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Abstract—In this work, we introduce the concept of pixel-
level face image quality that determines the utility of single
pixels in a face image for recognition. We propose a training-free
approach to assess the pixel-level qualities of a face image given
an arbitrary face recognition network. To achieve this, a model-
specific quality value of the input image is estimated and used to
build a sample-specific quality regression model. Based on this
model, quality-based gradients are back-propagated and con-
verted into pixel-level quality estimates. In the experiments, we
qualitatively and quantitatively investigated the meaningfulness
of our proposed pixel-level qualities based on real and artifi-
cial disturbances and by comparing the explanation maps on
faces incompliant with the ICAO standards. In all scenarios, the
results demonstrate that the proposed solution produces mean-
ingful pixel-level qualities enhancing the interpretability of the
face image and its quality. The code is publicly available.

Index Terms—Biometrics, quality assessment, explainable face
recognition, interpretable face recognition.

I. INTRODUCTION

FACE recognition (FR) systems are spreading worldwide
and have a growing effect on our daily lifes [40]. Since

these systems are increasingly involved in critical decision-
making processes, such as in forensics and law enforcement,
there is a growing need in making the FR process explainable
to humans [31]. Especially in unconstrained environments, FR
systems have to deal with large variabilities, such as image
acquisition conditions (illumination, background) and factors
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of the face (pose, occlusions, expressions), that might result in
defective matching decisions [20], [21]. The impact of these
variabilities on the FR performance is measured in terms of
face image quality (FIQ). Consequently, the performance of
FR systems is strongly dependent on the quality of their
samples. The FIQ of a sample is defined as its utility for
recognition [5], [13], [17], [29]. The automatic prediction of
FIQ (prior to matching) is one of the key factors during the
enrolment and is essential to achieve robust and accurate FR
performances [31].

Previous research on FIQ focused mainly on the develop-
ment of accurate quality assessment methods [5], [7], [17],
[28], [39]. Although these methods possess similar bias prob-
lems than for FR systems [38], no works aimed at making
the output of FIQ assessment (FIQA) methods explainable to
humans [31], and thus provide an interpretable reason for a
face image being of low or high quality. On the other hand,
previous works on explainable FR focused solely on mak-
ing the matching decision explainable to humans, neglecting
that explainability is also needed during the enrolment of sub-
jects, where the quality compliance of the image is typically
checked.

In this work, we propose a training-free approach to com-
pute pixel-level quality (PLQ) explanation maps that deter-
mines the utility of single pixels for recognition, similar to the
definition of FIQ. The PLQ-maps aim at making the enrolment
process explainable for humans. Their construction consists of
three steps as shown in Figure 1. First, a model-specific qual-
ity value for an input image is estimated. Second, this quality
value and the FR model are used to build a sample-specific
quality regression model without the need for training. Third,
this quality model, optimized for the input image, is used to
back-propagate quality-based gradients and convert these into
PLQ estimates.

In the experiments, the effectiveness of the proposed PLQ-
maps are evaluated quantitatively and qualitatively in three
scenarios. This is done by demonstrating that areas of low
pixel-quality result in lower FIQ values and vice versa. First,
it is shown that inpainting low pixel-quality areas in the face
(such as occlusions) localised by our method increases the
FIQ. Second, it is demonstrated that placing random distur-
bances on the face results in easily-detectable areas of low
pixel-quality. Third, the PLQ-maps are analysed based on
face images incompliant to various International Civil Aviation
Organization (ICAO) specifications [20]. In all three scenar-
ios, the results demonstrate that the proposed solution produces
meaningful PLQ values.
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Fig. 1. Overview of the proposed pixel-level quality estimation approach in three steps. First, the input image I is passed through a face recognition
model MFR with repetitive forward-passes through the last layer to obtain a model-specific quality estimate QI . This quality value is modified and used
in the second step to build an image-specific quality regression model MQ(I) by extending MFR with a quality node NQ̂I

that is connected through the
weights ωNQ̂I

. In the third step, the constructed regression model MQ(I) is used to backpropagate the quality-based gradients and to transform the resulting

saliency maps to a pixel-level quality map P(I).

