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Let (X, J) be a complex manifold with a non-degenerated smooth
d-closed (1, 1)-form ω. Then we have a natural double complex

∂ + ∂
Λ

, where ∂
Λ

denotes the symplectic adjoint of the ∂-operator.
We study the Hard Lefschetz Condition on the Dolbeault cohomol-
ogy groups of X with respect to the symplectic form ω. In [29], we
proved that such a condition is equivalent to a certain symplectic

analogue of the ∂∂-Lemma, namely the ∂ ∂
Λ

-Lemma, which can
be characterized in terms of Bott–Chern and Aeppli cohomolo-
gies associated to the above double complex. We obtain Nomizu
type theorems for the Bott–Chern and Aeppli cohomologies and we

show that the ∂ ∂
Λ

-Lemma is stable under small deformations of ω,
but not stable under small deformations of the complex structure.
However, if we further assume that X satisfies the ∂∂-Lemma then

the ∂ ∂
Λ

-Lemma is stable.
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1. Introduction

It is known that the de Rham cohomology of a compact Kähler manifold
satisfies two crucial properties: the Hodge decomposition and the Hard Lef-
schetz Condition, which do not hold for a general compact complex manifold.
A natural question is to find a formal algebraic description of the above two
properties. The first breakthrough is due to Frölicher [13] who proved that
the first property is equivalent to having the Frölicher spectral sequence de-
generate at E1, in particular, every compact surface satisfies the Hodge de-
composition property. In [12] Deligne–Griffiths–Morgan–Sullivan introduced
the stronger notion of the ∂∂-Lemma, which turns out to be equivalent to the
fact that the de Rham cohomology possesses both the Hodge decomposition
property and the Hodge structure (see [12, Proposition 5.12]); furthermore,
they proved that every compact Kähler manifold satisfies the ∂∂-Lemma.
From [5, 18, 19, 31], we know that the Hard Lefschetz Condition on the de
Rham cohomology is essentially an integrability condition (the ddΛ-Lemma)
on the associated differentiable Gerstenhaber-Batalin-Vilkovisky algebra. In
particular, every compact Kähler manifold satisfies the ddΛ-Lemma. For a
general compact complex manifold, we know from the main theorem in [3]
that the ∂∂-Lemma is equivalent to a Frölicher-type equality for Bott–Chern

and Aeppli cohomologies. In [29, Def. 8.3], we introduced the ∂ ∂
Λ
-Lemma

and proved that it is equivalent to the Hard Lefschetz Condition on the
Dolbeault cohomology group. More precisely, let (X, J) be a compact com-
plex manifold with a symplectic (1, 1)-form ω. Denote by Λ the symplectic

adjoint of L := ω∧ (see (2.2)), which satisfies (∂
Λ
)2 = (∂ + ∂

Λ
)2 = 0. Then

(X,ω, J) satisfies the ∂ ∂
Λ
-Lemma if every ∂-closed, ∂

Λ
-closed, ∂ + ∂

Λ
-exact

complex form is ∂ ∂
Λ
-exact. It has to be remarked that the ∂ ∂

Λ
-Lemma is a

generalization of the ∂∂∗-Lemma on compact Kähler manifolds (see Sec. 4).

Cohomologies associated to the ∂ ∂
Λ
-Lemma are complex symplectic Bott–

Chern and Aeppli cohomologies (see Def. 2.1). In this paper, we shall show
how to compute the above complex symplectic cohomologies and use them

to study the deformation property of the ∂ ∂
Λ
-Lemma. Our first result is
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Theorem A. Let (X, J) be a compact complex manifold with a symplec-

tic (1, 1)-form ω. Write H♯(X) := ⊕Hp,q
♯ (X) for ♯ ∈ {∂, ∂

Λ
, BC,A} (see

Def. 2.1). Then

1) HBC(X) and HA(X) satisfy the Hard Lefschetz Condition with respect
to L.

2) With respect to an admissible Hermitian metric (see Definition 5.2),
both the space of △BC-harmonic forms HBC(X) and the space of △A-
harmonic forms HA(X) satisfy the Hard Lefschetz Condition with re-
spect to L. But in general, HBC(X) and HA(X) are not an algebra with
respect to the wedge product. In fact, the Kodaira–Thurston manifold
in section 6.1 will give a counterexample.

3) The Kodaira–Thurston manifold in section 6.1 and the Iwasawa man-

ifold in section 6.2 do not satisfy the ∂ ∂
Λ
-Lemma.

Theorem A (1) and (2) depend on a study of the harmonic representative
of a complex symplectic cohomology class in Sec. 3 and 5 (see [28] for the
real case). The main ingredient behind the proof of Theorem A (2) is a
certain Minkowski type Kähler identity associated to a suitable Hermitian
metric (see Def. 5.2). The proof of Theorem A (3) depends on an explicit
computation of the associated cohomology group. The main idea is to prove
the following Nomizu type theorem (see [8–11, 14, 16, 21–23, 25] for related
results).

Theorem B. Let (X, J) be a compact complex manifold. Assume that
its holomorphic cotangent bundle possesses a smooth global frame Ψ =
{ξ1, · · · , ξn}. Let

ω = i
∑

ωjk̄ ξ
j ∧ ξk

be a symplectic form on X with constant coefficients ωjk̄. Write H♯(X) :=

⊕Hp,q
♯ (X) for ♯ ∈ {∂, ∂

Λ
, BC,A} (see Def. 2.1). Assume that H∂(X) is

Ψ reduced (see Definition 5.6), then H♯(X) are also Ψ reduced for ♯ ∈

{∂
Λ
, BC,A}. In particular, if Ψ is complex nilpotent (see [24]) then H♯(X)

are Ψ reduced for ♯ ∈ {∂, ∂
Λ
, BC,A}.

The above theorem can be used to prove the following deformation prop-

erty of the ∂ ∂
Λ
-Lemma and the Dolbeault formality (see [27] and Sec. 7 for

the definition):

Theorem C. Let (X, J) be a compact complex manifold with a symplectic
(1, 1)-form ω. Then
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1) The ∂ ∂
Λ
-Lemma is stable with respect to ω, more precisely, let

{ωt}|t|<1 be a smooth family of symplectic (1, 1)-forms, if the ∂ ∂
Λ
-

Lemma holds for ω0 then it holds for all ωt with sufficiently small |t|;

2) If X satisfies the ∂∂-Lemma and ∂ ∂
Λ
-Lemma then so does any small

deformation of X;

3) There exists a complex analytic family of three dimensional Nakamura
manifolds such that the central fiber is geometrically Dolbeault for-

mal and satisfies the ∂ ∂
Λ
-Lemma, but all the nearby fibers are not

Dolbeault formal neither satisfy the ∂ ∂
Λ
-Lemma. In particular, the

∂ ∂
Λ
-Lemma is not a stable property under small deformations of the

complex structure.

The paper is organized as follows: in Section 2 we start by recalling some
facts on complex and symplectic geometry, introducing the complex sym-
plectic cohomologies H•,•

∂
Λ (X), H•,•

BC(X), H•,•
A (X), and fixing some notation.

In Section 3, by using standard techniques, we prove a Hodge decomposi-
tion for the differential operators ✷

∂
Λ , △BC and △A naturally associated

to the complex symplectic cohomologies. In Section 4, by applying a re-

sult in [4, Theorem 3.4], we give a characterization of the ∂∂
Λ
-Lemma in

terms of the complex symplectic cohomologies (see Theorem 4.2). In Sec-
tion 5 we prove a Kähler identity of Minkowsky type for complex manifolds
endowed with a symplectic (1, 1)-form admitting an admissible Hermitian
metric. As a consequence, we obtain that the direct sum of the spaces of
△BC-harmonic (p, q)-forms associated to an admissible Hermitian metric
on a compact complex manifold satisfies the Hard Lefschetz Condition (see
Theorem 5.4). Sections 6 and 7 are devoted to the proof of Theorems A, B
and C.

Remark. Theorem C (1) suggests to study the following question:

Question 1. One can ask whether the Hard Lefschetz Condition on the Dol-
beault cohomology group depends on the choice of symplectic (1, 1)-forms or
not. In particular, does the Hard Lefschetz Condition hold true with respect
to any symplectic (1, 1)-forms on a compact Kähler manifold?

Remark. It is known that the Hard Lefschetz Condition on the Dolbeault
cohomology group does depend on the choice of symplectic (might not be
(1, 1)) form (see [7, Theorem 1.3]), thus we believe that answer is “No” to
Question 1. But we could not find a counterexample.

