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Abstract—In the recent past, different researchers have
proposed privacy-enhancing face recognition systems designed
to conceal soft-biometric attributes at feature level. These works
have reported impressive results, but generally did not con-
sider specific attacks in their analysis of privacy protection.
We introduce an attack on said schemes based on two observa-
tions: (1) highly similar facial representations usually originate
from face images with similar soft-biometric attributes; (2) to
achieve high recognition accuracy, robustness against intra-
class variations within facial representations has to be retained
in their privacy-enhanced versions. The presented attack only
requires the privacy-enhancing algorithm as a black-box and
a relatively small database of face images with annotated soft-
biometric attributes. Firstly, an intercepted privacy-enhanced
face representation is compared against the attacker’s database.
Subsequently, the unknown attribute is inferred from the
attributes associated with the highest obtained similarity scores.
In the experiments, the attack is applied against two state-of-the-
art approaches. The attack is shown to circumvent the privacy
enhancement to a considerable degree and is able to correctly
classify gender with an accuracy of up to approximately 90%.
Future works on privacy-enhancing face recognition are encour-
aged to include the proposed attack in evaluations on the privacy
protection.

Index Terms—Biometrics, face recognition, privacy protection,
privacy enhancement, soft-biometrics, attack.
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I. INTRODUCTION

FACE recognition technologies are deployed in many
personal, commercial, and governmental identity man-

agement systems around the world. Current state-of-the-art
face recognition technologies utilise deep learning and massive
training datasets to embed face images as discriminative rep-
resentations in the latent space [1], [2]. Similar kinds of deep
learning techniques, e.g., deconvolutional neural networks,
have shown impressive results for reconstructing facial images
from their corresponding embeddings [3]. Further, it has been
demonstrated that, sensitive soft-biometric information, e.g.,
gender, race, or age, can be directly derived from facial
embeddings [4], [5].

In response to these privacy issues, a considerable amount
of research has been conducted over the past years. In order
to protect individuals’ privacy, biometric template protection
schemes have been proposed for various biometric charac-
teristics, including the face. Biometric template protection
methods are commonly categorized as cancelable biometrics
and biometric cryptosystems. Cancelable biometrics employ
transforms in the signal or feature domain which enable
a biometric comparison in the transformed domain [6]. In
contrast, the majority of biometric cryptosystems binds a
key to a biometric feature vector resulting in a protected
template. Biometric authentication is then performed indi-
rectly by verifying the correctness of a retrieved key [7].
For comprehensive surveys on this topic, the interested reader
is referred to [8], [9]. Alternatively, homomorphic encryp-
tion has frequently been suggested for biometric template
protection [10]. Homomorphic encryption makes it possible
to compute operations in the encrypted domain which are
functionally equivalent to those in the plaintext domain and
thus enables the estimation of certain distances between pro-
tected biometric templates. Biometric template protection are
designed to fulfill the major requirements of irreversibility and
unlinkability which are defined in ISO/IEC IS 24745 [11].

In addition to face-based biometric template protection,
methods that attempt to remove (or conceal) certain sensitive
information from facial biometric data (while leaving other
useful information unchanged) have been proposed by vari-
ous research laboratories. Said schemes have recently been
summarized under the umbrella term privacy–enhancing face
biometrics, a comprehensive survey can be found in [12].
A large amount of published methods which are referred
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Fig. 1. Extraction of facial embeddings: (a) original face embeddings exhibit
high biometric utility, but sensitive attributes can be derived from them;
(b) application of soft-biometric privacy enhancement at image, representation
or inference level is usually claimed to result in face embeddings with high
biometric utility of which sensitive attributes can not be inferred.

to as soft-biometric privacy enhancement aim at removing
or suppressing sensitive attributes in facial data. In the con-
text of a face recognition system, this group of techniques
can be applied at either image level, representation level, or
at inference level [12]. Approaches applied on image level,
e.g., obfuscation, have been shown to enhance privacy at the
cost of biometric utility. In other words, privacy-enhanced
face images obtained by said techniques become less usable
for facial recognition tasks. Further, different methods have
been applied at representation level or inference level, i.e.,
these methods operate at feature level. Interestingly, the lat-
ter schemes have been reported to retain biometric utility
and, at the same time, provide strong privacy protection [12],
see Figure 1. This clearly contradicts with the assumption
that a removal or suppression of facial information yield less
discriminative face embeddings which results in a decrease
in biometric performance, analogous to methods applied on
image level. This necessitates a closer examination of soft-
biometric privacy enhancement methods. In particular since
published approaches often lack a rigorous analysis with
respect to privacy protection [13].

