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Cohomologies of complex manifolds with
symplectic (1, 1)-forms

ADRIANO TOMASSINI AND XU WANG

Let (X, J) be a complex manifold with a non-degenerated smooth
d-closed (1,1)-form w. Then we have a natural double complex
0+ 5/\, where 5A denotes the symplectic adjoint of the d-operator.
We study the Hard Lefschetz Condition on the Dolbeault cohomol-
ogy groups of X with respect to the symplectic form w. In [29], we
proved that such a condition is equivalent to a certain symplectic
analogue of the d9-Lemma, namely the 0 -Lemma, which can
be characterized in terms of Bott—Chern and Aeppli cohomolo-
gies associated to the above double complex. We obtain Nomizu
type theorems for the Bott—Chern and Aeppli cohomologies and we
show that the 88 -Lemma is stable under small deformations of w,
but not stable under small deformations of the complex structure.
However, if we further assume that X satisfies the 99-Lemma then
the 00 -Lemma is stable.
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1. Introduction

It is known that the de Rham cohomology of a compact Ké&hler manifold
satisfies two crucial properties: the Hodge decomposition and the Hard Lef-
schetz Condition, which do not hold for a general compact complex manifold.
A natural question is to find a formal algebraic description of the above two
properties. The first breakthrough is due to Frolicher [13] who proved that
the first property is equivalent to having the Frolicher spectral sequence de-
generate at Fj, in particular, every compact surface satisfies the Hodge de-
composition property. In [12] Deligne-Griffiths-Morgan—Sullivan introduced
the stronger notion of the 09-Lemma, which turns out to be equivalent to the
fact that the de Rham cohomology possesses both the Hodge decomposition
property and the Hodge structure (see [12], Proposition 5.12]); furthermore,
they proved that every compact Kihler manifold satisfies the 90-Lemma.
From [5], 18, 19, 3], we know that the Hard Lefschetz Condition on the de
Rham cohomology is essentially an integrability condition (the ddA—Lemma)
on the associated differentiable Gerstenhaber-Batalin-Vilkovisky algebra. In
particular, every compact Kihler manifold satisfies the dd*-Lemma. For a
general compact complex manifold, we know from the main theorem in [3]
that the 00-Lemma is equivalent to a Frolicher-type equality for Bott—Chern
and Aeppli cohomologies. In [29] Def. 8.3], we introduced the 338" -Lemma
and proved that it is equivalent to the Hard Lefschetz Condition on the
Dolbeault cohomology group. More precisely, let (X, J) be a compact com-
plex manifold with a symplectic (1, 1)-form w. Denote by A the symplectic
adjoint of L := wA (see (2.2)), which satisfies (EA)2 =(0 —1—5/\)2 = 0. Then
(X, w, J) satisfies the 30" - Lemma if every d-closed, EA—closed, 0+ 3" _exact
complex form is 55A—exact. It has to be remarked that the 55A—Lemma is a
generalization of the 9*-Lemma on compact Kéhler manifolds (see Sec. .
Cohomologies associated to the 55A-Lemma are complex symplectic Bott—
Chern and Aeppli cohomologies (see Def. . In this paper, we shall show
how to compute the above complex symplectic cohomologies and use them
to study the deformation property of the 9 -Lemma. Our first result is
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Theorem A. Let (X,J) be a compact complex manifold wzth a symplec-
tic (1,1)-form w. Write Hy(X) := @Hpq( ) for t € {0, " ,BC, A} (see
Def. . Then

1) Hpc(X) and Ha(X) satisfy the Hard Lefschetz Condition with respect
to L.

2) With respect to an admissible Hermitian metric (see Definition ,
both the space of Apc-harmonic forms Hpo(X) and the space of A 4-
harmonic forms Ha(X) satisfy the Hard Lefschetz Condition with re-
spect to L. But in general, Hpc(X) and Ha(X) are not an algebra with
respect to the wedge product. In fact, the Kodaira—Thurston manifold
in section will give a counterexample.

3) The Kodaira—Thurston manifold in section and the Iwasawa man-
ifold in section do not satisfy the 55A-Lemma.

Theorem A (1) and (2) depend on a study of the harmonic representative
of a complex symplectic cohomology class in Sec. 3] and [5| (see [28] for the
real case). The main ingredient behind the proof of Theorem A (2) is a
certain Minkowski type Kéahler identity associated to a suitable Hermitian
metric (see Def. [5.2)). The proof of Theorem A (3) depends on an explicit
computation of the associated cohomology group. The main idea is to prove
the following Nomizu type theorem (see [8H11] [14] 16 21H23], 25] for related
results).

Theorem B. Let (X,J) be a compact complex manifold. Assume that
its holomorphic cotangent bundle possesses a smooth global frame ¥ =

{€, ... &n). Let
w = ZZ Wik fj A {7;
be a symplectic form on X with constant coefficients w;j,. Write Hy(X) :=
SH(X) for ¢ € {0, ", BC, A} (see Def. . Assume that Hg(X) is
v reduced (see Definition E) then Hy(X) are also ¥ reduced for § €
{8 BC,A}. In partzcular if U is complex nilpotent (see [2])]) then Hy(X)

are ¥ reduced for 4 € {0, "t ,BC,A}.

The above theorem can be used to prove the following deformation p op—

erty of the & 9"-Lemma and the Dolbeault formality (see [27] and Sec. |7
the definition):

for

Theorem C. Let (X,J) be a compact complex manifold with a symplectic
(1,1)-form w. Then
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1) The 55A—Lemma 1s stable with respect to w, more precisely, let
{witij<1 be a smooth family of symplectic (1,1)-forms, if the 00 -
Lemma holds for wy then it holds for all wy with sufficiently small |t|;

2) If X satisfies the 00-Lemma and 55A—Lemma then so does any small
deformation of X;

3) There exists a complex analytic family of three dimensional Nakamura
manifolds such that the central fiber is geometrically Dolbeault for-
mal and satisfies the 55A—Lemma, but all the nearby fibers are not
Dolbeault formal neither satisfy the 55A-Lemma. In particular, the
00 -Lemma is not a stable property under small deformations of the
complex structure.