From (2) in the above theorem, one might also ask the following:
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Question 2. Let (X, J) be a compact complex manifold with a symplectic

(1, 1)-form ω. Does the ∂∂-Lemma imply the ∂ ∂
Λ
-Lemma?

Remark. If the answer to Question 1 is “No” for some compact Kähler
manifold then the answer to Question 2 is also “No”, since every compact
Kähler manifold satisfies the ∂∂-Lemma.

Acknowledgments. The first author would like to thank the Depart-
ment of Mathematical Sciences of the Norwegian University of Science and
Technology, Trondheim, for its warm hospitality. The authors want also to
express their gratitude to the anonymous Referee, for his/her useful sugges-
tions and remarks, which led to a substantial improvement of some of the
results presented in the paper.

2. Preliminaries and notation

Let (X, J) be an n-dimensional compact complex manifold. Denote by
Ap,q(X) the space of (p, q)-forms on X. A (1, 1)-symplectic form on (X, J) is
a symplectic form ω of type (1, 1) on (X, J), that is ω is a symplectic form on
X which is J-invariant. Locally one may write ω = i

∑

ωjk̄dξ
j ∧ dξ̄k. Denote

by (ω−1)r̄j the inverse matrix of (ωjk̄). Then for any given φ, ψ ∈ Ap,q(X),
one may define

ω−1(φ, ψ) :=

1

p!q!

∑

j,k,r,s

(ω−1)r̄1j1 · · · (ω−1)k̄1s1 · · · (ω−1)k̄qsqφj1···jpk̄1···k̄q
ψr1···rps̄1···s̄q ,

where

j = (j1, . . . , jp), k = (k1, . . . , kq), r = (r1, . . . , rp), s = (s1, . . . , sq),

are multiindices. Then the symplectic star operator ∗s : A
p,q(X) →

An−q,n−p(X) is defined by the following representation formula

(2.1) iq−p φ ∧ ∗sψ = ω−1(φ, ψ)
ωn

n!
.

Then ∗s is a real operator which can be extended C∞(X,C)-linearly to
the space of complex differential forms Ak(X) and ∗2s = id. The sl2-triple
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{L,Λ, B} acting on the space of (p, q)-forms on (X, J, ω) is defined by

(2.2) L := ω∧, Λ := ∗sL∗s, B := [L,Λ].

We define the symplectic adjoint ∂
Λ
: Ak(X) → Ak−1(X) of ∂ as

(2.3) ∂
Λ
:= (−1)k+1 ∗s ∂ ∗s .

Then, as a consequence of [29, Theorem A], we have the following symplectic
identity

(2.4) ∂
Λ
= [∂,Λ].

Setting as usual,

Hp,q

∂
(X) :=

ker ∂ ∩Ap,q(X)

Im ∂ ∩Ap,q(X)
,

we recall the following two definitions

Definition 2.1 (Complex-symplectic cohomologies).

Hp,q

∂
Λ (X) :=

ker ∂
Λ
∩Ap,q(X)

Im ∂
Λ
∩Ap,q(X)

, Hp,q
BC(X) :=

ker ∂ ∩ ker ∂
Λ
∩Ap,q(X)

Im ∂ ∂
Λ
∩Ap,q(X)

,

and

Hp,q
A (X) :=

ker ∂ ∂
Λ
∩Ap,q(X)

(Im ∂
Λ
+ Im ∂) ∩Ap,q(X)

Definition 2.2. (see [29, Def. 8.3]) (X, J, ω) is said to satisfy the ∂ ∂
Λ
-

Lemma if

ker ∂ ∩ ker ∂
Λ
∩ (Im ∂ + Im ∂

Λ
) = Im ∂∂

Λ
.

Finally, if g is a Hermitian metric on (X, J), with fundamental form ωg,
then setting, for any given φ, ψ ∈ Ap,q(X),

(φ, ψ)(x) =
1

p!q!

∑

j,k,r,s

(g)r̄1j1 · · · (g)k̄1s1 · · · (g)k̄qsqφj1···jpk̄1···k̄q
ψr1···rps̄1···s̄q ,

we denote by ≪,≫ the L2-Hermitian product on X defined as

≪ φ, ψ ≫=

∫

X

(φ, ψ)(x)
ωn
g

n!
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3. Complex symplectic cohomologies and Hodge Theory

3.1. Finiteness theorem

Let (X, J) be a compact complex manifold with a symplectic (1, 1)-form ω.
For a given J-Hermitian metric g on X, we will denote by ωg the associated
fundamental form. We start by giving the following

Definition 3.1. We set

(3.1)

✷∂ := ∂ ∂
∗
+ ∂

∗
∂

✷
∂
Λ := ∂

Λ
(∂

Λ
)∗ + (∂

Λ
)∗∂

Λ

△BC := ∂ ∂
Λ
(∂

Λ
)∗∂

∗
+ (∂

Λ
)∗∂

∗
∂ ∂

Λ
+ (∂

Λ
)∗∂ ∂

∗
∂
Λ

+ ∂
∗
∂
Λ
(∂

Λ
)∗∂ + (∂

Λ
)∗∂

Λ
+ ∂

∗
∂

△A := ∂∂
∗
+ ∂

Λ
(∂

Λ
)∗ + ∂

∗
(∂

Λ
)∗∂

Λ
∂ + ∂

Λ
∂
∗
∂(∂

Λ
)∗

+ ∂
Λ
∂∂

∗
(∂

Λ
)∗ + ∂(∂

Λ
)∗∂

Λ
∂
∗

We have the following

Lemma 3.2. Let ψ ∈ Ap,q(X). Then,

i)

ψ ∈ ker✷∂ ⇐⇒

{

∂ψ = 0

∂
∗
ψ = 0

ii)

ψ ∈ ker✷
∂
Λ ⇐⇒







∂
Λ
ψ = 0

(∂
Λ
)∗ψ = 0

iii)

ψ ∈ ker△BC ⇐⇒















∂ψ = 0

∂
Λ
ψ = 0

(∂ ∂
Λ
)∗ψ = 0
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iv)

ψ ∈ ker△A ⇐⇒















∂ ∂
Λ
ψ = 0

∂
∗
ψ = 0

(∂
Λ
)∗ψ = 0

Proof. i) It is well known from Hodge-Dolbeault theory.
The proof of ii) is similar to the proof of i).
iii) Let ψ ∈ Ap,q(X). Assume that

∂ψ = 0, ∂
Λ
ψ = 0, (∂ ∂

Λ
)∗ψ = 0.

Then, clearly △BCψ = 0.
Conversely, let △BCψ = 0. Then, by the definition of △BC , we easily get

0 =≪ △BCψ,ψ ≫

= |(∂
Λ
)∗∂

∗
ψ|2 + |∂ ∂

Λ
ψ|2 + |∂

∗
(∂

Λ
)∗ψ|2 + |(∂

Λ
)∗∂ψ|2 + |∂

Λ
ψ|2 + |∂ψ|2

The last equation implies that

∂ψ = 0, ∂
Λ
ψ = 0, (∂ ∂

Λ
)∗ψ = 0.

The proof of iv) is similar. □

The following theorem is known.

Theorem 3.3. Let (X, J) be a compact n-dimensional complex manifold

endowed with a symplectic (1, 1)-form ω. If ♯ ∈ {∂, ∂
Λ
, BC,A}, then the co-

homology groups Hp,q
♯ (X) are finite dimensional.

We shall give another proof of the above theorem using harmonic rep-
resentatives. The main idea is to use the following linear algebra lemma:

Lemma 3.4. Let (X, J) be a compact n-dimensional complex manifold with
a symplectic (1, 1)-form ω. Fix a Hermitian metric g with fundamental form
ωg on X. Denote by ∗gs the associated symplectic star operator with respect
to ωg. Then

i) ∗gs∗s = ∗s∗
g
s

ii) (∗s)
∗ = ∗s
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where (∗s)
∗ denotes the adjoint of ∗s.

In order to prove Lemma 3.4, we need the following (see e.g., [30,
Lemma 1.6])

Lemma 3.5. (Guillemin Lemma) Let (V, ω) be a symplectic vector space.
Assume that

(V, ω) = (V1, ω
1)⊕ (V2, ω

2),

where (Vi, ω
i), i = 1, 2 are symplectic vector spaces. Then

∗s(u ∧ v) = (−1)k1k2 ∗1s u ∧ ∗2sv,

for every u ∈
∧k1 V ∗

1 , v ∈
∧k2 V ∗

2 .