The proposed PLQ-maps have several advantages. First,
they can be used to deepen the understanding of how FIQA
and FR models work since these maps describes the impor-
tance of pixels for the model-specific FIQ and therefore also
for the FR model. Second, they can be used to enhance FR
performance by inpainting or merging low-quality areas of the
face to create images of higher utility. Last, they can explain
why an image cannot be used as a reference image during
the acquisition/enrolment process and in which area of the
face the subject have to do changes to increase the quality.
Consequently, PLQ maps provide guidance on the reasons
behind low quality images, and thus can provide interpretable
instructions to improve the FIQ.

To summarize, the proposed PLQA approach (a) can be
applied on arbitrary FR networks, (b) does not require training,
and (c) provides a pixel-level utility description of an input
face explaining how well pixels in face image are suited for
recognition before it is used for matching. The code for this
work is publicly available.1

II. RELATED WORK

A. Explainable Face Recognition

Explainable FR is a relatively new field of research that
aims at making the face recognition pipeline, and its con-
sequences, explainable for humans. In 2019, Yin et al. [45]
proposed a spatial activation diversity loss. The loss penalizes
correlations among filter weights and they showed that their
filter distribution is more spread to different spatial areas. This
lead to learned face representations of higher structure and
therefore higher interpretability since each dimension of the
representation represents a face structure or a face part. In [46],
Zee et al. trained a classification network on faces and used
class activation maps to find the most distinguishable regions.
With this information, the authors showed that the human
FR performance is increased. In 2020, Williford et al. [42]

1https://github.com/pterhoer/ExplainableFaceImageQuality

proposed new approaches for explainable FR. Based on triplets
consisting of a probe, a mate, and a non-mate image, the
algorithms generate saliency maps that highlight the max-
imum similarity between the probe and the mate and the
minimum between the probe and the non-mate. This provides
explanations on why the matcher comes to a certain decision.

So far, works on explainable FR have focused on making
the matching decision explainable. Contrarily, in this work,
we propose a method to make the utility of an image for
recognition explainable before any matchings.

B. Face Image Quality Assessment

Several standards have been proposed to ensure face image
quality by constraining the capture requirements, such as
ISO/IEC 19794-5 [21] and ICAO 9303 [20]. These standards
divide quality into image-based qualities (such as illumination,
occlusion) and subject-based quality measures (such as pose,
expression, accessories). This influenced the first generation
of FIQA approaches that are built on human perceptive image
quality factors [1], [2], [10], [12], [13], [18], [29], [33], [41].
However, due to the achieved performance, the research focus
shifted to learning-based approaches.

The second generation of FIQA approaches [3], [5], [7],
[17], [23], [43] consists of supervised learning algorithms
based on human or artificially constructed quality labels. These
quality labels were either based on human judgement or
derived from comparison score distributions. The utilized algo-
rithms include rank-based learning [7], the use of SVM-based
approaches [5], and training deep networks with artificial qual-
ity labels [17], [28], [44]. However, humans may not know the
best characteristics for face recognition systems and artificially
labelled quality values, derived from comparison scores, rely
on error-prone labelling mechanisms and require large-scale
training.

The third generation of FIQA approaches completely avoids
the use of quality labels. In 2020, Terhörst et al. [39] proposed
stochastic embedding robustness for FIQA (SER-FIQ). This
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concept measures the robustness of a face representation
against dropout variations and uses this measure to determine
the quality of a face. It avoids the need for training and takes
into account the decision patterns of the deployed face recog-
nition model. In 2021, Meng et al. [26] proposed a class of
loss functions that include magnitude-aware angular margins,
encoding the quality into the face representation. Training with
this loss results in an FR model that produces embeddings
whose magnitudes can measure the FIQ of their faces.

So far, research on FIQ focuses only on the development of
FIQA methods. Although that it was shown that FIQA pos-
sesses similar bias problems than for FR [38], no works aimed
at making the output of FIQA explainable to humans. While
there are various approaches to visualize classification deci-
sions of deep learning models [27], [34], [37], to the best of
our knowledge, this is the first work on explaining the utility
of face representations.

III. METHODOLOGY

The proposed pixel-level quality estimation method consists
of three steps. First, for a given face image I, a model-specific
quality estimate is computed stating its utility for the face
recognition network. Second, the quality value and the recog-
nition network are used to build a quality regression model
without the need for training. Third, this model is used to
back-propagate quality-based gradients and convert these into
pixel-level face image quality estimations. An overview of the
proposed concept is shown in Figure 1.