The paper is organized as follows: in Section [2] we start by recalling some
facts on complex and symplectic geometry, introducing the complex sym-
plectic cohomologies Hé’;(X), Hpl(X), Hy®(X), and fixing some notation.
In Section [3| by using standard techniques, we prove a Hodge decomposi-
tion for the differential operators Oza, Apc and A, naturally associated
to the complex symplectic cohomologies. In Section [4] by applying a re-
sult in [4 Theorem 3.4], we give a characterization of the 99" -Lemma in
terms of the complex symplectic cohomologies (see Theorem . In Sec-
tion [5] we prove a Kahler identity of Minkowsky type for complex manifolds
endowed with a symplectic (1,1)-form admitting an admissible Hermitian
metric. As a consequence, we obtain that the direct sum of the spaces of
A pc-harmonic (p, g)-forms associated to an admissible Hermitian metric
on a compact complex manifold satisfies the Hard Lefschetz Condition (see
Theorem . Sections |§| and 7| are devoted to the proof of Theorems A, B
and C.

Remark. Theorem C (1) suggests to study the following question:

Question 1. One can ask whether the Hard Lefschetz Condition on the Dol-
beault cohomology group depends on the choice of symplectic (1,1)-forms or
not. In particular, does the Hard Lefschetz Condition hold true with respect
to any symplectic (1,1)-forms on a compact Kdhler manifold?

Remark. It is known that the Hard Lefschetz Condition on the Dolbeault
cohomology group does depend on the choice of symplectic (might not be
(1,1)) form (see [7, Theorem 1.3]), thus we believe that answer is “No” to
Question 1. But we could not find a counterexample.

From (2) in the above theorem, one might also ask the following:
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Question 2. Let (X,J) be a compact complex manifold with a symplectic
(1,1)-form w. Does the 80-Lemma imply the 99" -Lemma?

Remark. If the answer to Question 1 is “No” for some compact Kéahler
manifold then the answer to Question 2 is also “No”, since every compact
Kahler manifold satisfies the 90-Lemma.

Acknowledgments. The first author would like to thank the Depart-
ment of Mathematical Sciences of the Norwegian University of Science and
Technology, Trondheim, for its warm hospitality. The authors want also to
express their gratitude to the anonymous Referee, for his/her useful sugges-
tions and remarks, which led to a substantial improvement of some of the
results presented in the paper.

2. Preliminaries and notation

Let (X,J) be an n-dimensional compact complex manifold. Denote by
AP4(X) the space of (p, ¢)-forms on X. A (1, 1)-symplectic form on (X, J) is
a symplectic form w of type (1, 1) on (X, J), that is w is a symplectic form on
X which is J-invariant. Locally one may write w =14 wﬂ;dfj A d€F. Denote
by (w™1)™ the inverse matrix of (w;z)- Then for any given ¢, ¢ € AP9(X),
one may define

1\ N N —
R Z (w 1)7"1]1 . (w 1) 181, (w 1) qsqSDjl~v-jpl_cl--~l_cq¢7‘1"'7"p§1"'§q’

where

J=01s-sdp) k= (k1,... kg)yr = (r1,...,71p), s = (51,...,5¢),

are multiindices. Then the symplectic star operator *s: AP?(X) —
AM~2"~P(X) is defined by the following representation formula

J— wn
(2.1) P At =w (i, 9)
Then x4 is a real operator which can be extended C*(X,C)-linearly to
the space of complex differential forms A*(X) and *2 = id. The slo-triple
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{L, A, B} acting on the space of (p, q)-forms on (X, J,w) is defined by
(2.2) L:=wA, A:=x,L*xs, B:=][L,A]

We define the symplectic adjoint G AR(X) — AF1(X) of O as

(2.3) 7 = (C1)F L T,
Then, as a consequence of [29, Theorem A], we have the following symplectic
identity

(2.4) " = [, A
Setting as usual,
9 P,q
HPY(X) = ker?ﬂA (X)’
9 Imo N AP9(X)

we recall the following two definitions

Definition 2.1 (Complex-symplectic cohomologies).

kerd'" M AP9(X)

~ kerdn kerd" N AP9(X)
md" N APa(X) '

HEY(X) - —
mdd" N Ara(X)

9

—=A
k APa(X
() = 00 DA
(Im0 +Im9) N AP4(X)
Definition 2.2. (see [29, Def. 8.3]) (X, J,w) is said to satisfy the 99"

Lemma if
kerd Nkerd" N (Im 0 + ImgA) = Tmdd".

Finally, if ¢ is a Hermitian metric on (X, J), with fundamental form wy,
then setting, for any given ¢, € AP9(X),

1 171 kis k o
(@, ¥)(z) = ) S ()" (@ (@ sk Py s
) ’ j7k7r7s

we denote by <, > the L?-Hermitian product on X defined as

n

<o = [ (e



Cohomologies of complex manifolds with symplectic (1,1)-forms 79

3. Complex symplectic cohomologies and Hodge Theory
3.1. Finiteness theorem
Let (X, J) be a compact complex manifold with a symplectic (1, 1)-form w.

For a given J-Hermitian metric g on X, we will denote by w, the associated
fundamental form. We start by giving the following

Definition 3.1. We set

05:=99 +9° 0

A FA % A x=A
Oz :=9 (0) 4+ (9 )"0
(31)  Lpe=00'@"T + (@000 + (@507

Do =00 +0ND"Y) +07(0")0" 0+ 090"
+ EA%* (5/\)* + 5(5/&)*51\5*
We have the following

Lemma 3.2. Let ¢p € APY(X). Then,

i)
oy =0
P € kerOy <= {5*21) 0
ii)
=A
wekerDaA<:>{8[z/} N
(@)% =0
iii)
O =0
1 € ker Ao < 5/\1/1 =0
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99"y =0
YpekerAy <= { I =0

—=A

@)y =0

Proof. i) It is well known from Hodge-Dolbeault theory.
The proof of ii) is similar to the proof of i).
iii) Let ¢ € AP4(X). Assume that

=0, dY=0 (90)¢p=0.

Then, clearly Aoy = 0.
Conversely, let Apct = 0. Then, by the definition of A g, we easily get

0 =< Apc, >
. — ==A . - A -
= (@) YL+ 100 %> + 187 (8 ) 9> + [(87) B¢ + 07| + [0y
The last equation implies that
=0, =0 (@)Y =0.
The proof of iv) is similar. O

The following theorem is known.

Theorem 3.3. Let (X,J) be a compact n-dimensional complex manifold
endowed with a symplectic (1,1)-form w. If § € {0, EA, BC, A}, then the co-
homology groups Héo’q(X) are finite dimensional.