The main contribution of this work is the proposal of a
novel attack on privacy-enhancing face recognition systems.
Here, we mainly focus on methods operating at representa-
tion or inference level while the attack is generally applicable
to any soft-biometric privacy enhancement method (including
image level-based methods). The attack builds upon the fol-
lowing observations: it has recently been shown that facial
recognition algorithms produce higher similarity scores and,
hence, significantly more false matches for subjects with sim-
ilar soft-biometric attributes – in particular gender and race.
This effect is referred to as broad homogeneity [20]. Further,
it has been shown that it is possible that face recognition
algorithms operate on facial features that are unrelated to soft-
biometric attributes, albeit with somewhat lower recognition
accuracy [21].

We show that the aforementioned properties also hold
for privacy-enhancing face recognition systems. This can be
exploited to attack these schemes, i.e., infer soft-biometric

attributes from privacy-enhanced face embeddings. In the
proposed attack, a face database with known soft-biometric
attributes is used to generate a set of privacy-enhanced
face representations against which a privacy-enhanced face
representation with unknown soft-biometric attributes is com-
pared. The best obtained similarity scores are then analyzed
to derive the unknown attributes of the attacked privacy-
enhanced face representation. The attack can be performed
offline and only requires the privacy-enhancing algorithm
as black box and an arbitrary set of facial images with
known soft-biometric attributes. In experimental evaluations,
the attack is applied to privacy-enhanced face representation
obtained by two recently published algorithms, i.e., privacy-
enhancing face-representation learning network (PFRNet) [17]
and privacy-enhancing face recognition based on minimum
information units (PE-MIU) [18]. High success rates of up
to 90% with respect to gender prediction are obtained for
attacking both state-of-the-art algorithms.

The results reported in this work indicate that privacy pro-
tection capabilities of facial soft–biometric privacy enhance-
ment methods are commonly over-estimated in the current
scientific literature. Towards the creation of privacy-preserving
biometric systems various attacks have been proposed against
different types of popular biometric cryptosystems and cance-
lable biometrics, e.g., in [22], [23]. Uncovered gaps in privacy
protection have in turn led to (continuous) improvements of
such schemes. Therefore, we believe that the developments of
facial soft–biometric privacy enhancement can benefit from
considering the proposed attack. In particular, to advance
developments of facial soft–biometric privacy enhancement,
it is strongly suggested to employ the proposed kind of
attack in evaluations of privacy protection capabilities of future
methods.

This work is organized as follows: Section II briefly
summarises most relevant works on soft-biometric privacy-
enhancing techniques applied at feature level. Section III
describes the proposed attack in detail. The experimental
setup and results are reported in Sections IV and V, respec-
tively. They are subsequently discussed in Section VI, while
Section VII contains a summary and concluding remarks.

II. RELATED WORKS

Several efforts have been made in recent years to intro-
duce different soft-biometric privacy-enhancing techniques at
feature level, i.e., approaches operating at representation or
inference level. Table I lists the most relevant works in this
research area. The performance metrics are reported in the
table exactly as in the cited papers. Note that differently named
metrics often correspond to the same underlying concept, e.g.,
ADA is expected to be the same as COCR.

Terhörst et al. [14] proposed a Cosine–Sensitive Noise
(CSN) transformation applied to face embeddings to enhance
privacy in terms of gender and age attributes. To this end,
the authors introduced an specific type of noise over the face
representation which hides the soft–biometric information.
Morales et al. [15] proposed SensitiveNets, a privacy-
preserving learning method. By incorporating soft-biometric



OSORIO-ROIG et al.: ATTACK ON FACIAL SOFT-BIOMETRIC PRIVACY ENHANCEMENT 265

TABLE I
OVERVIEW OF RELEVANT FACIAL SOFT-BIOMETRIC PRIVACY ENHANCEMENT APPROACHES OPERATING AT FEATURE LEVEL (RESULTS REPORTED FOR

BEST CONFIGURATIONS; NOTE THE DIFFERENCES IN THE USED EVALUATION DATASETS AND PERFORMANCE METRICS)

Fig. 2. Overview of the attack: an attacker is in possession of the soft-biometric privacy enhancement method and applies it to a database of images with
known labels (collected in the preparation phase); then, an intercepted privacy enhanced face embedding is compared against the database and the best scores
are analyzed to predict the soft-biometric attribute.

classifiers in the loss function of during algorithm training,
this approach learns new feature representations suppress-
ing gender and ethnicity information. Terhörst et al. [16]
proposed a strategy called Incremental Variable Elimination
(IVE) to eliminate (or remove) components related to soft-
biometric information from the face feature representation.
Bortolato et al. [17] managed to learn a disentangled fea-
ture representation in their so-called Privacy-Enhancing Face-
Representation learning Network (PFRNet). PFRNet is an
autoencoder which learns to separate gender attributes from
the identity information.

