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Abstract
Artificial intelligence-based algorithms arewidely adopted in critical applications such as healthcare and autonomous vehicles.
Mitigating the security and privacy issues of AI models, and enhancing their trustworthiness have become of paramount
importance. We present a detailed investigation of existing security, privacy, and defense techniques and strategies to make
machine learning more secure and trustworthy. We focus on the new paradigm of machine learning called federated learning,
where one aims to develop machine learning models involving different partners (data sources) that do not need to share data
and informationwith each other. In particular,wediscuss how federated learning bridges security andprivacy, how it guarantees
privacy requirements of AI applications, and then highlight challenges that need to be addressed in the future. Finally, after
having surveyed the high-level concepts of trustworthy AI and its different components and identifying present research trends
addressing security, privacy, and trustworthiness separately, we discuss possible interconnections and dependencies between
these three fields. All in all, we provide some insight to explain how AI researchers should focus on building a unified solution
combining security, privacy, and trustworthy AI in the future.
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1 Introduction andmotivation

Development and investment in artificial intelligence (AI)
technology is advancing at a rapid pace. AI has penetrated
almost all life sectors from healthcare, and finance to space
research. Despite the exponential adoption of AI-based solu-
tions, several studies have unveiled some security and privacy
vulnerabilities associated with AI systems [1–3]. In addition
to this, some regulatory measures, namely the recent General
Data Protection Regulation (GDPR), enforced by the Euro-
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pean Union, the California Consumer Privacy Act (CCPA),
enforced by the state of California in the USA and many
other legislations introduced strong policies to ensure user
data protection, preserve privacy and guarantee the security
of data used in AI solutions.

Consequently, for proper regulation policies, the require-
ments of security and privacy-proof AI solutions have
become of utmost importance and mandatory in today’s AI
world.

In traditional programming settings, the programmer
knows how to generate output by creating rules or logic
procedures working on input space. The success of the pro-
gram (algorithm) is completely dependent on the ability of
the programmer to write the code following the needed logic
structure. This seems to be possible when the logic that maps
the input to the output can bewritten using a sequence of con-
ditional sentences (if-then statements). However, complex
programming tasks such as face recognition involve rules
and logic procedures that are impossible for humans to code
because of twomain issues. First, the complexity of the logic
behind the programming tasks, and second, the fact that these
tasks are typically performed using latent knowledge in our
mind that is impossible to express in words and write using
human-readable rules.
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This shortcoming is what motivated the emergence of
machine learning (ML) approaches.ML is often referred to as
the ability of the machine (computer) to write programs that
are data-driven by observingmany instances of input and out-
put pairs. A ML algorithm can automatically learn the rules
from data, including information from both input and output
stages [4]. Its quality depends on the quality and availability
of data, and the learning process is guided by loss function or
reward values to improve performance in each iteration. In
recent few years, ML and deep learning have aroused great
interest in different communities. Research community and
industries have used ML/AI to solve different types of real-
world problems.

MLalgorithms are generally categorized into three groups:
As the name suggests, supervised ML is guided by a tar-

get variable, also known as the output or response variable.
The model is trained based on a subset of the available data,
including both the inputs and the corresponding outputs, also
called labeled data. Using this subset of the available data, the
(supervised) algorithm learns the relationship between inputs
and outputs. Supervised ML is generally used for classifica-
tion and regression problems.

In contrast to supervised learning, unsupervisedMLmeth-
ods do not require labeled outputs. The model is only trained
using input data and aims to extract hidden patterns (or rela-
tionships) in the input data. Some of the common use cases
of unsupervised learning are customer segmentation, fre-
quent item set mining, and anomaly detection [5]. Important
methods in unsupervised learning are the so-called classi-
cal clustering algorithms, such as k-means, density-based
spatial clustering of applications with noise (DBSCAN) and
hierarchical clustering algorithms. Additionally, there are
also more advanced approaches, such as deep learning auto-
encoder algorithms.

Reinforcement learning is a branch of ML which tries to
mimic some features of human learning processes: instead
of learning from supervised data, it learns from its own expe-
rience, composed of a succession of trials, hits, and errors. It
works in a feedback-based process, where the agent sequen-
tially performs an action based on the feedback received from
previous trials, in the form of a reward or penalty. Conse-
quently, the reinforcement learning agent learns the policy
or strategy which maximizes the total reward over time. This
type of learning is widely used in AI applications such as
self-driving cars and games [5].

Higher or lower levels of trustworthiness ofMLapproaches
are closely related to specific requirements regarding security
and privacy issues. Some important surveys have been pub-
lished recently, covering for instance important approaches
within privacy, such as federated learning methods [6].
However, AI trustworthiness, and consequently security and
privacy, include other important aspects that should not be
considered separately from each other. Indeed, there is an

increasing need to establish amore ethical, lawful, and robust
framework for the different stages in the AI development life
cycle, from design to development to deployment to use. In
order to harness the potential of AI in addressing all these
aspects, an ideal solution must minimize risk and simultane-
ously build trust between the different parties that intersect
in the use of AI tools. The general term coined to express
these recent trends in AI is Trustworthy AI (TAI) [7, 8].

Themain aim of this article is to provide a survey, address-
ing not only security and privacy as key aspects of AI
trustworthiness but also to discuss their interplay with other
aspects of trustworthiness. In particular, we identify (i) a lack
of investigations of possible trade-offs between different—
eventually competing—aspects of AI trustworthiness in the
context of security and privacy and (ii) some important short-
comings in what concerns a unified approach, combining
different aspects and their respective trade-offs when assess-
ing the overall trustworthiness of specific AI methods or
algorithms. We start with Sects. 2 and 3, where we describe
the state-of-the-art approaches to address security and pri-
vacy of ML systems, respectively. In Sect. 4, we focus on
ML models to other aspects of trustworthiness, presenting
a panoply including some of the most used tools to address
such aspects. Section5 outlines the specific topics in each of
the previous sections addressing the interplay between secu-
rity and privacy with the different trustworthiness aspects
of AI. Section6 concludes our survey by discussing some
of the literature gaps related to these topics. In particular,
we argue that the optimal effectiveness of TAI cannot be
achieved without combining AI research in the context of
security, privacy, and trustworthiness. Figure1 sketches the
structure of our survey.

2 Security of machine learning

The current trend of ML/AI is more focused on learning
from a massive amount of data efficiently, reducing cost,
and improving model accuracy and less on designing models
while keeping in mind possible security issues.

At the same time, the models for critical decisions are
typically vulnerable to attacks [9, 10]. Secure ML has not
been aswell researched as it needs to be in both academia and
industry. In this section, we will explain some of the attacks
and potential defense techniques to resolve this issue.

2.1 Categories of attacks

Based on their nature, attacks are organized into six groups
according to three categories, namely their influence, their
specificity, and their ability to violate security [11, 12, 51].
Table 1 gives an overview of the literature concerning each
of these groups.
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Fig. 1 Scope of the survey: the interplay between security, privacy,
explainability, transparency, fairness, robustness and machine learning
in the context of trustworthy AI

2.1.1 Influence

The aim of an influence attack is to influence the classifier.
The influence can be done in two ways:

• Causative: In a causative attack, the attacker has capa-
bilities to modify the distribution of training data. The
attacker accesses the training data and manipulates the
number of samples in a way that degrades the accuracy of
the classifier when retraining the model. This manipula-
tion can be performed by addingmoremalicious samples
or by removing certain data. To carry out this attack, the
attacker must have access to the location of the training
data. This type of attack is also known as a ”data poison-
ing attack [12, 18]. Typically, to modify the distribution
of training data, a causative attacker uses different kinds
of techniques, e.g., dictionary attacks, focused attacks,
etc. A dictionary attack is a technique based on dictio-

nary words to attack the model. This technique is used
in text classification models and most specifically when
the attackers do not know any information about text
data [46]. A focused attack is typically focused on one
type of text. For example, if attackers want to classify
spam emails related to the lottery, the attackers use words
related to that email only [46].

• Exploratory: In exploratory attacks, the attacker explores
the decision boundary of the model. The aim is to gain
information about the training and test data sets and to
identify the decision boundary model. This can be done
by, for example, sending tons of inquiries to the model
and obtaining information about the statistical features
of the training data [52]. Knowing these features and the
decision boundary enables the preparation of malicious
input which, after being passed to the model, will result
in incorrect classification [12, 53, 54].

2.1.2 Specificity

Depending on the specificity, the attack is further divided into
two groups [55]:

• Targeted: In a targeted attack, the attacker focuses on one
particular case and tries to degrade the performance of the
model in that particular case [56]. One example is con-
verting ham information as spam information [57]. The
ham (i.e., normal) email should be classified as normal,
but the attacker modifies the input in a way that the ham
will be classified as spam. The attacker focuses only on
the ham class. At a deeper level, the attacker may only
focus on a specific type of ham instance.

• Indiscriminate: In indiscriminate attacks, the attacker tar-
gets all types of instances of a particular class [58]. The
attacker’s intention is to degrade the model performance,
e.g. classify normal emails as spam.

The specificity dimension of an attack usually groups both
these types of attacks intowhat is called an adversarial attack
[59]. An adversarial attack is an attack where the aim is to
”fool” the ML model by carefully designing or changing

Table 1 Overview of attacks categories, most relevant defense, and the main corresponding bibliographic references

Attack category Defense strategy Bib. sources

Influence Causative Data sanitization, Security assessment mechanism [11–19]

Exploratory Algorithm robustness enhancement [11, 12, 20–27]

Specificity Targeted Algorithm robustness enhancement [11, 12, 28–33]

Indiscriminate Algorithm robustness enhancement [11, 12, 34–36]

Security violation Integrity Algorithm robustness enhancement, Privacy-preserving techniques [11, 12, 37–43]

Availability Algorithm robustness enhancement [11, 12, 44–50]
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the inputs in a way that the model accepts malicious inputs
as normal information and vice versa [60]. A large number
of ML models, including current state-of-the-art deep learn-
ing models, are vulnerable to adversarial attacks [61]. One
example is the work of Szegedy and co-workers [62], where
an image of a panda is classified with a confidence level of
only 57.7%, whereas the same image is classified as a gibbon
with a confidence level of 99.3%.

In another work [63], the authors argue that current state
of the art on deep neural network (DNN) models are vul-
nerable to adversarial attacks, which could lead to serious
consequences, for example, the misclassification of objects
caused by adversarial attacks on driverless cars leading to
accidents.

2.1.3 Security violation

Based on the nature of security violations or security threats,
attacks can be categorized into two further classes:

• Integrity: Integrity attacks form a type of attackwhere the
attacker’smain intention is to increase the number of false
negative cases [11]. In the example of ham versus spam
classification, an integrity attack consists of classifying
as many spam samples as possible as ham.

• Availability: In one availability attack, the attacker,
instead of increasing the number of false negative cases,
increases the false-positive cases [11]. In the case of
ham and spam classification, the ham class will be
flooded with spam cases. Notice that in the case of binary
classification, integrity, and availability are, in practice,
equivalent.