Proof of Lemma 3.4 i) For the first formula, fix x ∈ X; then we can choose
local coordinates near x such that

ωg(x) =
i

2

∑

dzj ∧ dz̄j , ω(x) =
i

2

∑

λjdz
j ∧ dz̄j .

Then by the Guillemin Lemma, it is enough to prove the one dimensional
case: the proof of this fact is trivial.

ii) The second formula follows from the first and

∗su ∧ v = u ∧ ∗sv,

where u, v have the same degree. ✷

Remark 3.6. The symplectic star operator ∗s : A
p,q(X) → An−q,n−p(X)

induces an isomorphism ∗s : H
p,q

∂
(X) → Hn−q,n−p

∂
Λ (X), by setting, for any

given [u]∂ ∈ Hp,q

∂
(X),

∗s[u]∂ = [∗su]∂Λ

Lemma 3.4 implies the ∗s isomorphismHn−q,n−p

∂
Λ (X) = ∗sH

p,q

∂
(X) is also

true for the associated harmonic spaces Hn−q,n−p

∂
Λ and Hp,q

∂
. More precisely,

we have the following result:

Proposition 3.7. We have ✷
∂
Λ = ∗s✷∂∗s, in particular ker✷

∂
Λ =

∗s ker✷∂. Consequently,

∗s : H
p,q

∂
→ Hn−q,n−p

∂
Λ

is an isomorphism.
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Proof. By ii) of Lemma 3.4, ∂
Λ
= (−1)k+1 ∗s ∂∗s satisfies

(∂
Λ
)∗ = (−1)k+1(∗s)

∗∂
∗
(∗s)

∗ = (−1)k+1 ∗s ∂
∗
∗s,

which gives ✷
∂
Λ = ∗s✷∂∗s. □

As a consequence, we can state and prove the following Hodge decomposi-
tion, which implies Theorem 3.3

Theorem 3.8. Let (X, J) be a compact n-dimensional complex manifold
with a symplectic (1, 1)-form ω. Denote by g a Hermitian metric on X.
Then,

I) ✷∂, ✷
∂
Λ, △BC , △A are elliptic self-adjoint differential operators

and, consequently, their kernels are finite dimensional complex vector
spaces.

II) Denoting by Hp,q

∂
, Hp,q

∂
Λ , H

p,q
BC and Hp,q

A , respectively ker✷∂

∣

∣

Ap,q ,

ker✷
∂
Λ

∣

∣

Ap,q , ker△BC

∣

∣

Ap,q , ker△A

∣

∣

Ap,q , then the following decomposi-
tions hold:

Ap,q(X) = Hp,q

∂

⊥
⊕ ∂Ap,q−1(X)

⊥
⊕ ∂

∗
Ap,q+1(X)(3.2)

Ap,q(X) = Hp,q

∂
Λ

⊥
⊕ ∂

Λ
Ap+1,q(X)

⊥
⊕ (∂

Λ
)∗Ap−1,q(X)(3.3)

Ap,q(X) = Hp,q
BC

⊥
⊕ ∂∂

Λ
Ap+1,q−1(X)(3.4)

⊥
⊕

(

∂
∗
Ap,q+1(X) + (∂

Λ
)∗Ap−1,q(X)

)

Ap,q(X) = Hp,q
A

⊥
⊕

(

∂Ap,q−1(X) + ∂
Λ
Ap+1,q(X)

)

(3.5)

⊥
⊕ (∂ ∂

Λ
)∗Ap−1,q+1(X),

where ⊥ is taken with respect to the L2-Hermitian product.

III) Given any pair (p, q), we have the following isomorphisms

Hp,q

∂
(X) ≃ Hp,q

∂
, Hp,q

∂
Λ (X) ≃ Hp,q

∂
Λ , Hp,q

BC(X) ≃ Hp,q
BC , Hp,q

A (X) ≃ Hp,q
A

We will refer to II) as the Hodge decomposition.

Proof. I) The ellipticity of ✷∂ is well known. The above Proposition 3.7
implies that ✷

∂
Λ is elliptic.

Now we compute the principal symbol σ(△BC) of the operator △BC .
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Claim The principal symbol σ of △BC can be written as

σ(△BC) = σ(✷
∂
Λ)σ(✷∂),

The main idea is to use the local computation in [28, Proposition 3.3
and Theorem 3.5]. Since Λ is a linear combination of contractions of vectors,
we can write

Λ∗ = σ∧,

for some degree (1, 1)-form σ, which implies that

[∂,Λ∗] = (∂σ)∧

is an order zero operator. Taking the adjoint, it implies that

[∂
∗
,Λ] is of order zero.

We shall prove that

(3.6) [∂
∗
, ∂

Λ
] is of order one.

In fact, since [∂
∗
,Λ] has order zero, we have

[∂
∗
, ∂

Λ
] = [∂

∗
, [∂,Λ]] = [✷∂ ,Λ] + a term of order at most one.

Thus it suffices to show that

[✷∂ ,Λ]
∗ = [σ∧,✷∂ ] is of order one,

which follows from the fact that the leading term of ✷∂ is

−
∑

gk̄j∂2/∂zj∂z̄k

and

[−
∑

gk̄j∂2/∂zj∂z̄k, σ∧] is of order one.

Notice that (3.6) implies that [∂, (∂
Λ
)∗] is of order one, hence

∂ ∂
Λ
(∂

Λ
)∗∂

∗
= −∂

Λ
∂(∂

Λ
)∗∂

∗
= ∂

Λ
(∂

Λ
)∗∂ ∂

∗
+ a term of order at most three.
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We will write A ∼ B if A−B is of order at most three. Then a similar
argument gives

(∂
Λ
)∗∂

∗
∂ ∂

Λ
∼ (∂

Λ
)∗∂

Λ
∂
∗
∂, (∂

Λ
)∗∂ ∂

∗
∂
Λ
∼ (∂

Λ
)∗∂

Λ
∂ ∂

∗
,

∂
∗
∂
Λ
(∂

Λ
)∗∂ ∼ ∂

Λ
(∂

Λ
)∗∂

∗
∂.

Thus we have

△BC ∼ ✷
∂
Λ✷∂ ,

which gives our Claim. Then it follows immediately that △BC is elliptic.
A similar argument also shows that △A is elliptic. I) is proved.

II) The proof of II) is a direct consequence of the theory of elliptic operators
on compact manifolds. We refer to the Appendix in the book by Kodaira
[17] for the general theory, and, more precisely, to [17, p.450], Corollary to
Theorem 7.4.

III) The first isomorphism is well known. The second isomorphism follows
immediately from Proposition 3.7. We show that

Hp,q
BC(X) ≃ Hp,q

BC .

Let ψ ∈ Hp,q
BC . Then the map

F : Hp,q
BC → Hp,q

BC(X), ψ 7→ [ψ]

is an isomorphism. Indeed, F is C-linear. Furthermore, F is injective;

0 = F (ψ) = [ψ] if and only if ψ ∈ Im ∂ ∂
Λ
. Therefore ψ ∈ Im ∂ ∂

Λ
∩Hp,q

BC

and consequently, by II), it follows that ψ = 0.
The map F is also surjective: let [ψ] ∈ Hp,q

BC(X). Then, by Hodge decompo-
sition II)

ψ = (ψ)H + ∂ ∂
Λ
η + ∂

∗
µ+ (∂

Λ
)∗ν.

A direct computation shows that ∂
∗
µ = 0 and (∂

Λ
)∗ν = 0, since ψ ∈ ker ∂ ∩

ker ∂
Λ
and (ψ)H ∈ Hp,q

BC . Therefore, [ψ] = [(ψ)H ] and F is surjective, that is
the map F is an isomorphism.
Similarly, Hp,q

A (X) ≃ Hp,q
A . The proof is complete. □

4. The ∂ ∂
Λ

-Lemma

We recall the following general definitions (see [29, Def. 3.1, 3.5]).
Let A = ⊕2n

k=0A
k be a direct sum of complex vector spaces. Let L ∈ End(A);
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we say that the pair (A,L) is a Lefschetz space if

L(Al) ⊂ Al+2, ∀ 0 ≤ l ≤ 2(n− 1), L(A2n−1) = L(A2n) = 0,

and each Lk : An−k → An+k, 0 ≤ k ≤ n, is an isomorphism. In such a case,
L is said to satisfy the Hard Lefschetz Condition.

Let (A,L) be a Lefschetz space and let d be a C-linear endomorphism
of A such that d(Al) ⊂ Al+1. We call (A,L, d) a Lefschetz complex if d2 = 0.

