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Introduction

1.1 Motivation

Highly flexible slender structures like cables, hoses, yarns, or ropes, synony-
mously called rods or beams, are crucial parts of high-performance engineering
systems. They allow the transmission of motion, forces, power and digital in-
formation over long distances and through narrow spaces. Their effectiveness
comes from an optimal combination of high axial stiffness and high flexibility
in the other directions. Their capacity to adapt their geometry to the environ-
ment comes with a complex mechanical behaviour which is very difficult to
control. The complex mechanical response of such structures in real opera-
tional conditions is beyond the capabilities of current modelling tools that are
at the core of modern product development cycles. In the European Training
Network THREAD, mechanical models and numerical methods have been de-
veloped for designing highly flexible slender structures with applications in
various fields such as mechanical, aerospace, biomedical, offshore, civil, and
textile engineering.

For structures whose one of the dimensions is much larger than the other
two, such as cables, ropes and hoses, the Cosserat rod theory suggests decom-
posing the 3D problem into a 1D global problem describing the centreline
position and orientation and a 2D local problem describing the cross-sectional
behaviour [1, 24]. Simo and Vu-Quoc did pioneering work in the field of geo-
metrically exact beam formulation in the 1980s [101–103]. These systems are
mathematically modelled as differential-algebraic equations (DAEs) evolving
on nonlinear spaces with internal and external constraints. The presence of
finite rotations along with translational degrees of freedom makes these models
more complex. Manifolds and Lie groups have proven to be suitable spaces for
the formulation of such systems.

Since the analytical solution of such systems is hardly ever available, one
tries to approximate the solution through appropriate numerical integrators.
While designing new numerical methods to tackle the resulting highly non-
linear problems, one is interested in obtaining space and time discretisations
without destroying the mathematical structure and symmetries of the problem,
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Introduction

solving the discrete problem efficiently, guaranteeing the convergence and sta-
bility of the numerical solution despite the extreme sensitivity of slender rod
models to loading conditions and numerical perturbations, [67]. Developing
such geometric time integration algorithms has been the main goal of Work
Package 3 of the THREAD project. A full overview of the results achieved by
THREAD in this regard can be found at [96] and an open-source code reposi-
tory is available at [107]. The report [4] describes the developed methods, their
theoretical analysis and their numerical behaviour for simple benchmark tests.
In the report [67], the contributors provide an excellent literature review of both
the available mathematical formulations of these systems and the numerical
methods built to integrate them. The literature is broad and we try to mention
here important contributions without going into details and with a main focus
on integrators constructed on a Lie group setting.

Among the earliest contributions to numerical integration of mechanical
systems on manifolds and Lie groups, in particular the rotation group SO (3)
and the special Euclidean group SE (3), are the papers from Simo and Vu–Quoc
[103] and Lewis and Simo [66]. In [103], a geometrically exact formulation
for rods undergoing large motions was developed, and the time stepping was
formulated as a version of the Newmark methods [83] applicable to Lie groups.
In [66], conservative methods for Hamiltonian systems on Lie groups were
constructed. These methods are generalised to the so-called α-methods [47] in
a Lie group setting, see [2, 3, 11].

The foundational work of Moser and Veselov on discrete integrable sys-
tems [81] introduced key concepts for the discretisation of mechanical systems,
which are often described by their Euler-Lagrange equations or as Hamilto-
nian systems on manifolds, with or without external forces, [62]. Hamiltonian
systems are often formulated on cotangent bundles and, in such cases, sym-
plectic integrators can be derived through the discretisation of a variational
problem. This approach is often called discrete mechanics. For Euclidean
spaces, this theory was developed in the pioneering work of Marsden and
West [74], and it has later been generalised to Lie groups in a series of pa-
pers [9, 19, 31, 41–43, 61, 64, 65].

The classical Backward differentiation formula (BDF) methods have played
an important role in mechanical engineering, and they were recently generalised
to Lie groups [111]. Lie group integrators have been successfully applied
for the simulation of mechanical systems, and in bio-mechanics, problems of
control and other engineering applications, see, e.g. [22, 48, 61, 89].

The work done in this thesis falls under the contribution to Work Package
3 of THREAD: Geometric numerical methods for rod system dynamics, which
developed system-level simulation methods and geometric time integration al-
gorithms able to deal with dynamic interactions between many flexible rods and

2



1.2 Structure preserving numerical integration

their environment in large scale models while respecting and preserving the non-
linear mathematical structure of the problem. The manifolds and the Lie groups
we have considered in the different papers, such as SO(3),SE(3),S2,T S2,Sn++,
are all suitable for the formulation of rod systems or mechanical systems sim-
ilar to them. We provide numerical examples of mechanical systems set on
such spaces which are inspired from the modelling of beams and industrial
applications.

Outline of the thesis We have divided this thesis into two main parts. We
have dedicated the first part to the geometric numerical integration of mechani-
cal systems. This part comprises Papers 1 [17], 2 [16], and 3 [5], corresponding
to Chapters 2, 3, and 4, respectively. In the second part, we have used machine
learning methods to predict the behaviour of simple examples of beams moti-
vated by medical engineering applications and to detect anomalies in subsea
engineering systems based on data. This part consists of Papers 4 [15] and
5 [14], corresponding to Chapters 5 and 6, respectively. In the rest of this chap-
ter, we provide additional background for an easier understanding of the work
done in the papers. The chapter ends with a summary of the papers.

1.2 Structure preserving numerical integration

Ordinary Differential Equations (ODEs) serve as a cornerstone in the mathemat-
ical modelling of natural phenomena and mechanical systems. Their ubiquity in
representing dynamic processes, from the celestial mechanics governing plan-
etary motion to the intricate patterns of biological systems, underscores their
significance in both theoretical and applied sciences. However, the complex-
ity inherent in these systems often precludes analytical solutions, compelling
the adoption of numerical methods to provide fast and accurate solutions. A
rich and vast theory of classical numerical integrators has been developed for
this purpose, with Runge-Kutta (RK) and Linear Multi-Step (LMS) methods
being the most well-known, [40]. These methods are applied to an Initial Value
Problem (IVP) of the form

ẏ (t ) = f
(
y (t )

) ∈Rn , y (0) = y0 ∈Rn .

While general-purpose numerical techniques offer a means to approximate the
solutions of ODEs, they frequently overlook the underlying geometric and
structural properties that are intrinsic to many systems. These properties, such
as conservation laws and symmetries, play an important role in the long-term
behaviour and stability of the numerical solutions. It is here that the field
of geometric integration emerges as a pivotal discipline, seeking not only to
approximate solutions but to do so in a manner that preserves the qualitative
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features of the original system. We now present a few results about geometric
integration, and we recommend [39] as a good source on the topic for further
understanding. We mention here a few examples of structures one could be
interested in preserving over time. One of these is volume preservation, a
property of divergence-free ODEs. Hamiltonian systems are a subgroup of
the divergence-free systems. Numerous volume-preserving numerical meth-
ods exist, see e.g. [52, 93, 112]. First integrals, or conserved quantities, are
another example. These are functions of the system’s state variables that re-
main constant over time for each trajectory of the system. These quantities
can represent physical properties such as energy, momentum, or angular mo-
mentum in mechanical systems, and their conservation is often a consequence
of the system’s underlying symmetries. An introduction to numerical meth-
ods that maintain these conserved quantities can be found in [39, Chapter IV].
Discrete gradient methods are a famous group of methods that preserve first
integrals along the numerical solution, see e.g. [34, 77]. Further references for
integral-preserving methods are [29, 85, 94]. Another example of geometric
structure is the preservation of the symplectic 2-form ω0 = d pi ∧d qi along
the flow of a Hamiltonian ODE. Numerical methods that preserve ω0 along
the numerical solution are called symplectic integrators. There exist several
known classes of this type, such as symplectic partitioned Runge–Kutta meth-
ods, symplectic splitting methods, variational integrators, and methods based
on generating functions, see [39, Chapter VI] and [63, 76, 99]. Also for re-
versible systems, i.e., systems whose any solution trajectory remains valid even
after reversing the direction of time, methods have been developed to maintain
this property. A family of reversible numerical methods are the symmetric
methods, see [39, Chapter V]. The following example is an illustration of
structure preserving numerical integration.

Example 1. Let us consider the mathematical pendulum with mass m, rod
length ℓ, and gravitational acceleration g , all equal to 1. The Hamiltonian of
this system is

H
(
p, q

)= 1

2
p2 −cos

(
q
)

(1.2.1)

and the equations of motion are

ṗ =−sin
(
q
)

, q̇ = p. (1.2.2)

The quantity (1.2.1) represents the total energy of the system and is constant
along solutions of (1.2.2). This means that the solutions of the system remain
on the level curves where they start. In Figure 1.1, we show the phase space of
the numerical approximations of the solution obtained with the explicit Euler
method and the implicit midpoint rule. One can see how the explicit Euler
method yields wrong approximations, drifting away from the level curves of

4



1.2 Structure preserving numerical integration

10 8 6 4 2 0 2
q

2

1

0

1

2
p

Phase portrait

Explicit Euler method
Implicit midpoint rule
Initial condition

Figure 1.1: Numerical solution of the system (1.2.2) obtained with the explicit Euler
method and the implicit midpoint rule. Initial condition

(
p0, q0

) = (
0, π2

)
, 120 steps

with step size h = 0.05π, (time t = 6π). The grey curves represent the exact flow.

H
(
p, q

)
, while the implicit midpoint rule shows the correct periodic behaviour.

Therefore, we can say that the implicit midpoint rule is a geometric integrator
for this problem.

1.2.1 Structure preserving integration on manifolds

The dynamics described by the solution of the ODE often takes place on man-
ifolds. One strategy for solving these ODEs is to embed the manifold M into
a larger Euclidean space and then apply a classical integrator. This approach
has been shown to not preserve the manifold structure and other important geo-
metric properties of the flow of the ODE. This fact has led to a whole new field
of study, precisely the structure preserving integration on manifolds, which we
have investigated in the first part of this thesis. We illustrate the idea through
the following example.

Example 2. Let us consider a free rigid body with mass centred at the origin,
described by Euler’s equations

ẏ = y × I−1 y, (1.2.3)

where y is the angular momentum vector in the body frame, and I= (
I1, I2, I3

)
is the inertia tensor. This is an ODE on the manifold defined by the constraint

g
(
y
)

:= ∥∥y
∥∥2 −R2 = 0, (1.2.4)

5
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Explicit Euler Implicit midpoint Explicit Lie Euler

Figure 1.2: Numerical solution of the free rigid body with I1 = 2, I2 = 1.5, I3 = 1
approximated with different methods. The square represents the initial condition y0 =(
cos(0.8) ,0,sin(0.8)

)⊤. The explicit Euler and the explicit Lie Euler are integrated
with step size h = 0.1, while the midpoint rule with h = 1. All methods are integrated
for 100 steps. The grey solid lines represent the exact flow of the system.

where R is the norm of the initial vector. The flow of (1.2.3) is energy preserving,
i.e., the quantity

H
(
y
)= 1

2

(
y2

1

I1
+ y2

2

I2
+ y2

3

I3

)
, (1.2.5)

is conserved over time. Both (1.2.4) and (1.2.3) are quadratic invariants. We
can see in Figure 1.2 (left) how the solution obtained with the explicit Euler
method not only does not lie on a closed curve, but it even drifts away from
the sphere. In fact, most of the classical integrators fail in this setting. The
implicit midpoint rule is an exception since it preserves quadratic invariants
exactly by construction. Its perfect behaviour can be observed in Figure 1.2
(middle). Lastly, we compute the numerical solution with the simplest Lie group
method, i.e., the explicit Lie Euler method. This method works intrinsically on
the manifold and ensures that the numerical solution will stay on the manifold.
In Figure 1.2 (right), we can see that it indeed perfectly preserves the manifold
structure but produces a completely wrong qualitative behaviour. Lie group
methods that in addition to the preservation of the manifold structure preserve
also the energy are discussed in Chapter 2.

1.3 Background on Lie groups

This section is dedicated to a more detailed presentation of the concepts and
tools of Lie groups and Lie algebras employed in the next chapters. For a more
detailed treatment, we refer to [49, 60, 108, 109].
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1.3 Background on Lie groups

1.3.1 Lie groups and Lie algebras

A Lie group G is a differentiable manifold equipped with a product · : G×G →G
satisfying all group axioms and the smoothness property:

∀p,r ∈G ,
(
p,r

) 7→ p · r and p 7→ p−1 are smooth functions.

A real matrix Lie group is a smooth subset G ⊆ Rn×n , closed under matrix
products and matrix inversion. In this thesis, we consider only matrix Lie
groups and we often refer to them simply as Lie groups.
For g ,h ∈ G the map Lg : G → G , Lg

(
h
) = g ·h is called left multiplication

and its differential T Lg is the map T Lg : ThG → Tg hG . The notations ThG and
Tg hG denote the tangent space of G at h and g h, respectively. Analogously, the
map Rg : G →G , Rg

(
h
)= h ·g , is called right multiplication and its differential

RLg is the map T Rg : ThG → Thg G. A vector field X is called left-invariant if
T Lg ◦X = X ◦Lg and right-invariant if T Rg ◦X = X ◦Rg . A left-invariant vector
field is uniquely determined by its value at the identity e ∈ G of the group as
X |g = T Lg ◦ X |e . This identification gives a way to identify the tangent space
Tg G at a point g ∈G with the tangent space TeG at the identity e ∈G .
A Lie algebra V is a vector space equipped with a Lie bracket, a bilinear,
skew-symmetric mapping [·, ·] : V ×V →V satisfying the Jacobi identity:

[u, [v, w]]+ [w, [u, v]]+ [v, [w,u]] = 0 ∀u, v, w ∈V.

The Lie algebra g of a Lie group G is the linear space of left- (resp. right-)
invariant vector fields on G . An alternative definition of the Lie algebra g of G
is given by taking g as the tangent space at the identity element, g := TeG . For
a matrix Lie group G , the Lie algebra g is the linear subspace g⊆Rn×n defined
as

g=
{

A ∈Rn×n : A = dρ(s)

ds

∣∣∣∣
s=0

}
,

where ρ(s) ∈G is a smooth curve such that ρ(0) = I , with I ∈G being the n ×n
identity matrix. g is closed under matrix additions, scalar multiplication and
the matrix commutator [A,B ] = AB −B A.
Below are a few examples of Lie groups and their Lie algebras (denoted with
fraktur fonts):

1. GL(n) = {
A ∈Rn×n : det(A) ̸= 0

}
- the general linear group; gl (n) =Rn×n .

Every other matrix Lie group is a closed subgroup of GL(n).

2. SL(n) = {
A ∈Rn×n : det(A) = 1

}
- the special linear group;

sl (n) = {
A ∈Rn×n : trace(A) = 0

}
.
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3. O(n) =
{

A ∈Rn×n : A⊤A = I
}

- the orthogonal group;

so (n) =
{

A ∈Rn×n : A⊤+ A = 0
}

- set of skew-symmetric n ×n matrices.

4. SO(n) = SL(n)∩O(n) =
{

R ∈Rn×n : det(R) = 1,R⊤R = I
}

- the special
orthogonal group, SO(n) ⊂O(n); so (n).

5. SE(n) =


(
R v
0 1

)
: R ∈ SO(n) and v ∈Rn

 - the special Euclidean group.

SE(n) can be identified as SE(n) ≃ SO(n)⋉Rn; se(n) ≃ so(n)⋉Rn ,
where ⋉ is the semidirect product.

The framework of Lie groups is important because several ODEs evolving on
manifolds can be expressed via the concept of a Lie group acting on a manifold.
We present such formulation in Section 2.2.1 of Chapter 2. The concepts
presented below are of fundamental importance for such formulations.

1.3.2 Lie group action

Let G be a Lie group and M a manifold. A Lie group (left) action is a smooth
map ψ : G ×M → M satisfying:

• ψ
(
e,m

)= m, ∀m ∈ M , where e ∈G is the identity element of G ,

• ψ
(
g ·h,m

)=ψ(
g ,ψ

(
h,m

))
, ∀g ,h ∈G ,m ∈ M .

A right action is defined as ψ
(
g ·h,m

) =ψ
(
h,ψ

(
g ,m

))
. A Lie group action

is global if ψ(g ,m) is defined for all m ∈ M and g ∈G and local if it is defined
on an open subset V ⊂G ×M such that {e}×M ⊂V .

Any Lie group G can act on itself by the group multiplication, i.e., with
G = M , ψ

(
g ,m

) = g ·m. The set Om =
{
ψ

(
g ,m

) ∈ M : g ∈G
}

is called the
orbit of the point m ∈ M defined by the group action ψ.

Given the action ψ : G ×M → M of G on M , for each m ∈ M the isotropy
subgroup at m is the subgroup Gm ⊆G consisting of all elements that fix m, i.e.,
Gm =

{
g ∈G :ψ

(
g ,m

)= m
}
. We will see in Chapter 4 that when the isotropy

subgroup Gm is nontrivial, i.e., Gm ̸= {e}, there may be more than one element
of g corresponding to the same vector field in X

(
M

)
. This fact can help to

obtain better numerical approximations of the solutions of the ODE.
The Lie group action ψ is said to be free if for some m ∈ M and g ∈ G,

ψ
(
g ,m

)= m implies g = e. This is equivalent to saying that Gm = {e} ∀m ∈ M .
The action is said to be effective if ψ

(
g1,m

) = ψ
(
g2,m

)
, for g1, g2 ∈ G and

∀m ∈ M if and only if g1 = g2, or in other words, if the only element of G
that fixes every element of M is the identity e. ψ is said to be transitive if
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∀x, y ∈ M , ∃g ∈ G : y = ψ
(
g , x

)
, or equivalently if the orbit of each point in

M coincides with the whole of M . In this case, M is called a homogeneous
space. Any transitive Lie group action corresponds to a homogeneous space
and viceversa.

Theorem 1.1 ( [88, Theorem 2.17]). A Lie group G acts globally and transi-
tively on M if and only if M ≃G/H is isomorphic to the homogeneous space
obtained as G/H with H =Gm the isotropy subgroup of any chosen m ∈ M .

Example 3 (The n-sphere). The n-sphere M = Sn =
{

y ∈Rn+1 : y⊤y = 1
}

is the
homogeneous space related to the left action given by the matrix-vector product
ψ

(
A, y

)= Ay, A ∈ SO(n+1). Sn can be obtained as Sn ≃ SO(n+1)/SO(n). The
case n = 2 is exploited in Chapter 4.

Example 4 (The spherical pendulum). In Chapter 2, we have expressed the
dynamics of the spherical pendulum in terms of a transitive action by SE(3) on
T S2. We then generalise this analysis to the case of a chain of spherical pendula,
which can be seen as a simplified version of a discretised beam. A more realistic
formulation of a beam-type system set on the same configuration space is that
of the geometrically exact fixed-free elastic rod presented in [62, Section 10.5]

Two important constructions in this setting are the adjoint and the coadjoint
representations of a Lie group G. These are ways of representing the elements of
the Lie group as linear transformations of its Lie algebra or its dual, respectively,
considered as vector spaces. We discuss these constructions in Example 10 in
Chapter 2, where we consider the case G = SO(3).

1.3.3 Exponential map

The exponential map exp : g→ G is the most important instrument linking a
Lie group and its Lie algebra. For X ∈ g, it is defined as exp

(
X

) = x (1) with
t 7→ x(t ) ∈G such that ẋ (t ) = X |x(t ), x (0) = e. The exponential map is the flow
of right- or left-invariant vector fields. For matrix Lie groups, exp : g→ G is
defined as

exp
(

A
)= ∞∑

j=0

A j

j !
, A ∈G . (1.3.1)

For certain matrix Lie groups, a closed form of (1.3.1) is known. We mention
here the case of SO(3) and SE(3) which are groups of high importance in
applications to mechanics.

For the map exp : so(3) → SO(3), a closed form is given by

exp
(
ω̂

)= I + sinθ

θ
ω̂+ 1−cosθ

θ2 ω̂2, (1.3.2)
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where I is the 3×3 identity matrix, θ = ∥ω∥, and ω̂ =
[

0 −ω3 ω2
ω3 0 −ω1−ω2 ω1 0

]
∈ so(3),

with ·̂ :R3 → so(3). This is known as Rodrigues formula [73].
For the map exp : se(3) → SE(3) let us first introduce the vector v = (

t
ω

) ∈R6

and the matrix A(v) =
(
ω̂ t
0 0

)
∈ R4×4, where t and ω are the translation and the

rotation 3-vectors, respectively. Then, the exponential of A(v) is obtained as

exp
(

A(v)
)= (

exp
(
ω̂

)
V t

0 1

)
, (1.3.3)

V = I + 1−cosθ

θ2 ω̂+ θ− sinθ

θ3 ω̂2, (1.3.4)

with I and θ as before and exp
(
ω̂

)
as in (1.3.2).

For the construction of numerical schemes, the derivative of the exponential
map

(
dexp

)
and its inverse

(
dexp−1

)
are employed. These tools are important

because they allow the numerical approximation to lie exactly on the mani-
fold, i.e., they ensure the preservation of the manifold structure. We show in
Chapter 2 the general formula to write these functions as a series of nested Lie
brackets [45], using the ad-operator adu : g→ g, v 7→ [u, v]. Computing the
exact expressions of these functions for the particular Lie algebra in use is also
possible. The exact expression for

(
dexp−1

)
of so(3) was computed in [20]. We

compute the exact expression for
(
dexp−1

)
of se(3) in Chapter 2 and discuss

alternatives to these maps when they become computationally infeasible, as is
the case for Lie algebras of larger dimensions.

1.4 Background on Riemannian manifolds

In this section, we give a more detailed presentation of the concepts and tools
of Riemannian geometry, mostly adhering to [60].

1.4.1 Riemannian manifolds

A Riemannian manifold is a pair
(
M , g

)
where M is a smooth manifold and g ,

called Riemannian metric, is a second order symmetric tensor on T M that as-
signs to each point p ∈ M a positive-definite inner product gp : Tp M×Tp M →R.
We use interchangeably the notations g

(·, ·) and 〈·, ·〉 for the inner product, and(
M , g

)
and M for the Riemannian manifold in consideration. A parametrised

curve γ : [a,b] → M is called an admissible curve if there exists a partition(
a0, . . . , ak

)
of [a,b], a = a0 < a1 < ·· · < ak = b, such that γ(t ) is smooth and

γ̇(t ) ̸= 0 on each subinterval
[
ai−1, ai

]
of the partition for i = 1, . . . ,k. In this

thesis, we consider only such curves. Given a metric g , we can define the
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length of an admissible curve γ :
[
a,b

] → M as ℓ(γ) = ∫ b
a

∥∥γ̇ (t )
∥∥d t , where

∥v∥ := 〈v, v〉 1
2 is the norm defined by g , or the g -norm. The metric induces a

distance function between pairs of points p, q ∈ M , d
(
p, q

)= infγp→q ℓ
(
γp→q

)
,

where γp→q is any admissible curve connecting p and q .
Every smooth manifold admits a Riemannian metric. Lie groups are a

large class of homogeneous Riemannian manifolds. A Riemannian metric g
on a Lie group G is called left- (resp. right-) invariant if it is invariant under
left (resp. right) multiplication, i.e., turns left (resp. right) multiplication
into isometries. It is called bi-invariant if it is invariant under both left and
right multiplications. Every Lie group admits a left- or right-invariant metric.
Additionally, every compact Lie group admits a bi-invariant metric, see [60, pg.
67-72]. To furnish G with a Riemannian metric g one can impose an inner
product 〈·, ·〉e in g := TeG and then extend it to a left-invariant metric on G by
defining for each x ∈G and all ux , vx ∈ TxG

g
(
ux , vx

)= 〈
T Lx−1 ux ,T Lx−1 vx

〉
e .

Example 5 (G = SO(n)). Let G = SO(n). For x ∈ SO(n) and all ux , vx ∈
Tx SO(n), a bi-invariant Riemannian metric g in G is g

(
ux , vx

)= trace
(
u⊤

x vx

)
.

1.4.2 Connections, parallel transport, torsion, and curvature

Connections are a tool to compare values of a vector field at different points,
i.e., they serve as a rule for computing directional derivatives of vector fields.
This can be seen intuitively as connecting the nearby tangent spaces where
these values of the vector field live. Formally, a connection ∇ on T M , also
called an affine connection, is a map

∇ :X
(
M

)×X
(
M

)→X
(
M

)
,

(
X ,Y

) 7→ ∇X Y ,

that satisfies the following properties:

• linearity over C∞ (
M

)
in X : for f1, f2 ∈C∞ (

M
)

and X1, X2 ∈X
(
M

)
,

∇ f1 X1+ f2 X2 Y = f1∇X1 Y + f2∇X2 Y ,

• linearity over R in Y : for a1, a2 ∈R and Y1,Y2 ∈X
(
M

)
,

∇X
(
a1Y1 +a2Y2

)= a1∇X Y1 +a2∇X Y2,

• the Leibniz product rule: for f ∈C∞ (
M

)
,

∇X
(

f Y
)= f ∇X Y + (

X f
)

Y .

11
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∇X Y is called the covariant derivative of Y in the direction of X. Since the
covariant derivative ∇X Y of a vector field Y at a point p depends only on the
value of the vector field X at p, one can define the covariant derivative along
a smooth curve γ (t ) in a manifold, D t Y = ∇γ̇(t )Y . A vector field Y ∈X

(
M

)
along a smooth curve γ is said to be parallel along γ with respect to ∇ if
D t Y = 0 for all t . Every tangent vector at any point on a curve can be uniquely
extended to a parallel field along the entire curve.

Theorem 1.2 (Parallel Transport, [60, Theorem 4.31]). Let M be a smooth
manifold, and ∇ a connection in TM. Given a smooth curve γ : I → M , t0 ∈ I ,
and a vector v ∈ Tγ(t0)M , there exists a unique parallel vector field V along γ
such that V

(
t0

)= v . V is called the parallel transport of v along γ.

Parallel transport determines covariant differentiation and the connection,
see [60, p. 105-110].

A connection ∇ on T M defines two tensor fields, the torsion tensor and the
curvature tensor. The torsion tensor is defined as(

X ,Y
) 7→T

(
X ,Y

)
, T :X

(
M

)×X
(
M

)→X
(
M

)
,

T
(
X ,Y

)=∇X Y −∇Y X − [
X ,Y

]
.

(1.4.1)

The curvature tensor is defined as

Z 7→R
(
X ,Y

)
Z , R :X

(
M

)×X
(
M

)×X
(
M

)→X
(
M

)
,

R
(
X ,Y

)
Z =∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z ,

(1.4.2)

and is often called the Riemann curvature endomorphism. The curvature tensor
R can be interpreted as the measure of the failure of parallel transports around
an infinitesimal loop to come back exactly to the original vector.

1.4.3 The Levi-Civita Connection

On every Riemannian manifold there is a natural connection which plays an
important role. It is called the Levi-Civita connection and it is the only con-
nection ∇ that is compatible with the metric g , in the sense that it satisfies the
following product rule for all X ,Y , Z ∈X

((
M , g

))
:

∇X 〈Y , Z 〉 = 〈∇X Y , Z
〉+〈

Y ,∇X Z
〉

, (1.4.3)

and torsion-free, i.e.,
T

(
X ,Y

)= 0. (1.4.4)

Condition (1.4.4) is equivalent to the requirement of ∇ being symmetric, i.e.,
for all X ,Y ∈X

((
M , g

))
∇X Y −∇Y X = [

X ,Y
]

. (1.4.5)
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The existence and the uniqueness of a connection satisfying the properties
mentioned above are summarised in the so-called Fundamental Theorem of
Riemannian Geometry:

Theorem 1.3 ( [60, Theorem 5.10]). Let
(
M , g

)
be a Riemannian manifold.

There exists a unique connection ∇ on T M that is compatible with g and sym-
metric. It is called the Levi-Civita connection of g and is uniquely determined
by the so-called Koszul’s formula:

〈∇X Y , Z
〉= 1

2

(
X 〈Y , Z 〉+Y 〈Z , X 〉−Z 〈X ,Y 〉

−
〈

Y ,
[

X , Z
]〉−

〈
Z ,

[
Y , X

]〉+
〈

X ,
[

Z ,Y
]〉)

.
(1.4.6)

Proof. We only include the proof for the uniqueness here and refer to [60] for
the existence. Suppose, that such a connection ∇ exists and let X ,Y , Z ∈X (

M
)
.