A few works operating at the inference level have
been proposed recently. These methods apply transfor-
mations and adapt the biometric comparator accordingly.
Terhörst et al. [19] proposed such a method based on Negative
Face Recognition (NFR). So-called negative embeddings are
obtained by introducing features to them that are intentionally
different from the original (positive) embeddings, thereby con-
cealing soft-biometric attributes. Further, Terhörst et al. [18]
proposed the Privacy-Enhancing face recognition approach
based on Minimum Information Units (PE-MIU). This method
allows the creation privacy-enhanced face template by parti-
tioning the original feature vector into smaller parts (called
minimum information units). Then, these blocks are randomly
shuffled to obtain a privacy-enhanced template.

Whereas several authors have explored the development of
novel techniques for removal of information on soft-biometrics
with promising results, there still exists a need for deeper anal-
ysis of the achieved privacy protection. Terhörst et al. [13]
recently argued that the absence of a standardized evalua-
tion protocol hampers a meaningful comparison of proposed
approaches to facial soft-biometric privacy enhancement.
They propose a framework to evaluate the trade-off between
suppressing an attribute and maintaining the recognition
performance. However, their framework does not consider
specific attacks.

III. PROPOSED ATTACK

This section presents the proposed attack. Section III-A
provides background information and theoretical foundations
of the attack. Figure 2 shows an overview of the proposed
attack; a detailed description of the attack execution is given
in Section III-B.

A. Background

The proposed attack relies on several observations about:
1) The effects of broad homogeneity and demographic

differentials in face recognition.
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Fig. 3. Boxplots of similarity scores for original (unprotected) non-mated
comparison trials with same and different soft-biometric attributes for two face
recognition systems on the LFW database. Comparison trials for the same
attribute (gender) yield slightly higher similarity scores and more outliers
compared to those for different attributes.

2) Properties and general operating principles of the
privacy-enhancing methods the attack is aimed at.

Regarding the first of the above, let P denote a probability
measure and s a similarity scoring function between two non-
mated samples with given soft-biometric attributes a1 and a2,
which can be identical (e.g., female vs female) or different
(e.g., female vs male). For the purpose of this example, let s
return similarity scores in the range [0, 1], where 0 represents
a complete dissimilarity and 1 a perfect similarity.

Many works have shown that comparisons between non-
mated samples of same/similar soft-biometric attributes tend
to generally yield higher similarity scores and consequently
more frequent false matches, e.g., in [20], [24], [25]. This
property is especially pertinent in face recognition, but does
not necessarily hold for all other biometric characteristics (e.g.,
iris) [21]. In many face recognition systems, the relation,

P
(
sa1=a2(·) > sa1 �=a2(·)

) � P
(
sa1=a2(·) < sa1 �=a2(·)

)
(1)

generally holds true, where sa1=a2(·) and sa1 �=a2(·) denote simi-
larity scores obtained from comparisons of non-mated samples
with same and different soft-biometric attributes, respectively.

Additionally, beyond the general shift in the non-mated
similarity scores distributions, the highest non-mated simi-
larity scores (i.e., those at the tail of the score distribution)
tend to stem from comparisons of two non-mated samples
with identical, rather than different soft-biometric attributes.
In other words, as the similarity score increases, the probabil-
ity of the contributing samples being associated with the same
soft-biometric attribute also increases,

sa1,a2(·) → 1 ⇔ P(a1 = a2) → 1 (2)

where sa1,a2 denotes the similarity score between two samples
with soft-biometric attributes a1 and a2.

Figure 3 illustrates the above two propositions empirically.
It can be seen, that the body of the boxplot for the “same
attribute” similarity scores is shifted towards higher similar-
ity scores; furthermore, its whisker and outliers are likewise
shifted w.r.t. the boxplot for the “different attribute” similarity
scores.

The general goal of the privacy-enhancing methods is
to maintain the biometric performance and to simultane-
ously make infeasible inferring the soft-biometric attributes
of the protected template. In other words, it is assumed that
the methods retain sufficient identity information, while the
information about the soft-biometric attributes is somehow dis-
entangled/removed, e.g., in [14], [15], [17], [18]. Intuitively,
such a process appears challenging. It would be surprising
if this was possible, i.e., that not even the slightest overlap
between identity and, e.g., gender or ethnicity information
existed. Thus far, this assertion has neither been theoretically
proven nor rigorously tested empirically. While the privacy-
enhancing methods may change the feature space to be no
longer separable (i.e., prevent classification by, e.g., SVMs),
this does not necessarily guarantee security from other types
of attacks, e.g., as described below.

In order to reach a decision based on a computed similar-
ity score, biometric systems typically operate using a fixed
decision threshold. Let t denote such a decision threshold;
if s(·) > t, the compared samples are deemed to be mated
by the system. In case the samples are actually non-mated,
this means a false match. Although the feature representation
and/or the comparator may operate completely different in the
protected and unprotected domain, the basic principles regard-
ing similarity scores and decision threshold remain unchanged.
Hence, if biometric performance is to be maintained by the
privacy-enhancing method, then the relations,

P
(
sunprotected(·) > t

) ≡ P
(
sprotected(·) > t

)
(3)

must hold, where sunprotected(·) and sprotected(·) denote sim-
ilarity scores of an original and a privacy-enhancing face
recognition system, respectively.