2.2 Defensemethods

Attack vulnerability in ML systems has become a serious
issue. Is it safe to use ML models in security and privacy-
related applications? To increase the chances of answering
this question positively, it is essential to develop different
types of defense techniques. In this section, we will list and
describe the most popular and effective defense methods:

2.2.1 Data sanitization

Data sanitization is one of the defense techniques that we can
use during the training of a model and is focused on detect-
ing and removing the malicious data in the training set. It
is especially effective for causative attacks. Reminiscent of
the GIGO concept - “Garbage In, Garbage Out” - usually
attributed to IBMprogrammerGeorgeFuechsel [64], the data
sanitization defense method helps to reduce the amount of
garbage introduced into the model. One important example
of data sanitizationmethod is the so-called ”Reject OnNega-

tive Impact” (RONI) defense method, introduced by Barreno
and co-workers [11] and mainly applied to classification ML
models. In the RONI method, one measures the effective-
ness of each training instance on the training process and
removes the data samples with the highest negative impact
on the model from the training set [11, 65]. The training of
the model starts with the base model and sequentially adds
new instances, checking for a change in accuracy, and adding
or rejecting the new instance depending on the model’s deci-
sion.

Sanitizationmethods such asRONI are suitable for resolv-
ing causative attacks. For example, Barreno et al. applied
RONI to a causative attack situation on the SpamBayes1

model [46], showing that while without any defense, the
spamBayes model loses considerable accuracy, with the
RONI method it is able to avoid this accuracy loss. More
precisely, before the defensemethod, themodel showed 97%
accuracy classifying ham data and 80% accuracy in spam
data, whereas after applying the RONI defense, the model
is able to detect 87% of spam and 95% ham. A dictionary
attack and a focused attack were applied to the SpamBayes
model before and after the RONI defense; interestingly, after
the RONI defense method, the model yields better accuracy
results.

2.2.2 Disinformation

Disinformation is the process of misguiding the attacker by
providing false information or hiding some of the informa-
tion so that the attacker cannot learn the decision boundary.
This type of method is especially helpful against exploratory
attacks, where the main intention of the attacker is to learn
the decision boundary of the model. The main objective of
this method is to confuse the attacker [51, 66].

Disinformation is a simple yet effective defense method,
especially in hiding personal information like voter infor-
mation. One of the interesting works in this area is that of
Baloun et al [67]. In this paper, the authors argue that current
statistical and deep learning-based models can uncover per-
sonal information in the training data. To overcome this issue,
the authors proposed what they call a k-anonymity technique
(also referred to as hiding in the crowd). The main idea of
k-anonymity is to hide and provide the model with disinfor-
mation, and k refers to the number of (anonymous) groups.
This method, instead of providing the real information to
the model, converts the data into k anonymous group. E.g. a
variable such as a person’s age can be converted into ranges
age(0−5, 5−10, .., 95−100). The k-anonymity technique
has also been used as a privacy-preserving method a lot of
research, such as Ref. [68, 69].

1 http://spambayes.sourceforge.net/
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2.2.3 Feature selection

Feature selection helps to extract meaningful features from
the data sets. Instead of using all the features, it is more
effective to extract important features and use them in the
model. For example, in the case of spam or ham classifica-
tion, we can use different feature selection techniques, such
as word frequency count, binary feature representation (if a
word exists or not), and the so-called N -gramword (sequence
of N words) frequency count [11].

The work of Globerson and Roweis [70] is considered to
be one of the first and most interesting papers to use this
defense method. The authors argue that ML models assign
higher weights to some of the important features and lower
weights to the other features [71]. This defense method miti-
gates the ML attacks caused by overloading or detecting the
important features in evaluation or test sets. However, it has
a drawback: it reduces the robustness of the model and has a
greater possibility of being attacked. To overcome this short-
coming, the authors calculate the robustness score using a
game theory base model to assign the weights to the features
so that no single feature will be overweighted [70].

2.2.4 Randomization

Since the trained model can reveal information about the
training data, the randomization method aims at mitigating
the ability to learn the correct decision boundary [11].

Randomization is one of the most widely used defensive
techniques to mitigate ML attacks, particularly important in
cases of overfittingmodels. Some of the representativeworks
concerning this defense method include [72–77], among
others. In a representative work by Pinot and co-workers
[77], the authors argue that randomized base classifiers out-
perform any deterministic model in adversarial attacks. To
demonstrate this, the authors propose using randomization
techniques based on game theory and show that their pro-
posed defense method achieves an accuracy score of 0.55 in
adversarial training, while without randomization, the model
achieves a score of only 0.42.

2.2.5 Algorithm robustness enhancement

Increasing the robustness of the algorithm is another possible
defense method, with the aim of making the algorithm more
accurate in classifying malicious data. Important examples
are the bootstrap aggregation method and the random sub-
space method [11].

One important example of this defensemethod is the work
byNicolas et al. [63] on adversarial attacks. Here, the authors
propose a robustness enhancement method, which they call
defensive distillation technique. In this technique, the DNN
model extracts additional information in the formof probabil-

ity vectors. These vectors are then fed back into the training
process and consequently help improve the generability of
the model and reduce the sensitivity to adversarial inputs.
The authors report impressive results: the success rate of the
adversarial sample reduces from 85.89%, without ”distilla-
tion” to 0.45% with distillation.

2.2.6 Security assessment mechanism

Security assessment relies on predictions of the kinds of
attacks that may occur. The model designer will first think
from that adversarial perspective and then try to propose
a solution to tackle or prevent such attacks. There are
two solutions to combatting such attacks: proactive defense
and reactive defense [12]. Reactive defense is the standard
approach in cybersecurity: when an attack is detected, a
defense protocol is initiated [78]. One natural drawback of
reactive defense is that it neglects possible preventive mea-
sures before an attack occurs. To this end, proactive defense
strategies have been developed. Proactive defense generally
refers to the types of defense techniques that are applied
before the system or model is attacked. This defense method
is well suited to prevent the attacker from accessing, for
example, training data,which are known as causative attacks.

An interestingwork in this scope is the one byGoodfellow
and co-workers [61], as it addresses adversarial attacks. The
authors introduce a simple technique which they call ”train-
ing with adversarial samples”, where the authors generate
data samples by adding linear noise to the original samples.
The model is then trained with both original and generated
samples, enabling it to also learn the patterns induced by the
adversarial attack. Results showed that training with adver-
sarial samples yielded better results, evenwhen the test phase
was performed for both the adversarial and normal samples.

3 Privacy of machine learning

Privacy-preserving techniques focus on hiding the real data
from the attacker so that it becomes harder for an attacker to
predict the data. Some of themost popular privacy techniques
are HE, differential privacy, quantization, and hashing [12].
In HE, as its name implies, one encrypts the data using a
private key so that no one can access the data. This method is
elegant thanks to its ability to perform arithmetic operations
on encrypted data [79]. Differential privacy is a simple yet
effective method that makes use of noise to ”hide” the model
parameters so that it becomes difficult for others to estimate
or guess their values [80]. Both HE and differential privacy
are explained in more detail in Sec. 3.3. As for quantization,
it is a technique that converts the continuous infinite values
into small discrete values [81], whereas hashing is a similar
concept to encryption, in which one considers transforming
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larger inputs into small values, and the transformation to hide
and return to original values through the respective inverse
transformation is performed with the help of a hash table
[82].

In the context of privacy-preserving techniques, one recent
work by Xu et al. [83] has proposed an interesting illustrative
solution. Xu and co-workers emphasize that maintaining the
balance between data insights and privacy is an important
objective for current ML developers, and thus, to achieve an
optimal balance,Xu and co-workers use a differential privacy
method to addnoise to the hyperplane, defining a support vec-
tor machine model. In this way, the authors achieved higher
accuracy in classification taskswhile preserving user privacy.

The Android operating system is one of the most widely
used operating systems in smartphones, wearable devices,
IoT devices, etc. To provide different types of features and a
better user experience on Android OS, Google needs a lot of
user data, however, it has been a big challenge for Google to
collect user data due to privacy issues, new laws, and the com-
plexity of storing and processing user data.Moreover, several
studies show that more data will result in a better model.
Therefore, Google needed an efficient solution to deal with
these problems. In 2016,Google’s research teamH.Brendam
McMahan, Eider Moore, Daniel Ramage, Setha Hampson,
and Blaise Aguera yArcas came across a new solution to pre-
serve privacy while leveraging the data from the devices of
its users. They coined this new approach Federated Learning
(FL) [84].

FL is the new paradigm in the ML family. In FL, the user
no longer needs to share the data, as the data are always
with the users. FL introduces the concept of sharing the
model parameters instead of data. Therefore, it is also called
the learning-by-parameters approach. In this approach, the
global model is created by the server and shared with all
users. Then, each user trains the model with local data on
their own device and sends the model train parameters to the
server. The server receives the parameters from each user,
applies the aggregation to the parameters and updates the
model parameters. The updated set of parameters will be
shared with all users for the next round. The process will
continue until convergence, after some pre-defined number
of iterations or in a periodic fashion.

An important feature is that the training process is shifted
from the central server to each user device (local device).
Initially, FL was introduced for smartphone application by
Google, but its applicability is equally important in many
different contexts, e.g. in hospitals, in banks, and for the
internet of things.

3.1 How federated learning works

In this section, we will explain the training process of the
FL system in a step-by-step manner. As shown in Fig. 2, in

the first step, a global model is created in the server based
on the task, which could be a deep learning model or an ML
model like logistic regression. At this point, end devices or
data participants have no idea about the model. However,
each device contains locally stored data. In the second step,
a server sends a copy of the model to all the end users. Based
on the nature of the application, the end-user may be located
in a different city, country, or region.

Figure2 illustrates that in the third step, each device has a
copy of the global model and local data. So far, no training
process has taken place. Now in step 4, each device trains the
model on local data and updates the model parameters based
on local loss [91, 92].

Once the model updates the gradient/weight locally, the
elegance of the model is manifested in the next step. Instead
of sharing the data, the model only shares the parameters
(weights) with the server. As shown in Fig. 2, in the fifth
step, each device sends locally updated weights to the server.
If thousands/millions of devices are involved in the training
process, then we can imagine that a lot of communication
is going to happen between end devices and servers. This is
one of the core challenges of FL, which we will explain in
more detail later in Sect. 3.4.1.

In the sixth step, the server receives the model parameters
from all the devices involved in the training process. Now,
the server applies the aggregation on the received parameters,
i.e., it calculates the average of all parameters and updates the
global model parameters with newly aggregated parameters.
All these processes (steps 1–6) happen in one iteration. From
the next iteration, the learning process will repeat steps 2 to
6 for a predefined number of iterations or until the model
converges.

3.2 Types of federated learning

FLwas introduced byGoogle in 2016; however, thiswas sub-
sequently further extended bymany other researchers. Of the
many extended works, [86] is considered as one of the major
extensions where authors introduced different types of pos-
sible FL systems. Different types of FL systems and where
these types of models are more applicable are discussed in
the section below.

3.2.1 Horizontal federated learning (HFL)

HFL is introduced in a scenario where two or more partic-
ipants (data owners) belong to the same field. This type of
model is also called sample-based FL because in this FL
system data owners have the same feature space, but they
have different sample space. Let us explain with an exam-
ple. A very common example is the next word suggestion on
the mobile device. Another popular example is two regional
banks that have a different set of samples but have the same
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Fig. 2 The different steps in FL training. Step 1: server has initial global
model, Step 2: server sends initial model to all connected devices, Step
4: each device receives a copy of global model, Step 4: each device
trains the model with local data and updates the model parameter based

on local loss, Step 5: each device sends model parameters back to the
server, Step 6: server aggregates model parameters received from mul-
tiple clients and updates the global model

features [85, 86]. Figure3 (upper left) is pictorial represen-
tation of HFL where we can see that both data participants
have different user groups (samples) but their feature space
is the same.