A. Model-Specific Quality Estimation

To compute the model-specific FIQ value QI , our method
builds on the work of Terhörst et al. [39]. This choice is based
on its training-free applicability to arbitrary FR networks and
since it determines how well a specific model MFR can use
I for recognition. Given a face image I, this image is propa-
gated through the network and the forward passes to the last
(embedding) layer are repeated m = 100 times as motivated
in [39]. During each of these stochastic forward passes, a dif-
ferent dropout pattern (with pd = 0.5) is applied resulting in
a set of m different stochastic embeddings XI . The FIQ of the
image I is given by

QI = Q(XI) = 2σ

⎛
⎝− 2

m2

∑
i<j

d
(
xi, xj

)
⎞
⎠, (1)

where σ(·) is the sigmoid function and states the Euclidean
distance between two stochastic embedding xi, xj ∈ XI . QI

defines the quality of an image over the robustness of its
embeddings. If there are high variations in the stochastic
embeddings, the robustness of the representation is low and
thus the quality. Since the quality score is model-dependent
and often in a narrow range, we additionally adjust the score
to the range of [0, 1] using

Q̂I = f (QI) = σ(α(QI − r)). (2)

Choosing r near the mean of the quality distribution of a devel-
opment set ensures a new mean quality around 0.5 after apply-
ing Eq. (2). Parameter α is chosen to stretch the values to a

range of [0, 1]. Please note that this quality scaling is optional
and only aims at making the results more easily comparable.

B. Building a Quality Regression Model

Based on the face image quality score Q̂I for image I and the
face recognition model MFR, we now build an image-specific
quality regression model MQ in a training-free fashion based
on this single input image. This is performed by extending the
face recognition model MFR with a one-dimensional quality
node NQ̂I

. The node is fully connected to the (last) embedding
layer of MFR. The weights of these connections are given by

wNQ̂I
= Q̂I

||eI ||1 , (3)

where MFR(I) = eI is the face embedding of MFR for the
single image I. This assumes a linear layer activation with
a bias term of b = 0 and ensures that all features of eI are
equally important for the quality estimation. Moreover, the
construction of MQ ensures that given the single image I, the
output of the model is Q̂I .

C. Pixel-Level Quality Calculation

The constructed quality regression model MQ for image I
is, similarly to MFR, pairwise differentiable. Therefore, we
can compute a gradient-based saliency map

S(I) = δMQ(I)

δI
, (4)

similar to [4], [35], [36]. In contrast to these, the saliency map
in our work is not dependent on a certain class but rather on
the continuous quality value. The saliency map S(I) consists
of the gradients for each pixel of I. The magnitudes of these
gradients indicate the relative effect on each pixel on the FIQ
value.

Considering S(I), only the magnitudes of the gradients
are crucial for the quality assessment task while their direc-
tions are context-dependent [36]. Consequently, the three color
channels of S(I) are merged considering only the absolute
values of the gradients. This is done by

Ŝ(I) = 1

3

3∑
c=1

|gi,j,c|, (5)

where gi,j,c represents the gradient for pixel (i, j) of color
channel c. Ŝ(I) can already be interpreted as pixel-level qual-
ities. However, since the pixel-level qualities aim at visually
explaining the utility of an image for recognition in a human-
understandable manner and the ranges of Ŝ(I) are, depending
on MFR, in a narrow range, a visualization function v

v
(

Ŝ
)

= 1 − 1

1 +
(

10γ × ĝ2
i,j,c

) , (6)

is used to project Ŝ to a more intuitive range of [0, 1]. The
visualization parameter γ is used to stretch the quality values
to the desired range. Applying v(·) on Ŝ(I) results in the pixel-
level quality map P(I) = v(Ŝ(I)). P(I) is the representation of
the pixel-level qualities pi,j ∈ [0, 1]. A higher pixel quality
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Fig. 2. Workflow of the Pre- and Inpainted Dataset creation - Using
the proposed methodology, the PLQ-map is computed. Then, both images are
given to a human observer to mask the quality-decreasing factor according to
the interpretation of the observer. Then, this area is inpainted [24] to create a
similar face image without the potential quality-decreasing factor. The differ-
ence between the FIQ of the original and the inpainted image allows to state
the interpretability of the PLQ-map for the observer.

indicates a higher contribution for the recognition utility of
the face image and vice versa.

Please note that, in contrast to the typical procedure when
dealing with gradient backpropagation, we do not scale the
gradients per image, e.g., with MinMax scaling. Scaling the
gradients would highlight the differences in low- and high-
quality regions of a single image but also result in the loss of
the PLQ comparability between different images. For instance,
such scaling will always result in an area of high quality even
if the image is not suitable for recognition.