To satisfy these relations, the mapping performed by the
privacy-enhancing method must be done in such a way,
that sample pairs which would have achieved a high sim-
ilarity score in the unprotected domain also do so in the
protected domain. Due to the nearly inevitable overlap
between the mated and non-mated score distributions, this
implies that some non-mated sample pairs will be clustered
closely together in the latent space generated by the privacy-
enhancement method (i.e., at least those scoring above t
corresponding to a certain false-match rate), i.e., equation 2
likely holds true also in the protected domain, thus opening
an attack vector.

Bringing together the above points enables an attack aimed
at inferring the soft-biometric attributes of templates pro-
tected by the aforementioned privacy-enhancing methods. The
prerequisites for the attack are modest:

1) The attacker intercepts a privacy-enhanced template.
2) The attacker knows which algorithm was used to protect

the template and can operate it as a black-box to generate
new templates from own data.

3) The attacker possesses or can synthesize a dataset
of arbitrary facial image, with approximate balanced
distribution of the target attribute.

The attack, described in detail in the next subsection, takes
advantage of the demographic differentials exhibited by most
facial recognition systems, the imperfect separation between
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mated and non-mated distributions in the vast majority of bio-
metric recognition systems, and other circumstances which
prevent the privacy-enhancing methods to fully disentangle
identity and soft-biometric information.

B. Attack Execution

In the first step of the attack, an intercepted template is com-
pared against the attacker’s own database of privacy-enhanced
facial templates. Let N represent the number of samples in
the attacker’s database. Further, let A = [a1 . . . ak] represent
the list of distinct soft-biometric attributes (e.g., male and
female for gender) in the attacker’s database, and k the count
thereof. Thus, a list of S = [s1 . . . sN] similarity scores is
created; furthermore, a list of same length containing the soft-
biometric attributes of the samples from attacker’s database is
maintained.

Instead of considering the entire list of scores, only a sub-
set of highest similarity scores is considered. Depending on
the selected analysis method (described further below), the
attacker selects one of the following:

1) A single list, denoted Sn, representing similarity scores
taken from SN , sorted in descending order, and cut-off
after n first entries.

2) k lists San , each representing similarity scores taken from
SN for each specific attribute a present in the attacker’s
database. The lists are sorted by similarity score in
descending order, and cut-off after n first entries.

In the analysis step, the attacker applies simple algorithms
or calculations to quantify the aforementioned behaviors and
predict a soft-biometric attribute from a privacy-enhanced tem-
plate. Let c(a) represent a function which computes a loosely
defined “strength of evidence” or a probability (not in a
strict mathematical sense) of the intercepted template having
a given soft-biometric attribute a. Further, let Cattack_type =
[c(a1) . . . c(ak)] represent a list containing such probabilities
for all (k) considered soft-biometric attributes for a given
attack type:
Majority vote Cvote contains the count for all k possible

attributes.
Averaging Cav is a list of averages for all k possible attributes.
Weighted averaging Cav_lin and Cav_log contain average sim-

ilarity scores which are linearly and logarithmically
weighted, respectively. Weights are assigned according to
their position i in the list of n highest scores. Precisely,
the linear weight 1 − i/n+1 and the logarithmic weight
− log i/n+1 are applied.

To reach a decision denoted P(x) (i.e., to predict the
unknown attribute x of the intercepted template), the max-
imum value for the chosen attack type is found, i.e., p =
argmax

x
Cattack_type. Finally, the corresponding soft-biometric

attribute is selected accordingly, i.e., P(x) = ap.

IV. EXPERIMENTAL SETUP

This section describes the setup of the conducted experi-
ments. Specifically, Section IV-A describes the experimental
protocol, the used datasets are summarized in Section IV-B,
while Section IV-C outlines the metrics used in the evaluations.

TABLE II
OVERVIEW OF THE ANALYZED SOFT–BIOMETRIC PRIVACY

ENHANCEMENT APPROACHES

A. Choice of Algorithms and Protocol

Two soft–biometric privacy enhancement approaches, i.e.,
PFRNet and PE-MIU were selected. PFRNet and PE-MIU
are based on a model [26] trained on VGGFace2 database
(hereafter referred to as VGGFace2) and the FaceNet [27]
face recognition system. Accordingly, these face recognition
systems are used in experiments representing the original
unprotected systems. While these face recognition system may
not represent the current state-of-the-art, these are used to
reproduce the results reported in previous works. Additionally,
the effect of broad homogeneity has recently also been
confirmed for various state-of-the-art systems [21].