Writing the compatibility equation three times with X ,Y , Z cyclically permuted,
one has

X 〈Y , Z 〉 = 〈∇X Y , Z
〉+〈

Y ,∇X Z
〉

, (1.4.7)

Y 〈Z , X 〉 = 〈∇Y Z , X
〉+〈

Z ,∇Y X
〉

, (1.4.8)

Z 〈X ,Y 〉 = 〈∇Z X ,Y
〉+〈

X ,∇Z Y
〉

. (1.4.9)

Using the symmetry condition on the last term in each line, we have

X 〈Y , Z 〉 = 〈∇X Y , Z
〉+〈

Y ,∇Z X
〉+〈Y , [X , Z ]〉, (1.4.7′)

Y 〈Z , X 〉 = 〈∇Y Z , X
〉+〈

Z ,∇X Y
〉+〈Z , [Y , X ]〉, (1.4.8′)

Z 〈X ,Y 〉 = 〈∇Z X ,Y
〉+〈

X ,∇Y Z
〉+〈X , [Z ,Y ]〉. (1.4.9′)

Adding (1.4.7′) and (1.4.8′) and subtracting (1.4.9′) we obtain

X 〈Y , Z 〉+Y 〈Z , X 〉−Z 〈X ,Y 〉 =
2
〈∇X Y , Z

〉+〈
Y ,

[
X , Z

]〉+
〈

Z ,
[
Y , X

]〉−
〈

X ,
[

Z ,Y
]〉

.

Solving for
〈∇X Y , Z

〉
, one gets (1.4.6). Now suppose ∇1 and ∇2 are two

connections satisfying (1.4.6). Since the right-hand side of (1.4.6) does not
depend on the connection, one has that

〈
∇1

X Y −∇2
X Y , Z

〉
= 0 for all X ,Y , Z .

This is possible only if ∇1
X Y =∇2

X Y for all X and Y . Hence ∇1 =∇2.

Hereafter, we will tacitly assume that the connection ∇ in consideration is
the Levi-Civita connection, unless indicated otherwise.
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1.4.4 Sectional curvature

For a manifold M equipped with the Levi-Civita connection, the sectional
curvature K is defined in terms of the curvature tensor R defined in (1.4.2)
as [60, Proposition 8.29]:

K
(
X ,Y

)=
〈

R
(
X ,Y

)
Y , X

〉
∥X ∥2 ∥Y ∥2 −〈X ,Y 〉2 . (1.4.10)

The numerator of the right-hand side of (1.4.10) is the so-called Riemannian
curvature tensor Rm given by:

Rm
(
X ,Y , Z ,W

)= 〈
R

(
X ,Y

)
Z ,W

〉
. (1.4.11)

Example 6 ( [60, Theorem 8.34]). xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

• The Euclidean space Rn has constant sectional curvature K = 0.

• The sphere of radius R has constant sectional curvature K = 1/R2.

• The hyperbolic space of parameter R has constant sectional curvature
K =−1/R2.

Example 7. The space Sn++ of symmetric positive definite matrices has non-
positive non-constant sectional curvature. The sectional curvatures of Sn++ are
contained in the interval

[
−1

2 ,0
]
, see [26, Proposition I.1].

Remark 1. For a Lie group G with a left-invariant metric g in the Lie algebra,
the sectional curvature of G at any point is determined by the curvature at
the identity e ∈ G. Therefore, it is enough to describe the curvatures in the
Lie algebra g := TeG. The formula for the curvature is the same whether G is
equipped with a right-invariant Riemannian metric or a left-invariant one. For
Lie groups equipped with a bi-invariant metric, the sectional curvatures are
nonnegative in all directions, see [6, Section IV.2].

Remark 2. There exist no simply connected compact manifolds that admit a
metric of non-positive sectional curvature, see [60, Corollary 12.11].

Remark 3 (Cartan-Hadamard theorem). All complete, simply connected mani-
folds of non-positive sectional curvature are diffeomorphic to Rn , see [60, The-
orem 12.8].
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1.4.5 Geodesics

Geodesics are the generalisation of straight lines in Euclidean space to Rie-
mannian manifolds. A curve γ :

[
p, q

] → M is called a geodesic if it has
zero acceleration, i.e., if it has constant velocity. Geodesics are locally length-
minimizing curves. The geodesic γ(t ) with γ(0) = p and γ̇(0) = v is denoted
as γ(t ) = expp (t v). The velocity vector γ̇ (t ) is an example of a vector field
along a curve. For the interpretation of acceleration of a curve on a manifold,
connections come into play as a coordinate-independent way of differentiating
vector fields along curves. For every smooth curve γ, the acceleration of γ
is defined as the vector field D t γ̇ (t ) along γ. Finally, the curve γ is called a
geodesic if along γ (t ),

D t γ̇ (t ) = 0, (1.4.12)

which is equivalent to saying that a geodesic can be characterised as a curve
whose velocity vector field is parallel along the curve.

1.4.6 Non-expansive systems on Riemannian manifolds

When investigating the stability behaviour of numerical integrators, one has first
to make sure that the solutions of the ODE exhibit a certain stable behaviour
and then expect the integrator to mimic it. In our work on the B-stability of
numerical integrators on Riemannian manifolds, we assume the ODE system to
be non-expansive and then investigate the B-stability of the integrators applied
to such systems. In this paragraph, we discuss in more detail non-expansive
systems and the tools employed in their definition.

The t-flow of a vector field X ∈ X
((

M , g
))

, denoted as exp
(
t X

)
, is the

diffeomorphism on M , p 7→ y (t ) where ẏ = X
(
y
)

, y (0) = p, and its domain of
definition may be t-dependent. A set U ⊆ M is geodesically convex if, for each
p, q ∈U , there is a unique minimising geodesic segment from p to q contained
entirely in U . A vector field X is forward complete on U if for every p ∈ U ,
exp

(
t X

)
p is defined for all t ≥ 0. If for every

(
t , p

) ∈ [
0,∞)×U it holds that

exp
(
t X

)
p ∈U , we say that U is forward X -invariant.

We say that the vector field X ∈X
((

M , g
))

satisfies a monotonicity condi-
tion on the set U ⊆ (

M , g
)

with constant ν ∈R if for every x ∈U and vx ∈ Tx M ,
it holds that 〈∇vx X , vx

〉≤ ν∥∥vx
∥∥2 , (1.4.13)

where ∇ is the Levi-Civita connection. We call non-expansive system a quadru-
ple

(
U , X , g ,ν

)
where X ∈X

((
M , g

))
is forward complete on an open, geodesi-

cally convex set U ⊆ (
M , g

)
, U is forward X -invariant, and X satisfies the

monotonicity condition (1.4.13) on U with ν≤ 0. It is important to note here
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that the non-expansivity of a system depends on the choice of the inner product
norm.

1.4.7 Families of curves and the Jacobi equation

Let
(
M , g

)
be a Riemannian manifold and I , J ⊆ R two given intervals. A

continuous map Γ : J × I → M is called a one-parameter family of curves and
it defines two collections of curves in M : the curves Γs(t ) = Γ(s, t ) defined for
t ∈ I by holding s constant, and the curves Γ(t )(s) = Γ(s, t ) defined for s ∈ J by
holding t constant. If Γ is smooth, the velocity vectors of the two groups of
curves are denoted as

∂tΓ(s, t ) = (
Γs

)′ (t ) ∈ TΓ(s,t )M , (1.4.14)

∂sΓ(s, t ) = Γ(t )′(s) ∈ TΓ(s,t )M . (1.4.15)

(1.4.14) and (1.4.15) are examples of a vector field along Γ, i.e., a continuous
map V : J × I → T M such that V (s, t ) ∈ TΓ(s,t )M for each (s, t ).

Γ : J×I → M with J some open interval and I = [a,b] is called an admissible
family of curves if it is smooth on each rectangle J × [

ai−1, ai
]

for a finite
partition a = a0 < . . . < ak = b, and Γs(t ) = Γ(s, t ) is an admissible curve for
each s ∈ J . If γ : [a,b] → M is a given admissible curve, a variation of γ is an
admissible family of curves Γ : J × [a,b] → M such that J is an open interval
containing 0 and Γ0 = γ. If Γ is a variation of γ, the piecewise smooth vector
field V (t ) = ∂sΓ

(
0, t

)
along γ is called the variation field of Γ. These are all

useful instruments one can use to investigate the stability behaviour of the
numerical integrators whose numerical approximation lies on the geodesics of
the manifold. To study the effect of curvature on nearby geodesics, it is useful
to focus on variations through geodesics.

Let γ : I → M be a geodesic, and Γ : K × I → M be a variation of γ, where
I ,K ⊆ R are intervals. Γ is called a variation through geodesics if each of the
curves Γs(t ) = Γ(s, t ) is also a geodesic. There exists an equation, the so-called
Jacobi equation, that must be satisfied by the variation field of a variation
through geodesics.

Theorem 1.4 ( [60, Theorem 10.1]). Let
(
M , g

)
be a Riemannian manifold, let

γ be a geodesic in M , and let J be a vector field along γ. If J is the variation
field of a variation through geodesics, then J satisfies the following equation,
called the Jacobi equation:

D2
t J +R

(
J ,γ′

)
γ′ = 0, (1.4.16)

where R is the curvature tensor from (1.4.2). A smooth vector field along a
geodesic that satisfies the Jacobi equation is called a Jacobi field.
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1.5 Machine learning in computational mechanics

In the past few years, machine learning (ML) techniques have become widely
used in the framework of computational mechanics, [12, 23, 27, 30, 32, 38, 51,
69–72, 75, 80, 95, 98, 100]. These are techniques that rely on large amounts of
available data and on known physical principles. The treatment we provide
here is heavily based on the introductory course [54].

Two important types of learning are unsupervised and supervised learning.
Unsupervised ML models are given unlabelled data and try to find inherent
structures or repeating patterns in the data. In the supervised learning setting,
the data set under consideration is labelled, i.e., next to each point in the data
set there is a label or target associated with it. Consider for example an image
classification task where each image has been labelled under a certain category.
A supervised learning technique classifies the images into the given categories
by comparing its predictions with the true labels. In this thesis, we have worked
with supervised learning problems.

Most of the tasks generally approached with machine learning fall under
one of the following: regression, classification, or clustering tasks. Given
some labelled data points, regression models involve the approximation of an
unknown target function, typically continuous, that defines the relationship
between independent variables and a dependent variable, or outcome, used to
predict the label value for any new set of input features. Classification models
differ from regression ones because their output has a discrete form. They
take as input a set of labelled data, where each label corresponds to a category,
and output the predicted category of new unlabelled instances of data. Both
regression and classification are supervised learning tasks. Clustering is an
unsupervised learning task which aggregates the data based on the underlying
similarities.

Logistic regression (LogR), introduced in [8], is a ML technique widely
used in areas such as biology, medicine, psychology, finance and economics.
It is one of the most used algorithms for classification tasks, thanks to its sim-
plicity, efficiency and interpretability, [44, 50, 78]. Support Vector Machine
(SVM) [10], is another ML model and is used for binary classification of data
applied in many fields [21]. Decision Trees (DTs), introduced in [79], are a
popular technique for classification and regression. For applications of DTs
see [91, 105, 110]. These are all supervised techniques and have been shown to
perform well when used as time series classification methods to detect anoma-
lies in subsea engineering, see Chapter 6.
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1.5.1 Neural networks

For supervised learning tasks, neural networks represent another effective ap-
proach. They are used for regression, classification, and clustering. A neural
network is a parametric function fρ : I →O with parameters ρ = (

ρ1, . . . ,ρℓ
)

given as a composition of multiple transformations,

fρ := fρℓ ◦ · · · ◦ fρ j ◦ · · · ◦ fρ1 ,

where each fρ j represents the j -th layer of nodes, or neurons, of the network,
with j = 1, . . . ,ℓ, and ℓ being the number of layers.

The majority of ML algorithms are composed of a cost function, an optimi-
sation procedure, and a parametrised model. We discuss these components via
the following example of a neural network type.

Example 8 (The multi-layer perceptron). A multi-layer perceptron (MLP) is
a fully connected feed-forward neural network, i.e., every neuron from the
previous layer is connected with each neuron of the next layer. The j -th layer
of an MLP is defined as

f MLP
j (x) =σ

(
A j x+b j

)
∈Rn j , (1.5.1)

where σ is the so-called activation function, x ∈Rn j−1 , and A j ∈Rn j×n j−1 , b j ∈
Rn j are the parameters of the j -th layer, i.e., ρ =

{
A j ,b j

}ℓ
j=1

.

A neural network with at least one hidden layer containing a sufficient
number of neurons, and a non-linear activation function can approximate any
continuous multi-input/multi-output function with arbitrary precision. This is
known as the Universal Approximation Theorem [28, 68, 90].

The activation function σ is a continuous nonlinear scalar function, which
acts component-wise on vectors. Different types of activation functions exist,
with the most common ones being the hyperbolic tangent, the sigmoid function,
and the rectified linear unit (ReLU), which can be written respectively as

σ (z) = tanh (z) , σ (z) = 1

1+e−z , σ (z) =
0 if z < 0

z if z > 0
.

The weights ρ are chosen such that fρ approximates accurately enough a map
of interest f . Usually, this is done by minimising a suitable loss function

Loss
(
ρ

)
. In the context of supervised learning, given a data set Ω=

{
xi ,yi

}M

i=1

consisting of M pairs
(

xi ,yi = f
(
xi

))
, the loss function measures the distance
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between the network predictions fρ
(
xi

)
and the desired outputs yi in some

appropriate norm ∥·∥,

Loss(ρ) = 1

M

M∑
i=1

∥∥∥∥ fρ
(
xi

)
−yi

∥∥∥∥2

.

The process of minimising Loss(ρ) with respect to ρ is known as the training
of the network and is usually done with gradient descent (GD):

ρ(k) 7→ρ(k) −η∇Loss
(
ρ(k)

)
=:ρ(k+1), (1.5.2)

also known as steepest descent. The scalar value η is known as the learning rate.
∇Loss

(
ρ(k)

)
is a sum over the training data of individual partial derivatives.

The computation of the partial derivatives of the loss function with respect to
each network parameter is done through the so-called backpropagation algo-
rithm, which relies on an efficient use of the chain rule for differentiation, see
e.g. [46, Section 5], [54, Section 3.4]. A drawback of (1.5.2) is its sensitivity
to the choice of η. If η is too large, the algorithm starts to oscillate or even
fails to converge at all, and if η is too small, one has a very low convergence
rate. Another drawback is the high computational cost due to two reasons: the
large number of data points and the large dimensions of the weight matrices A j .
A much cheaper alternative to gradient descent is stochastic gradient descent
(SGD). With SGD the gradient at each iteration in (1.5.2) is not computed using
all data points, but rather using randomly chosen subsets B ⊂Ω of the shuffled
data, called batches, of cardinality B = ∣∣B∣∣. It is called stochastic because the
gradient of a partition of the data set might point in a significantly different
direction than the gradient computed for the whole data set. SGD often shows
better convergence properties than GD, especially when combined with an adap-
tive learning rate. Schemes like GD and SGD are widely used because they
require the knowledge only of the first-order derivatives of f , i.e., ∇ f (x). To
obtain a faster convergence rate, several modifications of these methods, the so-
called accelerated gradient descent methods, have been proposed. Among the
most well known of these are Polyak’s heavy ball method [92], also known as
the classical momentum method, Nesterov’s accelerated gradient method [82],
and the Adam method [53]. We have used the latter both in Chapter 5 and
Chapter 6. Methods that involve the evaluation of the Hessian or an approxi-
mation of it are less popular due to the high computational cost and time, and
memory requirements. Examples of such methods are Newton’s method, the
quasi-Newton methods, the trust region methods, see e.g. [84, Sections 3,4,6].

Once the training procedure is complete, the model’s accuracy is measured
in predicting the correct output for new inputs included in the test set that are
unseen during training.
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We have used neural networks in Chapter 5 to approximate configurations
of beams. The following is an example of such a task.

Example 9 (Euler’s elastica). We consider the Euler’s elastica [104], an inex-
tensible beam model, and starting from a data set of solutions of the discretised
static equilibria, we train the neural networks to produce solutions for unseen
boundary conditions. The data set consists of 1000 trajectories, discretised
in 50 intervals, with 90%−10% splitting into training and test set. Figure 1.3
shows the comparison between the true and the predicted trajectories over the
test set. qx and qy denote the components of the positions. For presentation
purposes, only 4 randomly selected trajectories are considered.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
qx

0.2

0.0

0.2

q y

Comparison over test trajectories (qx, qy)
True
Predicted

Figure 1.3: Comparison over test trajectories for the positions
(
qx , qy

)
. These results

are obtained with the MLP architecture from Example 8, with ReLU as activation
function, 2 layers, 824 hidden nodes, learning rate 1.151 ·10−3, and batch size 64. This
combination of hyperparameters yields a training error equal to 3.668 ·10−7 and a test
error equal to 4.518 ·10−7.

1.5.2 Advanced architectures and classes of neural networks

Two more advanced neural network architectures are Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs).

CNNs were introduced in [57] and were originally designed for image pro-
cessing [56, 58]. Their name comes from the fact that they use the convolution
operation (∗) instead of general matrix multiplication in at least one of their
layers. The input they take comes in the form of a matrix, or grid, allowing to
account for 2D grids of pixels in an image. Although CNNs were specifically
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introduced to work with image data, they have reached state of the art results
also in other fields. In particular, they have proved to be effective at process-
ing data in the form of time series, thought of as a 1D grid taking samples at
regular time intervals, making them among the most successful deep learning
architectures for time series processing [7,33,59]. We have used CNNs for this
purpose in Chapter 6.

RNNs, introduced in [97], are neural networks designed for processing
sequential data. They are networks with internal loops that allow information
to persist and propagate over time. A RNN can be thought of as multiple in-
stances of the same neural network where each network propagates information
to the successive one. RNNs are widely applied in various fields. These include
speech recognition, language modelling and generation, and machine transla-
tion, see e.g. [36, 56, 106]. For a more thorough treatment of CNNs and RNNs,
we refer to [35, Chapters 10-11].

In cases when neural networks are applied to physical problems and trained
only based on observations, they do not have knowledge of the physical infor-
mation of the system under consideration. This prevents them from respecting
the underlying physical laws. This issue was addressed in [55], and was re-
cently revived in [95] in the framework of Physics-Informed Neural Networks
(PINNs) and developed further in many directions, see e.g. [27,54,100]. PINNs
incorporate physical laws and principles, often expressed as ODEs or PDEs,
into the learning process. This is done by augmenting the loss function used to
train the neural network with a term enforcing the differential equation on a set
of collocation points inside the domain.

Neural networks have also been applied to learn physical models of clas-
sical mechanics based on data. For Hamiltonian systems, Hamiltonian Neural
Networks (HNNs) were proposed in [37] to learn the energy function from the
position and momentum data of trajectories. In [18], new approaches for the
accurate approximation of the Hamiltonian function of constrained mechanical
systems were proposed. In [25], Lagrangian Neural Networks (LNNs) were pro-
posed. These are neural networks that can parameterise arbitrary Lagrangians
without requiring canonical coordinates. In [87] an approach that learns an
inverse modified Hamiltonian using kernel-based methods is presented. A vari-
ational version of the approach in [87] that learns inverse modified Lagrangian
functions is presented in [86].
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1.6 Summary of papers

The layout, bibliography, and typography of the included papers have been
unified, a few typos have been corrected, and missing punctuation marks have
been added. To fit the B5 format of this thesis, figures have been allowed to
float freely and a few equations have been reformatted. No other substantial
modifications have been made to the papers.

Paper 1: Lie group integrators for mechanical systems

Elena Celledoni, Ergys Çokaj, Andrea Leone,
Davide Murari, and Brynjulf Owren

International Journal of Computer Mathematics, Vol.99, No.1, 2022, pp. 58-88.

In this paper, we consider Lie group integrators with a particular focus on
problems from mechanics. We present the Runge-Kutta-Munthe-Kaas(RKMK)
and the commutator-free classes of Lie group integrators and discuss ways of
adapting the integration step size in time. We discuss Hamiltonian systems on
Lie groups and consider three equivalent formulations of the heavy top as an
application example to which symplectic Lie group integrators are applied. The
RKMK and the commutator-free integrators are tested on two more complex
beam and multi-body inspired problems, the chain of pendula and a system of
two quadrotors transporting a mass point. The Lie groups and manifolds of
interest are SO(n),SE(n),n = 2,3, S2, and T S2.

Paper 2: Dynamics of the N-fold Pendulum in the framework of Lie Group
Integrators

Elena Celledoni, Ergys Çokaj, Andrea Leone,
Davide Murari, and Brynjulf Owren

In: M. Ehrhardt, M. Günther (eds) Progress in Industrial Mathematics at
ECMI 2021. ECMI 2021. Mathematics in Industry(), Vol 39. Springer, Cham.,

2022, pp. 297-304.

This paper is an extension of the previous one. We provide a brief overview
of the RKMK methods with a particular focus on adaptive time-stepping tech-
niques. We consider again the chain of N connected 3D pendulums, whose

dynamics evolves on
(
T S2

)N
. We introduce the necessary mathematical back-

ground that allows us to apply RKMK methods to the system of interest. In
particular, we focus on a condition that guarantees the homogeneity of the
tangent bundle TQ of a manifold Q. We then consider Cartesian products of
homogeneous manifolds. The final part shows numerical experiments compar-
ing constant and variable step size methods applied to the N -fold pendulum.
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Paper 3: B-stability of numerical integrators on Riemannian manifolds

Martin Arnold, Elena Celledoni, Ergys Çokaj,
Brynjulf Owren, and Denise Tumiotto

Journal of Computational Dynamics Vol. 11, No. 1, 2024, pp. 92-107.

In this paper, the notion of B-stability of numerical integrators in Euclidean
spaces proposed in [13] is generalised for the first time to numerical integra-
tors on Riemannian manifolds. We introduce non-expansive systems on such
manifolds and define the B-stability of integrators in terms of the Riemannian
distance function. We consider a geodesic version of the Implicit Euler scheme
(GIE) and prove that it is B-stable on Riemannian manifolds with non-positive
sectional curvature. We provide numerical evidence that the GIE method is
expansive when applied to a certain non-expansive vector field on the 2-sphere,
and that it can become multivalued for large enough step sizes, which is in
contrast to what has been proved in Euclidean spaces. We conclude by deriving
a new improved global error estimate for general Lie group integrators.

Paper 4: Neural networks for the approximation of Euler’s elastica

Elena Celledoni, Ergys Çokaj, Andrea Leone,
Sigrid Leyendecker, Davide Murari, Brynjulf Owren,

Rodrigo T. Sato Martín de Almagro, and Martina Stavole

Submitted to Multibody System Dynamics.

In this paper, we present a discrete and a continuous neural network based
approach for the approximation of Euler’s elastica, a classical model of flexible
slender structures, relevant in many industrial applications. We start from a data
set of solutions of the discretised static equilibria and then we train the neural
networks to produce solutions for unseen boundary conditions. The discrete
approach learns discrete solutions from the discrete data, while the continu-
ous approach computes an arc length parametrisation of the beam configura-
tion. We present numerical evidence that the proposed approaches effectively
approximate configurations of the elastica for a range of different boundary
conditions.

Paper 5: Supervised Time Series Classification for Anomaly Detection in
Subsea Engineering

Ergys Çokaj, Halvor Snersrud Gustad, Andrea Leone,
Per Thomas Moe, and Lasse Moldestad
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Accepted for publication by the Journal of Computational Dynamics.

In this work, we use supervised machine learning models to perform binary
classification on a simulated data set based on a physical system with two
states: Intact and Broken. We discuss the preprocessing of temporal data, using
measures of statistical dispersion and dimension reduction techniques. We
present an intuitive baseline method and discuss its efficiency. We proceed
with the presentation of four methods, Logistic Regression (LogR), Decision
Trees (DTs), Support Vector Machines (SVMs), and Convolutional Neural
Networks (CNNs), and test them on our data set. The experimental results
suggest that machine learning techniques are advantageous as a tool in decision
making.
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Lie Group integrators for mechanical systems

Abstract. Since they were introduced in the 1990s, Lie group integrators
have become a method of choice in many application areas. These include
multibody dynamics, shape analysis, data science, image registration and bio-
physical simulations. Two important classes of intrinsic Lie group integrators
are the Runge–Kutta–Munthe–Kaas methods and the commutator free Lie
group integrators. We give a short introduction to these classes of methods.
The Hamiltonian framework is attractive for many mechanical problems, and
in particular we shall consider Lie group integrators for problems on cotangent
bundles of Lie groups where a number of different formulations are possible.
There is a natural symplectic structure on such manifolds and through varia-
tional principles one may derive symplectic Lie group integrators. We also
consider the practical aspects of the implementation of Lie group integrators,
such as adaptive time stepping. The theory is illustrated by applying the meth-
ods to two nontrivial applications in mechanics. One is the N-fold spherical
pendulum where we introduce the restriction of the adjoint action of the group
SE (3) to T S2, the tangent bundle of the two-dimensional sphere. Finally, we
show how Lie group integrators can be applied to model the controlled path
of a payload being transported by two rotors. This problem is modeled on

R6×(
SO (3)×so (3)

)2×
(
T S2

)2
and put in a format where Lie group integrators

can be applied.

2.1 Introduction

In many physical problems, including multi-body dynamics, the configuration
space is not a linear space, but rather consists of a collection of rotations and
translations. A simple example is the free rigid body whose configuration space
consists of rotations in 3D. A more advanced example is the simplified model
of the human body, where the skeleton at a given time is described as a system
of interacting rods and joints. Mathematically, the structure of such problems
is usually best described as a manifold. Since manifolds by definition can be
equipped with local coordinates, one can always describe and simulate such
systems locally as if they were linear spaces. There are of course many choices
of local coordinates, for rotations some famous ones are: Euler angles, the
Tait-Bryan angles commonly used in aerospace applications, the unit length
quaternions, and the exponentiated skew-symmetric 3×3-matrices. Lie group
integrators represent a somewhat different strategy. Rather than specifying a
choice of local coordinates from the outset, in this approach the model and
the numerical integrator are expressed entirely in terms of a Lie group and its
action on the phase space. This often leads to a more abstract and simpler
formulation of the mechanical system and of the numerical schemes, deferring
further details to the implementation phase.
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Lie group integrators for mechanical systems

In the literature one can find many different types and formats of Lie group
integrators. Some of these are completely general and intrinsic, meaning that
they only make use of inherent properties of Lie groups and manifolds as was
suggested in [6,11,41]. But many numerical methods have been suggested that
add structure or utilise properties which are specific to a particular Lie group
or manifold. Notable examples of this are the methods based on canonical
coordinates of the second kind [46], and the methods based on the Cayley trans-
formation [13, 32], applicable e.g. to the rotation groups and Euclidean groups.
In some applications e.g. in multi-body systems, it may be useful to formulate
the problem as a mix between Lie groups and kinematic constraints, introducing
for instance Lagrange multipliers. Sometimes this may lead to more practical
implementations where a basic general setup involving Lie groups can be fur-
ther equipped with different choices of constraints depending on the particular
application. Such constrained formulations are outside the scope of the present
paper. It should also be noted that the Lie group integrators devised here do not
make any a priori assumptions about how the manifold is represented.

The applications of Lie group integrators for mechanical problems also
have a long history, two of the early important contributions were the Newmark
methods of Simo and Vu–Quoc [50] and the symplectic and energy-momentum
methods by Lewis and Simo [32]. Mechanical systems are often described as
Euler–Lagrange equations or as Hamiltonian systems on manifolds, with or
without external forces, [28]. Important ideas for the discretization of mechan-
ical systems originated also from the work of Moser and Veselov [38, 51] on
discrete integrable systems. This work served as motivation for further devel-
opments in the field of geometric mechanics and for the theory of (Lie group)
discrete variational integrators [20, 27, 30]. The majority of Lie group methods
found in the literature are one-step type generalisations for classical methods,
such as Runge–Kutta type formulas. In mechanical engineering, the classical
BDF methods have played an important role, and were recently generalised [54]
to Lie groups. Similarly, the celebrated α-method for linear spaces proposed
by Hilber, Hughes and Taylor [22] has been popular for solving problems in
multibody dynamics, and in [1, 2, 4] this method is generalised to a Lie group
integrator.

The literature on Lie group integrators is rich and diverse, the interested
reader may consult the surveys [7, 10, 26, 45] and Chapter 4 of the monograph
[18] for further details.

In this paper we discuss different ways of applying Lie group integrators to
simulating the dynamics of mechanical multi-body systems. Our point of de-
parture is the formulation of the models as differential equations on manifolds.
Assuming to be given either a Lie group acting transitively on the manifold M
or a set of frame vector fields on M, we use them to describe the mechanical
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2.2 Lie group integrators

system and further to build the numerical integrator. We shall here mostly
consider schemes of the types commonly known as Crouch–Grossman meth-
ods [11], Runge–Kutta–Munthe–Kaas methods [40, 41] and Commutator-free
Lie group methods [6].