IV. EXPERIMENTAL SETUP

A. Databases

1) The Pre- and Inpainted Dataset: Was created by man-
ually selecting images from VGGFace2 [6] and Adience [11]
since these contain images of large variances. The decision
criteria for the selection was that the images must contain
occlusions or similar quality-decreasing factors according to
human judgement. For each image, the PLQ-map is computed
based on the proposed approach and both images, the original
and the PLQ-map, are given to a human observer with the task
of determining and masking the quality-decreasing factor. The
image and the corresponding mask are given to an inpainting
model [24]. This resulted in pairs of similar face images with
and without quality-decreasing factors. When the FIQ of the
inpainted image is higher than the original FIQ, then we can
conclude that the PLQ-maps can be successfully interpreted to
detect low-quality areas. The workflow of the dataset creation
is shown in Figure 2. The created dataset consists of 100 pairs
of face images with their inpainted counterparts.

2) The Random Mask Dataset: Is based on the
ColorFeret [30] database due to the high image-quality
of its images which corresponds to scenarios such as identity
document and border checks. Each image of the random
mask dataset was created by placing a black square on the
inner image of a frontal face. For each ColorFeret image,
5 black squares of size s × s (s = 10, 20, 30, 40, 50) pixels
were placed randomly on the image resulting in 5 images
for the random mask dataset. To avoid that non-facial areas
are masked, the squares are only placed in the inner 90% of
the face images. This results in a total of 6610 masked face

images to demonstrate that the proposed methodology can
detect these disturbances as low-quality regions.

3) The Inhouse ICAO Incompliance Dataset: Was collected
by us to analyse the effect of pixel-level face image qual-
ity on face images that violate various International Civil
Aviation Organization (ICAO) specifications [20]. It consists
of a reference image of one subject that complies with these
specifications as well as 33 face images of the same subject
with different violations of these specifications. The images
were taken with fixed capturing conditions to allow a clear
investigation of the effect of pixel-level face image qualities
on ICAO incompliances.

B. Face Recognition Models and Parameters

We analysed the image- and pixel-level face quality based
on two widely-used FR models using FaceNet2 [32] and
ArcFace3 [8] losses (both MIT License) based on ResNet-
100. For the sake of simplicity, we refer to these models as
FaceNet and ArcFace. Both models were trained on the MS1M
database [16]. Given a face image, the image is aligned, scaled,
and cropped before being passed to one of the models. This
preprocessing is done as described in [15] for ArcFace, and
as described in [22] for FaceNet.

Since the quality estimations are model-specific for FR
systems, the parameters for the quality scaling and the quality
visualization are as well. The quality values are adjusted to
a wider range of [0, 1] on the quality values of the Adience
benchmark [11] and resulted in parameters αAF = 130, rAF =
0.88 for ArcFace and αFN = 450, rFN = 0.93 for FaceNet.
For visualizing the pixel-level qualities, we choose γAF = 7.5
for ArcFace and γFN = 5.5 for FaceNet. Please note that the
choice of γ is subjective and depending on the colormap used
for visualizing the quality values.4 In general, the choice of
these parameters (α, r, γ ) determine the scaling of the qualities
and thus, aim to make the results more easily understandable.
Since the scaling is done with a strictly increasing function,
the order of the qualities, and thus the FIQA task in general,
is not affected.

C. Investigations

The proposed approach is analysed in three steps. First,
the human interpretability of the PLQ-maps is investigated
by giving a human observer low-quality face images and the
corresponding PLQ-maps to localise the quality-decreasing
factor. Second, random masks are placed on high-quality faces
to show that the proposed methodology identifies these as
low-quality areas. Both evaluation approaches aim at quanti-
tatively (via quality-changes) and qualitatively (via changes in
the PLQ-maps) investigating the effectiveness of the proposed
PLQA approach. Lastly, the PLQ-maps are investigated on
ICAO-incompliant faces.

2https://github.com/davidsandberg/facenet
3https://github.com/deepinsight/insightface
4We recommend to adjust γ based on an ICAO compliant [20] face image

such that the center of the face shows the high quality color (green) while
the background shows a uniform color for low quality (red).
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Fig. 3. Quality values before and after inpainting - The values are sorted
and plotted with their standard deviation (STD) of calculating the FIQ score
10 times. For ArcFace (FaceNet), the quality scores decreased in 15% (5%)
of the cases while the inpainting improved the image quality in 65% (69%)
of the cases. In the remaining cases, the quality change was within the STD.
The decreases might origin from error-prone inpaintings. In general, inpainting
low-quality areas improves the FIQ demonstrating that the PLQ values helped
the human observer to interpret and determine the quality-decreasing factor.