The selection of the algorithm is based on several observa-
tions. Firstly, it is noteworthy that these methods are publicly
available, i.e., the experiments in this work are reproducible.
Secondly, like the chosen methods, most soft–biometric pri-
vacy enhancement approaches are designed to conceal gender
information, see Table II. In fact, it is worth noting that there
are hardly any available implementations of soft–biometric
privacy enhancement methods protecting attributes other than
gender. Thirdly, the two methods represent conceptually dif-
ferent soft-biometric privacy enhancement approaches, i.e.,
applied on representation level (PFRNet) and inference level
(PE-MIU). Fourthly, these approaches achieved a promis-
ing trade-off between soft-biometric privacy protection and
biometric performance over challenging databases such as
Adience [28] and LFW [29]. Although other methods do exist
in the literature, they were either superseded by the afore-
mentioned methods or their authors were not able to provide
the generated templates and/or the code/models for generating
them.

The evaluation consists of following parts, organized
accordingly in Section V:

Performance analysis in a baseline evaluation, the biomet-
ric performance and gender prediction accuracy are
computed using the original (unprotected) and privacy-
enhanced (protected) templates, similar to the protocol
described in the respective publications [17], [18].

Vulnerability analysis the attacks described in Section III are
carried out and their efficacy is evaluated.

B. Datasets

The experiments were conducted using the facial image
databases with soft-biometric attribute annotations and face
recognition models used by the authors of each of the
considered soft–biometric privacy-enhancement approach, see
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Fig. 4. Gender-balanced attacker databases sorted by size.

Table II. The privacy-enhanced templates generated by
PFRNet for each dataset were provided directly by their
authors [17]. The method was trained and applied on dis-
joint subsets of the CelebA database. For PE-MIU, the tem-
plates were generated using the publicly available PE-MIU
software.1 This method does not require any training. The
underlying face recognition models VGGFace2 and FaceNet
are trained with the VGGFace2 and MS-Celeb-1M databases.

To simulate an attacker possessing their own dataset, sub-
sets of said databases were created by selecting one sample
(with highest quality) per identity. These subsets are then bal-
anced w.r.t. the protected soft-biometric attribute (i.e., gender)
resulting in an approximate equal number of male and female
subjects in the database. This is done to avoid a higher false
match probability for one of the genders. In order to avoid
duplicate identities in cross-database evaluations, high simi-
larity scores obtained from cross-database comparisons were
analyzed. To that end, face embeddings were extracted using a
face recognition system, i.e., FaceNet [27], and cosine distance
was used for comparison. Then, potential duplicate identities
were identified by visual inspection. As a result, cross-database
evaluations (e.g., CelebA against LFW) containing duplicated
identities were removed from our evaluations. Figure 4 depicts
an overview of the number of identities and the distribution
of the gender attribute used for each dataset. Note that numer-
ous subjects/samples have to be removed in order to obtain
gender-balanced attacker databases. In the cross-database eval-
uations, the dataset possessed by the attacker and the dataset
from which the targeted privacy-enhanced templates stem from
are always different (e.g., attacker is in possession of FERET
database, while the target stems from LFW database).

Scenarios in which the identity of an attacked privacy-
enhanced template is contained in the training database of the
face recognition model or soft-biometric privacy enhancement
method represent a clear disadvantage for the attacker. On the
one hand, if an image from the attacker’s database has been
seen by the recognition model during training, it is expected
that it is more easily separable from other identities and, hence,

1https://github.com/pterhoer/PrivacyPreservingFaceRecognition

TABLE III
BIOMETRIC PERFORMANCE FOR ORIGINAL (UNPROTECTED) AND

PRIVACY-ENHANCED (PROTECTED) SYSTEMS (IN %)

it is less likely to produce a high similarity score. On the other
hand, in case an image from the attacker’s database has been
seen by the privacy enhancing technique during training, i.e.,
PFRNet, it can be assumed that gender information will be
suppressed more effectively for this identity. Thus, this iden-
tity has less chance to produce a high similarity score with an
attacked template of the same gender.

C. Metrics

The experimental evaluation is conducted according to
ISO/IEC 19795-1 [32] standard methods. The standard and
additional metrics used in the experimental evaluation are as
follows:

Biometric performance the False Non-Match Rate (FNMR)
and False Match Rate (FMR) denote the proportion of
falsely classified mated and non-mated attempts in a
biometric verification scenario, respectively. Additionally,
the equal error rate (EER), which is the point where FMR
and FNMR are equal, is reported.

Attack success rate percentage of samples correctly classi-
fied in terms of soft-biometric attribute by an attack. This
rate can also be seen as gender prediction accuracy.