The choice of Lie group action is often not unique and thus the same me-
chanical system can be described in different equivalent ways. Under numerical
discretization the different formulations can lead to the conservation of differ-
ent geometric properties of the mechanical system. In particular, we explore the
effect of these different formulations on a selection of examples in multi-body
dynamics. Lie group integrators have been succesfully applied for the simu-
lation of mechanical systems, and in problems of control, bio-mechanics and
other engineering applications, see for example [47], [27] [9], [25]. The present
work is motivated by applications in modeling and simulation of slender struc-
tures like Cosserat rods and beams [50], and one of the examples presented
here is the application to a chain of pendula. Another example considers an
application for the controlled dynamics of a multibody system.

In Section 2.2 we give a review of the methods using only the essential in-
trinsic tools of Lie group integrators. The algorithms are simple and amenable
for a coordinate-free description suited to object oriented implementations. In
Section 2.3, we discuss Hamiltonian systems on Lie groups, and we present
three different Lie group formulations of the heavy top equations. These sys-
tems (and their Lagrangian counterpart) often arise in applications as building
blocks of more realistic systems which comprise also damping and control
forces. In Section 2.4, we discuss some ways of adapting the integration step
size in time. In Section 2.5 we consider the application to a chain of pen-
dula. And in Section 2.6 we consider the application of a multi-body system of
interest in the simulation and control of drone dynamics.

2.2 Lie group integrators

2.2.1 The formulation of differential equations on manifolds

Lie group integrators solve differential equations whose solution evolve on a
manifold M. For ease of notation we restrict the discussion to the case of au-
tonomous vector fields, although allowing for explicit t-dependence could eas-
ily have been included. This means that we seek a curve y (t ) ∈M whose tan-
gent at any point coincides with a vector field F ∈X (

M
)

and passing through
a designated initial value y0 at t = t0

ẏ (t ) = F |y(t ) , y
(
t0

)= y0. (2.2.1)

Before addressing numerical methods for solving (2.2.1) it is necessary to in-
troduce a convenient way of representing the vector field F . There are different
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Lie group integrators for mechanical systems

ways of doing this. One is to furnish M with a transitive actionψ : G×M→M
by some Lie group G of dimension d ≥ dimM. We denote the action of g on
m as g ·m, i.e., g ·m = ψ

(
g ,m

)
. Let g be the Lie algebra of G, and denote

by exp : g → G the exponential map. We define ψ∗ : g → X
(
M

)
to be the

infinitesimal generator of the action, i.e.,

Fξ
∣∣∣
m
= ψ∗

(
ξ
)∣∣∣

m
= d

d t

∣∣∣∣∣
t=0

ψ
(
exp

(
tξ

)
,m

)
(2.2.2)

The transitivity of the action now ensures that ψ∗
(
g
)∣∣∣

m
= TmM for any m ∈

M, such that any tangent vector vm ∈ TmM can be represented as vm =
ψ∗

(
ξv

)∣∣∣
m

for some ξv ∈ g ξv may not be unique. Consequently, for any vector

field F ∈X (
M

)
there exists a map f :M→ g1 such that

F |m = ψ∗
(

f (m)
)∣∣∣

m
, for all m ∈M (2.2.3)

This is the original tool [41] for representing a vector field on a manifold
with a group action. Another approach was used in [11] where a set of frame
vector fields E1, . . . ,Ed in X

(
M

)
was introduced assuming that for every m ∈

M,
span

{
E1

∣∣
m , . . . , Ed

∣∣
m

}
= TmM.

Then, for any vector field F ∈X (
M

)
there are, in general non-unique, functions

fi :M→R, which can be chosen with the same regularity as F , such that

F |m =
d∑

i=1
fi (m) Ei

∣∣
m .

A fixed vector ξ ∈Rd will define a vector field Fξ on M similar to (2.2.2)

Fξ
∣∣∣
m
=

d∑
i=1

ξi Ei
∣∣
m (2.2.4)

If ξi = fi
(
p

)
for some p ∈M, the corresponding Fξ will be a vector field in the

linear span of the frame which coincides with F at the point p. Such a vector
field was named by [11] as the vector field frozen at p.

The two formulations just presented are in many cases connected, and can
then be used in an equivalent manner. Suppose that e1, . . . ,ed is a basis of the
Lie algebra g, then we can simply define frame vector fields as Ei =ψ∗

(
ei

)
and

the vector field we aim to describe is,

F |m = ψ∗
(

f (m)
)∣∣∣

m
= ψ∗

(∑
i

fi (m)ei

)∣∣∣∣∣∣
m

=∑
i

fi Ei
∣∣
m .

1If the Lie group action is smooth, a map f of the same regularity as F can be found [53].
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2.2 Lie group integrators

As mentioned above there is a non-uniqueness issue when defining a vector
field by means of a group action or a frame. A more fundamental description
can be obtained using the machinery of connections. The assumption is that the
simply connected manifold M is equipped with a connection which is flat and
has constant torsion. Then Fp , the frozen vector field of F at p defined above,
can be defined as the unique element Fp ∈X (

M
)

satisfying

1. Fp

∣∣∣
p
= F |p

2. ∇X Fp = 0 for any X ∈X (
M

)
.

So Fp is the vector field that coincides with F at p and is parallel transported
to any other point on M by the connection ∇. Since the connection is flat, the
parallel transport from the point p to another point m ∈M does not depend on
the chosen path between the two points. For further details, see e.g. [33].

Example 10. For mechanical systems on Lie groups, two important construc-
tions are the adjoint and coadjoint representatons. For every g ∈G there is an
automorphism Adg : g→ g defined as

Adg
(
ξ
)= T Lg ◦T Rg−1

(
ξ
)

where Lg and Rg are the left and right multiplications respectively, Lg
(
h
)= g h

and Rg
(
h
) = hg . Since Ad is a representation, i.e., Adg h = Adg ◦Adh it also

defines a left Lie group action by G on g. From this definition and a duality
pairing 〈·, ·〉 between g and g∗, we can also derive a representation on g∗

denoted Ad∗
g , simply by〈

Ad∗
g

(
µ
)

,ξ
〉
=

〈
µ,Adg

(
ξ
)〉

, ξ ∈ g, µ ∈ g∗.

The action g ·µ= Ad∗
g−1

(
µ
)

has infinitesimal generator given as

ψ∗
(
ξ
)∣∣∣
µ
=−ad∗

ξµ

Following [35], for a Hamiltonian H : T ∗G →R, define H− to be its restriction
to g∗. Then the Lie-Poisson reduction of the dynamical system is defined on g∗

as
µ̇=−ad∗

∂H−
∂µ

µ

and this vector field is precisely of the form (2.2.3) with f
(
µ
)= ∂H−

∂µ

(
µ
)
. A side

effect of this is that the integral curves of these Lie-Poisson systems preserve
coadjoint orbits, making the coadjoint action an attractive choice for Lie group
integrators.
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Lie group integrators for mechanical systems

Let us now detail the situation for the very simple case where G = SO (3).
The Lie algebra so (3) can be modeled as 3×3 skew-symmetric matrices, and
via the standard basis we identify each such matrix ξ̂ by a vector ξ ∈ R3, this
identification is known as the hat map

ξ̂=

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 (2.2.5)

Now, we also write the elements of so (3)∗ as vectors in R3 with duality pairing〈
µ,ξ

〉=µ⊤ξ. With these representations, we find that the coadjoint action can
be expressed as

g ·µ=ψ(
g ,µ

)= Ad∗
g−1µ= gµ

the rightmost expression being a simple matrix-vector multiplication. Since g
is orthogonal, it follows that the coadjoint orbits foliate 3-space into spheri-
cal shells, and the coadjoint action is transitive on each of these orbits. The
free rigid body can be cast as a problem on T SO (3)∗ with a left invariant
Hamiltonian which reduces to the function

H− (
µ
)= 1

2

〈
µ, I−1µ

〉
on so (3)∗ where I : so (3) → so (3)∗ is the inertia tensor. From this, we can now
set f

(
µ
)= ∂H−/∂µ= I−1µ. We then recover the Euler free rigid body equation

as
µ̇= ψ∗

(
f
(
µ
))∣∣∣∣

µ

=−ad∗
I−1µ

µ=−I−1µ×µ

where the last expression involves the cross product of vectors in R3.

2.2.2 Two classes of Lie group integrators

The simplest numerical integrator for linear spaces is the explicit Euler method.
Given an initial value problem ẏ = F

(
y
)
, y (0) = y0 the method is defined as

yn+1 = yn +hF
(
yn

)
for some stepsize h. In the spirit of the previous section,

one could think of the Euler method as the h-flow of the constant vector field
Fyn

(
y
)= F

(
yn

)
, that is

yn+1 = exp
(
hFyn

)
yn

This definition of the Euler method makes sense also when F is replaced by
a vector field on some manifold. In this general situation it is known as the
Lie–Euler method.

We shall here consider the two classes of methods known as Runge–Kutta–
Munthe–Kaas RKMK methods and Commutator-free Lie group methods.
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2.2 Lie group integrators

For RKMK methods the underlying idea is to transform the problem from
the manifold M to the Lie algebra g, take a time step, and map the result back
to M. The transformation we use is

y (t ) = exp
(
σ (t )

) · y0, σ (0) = 0.

The transformed differential equation for σ (t ) makes use of the derivative of
the exponential mapping, the reader should consult [41] for details about the
derivation, we give the final result

σ̇ (t ) = dexp−1
σ(t )

(
f
(
exp

(
σ (t )

) · y0

))
(2.2.6)

The map v 7→ dexpu (v) is linear and invertible when u belongs to some suffi-
ciently small neighborhood of 0 ∈ g. It has an expansion in nested Lie brack-
ets [21]. Using the operator adu (v) = [

u, v
]

and its powers ad2
u v =

[
u,

[
u, v

]]
etc, one can write

dexpu (v) = ez −1

z

∣∣∣∣∣
z=adu

(v) = v + 1

2

[
u, v

]+ 1

6

[
u,

[
u, v

]]+·· · (2.2.7)

and the inverse is

dexp−1
u (v) = z

ez −1

∣∣∣∣
z=adu

(v) = v − 1

2

[
u, v

]+ 1

12

[
u,

[
u, v

]]+·· · (2.2.8)

The RKMK methods are now obtained simply by applying some standard
Runge–Kutta method to the transformed equation (2.2.6) with a time step h,
using initial value σ (0) = 0. This leads to an output σ1 ∈ g and one simply
sets y1 = exp

(
σ1

) · y0. Then one repeats the procedure replacing y0 by y1 in
the next step etc. While solving (2.2.6) one needs to evaluate dexp−1

u (v) as
a part of the process. This can be done by truncating the series (2.2.8) since
σ (0) = 0 implies that we always evaluate dexp−1

u with u = O
(
h
)
, and thus,

the kth iterated commutator adk
u =O

(
hk

)
. For a given Runge–Kutta method,

there are some clever tricks that can be done to minimise the total number of
commutators to be included from the expansion of dexp−1

u v , see [5, 42]. We
give here one concrete example of an RKMK method proposed in [5]

fn,1 = h f
(
yn

)
,

fn,2 = h f

(
exp

(
1
2 fn,1

)
· yn

)
,

fn,3 = h f

(
exp

(
1
2 fn,2 − 1

8

[
fn,1, fn,2

]) · yn

)
,

fn,4 = h f
(
exp

(
fn,3

) · yn

)
,

yn+1 = exp

(
1
6

(
fn,1 +2 fn,2 +2 fn,3 + fn,4 − 1

2

[
fn,1, fn,4

])) · yn .
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The other option is to compute the exact expression for dexp−1
u (v) for the

particular Lie algebra we use. For instance, it was shown in [8] that for the Lie
algebra so (3) one has

dexp−1
u (v) = v − 1

2
u × v +α−2

(
1− α

2 cot α2

)
u × (u × v)

We will present the corresponding formula for se (3) in Section 2.2.3.
The second class of Lie group integrators to be considered here are the

commutator-free methods, named this way in [6] to emphasize the contrast
to RKMK schemes which usually include commutators in the method format.
These schemes include the Crouch-Grossman methods [11] and they have the
format

Yn,r = exp

(
h

∑
k
αk

r,J fn,k

)
· · ·exp

(
h

∑
k
αk

r,1 fn,k

)
· yn

fn,r = f
(
Yn,r

)
yn+1 = exp

(
h

∑
k
βk

J fn,k

)
· · ·exp

(
h

∑
k
βk

1 fn,k

)
· yn

Here the Runge–Kutta coefficients αk
r, j , β

r
j are related to a classical Runge–

Kutta scheme with coefficients ak
r , br in that ak

r =∑
j α

k
r, j and br =∑

j β
r
j . The

αk
r, j , βr

j are usually chosen to obtain computationally inexpensive schemes with
the highest possible order of convergence. The computational complexity of
the above schemes depends on the cost of computing an exponential as well as
of evaluating the vector field. Therefore it makes sense to keep the number of
exponentials J in each stage as low as possible, and possibly also the number of
stages s. A trick proposed in [6] was to select coefficients that make it possible
to reuse exponentials from one stage to another. This is perhaps best illustrated
through the following example from [6], a generalisation of the classical 4th
order Runge–Kutta method.

Yn,1 = yn

Yn,2 = exp
(

1
2 h fn,1

)
· yn

Yn,3 = exp
(

1
2 h fn,2

)
· yn

Yn,4 = exp
(
h fn,3 − 1

2 h fn,1

)
·Yn,2

yn+ 1
2
= exp

(
1

12 h
(
3 fn,1 +2 fn,2 +2 fn,3 − fn,4

)) · yn

yn+1 = exp
(

1
12 h

(− fn,1 +2 fn,2 +2 fn,3 +3 fn,4
)) · yn+ 1

2

(2.2.9)

where fn,i = f
(
Yn,i

)
. Here, we see that one exponential is saved in computing

Yn,4 by making use of Yn,2.
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2.2 Lie group integrators

2.2.3 An exact expression for dexp−1
u (v) in se (3)

As an alternative to using a truncated version of the infinite series for dexp−1
u

(2.2.8), one can consider exact expressions obtained for certain Lie algebras.
Since se (3) is particularly important in applications to mechanics, we give
here its exact expression. For this, we represent elements of se (3) as a pair(

A, a
) ∈R3 ×R3 ∼=R6, the first component corresponding to a skew-symmetric

matrix Â via (2.2.5) and a is the translational part. Now, let ϕ (z) be a real
analytic function at z = 0. We define

ϕ+ (z) = ϕ
(
i z

)+ϕ(−i z
)

2
, ϕ− (z) = ϕ

(
i z

)−ϕ(−i z
)

2i

We next define the four functions

g1 (z) = ϕ− (z)

z
, g̃1 (z) = g ′

1 (z)

z
, g2 (z) = ϕ (0)−ϕ+ (z)

z2 , g̃2 (z) = g ′
2 (z)

z

and the two scalars ρ = A⊤a, α= ∥A∥2. One can show that for any
(

A, a
)

and(
B ,b

)
in se (3), it holds that

ϕ
(
ad(A,a)

)(
B ,b

)= (
C ,c

)
where

C =ϕ (0)B + g1 (α) A×B + g2 (α) A× (
A×B

)
c =ϕ (0)b + g1 (α)

(
a ×B + A×b

)+ρg̃1 (α) A×B +ρg̃2 (α) A× (
A×B

)
+ g2 (α)

(
a × (

A×B
)+ A× (

a ×B
)+ A× (

A×b
))

Considering for instance (2.2.8), we may now use ϕ (z) = z
ez−1 to calculate

g1 (z) =−1

2
, g̃1 (z) = 0, g2 (z) = 1− z

2 cot z
2

z2 , g̃2 (z) = 1

z

d

d z
g2 (z) , ϕ (0) = 1.

and thereby obtain an expression for dexp−1
(A,a)

(
B ,b

)
with the formula above.

Similar types of formulas are known for computing the matrix exponential
as well as functions of the ad-operator for several other Lie groups of small and
medium dimension. For instance in [39] a variety of coordinate mappings for
rigid body motions are discussed. For Lie algebras of larger dimension, both
the exponential mapping and dexp−1

u may become computationally infeasible.
For these cases, one may benefit from replacing the exponential by some other
coordinate map for the Lie group φ : g→ G. One option is to use canonical
coordinates of the second kind [46]. Then for some Lie groups such as the
orthogonal, unitary and symplectic groups, there exist other maps that can be
used and which are computationally less expensive. A popular choice is the
Cayley transformation [13].
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2.3 Hamiltonian systems on Lie groups

In this section we consider Hamiltonian systems on Lie groups. These systems
(and their Lagrangian counterpart) often appear in mechanics applications as
building blocks for more realistic systems with additional damping and control
forces. We consider canonical systems on the cotangent bundle of a Lie group
and Lie-Poisson systems which can arise by symmetry reduction or otherwise.
We illustrate the various cases with different formulations of the heavy top
system.

2.3.1 Semi-direct products

The coadjoint action by G on g∗ is denoted Ad∗
g defined for any g ∈G as〈

Ad∗
gµ,ξ

〉
=

〈
µ,Adgξ

〉
, ∀ξ ∈ g, (2.3.1)

where Ad : g → g is the adjoint representation and for a duality pairing 〈·, ·〉
between g∗ and g.

We consider the cotangent bundle of a Lie group G , T ∗G and identify it with
G×g∗ using the right multiplication Rg : G →G and its tangent mapping Rg∗ :=
T Rg . The cartesian product G ×g∗ can be given a semi-direct product structure
that turns it into a Lie group G :=G ⋉g∗ where the group multiplication is(

g1,µ1
) · (g2,µ2

)= (
g1 · g2,µ1 +Ad∗

g−1
1
µ2

)
. (2.3.2)

Acting by left multiplication any vector field F ∈ X
(
G

)
is expressed by

means of a map f : G → Te G,

F
(
g ,µ

)= Te R(g ,µ) f
(
g ,µ

)= (
Rg∗ f1, f2 −ad∗

f1
µ
)

, (2.3.3)

where f1 = f1
(
g ,µ

) ∈ g, f2 = f2
(
g ,µ

) ∈ g∗ are the two components of f .

2.3.2 Symplectic form and Hamiltonian vector fields

The right trivialised2 symplectic form pulled back to G reads

ω(g ,µ)

((
Rg∗ξ1,δν1

)
,
(
Rg∗ξ2,δν2

))
= 〈

δν2,ξ1
〉−〈

δν1,ξ2
〉+

−
〈
µ,

[
ξ1,ξ2

]〉
, ξ1,ξ2 ∈ g.

(2.3.4)

2ω(
g ,µ

) is obtained from the natural symplectic form on T∗G (which is a differential two-
form), defined as

Ω(
g ,pg

) ((
δv1,δπ1

)
,
(
δv2,δπ2

))= 〈
δπ2,δv1

〉−〈
δπ1,δv2

〉
,

by right trivialization.
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2.3 Hamiltonian systems on Lie groups

See [32] for more details, proofs and for a the left trivialized symplectic form.
The vector field F is a Hamiltonian vector field if it satisfies

iFω= d H ,

for some Hamiltonian function H : T ∗G → R, where iF is defined as iF
(
X

)
:=

ω
(
F, X

)
for any vector field X . This implies that the map f for such a Hamilto-

nian vector field gets the form

f
(
g ,µ

)= (
∂H

∂µ

(
g ,µ

)
,−R∗

g
∂H

∂g

(
g ,µ

))
. (2.3.5)

The following is a one-parameter family of symplectic Lie group integrators on
T ∗G:

Mθ = dexp∗
−ξ

(
µ0 +Ad∗

exp(θξ) (n̄)
)
−θdexp∗

−θξAd∗
exp(θξ) (n̄) , (2.3.6)(

ξ, n̄
)= h f

((
exp

(
θξ

) · g0, Mθ

))
, (2.3.7)

(
g1,µ1

)= (
exp

(
ξ
)

,Ad∗
exp

(
(θ−1)ξ

)n̄)
· (g0,µ0

)
. (2.3.8)

For higher order integrators of this type and a complete treatment see [3].

2.3.3 Reduced equations Lie Poisson systems

A mechanical system formulated on the cotangent bundle T ∗G with a left or
right invariant Hamiltonian can be reduced to a system on g∗ [34]. In fact for
a Hamiltonian H right invariant under the left action of G, ∂H

∂g = 0, and from
(2.3.3) and (2.3.5) we get for the second equation

µ̇=∓ad∗
∂H
∂µ

µ, (2.3.9)

where the positive sign is used in case of left invariance (see e.g. Section 13.4
in [36]). The solution to this system preserves coadjoint orbits, thus using the
Lie group action

g ·µ= Ad∗
g−1µ,

to build a Lie group integrator results in preservation of such coadjoint orbits.
Lie group integrators for this interesting case were studied in [15].

The Lagrangian counterpart to these Hamiltonian equations are the Euler–
Poincaré equations3, [24].

3The Euler–Poincaré equations are Euler–Lagrange equations with respect to a Lagrange–
d’Alembert principle obtained taking constraint variations.
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2.3.4 Three different formulations of the heavy top equations

The heavy top is a simple test example for illustrating the behaviour of Lie
group methods. We will consider three different formulations for this me-
chanical system. The first formulation is on T ∗SO (3) where the equations
are canonical Hamiltonian, a second point of view is that the system is a Lie–
Poisson system on se (3)∗, and finally it is canonical Hamiltonian on a larger
group with a quadratic Hamiltonian function. The three different formulations
suggest the use of different Lie group integrators.

Figure 2.1: Illustration of the heavy top, where C M is the center of mass of the body,
O is the fixed point, g⃗ is the gravitational acceleration vector, and ℓ,Q, χ⃗ follow the
notation introduced in Section 2.3.4.1

2.3.4.1 Heavy top equations on T ∗SO (3).

The heavy top is a rigid body with a fixed point in a gravitational field. The
phase space of this mechanical system is T ∗SO (3) where the equations of the
heavy top are in canonical Hamiltonian form. Assuming

(
Q, p

)
are coordinates

for T ∗SO (3), Π= (
Te LQ

)∗ (
p

)
is the left trivialized or body momentum. The

Hamiltonian of the heavy top is given in terms of
(
Q,Π

)
as

H : SO (3)⋉so (3)∗ →R, H
(
Q,Π

)= 1

2

〈
Π, I−1Π

〉
+M gℓΓ ·X , Γ=Q−1Γ0,

where I : so (3) → so (3)∗ is the inertia tensor, here represented as a diagonal
3×3 matrix, Γ = Q−1Γ0, where Γ0 ∈ R3 is the axis of the spatial coordinate

system parallel to the direction of gravity but pointing upwards, M is the mass
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2.3 Hamiltonian systems on Lie groups

of the body, g is the gravitational acceleration, X is the body fixed unit vector
of the oriented line segment pointing from the fixed point to the center of
mass of the body, ℓ is the length of this segment. The equations of motion on
SO (3)⋉so (3)∗ are

Π̇=Π× I−1Π+M gℓΓ×X , (2.3.10)

Q̇ =Q �I−1Π. (2.3.11)

The identification of T ∗SO (3) with SO (3)⋉so (3)∗ via right trivialization leads
to the spatial momentum variable π= (

Te RQ
)∗ (

p
)=QΠ. The equations written

in the space variables
(
Q,π

)
get the form

π̇= M gℓΓ0 ×QX , (2.3.12)

Q̇ = ω̂Q, ω=QI−1Q⊤π. (2.3.13)

where, the first equation states that the component of π parallel to Γ0 is constant
in time. These equations can be obtained from (2.3.3) and (2.3.5) on the right
trivialized T ∗SO (3), SO (3)⋉so (3)∗, with the heavy top Hamiltonian and the
symplectic Lie group integrators (2.3.7)-(2.3.8) can be applied in this case.
Similar methods were proposed in [32] and [49].

2.3.4.2 Heavy top equations on se∗ (3)

The Hamiltonian of the heavy top is not invariant under the action of SO (3),
so the equations (2.3.10)-(2.3.11) given in Section (2.3.4.1) cannot be reduced
to so∗ (3), nevertheless the heavy top equations are Lie–Poisson on se∗ (3),
[17, 48, 52].

Observe that the equations of the heavy top on T ∗SO (3) (2.3.10)-(2.3.11)
can be easily modified eliminating the variable Q ∈ SO (3) and replacing it with
Γ ∈R3, Γ=Q−1Γ0 to obtain

Π̇=Π× I−1Π+M gℓΓ×X , (2.3.14)

Γ̇= Γ×
(
I−1Π

)
. (2.3.15)

We will see that the solutions of these equations evolve on se∗ (3). In what
follows, we consider elements of se∗ (3) to be pairs of vectors in R3, e.g.

(
Π,Γ

)
.

Correspondingly the elements of SE (3) are represented as pairs
(
g ,u

)
with

g ∈ SO (3) and u ∈R3. The group multiplication in SE (3) is then(
g1,u1

) · (g2,u2
)= (

g1g2, g1u2 +u1
)

,

where g1g2 is the product in SO (3) and g1u is the product of a 3×3 orthogonal
matrix with a vector in R3. The coadjoint representation and its infinitesimal
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generator on se∗ (3) take the form

Ad∗
(g ,u)

(
Π,Γ

)= (
g−1 (

Π−u×Γ)
, g−1Γ

)
,

ad∗
(ξ,u)

(
Π,Γ

)= (−ξ×Π−u×Γ,−ξ×Γ)
.

Using this expression for ad∗
(ξ,u) with

(
ξ= ∂H

∂Π ,u = ∂H
∂Γ

)
, it can be easily seen

that the equations (2.3.9) in this setting reproduce the heavy top equations
(2.3.14)-(2.3.15). Therefore the equations are Lie–Poisson equations on se∗ (3).
However since the heavy top is a rigid body with a fixed point and there are
no translations, these equations do not arise from a reduction of T ∗SE (3).
Moreover the Hamiltonian on se (3)∗ is not quadratic and the equations are not
geodesic equations. Implicit and explicit Lie group integrators applicable to
this formulation of the heavy top equations and preserving coadjoint orbits were
discussed in [15], for a variable stepsize integrator applied to this formulation
of the heavy top see [12].

2.3.4.3 Heavy top equations with quadratic Hamiltonian.

We rewrite the heavy top equations one more time considering the constant
vector p =−M gℓX as a momentum variable conjugate to the position q ∈ R3

and where p =Q−1Γ0 + q̇, and the Hamiltonian is a quadratic function of Π, Q,
p and q:

H : T ∗SO (3)×R3∗×R3 →R,

H
((
Π,Q

)
,
(
p,q

))= 1

2

〈
Π, I−1Π

〉
+ 1

2
∥p−Q−1Γ0∥2 − 1

2
∥Q−1Γ0∥2,

see [23, Section 8.5]. This Hamiltonian is invariant under the left action of
SO (3). The corresponding equations are canonical on T ∗S ≡ S ⋉ s∗ where
S = SO (3)×R3 with Lie algebra s := so (3)×R3 and T ∗S can be identified with
T ∗SO (3)×R3∗×R3. The equations are

Π̇=Π× I−1Π−
(
Q−1Γ0

)
×p, (2.3.16)

Q̇ =Q �I−1Π, (2.3.17)

ṗ = 0, (2.3.18)

q̇ = p−Q−1Γ0, (2.3.19)

and in the spatial momentum variables

π̇=−Γ0 ×Qp, (2.3.20)

Q̇ = ω̂Q, ω=QI−1Q⊤π, (2.3.21)

ṗ = 0, (2.3.22)

q̇ = p−Q−1Γ0. (2.3.23)
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Similar formulations were considered in [31] for the stability analysis of an
underwater vehicle. A similar but different formulation of the heavy top was
considered in [4].

2.3.4.4 Numerical experiments.

We apply various implicit Lie group integrators to the heavy top system. The
test problem we consider is the same as in [4], where Q (0) = I , ℓ= 2, M = 15,
I= diag

(
0.234375,0.46875,0.234375

)
, π (0) = I(0,150,−4.61538

)
, X = (

0,1,0
)

Γ0 =
(
0,0,−9.81

)
.

Figure 2.2: Symplectic Lie group integrators integration on the time interval
[
0,1

]
.

Left: 3D plot of MℓQ−1Γ0. Center: components of QX . The left and center plots are
computed with the same step-size. Right: verification of the order of the methods.

In Figure 2.2 we report the performance of the symplectic Lie group in-
tegrators (2.3.6)-(2.3.8) applied both on the equations (2.3.12)-(2.3.13) with
θ = 0, θ = 1

2 and θ = 1 (SLGI), and to the equations (2.3.20)-(2.3.23) with θ = 1
2

(SLGIKK). The methods with θ = 1
2 attain order 2. In Figure 2.3 we show

the energy error for the symplectic Lie group integrators with θ = 1
2 and θ = 0

integrating with stepsize h = 0.01 for 6000 steps.