3.2.2 Vertical federated learning (VFL)

If one wants to build an advanced model by combining the
features from the different data owners, then this type of
model is called VFL. Here different data owners mean that
they belong to two different service sectors within the same
region, for example, a bank and an e-commerce company.
As they provide the service in the same region, they have the
same user sample. However, their nature of business is differ-
ent, so they have different feature sets. Therefore, this type
of learning is also called feature-based FL. One common use
case of thismodel is an advanced recommendation system for
e-commerce sites that combines the user’s bank transaction
data, which gives more insights into the user regarding the
user’s purchasing capacity, online shopping habits, etc. [85,
86]. Figure3 (upper right) illustrates the concept of VFL,
in which we can see that they have the same user groups
(samples), but their feature space is different.

3.2.3 Federated transfer learning (FTL)

FTL is the extension of vertical FL where the data owner
not only differs in the service sector but also belongs to two
different regions. Therefore, they have different user groups
and different feature sets, for example, a bank located in Nor-

way and an e-commerce site located in the USA. However,
because of globalization, they might have a very small group
of users in common, as well as a few common features. The
federated transfer learning model is built to learn the com-
mon representation of features from different data owners
based on common user groups, which will help to minimize
the prediction of error [85, 86]. Figure3 (bottom) helps to
simplify the concept of FTL, where we can see that a small
portion of users (samples) and features are common in data
participants.

3.3 Privacy approaches aside federated learning

So far, we have described FL as a strategy to develop an ML
model while protecting user privacy. In the following, we
shall go into more detail regarding the efficacy of FL. There
is no denying that the novel training paradigm offered by FL
provides superior privacy to conventional methods, yet FL is
not completely privacy-proof. Personal information leaks are
still a possibility. The aggregation server or nodes may have
vulnerabilities in the FL system. One of these locations may
be compromised bymalicious attackers, or the node or server
itself may behave maliciously by acting as an attacker. In
these circumstances, numerous research studies demonstrate
that by carefully analyzing the model parameter updates [90,
93], information about a user may be leaked. Through the
use of both white-box and black-box access, the attacker has
the potential to reveal the data. Therefore, FL itself is not
enough for highly sensitive data. There are some advanced
techniques that can be used on top of the FL system to further
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Fig. 3 (Upper left) Horizontal
federated learning (HFL).
(Upper right) Vertical federated
learning (VFL). (Bottom)
Federated transfer learning
(FTL)

improve the privacy of data. We would like to describe some
of the most widely used techniques in this section. Table 2
provides a summary of the content described in this Section.

3.3.1 Secure multiparty computation (SMC)

Suppose you and two of your friends want to calculate the
average salary of all three of you. However, nobody wants to
disclose their own salary to others. In this case, you can use
an external person. Each of you will tell your salary to that
person, and they will calculate the average and tell everyone
the average salary. In this case, the privacy of your salary
depends on the trustworthiness of the external person who
may disclose your salary. One efficient solution to this prob-
lem is that each one of you split your salary into three random
numbers (eg: 50k=10k+15k+25K). You share two numbers
with two of your friends and keep one number on hand. The
same procedure is followed by your friends. Now, each one
of you has one part of your salary plus your friends’ part
of the salary. Based on this insufficient income information,
no one can estimate anyone’s salary. Now everyone can sum
what they receive with the remaining one part of their own
salary. The amount is no longer equal to your actual wage.
If everyone sends their salary to the third party to calculate

the average, the third party cannot guess anyone’s salary,
and at the same time you and your friends will know the
average salary of the three. This is unbelievable, as without
knowing each other’s’ salaries, you can calculate the average
salary. So, you can see howprivacy has beenmaintained. This
type of method is called an SMC. The research community
has used this method in FL to further enhance privacy [87].
The weight parameters sent to the aggregate server are no
longer their own weights. On the other hand, other data own-
ers also receive incomplete information, so no one can guess
your model parameters. Can you see any problems with this
method? What do you think, is it efficient? Or can we use it
in a large network? The answer is no. Due to the communi-
cation and computation overhead of each node, this method
is not efficient for use in a large network (data participants).
However, we can use this method when building the model
based on a few data owners. Figure4 (upper left) illustrates
the SMC working mechanism visually.

3.3.2 Homomorphic encryption (HE)

Let’s use the same case to calculate the average salary of
you and your friends. This time, you and your friends use an
encryption technique. Everyone encrypts their salary using
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the same encryption method. Now everyone sends their
encrypted salary to the server. The server does not have a
decryption key. Therefore, the server cannot see anyone’s
salary.However, the server can perform the aggregation oper-
ation without decrypting any of the encrypted data. The
server sends the encrypted average salary to each of you.
You and your friends have their own secret key so that any-
one can decrypt it with their secret key and determine the
average salary. This type of encryption method is called HE
and is widely used in the field of cloud computing. In the
traditional encryption method, you need to decrypt the data
to perform any operation, yet decrypting data violates your
privacy. This is the beauty ofHE,which can perform the oper-
ation on encrypted data. Despite its very powerful approach,
this method is extremely slow and computationally expen-
sive, which is one of the major issues of HE. Figure4 (upper
right) is a visual representation of theHE operating principle,
where sk1, sk2, sk3 are the secret keys of individuals used
to decrypt messages.

3.3.3 Differential privacy (DP)

Let us continue with the example of calculating the average
salarywithout revealing it to others. As compared to the other
two methods discussed in the previous section, this time we
will use a very simple method. In this method, everyone adds
noise to their salary, e.g., if your salary is 50K, you add 5k
as noise. Now your salary is 50k+5K. Everyone adds noise
to their salary and sends it to the server. As you have added
noise to the data, the data that you have sent is no longer your
actual data. So, it is difficult for the server to guess your actual
salary. The server calculates the average salary and sends it
back to you and your friends. This time the average salary is
not the actual average salary, but it is very close to the actual
salary. So, you will get an intuitively average salary. This
type of method is called differential privacy. DP is one of the
most widely used privacy methods in FL [88–90]. DP is very
fast and efficient in a large network. If you are worried about
the accuracy of the model, then you would be correct; this
method alwayshas to trade-off betweenprivacy and accuracy.
If you want more privacy, you will lose the accuracy of the
model, and vice versa. Further along, in Sect. 3.5 we will
discuss the experimental results of different research papers
that have used FL and different privacy methods. Here the
degree of accuracy possible with these types of methods will
be shown. We have tried to summarize the working principle
of DP in Fig. 4 (bottom).

In this section, we have explained the most widely used
privacy methods in FL. However, there are other possible
methods. If you are curious to learn more, we recommend
you read anonymization [94], quantization [95], and hashing
[96] methods as well.
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Fig. 4 How can we calculate the average salary of multiple per-
sons without revealing individual salary? We have used the same
scenario to demonstrate how each privacy techniques work. Here
AVG= 1

N

∑N
i=1 salaryi is a common process in all three methods com-

puted by the server. (Upper left) SecureMultiparty Computation (SMC)
working mechanism: each participant splits the salary into a number of
participants pieces, keeps one piece self and sends N-1 pieces with N-
1 participants, each participant sums the amount and sends the newly
summed salary to the server, finally server calculates the aggregate and

send back AVG salary to each participant. (Upper right) Homomorphic
Encryption (HE) working mechanism: each participant encrypts the
salary using HE and sends the encrypted salary to the server, the server
performs aggregation on the encrypted salary and sends back to each
participant, finally each participant decrypts the encrypted salary using
a private secure key (ski ). (Bottom) DP working mechanism: each par-
ticipant adds noise to his individual salary and sends noisy salary to the
server, the server aggregates noisy salary received from each participant
and sends noisy average salary back to each participant

3.4 Core challenges of federated learning and
possible solutions

FL is now five years old. In this time, the research commu-
nity has come up with many interesting ideas to improve the
current FL system. However, there are still some important
challenges to be solved. In this section, we will explain some
of the main challenges of the current FL system that need
to be addressed. In addition, in this section we will discuss
some of the possible solutions to these problems.

3.4.1 Expensive communication

If you want to build an FL solution between limited data
owners (e.g., 3/4 hospitals), then communication is not a

problem. However, this is a bottleneck in the case of smart-
phones, where users are in the millions to billions. If all the
users sent updated parameters to the server, it would take a
long time to connect with the server, aggregate the parame-
ters, and send them back to each device. In technical terms,
this is called high communication latency. To improve the
effectiveness of FL, it is very important to come up with a
good solution.

One easy and simple solution to this problem is local
updating. Instead of sending model parameters at each itera-
tion,we can run themodel a certain number of times on a local
device and send the parameters to the server. This will help to
reduce the total number of communications between devices
and servers.Moreover, compression is another possible solu-
tion. In this technique, instead of sending all parameters,
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we can reduce the model parameters or compress them to
smaller dimensions and send them to the server. An inter-
esting paper has been published by Google researchers to
improve communication efficiency [97]. In this paper, two
interesting approaches were proposed. The first approach is
the structured update.Within the structured update, low-rank
and randommask techniques have been used. In the low-rank
techniques, the model parameters are converted in a form of
matrix multiplication of two variables (P = XY ). Here X
is a fixed matrix where Y is learned based on the current
updates. In simple terms, this method reduces the dimension
of parameters so that the size of the updated parameters is
small. Similarly, a random mask is another interesting idea.
In this technique, the model only sends those parameters that
have a weight greater than 0, e.g., if the model has 1000
parameters, but in the current run if 600 parameters have
only positive weights and 400 have negative weights, then
the model sends only 600 parameters to the server.

The second approach is sketched update. In this approach,
the author has used subsampling and probabilistic quantiza-
tion. In subsampling, the model randomly selects a subset of
parameters and sends only those selected parameters, e.g., the
model has 1000 parameters, if 550 parameters are selected
randomly, then themodel only sends the updates of those 550
parameters. On the other hand, probabilistic quantization is
a compression technique. Have you noticed one common
thing in all these methods? All these methods try to reduce
themodel’s parameter sizewhile sending it to the server. This
helps to reduce the uplink communication cost. Maybe you
are curious to know if these types of methods help improve
the model. If so, we will explain the experimental result of
this paper in Sect. 3.5.

Another possible solution to expensive communication is
decentralized training. For example, if you want to train the
model based on only Norway, we can train the model based
on cities, and once the city model is complete, each city will
send updates to other cities so that the training of the model
is complete on a national level.

Figure5 shows how the training of devices within four
cities can update one global model in a decentralized way.
This type of technique is very useful in reducing the number
of communications.

3.4.2 System heterogeneity

System heterogeneity is another key challenge of FL, espe-
cially in smartphone applications. You may not be familiar
with the term system heterogeneity. Let me explain it to you
in simple terms: system heterogeneity refers to the differ-
ences in system configuration or properties. For example,
devices with different network connectivity (3G, 4G, 5G),
different memory capacity (RAM:1GB, 2GB, 4GB, 6GB,
8GB, 12GB storage:16GB, 32GB, 64GB, 128GB, 256GB),

Fig. 5 Decentralized FL model based on four Norwegian cities. First,
the user belonging to each city updates the model locally then the global
model will update based on each city’s local model

different CPU capacity, different levels of battery capac-
ity (1600mAh, 2400mAh, 3200mAh, 4000mAh), etc. These
types of configurations determine the capacity of smart-
phones. The smartphone with higher capacity can train,
upload, and download themodel quickly while it takes a long
time for a lower capacity smartphone. Therefore, it is a huge
challenge to train the model in varying capacities of devices.
To improve the effectiveness of the FL system, it is very
important for researchers to come up with a good solution to
this problem. We will explain some possible approaches to
deal with this problem in the section below.