V. RESULTS

In this section, Section V-A presents an performance anal-
ysis of the used soft-biometric privacy-enhancing approaches.
Subsequently, a vulnerability analysis of said methods to the
proposed attack is conducted in Section V-B.

A. Performance Analysis

As a first step, the biometric performance of the unpro-
tected systems, i.e., original system, is estimated and compared
against that of the corresponding privacy-enhanced systems.
In Table III, the face verification performance is reported on
different databases for each method. PFRNet and PE-MIU
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TABLE IV
GENDER PREDICTION PERFORMANCE OF BASIC MACHINE LEARNING-BASED CLASSIFIERS ON ORGINAL (UNPROTECTED) AND

PRIVACY-ENHANCED (PROTECTED) TEMPLATES IN CROSS-DATABASE SCENARIOS (IN %)

have both been applied on LFW and Adience. In addi-
tion PFRNet has been applied to CelebA and PE-MIU to
ColorFeret, respectively. Based on the obtained results we
can observe that the verification performance on privacy-
enhanced system is slightly degraded compared to the original
system. This confirms that privacy enhancement defines a
trade-off between identity information and suppression of
privacy-sensitive attributes, as it is shown in [18]. It can
be observed that for FMRs< 0.1%, the PE-MIU biometric
performance is up to seven times lower than the PFRNet
performance over similar databases, i.e., LFW and Adience.
In particular, for a practical scenario (FMR= 0.1%), PE-MIU
rejects only approximately 0.17% and 2.35% of the mated
samples over these two challenging databases, respectively.
Overall, both systems obtain impressive performance rates
across different databases which are generally retained in their
privacy-enhanced versions.

In the second experiment, the gender prediction
performance of both both approaches, i.e., PRF-Net and
PE-MIU, is explored. To that end, machine learning-based
gender classifiers are trained on original face embeddings and
privacy-enhanced templates obtained by both approaches in
cross-database scenarios, e.g., training on LFW and gender
prediction on Adience, where the number of subjects for
each gender attribute is also balanced (see Figure 4). In
Table IV, the gender prediction performance is reported for
different classic classifiers, e.g., kNN and SVM. Here, SVM
is employed by training different kernels (Poly, RBF, and
Sigmoid). Note that hyper-parameters of both classifiers were
set to basic configurations without optimization.

A significant degradation of the gender prediction
performance is observable for privacy-enhanced templates
compared to unprotected templates. Lowest average gender
prediction accuracy of 52.37% is obtained by PE-MIU, in
contrast to 65.22% for PFRNet, over similar cross-database
scenarios (i.e., training on LFW and Adience to predict
on Adience and LFW respectively). These results indicate
that machine learning-based classifiers are not able to reli-
ably predict gender from privacy-enhanced templates. This
is further supported by looking at visualizations obtained by
dimensionality reduction tools. Examples using t-distributed

Fig. 5. Boxplots of similarity scores for non-mated comparison trials of
privacy-enhanced templates with same and different soft-biometric attributes
for both algorithms on the LFW database. Comparison trials for the same
attribute (gender) yield slightly higher similarity scores and more outliers
compared to those for different attributes.

stochastic neighbor embeddings (t-SNE) [33] are depicted in
Figure 6. It can be observed that in their original embeddings,
faces are clustered with respect to gender, which is not the case
for the privacy-enhanced templates. At this point, it is impor-
tant to repeat that such observations are the basis for reporting
high level of soft-biometric privacy in some published works,
e.g., in [14], [15], [17], [18].

B. Vulnerability Analysis

In a first experiment, it is analyzed whether the propo-
sitions about the properties of privacy-enhanced templates
hold. Figure 5 depicts examples of similarity scores for non-
mated comparison trails of privacy-enhanced templates with
same and different soft-biometric attributes for both used
methods (analogous to Figure 3). Like in the original unpro-
tected systems, “same attribute” boxplots are shifted towards
higher similarity score. In addition, facial image pairs which
produce high similarity scores when comparing their cor-
responding privacy-enhanced templates have been visually
inspected. Examples of samples and top-ranked samples that
obtain high similarity scores in non-mated comparison of
privacy-enhanced template are depicted in Figure 7. It can
be seen that with high probability the gender of top-ranked
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TABLE V
ATTACK SUCCESS RATES OF THE ATTACK EMPLOYING THE MAJORITY VOTING STRATEGY (IN %)

TABLE VI
ATTACK SUCCESS RATES OF THE ATTACK EMPLOYING THE AVERAGING STRATEGY (IN %)

Fig. 6. Visualization of original (unprotected) and privacy-enhanced (pro-
tected) face representations over the LFW database using t-SNE.

samples is the same as that of the leftmost sample. This sug-
gests that the effect of broad homogeneity still exists in the
protected domain.