For a Lefschetz complex (A,L, d) one can define

Hd =

2n
⊕

k=0

Hk
d

where

Hk
d :=

ker d ∩Ak

Im d ∩Ak
,

Let (X, J) be a compact complex manifold with a symplectic degree

(1, 1)-form ω. As already remarked in Section 1, the ∂ ∂
Λ
-Lemma is a gen-

eralization of the ∂∂∗-Lemma on a compact Kähler manifold. In fact, as
a consequence of Hodge theory and Kähler identities, any compact Kähler
manifold M satisfies

ker ∂ ∩ ker ∂∗ ∩ (Im ∂ + Im ∂∗) = Im ∂∂∗.

Therefore, since ∂∗ = −i∂
Λ
, it follows immediately that every compact

Kähler manifold satisfies the ∂ ∂
Λ
-Lemma.

Let Ak = Ak(X) be the space of complex smooth forms on X and denote
by

Ak =
⊕

p+q=k

Ap,q(X)

the natural bigrading of Ak(X). Then the Lefschetz operator L : Ap,q(X) →
Ap+1,q+1(X) is defined as Lα = ω ∧ α. According to the previous definitions,
(

2n
⊕

k=0

Ak(X), L, ∂
)

is a Lefschetz complex. Let

Hk
∂
(X) :=

⊕

p+q=k

Hp,q

∂
(X);

then L induces a map, denoted by Lk, for 0 ≤ k ≤ n,

Lk : Hn−k

∂
(X) → Hn+k

∂
(X).
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Since [∂, L] = 0, Theorem 3.5 in [29] implies

Theorem 4.1. Let (X, J) be endowed with a symplectic form of degree
(1, 1). Then the following conditions are equivalent:

i) (X, J, ω) satisfies the ∂ ∂
Λ
-Lemma

ii) The pair
(

⊕

k≥0

Hk
∂
(X), L

)

is a Lefschetz space, that is Lk : Hn−k

∂
(X) → Hn+k

∂
(X) is an isomor-

phism for 0 ≤ k ≤ n.

Furthermore, in our case, all the above cohomologies are finite dimen-
sional, thus we know that (see Lemma 5.15 in [12], Lemma 5.41 in [18] or

Lemma 2.4 in [4]) the ∂∂
Λ
-Lemma implies that all the above cohomologies

have the same dimension. The converse is also true, a better version is the
following fact proved in [4, Theorem 3.4] :

Theorem 4.2. Let (X, J) be an n-dimensional compact complex manifold
with a symplectic degree (1, 1)-form ω. Then the following inequalities hold

I)

dimHp,q
BC(X) + dimHp,q

A (X) ≥ dimHp,q

∂
(X) + dimHp,q

∂
Λ (X).

II) Furthermore, the equality in the above inequalities holds for all p, q if

and only if the ∂ ∂
Λ
-Lemma holds on (X, J, ω).

Proof. I) Consider the following double complex

(B•,•(X), ∂, ∂
Λ
), B−p,q(X) := Ap,q(X).

We know that ∂ (resp. ∂
Λ
) is of type (0, 1) (resp. (1, 0)). Thus Remark 3.5

in [4] gives

(4.1) dimHp,q
BC(X) + dimHp,q

A (X) ≥ dimHp,q

∂
(X) + dimHp,q

∂
Λ (X).

II) Now it suffices to prove the second part of the Theorem. Put

T k(X) :=
⊕

p+q=k

Bp,q(X) =
⊕

q−p=k

Ap,q(X), D := ∂ + ∂
Λ
,
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then one may define

Hk
D(X) :=

kerD ∩ T k(X)

ImD ∩ T k(X)
.

By Theorem 2 in [4], the following are equivalent:

(1) for every −n ≤ k ≤ n, we have

∑

q−p=k

(

dimHp,q
BC(X) + dimHp,q

A (X)
)

= 2dimHk
D(X);

(2) the ∂ ∂
Λ
-Lemma holds.

In order to use the above result, we need the following

Lemma 4.3. We have

dimHk
D(X) =

∑

q−p=k

dimHp,q

∂
(X) =

∑

q−p=k

dimH
∂
Λ(X).

Proof. The second equality is trivial since ∗s gives the following isomor-
phism:

Hp,q

∂
≃ Hn−q,n−p

∂
Λ .

To prove the first equality, we use a similar argument as in the proof of [6,

Theorem 2.3]. Notice that ∂
Λ
= [∂,Λ] gives (by induction on m)

∂Λm = Λm∂ +mΛm−1∂
Λ
,

which gives

∂(eΛα) = ∂

(

∑ Λk

k!
α

)

=
∑ Λk

k!
∂α+

∑ Λk−1

(k − 1)!
∂
Λ
α = eΛ(∂ + ∂

Λ
)α,

for every α ∈ T k(X). Thus we have

e−Λ∂(eΛα) = (∂ + ∂
Λ
)α = Dα,

hence the D-complex is equivalent to the ∂-complex on T k(X) and the
lemma follows. □
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Proof of the second part of Theorem 2. Assume that the ∂ ∂
Λ
-Lemma

holds, then we have that

dimHp,q
BC(X) = dimHp,q

A (X) = dimHp,q

∂
(X) = dimHp,q

∂
Λ (X),

which gives

(4.2) dimHp,q
BC(X) + dimHp,q

A (X) = dimHp,q

∂
(X) + dimHp,q

∂
Λ (X).

On the other hand, (4.2) and the above lemma together imply

∑

q−p=k

(

dimHp,q
BC(X) + dimHp,q

A (X)
)

= 2dimHk
D(X), ∀ k,

which is equivalent to that the ∂ ∂
Λ
-Lemma holds (by [4, Theorem 2]). □

5. Kähler identities and admissible metrics

5.1. Kähler identitity of Minkowski type

In this section we shall prove that if ωg further satisfies the assumptions in
the following lemma then a Kähler identity of Minkowski type holds.

Lemma 5.1. Let X be an n-dimensional complex manifold with Hermitian
metric ωg. Let ω be a non-degenerate (1, 1)-form on X. Let {L,Λ, B} be the
sl2-triple associated to ω. Let

λ1 ≤ λ2 ≤ · · · ≤ λn,

be the eigenvalues of ω with respect to ωg. Assume that

λ2j = 1, ∀ 1 ≤ j ≤ n.

Denote by Λ∗ the adjoint of Λ with respect to ωg. Then

Λ∗ = L.
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Proof. Fix x ∈ X, then we can choose local coordinates near x such that

ωg(x) = i
∑

dzj ∧ dz̄j ,

and

ω(x) = i
∑

λj dz
j ∧ dz̄j .

Let {V1, · · · , Vn} be the dual frame of {dz1, · · · , dzn}. Then we have

Λ = i
∑ 1

λj
(Vj ⌋)(Vj ⌋).

Thus

Λ∗ = i
∑ 1

λj
dzj ∧ dz̄j .

Now we know that Λ∗ = ω∧ if and only if λ2j = 1 for every j. □

We will introduce the following definition

Definition 5.2. A Hermitian metric ωg is said to be admissible with respect
to ω if all eigenvalues of ω with respect to ωg lies in {1,−1}.

Theorem 5.3 (Kähler identity of Minkowski type). Let (X,ω, J)
be a complex manifold with a symplectic (1, 1)-form ω. With respect to an
admissible Hermitian metric ωg we have

(5.1) (∂
Λ
)∗ =

[

L, ∂
∗
]

,

(5.2)
[

(∂
Λ
)∗, L

]

= 0.

We call them Kähler identities of Minkowski type.

Proof. Since Λ∗ = L, taking the adjoint of [∂,Λ] = ∂
Λ
, [∂

Λ
,Λ] = 0, we obtain

(5.1) and (5.2). □

Remark 1. In the case where ω is positive we know that ωg is admissible
with respect to ω if and only if ω = ωg, in which case we have

(∂
Λ
)∗ = −i∂,

thus (5.1) reduces to the usual Kähler identity.
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Remark 2. We know that each Bott-Chern type cohomology Hp,q
BC is iso-

morphic to

Hp,q(BC) := ker ∂ ∩ ker ∂
Λ
∩ ker(∂∂

Λ
)∗ ∩Ap,q.

Our Kähler identities of Minkowski type imply

Theorem 5.4. Let (X,ω, J) be a compact complex manifold with a sym-
plectic (1, 1)-form ω. Let ⊕Hp,q(BC) be the above harmonic space associated
to an arbitrary ω admissible metric, then {⊕Hp,q(BC), L := ω ∧ ·} satisfies
the Hard Lefschetz Condition.

Proof. It is enough to show that for every u ∈ Hp,q(BC), we have Lu ∈
Hp+1,q+1(BC). Notice that ∂u = 0 gives

∂(Lu) = ω ∧ ∂u = 0.