We shall give another proof of the above theorem using harmonic rep-
resentatives. The main idea is to use the following linear algebra lemma:

Lemma 3.4. Let (X, J) be a compact n-dimensional complex manifold with
a symplectic (1,1)-form w. Fiz a Hermitian metric g with fundamental form
wg on X. Denote by xJ the associated symplectic star operator with respect
to wy. Then

g g

1) #Txg = #gkd

1) (%g)* = %4
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where (x5)* denotes the adjoint of .

In order to prove Lemma we need the following (see e.g., [30,
Lemma 1.6])

Lemma 3.5. (Guillemin Lemma) Let (V,w) be a symplectic vector space.
Assume that

(Vv W) = (Vl,wl) @ (VQ,W2)7

where (V;,w?), i = 1,2 are symplectic vector spaces. Then
fy(u A 0) = (—1)F L p 2,
for every u e N Vi, v e NP2V

Proof of Lemma i) For the first formula, fix z € X; then we can choose
local coordinates near x such that

wg(x) = %Zdzj ANdF, w(z) = %Z)\jdzj AdE.

Then by the Guillemin Lemma, it is enough to prove the one dimensional
case: the proof of this fact is trivial.

ii) The second formula follows from the first and
kU AV = U N %40,
where u, v have the same degree. a

Remark 3.6. The symplectic star operator x5 : AP9(X) — A9 "P(X)
induces an isomorphism xg : Hg’q(X) — Hg;q’nfp(X), by setting, for any
given [ulg € HZ(X),
*s[ulz = [*SU]EA
Lemmaimplies the *4 isomorphism Hg{q’"fp(X) = s HZY(X) is also
n—g,n—p

true for the associated harmonic spaces HaA

we have the following result:

and H%q. More precisely,

Proposition 3.7. We have Oga = #s05%s, in particular ker Oga =
*s ker O. Consequently,

A T

s an isomorphism.
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Proof. By ii) of Lemma @ 7t = (—1)FF1 %, Ox, satisfies
A\« * 0k * =%
(07) = (~1)F () 0 (x5)" = (1) 5, 07,

which gives Oga = #s0g%s. O

As a consequence, we can state and prove the following Hodge decomposi-
tion, which implies Theorem [3.3]

Theorem 3.8. Let (X, J) be a compact n-dimensional complex manifold
with a symplectic (1,1)-form w. Denote by g a Hermitian metric on X.
Then,

I) Oy, Oga, Apo, Aa are elliptic self-adjoint differential operators
and, consequently, their kernels are finite dimensional complex vector

spaces.
II) Denoting by H%’q, ”Hg’f, ’H%’qc and HY, respectively ker 03| 4pas
ker Oga| 4, ., ker Apc| ., ker Ayl ,, . then the following decomposi-
tions hold:
P Pa & G A1 = 5 gpatl
(3.2) APUX) = H5" @ 0APITH(X) & 0 AP (X)
L 1o
(3.3) API(X) = Y & 9" APT(X) & (9)"APTH(X)
1
(3.4) APU(X) = HBL & 90" ALl (X))
L /s _
5 (a1 (x) + @) b))
P pa & (G gpa—1 M A+l
(3.5) API(X) = W1 & (DAPaL(X) + 9" artia(x))

L
& (00" At (x),
where L is taken with respect to the L?-Hermitian product.
II1) Given any pair (p,q), we have the following isomorphisms
HEN(X) ~Hy?,  HENX) ~HEY,  Hpt(X) ~Hyd,  HRN(X) ~Hye
We will refer to II) as the Hodge decomposition.

Proof. 1) The ellipticity of Og is well known. The above Proposition
implies that Oga is elliptic.
Now we compute the principal symbol o(Apc) of the operator Ape.
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Claim The principal symbol o of Ao can be written as
o(Apc) = o(Oga)o(Og),
The main idea is to use the local computation in [28, Proposition 3.3

and Theorem 3.5]. Since A is a linear combination of contractions of vectors,
we can write

A" = oA,

for some degree (1,1)-form o, which implies that

is an order zero operator. Taking the adjoint, it implies that

[0, A] is of order zero.
We shall prove that
(3.6) [5*,5A] is of order one.
In fact, since [5*7 A] has order zero, we have

[5*,5/\] =1[0",[0,A]] = [0, A] + a term of order at most one.
Thus it suffices to show that
[O5,A]" = [oA, O] is of order one,
which follows from the fact that the leading term of Oy is
- Z g6 /02;0Z,

and

[— Z gEjﬁz/azj(?Zk, o] is of order one.

Notice that (3.6) implies that [0, @A)*] is of order one, hence

=% AN A

55/\(5/\)*5* = —EAE(EA)*(? =9 (8)*89" + a term of order at most three.
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We will write A ~ B if A— B is of order at most three. Then a similar
argument gives

@"ya°9a" ~ @998, @90
79 @ )y9~0
Thus we have
Apc ~ Oz 0,
which gives our Claim. Then it follows immediately that Apgc is elliptic.
A similar argument also shows that A4 is elliptic. I) is proved.

IT) The proof of II) is a direct consequence of the theory of elliptic operators
on compact manifolds. We refer to the Appendix in the book by Kodaira
[17] for the general theory, and, more precisely, to [I7, p.450], Corollary to
Theorem 7.4.

IIT) The first isomorphism is well known. The second isomorphism follows
immediately from Proposition [3.7 We show that

HER(X) ~
Let ¢ € H%Z. Then the map
F:HEL — HYL(X), P[]

is an isomorphism. Indeed, F' is C-linear. Furthermore, F is injective;
0= F(y) =[¢] if and only if ¢ € Imda". Therefore (UNS maa" N HEL
and consequently, by II), it follows that ¢ = 0.

The map F is also surjective: let [¢)] € H}Z(X). Then, by Hodge decompo-
sition II)

=370 % A
Y=W)g+00 n+0 p+(0 ).