In the second experiment, the different types of attacks are
launched to derive the gender attribute from privacy-enhanced
templates. It is important to note that all the attack strate-
gies are analyzed in cross-database scenarios. In the first step,

the attack is applied using the majority-based voting strategy
to derive gender from privacy-enhanced templates. Obtained
results are summarized in Table V where best obtained results
for each cross-database scenario are marked bold. Scenarios in
which a Web-collected face image database (Adience, LFW,
or CelebA) are used in the attack is considered most rele-
vant since an attacker could effortlessly access and collect
such images. Employing the majority voting-based strategy,
the attacker obtains the gender attribute from the n odd best
scores. Highest attack success rates are achieved for employing
a small number of n = 11 best scores. The average obtained
attack success rates for this attack strategy lies around 85%
which is clearly above that achieved by machine learning-
based classifiers (c.f. Table IV on the right hand side for
privacy-enhanced templates).

Table VI, Table VII, and Table VIII list the attack success
rates for the averaging strategy. Again, best attack success rates
for each cross-database experiment are marked bold. In this
attack strategies n best scores against male and female sub-
jects form the attacker database are averaged and compared to
obtain the gender attribute from privacy-enhanced templates.
For averaging without weights, competitive attack success
rates are achieved for considering n = 10 best males and
females scores. Overall, slight improvements (up to approx-
imately two percent points) are observable when comparing
the averaging strategies to the majority voting-based strategy.
Further, in case scores are weighted w.r.t. their rank, higher
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Fig. 7. Ranked examples of samples that reach a high similarity score in a non-mated comparison of privacy-enhanced templates of PFRNet (first and second
row) and PE-MIU (third and fourth row); images taken from the LFW database.

TABLE VII
ATTACK SUCCESS RATES OF THE ATTACK EMPLOYING THE LINEARLY WEIGHTED AVERAGING STRATEGY (IN %)

TABLE VIII
ATTACK SUCCESS RATES OF THE ATTACK EMPLOYING THE LOGARITHMICALLY WEIGHTED AVERAGING STRATEGY (IN %)

values of n ≥ 50 can reveal improved attack success rates
(around one percent point) compared to the simple averaging.
Moreover, by weighting the scores the attack is expected to
become more robust, i.e., less sensitive to n.

The mentioned disadvantage for the attacker (overlapping
identities in the training database of the privacy enhancement
method and the attacker’s database) becomes clear for the

scenario where the privacy-enhanced templates produced by
PFRNet are attacked using the CelebA as attacker database.
Here, the attack success chances are generally lower compared
to the other evaluated scenarios.

In summary, the obtained results confirm that both analyzed
schemes, i.e., PE-MIU and PFRNet, are highly vulnerable
to the proposed attack. For a better overview, Table IX
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TABLE IX
SUMMARY OF THE BEST AVERAGE ATTACK SUCCESS RATES ACROSS ALL CROSS-DATABASE SCENARIOS (IN %)

summarises the best average attack success rates across all
cross-database scenarios for different values of n with a 95%
confidence interval.

VI. DISCUSSION

This section discusses different relevant aspects of the
attack. Section VI-A describes potential countermeasures
against the attack. Alternative attack methods are briefly dis-
cussed in Section VI-B. The application of the proposed attack
to systems based on other biometric characteristics is discussed
in Section VI-C. Finally, different attack models are described
in Section VI-D.

A. Attack Prevention

The proposed attack may be prevented by other techniques
which meet the goal of protecting soft-biometric information
by protecting biometric data entirely, i.e., biometric template
protection scheme, as elaborated below:

Cancelable biometrics [6] obscure biometric signals by
applying irreversible transformations to them. To achieve
unlinkability, application- or subject-specific transforma-
tion parameters, i.e., keys, are employed. In case an
attacker would be in possession of the key that was used
to protect the biometric data, the presented attack could
be performed offline. Note that key possession usually
does not suffice to revert the protected biometric signal.
If the attacker does not have the key, the proposed attack
would only be applicable online, provided that a suffi-
ciently large set of face images can be presented to the
cancelable biometric system.

Biometric cryptosystems [7] do not return biometric com-
parison scores. In contrast, biometric cryptosystems
retrieve keys which are validated and usually only
released if these are correct, otherwise a failure message
is returned. This means, to perform the proposed attack
to a biometric cryptosystem, a certain amount of false
matches would need to be achieved when presenting the
set of biometric probe images to the system. Obviously,
this would depend on the size of the image set the attacker
is using and the false match rate the system is operated at.
For the conducted experiments, Table X lists the average
proportion of false matches for the best obtained score
for decision thresholds corresponding to relevant false
match rates in verification mode. It can be observed that
for the conducted experiments only extremely low false
match rates would considerably reduce the probability
of false matches. However, if a biometric cryptosystem
would return erroneous or random keys in case the key
validation fail, the attacker may not be able to correctly

TABLE X
RELATIVE AMOUNT OF FALSE MATCHES OBTAINED BY THE

ATTACK IN RELATION TO VERIFICATION-BASED FALSE

MATCH RATES (FMRS) (IN %)

identify false matches which in turn would prevent from
the proposed attack.