One possible solution to this problem is asynchronous
communication. In synchronous communication, devices
wait for each other, i.e., once the training is completed on
all devices, the server will update the model. But in asyn-
chronous communication, the serverwill notwait for training
to be completed on all devices, updates occur in a continu-
ous manner. If 100 devices complete model training, then the
server updates the model based on 100 devices and sends it
back to those 100 devices. Later, when the other devices com-
plete training, the model will update based on recent server
updates. This is an attractive solution to mitigate straggling
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devices [98]; however, this type of solution has to face a
bounded-delay issue [99].

Similarly, active sampling is another possible solution. As
the name suggests, the serverwill select a set of active devices
based on system resources. Researchers Nishio and Yonetani
haveused thismethod to select only the novel devices for each
training iteration [100]. Here, novel devices refer to a sys-
tem with high resource capacity. Do you think that selecting
devices based on only system resources is a good solution?
What about the statistical properties of data?You know, some
sets of devicesmay have one statistical property, while others
may have another. The research community needs to come
up with techniques to perform active sampling based on a
combined approach, i.e., considering system resources and
statistical properties of data.

Moreover, in the training of each iteration, some devices
take a long time to respond, while some may fail due to
network or battery issues. Managing this type of situation
is called fault tolerance. An easy example of fault tolerance
is ignoring these devices during the training process. The
devices can be a part of training, but if they fail or do not
respond within a predefined time, then the server will update
themodel based on other devices. Researchers from Stanford
University and the University of Southern California (USC)
have used the fault tolerance method in FL systems [101].

3.4.3 Statistical heterogeneity

Statistical heterogeneity is one of the key challenges in
the application of smartphones. The term statistical het-
erogeneity refers to the condition of having different data
characteristics for a set of user groups. For example, if you
want to build the model for the next word suggestion, the
text used by people from the USA might be different than
that used by people from Asia. Similarly, the nature of text
used at night might be different than that used during the
day. Moreover, users from different countries use different
types of language. Last but not least, the user may use one
language to write another language in their way, for example,
the expression “mero naam Ramesh ho”, which is a Nepali
way to say the name of one of the authors. Here English text
is used, yet the words (mero, naam, ho) do not exist or do not
make any sense in English. Building an FL model that can
handle the different data characteristics discussed above is a
challenging issue.

Researcher Tian Li and his colleague discussed two poten-
tial solutions to this problem in their recent paper published
in May 2020 [102]. The first potential solution is model-
ing heterogeneous data. This can be done using techniques
called meta-learning andmultitask learning. In simple terms,
this means building a personalized model based on a global
model, i.e., the model is the same, but the parameters have
been somewhat optimized based on their personal data. This

is also called a device-specific or user-specific model. This
solution helps by suggesting the next word, even if the way
you write is completely different to others. Another solution
is to guarantee the convergence of non-i.i.d data. Here the
term non-i.i.d data refers to user’s data that are not uniformly
distributed in FL, which is one of the key characteristics of
FL. To deal with these problems, researchers have used sim-
ilarity metrics, convexity techniques, etc. Although different
solutions have been tested by researchers, the available solu-
tions are not fully reliable and robust.

3.4.4 Privacy concerns

FL has emerged as a solution to privacy issues and leveraging
the power of training the model on distributed end devices.
In general, there is no doubt that FL provides a high level of
privacy. However, if you want to use FL for highly sensitive
data among limited users, and if the participant user or server
is malicious, it is possible to infer properties of your training
data by carefully observing model updates. We have paid
special attention to this topic and have dedicated a specific
section to it.

3.4.5 Traceability and accountability

When we are building an FL model on a critical dataset,
it is very important to make sure that the model improves
over time. We need to keep in mind that some malicious
data owners may be involved in the training process. The
intention of malicious data owners is always to misguide the
training process. Therefore, it is very important to keep the
track of the contributions of each data owner in the final
model, or in other words, of who is more responsible for the
unexpected result of the model. Currently, there is no system
for the traceability and accountability of the FL model. The
research community needs to come up with a feature that is
capable of maintaining the accountability of the model.

So far there is no solution to this problem. However, a
group of researchers have discussed some potential ideas in
[103]. One possible solution could be to build explainabil-
ity in the model. Another possible solution is to build a tool
to keep track of the results, as well as each model contribu-
tion. This helps to identify which model is more responsible
for false-positive or false-negative cases. Building the tool
to ensure data quality before the training process is another
interesting solution; however, how it can be done in an effi-
cient way is a topic for future research.

3.5 Discussion of existing privacy preserving
solutions

One of the most interesting papers published by Google
researchers is [104] where the researcher used an FL model
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for next word prediction on smartphones [104]. Google was
facing two main issues, one was how to preserve user pri-
vacy and the other was how to reduce computational cost. In
this paper, the authors have used an FL model that can solve
those two issues and provide the same level of service or
better service. To verify the performance of the model, they
have also built the server-basedmodel (traditional approach).
The authors have used the experimental approach in this
paper. For the experiment, they used two types of datasets
(mobile app type logs and mobile app type cache). For the
prediction, they built two Coupled Input and Forget Gate
(CIFG) models: one for server-based and one for the feder-
ated base. CIFG is a recurrent neural network model. Before
this model, Google used the N-gram model for this type of
model. Therefore, for comparison purposes, the authors also
created an N-gram model. Researchers used the federated
averaging algorithm in a federated server. The outcome of
the experimental result was very interesting. First of all, in
all cases, the CIFGmodel performs better as compared to the
N-gram model. Similarly, if we compare the performance of
the FL-based model and the server-based model, the author
shows that in two of the experiments, the FL-based model
outperforms the server-based model, while two other times
the performance of the twomodels was almost the same. This
result shows that Google was able to achieve a better model
using FL and, at the same time, solve the privacy problem
and reduce the computational cost.

Similarly, in [105], researchers try to resolve a real-world
problem. Three universities havemedical images (MRI diag-
nosis images) related to prostate cancer segmentation, and
they want to build an efficient model for the detection of
cancer. However, they had two main issues. The first was
in regard to the local data; each university was not able to
build an efficient model. They believed they could improve
the model by adding more data. However, the second issue
raised here was that they could not share the data with other
institutions because of patient privacy. To solve this prob-
lem, the researchers used the FL model and a modeling and
experimental approach. First of all, they built a deep learning
model and trained the model on each institution separately
based on their local data. They then built an FL model that
trains a global model on each institution in parallel and sends
the updated parameters to a cloud-based server for aggres-
sion. After completing the training process, they obtained
an impressive result. To verify the effectiveness of the FL
model, they tested their FL model with the ProstateX chal-
lenge dataset. Interestingly, the FL model performed better
on this dataset as well. This experimental result shows that
FL not only helps to preserve privacy but also helps to build
a better model with access to more data.

Moreover, [89] is one of the most interesting pieces of
research that focuses on improving the privacy of the FL sys-
tem. The title of the paper is A Hybrid Approach to Privacy-

Preserving Federated Learning [89], and researchers from
IBMand professors from theGeorgia Institute of Technology
worked together on this paper. In this paper, the authors have
pointed out three main motivating factors. First, training the
data locally does not guarantee a sufficient level of privacy.
Second, SMC is a privacymethod but it is vulnerable to infer-
ence, and third, DP is another privacy method, but it leads
to low accuracy, especially when the number of participants
with low data is high. To address these issues, researchers
have proposed a hybrid approach. Instead of using SMC or
DP only, the researchers combined SMC and DP methods
in a way that enhances privacy, and at the same time yields
higher accuracy. For different epsilon values (high epsilon =
low noise and vice versa), the proposed approach obtained
a higher f1-score as compared to the local DP method. As
the number of participants increased, the local DP perfor-
mance dropped significantly, but interestingly the proposed
approach yielded the same level of performance with any
number of participants. The experiment results show how
the inclusion of trust parameters in the proposed approach
help to obtain better performance. The researchers tested
their proposed approachwith a decision tree, a support vector
machine, and a convolution neural network.

In [90], the author pointed out that the DP method needs
to sacrifice a lot of accuracy to maintain a high level of
privacy. Noise is added to each weight equally in DP, and
the authors argued that this is the main drawback of DP.
Therefore, they proposed their own algorithm called APFL
(Adaptive Privacy-preserving Federated Learning), which
adds noise based on the contribution of eachweight. To calcu-
late the contribution of each weight, they used a layer-wise
relevance propagation algorithm. This technique helped to
significantly reduce the noise and improved the accuracy of
the model. The experimental results show that the proposed
APFL model yields higher accuracy compared to existing
DP-based research.

4 Machine Learning in the context of
Trustworthy AI

In the previous two sections, we presented different types of
security and privacy issues raised by ML systems and dis-
cussed different types of potential solutions to dealwith those
problems. We mainly focused on how to improve security
and privacy issues, while completely disregarding another
aspect: the trustworthiness of the solutions. As security and
privacy are the biggest issues in today’s ML applications, it
is very important to make sure that the decisions made by
ML models are trusted. The ML engineer who is involved in
the development of a model may have better ideas about how
the model makes a decision, but this might be completely
unknown for people with a non-technical background like
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users, stakeholders (owners), lawyers, etc. While working
on a critical application, ML-based solutions should main-
tain trust among different parties. In addition, the new rules
and laws (GDPR) also require that if any decision is made
based on the ML model, an explanation must be provided.
Therefore, this section aims to identify the current research
related to trustworthiness in the context of security and pri-
vacy.

Trustworthiness, in general, refers to being trusted, reli-
able, and confident [106]. In the context of ML/AI, trust-
worthiness not only refers to having an accurate model but
also deals with explainability [107], transparency, fairness,
winning trust, and robustness [108]. Trustworthiness is often
alluded to as Explainable AI, XAI, Responsible AI, etc.,
which are widely used in the current research domain of AI.
In fact, trustworthiness is a broader term than explainable
AI. Explainable AI uses natural language and different kinds
of visualization tools to explain the rationale based on the
context in which the MLmodel has made the decision [109].
However, Trustworthiness is not only limited to explainabil-
ity. It deals with winning the trust and confidence of different
parties, makingmodels and data preparation transparent, and
building a robust and fair model [110]. Therefore, trustwor-
thiness does not only come frombuilding an explainable tool,
but it involves several other steps by which ML applications
build trust and earn it. The concept of Trustworthy AI is
important in several specific contexts, such as health [111].

The meaning of trustworthiness may differ from person to
person. For example, for developers, trustworthiness means
knowing the quality of data, how the data is prepared, know-
ing themodel architecture, identifying the importance of each
feature in relation to output, etc. Similarly, for a user or client
trustworthiness means knowing how the model makes the
decision and why the system is safe to use. On the other
hand, the meaning of trustworthiness for a lawyer is to know
the legal justification of the decision and to ensure the rights
of users to be informed of any explanations [112].

4.1 Component of trustworthy AI

Trustworthiness is in fact a sort of ”umbrella word” that
incorporates different aspects, including Explainable AI and
Responsible AI, among others. In the following, we address
the central aspects of the current AI literature that constitute
the overall concept of Trustworthiness inAI. In particular, we
focus on the EU guidelines [7], which refer to the following
aspects detailed below.

4.1.1 Lawful AI

Every system that runs in this world falls under certain rules
and laws, and anAI system is no exception. There are already
different kinds of rules and laws created by the European

Union and other responsible agencies at national and interna-
tional levels. Companies should have to consider these laws
in order to develop, deploy, and use AI systems. Developing
the AI solution under defined laws helps to maintain trust-
worthy AI [7].