V. RESULTS AND DISCUSSIONS

A. Analysing PLQ-Change by Enhancing FIQ

Using the Pre- and Inpainted dataset presented in
Section IV-A, we examine the pixel-level quality explanation
maps of images with occlusions and other quality degrada-
tions as well as images where these impairments have been
corrected with inpainting. Comparing the images before and
after inpainting allows us to make a statement about how well
the proposed solution works for the human observer. Since the
observer was asked to mask the quality-decreasing factor, the
FIQ of the inpainted image should be higher than the original
one if the PLQ-map was well-interpretable.

1) Quantitative Analysis: Figure 3 shows the FIQ values
before and after the inpainting for two face recognition models.
For ArcFace, only 15% of the quality scores decreased while
65% of the scores increased with inpainting low pixel-quality
areas. For FaceNet, only 5% of the inpaintings decreased the
FIQ and in 69%, the FIQ increased. In the remaining cases,
the quality change was negligible since it was within the stan-
dard deviation of the FIQ scores. Moreover, many cases of
decreased quality scores origin from bad inpaintings showing
unreasonable artefacts (see Figure 4(d)). In general, inpaint-
ing areas that our method identified as low-quality improves
the FIQ demonstrating that the PLQ-maps helped the human
observer to successfully determine the quality-decreasing fac-
tor. Especially for images with low FIQ, inpaiting low pixel-
quality areas lead to strong quality enhancements as shown in
Figure 3.

2) Qualitative Analysis: In Figure 4, the PLQ explanation
maps for two face recognition models are shown before and
after the inpainting. Figure 4(a) shows a recovered cheek area
of a face. For both models, the PLQ-map of the original image
shows low pixel-qualities in the area of the covered cheek.
In the inpainted image, the cheek is recovered and the area
is determined as high-quality pixels. In Figure 4(b), a large
occlusion covering the lower part of the face is shown. While
for the PLQ-map on ArcFace this area is clearly detected, for
FaceNet this is only shown as medium quality. After inpaint-
ing, this area is recognized as high-quality by both models.
Figure 4(c) shows the effect of glasses on the PLQ-maps. For
both models, the frame of the glasses is recognized as low
quality and removing the glasses lead to high pixel-qualities.

Figure 4(d) shows the case of a faulty inpainting. Before the
inpainting, the glasses and reflections are shown as low pixel-
qualities. After, the method failed to mark the missing eyes
as low quality. In Figure 4(e) a small occlusion is shown. For
ArcFace, this occlusion is represented more sharply than for
FaceNet. However, removing this occlusion leads to high-pixel
qualities for both models. Moreover, the hat is sharply esti-
mated as low-pixel quality for both models. Lastly, Figure 4(f)
demonstrates the case of multiple occlusions (headgear and
beard). Both occlusions are marked as low-quality pixels and
after the inpainting, the qualities are increased. These exam-
ples demonstrate that the proposed solutions lead to reasonable
pixel-level quality estimates.

B. Analysing PLQ-Change by Decreasing FIQ

Using the Random Mask dataset described in Section IV-A,
we examine the pixel-level quality explanations by degrad-
ing the high-quality images using randomly placed masks. If
the PLQ-maps represent the mask areas as low-quality, we
can conclude that our solutions can successfully detect such
disturbances.

1) Quantitative Analysis: Figure 5 shows the effect of the
random masking process on the image- and pixel-level qual-
ities for two face recognition models and five mask sizes.
In Figures 5(a) and 5(b), the distribution of image quality
changes affected by the image degradation is shown. The
image quality change

�Q̂ = Q̂Iorg − Q̂Imask (7)

represents the difference between the FIQ of an unmodified
image Iorg and a masked image Imask. A positive �Q̂ indi-
cates that the FIQ is successfully degraded in presence of the
mask. For the majority of the Random Mask dataset images,
such positive values of �Q̂ > 0 are observed for ArcFace.
For FaceNet, low mask sizes (s = 10, 20) do not particu-
larly affect the FIQ. Only for medium or larger mask sizes
(s = 30, 40, 50) the FIQ is successfully degraded.