Moreover, since [∂,Λ] = ∂
Λ
, by the Jacobi identity, to show ∂

Λ
(Lu) = 0, it

is enough to prove

[[L,Λ], ∂]u = 0,

which follows directly from ∂u = 0 and

[[L,Λ], ∂] = ∂.

Now it suffices to show that ∂
∗
(∂

Λ
)∗(Lu) = 0. By the Kähler identity of

Minkowski type (5.2), we have (∂
Λ
)∗L = L(∂

Λ
)∗, which gives

∂
∗
(∂

Λ
)∗(Lu) = ∂

∗
L(∂

Λ
)∗u = [∂

∗
, L](∂

Λ
)∗u+ L∂

∗
(∂

Λ
)∗u = [∂

∗
, L](∂

Λ
)∗u.

The Kähler identity of Minkowski type (5.1) gives

[∂
∗
, L](∂

Λ
)∗u = −(∂

Λ
)∗(∂

Λ
)∗u = 0.

Thus the theorem follows. □

5.2. Choosing admissible metric

In general, an admissible J-Hermitian metric is not unique. In this section,
we shall show that if the holomorphic cotangent bundle of X is smoothly
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trivial then associated to a global frame, say

Ψ := {ξj},

there is a unique admissible J-Hermitian metric. In fact, assume that our
symplectic form can be written as

ω = i
∑

ωjk̄ ξ
j ∧ ξk,

where ωjk̄ is a constant Hermitian matrix with eigenvalues

λ1 ≤ · · · ≤ λs < 0 < λs+1 ≤ · · · ≤ λn.

Denote by Vj the associated λj eigenspace. Put

V (−) = ⊕s
j=1Vj , V (+) = ⊕n

j=s+1Vj ,

Then one may define a ω-admissible Hermitian metric ωg such that

ωg(u, v) = 0, ωg(u, u) = ω(u, u), ωg(v, v) = −ω(v, v).

for every u ∈ V (+) and v ∈ V (−).

Definition 5.5. We call ωg the canonical ω-admissible metric associated
to {ξj}.

Denote by Ap,q
Ψ the space of (p, q)-forms

u =
∑

uj1···jpk1···kq
ξj1 ∧ · · · ∧ ξjp ∧ ξk1 ∧ · · · ∧ ξkq ,

where uj1···jpk1···kq
are complex constants. Then one may define

Hp,q
♯ (Ψ), ♯ ∈ {∂, ∂

Λ
, BC,A},

by replacing Ap,q(X) with Ap,q
Ψ in Def. 2.1. We shall introduce the following

Definition 5.6. We say that Hp,q
♯ (X), ♯ ∈ {∂, ∂

Λ
, BC,A}, is Ψ reduced if

the following isomorphism Hp,q
♯ (X) ≃ Hp,q

♯ (Ψ) holds.

6. Proofs of Theorems A and B

In this section we will give the proofs of the first two results. We need some
preliminary computations and results.
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6.1. Complex-symplectic cohomology on
the Kodaira-Thurston surface

In this case, we consider the Kodaira-Thurston manifold (X, J) with sym-
plectic structure (see [24, Section 5]). Let x1, . . . , x4 be coordinates in R4 and
consider the following product: given any a = (a1, . . . , a4), b = (b1 . . . , b4) ∈
R4, set

a ∗ b = (a1 + b1, a2 + b2, a3 + a1b2 + b3, a4 + b4).

Then (R4, ∗) is a Lie group and Γ = {(γ1, . . . , γ4) ∈ R4 | γj ∈ Z, j =
1, . . . , 4} is a lattice in (R4, ∗), so that X = Γ\R4 is a 4-dimensional compact
manifold. Then,

e1 = dx1, e2 = dx2, e3 = dx3 − x1dx2, e4 = dx4,

are Γ-invariant 1-forms on R4, and, consequently, they give rise to a global
coframe on X. The following structure equations hold

de1 = 0, de2 = 0, de3 = −e1 ∧ e2, de4 = 0.

Set

Je1 = −e2, Je2 = e1, Je3 = −e4, Je4 = e3,

and

ω = e13 + e24,

where eij = ei ∧ ej and so on. Then J is a complex structure on X, a global
coframe of (1, 0)-forms is given by

φ1 = e1 + ie2, φ2 = e3 + ie4

and ω is a (1, 1)-symplectic structure on X. Explicitly,

ω =
1

2
(φ1 ∧ φ2 + φ1 ∧ φ2),

and the (1, 0)-coframe {φ1, φ2} satisfies

{

dφ1 = 0,

dφ2 = − i
2
φ1 ∧ φ1.

Put

ξ1 := φ1 + iφ2, ξ2 := φ1 − iφ2,
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then we have

ω =
i

4

(

ξ1 ∧ ξ1 − ξ2 ∧ ξ2
)

.

Thus the canonical admissible J-Hermitian metric associated to {ξj} is

ωg =
i

4

(

ξ1 ∧ ξ1 + ξ2 ∧ ξ2
)

=
i

2
(φ1 ∧ φ1 + φ2 ∧ φ2).

We will compute the following complex-symplectic harmonic space

Hp,q(BC) := ker ∂ ∩ ker ∂
Λ
∩ ker(∂∂

Λ
)∗ ∩Ap,q.

By Theorem 5.4, it is enough to compute the primitive harmonic space,
denoted by P , in ⊕Hp,q(BC). It is clear that

Hp,q(BC) ∩ P = ker ∂ ∩ ker(∂∂
Λ
)∗ ∩ P.

We know that

∂
∗
= i(−1)p+q ∗gs ∂∗

g
s, (∂

Λ
)∗ = (−i) ∗gs ∗s∂ ∗s ∗

g
s,

on Ap,q. Thus

ker(∂∂
Λ
)∗ = ker(∂ ∗s ∂ ∗s ∗

g
s) = ker(∂ ∗s ∂∗

g
s).

Now we can use the main result in [24] to prove the following theorem:

Theorem 6.1. All harmonic forms in Hp,q
BC are G-invariant. More pre-

cisely, we have







































































H0,0
BC = SpanC ⟨1⟩,

H1,0
BC = SpanC ⟨φ1⟩,

H0,1
BC = SpanC ⟨φ1, φ2⟩,

H2,0
BC = SpanC ⟨φ1 ∧ φ2⟩,

H1,1
BC = SpanC ⟨φ1 ∧ φ2, φ1 ∧ φ2, φ1 ∧ φ1⟩,

H0,2
BC = SpanC ⟨φ1 ∧ φ2⟩,

H2,1
BC = SpanC ⟨φ1 ∧ φ2 ∧ φ1⟩,

H1,2
BC = SpanC ⟨φ2 ∧ φ1 ∧ φ2, φ1 ∧ φ1 ∧ φ2⟩,

H2,2
BC = SpanC ⟨φ1 ∧ φ2 ∧ φ1 ∧ φ2⟩.
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Proof. H0,0
BC = SpanC ⟨1⟩ is trivial.

Degree (1, 0) case: Notice that, for bidegree reasons, H1,0
BC ⊂ H1,0

∂
=

SpanC ⟨φ1⟩. By a direct computation, φ1 ∈ H1,0
BC , so thatH

1,0
BC = SpanC ⟨φ1⟩.

Degree (0, 1) case: Let u ∈ A0,1(X). Then, for bidegree reasons,

u ∈ H0,1
BC

if and only if

∂u = 0, (∂
Λ
)∗∂

∗
u = 0.

Notice that

(∂
Λ
)∗∂

∗
u = 0 ⇐⇒ ∂ ∗s ∂ ∗g u = 0

⇐⇒ ∗s∂ ∗g u is a constant ⇐⇒ ∂
∗
u is a constant,

which is equivalent to ∂∂
∗
u = 0. Thus we have H0,1

BC = H0,1

∂
.

Degree (2, 0) case: Follows from H2,0
BC = H2,0

∂
.

Degree (1, 1) case: Let u ∈ H1,1
BC . We can write

(6.1) u = u0 + ∂v, u0 ∈ H1,1(∂).

We have:

H1,1

∂
= SpanC ⟨φ1 ∧ φ2, φ2 ∧ φ1⟩

Then, it is easy to check that

H1,1

∂
⊂ H1,1

BC ,

Claim ∂v ∈ P ∩H1,1
BC .