A direct computation shows that E*M =0 and (EA)*V =0, since ¢ € ker 0N
kerd" and (V)m € HEL. Therefore, [¢] = [(¢)m] and F is surjective, that is

the map F' is an isomorphism.
Similarly, H?(X) ~ H%?. The proof is complete. O

4. The 55A-Lemma

We recall the following general definitions (see [29, Def. 3.1, 3.5]).
Let A = @%ioAk be a direct sum of complex vector spaces. Let L € End(A);
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we say that the pair (A, L) is a Lefschetz space if
L(AY) € A2, 0 <1< 2(n— 1), L(A™) = L(4”) =0,

and each L* : A"~F — A"tk (0 <k < n, is an isomorphism. In such a case,
L is said to satisfy the Hard Lefschetz Condition.
Let (A, L) be a Lefschetz space and let d be a C-linear endomorphism

of A such that d(A') ¢ A, We call (A, L, d) a Lefschetz complex if d = 0.
For a Lefschetz complex (A, L, d) one can define

2n
Hy = EB HY
k=0

where
p  kerdn AF

47 Imdn AR’
Let (X,J) be a compact complex manifold with a symplectic degree

(1,1)-form w. As already remarked in Section (1} the 99" -Lemma is a gen-
eralization of the 00*-Lemma on a compact Kihler manifold. In fact, as
a consequence of Hodge theory and Kéhler identities, any compact Kéhler
manifold M satisfies

ker & Nker 0* N (Im 0 + Im §*) = Im 99*.

Therefore, since 0% = —igA, it Afollovvs immediately that every compact
Kihler manifold satisfies the 0" -Lemma.

Let A* = AF(X) be the space of complex smooth forms on X and denote
by

AF = P A(x)
ptq=k
the natural bigrading of A¥(X). Then the Lefschetz operator L : AP9(X) —
APTLatl(X) is defined as La = w A . According to the previous definitions,

2n
(@Ak(X), L,g) is a Lefschetz complex. Let
k=0

then L induces a map, denoted by LF, for 0 < k < n,

LY Hp 7 H(X) — HPPM(X).
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Since [0, L] = 0, Theorem 3.5 in [29] implies

Theorem 4.1. Let (X,J) be endowed with a symplectic form of degree
(1,1). Then the following conditions are equivalent:

i) (X, J,w) satisfies the 99" -Lemma
i1) The pair

(@Hg(X), L)

k>0

is a Lefschetz space, that is L* : Hg_k(X) — Hg+k(X) is an isomor-
phism for 0 < k <mn.

Furthermore, in our case, all the above cohomologies are finite dimen-
sional, thus we know that (see Lemma 5.15 in [I2], Lemma 5.41 in [I§] or
Lemma 2.4 in [4]) the 90" Lemma implies that all the above cohomologies
have the same dimension. The converse is also true, a better version is the
following fact proved in [4, Theorem 3.4] :

Theorem 4.2. Let (X,J) be an n-dimensional compact complex manifold
with a symplectic degree (1,1)-form w. Then the following inequalities hold

1)
dim H3E(X) + dim H?(X) > dim H2(X) + dim H2{(X).

II) Furthermore, the equality in the above inequalities holds for all p,q if
and only if the 99" -Lemma holds on (X, J,w).

Proof. 1) Consider the following double complex
(B**(X),8,0"), BTPI(X) = API(X).

We know that O (resp. EA) is of type (0,1) (resp. (1,0)). Thus Remark 3.5
in [4] gives

(4.1) dim Hgg(X) + dim (X)) > dim Hg’q(X) + dim Hg’Aq(X).
IT) Now it suffices to prove the second part of the Theorem. Put

THX):= @ B(X)= @ A"(X), D:=0+0",
pt+g=k q—p=k



Cohomologies of complex manifolds with symplectic (1,1)-forms 87

then one may define

ker D N Tk(X)

HE(X) = 1 TH(X)

By Theorem 2 in [4], the following are equivalent:

(1) for every —n < k < n, we have

3 (dim HY4,(X) + dim Hfl’q(X)) — 2dim HY(X);
q—p=k

(2) the 99" Lemma holds.

In order to use the above result, we need the following
Lemma 4.3. We have

dim HH(X) = Y dim HPY(X) = ) dim Hp (X
q—p=k q—p=k

Proof. The second equality is trivial since *; gives the following isomor-
phism:

Hpq N”H" an=p

To prove the first equality, we use a similar argument as in the proof of [0
Theorem 2.3]. Notice that " = [0, A] gives (by induction on m)

A = AP + mA"1E",

which gives

= A o Ak Ak 1 A
d(e a):é?(Zk‘ >_Z aa+z 'a =A@+ 8%)a,
for every a € T*(X). Thus we have
e 2d(eta) = (5+5A)a = Da,

hence the D-complex is equivalent to the d-complex on T%(X) and the
lemma follows. 0
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Proof of the second part of Theorem 2. Assume that the 55A—Lemma
holds, then we have that

dim HRL(X) = dim H}?(X) = dim Hg’q(X) = dim Hg’Aq(X),
which gives
(4.2) dim HA (X) + dim HY(X) = dim HZ?(X) + dim Hg;?(X).
On the other hand, and the above lemma together imply

3 (dimﬂgg(X) + dimHﬁ’q(X)> — 2dim H5(X), Yk,
q—p=k

which is equivalent to that the 99" Lemma holds (by [4, Theorem 2]). O

5. Kahler identities and admissible metrics
5.1. Kahler identitity of Minkowski type

In this section we shall prove that if w, further satisfies the assumptions in
the following lemma then a Kahler identity of Minkowski type holds.

Lemma 5.1. Let X be an n-dimensional complex manifold with Hermitian
metric wg. Let w be a non-degenerate (1,1)-form on X. Let {L, A, B} be the
slo-triple associated to w. Let

AL <Ay <<y,
be the eigenvalues of w with respect to wy. Assume that
2 .
)\j =1, V1i<j<n.

Denote by A* the adjoint of A with respect to wy. Then

A = L.
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Proof. Fix x € X, then we can choose local coordinates near x such that

wg(x) = iZdzj AdF
and
w(z) = iZ)\j dz? N dF.
Let {Vi,---,Vy,} be the dual frame of {dz!,--- ,dz"}. Then we have
: 1 —
A=i Y DT ).
j
Thus
1. ,
A =i) )\—jdzf AdZ.
Now we know that A* = wA if and only if )\? =1 for every j. O

We will introduce the following definition

Definition 5.2. A Hermitian metric wq is said to be admissible with respect
to w if all eigenvalues of w with respect to wy lies in {1, —1}.

Theorem 5.3 (Kéahler identity of Minkowski type). Let (X, w,J)
be a complex manifold with a symplectic (1,1)-form w. With respect to an
admissible Hermitian metric wy, we have

(5.1) @y = [L,é*] ,

(5.2) [(EA)*,L} = 0.

We call them Kdhler identities of Minkowski type.