In Figures 5(c) and 5(d), the distribution of the mean pixel-
quality change in the masked area is shown. The mean pixel-
quality change

�p = 1

|P|
∑

i,j∈P
porg

i,j − pmask
i,j (8)

measures the average difference in the pixel-level qualities
pi,j of the unaltered and the masked images in the masked
area P . Similar to the image quality change �Q̂, a pos-
itive �p indicates that the masks lead to degraded pixel
qualities. For ArcFace, a large portion of the distributions
has positive values for all mask sizes. For FaceNet, this
behaviour is only observed for large mask sizes (s ≥ 30) since
the utilized model tends to be robust against smaller distur-
bances (see Figures 5(b) and 5(d)). In general, the proposed
methodology catches the added disturbances with both models
and assigns them with significantly lower pixel-level quali-
ties, demonstrating that the produced pixel-level qualities are
meaningful.
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Fig. 4. PLQ explanation maps before and after inpainting - Images before and after the inpainting process are shown with their corresponding PLQ-maps
and FIQ values. The images show the effect of small and large occlusions, glasses, headgears, and beards on the PLQ-maps for two FR models. In general,
these are identified as areas of low pixel-quality and inpainting these areas strongly increases the pixel-qualities of these areas as well as the FIQ. This
demonstrates that our solution leads to reasonable pixel-level quality estimates and thus can give interpretable recommendations on the causes of low quality
estimates.

Fig. 5. Quality changes through random masks - High-quality images are degraded by placing random masks of size s × s pixels on the images. The
effect of this is analysed in terms of FIQ change �Q̂ of the image and in terms of mean pixel quality change �p in the masked area. The distributions of the
image quality changes for both models are shown in (a, b) and (c, d) present the distribution for the pixel quality changes. Positive quality changes (values
right of the black line) indicate that the disturbances degrade the qualities. Since the majority of the changes are positive, our solution is able to detect these
disturbances and assigns them with low-qualities.

Fig. 6. PLQ-explanation maps for random masks - For two random identities, their masked and unmasked images are shown with their corresponding
PLQ-maps. In general, the effect of the mask on the PLQ-map is clearly visible demonstrating the effectiveness of the proposed approach to detect disturbances.

2) Qualitative Analysis: In Figure 6, the PLQ explanation
maps for two random identities are shown over several mask
sizes and locations for both FR models. Moreover, the face

images and their PLQ-maps are shown without masks. For
all mask sizes, the masked area is assigned with significantly
smaller pixel-level quality values than the surrounding pixels.
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Fig. 7. PLQ-explanation maps for ICAO incompliant images - One ICAO-compliant image and twelve images with incompliances are shown with their
corresponding PLQ-maps. Occlusions (b, c, d), distorted areas of the face (f), and reflections result in low-pixel qualities.

Consequently, the effect of the masks on the PLQ-map is
clearly visible demonstrating that the proposed PLQ assess-
ment approach can detect such disturbances. Besides, it can
be seen that the FIQ depends not only on the size but also on
the position of the mask.

C. PLQ-Maps on ICAO-Incompliant Images

Lastly, we analyse the proposed approach by investigat-
ing the effect of ICAO incompliances on the PLQ-maps. In
Figure 7, the ICAO-compliant and several face images with
different violations of these specifications are shown with their
corresponding PLQ-maps for both FR models. The shown
violations include wearing headgear, glasses, and masks, non-
frontal head poses, non-neutral expressions, and irregular
illuminations. For the ICAO-compliant reference image (a),
the area of the face is clearly visible and the PLQ-maps show
high pixel-qualities in this area. The same goes for wearing
headgears (b) and masks (d) except that the occluded part of
the face is assigned with low pixel-quality values. For glasses
(c), low-pixel qualities are assigned at the frame of the glasses
while the darkened eyes are assigned with higher quality val-
ues. Also for the non-frontal head poses (e), the distinction
between background and face is clearly visible in the PLQ-
maps. Considering non-neutral expressions (f), areas that are
distorted compared to neutral expressions are marked as low
pixel-quality. Lastly, an interesting effect is observed for non-
uniform illuminations. Not the illumined side of the face is
assigned with higher quality, instead, the reflections might
result in lower pixel-level qualities and the side away from
the light is assigned with higher-quality values. Generally, each
of the ICAO incompliances can be interpreted with the PLQ
maps.