2.4 Variable step size

One approach for varying the step size is based on the use of an embedded
Runge–Kutta pair. This principle can be carried from standard Runge–Kutta
methods in vector spaces to the present situation with RKMK and commutator-
free schemes via minor modifications. We briefly summarise the main principle
of embedded pairs before giving more specific details for the case of Lie group
integrators. This approach is very well documented in the literature and goes
back to Merson [37] and a detailed treatment can be found in [19, p. 165–168].

An embedded pair consists of a main method used to propagate the numer-
ical solution, together with some auxiliary method that is only used to obtain
an estimate of the local error. This local error estimate is in turn used to derive
a step size adjustment formula that attempts to keep the local error estimate
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Figure 2.3: Symplectic Lie group integrators, long time integration, h = 0.01, 6000
steps. Top: energy error, bottom 3D plot of MℓQ−1Γ0.

approximately equal to some user defined tolerance tol in every step. Suppose
the main method is of order p and the auxiliary method is of order p̃ ̸= p.
4 Both methods are applied to the input value yn and yields approximations
yn+1 and ỹn+1 respectively, using the same step size hn+1. Now, some distance
measure5 between yn+1 and ỹn+1 provides an estimate en+1 for the size of the
local truncation error. Thus, en+1 =C h p̃+1

n+1 +O
(
h p̃+2

)
. Aiming at en+1 ≈ tol in

every step, one may use a formula of the type

hn+1 = θ
(

tol

en+1

) 1
p̃+1

hn , (2.4.1)

where θ is a ‘safety factor’, typically chosen between 0.8 and 0.9. In case the
step is rejected because en > tol we can redo the step with a step size obtained
by the same formula. We summarise the approach in the following algorithm

4In this paper we will assume p̃ < p in which case the local error estimate is relevant for the
approximation ỹn+1

5There are many options for how to do this in practice, and the choice may also depend on
the application. E.g. a Riemannian metric is a natural and robust alternative here.
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Given yn , hn , tol
Let h := hn

repeat
Compute yn+1, ỹn+1, en+1 from yn , h

Update stepsize h := θ
(

tol
en+1

)α
h

accepted := en+1 < tol
if accepted

update step index: n := n +1
hn := h

until accepted

Here we have used again the safety factor θ, and the parameter α is generally
chosen as α= 1

1+min(p,p̃) .

2.4.1 RKMK methods with variable stepsize

We need to specify how to calculate the quantity en+1 in each step. For RKMK
methods the situation is simplified by the fact that we are solving the local
problem (2.2.6) in the linear space g, where the known theory can be applied
directly. So any standard embedded pair of Runge–Kutta methods described by
coefficients

(
ai j ,bi , ãi j , b̃i

)
of orders

(
p, p̃

)
can be applied to the full dexpinv-

equation (2.2.6) to obtain local Lie algebra approximations σ1, σ̃1 and one
uses e.g. en+1 = ∥σ1 − σ̃1∥ (note that the equation itself depends on yn). For
methods which use a truncated version of the series for dexp−1

u one may also
try to optimise performance by including commutators that are shared between
the main method and the auxiliary scheme.

2.4.2 Commutator-free methods with variable stepsize

For the commutator-free methods of Section 2.2.2 the situation is different
since such methods do not have a natural local representation in a linear space.
One can still derive embedded pairs, and this can be achieved by studying
order conditions [44] as was done in [12]. Now one obtains after each step
two approximations yn+1 and ỹn+1 on M both by using the same initial value
yn and step size hn . One must also have access to some metric d to calculate
en+1 = d

(
yn+1, ỹn+1

)
We give a few examples of embedded pairs.

2.4.2.1 Pairs of order
(
p, p̃

)= (
3,2

)
It is possible to obtain embedded pairs of order 3(2) which satisfy the require-
ments above. We present two examples from [12]. The first one reuses the
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second stage exponential in the update

Yn,1 = yn ,

Yn,2 = exp
(

1
3 h fn,1

)
· yn ,

Yn,3 = exp
(

2
3 h fn,2

)
· yn ,

yn+1 = exp

(
h

(
− 1

12 fn,1 + 3
4 fn,3

))
·Yn,2,

ỹn+1 = exp
(

1
2 h

(
fn,2 + fn,3

)) · yn .

One could also have reused the third stage Yn,3 in the update, rather than Yn,2

Yn,1 = yn ,

Yn,2 = exp
(

2
3 h fn,1

)
· yn ,

Yn,3 = exp

(
h

(
5

12 fn,1 + 1
4 fn,2

))
· yn ,

yn+1 = exp

(
h

(
−1

6 fn,1 − 1
2 fn,2 + fn,3

))
·Yn,3,

ỹn+1 = exp
(

1
4 h

(
fn,1 +3 fn,3

)) · yn .

It is always understood that the frozen vector fields are fn,i := fYn,i .

2.4.2.2 Order
(
4,3

)
The procedure of deriving efficient pairs becomes more complicated as the
order increases. In [12] a low cost pair of order

(
4,3

)
was derived, in the sense

that one attempted to minimise the number of stages and exponentials in the
embedded pair as a whole. This came, however, at the expense of a relatively
large error constant. So rather than presenting the method from that paper, we
suggest a simpler procedure at the cost of some more computational work per
step, we simply furnish the commutator-free method of Section 2.2 by a third
order auxiliary scheme. It can be described as follows:

1. Compute Yn,i , i = 1. . . ,4 and yn+1 from (2.2.9).

2. Compute an additional stage Ȳn,3 and then ỹn+1 as

Ȳn,3 = exp
(

3
4 h fn,2

)
· yn ,

ỹn+1 = exp

(
h
9

(
− fn,1 +3 fn,2 +4 f̄n,3

))
·exp

(
h
3 fn,1

)
· yn .

(2.4.2)
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2.5 The N -fold 3D pendulum

In this section, we present a model for a system of N connected 3-dimensional
pendulums. The modelling part comes from [28], and here we study the vec-
tor field describing the dynamics, in order to re-frame it into the Lie group
integrators setting described in the previous sections. The model we use is
not completely realistic since, for example, it neglects possible interactions be-
tween pendulums, and it assumes ideal spherical joints between them. However,
this is still a relevant example from the point of view of geometric numerical
integration. More precisely, we show a possible way to work with a configu-
ration manifold which is not a Lie group, applying the theoretical instruments
introduced before.

Figure 2.4: Threefold pendulum at a fixed time instant, with fixed point placed at the
origin.

The Lagrangian we consider is a function from
(
T S2

)N
to R. Instead of the

coordinates
(
q1, ..., qN , q̇1, ..., q̇N

)
, where q̇i ∈ Tqi S2, we choose to work with

the angular velocities. Precisely,

Tqi S2 =
{

v ∈R3 : v⊤qi = 0
}
= 〈

qi
〉⊥ ⊂R3,

and hence for any q̇i ∈ Tqi S2 there exist ωi ∈R3 such that q̇i =ωi ×qi , which
can be interpreted as the angular velocity of qi . So we can assume without
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loss of generality that ω⊤
i qi = 0

(
i.e., ωi ∈ Tqi S2

)
and pass to the coordinates(

q1,ω1, q2,ω2, ..., qN ,ωN
) ∈ (

T S2
)N

to describe the dynamics. In this section
we denote with m1, ...,mN the masses of the pendulums and with L1, ...,LN

their lengths. Figure 2.4 shows the case N = 3. We organize the section into
three parts:

1. We define the transitive Lie group action used to integrate this model
numerically.

2. We show a possible way to express the dynamics in terms of the infinites-
imal generator of this action, for the general case of N joint pendulums.

3. We focus on the case N = 2, as a particular example. For this setting,
we present some numerical experiment comparing various Lie group
integrators and some classical numerical integrator. Then we conclude
with numerical experiments on variable step size.

2.5.1 Transitive group action on
(
T S2

)N

We characterize a transitive action for
(
T S2

)N
, starting with the case N = 1 and

generalizing it to N > 1 . The action we consider is based on the identification
between se (3), the Lie algebra of SE (3), and R6. We start from the Ad-action
of SE (3) on se (3) (see [23]), which writes

Ad : SE (3)×se (3) → se (3) ,

Ad
((

R,r
)

,
(
u, v

))= (
Ru,Rv + r̂ Ru

)
.

Since se (3) ≃ R6, the Ad-action allows us to define the following Lie group
action on R6

ψ : SE (3)×R6 →R6, ψ
((

R,r
)

,
(
u, v

))= (
Ru,Rv + r̂ Ru

)
.

We can think of ψ as a Lie group action on T S2 since, for any q ∈R3, it maps
points of

T S2
|q| :=

{(
q̃ ,ω̃

) ∈R3 ×R3 : ω̃⊤q̃ = 0,
∣∣q̃∣∣= ∣∣q∣∣}⊂R6

into other points of T S2
|q|. Moreover, with standard arguments (see [43]), it is

possible to prove that the orbit of a generic point m = (
q,ω

) ∈R6 with ω⊤q = 0
coincides with

Orb (m) = T S2
|q|.
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2.5 The N -fold 3D pendulum

In particular, when q ∈R3 is a unit vector (i.e., q ∈ S2), ψ allows us to define a
transitive Lie group action on T S2 = T S2

|q|=1
which writes

ψ : SE (3)×T S2 → T S2,

ψ
((

A, a
)

,
(
q,ω

))
:=ψ(A,a)

(
q,ω

)=(
Aq, Aω+ â Aq

)= (
q̄ ,ω̄

)
.

To conclude the description of the action, we report here its infinitesimal gener-
ator which is fundamental in the Lie group integrators setting

ψ∗
((

u, v
))∣∣∣∣

(q,ω)
= (

ûq, ûω+ v̂ q
)

.

We can extend this construction to the case N > 1 in a natural way, i.e., through
the action of a Lie group obtained from cartesian products of SE (3) and equipp-
ed with the direct product structure. More precisely, we consider the group
G = (

SE (3)
)N and by direct product structure we mean that for any pair of

elements
δ(1) =

(
δ(1)

1 , ...,δ(1)
N

)
, δ(2) =

(
δ(2)

1 , ...,δ(2)
N

)
∈G ,

denoted with ∗ the semidirect product of SE (3), we define the product ◦ on G
as

δ(1) ◦δ(2) :=
(
δ(1)

1 ∗δ(2)
1 , ...,δ(1)

N ∗δ(2)
N

)
∈G .

With this group structure defined, we can generalize the action introduced for
N = 1 to larger Ns as follows

ψ :
(
SE (3)

)N ×
(
T S2

)N →
(
T S2

)N
,

ψ
((

A1, a1, ..., AN , an
)

,
(
q1,ω1, ..., qN ,ωN

))=
= (

A1q1, A1ω1 + â1 A1q1, ..., AN qN , ANωN + âN AN qN
)

,

whose infinitesimal generator writes

ψ∗
(
ξ
) |m = (

û1q1, û1ω1 + v̂1q1, ..., ûN qN , ûNωN + v̂N qN
)

,

where ξ = [
u1, v1, ...,uN , vN

] ∈ se (3)N and m = (
q1,ω1, ..., qN ,ωN

) ∈ (
T S2

)N
.

We have now the only group action we need to deal with the N−fold spherical
pendulum. In the following part of this section we work on the vector field
describing the dynamics and adapt it to the Lie group integrators setting.
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2.5.2 Full chain

We consider the vector field F ∈X

((
T S2

)N
)
, describing the dynamics of the

N -fold 3D pendulum, and we express it in terms of the infinitesimal generator

of the action defined above. More precisely, we find a function F :
(
T S2

)N →
se (3)N such that

ψ∗
(

f (m)
)∣∣∣

m
= F |m , ∀m ∈

(
T S2

)N
.

We omit the derivation of F starting from the Lagrangian of the system, which

can be found in the section devoted to mechanical systems on
(
S2

)N
of [28].

The configuration manifold of the system is
(
S2

)N
, while the Lagrangian, ex-

pressed in terms of the variables
(
q1,ω1, ..., qN ,ωN

) ∈ (
T S2

)N
, writes

L
(
q,ω

)= T
(
q,ω

)−U
(
q
)= 1

2

N∑
i , j=1

(
Mi jω

⊤
i q̂⊤

i q̂ jω j

)
−

N∑
i=1

 N∑
j=i

m j

g Li e⊤3 qi ,

where

Mi j =
 N∑

k=max{i , j }
mk

Li L j I3 ∈R3×3

is the inertia matrix of the system, I3 is the 3× 3 identity matrix, and e3 =[
0,0,1

]⊤. Noticing that when i = j we get

ω⊤
i q̂⊤

i q̂iωi =ω⊤
i

(
I3 −qi q⊤

i

)
ωi =ω⊤

i ωi ,

we simplify the notation writing

T
(
q,ω

)= 1

2

N∑
i , j=1

(
ω⊤

i R
(
q
)

i j ω j

)
,

where R
(
q
) ∈R3N×3N is a symmetric block matrix defined as

R
(
q
)

i i =
 N∑

j=i
m j

L2
i I3 ∈R3×3,

R
(
q
)

i j =
 N∑

k= j
mk

Li L j q̂⊤
i q̂ j ∈R3×3 = R

(
q
)⊤

j i , i < j .
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The vector field on which we need to work defines the following first-order
ODE

q̇i =ωi ×qi , i = 1, ..., N ,

R
(
q
)
ω̇=

 N∑
j=1
j ̸=i

Mi j |ω j |2q̂i q j −
 N∑

j=i
m j

g Li q̂i e3


i=1,...,N

∈R3N .

By direct computation it is possible to see that, for any q = (
q1, ..., qN

) ∈ (
S2

)N

and ω ∈ Tq1 S2 × ...×TqN S2, we have(
R

(
q
)
ω

)
i
∈ Tqi S2.

Therefore, there is a well-defined linear map

Aq : Tq1 S2 × ...×TqN S2 → Tq1 S2 × ...×TqN S2, Aq (ω) := R
(
q
)
ω.

We can even notice that R
(
q
)

defines a positive-definite bilinear form on this
linear space, since

ω⊤R
(
q
)
ω=

N∑
i , j=1

ω⊤
i q̂⊤

i Mi j q̂ jω j =
N∑

i , j=1

(
q̂iωi

)⊤ Mi j

(
q̂ jω j

)
= v⊤M v > 0.

The last inequality holds because M is the inertia matrix of the system and
hence it defines a symmetric positive-definite bilinear form on Tq1 S2 × ...×
TqN S2, see e.g. [16] 6. This implies the map Aq is invertible and hence we are
ready to express the vector field in terms of the infinitesimal generator. We can
rewrite the ODEs for the angular velocities as follows:

ω̇= A−1
q

([
g1, ..., gN

]⊤)
=

 h1
(
q,ω

)
...

hN
(
q,ω

)
=

 a1
(
q,ω

)×q1

...
aN

(
q,ω

)×qN

 ,

where

gi = gi
(
q,ω

)= N∑
j=1
j ̸=i

M
(
q
)

i j |ω j |2q̂i q j −
 N∑

j=i
m j

g Li q̂i e3, i = 1, ..., N

6It follows from the definition of the inertia tensor, i.e.,

0 ≤ T̃
(
q, q̇

)= 1

2

N∑
i=1

 ∑
j≥i

m j

Li L j q̇⊤
i q̇ j := 1

2
q̇⊤M q̇ .

Moreover, in this situation it is even possible to explicitly find the Cholesky factorization of the
matrix M with an iterative algorithm.
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and a1, ..., aN :
(
T S2

)N → R3 are N functions whose existence is guaranteed
by the analysis done above. Indeed, we can set ai

(
q,ω

)
:= qi ×hi

(
q,ω

)
and

conclude that a mapping f from
(
T S2

)N
to

(
se (3)

)N such that

ψ∗
(

f
(
q,ω

)) |(q,ω) = F |(q,ω)

is the following one,

f
(
q,ω

)=


ω1

q1 ×h1

...

...
ωN

qN ×hN


∈ se (3)N ≃R6N .

We will not go into the Hamiltonian formulation of this problem; however, we
remark that a similar approach works even in that situation. Indeed, following

the derivation presented in [28], we see that for a mechanical system on
(
S2

)N

the conjugate momentum writes

T ∗
q1

S2 × ...T ∗
qN

S2 ∋π= (
π1, ...,πN

)
, where πi =−q̂2

i
∂L

∂ωi
,

and its components are still orthogonal to the respective base points qi ∈ S2.
Moreover, Hamilton’s equations take the form

q̇i =
∂H

(
q,π

)
∂πi

×qi ,

π̇i =
∂H

(
q,π

)
∂qi

×qi +
∂H

(
q,π

)
∂πi

×πi ,

which implies that setting

f
(
q,π

)= [
∂q1 H

(
q,π

)
, ∂π1 H

(
q,π

)
, . . . , ∂qN H

(
q,π

)
, ∂πN H

(
q,π

)]
we can represent even the Hamiltonian vector field of the N−fold 3D pendulum
in terms of this group action.

2.5.2.1 Case N = 2

We have seen how it is possible to turn the equations of motion of a N−chain of
pendulums into the Lie group integrators setting. Now we focus on the example
with N = 2 pendulums. The equations of motion write

q̇1 = ω̂1q1, q̇2 = ω̂2q2,
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2.5 The N -fold 3D pendulum

R
(
q
)[ω̇1

ω̇2

]
=


(
−m2L1L2|ω2|2q̂2 +

(
m1 +m2

)
g L1ê3

)
q1(

−m2L1L2|ω1|2q̂1 +m2g L2ê3

)
q2

 , (2.5.1)

where

R
(
q
)= [(

m1 +m2
)

L2
1I3 m2L1L2q̂⊤

1 q̂2

m2L1L2q̂⊤
2 q̂1 m2L2

2I3

]
.

As presented above, the matrix R
(
q
)

defines a linear invertible map of the space
Tq1 S2 ×Tq2 S2 onto itself:

A(q1,q2) : Tq1 S2 ×Tq2 S2 → Tq1 S2 ×Tq2 S2,
[
ω1,ω2

]⊤ → R
(
q
)[
ω1,ω2

]⊤ .

We can easily see that it is well defined since

R
(
q
)[ω1

ω2

]
=

[(
m1 +m2

)
L2

1I3 m2L1L2q̂⊤
1 q̂2

m2L1L2q̂⊤
2 q̂1 m2L2

2I3

][
v̂1q1

v̂2q2

]
=

[
r̂1q1

r̂2q2

]
∈

(
T S2

)2

with
r1

(
q,ω

)
:= (

m1 +m2
)

L2
1v1 +m2L1L2q̂2v̂2q2,

r2
(
q,ω

)
:= m2L1L2q̂1v̂1q1 +m2L2

2v2.

This map guarantees that if we rewrite the pair of equations for the angular
velocities in (2.5.1) as

ω̇= R−1 (
q
)

(
−m2L1L2|ω2|2q̂2 +

(
m1 +m2

)
g L1ê3

)
q1(

−m2L1L2|ω1|2q̂1 +m2g L2ê3

)
q2

= R−1 (
q
)

b =

= A−1
(q1,q2)

(
b
)= [

h1

h2

]
∈ Tq1 S2 ×Tq2 S2,

then we are assured that there exists a pair of functions a1, a2 : T S2×T S2 →R3

such that

ω̇=
[

a1
(
q,ω

)×q1

a2
(
q,ω

)×q2

]
=

[
h1

(
q
)

h2
(
q
)] .

Since we want ai ×qi = hi , we just impose ai = qi ×hi and hence the whole
vector field can be rewritten as

q̇1

ω̇1

q̇2

ω̇2

=


ω1 ×q1(

q1 ×h1
)×q1

ω2 ×q2(
q2 ×h2

)×q2

= F |(q,ω) ,
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with hi = hi
(
q,ω

)
and

[
h1

(
q,ω

)
h2

(
q,ω

)]= R−1 (
q
)

(
−m2L1L2|ω2|2q̂2 +

(
m1 +m2

)
g L1ê3

)
q1(

−m2L1L2|ω1|2q̂1 +m2g L2ê3

)
q2

 .

Therefore, we can express the whole vector field in terms of the infinitesimal
generator of the action of SE (3)×SE (3) as

ψ∗
(

f
(
q,ω

)) |(q,ω) = F |(q,ω)

through the function

f : T S2 ×T S2 → se (3)×se (3) ≃R12,
(
q,ω

)→ (
ω1, q1 ×h1,ω2, q2 ×h2

)
.

2.5.3 Numerical experiments

In this section, we present some numerical experiment for the N−chain of pen-
dulums. We start by comparing the various Lie group integrators that we have
tested (with the choice N = 2), and conclude by analyzing an implementation
of variable step size. Lie group integrators allow to keep the evolution of the
solution in the correct manifold, which is T S2 ×T S2 when N = 2. Hence, we
briefly report two sets of numerical experiments. In the first one, we show the
convergence rate of all the Lie group integrators tested on this model. In the
second one, we check how they behave in terms of preserving the two following
relations:

• qi (t )⊤ qi (t ) = 1, i.e., qi (t ) ∈ S2, i = 1,2,

• qi (t )⊤ωi (t ) = 0, i.e., ωi (t ) ∈ Tqi (t )S2, i = 1,2,

completing the analysis with a comparison with the classical Runge–Kutta
4 and with ODE45 of MATLAB. The Lie group integrators used to obtain
the following experiments are Lie Euler, Lie Euler Heun, three versions of
Runge–Kutta–Munthe–Kaas methods of order four and one of order three. The
RKMK4 with two commutators mentioned in the plots, is the one presented in
Section 2.2, while the other schemes can be found for example in [7].

Figure 2.5 presents the plots of the errors, in logarithmic scale, obtained
considering as a reference solution the one given by the ODE45 method, with
strict tolerance. Here, we used an exact expression for the dexp−1

σ function.
However, we could obtain the same results with a truncated version of this
function, keeping a sufficiently high number of commutators, or after some
clever manipulations of the commutators (as with RKMK4 with 2 commuta-
tors, see Section 2.2.2). The schemes show the right convergence rates, so
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2.5 The N -fold 3D pendulum

Figure 2.5: Convergence rate of the implemented Lie group integrators, based on
global error considering as a reference solution the one of ODE45, with strict tolerance.

Figure 2.6: Visualization of the quantity 1−qi (t )⊤ qi (t ), i = 1,2, for time t ∈ [
0,5

]
.

These plots focus on the preservation of the geometry of S2.
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Figure 2.7: Visualization of the inner product qi (t )⊤ωi (t ), i = 1,2, for t ∈ [
0,5

]
.

These plots focus on the preservation of the geometry of Tqi (t )S2.

we can move to the analysis of the time evolution on T S2 ×T S2. In Figure
2.6 we can see the comparison of the time evolution of the 2−norms of q1 (t )
and q2 (t ), for 0 ≤ t ≤ T = 5. As highlighted above, unlike classical numerical
integrators like the one implemented in ODE45 or the Runge–Kutta 4, the Lie
group methods preserve the norm of the base components of the solutions, i.e.,
|q1 (t ) | = |q2 (t ) | = 1 ∀t ∈ [

0,T
]
. Therefore, as expected, these integrators pre-

serve the configuration manifold. However, to complete this analysis, we show
the plots making a similar comparison but with the tangentiality conditions.
Indeed, in Figure 2.7 we compare the time evolutions of the inner products
q1 (t )⊤ω1 (t ) and q2 (t )⊤ω2 (t ) for t ∈ [

0,5
]
, i.e., we see if these integrators

preserve the geometry of the whole phase space T S2 ×T S2. As we can see,
while for Lie group methods these inner products are of the order of 10−14 and
10−15, the ones obtained with classical integrators show that the tangentiality
conditions are not preserved with the same accuracy.

We now move to some experiments on variable stepsize. In this last part
we focus on the RKMK pair coming from Dormand–Prince method (DOPRI
5(4) [14]), which we denote with RKMK(5,4). The aim of the plots we show
is to compare the same schemes, both with constant and variable stepsize.
We start by setting a tolerance and solving the system with the RKMK(5,4)
scheme. Using the same number of time steps, we solve it again with RKMK
of order 5. These experiments show that, for some tolerance and some initial
conditions, the step size’s adaptivity improves the numerical approximation
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accuracy. Since we do not have an available analytical solution to quantify
these two schemes’ accuracy, we compare them with the solution obtained with
a strict tolerance and ODE45. We compute such accuracy, at time T = 3, by
means of the Euclidean norm of the ambient space R6N .

Figure 2.8: Comparison of accuracy at final time (on the left)and step adaptation for
the case N = 20 (on the right), with all pendulums of length Li = 1.

In Figure 2.8, we compare the performance of the constant and variable
stepsize methods, where the structure of the initial condition is always the same,
but what changes is the number of connected pendulums. The considered initial
condition is

(
qi ,ωi

) = (p
2/2,0,

p
2/2,0,1,0

)
,∀i = 1, ..., N , and all the masses

and lengths are set to 1. From these experiments we can notice situations where
the variable step size beats the constant one in terms of accuracy at the final
time, like the case N = 2 which we discuss in more detail afterwards.

The results presented in Figure 2.10 (left)do not aim to highlight any partic-
ular relation between how the number of pendulums increases or the regularity
of the solution. Indeed, as we add more pendulums, we keep incrementing
the total length of the chain since

∑N
i=1 Li = N . Thus, here we do not have

any appropriate limiting behaviour in the solution as N →+∞. The behaviour
presented in that figure seems to highlight an improvement in accuracy for the
RKMK5 method as N increases. However, this is biased by the fact that when
we increase N , to achieve the fixed tolerance of 10−6 with RKMKK(5,4), we
need more time steps in the discretization. Thus, this plot does not say that as
N increases, the dynamics becomes more regular; it suggests that the number
of required timesteps increases faster than the “degree of complexity” of the
dynamics.

For the case N = 2, we notice a relevant improvement passing to variable
stepsize. In Figures 2.9 and 2.11 we can see that, for this choice of the pa-
rameters, the solution behaves smoothly in most of the time interval, but then
there is a peak in the second component of the angular velocities of both the
masses, at t ≈ 2.2. We can observe this behaviour both in the plots of Figure
2.9, where we project the solution on the twelve components and even in Figure
2.11 (right). In the latter, we plot two of the vector field components, i.e., the
second components of the angular accelerations ω̇i (t ), i = 1,2. They show an
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Figure 2.9:
(
q1 (t ) ,ω1 (t )

)
(left),

(
q2 (t ) ,ω2 (t )

)
(right). In these plots we represent the

six components of the solution describing the dynamics of the first mass (on the left)and
of the second mass (on the right), for the case N = 2. We compare the behaviour of the
solution obtained with constant stepsize RKMK5, the variable stepsize RKMK(5,4)
and ODE45.

abrupt change in the vector field in correspondence to t ≈ 2.2, where the step
is considerably restricted. Thus, to summarize, the gain we see with variable
stepsize when N = 2 is motivated by the unbalance in the length of the time
intervals with no abrupt changes in the dynamics and those where they appear.
Indeed, we see that apart from a neighbourhood of t ≈ 2.2, the vector field does
not change quickly. On the other hand, for the case N = 20, this is the case.
Thus, the adaptivity of the stepsize does not bring relevant improvements in the
latter situation.

Figure 2.10: Comparison of accuracy at final time (on the left)and step adaptation for
the case N = 20 (on the right), with all pendulums of length Li = 5/N .

The motivating application behind our choice of this mechanical system
has been some intuitive relation with a beam model, as highlighted in the
introduction of this work. However, for this limiting behaviour to make sense,
we should fix the length of the entire chain of pendulums to some L (the length
of the beam at rest) and then set the size of each pendulum to Li = L/N . In this
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Figure 2.11: Step adaptation (left), Zoom at final times (middle), Values of ω̇(2)
i (t )

(right). On the left, we compare the adaptation of the stepsize of RKMK(5,4)with
the one of ODE45 and with the constant stepsize of RKMK5. In the center we plot
the second component of the angular velocities ω(2)

i , i = 1,2, and we zoom in the last
time interval t ∈ [

2.1,3
]

to see that the variable stepsize version of the method better
reproduces the reference solution. On the right, we visualize the speed of variation of
second component of the angular velocities.

case, keeping the same tolerance of 10−6 for RKMK(5,4), we get the results
presented in the following plot. We do not investigate more in details this
approach, which might be relevant for further work, however we highlight that
here the step adaptivity improves the results as we expected.

2.6 Dynamics of two quadrotors transporting a mass
point

In this section we consider a multibody system made of two cooperating
quadrotor unmanned aerial vehicles (UAV)connected to a point mass (sus-
pended load)via rigid links. This model is described in [28, 29].