Proof. Since A* = L, taking the adjoint of [0, A] = EA, [5/\, A] = 0, we obtain

and . O

Remark 1. In the case where w is positive we know that w, is admissible
with respect to w if and only if w = wy, in which case we have

@) = —i0,

thus (5.1)) reduces to the usual Kéhler identity.
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Remark 2. We know that each Bott-Chern type cohomology H%{ is iso-
morphic to

HPY(BC) :=ker d N kerd' N ker(%A)* N AP,
Our Kéhler identities of Minkowski type imply

Theorem 5.4. Let (X,w,J) be a compact complex manifold with a sym-
plectic (1,1)-form w. Let @HP4(BC) be the above harmonic space associated
to an arbitrary w admissible metric, then {HHPI(BC), L :=w A -} satisfies
the Hard Lefschetz Condition.

Proof. 1t is enough to show that for every u € HP4(BC), we have Lu €
HPHLa+HL(BC). Notice that Ou = 0 gives

O(Lu) =w A du = 0.

Moreover, since [0, A] = EA, by the Jacobi identity, to show 5A(Lu) =0, it
is enough to prove

[[Lv A]’ 8]“ =0,

which follows directly from Ou = 0 and

[[L,A],d] = 0.
Now it suffices to show that & (5A)*(Lu) = 0. By the Kéhler identity of
Minkowski type (5.2, we have @A)*L = L@A)*, which gives

@ (Lu) =0 L@ u=[0,L)@")u+ LI (@ )u=[0",L)(@" ).

The Kéahler identity of Minkowski type (5.1)) gives
@, L)@ = — (@) (@) u = 0.
Thus the theorem follows. O

5.2. Choosing admissible metric

In general, an admissible J-Hermitian metric is not unique. In this section,
we shall show that if the holomorphic cotangent bundle of X is smoothly
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trivial then associated to a global frame, say

U= (¢},

there is a unique admissible J-Hermitian metric. In fact, assume that our
symplectic form can be written as

w= iZwﬂgéj A EF,
where w;j; is a constant Hermitian matrix with eigenvalues
AIS"'S)\S<O<)\S+1§“'S)\TL'
Denote by V; the associated \; eigenspace. Put
V(=)= ®i=1Vy, V(H) = SjsiaVis
Then one may define a w-admissible Hermitian metric wy such that
wy(u,v) =0, wy(u,u) =w(u,u), wg(v,v) =—-wv,v).
for every u € V(+) and v € V(—).

Definition 5.5. We call wy the canonical w-admissible metric associated

to {¢7}.

Denote by A%? the space of (p, ¢)-forms

_ ¢ b A €ki A ... A £kg
u= g g €A NN A g

where u red B, AT€ complex constants. Then one may define
p q

= =A
HPI(W), te{9,0",BC, A},

by replacing A”9(X) with A? in Def. We shall introduce the following

Definition 5.6. We say that Héj’q(X), t € {0, EA,BC, A}, is U reduced if

the following isomorphism Hﬁ”q(X) ~ Hﬁ”q(\Il) holds.

6. Proofs of Theorems A and B

In this section we will give the proofs of the first two results. We need some
preliminary computations and results.
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6.1. Complex-symplectic cohomology on
the Kodaira-Thurston surface

In this case, we consider the Kodaira-Thurston manifold (X, .J) with sym-

plectic structure (see [24], Section 5]). Let !, ..., 2% be coordinates in R* and
consider the following product: given any a = (a',...,a*),b= (b*... b?) €
R%, set

axb=(a'+b',a® + 0% a® +a'b? + b2, a* +b*).
Then (R* %) is a Lie group and T'={(y},...,7Y) eR* | 4, €Z,j =
1,...,4} is alattice in (R?*, ), so that X = I'\R* is a 4-dimensional compact
manifold. Then,

el =dat, e? =dz?, e =dz® —2lda?, e = da?,

are I-invariant 1-forms on R?, and, consequently, they give rise to a global
coframe on X. The following structure equations hold

de! =0, de? =0, de®=—e'ne?, det=0.

Set
Jel = —e2, Jet =e!, Jet = —¢t, Jet =é3,
and
w= el 42

where e = e’ A e/ and so on. Then J is a complex structure on X, a global
coframe of (1,0)-forms is given by

o' =e' +ie?, ©? =3 +iel
and w is a (1, 1)-symplectic structure on X. Explicitly,
1 .
w=(p' NP+t NG,

and the (1,0)-coframe {!, ©?} satisfies
do' =0,
de? = —%@1 Al

=t +ip?, =9 —ig?

Put
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then we have
Gyl
Thus the canonical admissible J-Hermitian metric associated to {£7} is
v =t (EAT+ENT) = Lo AT+ A GR).
We will compute the following complex-symplectic harmonic space
HPI(BC) == ker 9 N kerd" N ker(%A)* N AP,

By Theorem it is enough to compute the primitive harmonic space,
denoted by P, in @HP4(BC). It is clear that

HP9(BC) N P = ker & Nker(99")* N P

We know that

A

=%

O = i(=1)PT1x9 959, (07)* = (—1) *7 %50 %5 #7

on AP4. Thus
ker(90")* = ker(8 #, O #, +7) = ker(8 #, 9+9).
Now we can use the main result in [24] to prove the following theorem:

Theorem 6.1. All harmonic forms in HY% are G-invariant. More pre-
cisely, we have

H%C = Spang (1),

M = Spanc (¢1),
’HBC = Spang <p1 02),
H%% = Spang (p! A ©?),
901 NP2 Pt AR ol Apl),
"H%é Spang (! A p?),

HBC—SpanC ol A @2 /\E%
Mo = Spang (92 A @I A 2 ot Apl Ag?),
HQC—SpanC Ol A Al Ap2).

(
(
(
(!
H}BIC = Spang (
(0
(!
(
(!
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Proof. ’H%% = Spang (1) is trivial.
Degree (1,0) case: Notice that, for bidegree reasons, ’H}é% - 7—%’0 =
Spang (p!). By a direct computation, ¢! € 7-[,13’%, so that 7—[}31% = Spang (p!).
Degree (0,1) case: Let u € A%}(X). Then, for bidegree reasons,
u € H%lc

if and only if

Notice that

(5A)*5*u:0 & 0%s0%u=0

. —% .
<= *30 %4 u is a constant <= 0 u is a constant,

which is equivalent to &9 u = 0. Thus we have 7-[%10 = H%l.
Degree (2,0) case: Follows from ”Hé% = H%’O.
Degree (1,1) case: Let u € H}Blc We can write

(6.1) u = ug + Ov, ug € H(9).