4.1.2 Ethical AI

AI laws and rules define what one can and cannot do while
developing and deploying AI solutions. However, not every-
thing can be covered by laws. In such cases, it is always
necessary to think one step ahead of AI laws, such as, for
example, the ethical perspective. This is very important while
working in critical applications like healthcare. The trustwor-
thiness of AI cannot be achieved without ensuring ethical
norms.

The term ethical AI is a broader term; therefore, the fol-
lowing components of trustworthy AI that are commonly
discussed in the literature can be categorized under the fol-
lowing ethical AI components:

• Respect for human autonomy: The universal truth is that
we buildAI for humanbeings. Therefore,AI-based appli-
cations should respect the human beings involved in the
different stages of development, for example, from some-
one who participates in data collection to an expert who
uses it for making decisions. AI systems should always
be designed from human-centric design principles to
complement and empower human cognitive, social, and
cultural skills [7]. Therefore, it should not replace,manip-
ulate, or herd humans.

• Safe and secure: When it comes to the use of AI-based
systems, it must be ensured that the system is safe and
secure for human beings, that is, it should not cause or
exacerbate harm to human beings [7]. A critical example
is self-driving cars or the use of robots in working envi-
ronments; AI systemsmust not harm the driver or anyone
in the surrounding environment. Another important yet
critical aspect is that it should not be open to any kind of
malicious use.

• Privacy: Privacy is an additional essential aspect of
trustworthy AI [7, 8]. In today’s digitalized world, user
privacy has become a major issue. Different responsible
organizations have introduced stronger rules to preserve
user privacy. Therefore, AI-based solutions should make
sure that the privacy of users is preserved. Attackers use
advanced techniques such as adversarial attacks, mem-
bership inference attacks, and data linkage to reveal the
information of users from AI solutions.

• Fairness: The EU guidelines for trustworthy AI men-
tion that AI-based systems must be fair in their different
stages, fromdevelopment and deployment to use [7, 102].
Normally, the term fairness has a substantive and proce-
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dural dimension. The term substantive dimension refers
to the fact that AI solutions should not be biased, discrim-
inative, or stigmatized toward an individual or a group of
people. For example, anAI-based algorithmcalledCOM-
PAS used to make a judgment decision in a US court
was found to be racially biased toward African Amer-
ican defendants [113]. Similarly, fairness is also about
the freedom of choice offered to users to decide whether
or not their data participates in AI-based systems. Even
if the user has granted permission to use the data, there
should be a provision to revoke the decision at a later
date. On the other hand, the procedural dimension deals
with the fairness of the process. Here the process refers
to the steps involved before the decision is reached.

• Accountability: As we have said before, ethical IA is a
very broad topic; accountability also falls under ethical
IA [7, 114]. The term "accountability" refers to keeping
records of everything from development to deployment
so that anyone who asks can audit the documents.
Accountability is only possible if the person is honest.
For example, if people report only the good side of the
algorithm and do not mention the bad side or negative
impact, it will be problematic.

• Explainability: Explainability is one of the main com-
ponents of trustworthiness. In the last couple of years,
the topic has attracted a great deal of attention from the
research community and some promising work has been
published. Researchers have mainly focused on building
tools to explain the reason behind the model’s decisions.
Researchers have used different kinds of techniques like
gaming to identify the contribution of each feature in
the decision and provide explanations using visualization
and natural language. This helps to build user confidence.
On the other hand, it also helps to diagnose themodel and
improve it [112].

• Transparency: Explaining the model’s own decisions is
not enough to achieve a high level of trustworthiness. In
the case of trustworthiness, it is very important to gain
the trust of the different parties. This can be achieved by
making transparent how we choose the model, what the
architecture of the model is, what parameters are used in
the model, what the main function of each layer is, how
the data is prepared, what the statistics of the training
data are, how the features are selected, etc. This kind
of information provides more insights into data and the
decision process [112].

4.1.3 Robust AI

Even if theAI solutionmanages to pass laws and ethical stan-
dards in this regard, it is equally important to have a robust AI
model. This becomes mandatory when AI is used in critical
applications like self-driving cars, autonomousweapons, etc.

The robustness of AI applications ensures that they will not
harm anyone unintentionally. In other words, robust AI refers
to an AI model that is mathematically verified or has been
validated with different kinds of tests, and ensures safety.
The robustness of AI solutions can be verified from both a
technical and social perspective [7].

In the literature, researchers also often use the term gen-
eralizability as a component of a trustworthy AI, related to
the robustness of the tool or method. Generalizability is an
important aspect of AI mostly due to the fact that models
learn from data and make decisions. Therefore, the availabil-
ity of sufficient data leads to a better model, i.e., the more
data we have, the more generalized the model we obtain.
However, data deficiency is one of the biggest issues in the
current AI field. Therefore, it is very important to be trans-
parent about how many records are used in training, and the
number of records belonging to each class (if it is a clas-
sification model). In the case of low data availability, it is
also important to divulge what kind of techniques are used to
increase the number of records. Providing all this information
to the public helps gain the trust of users [112].

4.2 Tools to assess trustworthiness of AI methods

As the field of trustworthy AI is in an evolving phase, it
is very challenging to measure whether each component of
trustworthy AI is taken care of or not during the develop-
ment of AI solutions. In fact, there are not enough reliable
resources available in the market. Building tools for measur-
ing/assessing trustworthy AI components is an active field
of research. In this section, we explain some of the tools and
assessment methods available on the market.

4.2.1 Assessment list of trustworthy AI

After the EuropeanUnion (EU) introduced ethical guidelines
for trustworthy AI, they then also introduced the Assessment
List for Trustworthy AI (ALTAI) to make the development
of AI solutions more responsible and sustainable in Europe
[115]. The EU believes that the introduced assessment list
helps organizations to build AI by keeping ethics as a central
pillar of development, which will ultimately benefit individ-
uals and society. The ALTAI was introduced by experts from
multidisciplinary teams such as AI designers, AI develop-
ers, data scientists, legal officers, management, and so on,
and the assessment list is available both offline and online.
The assessment list is not a mathematical tool that provides
a score to the developer to measure each component of TAI;
indeed, it is a list of questions or guidelines which guide
the AI developer at different stages of development by ask-
ing questions related to the requirement of trustworthy AI.
The EU ALTAI is based on seven different requirements, as
follows:
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• Human agency and oversight: questions related to human
agency, human autonomy, and human oversight.

• Technical robustness and safety: questions related to
resilience to attack and security, general safety, accuracy,
reliability, Fall-back plans, and reproducibility.

• Privacy and data governance: questions related to privacy
and data governance.

• Transparency: questions related to traceability, explain-
ability, and communication.

• Diversity, non-discrimination, and fairness: questions
related to avoidance of unfair bias, accessibility and uni-
versal design, and stakeholder participation.

• Societal and environmental well-being: questions related
to environmental well-being, impact on work and skills,
impact on society at larger or democracy.

• Accountability: questions related to auditability and risk
management.

4.2.2 Adversarial robustness toolbox (ART)

This tool was developed by IBM researchers, and it helps
to measure the security of ML applications [116, 117]. It is
available as a Python library and helps AI developers and
researchers defend and evaluate their ML models and appli-
cations against different kinds of attacks, as we discussed in
the previous section on ML attacks. This tool can be used in
all kinds of ML frameworks available in the market (scikit-
learn, PyTorch, TemsorFlow, etc.). Similarly, it supports all
kinds of data (tables, images, video, audio, etc.) and can be
used in different ML tasks (classification, regression, gener-
ation, etc.) [116].

4.2.3 AI privacy 360

AI Privacy 360 helps AI developers implement any rele-
vant privacy requirements. As we know, privacy is always
compromised with accuracy. The AI Privacy 360 tool helps
maintain a suitable balance between privacy, accuracy, and
performance at the different stages of development [118].
This tool is available as a Python package and supports all
available ML frameworks for different kinds of data and
tasks.

4.2.4 AI fairness 360

This is another great tool designed and built by IBM
researchers. This is a Python-based open-source toolkit that
helps to verify andmitigate the unwanted bias of datasets,ML
models, and state-of-the-art algorithms. It provides a wide
variety of fairness metrics (70 metrics, in fact) and 10 differ-
ent bias mitigation algorithms. This tool helps AI developers
design and build fair AI applications [119].

4.2.5 AI factSheets 360

AI FactSheets 360 is a great tool for evaluating the trans-
parency components of trustworthy AI [120, 121]. As the
name suggests, this toolkit generates a factsheet by outlining
the details of the dataset used to train the model, what the
data selection criteria, how the model was trained and tested,
model robustness, fairness test, robustness test, privacy test,
safety and security test, different kinds of performance met-
rics, etc. All details related to AI applications can be included
in the factsheet so that anyone can easily access it to under-
stand the work behind it.

4.2.6 Uncertainty quantification 360

Uncertainty Quantification 360 is a very useful tool for
assessing and mitigating uncertainty in AI models [122]. It is
an open-source Python-based library that provides flexibil-
ity for AI developers to measure uncertainty using a diverse
set of algorithms. This tool also offers the possibility to
improve uncertainty quantification during the development
of AI applications.

4.2.7 Explainability

Of the different components of trustworthyAI, explainability
is the one that receives the most attention from researchers,
and there is a lot of research in the field of explainability
assessment. Therefore, we would like to explain some of the
most commonly used tools for explainability assessment of
AI models, namely:

• SHAP: SHAP (SHapley Additive exPlanations) is one of
themostwidely used tools in explainingmodel decisions.
SHAP is based on a game theory concept called shapely
value. SHAP basically calculates the contribution of each
feature in a collaborative way [123]. SHAP uses different
kinds of visualization tools to explain the model output.
The benefit of using this tool is that it supports any kind
of ML and deep learning models for tabular, image, and
text data.

• LIME: LIME (Local Interpretable Model-Agnostic) fol-
lows a similar concept to SHAP. SHAP uses a concept
of game theory and calculates the shapely values, while
LIME perturbs the inputs around its neighbors and cal-
culates the contribution of each feature. Therefore, it
is also called a surrogate model, i.e., it uses the black-
boxMLmodel to calculate feature contribution. LIME is
widely used for classification and regression problems.
The extension of LIME is called SP-LIME, which selects
a sample explanation from a set of explanations [124].

• AI Explainability 360: AI Explainability 360 is an open-
source tool kit developed by IBM (also called IBM 360)
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to support the interpretability and explainability of any
state-of-the-art ML models. This tool is more enriched
than the previous two tools because it supports ten differ-
ent state-of-the-art explainability algorithms, including
SHAP and LIME [125, 126].Therefore, users get the
flexibility to choose different algorithms based on their
requirements. Another crucial benefit of using this tool
is that it provides directly interpretable local post-hoc,
global post-hoc, self-explanations and metrics for the
data. As compared to other tools available in the mar-
ket, this is the only tool that provides those features. This
tool can be used by data scientists, decision-makers, reg-
ulators, and users.

4.3 Recent works in trustworthy AI

The number of publications related to reliableArtificial Intel-
ligence has increased significantly, as the topic has received
a great deal of attention from the research community, indus-
try, and governments. Therefore, in this section, we would
like to mention some of the recent papers representing this
current trend. Recently, Li Bo and his colleagues published
a review article in which they examine the topic of trust-
worthy AI from both a theoretical and a practical standpoint
[114]. The authors discussed the seven principles of trust-
worthy AI: robustness, generalization, explainability and
transparency, reproducibility, fairness, privacy protection,
and accountability. In addition, the authors investigated the
various techniques utilized by AI application developers at
various stages of the AI lifecycle. After reviewing a num-
ber of articles, the authors concluded that trustworthiness
approaches are still immature and lack standardization. Sim-
ilarly, the authors argued that the methods used to assess
credibility are insufficient. This review paper provides an
overview of current research in trustworthy AI; however, the
authors have not investigated the trade-offs between different
trustworthy AI components.

