.add_nodeTiming("toSite", 1.8, 7.6e-16)

self.device.print_stats()

===

def main():

parser = argparse.ArgumentParser(description="Generates␣testarch␣FPGA")
parser.add_argument(

"--schema-dir",
required=True,
help="Path␣to␣FPGA␣interchange␣capnp␣schema␣files")

parser.add_argument(
"--out-file", default="test_arch.device", help="Output␣file␣name")

parser.add_argument("--package", default="TESTPKG", help="Package␣name")
parser.add_argument(

"--no-ffmux",
action="store_true",
help=
"Do␣not␣add␣the␣mux␣that␣selects␣FF␣input␣forcing␣it␣to␣require␣LUT-thru"

)

args = parser.parse_args()

Run the test architecture generator
gen = TestArchGenerator(args)
gen.generate()

Initialize the writer (or "serializer")
interchange = Interchange(args.schema_dir)
writer = DeviceResourcesCapnp(

gen.device,
interchange.device_resources_schema,
interchange.logical_netlist_schema,

)

Serialize
device_resources = writer.to_capnp()
with open(args.out_file, "wb") as fp:

write_capnp_file(
device_resources,
fp) #, compression_format=CompressionFormat.UNCOMPRESSED)

===

Chapter A: Additional Material 63

if __name__ == "__main__":
main()

A.4 parse_fasm

The following listing shows the parse_fasm Python script, which is used to parse
and illustrate the FASM data generated by the FOSS toolchain (see section 3.2).

Code listing A.4: parse_fasm Python script

import re
import matplotlib.pyplot as plt
import matplotlib.patches as patches

def parse_fasm_file(file_path):
with open(file_path, "r") as f:

fasm_content = f.read()

pattern = r"([A-Za-z0-9_]+)\.([A-Za-z0-9_]+)\.([A-Za-z0-9_]+)"
matches = re.findall(pattern, fasm_content)

fasm_connections = []
for match in matches:

module_name, pin_name, net_name = match
connection = {

"module": module_name,
"pin": pin_name,
"net": net_name

}
fasm_connections.append(connection)

fasm_connections = fasm_connections[1:]

return fasm_connections

fasm_connections = parse_fasm_file("build/design/design.fasm")

Num. total placed blocks
% logic blocks
% route-throughs (except IO blocks)

def calc_util(fasm_connections):
block_counts = {} # Dictionary to store total lines per block
num_logic_blocks = 0
logic_match = False

for connection in fasm_connections:
module_name = connection["module"]
net_name = connection["net"]
pin_name = connection["pin"]
if net_name.startswith("INTRA"):
block_match = re.match(r’[A-Z]+_X(\d+)Y(\d+)’, module_name)
I have seen this block before...
if block_match and not (module_name.startswith("IB") or module_name.

startswith("OB")):

Chapter A: Additional Material 64

block_number = (int(block_match.group(1)), int(block_match.group(2)))
if block_number not in block_counts:

block_counts[block_number] = 1
logic_match = False

Logic v route-throughs. IOBs are an exception
if (net_name.startswith("TO_SLICE") or net_name.startswith("

FROM_SLICE") \
or pin_name.startswith("TO_SLICE") or pin_name.startswith("FROM_SLICE

")) \
and (("IB" not in module_name) or ("OB" not in module_name)) \
and not logic_match:
if (net_name.startswith("ALUT") and not logic_match):

num_logic_blocks += 1
logic_match = True

The rest should be route-throughs
total_blocks = len(block_counts)
num_route_throughs = total_blocks - num_logic_blocks

breakpoint()
print("Total␣num␣of␣blocks:␣", total_blocks)
print("Num␣of␣logic:␣", num_logic_blocks)
print("Num␣of␣route-throughs:␣", num_route_throughs)
print("%␣logic:␣", (num_logic_blocks/total_blocks)*100, "\t␣%␣route-throughs:␣"

, (num_route_throughs/total_blocks)*100)

def plot():
Extract module names from fasm_connections

module_names = list(set(connection["module"] for connection in fasm_connections
))

Extract X and Y coordinates from module names using regular expressions
x_coordinates = [int(re.search(r’X(\d+)’, name).group(1)) for name in

module_names]
y_coordinates = [int(re.search(r’Y(\d+)’, name).group(1)) for name in

module_names]