Homomorphic encryption [10] requires a probe to be
encrypted with a public key prior to comparing it to
the reference in the encrypted domain. Subsequently,
the comparison score is decrypted using the private key.
Hence, an attacker would require the private key of the
system in order to obtain comparison scores, which would
be a prerequisite to launch the proposed attack. Under the
assumption that an attacker has full access to private keys,
a direct decryption of encrypted references could be per-
formed. Subsequently, soft-biometric attributes could be
reliably extracted from unprotected references. That is,
if the secrecy of the private keys can be guaranteed in
homomorphic encryption schemes, the presented attack
can not be applied.

In summary, it can be argued that certain template protec-
tion mechanisms, in particular biometric cryptosystems and
homomorphic encryption, prevent the presented attack while
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under specific circumstances cancelable biometric systems are
expected to be vulnerable to the attack. However, the lat-
ter assumption would require further investigations which are
beyond the scope of this work.

B. Alternative Attacks

Apart from the proposed attack, facial soft–biometric pri-
vacy enhancement techniques may be vulnerable to further
attacks. As previously mentioned, analyses on privacy protec-
tion capabilities of these methods have mostly been conducted
by employing well-known machine learning-based classifiers,
e.g., SVM. However, alternative classification methods based
on different (machine learning-based) classifier might be
capable of inferring soft-biometric information from privacy-
enhanced templates. In addition, classifiers could be trained to
retrieve unprotected soft-biometric attributes which are inter-
related with a protected soft-biometric attribute. For instance,
soft–biometric privacy enhancement methods may be circum-
vented by deriving gender from another unprotected attribute
such as hairstyle or makeup.

C. Application to Other Characteristics

It is worth mentioning that the attack may only be appli-
cable to biometric systems based on characteristics for which
the effect of broad homogeneity is observable. It has been
shown that biometric attributes can be derived from vari-
ous popular biometric characteristics [34], e.g., fingerprints,
iris, or voice. However, this does not necessarily mean that a
biometric system based on such characteristics utilises these
soft-biometric attributes for recognition purposes. For instance,
it has recently been shown that the effect of broad homo-
geneity can not be observed for commercial iris recognition
systems [21], while many researchers reported high accuracies
for predicting soft-biometric attributes such as gender from iris
images [34].

D. Attack Models

Different models exist for describing scenarios and assump-
tions of attacks on biometric information protection schemes
which are standardized in [35]. The most restrictive model
is referred to as naïve model in which an adversary has
neither information of the underlying algorithm, nor owns
a large biometric database. However, it has recently been
argued that privacy-enhancing face recognition system should
be analyzed under Kerckhoffs’s principle [13]. In this general
model, an adversary is assumed to possess full knowledge
of the underlying algorithm. In addition, the adversary may
have access to one or more privacy-enhanced templates from
one or more databases. The adversary may also possess
knowledge of the statistical properties of biometric features.
In contrast, in the proposed attack, full knowledge of the
underlying algorithm is not required, i.e., merely applying
it as a black-box is sufficient. More precisely, the attack
only requires the privacy-enhancing method as black-box and
a small database. It is noteworthy that such a scenario is
identical to a scenario in which a machine learning-based
classifier would be trained to extract soft-biometric attributes

from privacy-enhanced templates. The latter scenario is usu-
ally considered in the scientific literature for analysing privacy
protection capabilities of soft-biometric privacy enhancement
methods [12].

VII. CONCLUSION

We showed that in order to maintain biometric performance,
privacy-enhancing face recognition methods have to retain cer-
tain properties of the original face recognition systems. This
includes the well-documented effect of broad homogeneity [20],
i.e., face recognition systems produced higher similarity scores
for subjects which share certain soft-biometric attributes such
as gender or race. Based on these observations an attack was
proposed which can be performed offline with the minimal
requirements that the algorithm is available as black box along
with a small set of arbitrary face images. In experiments, high
success rates were achieved for attacking two state-of-the-art
algorithms for facial soft-biometric privacy enhancement. Such
an attack may also be applicable to other schemes which are
conceptually similar to the ones used in the experiments of
this work. While the proposed attack is applied to infer gender
information in this work, it can theoretically be applied to fur-
ther protected attribute, e.g., age or race. It is concluded that the
privacy protection capabilities of some facial soft–biometric
privacy enhancement techniques are currently over-estimated
in published works. Future research on this topic, therefore,
needs to focus on more rigorous evaluations when assessing pri-
vacy protection capabilities of soft-biometric privacy-enhancing
techniques and consider potential attacks, such as the one
introduced in this work.
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