D. Summary

The investigations quantitatively and qualitatively demon-
strated the effectiveness of the proposed PLQ assessment
approach from two opposite directions and by comparing it
with ICAO incompliances. First, in images with low FIQ,
low-pixel quality regions are detected and it was shown that

inpainting these low-pixel quality regions lead to an increased
FIQ. Consequently, the assessment of low pixel-quality areas
with the proposed method was correct. Second, images with
high FIQ were degraded by placing random masks on the
images. The PLQ-maps reliably assigned low-pixel qualities
to the areas of disturbances demonstrating the effectiveness
of the PLQ assessment. Lastly, the usefulness of the method
was proven by showing that the method can detect ICAO
incompliances.

Generally, it was shown that the FIQ of an image not only
depends on the size of the disturbances (masks) but also on
their location on the face. The same applies to PLQ values. The
pixel-qualities do not contribute equally and independently to
the overall FIQ. Instead, the composition of pixel-qualities
might have a stronger impact on the FIQ and thus, on the
FR performance. Consequently, a higher FIQ does not nec-
essarily imply that the image must contain more high-quality
pixels.

Please note that the proposed analysis focused on the
effect of the pixel-level quality on the face image quality.
For a comprehensive analysis of the effect of the pixel-level
qualities on the recognition performance, we refer to [19].
There, also two evaluation approaches are presented that allow
direct comparisons with new pixel-level quality assessment
approaches.

Lastly, the PLQ-maps are dependent on the utilized FR
models and how it is trained. In our case, the face recogni-
tion performance, and thus the FIQ assessment performance,
of ArcFace is higher than for FaceNet [39]. Consequently,
the quality values and the PLQ-maps are more stable and
precise on the ArcFace model. Future works may analyse
how well model biases (e.g., for demographics) might be
reflected in the PLQ-maps due to the use of model-specific
FIQ estimations [38].

VI. LIMITATIONS AND ETHICAL CONSIDERATIONS

When applying the proposed methodology we propose
to use Gradient Clipping [47] for the backpropagation of
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quality-based gradients. This aims to avoid exploding gra-
dients and thus, unreasonable PLQ-maps. Please note that,
similar to FR systems, the FIQ on image and pixel-level can be
manipulated through adversarial noise. Since FR systems are
vulnerable to adversarial noise and model-specific face image
quality assessment methods [9], [14], such as SER-FIQ [39]
on image-level or the proposed PL-FIQ on pixel-level, aim
to estimate the utility of an input for recognition with the
deployed system, the quality assessment methods vulnerable
to adversarial noise as well. Moreover, we want to emphasize
that, depending on the application, inpainting should not care-
lessly be used to improve FIQ of face images since it might
add artefacts leading to wrong matching decisions [25].

VII. CONCLUSION

The high performance of current FR systems is driven by
the quality of its samples. To ensure a high sample quality,
for instance, in an automated border control scenario, the FIQ
of a captured face is determined. Consequently, a captured
face might be rejected during enrolment without a hint of the
quality-decreasing factor. In this work, we proposed a method-
ology to compute pixel-level quality explanation maps to
determine which regions of the face have a high and low util-
ity for recognition. Therefore, the proposed approach provides
feedback on the utility of a face image that is understand-
able for humans. Given an arbitrary FR network, we propose
a training-free approach that determines the pixel-level qual-
ity maps for a face image in three steps. In the first step,
a model-specific quality estimate for the image is calculated,
modified, and used, in the second step, to construct a quality
regression model for the input image. In the third step, quality-
based gradients are back-propagated through the model and
converted into pixel-level quality maps. The experiments qual-
itatively and quantitatively demonstrated the effectiveness of
the proposed approach in estimating pixel-level qualities. This
was shown on real and artificial disturbances and by compar-
ing to ICAO-incompliant images. Moreover, the experiments
allowed us to gain more insights into the functionality of FR
systems. For instance, it was shown that well-illuminated areas
of the face get assigned with significantly lower pixel-qualities
than the shaded area of the face. Consequently, the shaded
areas provide more important information for the FR mod-
els. To summarize, the proposed approach can be applied to
arbitrary FR networks, does not require training, and provides
a pixel-level utility description of the input face that can be
used to (a) deepen the understanding of how FR systems work,
(b) enhance the performance of these systems, and (c) to pro-
vide understandable feedback of why an image is accepted or
rejected during enrolment due to quality concerns.
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