We consider an inertial frame whose third axis goes in the direction of
gravity, but opposite orientation, and we denote with y ∈R3 the mass point and
with y1, y2 ∈R3 the two quadrotors. We assume that the links between the two
quadrotors and the mass point are of a fixed length L1,L2 ∈R+. The configura-
tion variables of the system are: the position of the mass point in the inertial
frame, y ∈R3, the attitude matrices of the two quadrotors,

(
R1,R2

) ∈ (
SO (3)

)2

and the directions of the links which connect the center of mass of each quadro-

tor respectively with the mass point,
(
q1, q2

) ∈ (
S2

)2
. The configuration mani-

fold of the system is Q =R3×(
SO (3)

)2×
(
S2

)2
. In order to present the equations

of motion of the system we start by identifying T SO (3) ≃ SO (3)× so (3) via
left-trivialization. This choice allows us to write the kinematic equations of the
system as

Ṙi = Ri Ω̂i , q̇i = ω̂i qi i = 1,2, (2.6.1)

where Ω1,Ω2 ∈ R3 represent the angular velocities of each quadrotor, respec-
tively, and ω1,ω2 express the time derivatives of the orientations q1, q2 ∈ S2,
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Figure 2.12: Two quadrotors connected to the mass point my via massless links of
lengths Li .

respectively, in terms of angular velocities, expressed with respect to the body-
fixed frames. From these equations we define the trivialized Lagrangian

L
(
y, ẏ ,R1,Ω1,R2,Ω2, q1,ω1, q2,ω2

)
:R6 × (

SO (3)×so (3)
)2 ×

(
T S2

)2 →R,

as the difference of the total kinetic energy of the system and the total potential
(gravitational) energy, L = T −U , with:

T = 1

2
my∥ẏ∥2 + 1

2

2∑
i=1

(
mi∥ẏ −Li ω̂i qi∥2 +Ω⊤

i JiΩi

)
and

U =−my g e⊤3 y −
2∑

i=1
mi g e⊤3

(
y −Li qi

)
,

where J1, J2 ∈R3×3 are the inertia matrices of the two quadrotors and m1,m2 ∈
R+ are their respective total masses. In this system each of the two quadrotors
generates a thrust force, which we denote with ui =−Ti Ri e3 ∈R3, where Ti is
the magnitude, while e3 is the direction of this vector in the i−th body-fixed
frame, i = 1,2. The presence of these forces make it a non conservative system.
Moreover, the rotors of the two quadrotors generate a moment vector, and we
denote with M1, M2 ∈ R3 the cumulative moment vector of each of the two
quadrotors. To derive the Euler–Lagrange equations, a possible approach is
through Lagrange–d’Alambert’s principle, as presented in [28]. We write them
in matrix form as

A (z) ż = h (z) , (2.6.2)

70



2.6 Dynamics of two quadrotors transporting a mass point

where
z = [

y, v,Ω1,Ω2,ω1,ω2
]⊤ ∈R18,

A (z) =



I3 03 03 03 03 03

03 Mq 03 03 03 03

03 03 J1 03 03 03

03 03 03 J2 03 03

03 − 1
L1

q̂1 03 03 I3 03

03 − 1
L2

q̂2 03 03 03 I3


,

h (z) =



h1 (z)
h2 (z)
h3 (z)
h4 (z)
h5 (z)
h6 (z)


=



v

−∑2
i=1 mi Li∥ωi∥2qi +Mq g e3 +∑2

i=1 u∥
i

−Ω1 × J1Ω1 +M1

−Ω2 × J2Ω2 +M2

− 1
L1

g q̂1e3 − 1
m1L1

q1 ×u⊥
1

− 1
L2

g q̂2e3 − 1
m2L2

q2 ×u⊥
2


,

where Mq = my I3 +∑2
i=1 mi qi q⊤

i , and u∥
i ,u⊥

i are respectively the orthogonal
projection of ui along qi and to the plane Tqi S2, i = 1,2, i.e., u∥

i = qi qT
i ui ,

u⊥
i =

(
I −qi qT

i

)
ui . These equations, coupled with the kinematic equations in

(2.6.1), describe the dynamics of a point

P = [
y, v, R1, Ω1, R2, Ω2, q1, ω1, q2, ω2

] ∈ M = TQ.

Since the matrix A (z) is invertible, we pass to the following set of equations

ż = A−1 (z)h (z) := h̃ (z) := h̄
(
P

)= [
h̄1

(
P

)
, ..., h̄7

(
P

)]⊤
. (2.6.3)

2.6.1 Analysis via transitive group actions

We identify the phase space M with M ≃ TR3×(
T SO (3)

)2×
(
T S2

)2
. The group

we consider is
Ḡ =R6 × (

T SO (3)
)2 × (

SE (3)
)2 ,

where the groups are combined with a direct-product structure and R6 is the
additive group. For a group element

g =
((

a1, a2
)

,
((

B1,b1
)

,
(
B2,b2

))
,
((

C1,c1
)

,
(
C2,c2

))) ∈ Ḡ

and a point P ∈ M in the manifold, we consider the following left action

ψg
(
P

)= [
y +a1, v +a2, B1R1, Ω1 +b1, B2R2, Ω2 +b2,

C1q1, C1ω1 + c1 ×C1q1, C2q2, C2ω2 + c2 ×C2q2
]
.
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The well-definiteness and transitivity of this action come from standard argu-
ments, see for example [43]. The infinitesimal generator associated to

ξ= [
ξ1, ξ2, η1, η2, η3, η4, µ1, µ2, µ3, µ4

] ∈ ḡ,

where ḡ= TeḠ , writes

ψ∗
(
ξ
)∣∣∣

P
=

[
ξ1, ξ2, η̂1R1, η2, η̂3R2, η4,

µ̂1q1, µ̂1ω1 + µ̂2q1, µ̂3q2, µ̂3ω2 + µ̂4q2

]
.

We can now focus on the construction of the function f : M → ḡ such that

ψ∗
(

f
(
P

))∣∣∣∣
P
= F |P , where

F |P =
[

h̄1
(
P

)
, h̄2

(
P

)
, R1Ω̂1, h̄3

(
P

)
, R2Ω̂2,

h̄4
(
P

)
, ω̂1q1, h̄5

(
P

)
, ω̂2q2, h̄6

(
P

)] ∈ TP M

is the vector field obtained combining the equations (2.6.1)and (2.6.3). We
have

f
(
P

)= [
h̄1

(
P

)
, h̄2

(
P

)
, R1Ω1, h̄3

(
P

)
, R2Ω2, h̄4

(
P

)
,

ω1, q1 × h̄5
(
P

)
, ω2, q2 × h̄6

(
P

)] ∈ ḡ.

We have obtained the local representation of the vector field F ∈X(
M

)
in terms

of the infinitesimal generator of the transitive group action ψ, hence we can
solve for one time step ∆t the IVP

σ̇ (t ) = dexp−1
σ(t )

(
f

(
ψ

(
exp

(
σ (t )

)
,P (t )

)))
σ (0) = 0 ∈ ḡ

and then update the solution P
(
t +∆t

)=ψ(
exp

(
σ

(
∆t

))
,P (t )

)
.

The above construction is completely independent of the control functions{
u∥

i ,u⊥
i , Mi

}
i=1,2

and hence it is compatible with any choice of these parame-
ters.

2.6.2 Numerical experiments

We tested Lie group numerical integrators for a load transportation problem
presented in [29]. The control inputs

{
u∥

i ,u⊥
i , Mi

}
i=1,2

are constructed such
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that the point mass asymptotically follows a given desired trajectory yd ∈ R3,
given by a smooth function of time, and the quadrotors maintain a prescribed
formation relative to the point mass. In particular, the parallel components
u∥

i are designed such that the payload follows the desired trajectory yd (load
transportation problem), while the normal components u⊥

i are designed such
that qi converge to desired directions qi d (tracking problem in S2). Finally, Mi

are designed to control the attitude of the quadrotors.

Figure 2.13: Convergence rate of the numerical schemes compared with ODE45

In this experiment we focus on a simplified dynamics model, i.e., we ne-
glect the construction of the controllers Mi for the attitude dynamics of the
quadrotors. However, the full dynamics model can also be easily integrated,
once the expressions for the attitude controllers are available.

In Figure 2.13 we show the convergence rate of four different RKMK meth-
ods compared with the reference solution obtained with ODE45 in MATLAB.

In Figures 2.14-2.18 we show results in the tracking of a parabolic trajec-
tory, obtained by integrating the system (2.6.2) with a RKMK method of order
4.
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Figure 2.14: Snapshots at 0 ≤ t ≤ 5.

Figure 2.15: Components of the load position (in blue) and the desired trajectory (in
red) as a function time.
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Figure 2.16: Deviation of the load position from the target trajectory.

Figure 2.17: Direction error of the links.

Figure 2.18: Preservation of the norms of q1, q2 ∈ S2.
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2.7 Summary and outlook

In this paper we have considered Lie group integrators with a particular focus
on problems from mechanics. In mathematical terms this means that the Lie
groups and manifolds of particular interest are SO (n) , n = 2,3, SE (n) , n = 2,3
as well as the manifolds S2 and T S2. The abstract formulations by e.g. Crouch
and Grossman [11], Munthe-Kaas [41] and Celledoni et al. [6] have often been
demonstrated on small toy problems in the literature, such as the free rigid
body or the heavy top systems. But in papers like [4], hybrid versions of Lie
group integrators have been applied to more complex beam and multi-body
problems. The present paper is attempting to move in the direction of more
relevant examples without causing the numerical solution to depend on how the
manifold is embedded in an ambient space, or the choice of local coordinates.

It will be the subject of future work to explore more examples and to aim
for a more systematic approach to applying Lie group integrators to mechanical
problems. In particular, it is of interest to the authors to consider models of
beams, that could be seen as a generalisation of the N -fold pendulum discussed
here.

Disclosure statement No potential conflict of interest was reported by the
author(s).

Funding This work was supported by Marie Skłodowska-Curie [860124].
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Dynamics of the N-fold Pendulum in the
framework of Lie Group Integrators

Abstract. Since their introduction, Lie group integrators have become a
method of choice in many application areas. Various formulations of these
integrators exist, and in this work we focus on Runge–Kutta–Munthe–Kaas
methods. First, we briefly introduce this class of integrators, considering some
of the practical aspects of their implementation, such as adaptive time step-
ping. We then present some mathematical background that allows us to apply
them to some families of Lagrangian mechanical systems. We conclude with
an application to a nontrivial mechanical system: the N-fold 3D pendulum.

3.1 Introduction

Lie group integrators are used to simulate problems whose solution evolves
on a manifold. Many approaches to Lie group integrators can be found in the
literature, with several applications for mechanical systems (see, e.g. [2], [8],
[3]).

The present work is motivated by applications in modelling and simulation
of slender structures like beams, and the example considered here is a chain of
pendulums. The dynamics of this mechanical system is described in terms of a
Lie group G acting transitively on the phase space M. This setting is used to
build also a numerical integrator.

In Section 3.2 we give a brief overview of the Runge–Kutta–Munthe–Kaas
(RKMK) methods with particular focus on the variable step size methods,
which we use later in Section 3.4.2 for the numerical experiments. In Sec-
tion 3.3 we introduce some necessary mathematical background that allows
us to apply RKMK methods to the system of interest. In particular, we focus
on a condition that guarantees the homogeneity of the tangent bundle T Q of a
manifold Q. We then consider Cartesian products of homogeneous manifolds.
In Section 3.4 we reframe the ODE system of the chain of N connected 3D
pendulums in the geometric framework presented in Section 3.3. We write the
equations of motion and represent them in terms of the infinitesimal genera-
tor of the transitive action. The final part shows some numerical experiments
where the constant and variable step size methods are compared.

3.2 RKMK methods with variable step size

The underlying idea of RKMK methods is to express a vector field F ∈X(
M

)
as

F |m =ψ∗
(

f (m)
)∣∣

m , where ψ∗ is the infinitesimal generator of ψ, a transitive
action on M, and f : M→ g. This allows us to transform the problem from
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the manifold M to the Lie algebra g, on which we can perform a time step
integration. We then map the result back to M, and repeat this up to the final
integration time. More explicitly, let hn be the size of the n−th time step, we
then update yn ∈M to yn+1 by

σ (0) = 0 ∈ g,

σ̇ (t ) = dexp−1
σ(t ) ◦ f ◦ψ

(
exp

(
σ (t )

)
, yn

)
∈ Tσ(t )g,

yn+1 =ψ
(
exp

(
σ1

)
, yn

)
∈M,

(3.2.1)

where σ1 ≈σ
(
hn

) ∈ g is computed with a Runge-Kutta method.
One approach for varying the step size is based on embedded Runge–Kutta

pairs for vector spaces. This approach consists of a principal method of order p,
used to propagate the numerical solution, together with some auxiliary method,
of order p̃ < p, that is only used to obtain an estimate of the local error. This
local error estimate is in turn used to derive a step size adjustment formula
that attempts to keep the local error estimate approximately equal to some
user-defined tolerance tol in every step. Both methods are applied to solve the
ODE for σ (t ) in (3.2.1), yielding two approximations σ1 and σ̃1 respectively,
using the same step size hn . Now, some distance measure between σ1 and
σ̃1 provides an estimate en+1 for the size of the local truncation error. Thus,
en+1 = C h p̃+1

n+1 +O
(
h p̃+2

)
. Aiming at en+1 ≈ tol in every step, one may use a

formula of the type

hn+1 = θ
(

tol

en+1

) 1
p̃+1

hn , (3.2.2)

where θ is typically chosen between 0.8 and 0.9. If en > tol, the step is rejected.
Hence, we can redo the step with the step size obtained by the same formula.

3.3 Mathematical background

This section introduces the mathematical background that allows us to study
many mechanical systems in the framework of Lie group integrators and Lie
group actions. In particular, we provide some results that we use to study the
model of a chain of N 3D-pendulums presented in the last section.

3.3.1 The tangent bundle of some homogeneous manifolds is ho-
mogeneous

For Lagrangian mechanical systems, the phase space is usually the tangent
bundle T Q of some configuration manifold Q. In [1] the authors present a
setting in which the homogeneity of Q implies that of TQ. We now briefly
review and reframe it in the notation used throughout the paper.
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3.3 Mathematical background

Consider a smooth homogeneous n−dimensional manifold Q. This means
that Q is endowed with a transitive G-group action Λ : G ×Q →Q, i.e., for any
pair q1, q2 ∈ Q there is g ∈ G such that Λ

(
g , q1

) = q2. Assume that for each
q ∈ Q, the map Λq : G → Q defined as Λq

(
g
)

:= Λ(
g , q

)
, is a submersion at

e ∈G . When these hypotheses hold, it can be shown that TQ is a homogeneous
manifold as well, and an explicit transitive action can be obtained from Λ.
Let Λ∗ be the infinitesimal generator of the group action Λ, and denote with
ξ̄
(
q
)

:= Λ∗
(
ξ
)(

q
) ∈ TqQ the differential at the identity element e ∈ G of Λq ,

evaluated at ξ ∈ g. We then introduce Λg : Q →Q, q 7→Λ
(
g , q

)
and call Tq̄Λg

its tangent lift at q̄ ∈Q.
Consider the manifold Ḡ := G ⋉g, equipped with the semi-direct product

Lie group structure (see, e.g. [5]). We can introduce a transitive group action
on TQ as follows:

ϕ : Ḡ ×TQ → TQ,
((

g ,ξ
)

,
(
q, v

)) 7→ (
Λ

(
g , q

)
, ξ̄

(
Λ

(
g , q

))+TqΛg (v)

)
.

By direct computation and basic properties of Lie groups (see, e.g. [6]), it can
be seen that the action ϕ is well defined. Since the action Λ is transitive on Q
and Λq is assumed to be a submersion at e ∈G , we have that

∀v ′ ∈ Tq ′Q ∃ξ ∈ g s.t. Λ∗
(
ξ
)(

q ′)= ξ̄(
Λ

(
g , q

))= v ′−TqΛg (v) .

Thus, we conclude that M= TQ is a homogeneous manifold.
In the application treated in the next section, we are interested in the case

in which Q = S2 ⊂ R3, i.e., the unit sphere. In this setting, a transitive group
action Λ is given by

Λ : SO (3)×S2 → S2,
(
R, q

) 7→ Rq,

Tq S2 ∋Λ∗
(
ξ
)(

q
)= ξ̄(

q
)= ξ×q , TqΛR (v) = Rv ∈ TRq S2.

Therefore, in this case we recover the restriction to T S2 ⊂ R6 ≃ se (3) of the
adjoint action of Ḡ = SE (3) = SO (3)⋉R3 ≃ SO (3)⋉so (3) (see, e.g. [7]),

ϕ
((

R,r
)

,
(
q, v

))= (
Rq,Rv + r ×Rq

)= 1 (
Rq,Rv + r̂ Rq

)
, (3.3.1)

which hence becomes a particular case of a more general framework.

1Here r̂ =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

, where r =

r1
r2
r3

.
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3.3.2 The Cartesian product of homogeneous manifolds is homo-
geneous

Consider a family of homogeneous manifolds M1, ...,Mn . Call
(
Gi ,⊙i

)
the

Lie group acting transitively on the associated smooth manifold Mi , and ϕi

such a transitive action. Let gi be the Lie algebra of Gi , i = 1, ...,n, and

M=M1 ×M2 × ...×Mn , G =G1 ×G2 × ...×Gn .

The manifold G can be naturally equipped with a Lie group structure given by
the direct product. More precisely, for a pair of elements G ∋ gi =

(
g 1

i , ..., g n
i

)
,

i = 1,2, we can define their product g1 · g2 :=
(
g 1

1 ⊙1 g 1
2 , ..., g n

1 ⊙n g n
2

)
∈ G . We

can similarly define componentwise the exponential map.
This construction ensures that the manifold M is homogeneous too, and G

acts transitively on it. That is, let

g =
(
g 1, ..., g n

)
∈G , m =

(
m1, ...,mn

)
∈M,

then

ϕ : G ×M→M, ϕ
(
g ,m

)
:=

(
ϕ1

(
g 1,m1

)
, ...,ϕn

(
g n ,mn))

.

We now restrict to the specific case Mi = T S2 for i = 1, ...,n. Since T S2 is
a homogeneous manifold with transitive action ϕ defined as in equation (3.3.1),
we can write the transitive group action

ψ :
(
SE (3)

)n ×
(
T S2

)n →
(
T S2

)n
,

ψ

((
g 1, ..., g n

)
,
(
m1, ...,mn

))
=

(
ϕ

(
g 1,m1

)
, ...,ϕ

(
g n ,mn))

,

where g i := (
Ri ,ri

) ∈ SE (3), mi = (
qi , vi

) ∈ T S2.

3.4 The N-fold 3D pendulum

We now apply the geometric setting from section 3.3 to the specific problem of

a chain of N connected 3D pendulums, whose dynamics evolves on
(
T S2

)N
.

3.4.1 Equations of motion

Let us consider a chain of N pendulums subject to constant gravity g . The
system is modeled by N rigid, massless links serially connected by spherical
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3.4 The N-fold 3D pendulum

Figure 3.1: Chain of 3 connected pendulums at a fixed time instant.

joints, with the first link connected to a fixed point placed at the origin of the
ambient space R3, as in Figure 3.1. We neglect friction and interactions among
the pendulums.

The modeling part comes from [9] and we omit details. We denote by
qi ∈ S2 the configuration vector of the i−th mass, mi , of the chain. Following
[9], we express the Euler–Lagrange equations for our system in terms of the

configuration variables
(
q1, . . . , qN

) ∈ (
S2

)N ⊂R3N , and their angular velocities(
ω1, ...,ωN

) ∈ Tq1 S2 × ...×TqN S2 ⊂ R3N , defined be the following kinematic
equations:

q̇i =ωi ×qi , i = 1, . . . , N . (3.4.1)

The Euler–Lagrange equations of the system can be written as

R
(
q
)
ω̇=

 N∑
j=1
j ̸=i

Mi j |ω j |2q̂i q j −
 N∑

j=i
m j

g Li q̂i e3


i=1,...,N

=


r1
...

rN

 ∈R3N ,

(3.4.2)
where R

(
q
) ∈R3N×3N is a symmetric block matrix defined as

R
(
q
)

i i =
 N∑

j=i
m j

L2
i I3 ∈R3×3,

R
(
q
)

i j =
 N∑

k= j
mk

Li L j q̂⊤
i q̂ j ∈R3×3 = R

(
q
)⊤

j i , i < j ,

and

Mi j =
 N∑

k=max{i , j }
mk

Li L j I3 ∈R3×3.

Equations (3.4.1)-(3.4.2) define the dynamics of the N-fold pendulum, and

hence a vector field F ∈ X

((
T S2

)N
)
. We now find a function f :

(
T S2

)N →
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se (3)N such that

ψ
(

f (m)
)∣∣∣

m
= F |m , ∀m ∈

(
T S2

)N
,

where ψ is defined as in Section 3.3.2.
Since R

(
q
)

defines a linear invertible map (see [2])

Aq : Tq1 S2 × ...×TqN S2 → Tq1 S2 × ...×TqN S2, Aq (ω) := R
(
q
)
ω,

we can rewrite the ODEs for the angular velocities as follows:

ω̇= A−1
q




r1
...

rN


=


h1

(
q,ω

)
...

hN
(
q,ω

)
=


a1

(
q,ω

)×q1
...

aN
(
q,ω

)×qN

 . (3.4.3)

In equation (3.4.3) the ri s are defined as in (3.4.2), and a1, ..., aN :
(
T S2

)N →R3

can be defined as ai
(
q,ω

)
:= qi ×hi

(
q,ω

)
. Thus, the map f is given by

f
(
q,ω

)=


ω1

q1 ×h1
(
q,ω

)
...
ωN

qN ×hN
(
q,ω

)

 ∈ se (3)N ≃R6N .

3.4.2 Numerical experiments

In this section we show a numerical experiment with the N-fold 3D pendu-
lum, in which we compare the performance of constant and variable step size
methods. We do not show results on the preservation of the geometry (up to
machine accuracy), since this is given by construction. We consider the RKMK
pair coming from Dormand–Prince method (DOPRI 5(4) [4], which we denote
by RKMK(5,4)). We set a tolerance of 10−6 and solve the system with the
RKMK(5,4) scheme. Fixing the number of time steps required by RKMK(5,4),
we repeat the experiment with RKMK of order 5 (denoted by RKMK5). The
comparison occurs at the final time T = 3 using the Euclidean norm of the
ambient space R6N . The quality of the approximation is measured against a
reference solution obtained with ODE45 from MATLAB with a strict tolerance.

The motivating application behind the choice of this mechanical system
has been some intuitive relation with flexible slender structures like beams. For
this limiting behaviour to make sense, we first fix the length of the entire chain
of pendulums to some L, then we set the size of each pendulum to Li = L/N
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3.4 The N-fold 3D pendulum

and initialize
(
qi ,ωi

) = (
1,0,0,0,0,0

)
, ∀i = 1, ..., N . As we can see in Figure

3.2 (left), the results of our experiments show that number of time steps that
RKMK(5,4) requires to reach the desired accuracy increases with N , and this
can be read in terms of an augmentation of the dynamics’ complexity. For this
reason, as highlighted in Figure 3.2, distributing these time steps uniformly in
the time interval [0,T ] becomes an inefficient approach, and hence a variable
step size method gives better performance.

Figure 3.2: Comparisons of variable versus constant stepsize for the N-fold 3D pendu-
lum. Accuracy against the number of pendulums (left), Comparison of step sizes with
20 pendulums (right).

We further design a slightly different experiment to compare the compu-
tational time of the constant and variable stepsize RKMK methods. First, we
fix the tolerance tol = 10−6 for RKMK(5,4) and compute its distance from
the reference solution with ODE45. Then, we aim to replicate this error with
RKMK5, increasing the number of performed time steps. We report in Table
3.1 the results of the experiment. Because of the more efficient distribution of
the time steps, we notice smaller values with RKMK(5,4) for the more involved
systems.

Pendulums 2 4 6 8 10 12 14 16 18 20

RKMK5 0.12 0.42 1.04 2.24 3.80 6.74 9.09 12.71 18.51 27.67

RKMK(5,4) 0.16 0.38 0.91 1.59 2.83 4.51 6.93 9.71 13.68 18.81

Ratio 0.75 1.11 1.14 1.41 1.34 1.49 1.31 1.31 1.35 1.47

Table 3.1: Elapsed times (in seconds) obtained with RKMK5 (second row) and with
RKMK(5,4) (third row) for systems having different number of pendulums (first row).
In the last row we report the ratio between the RKMK5 and the RKMK(5,4) runtimes.
These are obtained with the tic–toc command of MATLAB.
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B-stability of numerical integrators on
Riemannian manifolds

Abstract. We propose a generalization of nonlinear stability of numerical one-
step integrators to Riemannian manifolds in the spirit of Butcher’s notion of
B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce
non-expansive systems on such manifolds and define B-stability of integrators.
In this first exposition, we provide concrete results for a geodesic version
of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-
stable on Riemannian manifolds with non-positive sectional curvature. We
show through numerical examples that the GIE method is expansive when
applied to a certain non-expansive vector field on the 2-sphere, and that the
GIE method does not necessarily possess a unique solution for large enough
step sizes. Finally, we derive a new improved global error estimate for general
Lie group integrators.

4.1 Introduction

Stability is a fundamental property of numerical methods for stiff nonlinear
ordinary differential equations. It is important for controlling the growth of
error in the numerical approximation and is used in combination with local
error estimates to obtain bounds for the global error. Stability bounds can also
in some situations be used to ensure the existence and uniqueness of a solution
to the algebraic equations arising from implicit integrators. In the literature,
one can find a large variety of stability definitions for numerical integrators
with various different aims. Some of them apply to linear test equations, others
are of a more general nature and apply to nonlinear problems with certain
prescribed properties. Most of the stability definitions found in the literature
are developed for problems modeled on linear spaces. In particular, there is
a well-established non-linear stability theory, where an inner product norm
is used to measure the distance between two solutions and the corresponding
numerical approximations. Pioneering contributions to this theory were made
by Dahlquist and Butcher in the mid-1970s [6,17], in the wake of the legendary
numerical analysis conference in Dundee, 1975. The notions of G-stability
for multi-step methods [17] and B-stability of Runge–Kutta methods [6] were
developed. The overall idea of B-stability is that whenever the norm of the
difference between two solutions of the ODE is monotonically non-increasing,
the numerical method should exhibit a similar behavior, that is, the difference in
norm between the two corresponding numerical solutions should not increase
over a time step. Much is known about B-stable Runge–Kutta methods, and
there is even an algebraic condition on the coefficients

(
A,b

)
of a method that

ensures its B-stability. A key ingredient is the one-sided Lipschitz condition,
also called a monotonicity condition, on the ODE vector field. We refer the
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reader to the excellent monographs [20, 24] for a detailed treatment of the
various definitions of stability and B-stability in particular.

We remark that whether a particular ODE system is non-expansive depends
on the choice of inner product norm, but the notion of a B-stable Runge–Kutta
method does not, see [24, p. 182]. In this paper, we shall be concerned with
unconditional stability, meaning that step sizes h ∈ (

0,∞)
are allowed. This

excludes all explicit integrators, and it makes it necessary to assume that both
the flow of the ODE vector field and the numerical method map are well defined
for all positive t . Dahlquist and Jeltsch [18] introduced generalized disks of
contractivity in order to consider also the case in which limitations on the ODE
vector field and the step size are imposed.

We shall here consider systems of ODEs whose solutions evolve on a
smooth manifold. We are primarily interested in numerical integrators which
are intrinsic, that are not developed for a particular choice of local coordinates,
or based on a specific embedding of the manifold into an ambient space. There
are several such numerical methods available in the literature.

Crouch and Grossman [15] proposed to build integrators by composing
flows of so-called frozen vector fields, and these methods were later extended
to a more general format in [10] called Commutator-free Lie group methods.
Munthe–Kaas introduced numerical integrators for homogeneous spaces [41]
by equipping the manifold with a left transitive Lie group action which was
used together with the exponential map to transform the ODE vector field
locally to a vector field on the underlying Lie algebra. Its flow is approximated
by any classical Runge–Kutta method, and the result is mapped back to the
manifold by composing the group action with the exponential map.

In computational mechanics there were early contributions to numerical
integration on particular manifolds, such as the rotation group SO (3) and the
special Euclidean group SE (3). A landmark paper in the design of conser-
vative methods for Hamiltonian systems on Lie groups is the one by Lewis
and Simo [37]. For rod dynamics, an important paper was that of Simo and
Vu-Quoc [46] who developed a geometrically exact formulation for rods un-
dergoing large motions, and for the time stepping they devised a version of the
Newmark methods applicable to Lie groups. These methods can be generalized
to the so-called α-methods [27] in a Lie group setting, see [2, 3]. Parametriza-
tion of the manifold in question, such as the rotation group, plays a significant
role in computational mechanics, for efficiency, accuracy, and storage require-
ments. When using (minimal) local coordinates for global simulation, one
inevitably runs into problems with singularities, these issues have been studied
and amended by several authors, e.g. [28, 48]. Hamiltonian systems are often
formulated on cotangent bundles, in which case symplectic integrators can be
derived through the discretization of a variational problem, this approach is
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sometimes named discrete mechanics. The pioneering work by Marsden and
West [38] developed this theory for Euclidean spaces, and it has later been
generalized to Lie groups in a number of papers [5, 11, 21, 25, 26, 34, 36].