The work of Haochen et al. [8] is another recent paper
on reliable AI. The authors agree with the enormous benefits
provided by artificial intelligence technology and, at the same
time, are aware of the recent unintended harms to humans
caused byAI. Therefore, the authors argued that transparency
in AI should become a compulsory part of AI development.
According to the author, TAI is a very large and complex sub-
ject. Therefore, in order to make the TAI understandable, the
authors have introduced the six most crucial dimensions of
TAI. They are safety and robustness, nondiscrimination and
fairness, explainability, privacy, accountability and audibil-
ity, and environmental well-being [8]. Another interesting
paper by Kush [127] emphasized that trustworthy ML and
AI goes far beyond making highly accurate models. To
make the AI trustworthy, developers need to consider data
shift robustness, protection from data poisoning, fairness,

interpretability, system level transparency, end-to-end ser-
vice level provenance, etc.

Luca Vigano and Daniele came up with the idea of
explainable security [128]. The authors were inspired by
the DARPA’s XAI [129] and proposed a new paradigm
called Explainable Security (XSec) in the field of security.
Instead of only focusing on the explanation of how themodel
makes a decision, the authors presented ”Six Ws” as the
main component of XSec. The Who: designer/developer,
users/clients, attacker, analyst, and defender, who are respon-
sible for both providing and receiving the explanations, The
What: clients’ requirements, how to use the system securely,
security properties, the system model, the threat model, pos-
sible vulnerabilities or attacks, etc., all need to be explained,
TheWhere: where the explanation is, is it provided as part of
a security/privacy policy, or as an explanation-as-a-service,
or it is detached from the system, the When: whether an
explanation needs to be given during the design, imple-
mentation, modification, installation, use, defense, attack, or
analysis phase, theHow: if it could be expressed in the form
of natural language, or graphical language, or formal lan-
guage, or through gamification. The lastW isWhy, where the
authors explain why we need XSec. The authors argue that
their proposed paradigm provides security by maintaining
trust, transparency, confidence, accountability, verifiability,
and testability.

Neel et al. [130] have proposed the idea of combining
explanations while maintaining privacy. The authors fully
agree with the current requirements for algorithmic trans-
parency when using it in critical decision-making domains.
However, the authors argue that the model explanation may
leak information from the training data [130]. To address
this issue, they have proposed the architecture of combin-
ing explanation and privacy. The authors have used DP to
maintain privacy. For this, they have proposed their own
algorithm, called the Adaptive Differentially Private Gradi-
ent algorithm. The algorithm adaptively reuses the past DP
explanation that helps to reduce the overall privacy loss. This
is a nice way of making an explainable model by preserving
privacy. DP has always been a trade-off between privacy and
accuracy; therefore, it could be interesting to see a trade-off
between privacy and explanation addressed in future work.

Similarly, Danilo et al. presented the idea of combining
privacy, fairness, and explainability to build a trustworthy
learning model [131]. The authors noted that the right to pre-
serve privacy, build a less discriminatorymodelwith sensitive
attributes (e.g., facial color, sex), and provide an explanation
of the model decision process to users in a single model is
the ultimate requirement to ensure trustworthiness. In the
proposed architecture, they used HE to encrypt the training
data and associated labels, and then use HE in the train-
ing and forward model. To ensure fairness, the authors used
a Tikhonov regularizer before the final layers. To make the
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model interpretable, the authors used theGrad-CAMmethod,
which extracts the attention map of the given input image,
i.e., it highlights the most influential features of images that
can be used in supervised learning. The authors used the out-
put of Grad-CAM for local and global model explanation. To
demonstrate the effectiveness of the proposed approach, the
authors used aVGG16model architecture for the application
of face recognition. The authors have shown that it is possi-
ble to build a model that can maintain privacy, fairness, and
explanation in a single model [131]. However, the authors
did not discuss the direction of ML adversarial attack risk
as they had already explained the attention mask of model
decision.

5 Discussion: assessing the combined
interplay of different aspects of AI
trustworthiness

In the preceding sections, we covered different components
of trustworthyAI based onEUguidelines and state-of-the-art
work. Similarly, we also discussed the importance of trust-
worthy AI evaluation frameworks and presented some of the
available frameworks used for evaluating different compo-
nents. However, we notice that there is a gap in the literature
as very few studies have analyzed the interplay between
different components of trustworthy AI while building the
solution for archiving specific components of trustworthy
AI. This interplay has not gained sufficient attention in the
literature. Therefore, to draw the attention of researchers and
notifying bodies, in this section, we are presenting some of
the interplay between different components of trustworthy
AI, how a single component of trustworthiness might nega-
tively affect other components, the reason behind it, and the
measures that need to be taken to achieve some trade-offs
between the different components.

5.1 Possible interplay between trustworthy AI
components

Aswementioned earlier, the current research lacks sufficient
amount of discussion in this direction. However, we aim to
demonstrate the potential interplay, considering the different
pieces of available literature and our own understanding.

5.1.1 Privacy vs rest

Privacy has become one of the major concerns in the domain
of artificial intelligence-based systems. Tomake theAI appli-
cation trustworthy, the privacy measures have to be taken
seriously. In Sect. 3 section, we presented different methods
used for preserving privacy. However, the consequences of
privacy methods have not been sufficiently analyzed.

One of the major trade-offs of privacy methods has to
do with the performance of the system. The performance
of a system generally refers to the productivity, accuracy, or
efficiency of theAI application. Several studies have reported
that the performance declines because of privacy methods
[132, 133]. The accuracy of the model is mostly affected by
DP privacy methods, as the nature of DP is adding noise at
different stages.

Another possible interplay of privacy methods is with the
accountability/ethical component. For instance, the technical
person working on implementing privacy solutions may not
have a sufficient understanding of ethical aspects. This could
be a huge issue when it comes to critical applications such
as healthcare decisions, self-driving cars, or judicial deci-
sions. The potential decrease in performance resulting from
the implementation of ML privacy techniques may lead to
the adoption of a decision that has inherent risks. This has
raised the blame game of who (privacy method developer
or model developer) is responsible behind this result [134].
This brings up the moral dilemma of how much privacy is
sufficient to achieve the required standard of performance.

Similarly, another major trade-off is with explainability.
As we discussed in the previous section, differential privacy
is the most widely used method for preserving privacy; how-
ever, adding noise to the data or model weight converts the
data into noisy form. This raises a huge issue for the explain-
ability model. The explainability model built based on data
face the issue of poor explanation. In [135], the authors test
the effect of three different privacymethods over explainabil-
ity models. The experimental result shows that DP hampers
the interpretability of explanations. Additionally, the authors
reported that the fidelity of explanations is potentially deteri-
orated when using DP [135]. Similar results are also reported
in [136, 137]. In addition to this, we believe inconsistency in
explanation will be another major issue because of the non-
static noise added each time. All of this raises the question
of trustability in the AI explanation system, which can indi-
rectly relate to ethical components. Who will be responsible
if privacy techniques result in an incorrect or inconsistent
explanation? Is it the team that works on explanation solu-
tions or the team that works on privacy methods?

Privacy component interplay is also related to the fairness
component. As the model accuracy drops because of privacy
methods, the drop in accuracy will be higher in imbalanced
classes. As discussed in [138], the accuracy of minority sam-
ple classes further declines because of privacy methods.

The research article [139] publishedbyGoogle researchers
has discussed that the theoretical relationship between pri-
vacy and robustness is unknown; however, experimental
results have demonstrated that they are mutually detrimental.
To demonstrate the effect of DP on robustness, the authors
from [140] build the DP model and a non-DP-based model.
Five distinct evaluation methods show that the robustness
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of DP-based models is comparatively lower. The conclu-
sion from [140] is further verified by authors [141], which
demonstrates that DP models do not exhibit greater robust-
ness compared to conventionally trained models.

Another major trade-off exists between privacy compo-
nents and the security of ML systems. Some of the recent
works [140, 142–145] demonstrate that privacy methods,
especially DP, are more susceptible to poisoning attacks. The
poisoning attack is becoming the biggest thread in the ML
system for sensitive data under the decentralized training sys-
tem using local differential privacy. Similarly, [141] reported
that an unfavorable choice of parameters in DP training can
lead to gradient masking, which can ultimately lead to secu-
rity risk.

In summary, the previous section has discussed the signif-
icant connection between the privacy component and other
factors such as performance, explainability, accountability,
fairness, robustness, and security. However, it should be
noted that the privacy component also indirectly interacts
with the remaining components.

5.1.2 Security vs rest

As we discussed in Sect. 2 the security of ML solutions have
become one of the biggest threats in recent years. As tech-
nology advances, the attacker has become even smarter than
before. Even amodest amount of information aboutMLmod-
els or data is sufficient for an attacker to create a targeted
attack to leak sensitive data. TheML security is an active field
of research. The possible ML attacks and defense discussed
in Sect. 2 are just a primary list. Every time new and advanced
types of ML models are emerging. As a result, research sci-
entists are more concentrating on building stronger and more
efficient security methods. In this context, the ML security
interplay with other components of trustworthy AI has not
gained enough attention. Nevertheless, a number of studies
have indicated that currentML security approaches are prone
to hindering performance [146].

Although there is a lack of sufficient exploration, it
is highly probable that certain ML defense methods pose
challenges for explainability components. For instance, tech-
niques such as denoising model weights or model weight
pruning are employed to counter model steal attacks. In
the previous study [147], the ability of the DP method to
reduce model inversion attacks has been explored; however,
the authors did not investigate its impact on the explainabil-
ity component. Similarly, the DP is one of the most widely
used defense approaches against membership attacks [53].
We have already discussed the interplay of DP-based meth-
ods on performance and explainability components in the
previous section. In the survey paper [53], the authors have
discussed model quantization, half-precision floating point,
setting all gradients below certain thresholds to zero, etc. as

methods for attack against reconstruction loss. However, it
is well acknowledged that these methods are associated with
trade-offs in terms of both explainability and performance.

Existing algorithms that enhancemodel robustness against
attacks during deployment often come at the expense of com-
promising data privacy [148]. Previous research has often
treated the security and privacy domains separately. Adver-
sarial defense methods aimed at enhancing robustness can
paradoxically increase the susceptibility of the target model
to membership inference attacks. It was shown in [148] that
employing adversarial defenses to train robust models can
amplify up to 4.5 times the advantages of membership infer-
ence compared to naturally undefended models.

The trade-offs betweenMLsecuritymethodswith fairness
and robustness have not been explored directly. To the best of
our current understanding, there has been a lack of research
conducted in this particular area. Nevertheless, it might be
postulated that there are trade-offs inherent in their relation-
ship. For instance, in the previous paragraphs, we mentioned
that DP is used against model inversion attacks and member-
ship inference attacks. On the other hand, we have already
discussed howDP reduces fairness and robustness in the sub-
section of trade-offs between privacy vs rest. Therefore, in an
indirect way, we can link the trade-offs betweenML security
methods and fairness and robustness.