Create a grid based on X-Y coordinates
plt.figure(figsize=(8, 6))
plt.scatter(x_coordinates, y_coordinates, color=’b’, marker=’s’, s=100)
plt.grid(True, linestyle=’--’, alpha=0.7)

Label modules with their names
for i, name in enumerate(module_names):

plt.text(x_coordinates[i] + 0.1, y_coordinates[i] + 0.1, name, fontsize=9)

Add connections as arrows between modules based on fasm_connections
for connection in fasm_connections:

src_module = connection["module"]
pin_or_net_1 = connection["pin"]
pin_or_net_2 = connection["net"]
if src_module in module_names:

src_idx = module_names.index(src_module)
src_x, src_y = x_coordinates[src_idx], y_coordinates[src_idx]

Determine the wire name from pin_or_net_1 or pin_or_net_2 (whichever
starts with "INTRA" or has a direction)

if pin_or_net_1.startswith("INP") or pin_or_net_1.startswith("OUT"):
wire_name = pin_or_net_1

Chapter A: Additional Material 65

if pin_or_net_2.startswith("INP") or pin_or_net_2.startswith("OUT"):
wire_name = pin_or_net_2

else:
If neither pin nor net starts with "INTRA", treat them as wires
wire_name = pin_or_net_1 # You can also use pin_or_net_2, as they

are interchangeable

if "OUT_N" in wire_name:
dest_x, dest_y = src_x, src_y + 1

elif "OUT_S" in wire_name:
dest_x, dest_y = src_x, src_y - 1

elif "OUT_E" in wire_name:
dest_x, dest_y = src_x + 1, src_y

elif "OUT_W" in wire_name:
dest_x, dest_y = src_x - 1, src_y

else:
continue

if (dest_x, dest_y) == (0, 0): # Ignore routing to NULL tiles
continue

arrow = patches.FancyArrowPatch((src_x, src_y), (dest_x, dest_y), color
=’red’, arrowstyle=’->’, mutation_scale=20)

plt.gca().add_patch(arrow)
- MUX based bus

Set plot limits and labels
plt.xlim(-1, max(x_coordinates) + 1)
plt.ylim(-1., max(y_coordinates) + 1)
plt.xlabel(’X␣Coordinate’)
plt.ylabel(’Y␣Coordinate’)
plt.title("CPLD␣device␣grid")

Display the grid
plt.show()

plt.savefig("arch.png")

plot()
calc_util(fasm_connections)

A.5 Grid plots

The following figures are generated after the different PnR runs from section 6.1.1
using the test designs as described in section 3.3.

Chapter A: Additional Material 66

Figure A.1: Grid plot for PnR run of AND4 test for route-through architecture
with grid size (4, 8)

Figure A.2: Grid plot for PnR run of ADD2 test for route-through architecture
with grid size (4, 8)

Chapter A: Additional Material 67

Figure A.3: Grid plot for PnR run of SR4 test for route-through architecture with
grid size (4, 8)

Figure A.4: Grid plot for PnR run of SR4 test for route-through architecture with
grid size (8, 4)

Chapter A: Additional Material 68

Figure A.5: Grid plot for PnR run of SR8 test for route-through architecture with
grid size (4, 8)

Figure A.6: Grid plot for PnR run of SR8 test for route-through architecture with
grid size (8, 4)

Chapter A: Additional Material 69

Figure A.7: Grid plot for PnR run of SR15 test for route-through architecture with
grid size (4, 8)

Figure A.8: Grid plot for PnR run of SR15 test for route-through architecture with
grid size (8, 4)

	Preface
	Acknowledgments
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	Glossary
	Introduction
	Motivations
	Objectives
	Sustainable Development Goals
	Structure

	Background
	F4PGA
	FPGA interchange format
	Mapping guidelines
	Cell placement and driver bel pins

	BEL
	PIP
	FASM
	Island-style FPGA

	Methods
	Cost estimation
	Scripts
	generate_testarch
	parse_fasm

	Test designs
	AND4
	SR4
	SR8
	SR15
	ADD2

	Route-through architecture
	Bus architecture
	Results
	Place and route
	Route-through
	Bus

	Cost estimation
	Microchip design
	Route-through
	Bus

	Discussion
	Problem statement
	Bus design
	Resource bottlenecks
	Note on metrics
	Routing resource vs. placement

	Future work

	Conclusion
	Bibliography
	Additional Material
	Makefile
	generate_testarch (Route-through)
	generate_testarch (Bus)
	parse_fasm
	Grid plots