Finally, on a Riemannian manifold, it is natural to base the numerical
schemes primarily on the Riemannian exponential map. Leimkuhler and Patrick
[35] derived a symplectic integrator for Riemannian manifolds, and in [12] the
authors suggest using Riemannian normal coordinates to define a retraction
map.

For an in-depth account of Lie group methods, we refer to [7,11,14,30,42]
and references therein.

In this paper we shall make the first attempt to generalize B-stability to
Riemannian manifolds, replacing the inner product norm with the Riemannian
distance function. We take inspiration from the work of Simpson-Porco and
Bullo [47] who considered contraction properties of a continuous system. In
Section 4.2 we define what we mean by a non-expansive system on a Rieman-
nian manifold, and we state the definition of B-stability of a general numerical
method in this setting. Then, in Section 4.3 we first present two examples of
numerical methods: the geodesic versions of the implicit Euler method (GIE)
and the implicit midpoint rule (GIMP). Then we prove a B-stability result for
the GIE method in the case that the manifold has non-positive sectional curva-
ture. We also provide numerical experiments for a particular vector field on the
two-sphere, S2, showing that neither the GIE nor the GIMP method is B-stable
on this manifold which has positive sectional curvature. We briefly discuss
also for this example a non-uniqueness issue with the GIE method which is
different from what is known from the Euclidean setting. Finally, in Section 4.4
we present a bound for the global error of numerical methods, based on the
monotonicity condition.

4.2 Non-expansive systems

We begin by briefly introducing some notation and terminology, mostly adher-
ing to the monograph by Lee [33]. A Riemannian manifold is a pair

(
M , g

)
,

where M is a smooth manifold and g is a smoothly varying inner product de-
fined on each tangent space Tp M , p ∈ M . We will use interchangeably the
notations g

(·, ·) and 〈·, ·〉. Associated to
(
M , g

)
is the Levi-Civita connection,

the unique affine connection ∇, which for any three vector fields X ,Y , Z on
M satisfies X 〈Y , Z 〉 = 〈∇X Y , Z

〉+ 〈
Y ,∇X Z

〉
and

[
X ,Y

] = ∇X Y −∇Y X . The
connection also defines the covariant derivative of vector fields along curves,
we use the notation D t V (t ) to denote the covariant derivative of V (t ) along
γ (t ), see [33, Theorem 4.21]. A curve γ :

[
a,b

]→ M is geodesic if it satisfies
the equation D t γ̇ (t ) = 0 along γ (t ). A geodesic that connects two points p
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and q is called a geodesic segment. If this second order differential equation,
together with initial data γ (0) = p ∈ M , γ̇ (0) = vp ∈ Tp M yields a solution
γ (t ), t ∈ [

0, t∗
]
, we use the notation γ (t ) = expp

(
t vp

)
, thus expp : Tp M → M .

A similar notation is used for the t-flow, exp
(
t X

)
, of a vector field X on M ,

it is the diffeomorphism on M , p 7→ y (t ) where ẏ = X |y , y (0) = p, and its
domain of definition may be t-dependent. A numerical method on M is a
map φt ,X : M → M that approximates the flow map exp

(
t X

)
. A set U ⊆ M is

geodesically convex if, for each p, q ∈U , there is a unique minimizing geodesic
segment from p to q contained entirely in U . A vector field X is forward com-
plete on U if for every p ∈ U , exp

(
t X

)
p is defined for all t ≥ 0. If for every(

t , p
) ∈ [

0,∞)×U it holds that exp
(
t X

)
p ∈ U , we say that U is forward X -

invariant. Similarly, for a mapping ρ the set U is ρ-invariant if ρ
(
y
) ∈U for any

y ∈ U . We denote the length of a curve γ :
[
a,b

] → M as ℓ(γ) = ∫ b
a

∥∥γ̇ (t )
∥∥d t ,

where ∥v∥ := 〈v, v〉 1
2 is the g -norm. The metric induces a distance function

between pairs of points p, q ∈ M , d
(
p, q

) = infγp→q ℓ
(
γp→q

)
, where γp→q is

any continuous curve connecting p and q . The following definition replaces
the one-sided Lipschitz condition on a Riemannian manifold.

Definition 4.1. Let
(
M ,〈·, ·〉) be a Riemannian manifold and let U ⊂ M . We

say that the vector field X satisfies a monotonicity condition on the set U with
constant ν ∈R if for every x ∈U and vx ∈ Tx M , it holds that〈∇vx X , vx

〉≤ ν∥∥vx
∥∥2 . (4.2.1)

Consider for every x ∈ U , the linear operator ∇X |x : vx 7→ ∇vx X on Tx M .
The constant ν can be chosen as

ν= sup
x∈U

µg
(∇X |x

)
, (4.2.2)

where µg is the logarithmic g -norm of ∇X |x . For a linear operator A : Tx M →
Tx M , its logarithmic g -norm is defined as [20]

µg
(

A
)= sup

0 ̸=v∈Tx M

g
(

Av, v
)

g
(
v, v

) .

In local coordinates x = (
x1, . . . , xm

)
on M , we write the vector field as X =

X i (x)∂i and the metric tensor g is represented by the matrix g (x) with ele-
ments gi j = g

(
∂i ,∂ j

)
. The operator ∇X has the matrix representation A

(
X

)
where A

(
X

)k
i = ∂i X k +Γk

i j X j and where Γk
i j are the Christoffel symbols of the

connection. We can now formulate the logarithmic g -norm of ∇X pointwise as

µg
(∇X

)= maxλ
[

g
1/2(x)A

(
X

)
g−1/2(x)+g−1/2(x)A

(
X

)⊤ g
1/2(x)

]
,

i.e., the largest eigenvalue of the matrix in square brackets, see also [19].
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4.2 Non-expansive systems

Theorem 4.1. Let
(
M , g

)
be a Riemannian manifold, U ⊂ M a geodesically

convex set, and let X be a vector field on M satisfying the monotonicity condi-
tion (4.2.1) on U with a constant ν ∈R. Suppose that for any x0, y0 ∈U , there
is a t∗ > 0 such that exp

(
t X

)
x0 and exp

(
t X

)
y0 exist and are contained in U

for every t ∈ [
0, t∗

]
. Then, it holds that

d
(
exp

(
t X

)
x0,exp

(
t X

)
y0

)
≤ d

(
x0, y0

)
eνt for every t ∈ [

0, t∗
]

. (4.2.3)

Remark 4. The condition that the set U is geodesically convex can be weakened
by introducing the notion of a K -reachable set as in [47].

Proof. The construction for the proof is illustrated in Figure 4.1. Since U is
geodesically convex, there is a unique minimizing geodesic γ (s) ∈U connecting
x0, y0 ∈U , with γ (0) = x0 and γ (1) = y0. We will be using the notation Γ

(
s, t

)
:=

exp
(
t X

)
γ (s), as in [33, Chapter 6], and Γ

(
s, t

)
is contained in U . For a fixed

t ∈ [
0, t∗

]
, consider the length ℓ (t ) of the curve s 7→ Γ

(
s, t

)
, s ∈ [

0,1
]
, that is

ℓ (t ) =
∫ 1

0

〈
∂sΓ

(
s, t

)
,∂sΓ

(
s, t

)〉 1
2

d s, (4.2.4)

and we have d
(
x0, y0

)= ℓ (0). Let

S
(
s, t

)
:= ∂sΓ

(
s, t

)
, T

(
s, t

)
:= ∂tΓ

(
s, t

)
. (4.2.5)

We will use that
D t S

(
s, t

)= DsT
(
s, t

)= Ds X
∣∣
Γ(s,t) ,

following from the symmetry lemma [33, Lemma 6.2]. Differentiating with re-
spect to t , using the chain rule and the properties of the Levi-Civita connection,
we have

dℓ (t )

dt
=

∫ 1

0

∂t

〈
S

(
s, t

)
,S

(
s, t

)〉
2
∥∥∥S

(
s, t

)∥∥∥ d s =
∫ 1

0

〈
D t S

(
s, t

)
,S

(
s, t

)〉∥∥∥S
(
s, t

)∥∥∥ d s

=
∫ 1

0

〈
DsT

(
s, t

)
,S

(
s, t

)〉∥∥∥S
(
s, t

)∥∥∥ d s =
∫ 1

0

〈
Ds X (Γ

(
s, t

)
),S

(
s, t

)〉∥∥∥S
(
s, t

)∥∥∥ d s

≤
∫ 1

0

ν
〈

S
(
s, t

)
,S

(
s, t

)〉∥∥∥S
(
s, t

)∥∥∥ d s = νℓ (t ) ,

where the last inequality follows from the assumption that X satisfies the mono-
tonicity condition (4.2.1). By Gronwall’s lemma, we obtain the inequality

ℓ (t ) ≤ ℓ (0)eνt , for each t ∈ [
0, t∗

]
,
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B-stability of numerical integrators on Riemannian manifolds

and conclude that

d
(
exp

(
t X

)
x0,exp

(
t X

)
y0

)
≤ ℓ (t ) ≤ ℓ (0)eνt = d

(
x0, y0

)
eνt .

Remark 5. Choosing ν = sup

{∥∥∥∇ X |p
∥∥∥ : p ∈ Γ

([
0, t∗

]× [
0,1

])}
leads to a

bound similar to the one in Theorem 1.2 by Kunzinger et al. in [32].

⑰⑨
M

U

x0

y0

γ(s)

Γ(s, t)

T (s, t)

S(s, t)

Figure 4.1: Construction for the proofs of Theorems 4.1 and 4.2.

The next definition is inspired by the definition of contracting systems by
Simpson-Porco and Bullo in [47].

Definition 4.2 (Non-expansive system). Let
(
M , g

)
be a Riemannian manifold.

Let U ⊆ M be an open, geodesically convex set and X ∈X(M). If

(i) X is forward complete on U ,

(ii) U is forward X -invariant,

(iii) X satisfies the monotonicity condition (4.2.1) on U with ν≤ 0,

the quadruple
(
U , X , g ,ν

)
is called a non-expansive system.

We are now ready to give the definition of a B-stable numerical method on
Riemannian manifolds.
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4.3 Numerical integrators on manifolds and B-stability

Definition 4.3 (B-stability). Let
(
M , g

)
be a Riemannian manifold and let φh,X

be a numerical method on M . Suppose that for any non-expansive system(
U , X , g ,ν

)
on M , it holds that

(i) φh,X is forward complete on U , i.e., φh,X is well defined for all h > 0,
and

(ii) U is forward φh,X -invariant for all h > 0.

If
d

(
φh,X

(
x0

)
,φh,X

(
y0

))≤ d
(
x0, y0

)
, x0, y0 ∈U ,h > 0,

then φh,X is called B-stable.

4.3 Numerical integrators on manifolds and B-stability

Geodesic Explicit Euler (GEE) method The simplest numerical method
defined on a Riemannian manifold is the Geodesic Explicit Euler method

yn+1 = expyn

(
h X |yn

)
, (4.3.1)

that can not be unconditionally stable, but will be used for comparison in the
numerical experiments in Example 3.2.

Geodesic Implicit Euler (GIE) method We consider the following definition
of the Implicit Euler method in a Riemannian manifold

yn = expyn+1

(
−h X |yn+1

)
. (4.3.2)

This reduces to the classical implicit Euler method when the manifold is the
Euclidean space.

Geodesic Implicit Midpoint (GIMP) method Similarly, we consider the
implicit midpoint rule on a Riemannian manifold:

yn = expȳ

(
−1

2
h X |ȳ

)
,

yn+1 = expȳ

(
1

2
h X |ȳ

)
.

(4.3.3)

This method can be found in Zanna et al. [50] for the case of Lie group inte-
grators. It is a symmetric method, but it is not generally symplectic. In [39] a

symplectic method was found for products of 2-spheres,
(
S2

)d
, that happens

to be a time reparametrization of (4.3.3). It is called the spherical midpoint
method (SPHMP). Applied to a single copy of S2 it reads in Cartesian coordi-
nates

yn+1 = yn +h X |ȳ , ȳ = yn + yn+1

∥yn + yn+1∥
. (4.3.4)
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4.3.1 The case with non-positive sectional curvature

In the next theorem, we prove the B-stability of the GIE method on Hadamard
manifolds, i.e., manifolds with non-positive sectional curvature.

Theorem 4.2 (B-stability of the GIE method). Let
(
M , g

)
be a Riemannian

manifold with non-positive sectional curvature. Then, the GIE method (4.3.2)
is B-stable.

Proof. Let
(
U , X , g ,0

)
be a non-expansive system of ODEs, and consider φh,X

with step size h > 0. Let γ0 (s) , s ∈ [
0,1

]
be a curve in U such that γ0 (0) = x0 ∈U

and γ0 (1) = y0 ∈U , and set γ1 (s) =φh,X
(
γ0 (s)

)
. By assumption γ1 (s) is well

defined and contained in U . Consider the one-parameter family of curves

Γ
(
s, t

)
:= expγ1(s)

(
−th X |γ1(s)

)
.

We have γ1 (s) = Γ(
s,0

)
and γ0 (s) = Γ(s,1). Now, using as earlier the notation

S
(
s, t

)
:= ∂sΓ

(
s, t

)
, T

(
s, t

)
:= ∂tΓ

(
s, t

)
, we have

ℓ (t ) =
∫ 1

0

〈
S

(
s, t

)
,S

(
s, t

)〉 1
2

d s and
dℓ

d t
(t ) =

∫ 1

0

∂t

〈
S

(
s, t

)
,S

(
s, t

)〉
2
∥∥∥S

(
s, t

)∥∥∥ d s.

Let f (t ) = 1
2∂t

〈
S

(
s, t

)
,S

(
s, t

)〉 =
〈

D t S
(
s, t

)
,S

(
s, t

)〉
. We differentiate with

respect to t and apply the Jacobi equation together with the definition of sec-
tional curvature and obtain

d f

d t
(t ) =

〈
D2

t S
(
s, t

)
,S

(
s, t

)〉+
∥∥∥D t S

(
s, t

)∥∥∥2

=−
〈

R
(
S

(
s, t

)
,T

(
s, t

))
T

(
s, t

)
,S

(
s, t

)〉+
∥∥∥D t S

(
s, t

)∥∥∥2

=−K
(
s, t

)(∥S∥2 ∥T ∥2 −〈S,T 〉2
)
+

∥∥∥D t S
(
s, t

)∥∥∥2
.

(4.3.5)

Here R is the Riemannian curvature tensor and K is the sectional curvature.
Since by assumption K

(
s, t

)≤ 0 it follows that d f
d t (t ) ≥ 0 for t ∈ [

0,1
]
. By the

symmetry lemma [33, Lemma 6.2], we get

D t S
(
s, t

)∣∣∣
t=0

= DsT
(
s,0

)=−hDs X |γ1(s) .

Then
f (0) =−h

〈
Ds X |γ1(s) ,S

(
s,0

)〉≥ 0,

since X satisfies the monotonicity condition with ν= 0. So, we have

f (t ) = f (0)+
∫ t

0

d f

dτ
(τ) dτ≥ 0,
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4.3 Numerical integrators on manifolds and B-stability

which allows us to conclude that dℓ
d t (t ) ≥ 0. Thus

length
(
γ1 (s)

)= ℓ (0) ≤ ℓ (1) = length
(
γ0 (s)

)
. (4.3.6)

For any given ε > 0, we have ℓ (1) < d
(
γ0 (0) ,γ0 (1)

)+ ε. By (4.3.6) and the
definition of distance we obtain

d
(
γ1 (0) ,γ1 (1)

)≤ ℓ (0) ≤ ℓ (1) ≤ d
(
γ0 (0) ,γ0 (1)

)+ε.

Since ε is arbitrary, the condition for B-stability is satisfied.
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Figure 4.2: Riemannian distance of two solutions after one step plotted for increasing
values of the step size h with the same initial values.

Example 11. [Sn++] The space Sn++ of symmetric positive definite matrices
is a well-known example of a manifold with negative sectional curvature. Its
tangent space at a point A, denoted by TAS

n++, can be identified as the set of
n ×n symmetric matrices. Sn++ is equipped pointwise with the metric

g A(U ,V ) = trace
(

A−1U A−1V
)

, (4.3.7)

where A ∈Sn++ and U ,V ∈ TAS
n++, [43, 45].

The manifold Sn++ can be used as a model space for simple beam models,
such as the Elastica [51], or in diffusion tensor magnetic resonance imag-
ing (DT-MRI) [8, 13, 22, 44], via 3D tensors, i.e., 3× 3 SPD matrices. An-
other interesting application is the segmentation and recognition of images and
videos represented by SPD matrices, [1, 29, 49]. Such applications usually
involve averaging SPD matrices, for example, to collect noisy measurements
of the object under consideration. In Sn++, a suitable mean was proposed
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B-stability of numerical integrators on Riemannian manifolds

by Karcher [31]. Given k matrices Y1, . . . ,Yk ∈ Sn++, we search for a matrix
X ∗ ∈Sn++, the Karcher mean, such that

X ∗ = argmin
X∈Sn++

1

2

k∑
j=1

d 2
(

X ,Y j

)
, (4.3.8)

i.e., X ∗ is such that grad 1
2

∑k
j=1 d 2

(
X ,Y j

)
= 0. Here, d

(
X ,Y

)
is the Rieman-

nian distance between X and Y given as [23]

d
(
X ,Y

)=√
n∑

i=1
log2

(
λi

(
X − 1

2 Y X − 1
2

))
, (4.3.9)

with λi

(
X − 1

2 Y X − 1
2

)
being the i th eigenvalue of X − 1

2 Y X − 1
2 , i = 1, . . . ,n, and

grad is the Riemannian gradient found e.g. in [23, Lemma 2]

grad
1

2
d 2 (

X ,Y
) |X =−X

1
2 log

(
X − 1

2 Y X − 1
2

)
X

1
2 . (4.3.10)

For S++
n , the exponential map is explicitly known in terms of the matrix expo-

nential and matrix square roots as

expA

(
tV

)= A
1
2 et A− 1

2 V A− 1
2 A

1
2 ,

for A ∈Sn++ and V ∈ TAS
n++. The objective function f

(
X

)= 1
2

∑k
j=1 d 2

(
X ,Y j

)
is defined as the geometric mean of symmetric positive definite matrices in [40]
and [4], and is known to have a unique minimizer X ∗ as in (4.3.8), [31]. There
is no known closed-form solution for (4.3.8) and usually, iterative methods are
used to compute the Karcher mean.
In Figure 4.2, the Riemannian distance of two solutions after one step is plotted
for increasing values of the step size h with the same pair of initial values. One
can observe the non-expansive behavior of the GIE and the GIMP method and
the expansive behavior of the Geodesic Explicit Euler (GEE) method. The GEE
solution is discontinued at h = 0.6 for presentation purposes. The exact solution
is calculated with strict tolerance by odeint of scipy.integrate in
Python.

4.3.2 The case with positive sectional curvature: The 2-sphere

In this section, we consider systems on the 2-sphere S2 with the standard metric.
We show through an example that the GIE and GIMP methods fail to be B-
stable.
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4.3 Numerical integrators on manifolds and B-stability

4.3.2.1 Killing vector fields

A Killing vector field is a vector field X such that the Lie derivative LX g = 0.
This implies that

0 = (
LX g

)(
Y , Z

)= X 〈Y , Z 〉−〈
LX Y , Z

〉−〈
Y ,LX Z

〉
= 〈∇X Y , Z

〉+〈
Y ,∇X Z

〉−〈∇X Y −∇Y X , Z
〉−〈

Y ,∇X Z −∇Z X
〉

= 〈∇Y X , Z
〉+〈∇Z X ,Y

〉
,

so that the monotonicity condition (4.2.1) holds with ν= 0 for any such vector
field. In this sense one could say that the Killing vector fields represent a
borderline case for non-expansive systems.

4.3.2.2 A Killing vector field on S2

Consider the vector field X
(
y
) = e3 × y , which describes rotations on the 2-

sphere around the z-axis. Using Cartesian coordinates, the GIE method (4.3.2)
on the 2-sphere takes the form

y0 = expy1

(
−h X |y1

)
= cosα · y1− sinα

α
·
(
h X |y1

)
, α=

∥∥∥−h X |y1

∥∥∥ . (4.3.11)

We apply (4.3.11) to two initial points lying on the open northern hemisphere
and measure the distance between the points for increasing values of the time
step. The distance between two points y0, z0 ∈ S2 is calculated as

d
(
y0, z0

)= arccos
(
y0 · z0

)
. (4.3.12)

Figure 4.3 (left) shows one step performed with the GIE method starting from
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Figure 4.3: One step of GIE method for two initial points with increasing step size h
(left) and their Riemannian distance (right).

two initial points with increasing step size h. In Figure 4.3 (right), the distance
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between the trajectories is shown as a function of h. As can be seen from the
distance curve, the GIE method shows an expansive behavior, and it is in fact
small values of the step size that cause problems. In Figure 4.4, the SPHMP
and the GIMP methods are tested on the same vector field. Both methods are a
reparametrization of the exact solution for this problem.
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Figure 4.4: Top: One step of SPHMP (4.3.4) (left) and GIMP (4.3.3) (right) method
for the same two initial points with increasing step size h. Bottom: Riemannian
distance of two numerical solutions after one step plotted for increasing values of the
step size h.

A non-uniqueness issue It is well-known from the theory of implicit Runge–
Kutta methods that the conditions for the uniqueness of the solution to the
implicit equations that must be solved in each time step involve the one-sided
Lipschitz condition. In the monograph by Hairer and Wanner [24] a precise
result is given, and we include it here for completeness.
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Theorem 4.3 (Theorem 14.4 in [24]). Consider a differential equation satisfy-
ing a one-sided Lipschitz condition with constant ν. If the Runge–Kutta matrix
A is invertible and hν<α0

(
A−1

)
, then the system of equations to be solved in

each time step possesses at most one solution.

We note that α0 is a function that depends only on the Runge–Kutta coef-
ficients, and it is known that α0(A−1) = 1 for the implicit Euler method. Thus,
for ν≤ 0 there is a unique solution for every h > 0. But the Killing vector field
example on S2 shows that this result is not generally true in Riemannian mani-
folds. In fact, for this example, we see from (4.3.11) that the last component is
decoupled from the other two. Writing for simplicity y3

0 =: z0 and y3
1 =: z we

need to solve the scalar equation

z0 = cos

(
h
√

1− z2

)
z =: q

(
z,h

)
(4.3.13)

with respect to z. One has q
(
0,h

) = 0 for all h, and q
(
zk ,h

) = 0 for zk =
±

√
1−

(
π
h

)2 (
1
2 +k

)2
for any k ∈ N such that

(
π
h

)2 (
1
2 +k

)2 ≤ 1. In fact, for

h ∈ I0 =
(
0, π2

]
, q

(
z,h

)
has precisely one zero, and for h ∈ Im =

(
(2m −1) π2 ,

(2m +1) π2

]
, m ≥ 1, q

(
z,h

)
has 2m+1 zeros in

[−1,1
]
. All the zeros are simple

and therefore there is a sign change in q(z,h) at each of them. It follows that
∃ϵ> 0 such that if h ∈ Im and

∣∣z0
∣∣< ϵ, then (4.3.13) has at least 2m+1 solutions.

One easily verifies that for each of these values of the last component, there is
a unique solution for the first two components. We illustrate the structure of
the solution in Figure 4.5.
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Figure 4.5: A bifurcation diagram for solutions to the equation (4.3.13).
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4.3.2.3 Relation to other Lie group integrators

For some homogeneous manifolds M =G/H , with H a closed Lie subgroup of
the Lie group G, the Geodesic Implicit Euler method (4.3.2) is equivalent to
the implicit Lie-Euler method for a specific choice of isotropy, [11, 41], i.e., of
the map a : G/H → g which is used to define the Lie group method:

yn+1 = exp
(
ha

(
yn+1

))
yn , (4.3.14)

with g the Lie algebra of G and exp : g→ G the Lie group exponential. See
[30] for an introduction to Lie group methods. The following example on S2

illustrates the impact of the choice of isotropy on the approximation of the
solution obtained via (4.3.14).

Example 12. Consider a vector field on the 2-sphere S2 = SO (3)/SO (2). In
Cartesian coordinates, embedding S2 in R3, the ODE can be written as

ẏ = a
(
y
)× y, (4.3.15)

where × denotes the vector cross product. By the identification of
(
R3,×

)
with

the Lie algebra so (3), we have that a : S2 → R3 ≃ so (3). The action of the Lie
group exponential exp :R3 ≃ so (3) → SO (3) on a vector p ∈R3 takes the simple
form:

exp(a) p = p+ sin(α)

α
a×p−1−cos(α)

α2 a×(
a ×p

)
, α= ∥a∥ , a ∈R3 ≃ so (3) .

We remark that for a given vector field X
(
y
)= a

(
y
)× y , the choice of a

(
y
)

is
not unique. In fact, we can replace a

(
y
)

with its projection orthogonal to y
without changing X

(
y
)
, and similarly replacing a

(
y
)

by a
(
y
)+ c

(
y
)

y , with
c : S2 →R, does not alter X

(
y
)
:

ẏ = a
(
y
)× y =

(
a

(
y
)+ c

(
y
)

y
)
× y, y⊤a

(
y
)= 0.

On the other hand, the numerical approximation obtained by the method
(4.3.14),

yn+1 = exp

(
h

(
a

(
yn+1

)+ c
(
yn+1

)
yn+1

))
yn ,

does depend on the choice of c
(
y
)
, see also Figure 4.6. Similarly, we cannot

expect that in general different Lie group integrators have the same stability
behavior when applied to the same vector field X .
In Figure 4.6 we illustrate the isotropy issue by applying the Implicit Lie–Euler
method to the problem

ẏ = e3 × y = (
e3 + (c −1) y3 y

)× y (4.3.16)
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for c ∈ [−2,2
]

and step size h = 2. This means that c = 0 corresponds to the GIE
method, whereas for c = 1 the exact solution is reproduced. We observe that
the difference in solutions may expand, contract or stay constant, depending
on the choice of isotropy parameter c.
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Figure 4.6: Left: The Implicit Lie-Euler method applied to (4.3.16) with stepsize
h = 2 and c ∈ [−2,2

]
. The dashed curve shows the arrival point parametrized by c. The

solid line depicts the exact solution. Right: the distance between two solutions for
increasing stepsizes with three different choices of isotropy parameter c ∈ {0,1,2}.

4.4 A bound for the global error

For the next result, we first consider an initial value problem on the finite-
dimensional Riemannian manifold

(
M , g

)
,ẏ = X |y

y (0) = y0 ∈ M
, (4.4.1)

where X is a smooth vector field, y0 ∈ M is the initial value. The following
theorem is a generalization of Theorem 2 from [9], where we use the constant
ν from the monotonicity condition rather than the operator norm of ∇X .

Theorem 4.4. Let
(
M , g

)
be a Riemannian manifold and fix y0 ∈ M . Let Uy0 ⊂

M be a geodesically convex set and X a vector field on M satisfying the mono-
tonicity condition (4.2.1) on Uy0 with constant ν ∈R. Let y (t ) = exp

(
t X

)
y0 be

defined and contained in Uy0 for t ∈ [
0, t∗

]
, t∗ > 0. Let φh,X be a numerical

method y j+1 =φh,X

(
y j

)
, j = 0, . . . ,k −1, well defined and contained in Uy0 for

any h such that 0 < h ≤ h∗ ≤ t∗, t∗ = hk, whose local error can be bounded for
some p ∈N and C ∈R as

d
(
exp

(
hX

)
y,φh,X

(
y
))≤C hp+1 for all y ∈Uy0 ,h ∈ (0,h∗]. (4.4.2)
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Then, for all k > 0, the global error is bounded as

d
(

y
(
t∗

)
, yk

)
≤


C
ν

(
et∗ν−1

)
hp for ν> 0

C t∗hp for ν= 0,
C e−νh

ν

(
et∗ν−1

)
hp for ν< 0

h ∈ (
0,h∗]

. (4.4.3)

Proof. Let us denote the global error as Ek := d
(

y
(
t∗

)
, yk

)
. For j = 0, . . . ,k−1,

E j+1 ≤ d
(
exp

(
hX

)
y

(
j h

)
,exp

(
hX

)
y j

)
+d

(
exp

(
hX

)
y j ,φh,X

(
y j

))
(4.4.4)

≤ ehνd
(

y
(

j h
)

, y j

)
+d

(
exp

(
hX

)
y j ,φh,X

(
y j

))
(4.4.5)

= ehνE j +d

(
exp

(
hX

)
y j ,φh,X

(
y j

))
≤ ehνE j +C hp+1. (4.4.6)

(4.4.4) is the triangle inequality, where the first term is the error at j h propa-
gated over one step and the second term is the local error. (4.4.5) is obtained via
a Grönwall-type inequality of [32] for the first term. Using the local error esti-
mate (4.4.2) for the second term we obtain the recursion in (4.4.6). Considering
t∗ = hk, ν ̸= 0 and summing over j = 1, . . . ,k −1, we obtain

Ek ≤C
et∗ν−1

ehν−1
hp+1. (4.4.7)

For ν> 0, eνh −1 > νh and (4.4.7) becomes equivalent to the first estimate in
(4.4.3). For ν < 0, 1−e−νh < νh and (4.4.7) becomes equivalent to the third
estimate in (4.4.3).