First of all, ∂v ∈ P . Indeed,

∂v ∈ P ⇐⇒ Λ∂v = 0 ⇐⇒ −[∂,Λ]v = 0 ⇐⇒ ∂
Λ
v = 0

Furthermore, by (6.1), we get

0 = ∂
Λ
u = ∂

Λ
u0 + ∂

Λ
∂v = ∂

Λ
∂v = −∂ ∂

Λ
v

that is ∂
Λ
v is a constant and, consequently,

∂
Λ
u ∈ Im ∂

Λ
∩H0,0

∂
Λ ,
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which implies ∂
Λ
v = 0, i.e.,

∂v ∈ P ∩H1,1(BC), i.e. ∂
Λ
∈ P . Moreover, by degree reasons, ∂

∗
v = 0,

so that

∂v ∈ ker ∂ ∩ ker ∂
Λ
∩ ker (∂

Λ
)∗∂

∗
= H1,1

BC

Now we can write

v = v0 + ∂
Λ
f, v0 ∈ H1,0

∂
Λ .

Since

H1,0

∂
Λ = ∗sH

2,1

∂
= SpanC ⟨φ1, φ2⟩,

and

∂H1,0

∂
Λ = SpanC ⟨φ1 ∧ φ1⟩ ⊂ P ∩H1,1

BC ,

we have

∂ ∂
Λ
f ∈ P ∩H1,1

BC .

Thus ∂∂
Λ
f = 0 and our formula follows, that is

H1,1
BC = SpanC ⟨φ1 ∧ φ1, φ1 ∧ φ2, φ2 ∧ φ1⟩

Degree (0, 2) case: Notice that u ∈ H0,2
BC if and only if

∂ ∗s ∂u = 0.

Taking the conjugate of the last equation, we obtain

∂ ∗s ∂u = 0.

Thus, we have

∗s∂u ∈ H1,0

∂
= SpanC ⟨φ1⟩,

which gives

∂u ∈ SpanC ⟨φ1 ∧ φ2 ∧ φ1⟩.

Thus ∂u = 0, i.e.,

ū ∈ H2,0

∂
= SpanC ⟨φ1 ∧ φ2⟩.

Therefore,

H0,2
BC = SpanC ⟨φ1 ∧ φ2⟩.

The remaining cases follow from the Hard Lefschetz property. □
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6.2. Complex-symplectic Iwasawa manifold

Consider the following three dimensional complex Heisenberg group

(6.2) H(3,C) :=











1 z1 z3
0 1 z2
0 0 1



 : zj ∈ C, j = 1, 2, 3







with the product induced by matrix multiplication. Identify an element in
H(3,C) by a vector, then one may write the product as

(a, b, c) · (z1, z2, z3) = (z1 + a, z2 + c, z3 + az2 + b),

from which we know that

ψ1 := dz̄1, ψ2 := dz2, ψ3 := dz3 − z1dz2

are left invariant 1-forms satisfying

(6.3)











dψ1 = 0

dψ2 = 0

dψ3 = −ψ1 ∧ ψ2.

Let J be the almost complex structure on H(3,C) with global type (1, 0)
frame {ψ1, ψ2, ψ3}. Then the above equation implies that J is integrable.
Fix a lattice, say

Γ := {(a, b, c) ∈ H(3,C) : a, b, c ∈ Z[i]},

in H(3,C) and consider the left quotient

X := Γ\H(3,C).

Since {ψ1, ψ2, ψ3} is well defined on X, we know that J induces a complex
structure (still denoted by J) on X. Consider

ω := i ψ2 ∧ ψ2 + ψ1 ∧ ψ3 − ψ3 ∧ ψ1,

we know that

ω3 = 6i ψ2 ∧ ψ2 ∧ ψ1 ∧ ψ1 ∧ ψ3 ∧ ψ3 ̸= 0
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and

dω = 0.

Thus ω is a type (1, 1) symplectic form on X. The canonical admissible
J-Hermitian metric is

ωg := i ψ2 ∧ ψ2 + i ψ1 ∧ ψ1 + i ψ3 ∧ ψ3.

Since Ψ := {ψ1, ψ2, ψ3} is complex nilpotent, theorem B gives

HBC(X) ≃ HBC(Ψ), H∂(X) ≃ H∂(Ψ).

Theorem 6.2. The above Iwasawa manifold does not satisfy the ∂ ∂
Λ
-

Lemma.

Proof. It suffices to show that ψ1 is ✷∂-harmonic but ω2 ∧ ψ1 is ∂-exact. To

show that ψ1 is ✷∂-harmonic, it is enough to verify that

∂ ψ1 = 0, ∂ ∗gs ψ
1 = 0.

The first identity follows directly from (6.3). For the second identity, notice
that up to a constant ∗gsψ1 is equal to ω2

g ∧ ψ
1. Again, by (6.3), we know

that

ω2
g ∧ ψ

1 = −2ψ2 ∧ ψ2 ∧ ψ3 ∧ ψ3 ∧ ψ1

is ∂-closed, which implies that

∂ ∗gs ψ
1 = 0.

Hence ψ1 is ✷∂-harmonic. Moreover, we have

ω2 ∧ ψ1 = 2i ψ2 ∧ ψ2 ∧ ψ1 ∧ ψ3 ∧ ψ1 = ∂(2i ψ2 ∧ ψ1 ∧ ψ3 ∧ ψ3),

thus ω2 ∧ ψ1 is ∂-exact, from which we know that the H∂ do not satisfy the
Hard Lefschetz Condition. Thus our theorem follows from Theorem 4.1. □

6.3. Proof of Theorem A

(1) Follows from Theorem 3.3 in [29] (see [28] for the real case).
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(2) The first part follows from Theorem 5.4. For the second part, by
the previous computations collected in Theorem 6.1, we immediately obtain
that

(φ1 ∧ φ2) ∧ φ2

is not △BC-harmonic, but both φ1 ∧ φ2 and φ2 are △BC-harmonic. Conse-
quently, HBC(X) is not an algebra.

(3) By [29, Theorem B (4)], we know that the Kodaira–Thurston mani-

fold does not satisfy the ∂ ∂
Λ
-Lemma. The Iwasawa case follows from The-

orem 6.2.
The Proof of Theorem A is complete. ✷

6.4. Proof of Theorem B

Now it suffices to prove Theorem B. Assume that

H∂(X) ≃ H∂(Ψ).

Since w ∈ A1,1
Ψ , we know that

∗s(AΨ) = AΨ,

which gives

H
∂
Λ(X) ≃ ∗sH∂(X) ≃ ∗sH∂(Ψ) ≃ H

∂
Λ(Ψ).

Moreover, there is a natural map from A to AΨ defined by

µ : u 7→
∑

(
∫

X

uj1···jpk1···kq

ωn

∫

X
ωn

)

ξj1 ∧ · · · ∧ ξjp ∧ ξk1 ∧ · · · ∧ ξkq ,

for

u =
∑

uj1···jpk1···kq
ξj1 ∧ · · · ∧ ξjp ∧ ξk1 ∧ · · · ∧ ξkq ∈ Ap,q(X).

Denoting by ι the natural mapping

ι : A•,•(ψ) →֒ A•,•(X),

notice that µ satisfies

(µ ◦ ι)(u) = u, ∀ u ∈ AΨ.

Thus Corollary 1.3 in [2] implies that H♯(X) ≃ H♯(Ψ) also for all ♯ ∈
{BC,A}. Moreover, in the case where Ψ is complex nilpotent, the main
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theorem in [24] implies H∂(X) ≃ H∂(Ψ). Thus the above argument gives

H♯(X) ≃ H♯(Ψ) for all ♯ ∈ {∂, ∂
Λ
, BC,A}. The proof is complete.

7. Deformations of Nakamura manifolds

This section is devoted to the proof of Theorem C. First of all, we
need to recall some definitions and facts from Dolbeault formality on
complex manifolds. By definition, a complex manifold (X, J) is said to
be Dolbeault formal if the bi-differential, bi-graded algebra (shortly bba)
(A•,•(X), ∂, ∂) is equivalent (in the category of bba) to a bba (B, ∂B, 0),
which means that there exists a family of bba {(Cl, ∂l, ∂l)}l∈{0,1,...,2n+2} such

that (C0, ∂0, ∂0) = (A•,•(X), ∂, ∂), (C2n+2, ∂2n+2, ∂2n+2) = (B, ∂B, 0) and a
family of bba-morphisms

(

C2j+1, ∂2j+1, ∂2j+1

)

fj

uu

gj

**
(

C2j , ∂2j , ∂2j
) (

C2j+2, ∂2j+2, ∂2j+2

)

for j ∈ {0, 1, . . . , n}, such that the morphisms induced in cohomology are
bba-isomorphisms. A complex manifold (X, J) is said to be geometrically
Dolbeault formal if there is a Hermitian metric g such that the harmonic
space of the Dolbeault cohomology is an algebra with respect to the wedge
product. In particular, any complex manifold geometrically Dolbeault formal
is Dolbeault formal. We now recall shortly the construction of Dolbeault-
Massey triple products on a complex manifold, which provide an obstruction
to Dolbeault formality. Let

a = [α] ∈ Hp,q

∂
(X), b = [β] ∈ Hr,s

∂
(X), c = [γ] ∈ Hu,v

∂
(X)

such that

a · b = 0 ∈ Hp+r,q+s

∂
(X), b · c = 0 ∈ Hr+u,s+v

∂
(X).