5.1.3 Explainability/transparency vs rest

The major interplay of explainability and transparency com-
ponents of trustworthy AI is with privacy component. The
research reported in [149] reveals that constraints imposed
by trustworthy machine learning on the training process
can introduce significant privacy concerns. Achieving trust-
worthy machine learning necessitates additional model con-
straints. Specialized algorithms are employed to enable
privacy-preservation, fairness, robustness, and explainabil-
ity. However, these algorithms comewith inherent trade-offs.
Some recent research has explored the trade-off between
trustworthy machine learning and model performance, par-
ticularly prediction accuracy. For instance, in [150], the
authors demonstrate that the trustworthiness of results is
influenced by data quality. In other terms, privacy con-
cerns indirectly impact trustworthiness as a contributing
factor. There are also some trade-offs between explain-
ability and privacy. Indeed, according to [149], model
explanations can be exploited by inference attacks. From
a privacy standpoint, model explanations furnish attack-
ers with supplementary information, especially in scenarios
where direct access to a model’s uncertainty or loss is lim-
ited. High feature attribution values serve as a proxy for
model uncertainty, indicating that a small input change could
substantially alter the model’s output. Consequently, attack-
ers can construct successful membership inference attacks
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solely by leveraging model explanations to differentiate
between members and nonmembers. The issue of infor-
mation leakage from the explanation dataset arises when
explaining model behavior [136]. Conversely, safeguarding
sensitive data using certified differential privacy comes at
the expense of explanation quality. The inherent random-
ness of differential privacy algorithms might compromise
explanation fidelity due to increased uncertainty in model
predictions and local approximations. Some feature-based
model explanations, dependent on model parameters [151],
[152], can exacerbate privacy vulnerabilities in the context
of white-box inference attacks. The study in [153] explores
connections between model explanations and the leakage of
sensitive training set information. Privacy risks associated
with feature-based model explanations are analyzed using
membership inference attacks, quantifying how much infor-
mation about a data-point’s presence in the training set leaks
through model predictions and explanations. The research
underscores that offering model explanations might compro-
mise user privacy. Current model explanation technologies
lack provable privacy guarantees. Counterfactual explana-
tions, despite highlighting key features used by black-box
models and providing actionable insights, also inadvertently
leak information about the model itself, raising privacy con-
cerns [154]. In [155], the authors express concern over the
possibility of ”fairwashing” through the manipulation of
global and local explanations, where posthoc explanation
techniques that cover up unfair black-box ML models are
explored. Dishonest model producers can generate high-
fidelity interpretable surrogate models to justify fairness,
masking underlying unfairness.When automatedAI systems
dictate decisions, subjects are entitled not only to decision
explanations but also to proof of their accuracy [156]. This
demand intensifies scrutiny of the training data, potentially
breaching the privacy rights of individuals from whom the
data originated.According to [157], recent research onmodel
explanations has faced criticism for neglecting actual usabil-
ity considerations.

Similarly, another major interplay of explainability and
transparency components is security component. Explaining
and making transparent about nature of data, model archi-
tecture, training strategy, ML security methods, etc., creates
backdoor for attacker at different level. In the research article
[158], researchers have shown that based on themodel expla-
nation, it is possible to identifywhether a particular set of data
is included in the training set or not. The researchers named
this type of attack an ”explanation-guidedmembership infer-
ence attack.” Another interesting paper [159] demonstrates
how it is possible to extract the model only based on the
gradient-based model explanations. This could create the
biggest problem in multiple ways; for example, an adversary
could reconstruct your sensitivemodelwithout authorizing it.
The research community has termed such an attack a ”model

extraction attack”, which is also an issue of intellectual prop-
erty theft. The research article published in [160] further
supports the argument that transparency opens a backdoor
to attackers and makes it possible for them to not only con-
struct themodel partially or completely, but to reconstruct the
training dataset. The author further emphasizes that explain-
ing how the decision ismade based on theMLalgorithm from
the perspective of complete transparency gives attackers the
opportunity to design the attack to infer data or inject bogs
into their existing frameworks or workflows. Consequently,
the authors in [161] raised the question “Could an explainable
model be inherently less secure?”Here, the authors argument
is that the more one knows about the data and internal work-
ingmechanisms, the easier it is to deceive. In his recent paper
[162] AdrianWeller mainly highlights the possible scenarios
where transparency (one component of trustworthy AI) may
cause harm. The author gives an example to explain how the
higher level of transparency may lead to worse outcomes and
also makes the model less fair [162]. Similarly, researchers
from Stanford University published a paper claiming that the
interpretation of neural networks is fragile [163]. To justify
their claim, the authors have used two similar inputs with
the same output but show that the explanation is completely
different. The contribution of their work is to demonstrate
(using the perturbation technique) how the interpretation of
neural networks can be manipulated.

5.1.4 Fairness/robustness vs rest

ML model’s fairness and robustness are two pillars of trust-
worthy AI. We have discussed more about these components
in the trustworthy AI section 4. Because of similarity in
nature, often similar types of solutions are used for dealing
with fairness and robustness. Therefore, we have combined
fairness and robustness under the same section. These fields
have gained noticeable attention from researchers; however,
their interactions have received less attention in the current
scientific literature.

One of the approaches used for dealing with fairness
(minority groups) and robustness (outlier data) is over-
sampling. The oversampling approach raises the issue of
overfitting inMLmodels.Anoverfittedmodel creates serious
issues for privacy, security, and explainability components
of trustworthy AI. The study from [164] mentioned that
overfitted models are highly prone to information leakage.
Similarly, the overfitted models make it easier for attackers
to design membership inference attacks to identify [165].
In addition, the explanation model faces the issue of gen-
eralization when it is based on an overfitted model. Data
augmentation is a better approach for fairness and robust-
ness compared to oversampling; however, it is still not a
very reliable solution when it comes to highly imbalanced
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datasets. For instance, [166] demonstrates the risk of mem-
bership inference attacks through data augmentation.

Another advanced approach used by researchers in recent
days is use of federated learning and distributed learning.
These approaches are better than oversampling and data
augmentation. However, these approaches are also prone to
privacy issues at some level. For instance, recent articles [167,
168] mentioned that even though data is not directly exposed
in FL and distributed learning, it is possible to extract sensi-
tive information from the trained model.

Similarly, the interplay between fairness and privacy is
investigated in [169]. The authors demonstrate that achieving
fairness often comes at the expense of privacy. The privacy
cost of fair models increases significantly for unprivileged
subgroups, exacerbating the challenge of achieving fairness
in biased training data.

In the case of robustness, the research community has
explored the use of DP for enhancing ML robustness [74,
170]. When it comes to the use of the DP approach in ML,
all the interactions we discussed in relation to the use of DP
also apply here.

5.2 Current research gaps

The previous section on interplay demonstrates how the var-
ious components of trustworthiness are interdependent and
interconnected. These interplays are just major representa-
tive cases that are visible openly. Nevertheless, there exists
a significant degree of interaction among many constituents.
The careful observation of current literature demonstrates the
immaturity of understanding the connections and their effects
among responsible parties. Another important observation
we notice from current literature is the lack of collaboration
between different experts.

Building the framework for trustworthy AI has gained
huge attention from academic and industrial partners. There
have already been some solutions available on the market for
the evaluation of trustworthy AI. We have discussed differ-
ent trustworthy AI evaluation frameworks in the trustworthy
AI section of 4.2. However, one of the major issues is that
these solutions do notmeet the required level of standardness.
Most of the trustworthy AI frameworks are in the immature
phase [114]. For example, the Assessment List for Trust-
worthy AI (ALTAI), which is also presented in section 4.2,
is an assessment method introduced by the EU itself. This
assessment list is completely basedonquestions and answers.
This assessment list is a good step in the right direction
and provides good guidelines for building trustworthy appli-
cations. However, ALTAI has several weaknesses, such as
[171], which criticizes that ALTAI does not meet the stan-
dard of origination-level development and does not consider
the appropriate level of governance between different lev-
els of organization that ought to be expected. Similarly, the

appropriate level of interplay between different components
is not properly addressed by the question.

One significant concern that has been identified is the
lack of cohesion in the domain of trustworthy AI. As the
topic has gained huge attention, different organizations and
research groups have developed particular tools focusing on
one particular problem. The fragmented nature of work lacks
the ability to measure interconnection and its consequences.
Building a trustworthy framework or application should be
a collaborative effort between diverse experts. Achieving
the desired outcome of establishing a reliable trustworthy
AI framework through a fragmented approach is inherently
unfeasible and unattainable.

5.3 Future action

Building a fully trustworthy AI application is a challenging
task. Indeed, despite wide interest in trustworthy research,
satisfactory solutions are still far from reach.Wehave already
discussed current researchgaps in the previous section. In this
section, we would like to highlight the potential future action
to bring trustworthy AI to the next level.

As we have emphasized a lot, the method used to achieve
the goal of one of the components of trustworthy AI raises
issues for the remaining components, which is one of the
biggest issues. Therefore, careful analysis and research are
crucial to figuring out the interplay between different com-
ponents of trustworthy AI and how their side effects could
be adequately minimized. One effective starting step could
be to conduct a detailed study to identify all the possible
interplay between different components of trustworthy AI.
Such kind of study demands wide collaboration between
researchers from academic and industrial fields, involvement
from small to large companies, and expertise from legal,
ethical, social, and technical teams. In order to establish a
universally accepted framework for everyone, it is even nec-
essary to have global collaboration. Such an approach of
bringing expertise from diverse backgrounds to a single table
is essential to analyzing and defining the road map for a uni-
versally accepted, trustworthy AI framework.

Similarly, another important future action is to view the
development of trustworthy AI frameworks from a holistic
perspective.Merging and combining all the fragmented solu-
tions within the scope of trustworthy AI as a single solution
is of paramount importance. Such a unified solution helps to
achieve the goal of building trustworthy applications by con-
sidering all components and their interactions. In addition to
this, building such a unified framework needs to be treated as
a long-term goal. As technologies advance, the requirements
and challenges change over a period of time. The solution
that we consider effective at this moment may not be effec-
tive in the near future. Therefore, continuous collaboration,
updates, and integration are necessary for a long period of
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time. Another potential future action could be to combine
different frameworks built from different perspectives. For
example, some trustworthy frameworks are built for techni-
cal people, while others focus on the administrative level.
This will all increase the extra work required for people to
knowmultiple frameworks. In addition to this, there is a high
chance that the information may differ from framework to
framework. For instance, a privacy score of 95% may have
different meanings for technical reports and different mean-
ings for legal teams.

Besides the trustworthy assessment framework, as rec-
ommended by researchers from [139], it could be a better
approach to build ML models based on causality learning.
The causality learning models not only improve their per-
formance but also help to achieve better security, privacy,
robustness, and fairness. From a privacy and security per-
spective, it will be very difficult to attack causality-based
models as compared to normal features or correlation-based
models.

6 Conclusions

In this paper, we have presented a thorough review of the
recent research literature addressingML security and privacy
issues in connection with trustworthy AI. Our review shows
that these topics have gained attention from both the research
community and industrial sectors. However, the overall out-
come of all this available literature still shows a lack of
adequate solutions to address the main security and privacy
issues in the context of trusted AI. Most of the solutions are
still in the developing and testing phase and need furthermat-
uration and testing in different specific cases. For example,
while FL is a promising new paradigm that might improve
the privacy requirements of AI users in the future, there are
still several challenges that need to be addressed efficiently,
namely how to mitigate the computational expenses in data
and algorithm sharing between the different parts of the FL
framework, and how to avoid trade-offs with the accuracy of
the algorithm, as well as possible new sources of bias and
uncertainty.