We have:
Mo = Spang (9" A 92, 0% A gl)
Then, it is easy to check that
1,1 1,1
Hy CHge,
Claim ovePN H}Bé
First of all, Jv € P. Indeed,
WEP <= Aw=0 <= —[0,AJv=0 < Jv=0
Furthermore, by (6.1)), we get
0=0"=08"u+8"90=0"w=-0"

VA
that is 9" v is a constant and, consequently,

=A =A
O uelmo OH%’AO,
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which implies 5/\1) =0, i.e., N
v e PNHYY(BCO), i.e. & € P. Moreover, by degree reasons, v =0,
so that

Jv € kerdNker & Nker (5A)*5* = 7—[}310

Now we can write

v =g +5Af, voe}%’f.
Since
Moy = Mo = Spanc (', %),
and
57-%’,9 = Spang (p' Apl) C PN H}B’é,
we have

99" fe PnHLL.
Thus 99" f =0 and our formula follows, that is

1,1 -7 Y T
Hpe = Spang (9! A @l ol A2 o? A pl)

Degree (0,2) case: Notice that u € H%é if and only if
0 *s 0u = 0.

Taking the conjugate of the last equation, we obtain

Thus, we have
%501 € 7—%’0 = Spang ('),
which gives
1 € Spang (@' A ? A pl).
Thus 0w = 0, i.e.,
u e 7—%’0 = Spang (p! A ).
Therefore,
Hije = Spang (o A ¢?).

The remaining cases follow from the Hard Lefschetz property. O
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6.2. Complex-symplectic Iwasawa manifold

Consider the following three dimensional complex Heisenberg group

1 Z1 23
(6.2) H(3,C) = 0 1 =zo: Z5 € C, j=123
0 0 1

with the product induced by matrix multiplication. Identify an element in
H(3,C) by a vector, then one may write the product as

(a7 b? C) : (217227 Z3) = (Zl + a, z2 + C, 23 + az9 + b)?
from which we know that
Ol i=dz, Y i=dz, P i=dzg — z21dzo

are left invariant 1-forms satisfying

dyt =0
(6.3) diy? =0
d® = =T A2

Let J be the almost complex structure on H(3,C) with global type (1,0)
frame {¢!, 12 13}. Then the above equation implies that J is integrable.
Fix a lattice, say
I' .= {(a,b,c) € H(3,C) : a,b, c € Z][i]},
in H(3,C) and consider the left quotient
X =T\H(3,C).

Since {¢!, 42,93} is well defined on X, we know that J induces a complex
structure (still denoted by J) on X. Consider

wi= it A2+t AYS — g AL
we know that

w3 =6i Y APZAYAYIAYEAYS £0
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and

dw = 0.

Thus w is a type (1,1) symplectic form on X. The canonical admissible
J-Hermitian metric is

wy =2 NP2 F it APl i A3,
Since W := {' 42 93} is complex nilpotent, theorem B gives

Hpo(X) ~ Hpe (W),  Hy(X) ~ Hy(W).

Theorem 6.2. The above Iwasawa manifold does not satisfy the 55/\—
Lemma.

Proof. 1t suffices to show that Pl is Oz-harmonic but w2 A9l is B-exact. To
show that ¢! is Og-harmonic, it is enough to verify that

Al =0, 5*‘;’%:0.
The first identity follows directly from (6.3)). For the second identity, notice

that up to a constant *J1! is equal to wg AL, Again, by (6.3), we know
that

wip NPT = =20% A2 AP A3 AT
is O-closed, which implies that
0 +9 E =0.
Hence ! is Oz-harmonic. Moreover, we have
WEAYL =202 A2 AP A3 AP = B(2i p2 APt A3 A D),

thus w? A Y1 is d-exact, from which we know that the H7 do not satisfy the
Hard Lefschetz Condition. Thus our theorem follows from Theorem .1l O

6.3. Proof of Theorem A

(1) Follows from Theorem 3.3 in [29] (see [28] for the real case).
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(2) The first part follows from Theorem For the second part, by
the previous computations collected in Theorem we immediately obtain

that
(' A ) A2

is not A gc-harmonic, but both gol A g02 and ? are Apgc-harmonic. Conse-

quently, Hpc(X) is not an algebra.

(3) By [29, Theorem B (4)], we know that the Kodaira—Thurston mani-
fold does not satisfy the 0 -Lemma. The Iwasawa case follows from The-

orem
The Proof of Theorem A is complete.

6.4. Proof of Theorem B

Now it suffices to prove Theorem B. Assume that
Since w € A‘ll,’l, we know that

*s(Aw) = Ay,
which gives

Hn (X) o % Hg(X) =~ #s Hg(V) ~ Hzn (V).

Moreover, there is a natural map from A to Ay defined by

wh . . R
MU (Auj1'-'jpk1"'kqW)Ejl/\'“/\gjp/\g1/\“‘

for

A Eha,

U= Z“jl-..j,,l?l.--ﬁﬁjl Ao NEPNER N R e API(X).

Denoting by ¢ the natural mapping
LAY (V) — A% (X)),
notice that u satisfies

(not)(u) =u, YucAy.

a

Thus Corollary 1.3 in [2] implies that Hy(X) ~ Hy(V) also for all § €
{BC, A}. Moreover, in the case where ¥ is complex nilpotent, the main
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theorem in [24] implies Hz(X) ~ Hz(¥). Thus the above argument gives
Hy(X) ~ Hy(P) for all § € {0, 5/\, BC, A}. The proof is complete.