Remark 6. In cases where the monotonicity constant ν≪ 0, in the sense that
one can assume νh →−∞ as h → 0, see e.g. [24, Ch IV.15], one gains an order
of convergence such that the global error essentially equals the local error.

4.5 Conclusions and further work

The notion of B-stability proposed in [6] for Euclidean spaces has been gen-
eralized to Riemannian manifolds. Building on the work by Simpson-Porco
and Bullo [47] on contraction systems in Riemannian manifolds, we expressed
the B-stability condition in terms of the Riemannian distance function. For
this first study, only geodesic versions of the implicit Euler method and the
implicit midpoint rule were considered. We proved that in the Riemannian
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setting, the geodesic implicit Euler method is B-stable for manifolds of non-
positive sectional curvature, but not necessarily in positively curved spaces.
Through numerical experiments on the 2-sphere, one finds strong evidence
that the GIE method is indeed not B-stable in general. Another observation
was that, contrary to what has been proved in Euclidean spaces, the nonlinear
equations associated with the GIE method do not have a unique solution for
non-expansive systems. Finally, we showed that the monotonicity constant can
be used to obtain improved global error estimates compared to [9, 16].

Many open questions remain for the B-stability properties of numerical
methods applied to problems on Riemannian manifolds. There exist many
classes of numerical integrators that could be analyzed in this setting. In me-
chanical engineering, most of the problems of interest are set in manifolds of
positive sectional curvature, such as SO

(
d

)
,SE

(
d

)
d = 2,3, S2, T S2 and direct

or semidirect products of these. It may also be of interest to consider explicit
integrators, in which case B-stability must be replaced by some conditional
form of stability, such as the circle contractivity proposed in [18].
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Neural networks for the approximation of
Euler’s elastica

Abstract. Euler’s elastica is a classical model of flexible slender structures,
relevant in many industrial applications. Static equilibrium equations can be
derived via a variational principle. The accurate approximation of solutions of
this problem can be challenging due to nonlinearity and constraints. We here
present two neural network based approaches for the simulation of this Euler’s
elastica. Starting from a data set of solutions of the discretised static equilibria,
we train the neural networks to produce solutions for unseen boundary con-
ditions. We present a discrete approach learning discrete solutions from the
discrete data. We then consider a continuous approach using the same training
data set, but learning continuous solutions to the problem. We present numer-
ical evidence that the proposed neural networks can effectively approximate
configurations of the planar Euler’s elastica for a range of different boundary
conditions.

5.1 Introduction

Modelling of mechanical systems is relevant in various branches of engineer-
ing. Typically, it leads to the formulation of variational problems and dif-
ferential equations, whose solutions are approximated with numerical tech-
niques. The efficient solution of linear and non-linear systems resulting from
the discretisation of mechanical problems has been a persistent challenge of
applied mathematics. While classical solvers are characterised by a well-
established and mature body of literature [3, 13, 14, 26, 30, 33, 36], the past
decade has witnessed a surge in the use of novel machine learning-assisted
techniques [4, 5, 7, 8, 10, 12, 16, 20, 21, 23, 24, 28, 29, 34, 38, 39, 46]. These
approaches aim at enhancing solution methods by leveraging the wealth of
available data and known physical principles. The use of deep learning tech-
niques to improve the performance of traditional numerical algorithms in terms
of efficiency, accuracy, and computational scalability, is becoming increasingly
popular also in computational mechanics. Examples comprise virtually any
problem where approximation of functions is required, but also efficient re-
duced order modelling e.g. in fluid mechanics, the deep Ritz method, or more
specific numerical tasks such as optimisation of the quadrature rule for the
computation of the finite element stiffness matrix, acceleration of simulations
on coarser meshes by learning appropriate collocation points, and replacing ex-
pensive numerical computations with data-driven predictions [4, 18, 44, 46, 47].
This recent literature is evidence that neural networks can be used successfully
as surrogate models for the solution operators of various differential equations.

In the context of ordinary and partial differential equations, two main trends
can be identified. The first one aims at providing a machine learning based
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approximation to the discrete solutions of differential problems on a certain
space-time grid, for example by solving linear or nonlinear systems efficiently
and accelerating convergence of iterative schemes [5,12,16,20,21]. The second
one provides instead solutions to the differential problem as continuous (and
differentiable) functions of the temporal and spatial variables. Depending on
the context, conditions on such approximate solutions are then provided by the
differential problem itself, by the initial values and the boundary conditions, and
by the available data. The idea of providing approximate solutions as functions
defined on the space-time domain and parametrised as neural networks was
proposed in the nineties [19] and was recently revived in the framework of
Physics-Informed Neural Networks in [34]. Since then, such an approach has
attracted a lot of interest and has developed in many directions [7, 18, 39].

In this work, we use neural networks to approximate the configurations of
highly flexible slender structures modelled as beams. Such models are of great
interest in industrial applications like cable car ropes, diverse types of wires
or endoscopes [25, 31, 37, 41]. Notwithstanding their ingenious and simple
mathematical formulation, slender structure models can accurately reproduce
complex mechanical behaviour and for this reason their numerical discreti-
sation is often challenging. Furthermore, the use of 3-dimensional models
requires high computational time. Due to the fact that slender deformable struc-
tures have one dimension (length) being orders of magnitude larger than their
other dimensions (cross-section), it is possible to reduce the complexity of the
problem from a 3-dimensional elastic continuum to a 1-dimensional beam. A
beam is modelled as a centerline curve, q :

[
0,L

] → Rn , s 7→ q (s), with n = 2
or n = 3, along which a rigid cross-section Σ (s) is attached. The main model
assumption is that the diameter of Σ (s) is small compared with the undeformed
length L. We here consider a special case of a beam where the cross-section
Σ (s) is constant and orthogonal to the centerline, the 2-dimensional Euler’s
elastica [9]. In this case, q (s) is inextensible with fixed boundary conditions
and is the solution of a bending energy minimisation problem [22, 27, 40].

When approximating static equilibria of the Euler’s elastica via neural net-
works, a key issue is to ensure the inextensibility of the curve (having unit
norm tangents) as well as the boundary conditions. Two main approaches can
be found in the literature [18,35,39]. One is the weak imposition of constraints
and boundary conditions adding appropriate, extra terms to the loss function.
The other is a strong imposition strategy consisting in shaping the network
architectures so that they satisfy the constraints by construction. We show
examples of both the approaches in Sections 5.4 and 5.5.

The paper is organised as follows. In Section 5.2, we present the mathemat-
ical model of the planar Euler’s elastica, including its continuous and discrete
equilibrium equations. We describe the approach used to generate the data sets
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Nomenclature

L continuous Lagrangian function
S continuous action functional
Ld discrete Lagrangian function
Sd discrete action functional
q configuration of the beam
q′ first spatial derivative of q
θ tangential angle
s arc length parameter
κ curvature
L length of the undeformed beam

E I bending stiffness, with E the elastic modulus and I the sec-
ond moment of area

q̂ numerical approximation of q
N +1 number of discretisation nodes, with N the number of inter-

vals
h space step (length of each interval)

qd
ρ discrete neural network

qc
ρ continuous neural network approximating the solution

curve q (s)
θc
ρ continuous neural network approximating the angular func-

tion θ (s)
ρ parameters of the neural network
ℓ number of layers in the neural network
σ activation function
M number of training data
B size of one training batch

MSE mean squared error
MLP multi layer perceptron

ResNet residual neural network
MULT multiplicative neural network
D differential operator
I quadrature operator

Table 5.1: List of abbreviations and notations.
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for the numerical experiments. In Section 5.3, we introduce some basic theory
and notation for neural networks that we shall use in the succeeding sections.
Starting from general theory, we specialise in the task of approximating con-
figurations of the Euler’s elastica. In Section 5.4, we introduce the discrete
approach, which aims to approximate precomputed numerical discretisations
of the Euler’s elastica. We discuss some drawbacks associated with this ap-
proach and then propose an alternative approximation strategy in Section 5.5.
The continuous approach consists in computing an arc length parametrisation
of the beam configuration. We provide insights into two additional networks
and analyse how the test accuracy changes with varying constraints, such as
boundary conditions or tangent vector norms.

Main contributions: This paper presents advancements in the approxi-
mation of beam configurations using neural networks. These advancements
include: (i) An extensive experimental analysis of approximating numerical
discretisations of Euler’s elastica configurations through what we call discrete
networks, (ii) Identification and discussion of the limitations associated with
this discrete approach, and (iii) Introduction of a new parametrisation strategy
called continuous network to address some of these drawbacks.

5.2 Euler’s elastica model

We consider an inextensible beam model in which the cross-section Σ (s) is as-
sumed to be constant along the arc length s and perpendicular to the centerline
q (s), which means that no shear deformation can occur. Thus, the deformation
of the centerline is a pure bending problem, precisely the Euler’s elastica curve.
In the following, we assume q ∈ C 2

([
0,L

]
,R2

)
, i.e., the curve is planar and

twice continuously differentiable with length L. If s denotes the arc length pa-
rameter, then

∥∥q′ (s)
∥∥= 1, where ′ = d

d s , for all s ∈ [
0,L

]
. The elastica problem

consists in minimising the following Euler-Bernoulli energy functional∫ L

0
κ (s)2 d s,

where κ (s) denotes the curvature of q (s), [27]. Given the arc length parametri-
sation, then κ (s) = ∥∥q′′ (s)

∥∥.
We can reformulate this problem as a constrained Lagrangian problem as

follows. Consider the second-order Lagrangian L : T (2)Q → R, where T (2)Q
denotes the second-order tangent bundle [6] of the configuration manifold Q,
which in this case is R2:

L
(
q,q′,q′′)= 1

2
E I

∥∥q′′∥∥2 . (5.2.1)
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Here, abusing the notation, ′ denotes a spatial derivative, but we do not initially
assume arc length parametrisation. The parameter E I is the bending stiffness,
which governs the response of the elastica under bending. This mechanical
parameter consists of a material and a geometric properties, where E is the
Young’s modulus and I is the second moment of area of the cross-section Σ.
For simplicity, these parameters are assumed to be constant along the length of
the beam.

In order to recover the solutions of the elastica, the Lagrangian in Equa-
tion (5.2.1) must be supplemented with the constraint equation

Φ
(
q,q′)= ∥∥q′∥∥2 −1 = 0. (5.2.2)

This imposes arc length parametrisation of the curve q (s) and leads to the
augmented Lagrangian L̃ : T (2)Q ×R→R

L̃
(
q,q′,q′′,Λ

)=L
(
q,q′,q′′)+ΛΦ(

q,q′) , (5.2.3)

where Λ (s) is a Lagrange multiplier, see [40]. The Lagrangian function coin-
cides with the total elastic energy over solutions of the corresponding Euler-
Lagrange equations. The internal bending moment is directly related to the
curvature κ (s).

The continuous action functional S is defined as:

S
[
q
]= ∫ L

0
L̃

(
q,q′,q′′,Λ

)
d s. (5.2.4)

Applying Hamilton’s principle of stationary action, δS = 0, yields the Euler-
Lagrange equations

d 2

d s2

(
∂L
∂q′′

)
− d

d s

(
∂L
∂q′

)
+ ∂L
∂q

= d

d s

(
∂Φ

∂q′Λ

)
− ∂Φ

∂q
Λ,

∥∥q′∥∥2 −1 = 0,

(5.2.5)

which need to be satisfied together with the boundary conditions on positions
and tangents, i.e.,

(
q (0) ,q′ (0)

)= (
q0,q′

0

)
and

(
q

(
L
)

,q′ (L
))= (

qN ,q′
N

)
.

5.2.1 Space discretisation of the elastica

The continuous augmented Lagrangian L̃ in Equation (5.2.3) and the action
integral S in Equation (5.2.4) are discretised over the beam length L with
constant space steps h and N +1 equidistant nodes 0 = s0 < s1 < . . . < sN−1 <
sN = L. In second-order systems, the discrete Lagrangian is a function L̃d :
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TQ×TQ×R×R→R. In this study, we refer to a discretisation of the Lagrangian
function proposed in [11] based on the trapezoidal rule

L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= h

2

[
L̃

(
qk ,q′

k ,
(
q′′

k

)−
,Λk

)
+ L̃

(
qk+1,q′

k+1,
(
q′′

k+1

)+
,Λk+1

)]
,

where qk , q′
k and Λk are approximations of q

(
sk

)
, q′ (sk

)
, and Λ

(
sk

)
, and the

curvature on the interval
[
sk , sk+1

]
is approximated in terms of lower order

derivatives as follows

q′′ (sk
)≈ (

q′′
k

)− =
(
−2q′

k+1 −4q′
k

)
h +6

(
qk+1 −qk

)
h2 ,

q′′ (sk+1
)≈ (

q′′
k+1

)+ =
(
4q′

k+1 +2q′
k

)
h −6

(
qk+1 −qk

)
h2 .

This amounts to a piece-wise linear and discontinuous approximation of the
curvature on

[
0,L

]
.

The action integral in Equation (5.2.4) along the exact solution q with
boundary conditions

(
q0,q′

0

)
and

(
qN ,q′

N

)
is approximated by

Sd =
N−1∑
k=0

L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
. (5.2.6)

The discrete variational principle δSd = 0 leads to the following discrete Euler-
Lagrange equations:

D3L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D1L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

D4L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D2L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

D6L̃d

(
qk−1,q′

k−1,qk ,q′
k ,Λk−1,Λk

)
+D5L̃d

(
qk ,q′

k ,qk+1,q′
k+1,Λk ,Λk+1

)
= 0,

(5.2.7)
for k = 1, . . . , N −1, which approximate the equilibrium equations of the beam
in Equations (5.2.5) and can be solved together with the boundary conditions.

5.2.2 Data generation

The elastica was one of the first examples displaying elastic instability and bi-
furcation phenomena [2,42]. Elastic instability implies that small perturbations
of the boundary conditions might lead to large changes in the beam configura-
tion, which results in unstable equilibria. Under certain boundary conditions,
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5.3 Approximation with neural networks

bifurcation can appear leading to a multiplicity of solutions [27]. In partic-
ular, this means that the numerical problem may display history-dependence
and converge to solutions that do not minimise the bending energy. In order to
generate a physically meaningful data set, avoiding unstable and non-unique so-
lutions is essential. Thus, in addition to the minimisation of the discrete action
Sd in Equation (5.2.6), we ensure the fulfilment of the discrete Euler-Lagrange
equations (5.2.7), which can be seen as necessary conditions for the stationarity
of the discrete action. We exclude from the data set numerical solutions com-
puted with boundary conditions where minimisation of Equation (5.2.6) and
accurate solution of Equations (5.2.7) can not be simultaneously achieved.

In particular, we consider a curve of length L = 3.3 and bending stiffness
E I = 10, divided into N = 50 intervals. We fix the endpoints q0 =

(
0,0

)
, qN =(

3,0
)
. The units of measurement are deliberately omitted as they have no impact

on the results of this work. We impose boundary conditions on the tangents in
the following two variants:

1. the angle of the tangents with respect to the x-axis at the boundary, θ0 and
θN , is prescribed in the range

[
0,2π

]
, in a specular symmetric fashion,

i.e.,θN =π−θ0. Hereafter, we refer to this case as both-ends,

2. the angle of the left tangent is left fixed as θ0 = 0 and the angle of the
right tangent, θN , varies in the range of

[
0,2π

]
. We refer to this case as

right-end.

Based on these parameters and boundary values, we generate a data set
of 2000 trajectories (1000 trajectories for each case) by minimising the par-
ticular action in Equation (5.2.6), with the trust-constr solver of the
optimize.minimize procedure provided in SciPy [43]. We check the
resulting solutions by using them as initial guesses for the optimize.root
method of SciPy, solving the discrete Euler-Lagrange equations (5.2.7).

5.3 Approximation with neural networks

We start providing a concise overview on neural networks, and we refer to
[15,18] and references therein for a more comprehensive introduction. A neural
network is a parametric function fρ : I →O with parameters ρ ∈Ψ given as a
composition of multiple transformations,

fρ := fℓ ◦ · · · ◦ f j ◦ · · · ◦ f1, (5.3.1)

where each f j represents the j -th layer of the network, with j = 1, . . . ,ℓ, and
ℓ is the number of layers. For example, multi-layer perceptrons (MLPs) have
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Neural networks for the approximation of Euler’s elastica

each layer f j defined as

f MLP
j (x) =σ

(
A j x+b j

)
∈Rn j , (5.3.2)

where x ∈ Rn j−1 , and A j ∈ Rn j×n j−1 , b j ∈ Rn j are the parameters of the j -th

layer, i.e., ρ =
{

A j ,b j

}ℓ
j=1

. The activation function σ is a continuous nonlinear

scalar function, which acts component-wise on vectors. The architecture of the
neural network is prescribed by the layers f j in Equation (5.3.1) and determines
the space of functions F =

{
fρ : I →O, ρ ∈Ψ

}
that can be represented. The

weights ρ are chosen such that fρ approximates accurately enough a map of
interest f : I →O. Usually, this choice follows from minimising a purposely
designed loss function Loss

(
ρ

)
.

In supervised learning, we are given a data set Ω=
{

xi ,yi
}M

i=1
consisting of

M pairs
(

xi ,yi = f
(
xi

))
. The loss function is measuring the distance between

the network predictions fρ
(
xi

)
and the desired outputs yi in some appropriate

norm ∥·∥
Loss(ρ) = 1

M

M∑
i=1

∥∥∥∥ fρ
(
xi

)
−yi

∥∥∥∥2

.

The training of the network is the process of minimising Loss(ρ) with respect
to ρ and it is usually done with gradient descent (GD):

ρ(k) 7→ρ(k) −η∇Loss
(
ρ(k)

)
=:ρ(k+1).

The scalar value η is known as the learning rate. The iteration process is often
implemented using subsets of data B ⊂Ω of cardinality B = ∣∣B∣∣ (batches). In
this paper we use an accelerated version of GD known as Adam [17].

Once the training is complete, we assess the model’s accuracy in predicting
the correct output for new inputs included in the test set that are unseen during
training. In the following, we measure the accuracy on both the training and the
test data using the mean squared error of the difference between the predicted
trajectories and the true ones.

We now turn to the task of approximating the static equilibria of the pla-
nar elastica introduced in Section 5.2, i.e., approximating a family of curves{

qi :
[
0,L

] 7→R2
}

determined by boundary conditions,{
qi (0) = qi

0, qi (
L
)= qi

N ,
(
qi

)′
(0) =

(
qi

0

)′
,
(
qi

)′ (
L
)= (

qi
N

)′}
, (5.3.3)

where
(

qi
0,qi

N ,
(
qi

0

)′
,
(
qi

N

)′) ∈R8. In order to tackle this problem, we require a

set of evaluations
{

qi
k ,

(
qi

k

)′}
on the nodes sk ∈ [

0,L
]

of a discretisation. More
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5.4 The discrete network

precisely, in our setting, the data set includes numerical approximations q̂ of
the solution q (s) and its spatial derivative q′ (s) at the N −1 discrete locations
sk = kh

L in the interval
[
0,L

]
, for M sets of boundary conditions, as described

in Section 5.2.2.

5.4 The discrete network

The discretisation of Euler’s elastica presented in Section 5.2.1 provides dis-
crete solutions on a set of nodes along the curve. These solutions can sometimes
be hard to obtain since a non-convex optimisation problem needs to be solved,
and the number of nodes can be large. This motivates the use of neural net-
works to learn the approximate solution on the internal nodes, for a given set
of boundary conditions. The data set Ω consists of M precomputed discrete
solutions

Ω=
{(

xi ,yi
)}M

i=1
,

where
xi =

(
qi

0,qi
N ,

(
qi

0

)′
,
(
qi

N

)′) ∈R8

are the input boundary conditions and

yi =
(

q̂i
1, . . . , q̂i

N−1,
(
q̂i

1

)′
, . . . ,

(
q̂i

N−1

)′) ∈R4(N−1)

are the computed solutions at the internal nodes that serve as output data for
the training of the network.

For any symmetric positive definite matrix W , we define the weighted norm
∥x∥W = ∥W x∥2. The weighted MSE loss

Loss(ρ) = 1

4M
(
N −1

) M∑
i=1

∥∥∥∥qd
ρ

(
xi

)
−yi

∥∥∥∥2

W
, (5.4.1)

will be used to learn the input-to output map qd
ρ : R8 → R4(N−1), where the

superscript d stands for discrete. One should be aware that there is a numerical
error in yi compared to the exact solution and the size of this error will pose a
limit to the accuracy of the neural network approximation.

5.4.1 Numerical experiments

This section provides experimental support to the proposed learning frame-
work. We perform a series of experiments varying the architecture of the neural
network and the hyperparameters in the training procedure. The codes to run
the experiments in this work are written using the machine learning library
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Neural networks for the approximation of Euler’s elastica

PyTorch [32]. We use the Adam optimiser [17] for the training, carefully
selecting learning rate and weight decay to prevent over-fitting, see Table 5.2.
In (5.4.1) we use the weight matrix

W = I +γGT G

where G = S − I with S the forward shift operator on vectors of R4(N−1). We
test a range of different batch sizes B ≤ M and fix the total number of epochs
to 300. Finally, we also test for the influence of performing normalisation of
the input data. We collect in Table 5.2 all the hyperparameters and network
architectures with their corresponding ranges.

Hyperparameter Range Distribution

architecture {MLP, ResNet} discrete uniform
normalisation {True, False} discrete uniform

activation function σ {Tanh, Swish, Sigmoid,
ReLU, LeakyReLU}

discrete uniform

#layers ℓ {0,1,2,3,4} discrete uniform
#hidden nodes in each layer [32,1024]∩N discrete uniform

learning rate η [1 ·10−4,1 ·10−1] log uniform
weight decay [1 ·10−7,5 ·10−4] log uniform

γ [0,1 ·10−2] uniform
batch size {32,64,128} discrete uniform

Table 5.2: Hyperparameter ranges for the discrete network qd
ρ tested on the both-

ends data set. The first column of the table reports the hyperparameters and network
architectures we test for. The second describes the set of allowed values for each, while
the third specifies how such values are explored through Optuna. MLP corresponds to
the network in Equation (5.3.2), Section 5.3, while ResNet is a residual neural network
defined in Equation (5.A.1) of Appendix 5.A.

We rely on the software framework Optuna [1] to automate and efficiently
conduct the search for the combination that yields the best result. This is
reported in Table 5.3. The resulting training error on the both-end data set is
2.791 · 10−7, and the test error on a set of trajectories belonging to the same
data set is 3.028 ·10−7. Figure 5.1 compares test trajectories for q and q′. We
remark that, as already clear from the low value of the training and test errors,
the network can accurately replicate the behaviour of the training and test data.
Furthermore, since the network is trained only on the internal nodes and the
boundary values are appended to the predicted solution in a post processing
phase, we have zero errors at the end nodes. On the other hand, since this
discrete approach does not relate the components as evaluations of a smooth
curve, there is no regular behaviour in the error.
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5.4 The discrete network

Selected hyperparameters

architecture MLP
normalisation True

activation function σ Tanh
#layers ℓ 4

#hidden nodes in each layer 879
learning rate η 1.378 ·10−3

weight decay 1.535 ·10−7

γ 4.242 ·10−3

batch size 32

Table 5.3: Combination of hyperparameters yielding the best results for the discrete
network qd

ρ tested on the both-ends data set with 90%−10% splitting into training and
test set. The results are shown in Figure 5.1.
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Figure 5.1: Comparison over test trajectories for q and q′ for the discrete network
qd
ρ tested on the both-ends data set with 90%− 10% splitting into training and test

set. These results are obtained with the hyperparameters from Table 5.3, that yield a
training error equal to 2.791·10−7 and a test error equal to 3.028·10−7 . For presentation
purposes, only 10 randomly selected trajectories are considered in the first two plots.
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As an additional evaluation of the deep learning framework’s behaviour,
we conduct experiments to assess how the learning process performs when the
number of training data varies, i.e., with different splittings of the data set into
training and test sets. We report the results in Table 5.4 and summarise the
corresponding hyperparameters in Table 5.12 of the Appendix.

Data set splitting
Training - test Training accuracy Test accuracy

10% - 10% 6.530 ·10−5 5.636 ·10−4

20% - 10% 2.096 ·10−5 3.457 ·10−5

40% - 10% 2.186 ·10−6 3.494 ·10−6

90% - 10% 2.791 ·10−7 3.028 ·10−7

Table 5.4: Behaviour of the discrete network qd
ρ tested on the both-ends data set with

fewer training data points. The size of the training set varies, while that of the test set
is fixed. The last row corresponds to the results in Figure 5.1.

We also report results obtained by merging the both-end and the right-end
trajectories, with 90%−10% splitting of the whole new data set into training and
test set. The results are shown in Figure 5.2 and the selected hyperparameters
are collected in Table 5.5. The resulting training and test errors are, respectively,
3.047 ·10−7 and 3.141 ·10−7. Finally, we remark that the test accuracy is a good
measure of the generalisation error of neural network under the hypothesis that
the test and the training sets are independent of each other, but follow the same
distribution. If we test over input boundary conditions that not only are unseen
during the training, but also do not belong in the the same range of the training
data, the resulting accuracy is expected to be low, since neural networks are in
general not able to perform this sort of extrapolation. To show this, we consider

Selected hyperparameters

architecture MLP
normalisation True

activation function σ LeakyReLU
#layers ℓ 2

#hidden nodes in each layer 1006
learning rate η 3.611 ·10−3

weight decay 1.515 ·10−7

γ 6.388 ·10−3

batch size 32

Table 5.5: Combination of hyperparameters yielding the best results for the discrete
network qd

ρ tested on the both-ends + right-end data set with 90%−10% splitting into
training and test set. The results are shown in Figure 5.2.
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5.5 The continuous network

the neural network trained and tested over the both-ends data set, related to
the results in Figure 5.1 and in the last row of Table 5.4. We use 10% of the
right-end data set as a test set, and we obtain a test error equal to 2.228 ·10−2.
This highlights that care must be taken when using the trained network to make
inference over new input data.
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Figure 5.2: Comparison over test trajectories for q and q′ for the discrete network
qd
ρ tested on the both-ends + right-end data set with 90%−10% splitting into training

and test set. These results are obtained with the hyperparameters from Table 5.5, that
yield a training error equal to 3.047 ·10−7 and a test error equal to 3.141 ·10−7. For
presentation purposes, only 10 randomly selected trajectories are considered in the first
two plots.

5.5 The continuous network

The approach described in the previous section shows accurate results, given
a large enough amount of beam discretisations with a fixed number of nodes
N + 1, equally distributed in

[
0,L

]
. It seems reasonable to expect that the

parametric model’s approximation quality improves when the number of dis-
cretisation nodes increases. However, in this approach, the dimension of the
predicted vector grows with N , and hence minimising the loss function (5.4.1)
becomes more difficult. In addition, the fact that the discrete network approach
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depends on the spatial discretisation of the training data restricts the output
dimension to a specific number of nodes. Consequently, there would be two
main options to assess the solution at different locations: training the network
once more, or interpolating the previously obtained approximation. These limi-
tations make such a discrete approach less appealing and suggest that having a
neural network that is a smooth function of the arc length coordinate s can be
beneficial. This modelling assumption would also be compatible with different
discretisations of the curve and would not suffer from the curse of dimensional-
ity if more nodes were added. In this setting, the discrete node sk at which an
approximation of the solution is available, is included in the input data together
with the boundary conditions. As a result, we work with the following data set

Ω=
{(

sk , xi
)

, yi
k

}i=1,...,M

k=0,...,N
,

where, as in the previous section,

xi =
(

qi
0, qi

N ,
(
qi

0

)′
,
(
qi

N

)′) ∈R8,

and
yi

k =
(

q̂i
k ,

(
q̂i

k

)′)
.