As for research on reliable AI, it reveals that this field has
captured the attention of governments and policy makers, in
addition to researchers and industrial experts. Strict standards
and regulations have been introduced at national and interna-
tional levels. Therefore, the topic has become a hot topic in
the field of AI. However, when studying related work in this
field, we found that the research community has paid much
more attention to the explanation part of the model, which
is a component of trustworthy AI. To achieve a high level of
trustworthiness, the research community should pay equal
attention to other components.

In fact, even in the specific context of privacy and secu-
rity, there is still a significant lack of unified solutions or
benchmarks for assessing privacy, security or trustworthi-
ness. Typically, AI research in these contexts is oriented
toward solving specific problems. For example, we have
shown the case of a proposed solution based on feature selec-
tion to improve the security of ML, while other works focus
on enhancing the robustness of the model without consider-
ing any related privacy or security constraints. We believe
that there is a need for a single framework containing multi-
ple security solutions, which would allow users to use only
that framework, and to run the model through different secu-
rity tests and secure the model. The same is true for ML
privacy-related solutions.

Due to their specificity, several approaches and models
are still too limited or present considerable drawbacks. For
example, so-called data noise [172] could be introduced, but
it would also reflect on the possible bias of the model trained
and tested on such data. An alternative would be to develop
deep learning models, e.g. autoencoder [173], capable of
masking the original data and sharing it with model devel-
opers in an FL framework. The developers could then send
the “masked” prediction back to the data owner, who could
invert the mask to obtain the “real” prediction. Other ways to
protect data for use beyond the circle of ownership without
losing the ability to be processed by modeling experts would
be to develop models to produce surrogate data only from
aggregated data. Recently, some work has been developed in
these various directions [174].

Finally, there are two important open problems that merge
the different aspects of reliable AI discussed in this paper, in
particular security, privacy, explainability, and human trust.
First, in order to develop reliable AI tools and algorithms
and highly optimized security, privacy, reliability, trustwor-
thiness and other requirements, it is necessary to develop
evaluation tools to properly assess these features in the con-
text of AI and, in particular, to quantify them.

Second, the assessment procedure for these different
aspects of trustworthiness should not be carried out sepa-
rately. While studying security, privacy, and trustworthy AI
individually, we realized that there is a huge research gap in
these fields.We believe that there are strong interconnections
and dependencies among these three fields. Action taken to
solve a specific problem inonedomainmay raise a problem in
other domains. For example, ifwe use anMLmodel for credit
card fraud detection, the transparency and explainability of a
trustworthyAI share information related to, for example, data
distribution, model architecture, important features, and the
decision process, which could pose a major problem from a
privacy perspective. Sharing information related to themodel
and data can help to filter out personal information from train-
ing data. In addition, an attacker can reconstruct the model
based on those model explanations.
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Therefore, instead of considering these three fields sepa-
rately, they need to be viewed and developed as a unified
solution. In particular, the assessment framework should
consider the different measures simultaneously to explore
possible trade-offs. For example, a very secure ML algo-
rithm may have its explainability or accuracy compromised.
Appropriately weighing the level of importance in meeting
security or privacy requirements, along with the perfor-
mance of the algorithm, depends on the specific context and
objective related to the use of the algorithm. While such a
multi-constraint optimization framework has already been at
least partially addressed, for example, exploring Trustwor-
thy AI based on distributed ledger technology [175] is still
an open problem that will only be possible to address with
interdisciplinary teams ranging from technical AI develop-
ers to social scientists and experts from the different fields in
which AI is used.

Author Contributions Author contributions R.U was supervised by
Prof. A.Y, Prof. P.L. and Dr. A.M while writing the survey, discussing
structure and content. A.Y, Prof. P.L. and Dr. A.M did many rounds of
rewriting and proof reading to finalize the manuscript.

Funding Open access funding provided by OsloMet - Oslo Metropoli-
tan University

Data availability Data sharing is not applicable to this article as no
datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors of this article do not have any financial
or non-financial interests to disclose that are relevant to the content. The
authors also have no affiliations or involvement with any organization or
entity that has a financial or non-financial interest in the subject matter
or materials discussed in the manuscript. Furthermore, the authors have
no financial or proprietary interests in any of the materials discussed in
the article. As such, the authors declare no competing interests.

Ethical approval This research was funded by the Nordic Center for
Sustainable and Trustworthy AI Research (NordSTAR) project. The
project does not involve the use of humanparticipants or animals. There-
fore, ethical considerations related to human or animal subjects do not
apply to this study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Oseni, A., Moustafa, N., Janicke, H., Liu, P., Tari, Z., Vasilakos,
A.: Security and Privacy for Artificial Intelligence: Opportunities
and Challenges. arXiv preprint: arXiv:2102.04661 (2021)

2. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L.,
Kohane, I.S.: Adversarial attacks on medical machine learning.
Science 363(6433), 1287 (2019)

3. Peters, D., Vold, K., Robinson, D., Calvo, R.A.: Responsible AI-
two frameworks for ethical design practice. IEEE Trans. Technol.
Soc. 1(1), 34 (2020)

4. ElNaqa, I.,Murphy,M.J.: inWhat isMachine Learning?Machine
Learning in Radiation Oncology (Springer, 2015), pp. 3–11

5. Kubat, M., Kubat, An Introduction to Machine Learning: An
Introduction to Machine Learning, vol. 2 (Springer, 2017)

6. Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y., Dehghan-
tanha, A., Srivastava, G.: A survey on security and privacy
of federated learning. Future Generat. Comput. Syst. 115,
619 (2021). https://doi.org/10.1016/j.future.2020.10.007.www.
sciencedirect.com/science/article/pii/S0167739X20329848

7. High-Level Expert Group on Artificial Intelligence of the Euro-
pean Commission. Ethics guidelines for trustworthy ai. high-level
expert group on artificial intelligence (2019)

8. Liu H., Wang, Y., Fan, W., Liu, X., Li, Y., Jain, S., Liu, Y., Jain,
A.K., Tang, J.: arXiv preprint arXiv:2107.06641 (2021)

9. Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E.,
Loukas, G.: A taxonomy and survey of attacks against machine
learning. Comput. Sci. Rev. 34, 100199 (2019)

10. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.:Towards
the Science of Security and Privacy in Machine Learning. arXiv
preprint: arXiv:1611.03814 (2016)

11. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security
of machine learning. Mach. Learn. 81(2), 121 (2010)

12. Liu, Q., Li, P., Zhao, W., Cai, W., Yu, S., Leung, V.C.: A survey
on security threats and defensive techniques of machine learning:
a data driven view. IEEE Access 6, 12103 (2018)

13. Newsome, J., Karp, B., Song, D.: Thwarting signature learn-
ing by training maliciously. In: International workshop on recent
advances in intrusion detection paragraph: thwarting signature
learning by training maliciously (Springer, 2006), pp. 81–105

14. Burkard, C., Lagesse, B.: Analysis of causative attacks against
svms learning from data streams. In: Proceedings of the 3rd ACM
on International Workshop on Security And Privacy Analytics
(2017), pp. 31–36

15. Shi, Y., Sagduyu, Y.E., Evasion and causative attacks with adver-
sarial deep learning. In: MILCOM 2017–2017 IEEE Military
Communications Conference (MILCOM) (IEEE, 2017), pp. 243–
248

16. Sihag, S., Tajer, A.: Secure estimation under causative attacks.
IEEE Trans. Inf. Theory 66(8), 5145 (2020)

17. Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha,
N.K.: Systematic poisoning attacks on and defenses for machine
learning in healthcare. IEEE J. Biomed Health Informatics 19(6),
1893 (2014)

18. Baracaldo, N., Chen, B., Ludwig, H., Safavi, J.A.: In Proceedings
of the 10thACMWorkshop onArtificial Intelligence and Security
(2017), pp. 103–110

19. Sagduyu, Y.E., Shi, Y., Erpek, T.: Adversarial deep learning
for over-the-air spectrum poisoning attacks. IEEE Trans. Mobile
Comput. 20(2), 306 (2019)

20. Seth,i T.S., Kantardzic, M.M.:“Security theater”: on the vulnera-
bility of classifiers to exploratory attacks Data driven exploratory
attacks on black box classifiers in adversarial domains. Neuro-
computing 289, 129 (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2102.04661
https://doi.org/10.1016/j.future.2020.10.007.
www.sciencedirect.com/science/article/pii/S0167739X20329848
www.sciencedirect.com/science/article/pii/S0167739X20329848
http://arxiv.org/abs/2107.06641
http://arxiv.org/abs/1611.03814


Trustworthy machine learning in the context of security and privacy 2311

21. Sethi, T.S., Kantardzic, M., Ryu, J.W.: in Pacific-Asia Workshop
on Intelligence and Security Informatics (Springer, 2017), pp. 49–
63

22. Lin, X., Zhou, C., Yang, H., Wu, H. Wang, Y. Cao, B. Wang,
Exploratory adversarial attacks on graph neural networks. In:
2020 IEEE International Conference on Data Mining (ICDM)
(IEEE, 2020), pp. 1136–1141

23. Shi, Y., Sagduyu, Y., Grushin, A.: How to steal a machine learning
classifier with deep learning. In: 2017 IEEE International Sym-
posium on Technologies for Homeland Security (HST) (IEEE,
2017), pp. 1–5

24. D. Shu, N.O. Leslie, C.A. Kamhoua, C.S. Tucker. In: Proceedings
of the 2nd ACM Workshop on Wireless Security and Machine
Learning (2020), pp. 1–6

25. Ji, Y., Bowman, B., Huang, H.H.: Generative adversarial attacks
against intrusion detection systems using active learning. In: 2019
IEEE International Conference on Cognitive Computing (ICCC)
(IEEE, 2019), pp. 1–9

26. Fazelnia, M., Khokhlov, I., Mirakhorli, M.: Attacks, Defenses,
and Tools: A Framework to Facilitate Robust AI/ML Systems.
arXiv preprint: arXiv:2202.09465 (2022)

27. Clark, G., Doran, M., Glisson, W.: In 2018 17th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing
AndCommunications/12th IEEE InternationalConference onBig
Data Science and Engineering (TrustCom/BigDataSE) (IEEE,
2018), pp. 516–521

28. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B.,
Swami A.: In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security (2017), pp. 506–519

29. Gao, L., Cheng, Y., Zhang, Q., Xu, X., Song, J.: Feature
Space Targeted Attacks by Statistic Alignment. arXiv preprint:
arXiv:2105.11645 (2021)

30. Newaz, A.I., Haque, N.I., Sikder, A.K., Rahman, M.A., Uluagac,
A.S.: in GLOBECOM2020–2020 IEEEGlobal Communications
Conference (IEEE, 2020), pp. 1–6

31. Tian, J., Wang, B., Li, J., Wang, Z., Ma, B., Ozay, M.: Exploring
targeted and stealthy false data injection attacks via adversarial
machine learning. IEEE Internet Things J (2022)

32. Kozlowski, M., Ksiezopolski, B.: A new method of testing
machine learning models of detection for targeted DDoS attacks.
In: SECRYPT (2021), pp. 728–733

33. Ughi, G., Abrol, V., Tanner, J.: An empirical study of derivative-
free-optimization algorithms for targeted black-box attacks in
deep neural networks. Opt. Eng., pp. 1–28 (2021)

34. Hong, S., Chandrasekaran, V., Kaya, Y., Dumitraş, T., Papernot,
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