7. Deformations of Nakamura manifolds

This section is devoted to the proof of Theorem C. First of all, we
need to recall some definitions and facts from Dolbeault formality on
complex manifolds. By definition, a complex manifold (X,J) is said to
be Dolbeault formal if the bi-differential, bi-graded algebra (shortly bba)
(A**(X),0,0) is equivalent (in the category of bba) to a bba (B,dg,0),
that (00,80,80) = (A.’.(X),a, 6), (an+2,82n+2,82n+2) = (B,GB,O) and a
family of bba-morphisms

(Coj41, 0241, 02j41)

(Cyj, Daj, B2j) (Cajs2, 02542, 02j+42)

for j € {0,1,...,n}, such that the morphisms induced in cohomology are
bba-isomorphisms. A complex manifold (X, J) is said to be geometrically
Dolbeault formal if there is a Hermitian metric g such that the harmonic
space of the Dolbeault cohomology is an algebra with respect to the wedge
product. In particular, any complex manifold geometrically Dolbeault formal
is Dolbeault formal. We now recall shortly the construction of Dolbeault-
Massey triple products on a complex manifold, which provide an obstruction
to Dolbeault formality. Let

a= o] € HII(X), b=[8)€ HI'(X), c=]]e B (X)
such that
a-b=0€H™(X), b-c=0€H™(X).
Then there exist f € APT™9+571X and g € A™T%5+t0~1 X satisfying

aNB=0f, BAy=20dy.
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The Dolbeault-Massey triple product of the cohomology classes a, b, ¢ is de-
fined as

(a,b,¢) = [f Ay + (=P la A g]

Hg—&-r—f—u,q—&-s-l—v—l (X)

€ .
p+r,g+s—1 = D,q . pgrtu,stu—1
H5 (X) H5 (X) +H5 (X) H5 (X)
Finally, if (X, J) is Dolbeault formal, in particular geometrically formal,
then all the Dolbeault-Massey triple products vanish.

7.1. Complex and symplectic structures on Nakamura manifolds

We start by recalling the construction and the cohomology properties of the
holomorphically parallelizable Nakamura manifold (see [20, p.90]). On C3
with coordinates (z1, 22, 23) consider the following product x*

(w1, wa, w3) * (21, 22, 23) = (w1 + 21, 22 + wa, e 123 + w3).

Then G = (C3, %) is a solvable Lie group, which is the semidirect product
C x C2?, admitting a uniform discrete subgroup I' = I'” x I'"/, where I C C
is given by IV = M\Z @ i2nZ and I'” is a lattice in C?; thus N :=I'\C? is a
compact complex 3-dimensional manifold, endowed with the complex struc-
ture Jy induced by the standard complex structure on C3. It turns out that
hOY(N) = 3. Tt is immediate to check that

gpl =dz, <p2 =e “'dzy, <p3 = e'dzs

are G-invariant holomorphic 1-forms on C3, so that they induce holomorphic
1-forms on N, namely {¢!, 2, ¢} is a global holomorphic co-frame on N
and the complex manifold N is holomorphically parallelizable. We have

dg@l — 0’ d§02 _ _SOI A @27 d(p?) _ (;01 A @3'
By the construction of IV, it follows that e 5 is a well-defined complex-
valued smooth function on N. Let

L — 1 1. - .
1901 A 901 + 56—214-21 902 A 903 + 5621—21 902 A 903'

wN:2

Then

3
Oy =wy, Wiy = = (idz1 N dz) A (idzo A dZ3) A (idzs A dZ3) <0,
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and explicitly,
1 _ 1 1
WN = §d21 Adz1 + id?g Ndzs + 5d2’3 ANdzo

so that dwy = 0 and the complex structure Jy /(\)n N is w-symmetric. Then,
see [29, Sec. 8.4], (N, Jy,wn) satisifies the 99" -Lemma. By [16], the Dol-
beault cohomology of N can be computed by taking the finite dimensional

subcomplex (Cr, ) — (A**(N),0) given by
Cr =A** (Span(c <d21, e “dzy, e d23> & Spane <d§1, e “'dzs, ez1d23>) .

Let g be the Hermitian metric on IV defined by
3
g=) J ¢
j=1

and denote by D% the Dolbeault Laplacian associated to g. Then, it turns
out that

o0 ~ g _
H2*(N) ~ ker 0% = Cr,

and that N is geometrically Dolbeault formal (i.e. the harmonic space of
the Dolbeault cohomology is an algebra with respect to the wedge prod-
uct). Summing up, (N, Jy,wy) is a compact 3-dimensional geometrically
Dolbeault formal complex manifold satisfying the 9" -Lemma.

7.2. Complex deformations of Nakamura manifolds which do not
satisfy the %A—Lemma

We will construct a 1-parameter complex deformation N; = (N, J;) of N =
(N, Jy), admitting a Ji-symmetric symplectic structure wy, such that Ny
is not Dolbeault formal (see Lemma and [27] for the Definition) and
(N, Ji,wy) does not satisfy the EEA—Lemma, for t #£ 0.

Let {(1,(2,(3} be the holomorphic global frame on N, dual to {¢!, 92, 1.

Then

0 0 0
(1= 45— Co=e"— (3= 6_2187-
23

- 82’1 ’ 82’2 ’
Lemma 7.1. Let ¢ =t 592 ® (3 € AV (N, T'ON), teC,|t|<e.
Then

— 1
Ot + 5[[%, @]} = 0.
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Proof. By definition, ¢; = te™?*'dzy ® 6%3. Therefore
Do = O(te 2*1d7) @ 9 =0
823

and
(e, ot]] = 0.
Ul

According to Lemma, ¢ determines an integrable complex structure Ji,
for t € B(0,¢). Denote by N; = (N, Jy).

Lemma 7.2. The following complex differential 1-forms
(7.1)
O10(1) == dar, ®0(1) = e Mz, B30(1) 1= ePdz — te T dz,

<I>(1)’1(t) = dzy, @g’l(t) = e *1dz,, @g’l(t) = e dzg — te 2 dz,,

define a global coframe of (1,0)-forms, (0,1)-forms respectively on N;. Fur-
thermore,

9:21°(t) =0, 9,0,°(t) =0, 9;83°(t) = 2t®,°(t) A DY (1),
(7.2) B B
00 (1) =0, 9,00 (t) =0, DY (t) =0,

Proof. (I) By the Kodaira and Spencer theory of small deformations of com-
plex structures,

{¢" — () | §=1,2,3}

is a coframe of (1, 0)-forms on N, for t € B(0,¢) (see e.g., [15, p.75]). There-
fore,

ol — pi(pt) = dzy = 7°(1),
0?2 — i(9?) = e"1dzy =1 0,0 (1),
903 — got(go?’) = e*idzg — te *1dzy =: @é’o(t)
is a complex (1, 0)-coframe on N;. It is immediate to check that
V() = 0(1), BYT(H) =D, BI(H) = e TR0 (1),

(IT) The proof of (7.2)) is a straightforward computation. O
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Lemma 7.3. The following 2-form on N

= 5 (2100 A 21°0) + 5 (90 A @3°0) + 2T A 250

defines a Jy-symmetric symplectic structure on Ny.