Then there exist f ∈ Λp+r,q+s−1X and g ∈ Λr+u,s+v−1X satisfying

α ∧ β = ∂f, β ∧ γ = ∂g.
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The Dolbeault-Massey triple product of the cohomology classes a, b, c is de-
fined as

⟨a, b, c⟩ := [f ∧ γ + (−1)p+q+1α ∧ g]

∈
Hp+r+u,q+s+v−1

∂
(X)

Hp+r,q+s−1

∂
(X) ·Hu,v

∂
(X) +Hp,q

∂
(X) ·Hr+u,s+v−1

∂
(X)

.

Finally, if (X, J) is Dolbeault formal, in particular geometrically formal,
then all the Dolbeault-Massey triple products vanish.

7.1. Complex and symplectic structures on Nakamura manifolds

We start by recalling the construction and the cohomology properties of the
holomorphically parallelizable Nakamura manifold (see [20, p.90]). On C3

with coordinates (z1, z2, z3) consider the following product ∗

(w1, w2, w3) ∗ (z1, z2, z3) = (w1 + z1, e
w1z2 + w2, e

−w1z3 + w3).

Then G = (C3, ∗) is a solvable Lie group, which is the semidirect product
C⋉ C2, admitting a uniform discrete subgroup Γ = Γ′ ⋉ Γ′′, where Γ′ ⊂ C

is given by Γ′ = λZ⊕ i2πZ and Γ′′ is a lattice in C2; thus N := Γ\C3 is a
compact complex 3-dimensional manifold, endowed with the complex struc-
ture JN induced by the standard complex structure on C3. It turns out that
h0,1(N) = 3. It is immediate to check that

φ1 = dz1, φ2 = e−z1dz2, φ3 = ez1dz3

are G-invariant holomorphic 1-forms on C3, so that they induce holomorphic
1-forms on N , namely {φ1, φ2, φ3} is a global holomorphic co-frame on N
and the complex manifold N is holomorphically parallelizable. We have

dφ1 = 0, dφ2 = −φ1 ∧ φ2, dφ3 = φ1 ∧ φ3.

By the construction of N , it follows that e
z1−z1

2 is a well-defined complex-
valued smooth function on N . Let

ωN =
i

2
φ1 ∧ φ1 +

1

2
e−z1+z1 φ2 ∧ φ3 +

1

2
ez1−z1 φ2 ∧ φ3.

Then

ωN = ωN , ω3
N = −

3

4
(idz1 ∧ dz̄1) ∧ (idz2 ∧ dz̄3) ∧ (idz3 ∧ dz̄3) < 0,
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and explicitly,

ωN =
i

2
dz1 ∧ dz1 +

1

2
dz2 ∧ dz3 +

1

2
dz3 ∧ dz2 ,

so that dωN = 0 and the complex structure JN on N is ω-symmetric. Then,

see [29, Sec. 8.4], (N, JN , ωN ) satisifies the ∂ ∂
Λ
-Lemma. By [16], the Dol-

beault cohomology of N can be computed by taking the finite dimensional
subcomplex (CΓ, ∂) →֒ (A•,•(N), ∂) given by

CΓ = Λ•,•
(

SpanC
〈

dz1, e
−z1dz2, e

z1dz3
〉

⊕ SpanC
〈

dz1, e
−z1dz2, e

z1dz3
〉)

.

Let g be the Hermitian metric on N defined by

g =

3
∑

j=1

φj ⊗ φj

and denote by ✷
g

∂
the Dolbeault Laplacian associated to g. Then, it turns

out that

H•,•

∂
(N) ≃ ker✷g

∂
= CΓ,

and that N is geometrically Dolbeault formal (i.e. the harmonic space of
the Dolbeault cohomology is an algebra with respect to the wedge prod-
uct). Summing up, (N, JN , ωN ) is a compact 3-dimensional geometrically

Dolbeault formal complex manifold satisfying the ∂ ∂
Λ
-Lemma.

7.2. Complex deformations of Nakamura manifolds which do not

satisfy the ∂∂
Λ
-Lemma

We will construct a 1-parameter complex deformation Nt = (N, Jt) of N =
(N, JN ), admitting a Jt-symmetric symplectic structure ωt, such that Nt

is not Dolbeault formal (see Lemma 7.4 and [27] for the Definition) and

(N, Jt, ωt) does not satisfy the ∂t ∂t
Λ
-Lemma, for t ̸= 0.

Let {ζ1, ζ2, ζ3} be the holomorphic global frame on N , dual to {φ1, φ2, φ3}.
Then

ζ1 =
∂

∂z1
, ζ2 = ez1

∂

∂z2
, ζ3 = e−z1

∂

∂z3
.

Lemma 7.1. Let φt = tez1−z1φ2 ⊗ ζ3 ∈ A0,1(N,T 1,0N), t ∈ C, |t| < ε.
Then

∂φt +
1

2
[[φt, φt]] = 0.
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Proof. By definition, φt = te−2z1dz2 ⊗
∂
∂z3

. Therefore

∂φt = ∂(te−2z1dz2)⊗
∂

∂z3
= 0

and

[[φt, φt]] = 0.

□

According to Lemma 7.1, φt determines an integrable complex structure Jt,
for t ∈ B(0, ε). Denote by Nt = (N, Jt).

Lemma 7.2. The following complex differential 1-forms
(7.1)

Φ1,0
1 (t) := dz1, Φ1,0

2 (t) := e−z1dz2, Φ1,0
3 (t) := ez1dz3 − te−z1dz2,

Φ0,1
1 (t) := dz1, Φ0,1

2 (t) := e−z1dz2, Φ0,1
3 (t) := ez1dz3 − tez1−2z1dz2,

define a global coframe of (1, 0)-forms, (0, 1)-forms respectively on Nt. Fur-
thermore,

(7.2)
∂tΦ

1,0
1 (t) = 0, ∂tΦ

1,0
2 (t) = 0, ∂tΦ

1,0
3 (t) = 2tΦ1,0

1 (t) ∧ Φ0,1
2 (t),

∂tΦ
0,1
1 (t) = 0, ∂tΦ

0,1
2 (t) = 0, ∂tΦ

0,1
3 (t) = 0,

Proof. (I) By the Kodaira and Spencer theory of small deformations of com-
plex structures,

{φj − φt(φ
j) | j = 1, 2, 3}

is a coframe of (1, 0)-forms on Nt, for t ∈ B(0, ε) (see e.g., [15, p.75]). There-
fore,

φ1 − φt(φ
1) = dz1 =: Φ1,0

1 (t),

φ2 − φt(φ
2) = e−z1dz2 =: Φ1,0

2 (t),

φ3 − φt(φ
3) = ez1dz3 − te−z1dz2 =: Φ1,0

3 (t)

is a complex (1, 0)-coframe on Nt. It is immediate to check that

Φ0,1
1 (t) = Φ1,0

1 (t), Φ0,1
2 (t) = ez1−z1Φ1,0

2 (t), Φ0,1
3 (t) = e−z1+z1Φ1,0

3 (t).

(II) The proof of (7.2) is a straightforward computation. □
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Lemma 7.3. The following 2-form on Nt

ωt :=
i

2

(

Φ1,0
1 (t) ∧ Φ1,0

1 (t)
)

+
1

2

(

Φ0,1
2 (t) ∧ Φ1,0

3 (t) + Φ0,1
2 (t) ∧ Φ1,0

3 (t)
)

defines a Jt-symmetric symplectic structure on Nt.

Proof. By definition, ωt is a (1, 1)-form with respect to Jt and real. We have

ωt =
i

2
(dz1 ∧ dz1) +

1

2
e−z1dz2 ∧ (ez1dz3 − te−z1dz2)

+
1

2
e−z1dz2 ∧ (ez1dz3 − te−z1dz2)

=
i

2
(dz1 ∧ dz1) +

1

2
(dz2 ∧ dz3 + dz2 ∧ dz3).