Proof. By definition, wy is a (1, 1)-form with respect to J; and real. We have

| =

wp = %(dzl NdzZ1) + e *1dzy N (€7 dzs — te” "1 dzy)

[N )

1 2 o
+ ie*ZIdZQ A (e*'dzs —te” ' dza)

) 1
= %(dzl VAN d?l) + §(d§2 ANdzs + dzg A d?g)
Hence, wj # 0 and dw; = 0. O
By the previous Lemma, w; = w.

Lemma 7.4. There exists a non vanishing Dolbeault Massey product on
Ny, fort #0, t € B(0,¢).

Proof. Consider the following Dolbeault classes on N, defined respectively
as

a=[2t0°(t)], b=[03'(1)], c=[D3'(1)].
Then, a-b=0,b-c=0. Indeed,

a-b=[2t"(t) A By ()] = [B:®3"(1)], b-c= [y (1) A DY ()] = [0):

Therefore, the Dolbeault triple product (a, b, c) is given by

HYY(N)
) ’ at
(a,b,¢) = [@3°(t) A D3 (1)] € —15 01
Hy (Ny) - Hy " (Ny)

A direct computation shows that <I>11,)’0 (t) A @g’l(t) is D%t -harmonic, where

3 -

g =300 @ 2M0(1);
=1

consequently, the Dolbeault class [@é’%t)/\@%l(t)] does not vanish in
Hy' (V).
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Let us show that [@5°(t) A 85 (1)] ¢ Hy°(N;) - Hy' (V). Set

Cp* i= A**(Spang (@7°(1), @3°(t), @3° (1))
@ Spang (B (), Y (), Y (¢)));

then C;’® satisfies the assumptions of [I, Theorem 1]. Consequently,

HE*(0%) = HE*(N)).

Explicitly,

HEO(N) = Spanc (®1°(1), 85°(1)),

t

1
1
0,1 0,1 0,1 0,1
Hgt (Nt) = Span(C<(I)1 (t)a(I)Z (t),(I)3 (t)>7

and all the representatives are Dolbeault harmonic with respect to the
Hermitian metric g;. Therefore, [@é’o(t) A @g’l(t)] ¢ Hé’O(Nt) . Hg’l(Nt) and
(a,b,c) # 0. ' O

Lemma 7.5. Ift #0,t € B(0,¢), then (N, J;,w;) does not satisfy the O; 5{5\-
Lemma.

Proof. Let n be the J;-(0,1)-form on N; defined by 1 := @g’l(t). Then 7 is
D%t -harmonic. Let us compute w? A 1. We immediately get:

w? = (21t A @1 °() A 23 (1) A 2} ()

+21°(0) A 01°() A 23 (1) A 23°())

1 o1 1,0 0.1 1,0
+ 500 () A () A 05T (1) 1 237,

Therefore,

Wi A= ADH(E) = — 28100 A Y1) A B0 () A BYT (1) A 25°(0)

For t # 0, in view of (7.2) and (7.1]), we get:

9,05°(t) = oV () A @y°(1), BN (1) = —@% (1) A DY (¢)
I+ 10
570095 (®) ).

[y

d10(t) A DY (¢
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Thus:

i —
wf A= =20 (03°() A oY (1) n @B (1) A @}°(0) )

that is the Dolbeault class [w? A 1] vanishes in H2 3(Nt) fort #0,t € B(0,¢).
Therefore (N, w;) does not satisfy HLC and consequently (N, J¢, wt) does not
satisfy the 9y 82\—Lemma. O

Summing up, we have proved the following:

Theorem 7.6. Let N be the differentiable manifold underlying the Naka-
mura manifold T\C3®. Then there exists a 1-parameter complex family of
complex structures J; on N and a symplectic structure w, for t € B(0,¢)
such that,

° J():JM.

e (N, Jn,w) satifies the 99" -Lemma and the complex manifold (N, Jy)
18 geometrically Dolbeault formal.

e Fort € B(0,e),t #0, (N, J;,w;) does not satisfy the 0y gf—Lemma and
1t is not Dolbeault formal.

As a corollary, we obtain the following

Theorem 7.7. The 55A—Lemma is an unstable property under small de-
formations of the complex structure.

7.3. Proof of Theorem C

Theorems and give the proof of (3). Now it is enough to prove (1)
and (2).

Proof of Theorem C (1). Recall that, w satisfies the Hard Lefschetz Condi-
tion if and only if for every 0 < k < n,

Wh] s HEF(X) — H2PF(X)
is an isomorphism, which is equivalent to that the determinant, say det [w¥],

of the above map is non-zero. Since det [w*] depends smoothly on w, Theorem
C (1) follows. O
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Proof of Theorem C (2). Let d; be a smooth family of complex structures
on X; := (X, Jy). By [3} Theorem A, BJ, we know that if X = (X, Jo) satisfies
the 0ydp-Lemma then

> dim Hp*(X) = dim HY(X).
pta=k

On the other hand, by Frolicher’s theorem, we always have

> dim H2Y(X;) > dim Hf(X).
p+a=Fk

But notice that dim H%(X) does not depend on ¢ and dim Hg’q (X}) is upper

t
semi-continuous, so dim H2?(X;) does not depend on ¢, which also implies
that '

dim H2(X,) = dim H2, " 7P (X;)

does not depend on t. Assume further that (X, w) satisfies the gogg—Lemma,
then Theorem [4.2] gives

dim HRZ (X) + dim HR(X) = dim HP(X) + dim HEY(X)
and,

dim HL(X,) + dim (X)) > dim Hg’q(Xt) + dim Hg’Aq(Xt).

Therefore, by the upper semicontinuity of ¢+ dim Hi3L(X¢) and ¢ +—
dim H%?(X¢), we obtain

dim Hi3L(Xo) + dim HY(Xo) > dim H}(Xy) + dim H?(X)
> dim Hpq(Xt) + dim Hg}\q(Xt)
= dlmH (X()) + dim Hg’Aq(Xo)
— dim HB’C(XO) + dim H%Y(Xy),

that is

dim HE (X;) + dim HY1(X;) = dim HE(X,) + dim H2(X,).

Hence, by Theorem (X, Ji,w) also satisfies the gﬁi\—Lemma. By [3,
Corollary 3.7], we also know that X satisfies the 9;0;-Lemma. Thus satisfying
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both the 9-Lemma and the 55A—Lemma is a stable property under small
deformations of the complex structure. O
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