Hence, ω3
t ̸= 0 and dωt = 0. □

By the previous Lemma, ωt = ω.

Lemma 7.4. There exists a non vanishing Dolbeault Massey product on
Nt, for t ̸= 0, t ∈ B(0, ε).

Proof. Consider the following Dolbeault classes on Nt defined respectively
as

a = [2tΦ1,0
1 (t)], b = [Φ0,1

2 (t)], c = [Φ0,1
2 (t)].

Then, a · b = 0, b · c = 0. Indeed,

a · b = [2tΦ1,0
1 (t) ∧ Φ0,1

2 (t)] = [∂tΦ
1,0
3 (t)], b · c = [Φ0,1

2 (t) ∧ Φ0,1
2 (t)] = [0].

Therefore, the Dolbeault triple product ⟨a, b, c⟩ is given by

⟨a, b, c⟩ = [Φ1,0
3 (t) ∧ Φ0,1

2 (t)] ∈
H1,1

∂t

(Nt)

H1,0

∂t

(Nt) ·H
0,1

∂t

(Nt)

A direct computation shows that Φ1,0
3 (t) ∧ Φ0,1

2 (t) is ✷gt

∂t

-harmonic, where

gt =

3
∑

j=1

Φ1,0
j (t)⊗ Φ1,0

j (t);

consequently, the Dolbeault class [Φ1,0
3 (t) ∧ Φ0,1

2 (t)] does not vanish in
H1,1

∂t

(Nt).
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Let us show that [Φ1,0
3 (t) ∧ Φ0,1

2 (t)] /∈ H1,0

∂t

(Nt) ·H
0,1

∂t

(Nt). Set

C•,•
t := Λ•,•(SpanC⟨Φ

1,0
1 (t),Φ1,0

2 (t),Φ1,0
3 (t)⟩

⊕ SpanC⟨Φ
0,1
1 (t),Φ0,1

2 (t),Φ0,1
3 (t)⟩);

then C•,•
t satisfies the assumptions of [1, Theorem 1]. Consequently,

H•,•

∂t

(C•,•
t ) ≃ H•,•

∂t

(Nt).

Explicitly,

H1,0

∂t

(Nt) ≃ SpanC⟨Φ
1,0
1 (t),Φ1,0

2 (t)⟩,

H0,1

∂t

(Nt) ≃ SpanC⟨Φ
0,1
1 (t),Φ0,1

2 (t),Φ0,1
3 (t)⟩,

and all the representatives are Dolbeault harmonic with respect to the
Hermitian metric gt. Therefore, [Φ

1,0
3 (t) ∧ Φ0,1

2 (t)] /∈ H1,0

∂t

(Nt) ·H
0,1

∂t

(Nt) and

⟨a, b, c⟩ ≠ 0. □

Lemma 7.5. If t ̸= 0, t ∈ B(0, ε), then (N, Jt, ωt) does not satisfy the ∂t ∂
Λ

t -
Lemma.

Proof. Let η be the Jt-(0, 1)-form on Nt defined by η := Φ0,1
2 (t). Then η is

✷
gt

∂t

-harmonic. Let us compute ω2
t ∧ η. We immediately get:

ω2
t =

i

2

(

Φ1,0
1 (t) ∧ Φ1,0

1 (t) ∧ Φ0,1
2 (t) ∧ Φ1,0

3 (t)

+ Φ1,0
1 (t) ∧ Φ1,0

1 (t) ∧ Φ0,1
2 (t) ∧ Φ1,0

3 (t)
)

+
1

2
Φ0,1
2 (t) ∧ Φ1,0

3 (t) ∧ Φ0,1
2 (t) ∧ Φ1,0

3 (t).

Therefore,

ω2
t ∧ η = ω2

t ∧ Φ0,1
2 (t) = −

i

2
Φ1,0
1 (t) ∧ Φ0,1

2 (t) ∧ Φ0,1
1 (t) ∧ Φ0,1

2 (t) ∧ Φ1,0
3 (t)

For t ̸= 0, in view of (7.2) and (7.1), we get:

∂tΦ
1,0
3 (t) = Φ0,1

1 (t) ∧ Φ1,0
3 (t), ∂tΦ

0,1
2 (t) = −Φ0,1

1 (t) ∧ Φ0,1
2 (t)

1

2t
∂tΦ

1,0
3 (t) = Φ1,0

1 (t) ∧ Φ0,1
2 (t).
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Thus:

ω2
t ∧ η = −

i

2t
∂t

(

Φ1,0
3 (t) ∧ Φ0,1

1 (t) ∧ Φ0,1
2 (t) ∧ Φ1,0

3 (t)
)

,

that is the Dolbeault class [ω2
t ∧ η] vanishes inH

2,3

∂t

(Nt) for t ̸= 0, t ∈ B(0, ε).

Therefore (N,ωt) does not satisfy HLC and consequently (N, Jt, ωt) does not

satisfy the ∂t ∂
Λ

t -Lemma. □

Summing up, we have proved the following:

Theorem 7.6. Let N be the differentiable manifold underlying the Naka-
mura manifold Γ\C3. Then there exists a 1-parameter complex family of
complex structures Jt on N and a symplectic structure ω, for t ∈ B(0, ε)
such that,

• J0 = JM .

• (N, JN , ω) satifies the ∂ ∂
Λ
-Lemma and the complex manifold (N, JN )

is geometrically Dolbeault formal.

• For t ∈ B(0, ε), t ̸= 0, (N, Jt, ωt) does not satisfy the ∂t ∂
Λ

t -Lemma and
it is not Dolbeault formal.

As a corollary, we obtain the following

Theorem 7.7. The ∂ ∂
Λ
-Lemma is an unstable property under small de-

formations of the complex structure.

7.3. Proof of Theorem C

Theorems 7.6 and 7.7 give the proof of (3). Now it is enough to prove (1)
and (2).

Proof of Theorem C (1). Recall that, ω satisfies the Hard Lefschetz Condi-
tion if and only if for every 0 ≤ k ≤ n,

[ωk] : Hn−k

∂
(X) → Hn+k

∂
(X)

is an isomorphism, which is equivalent to that the determinant, say det [ωk],
of the above map is non-zero. Since det [ωk] depends smoothly on ω, Theorem
C (1) follows. □
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Proof of Theorem C (2). Let ∂t be a smooth family of complex structures
onXt := (X, Jt). By [3, Theorem A, B], we know that ifX = (X, J0) satisfies
the ∂0∂0-Lemma then

∑

p+q=k

dimHp,q

∂0

(X) = dimHk
d (X).

On the other hand, by Frölicher’s theorem, we always have

∑

p+q=k

dimHp,q

∂t

(Xt) ≥ dimHk
d (X).

But notice that dimHk
d (X) does not depend on t and dimHp,q

∂t

(Xt) is upper

semi-continuous, so dimHp,q

∂t

(Xt) does not depend on t, which also implies

that

dimHp,q

∂t

(Xt) = dimHn−q,n−p

∂
Λ

t

(Xt)

does not depend on t. Assume further that (X,ω) satisfies the ∂0∂
Λ

0 -Lemma,
then Theorem 4.2 gives

dimHp,q
BC(X) + dimHp,q

A (X) = dimHp,q

∂0

(X) + dimHp,q

∂
Λ

0

(X)

and,

dimHp,q
BC(Xt) + dimHp,q

A (Xt) ≥ dimHp,q

∂t

(Xt) + dimHp,q

∂
Λ

t

(Xt).

Therefore, by the upper semicontinuity of t 7→ dimHp,q
BC(Xt) and t 7→

dimHp,q
A (Xt), we obtain

dimHp,q
BC(X0) + dimHp,q

A (X0) ≥ dimHp,q
BC(Xt) + dimHp,q

A (Xt)

≥ dimHp,q

∂
(Xt) + dimHp,q

∂
Λ (Xt)

= dimHp,q

∂
(X0) + dimHp,q

∂
Λ (X0)

= dimHp,q
BC(X0) + dimHp,q

A (X0),

that is

dimHp,q
BC(Xt) + dimHp,q

A (Xt) = dimHp,q

∂
(Xt) + dimHp,q

∂
Λ (Xt).

Hence, by Theorem 4.2, (X, Jt, ω) also satisfies the ∂t∂
Λ

t -Lemma. By [3,
Corollary 3.7], we also know thatX satisfies the ∂t∂t-Lemma. Thus satisfying
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both the ∂∂-Lemma and the ∂ ∂
Λ
-Lemma is a stable property under small

deformations of the complex structure. □
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