Here q̂i
k is the numerical solution q̂ on the node sk , satisfying the i -th boundary

conditions in Equation (5.3.3). Let us introduce the neural network

qc
ρ :R8 → C∞

([
0,L

]
,R2

)
,

and the differential operator

D : C∞
([

0,L
]

,R2
)
→ C∞

([
0,L

]
,R2

)
, D

(
qc
ρ

(
xi

))(
sk

)= d

d s

(
qc
ρ

(
x i

))
(s)

∣∣∣
s=sk

,

so that we can define

yρ
(
xi

)(
sk

)
:=

(
qc
ρ

(
xi

)(
sk

)
, D

(
qc
ρ

(
xi

))(
sk

))
.

To train the network qc
ρ , we define the loss function

Loss(ρ) = 1

4M(N +1)

M∑
i=1

N∑
k=0

(∥∥∥∥yρ
(
xi

)(
sk

)− y i
k

∥∥∥∥2

2

+γ
(∥∥∥∥πD (

yρ
(
xi

)(
sk

))∥∥∥∥2

2
−1

)2)
, (5.5.1)
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where πD :R8 →R4 is the projection on the second component D
(

qc
ρ

(
x i

))(
sk

)
,

and γ ≥ 0 weighs the violation of the normality constraint. The map qc
ρ is

now a neural network that associates each set of boundary conditions x i with
a smooth curve qc

ρ

(
x i

)
:
[
0,L

] → R2 that can be evaluated at every point s ∈[
0,L

]
. We denote this network with the superscript c, since this curve is in

particular continuous. The outputs qc
ρ

(
x i

)
(s) ∈ R2 are approximations of the

configuration of the beam at s ∈ [
0,L

]
.

We point out that, contrarily to the discrete case, here we learn approxima-
tions of q (s) also on the end nodes, i.e., at s = 0 and s = L. This is due to the fact
that we do not impose the boundary conditions by construction. Even though
there are multiple approaches to embed them into the network architecture, the
one we try in our experiments made the optimisation problem too difficult, thus
we only impose the boundary conditions weakly in the loss function.

Another strategy is to compute the angles θk between the tangents (q̂k )′ and
the x-axis and to use them as training data. To this end, we define the neural
network

θc
ρ :R8 → C∞

([
0,L

]
,R

)
as θc

ρ = θ̂c
ρ ◦π, where

θ̂c
ρ :R2 → C∞

([
0,L

]
,R

)
(5.5.2)

is a neural network and the function π :R8 →R2 extracts the tangential angles
from the boundary conditions, i.e., π

(
x i

)
=

(
θi

0,θi
N

)
. Such a network should

approximate the angular function θ :
[
0,L

] ∋ s →R, so that

τc
ρ

(
x i

)
(s) :=

(
cos

(
θc
ρ

(
x i

)
(s)

)
, sin

(
θc
ρ

(
x i

)
(s)

))
∈R2 (5.5.3)

gets close to the tangent vector q′ (s). As a result, the constraint on the unit
norm of the tangents is satisfied by construction, and the inextensibility of the
elastica is guaranteed. The curve

q (s) = q0 +
∫ s

0
q′(s̄)ds̄

can then be approximated through the reconstruction formula

qc
ρ

(
x i

)
(s) = q0 +I

(
τc
ρ

(
x i

))
(s) , (5.5.4)

where the operator I : C∞
([

0,L
]

,R2
)
→ C∞

([
0,L

]
,R2

)
is such that

I
(
τc
ρ

(
x i

))
(s) ≈

∫ s

0
τc
ρ

(
xi

)
(s̄)ds̄.
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In the numerical experiments, I is based on the 3-point Gaussian quadrature
formula applied to a partition of the interval

[
0,L

]
, see [33, Chapter 9]. As

done previously, we define the vector

yρ
(
xi

)(
sk

)
:=

(
qc
ρ

(
xi

)(
sk

)
, τc
ρ

(
x i

)(
sk

))
, (5.5.5)

with components defined as in Equations (5.5.3) and (5.5.4). This allows us
to train the network θc

ρ by minimising the same loss function as in Equation
(5.5.1), where this time yc

ρ is given by Equation (5.5.5). Furthermore, since

by construction this case satisfies

∥∥∥∥∥πD
(

yc
ρ

(
x i

)
(s)

)∥∥∥∥∥
2

=
∥∥∥∥τc

ρ

(
x i

)
(s)

∥∥∥∥
2
≡ 1, we

set γ= 0. We present numerical experiments for the two proposed continuous
networks qc

ρ and θc
ρ . In the latter case, by neural network architecture we refer

to θ̂c
ρ rather than θc

ρ in what follows. We analyse qc
ρ more thoroughly in Sec-

tion 5.5.1, mirroring most of the discrete case experiments. In Section 5.5.2 we
study how the results are affected when we impose the arc length parametriza-
tion and enforce the boundary conditions to be exactly satisfied by the network
θc
ρ .

5.5.1 Numerical experiments with qc
ρ

As for the case of the discrete network, we perform an in-depth investigation
of this learning setting by varying the architecture of the continuous neural
network and the hyperparameters in the training procedure, whose range of
options can be found in Table 5.6. In this case, we define the loss as in Equation
(5.5.1), with γ= 10−2. The weight decay is systematically set to 0.

Hyperparameter Range Distribution

architecture {MLP, ResNet, MULT} discrete uniform
normalisation {True, False} discrete uniform

activation function σ {Tanh, Swish, Sigmoid, Sine} discrete uniform
#layers ℓ {3, . . . ,8} discrete uniform

#hidden nodes in each layer [10,200]∩N discrete uniform
learning rate η [1 ·10−4,1 ·10−1] log uniform

Table 5.6: Hyperparameter ranges for the continuous network qc
ρ tested on the both-

ends data set with 90%− 10% splitting into training and test set. The first column
of the table reports the hyperparameters and network architectures we test for. The
second describes the set of allowed values for each, while the third specifies how such
values are explored through Optuna. The weight decay is systematically set to 0.
MULT stands for multiplicative neural network and corresponds to the network in
Equations (5.A.2)-(5.A.6) of Appendix 5.A.
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Selected hyperparameters

architecture MULT
normalisation True

activation function σ Tanh
#layers ℓ 5

#hidden nodes in each layer 190
learning rate η 3.025 ·10−3

Table 5.7: Combination of hyperparameters yielding the best results for the continuous
network qc

ρ tested on the both-ends data set with 90%−10% splitting into training and
test set. The results are shown in Figure 5.3.
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Figure 5.3: Comparison over test trajectories for q and q′ for the continuous network
qc
ρ tested on the both-ends data set with 90%− 10% splitting into training and test

set. These results are obtained with the hyperparameters from Table 5.7, that yield a
training error equal to 1.869·10−6 and a test error equal to 4.810·10−6. For presentation
purposes, only 10 randomly selected trajectories are considered in the first two plots.
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Data set splitting
Training - test Training accuracy Test accuracy

10% - 10% 2.383 ·10−4 7.784 ·10−4

20% - 10% 5.612 ·10−5 7.285 ·10−5

40% - 10% 7.104 ·10−6 9.275 ·10−6

90% - 10% 1.869 ·10−6 4.810 ·10−6

Table 5.8: Behaviour of the continuous network qc
ρ tested on the both-ends data set

with fewer training data points. The size of the training set varies, while that of the test
set is fixed. The last row corresponds to the results in Figure 5.3.

Table 5.7 collects the combination of hyperparameters yielding the best
results on the both-ends data set. This leads to a training error equal to 1.869 ·
10−6 and a test error equal to 4.81 ·10−6. In Figure 5.3, the comparison over
test trajectories for q and q′ is shown. As we can see in the plot showing the
mean error over the trajectories, the error on the end nodes is nonzero, since
we are not imposing boundary conditions by construction. This is in contrast
to the corresponding plot for the discrete network in Figure 5.1.

Also in this case, we examine the behaviour of the learning process with dif-
ferent splittings of the data set into training and test sets. We display the results
in Table 5.8 and summarise the corresponding hyperparameters in Appendix
5.B, Table 5.13.

5.5.2 Numerical experiments with θc
ρ

Here we consider a neural network approximation of the angle θ (s) that parame-
trises the tangent vector q′ (s) =

(
cos

(
θ (s)

)
, sin

(
θ (s)

))
. By design, the approx-

imation τc
ρ of the tangent vector q′ satisfies the constraint

∥∥∥∥τc
ρ

(
x i

)
(s)

∥∥∥∥
2
= 1

for every s ∈ [
0,L

]
and x i ∈ R8. We also analyse how the neural network

approximation behaves when the boundary conditions τc
ρ

(
x i

)
(0) = q′ (0) and

τc
ρ

(
x i

)(
L
)= q′ (L

)
are imposed by construction. To do so, we model the para-

metric function θ̂c
ρ , defined in Equation (5.5.2), in one of the two following

ways:

θ̂c
ρ

(
x i

)
(s) = fρ(s,θi

0,θi
N ), (5.5.6)

θ̂c
ρ

(
x i

)
(s) = fρ(s,θi

0,θi
N )+

(
θi

0 − fρ
(
0,θi

0,θi
N

))
e−100s2

+
(
θi

N − fρ
(
L,θi

0,θi
N

))
e−100(s−L)2

,

(5.5.7)
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where fρ : R3 → R is any neural network, and we recall that π
(

x i
)
=

(
θi

0,θi
N

)
.

We remark that, in the case of the parameterisation in Equation (5.5.7), one
gets θc

ρ

(
x i

)
(0) = θi

0 and θc
ρ

(
x i

)(
L
) = θi

N up to machine precision, due to the
fast decay of the Gaussian function. As in the previous sections, we collect the
hyperparameter and architecture options with the respective range of choices in
Table 5.9, and we report the results without imposing the boundary conditions
in Figure 5.4, while those imposing them in Figure 5.5, in both cases using
the both-ends data set, with 90%−10% splitting into training and test set. The
results shown in the two figures correspond respectively to training errors of
5.821 ·10−6 and 6.068 ·10−6, and test errors of 6.231 ·10−6 and 6.289 ·10−6. The
best performing hyperparameter combinations can be found in Tables 5.10 and
5.11.

Hyperparameter Range Distribution

architecture {MLP, ResNet, MULT} discrete uniform
activation function σ {Tanh, Swish, Sigmoid} discrete uniform

#layers ℓ {3, . . . ,8} discrete uniform
#hidden nodes in each layer [50,200]∩N discrete uniform

learning rate η [1 ·10−3,1 ·10−1] log uniform

Table 5.9: Hyperparameter ranges for the continuous network θc
ρ tested on the both-

ends data set. The first column of the table reports the hyperparameters and network
architectures we test for. The second describes the set of allowed values for each, while
the third specifies how such values are explored through Optuna. The weight decay
is systematically set to 0, and no normalisation is applied.

Selected hyperparameters

architecture MULT
activation function σ Tanh

#layers ℓ 7
#hidden nodes in each layer 143

learning rate η 3.007 ·10−3

Table 5.10: Combination of hyperparameters yielding the best results for the case
when θc

ρ is modelled as in Equation (5.5.6), with 90%−10% splitting of the both-ends
data set into training and test set. The results are shown in Figure 5.4.

5.6 Discussion

The results in Figures 5.4 and 5.5 are comparable, especially looking at the
mean error plots. This suggests that the imposition of the boundary conditions,
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Figure 5.4: Comparison over test trajectories for q and q′, for the case θc
ρ is modelled

as in Equation (5.5.6), with 90%−10% splitting of the both-ends data set into training
and test set. These results are obtained with the hyperparameters from Table 5.10, that
yield a training error equal to 5.821 ·10−6 and a test error equal to 6.231 ·10−6. For
presentation purposes, only 10 randomly selected trajectories are considered in the first
two plots.

Selected hyperparameters

architecture MULT
activation function σ Tanh

#layers ℓ 4
#hidden nodes in each layer 175

learning rate η 1.846 ·10−3

Table 5.11: Combination of hyperparameters yielding the best results for the case
when θc

ρ is modelled as in Equation (5.5.7), with 90%−10% splitting of the both-ends
data set into training and test set. The results are shown in Figure 5.5.
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in the proposed way, is not limiting the expressivity of the considered network.
Thus, given the boundary value nature of our problem, these figures advocate
the enforcement of the boundary conditions on the network θc

ρ . However, due
to the chosen reconstruction procedure in Equation (5.5.4) for the variable q,
we are able to impose the boundary conditions on q only on the left node.
Clearly, other more symmetric reconstruction procedures can be adopted, but
the proposed one has proved to provide better experimental results.
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Figure 5.5: Comparison over test trajectories for q and q′, for the case θc
ρ is modelled

as in Equation (5.5.7), with 90%−10% splitting of the both-ends data set into training
and test set. These results are obtained with the hyperparameters from Table 5.11, that
yield a training error equal to 6.068 ·10−6 and a test error equal to 6.289 ·10−6. For
presentation purposes, only 10 randomly selected trajectories are considered in the first
two plots.

Comparing the results related to qc
ρ with those of θc

ρ , we notice similar
performances in terms of training and test errors. In both the cases, they have
one order of magnitude more than the corresponding training and test errors of
the discrete network qd

ρ . Thus, as a results of our experiments, we can conclude
that

• if the accuracy and the efficient evaluation of the model at the discrete
nodes are of interest, the discrete network is the best option;
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• for a more flexible model, not restricted to the discrete nodes, the con-
tinuous network is a better choice; among the two proposed modelling
strategies, working with qc

ρ is more suitable for an easy parametrisa-
tion of both q and q′, while θc

ρ is more suitable to impose geometrical
structure and constraints.

The total accuracy error of a neural network model can be defined by splitting
it into three components: approximation error, optimisation error, and generali-
sation error (see, e.g. [23]). To achieve excellent agreement between predicted
and reference trajectories, it is important to select the appropriate architecture
and fine-tune the model hyperparameters. Our results demonstrate that we can
construct a network that is expressive enough to provide a small approximation
error and with very good generalisation capability.

5.6.1 Future work

In the methods presented in this paper, there is no interaction between the math-
ematical problem and the neural network model once the data set is created.
As a way to improve the results presented here, one could include the Euler
elastica model directly into the training process. This could be done either by
directly imposing in the loss function that q (s) satisfies the differential equa-
tions (5.2.5), or one could add the constrained action integral from Equation
(5.2.4) into the loss function that is minimised, see e.g. [19, 34, 38, 46].

There are many promising directions in order to follow up this work. One is
to consider 3D versions of the Euler elastica, another is to look at the dynamical
problem, and finally one may examine industrial applications. As an example,
we refer to the modelling of endoscopes due to the high bending deformation
of these medical devices under certain loading cases [41]. The approximation
of the elastica through neural networks can indeed help in the prediction of the
deformed configuration of the beam in constrained narrow environments.

5.A Other neural network architectures

Another example of neural network architecture, besides the MLP defined in
Equation (5.3.2), is the residual neural network (ResNet), where

f RES
j (x) = x+BT

j σ(A j x+b j ) ∈Rn , (5.A.1)

with x ∈Rn , A j ,B j ∈Rn j×n , b j ∈Rn j , and ρ =
{

A j ,b j ,B j

}ℓ
j=1

. We also provide

the expression of the forward propagation of the multiplicative network used
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for the experiments in Section 5.5:

U =σ(
W1x+b1

)
, V =φ(

W2x+b2
)

(5.A.2)

H1 =σ
(
W3x+b3

)
(5.A.3)

Z j =σ
(
Wz

j H j +bz
j

)
, j = 1, . . . ,ℓ (5.A.4)

H j+1 =
(
1−Z j

)
⊙U+Z j ⊙V, j = 1, . . . ,ℓ (5.A.5)

f MU LT
ρ (x) = WHℓ+1 +b, (5.A.6)

where ⊙ denotes the component-wise multiplications. In this case,

ρ =
{

W1,b1,W2,b2,W3,b3,
(
Wz

j ,bz
j

)ℓ
j=1

,W,b
}

, and the weight matrices and

biases have shapes that allow for the expressions (5.A.2)-(5.A.6) to be well-
defined. This architecture is inspired by neural attention mechanisms and was
introduced in [45] to improve the gradient behaviour. A further motivation for
our choice of including this architecture is experimental since it has proven
effective in solving the task of interest, while still having a similar number of
parameters to the MLP architecture. Throughout the paper, we refer to this
architecture as multiplicative since it includes component-wise multiplications,
which help capture multiplicative interactions between the variables.

5.B Further results on the hyperparameters of the neu-
ral networks

blanktext

Hyperparameter
combination

Data set splitting

10% - 10% 20% - 10% 40% - 10% 90% - 10%

architecture MLP MLP MLP MLP
normalization False False False True

activation function σ Tanh Tanh Tanh Tanh
number of layers ℓ 4 4 3 4
#hidden nodes in

each layer 950 351 904 879

learning rate η 1.019·10−3 5.455·10−3 1.429·10−3 1.378·10−3

weight decay 1.79 ·10−6 2.142·10−7 1.317·10−7 1.535·10−7

γ 8.595·10−3 2.973·10−3 9.338·10−3 4.242·10−3

batch size 64 32 32 32

Table 5.12: Choice of hyperparameters for the training of the discrete network qd
ρ

tested on the both-ends data set with different numbers of training data points.
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Hyperparameter
combination

Data set splitting

10% - 10% 20% - 10% 40% - 10% 90% - 10%

architecture MULT MULT MULT MULT
normalization True True True True

activation function σ Tanh Tanh Sine Tanh
number of layers ℓ 5 6 6 5
#hidden nodes in

each layer 193 121 169 190

learning rate η 4.548·10−3 4.913·10−3 4.2 ·10−3 3.025·10−3

Table 5.13: Choice of hyperparameters for the training of the continuous network qc
ρ

tested on the both-ends data set with different numbers of training data points. The
weight decay is systematically set to 0.
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Supervised Time Series Classification for
Anomaly Detection in Subsea Engineering

Abstract. Time series classification is of significant importance in monitor-
ing structural systems. In this work, we investigate the use of supervised
machine learning classification algorithms on simulated data based on a phys-
ical system with two states: Intact and Broken. We provide a comprehensive
discussion of the preprocessing of temporal data, using measures of statisti-
cal dispersion and dimension reduction techniques. We present an intuitive
baseline method and discuss its efficiency. We conclude with a comparison
of the various methods based on different performance metrics, showing the
advantage of using machine learning techniques as a tool in decision making.

6.1 Introduction

In the offshore petroleum industry, drilling, completion and workover of subsea
wells is usually performed by semi-submersible drilling rigs. A string of pipe
sections extends from the rig to the subsea well and provides a conduit for fluid
and tools. To prevent uncontrolled release of oil and gas to the environment this
riser system includes a blowout preventer (BOP) directly on the top of the well.
The BOP is a heavy steel structure with valves and allows for safe disconnect
from the well if needed. A sketch of a BOP stack on a well can be seen in
Figure 6.1 in Section 6.2.

During operations wave forces acting on the rig, riser and BOP system
induce cyclic loading in the uppermost part of the well (the wellhead). This
will in turn cause fatigue damage and increase the risk of cracks to develop
and grow in critical sections of the wellhead. A total or even partial loss of
structural integrity and pressure control due to cracking of the wellhead must be
prevented. For this reason great emphasis is placed on predicting and detecting
changes in structural response.

During an operation sensor systems may continuously monitor riser and
BOP accelerations and the resulting bending moments applied to the wellhead.
A systematic change in the relationship between these responses may be an
indication of structural failure of the wellhead system. The change may, how-
ever, not be easily detectable for a human operator. This paper compares time
series classification (TSC) methods for detecting changes in structural response.
Several machine learning (ML) algorithms are trained on a synthetic, labelled,
data set. Classification is performed either on the raw time series or by first
making use of measures of variability of the data, like standard deviation (STD).
Being able to classify a labelled data set with time series would serve as a proof
of concept for training anomaly detection algorithms to detect cases where a
crack occurs.

149



Supervised Time Series Classification for Anomaly Detection in Subsea Engineering

Our point of departure is a method relying on STD analysis of the data,
which we will refer to as the baseline method. In this paper, we investigate and
compare a range of alternative statistical approaches and ML techniques for
binary classification of time series. We use synthetic, but physically realistic
data simulated by a state of the art commercial code and perform our analysis
in a supervised learning setting.

The structure of this paper is as follows. In Section 6.2 we summarize
the main characteristics of the data set and perform some preliminary analysis,
which lays the basis for the following sections. We also introduce a formal
definition of the supervised learning classification problem for the given time
series data set. We conclude the section with a concise overview of Principal
Component Analysis (PCA), one of the most popular dimension reduction
techniques, whose theory goes back to Pearson [26] and Hotelling [12]. We
use [13] as our main reference.

Sections 6.3-6.7 illustrate five methods to perform the classification task
addressed in this work. For each method, we provide a brief description and
report on the experimental results.

The baseline method is presented in Section 6.3. This is mainly based on
measures of variation of the values in the data set and on regression techniques.

In Section 6.4, logistic regression (LogR) is used on the transformed data
from Section 6.2, combined with PCA. LogR was first introduced by Berkson
[4] in 1944 and applied to bioassay. Through the years it has been widely used
in areas such as biology, medicine, psychology, finance and economics. It has
become one of the most used classification algorithms, thanks to its simplicity,
efficiency and interpretability, see e.g. [10, 14, 21].

Section 6.5 covers Decision Trees (DTs), a popular supervised classification
and regression technique introduced in the 1960s by Morgan and Sonquist
in [23]. New concepts, reviews of decision trees and their applications in
different fields such as medicine, finance, environmental sciences, are presented
in [27, 34, 36].

Section 6.6 illustrates how to use a Support Vector Machine (SVM) [5], an
ML algorithm for binary classification of data that continues to be widely popu-
lar due to its high performance and robustness to noise. Since the introduction
of SVM in 1992 at AT&T Bell Laboratories, it has been applied in fields such
as medicine, biology, finance and technology [7].

The last method considered in this paper, investigated in Section 6.7, be-
longs to the class of deep learning algorithms and uses a Convolutional Neural
Network (CNN). Although CNNs were specifically introduced to work with
image data [17], thus with input in the form of matrices (tabular data sets), they
reached state of the art results also in other fields. In particular, they proved to
be effective at capturing patterns in time series, making them among the most
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successful deep learning architectures for time series processing [3, 9, 18].
In Section 6.8 we compare the methods based on different accuracy metrics

and finally we provide conclusions and discuss research directions in Section
6.9.

Nomenclature
accx , accy x and y component of the acceleration
ASM Attribute Selection Measure
bmx, bmy x and y component of the bending moment
BOP Blowout Preventer
CNN Convolutional Neural Network
DAS Data Acquisition System
DT Decision Tree
DWS Deep Water Strain
FJ Flex Joint
LogR Logistic Regression
ML Machine Learning
MLP Multi-layer Perceptron
PCA Principal Component Analysis
SMU Subsea Motion Units
STD Standard Deviation
SVD Singular Value Decomposition
SVM Support Vector Machine
TSC Time Series Classification
WLR Wire Load Relief

Table 6.1: List of abbreviations and notations.

6.2 The data set under consideration

The data set at hand is based on simulated data from the Orcaflex software
package [24]. This is done due to lack of measurements in the event of a
well cracking. The simulated data is obtained from a three-dimensional finite
element dynamic analysis in the time domain of the global riser, BOP and
wellhead system. The system is exposed to realistic operational loads from a
two-dimensional wave energy spectrum based on hindcast data gathered from
representative operations. The two-dimensional sea state comprises 200 linear
Airy wave components with different combinations of direction, frequency, and
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amplitude. In addition to waves, the system is exposed to a statistical median
current profile for the same representative area. This is a unidirectional current
with velocity varying with depth.

The riser, BOP and wellhead system is represented with one-dimensional
line elements with six degrees of freedom. They are modelled with hydrody-
namic, hydrostatic and structural properties aimed at giving realistic dynamic
load exposure from the environment. This gives a realistic resulting dynamic
load and deflection response.

The vessel used for the simulations is stationary, representing a bottom
fixed operation vessel, and serves as a fixed reference for the top of the riser.
The riser is in constant positive effective tension, with tension magnitude de-
creasing with water depth. The wellhead is modelled as a composition of line
elements, and non-linear force displacement connections with nonlinear lateral
force-displacement soil support in the form of P-Y curves, as is recommended
practice, see [37] and references therein.

In order to accurately capture the behaviour of intact and broken conditions,
the model used in this study is adjusted to match the full three-dimensional
solid finite element models of the broken and intact wellhead systems in soil,
exposed to representative static loads. The simulation models for the global
system and the wellhead calibration model are based on DNV-RP-E104, edition
2019-09 [37].

Sensors logging at 5 Hz are simulated at likely sensor spots, see Figure
6.1. For each sea state two one-hour data sets are created, each based on a
simulation with and without a crack in the well, hereby referred to as broken
and intact. The event where a crack occurs has to the authors’ knowledge
not been measured, nor is it simulated in the data set. Noise is added to the
signal based on the sensor accuracy found in the data sheets relative to the in-
operation sensors, with only [32] being publicly available. Two other datasets
are created with noise multiplied by 10 and 50, to test the robustness of the
different methods. Hereby we refer to the three data sets as Noise 1, Noise 10,
and Noise 50.

All of the data is normalised before applying any ML algorithms. Further
details on data preprocessing can be found in Appendix 6.A. Although the
data observed in real-life operations may have more complex behaviour, we
consider the artificial sensor data to suffice as a proof of concept that could be
developed further in a later project with data gathered from the field.

Before moving forward, we provide a formal definition of the supervised
learning problem addressed in this work. We denote a univariate time series
as Xuts =

[
x1, x2, . . . , xn

]
, which is an ordered set of real values xt indexed by

integers t = 1,2, . . . ,n, with xt the value at the t-th discrete time point. We
consider Xuts as a column vector in Rn . The simulations in our data set are

152



6.2 The data set under consideration

SMU DAS

SMU FJ

DWS

accx FJ

accx DAS

bmx

accy FJ

accy DAS

bmy

Figure 6.1: Stack with sensors and corresponding data

associated with one-hour long measurements from 3 sensors, sampled at a rate
of 5 Hz. Each sensor outputs a signal for the x- and y-direction, hence we
have a total of m = 6 univariate time series with n = 18001 data points. We can
collect them in a multivariate time series, which we represent as a matrix

Xmts =
[

X 1
uts, X 2

uts, . . . , X 6
uts

]
∈Rn×m . (6.2.1)

We adopt a supervised learning approach to address the classification problem,
as we have access to labelled data. More specifically, the dataset includes N

pairs D =
{(

Xi ,Yi
)}N

i=1
, where Xi ∈ X are input time series and Yi ∈ Y the

corresponding output variables. Here, X and Y denote the feature and label
domains, respectively. Our aim is to approximate the mapping function

F :X →Y , Yi = F
(
Xi

)
, (6.2.2)

with sufficient accuracy so that we can make predictions about the output for
any unseen input data. To this end, the data set is split 80%−20% into a training-
and test-data set. A training procedure is performed on the former set by
defining a loss function, that measures the distance between the predictions of
the approximation to F and the true labels, and a fitting optimisation algorithm.
The accuracy of the approximation is then evaluated on the test set.

In this paper, we deal with a binary classification problem. We map input
data into two discrete categories, intact and broken, to which we associate the
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labels 0 and 1 respectively, hence Y ≡ {0,1}. Our original data set consists of
N = 103 multivariate time series, 54 related to the intact case, and 49 to the
broken one. Each of them is a collection of 18001 values relative to 6 signals,
thus X ⊂R18001×6. The 6 columns of each input data are called channels, and
we will also refer to them as the number of input feature maps with a slightly
abuse of terminology.

6.2.1 Exploratory data analysis

As we can see in Figure 6.2, it is difficult to separate between an intact or
broken well based on a single observation. We do however notice a difference
in the spread of the data. This suggests to use a measure of dispersion when
classifying.
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Figure 6.2: Two 1-hour simulations from the dataset comparing a broken and intact
well under similar conditions. Plots are given for the x and y component of the different
physical measurements. The two top rows give the time series while the bottom row
shows phase plots.

6.2.1.1 Standard deviations transformation

To ensure that a crack in the wellhead is quickly noticed we look into classify-
ing subintervals of the full data set. The simplest dispersion-based classification
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method consists of taking the standard deviation for each subinterval. More pre-
cisely, for each channel m, the standard deviation is calculated over one-minute
intervals. Therefore, each one-minute interval with m channels is mapped to a
single data point with m dimensions. One-minute intervals allow for updates
of the well status at a satisfying frequency while being long enough to give
reliable results.

Applying this method to our data set gives us the point clouds found in
Figure 6.3. We immediately observe an increased ability to separate the two
cases.
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Figure 6.3: Pair plot showing of the scatter and distribution of data after a standard
deviation transform (left). Plot visualizing the transformed data in 3 dimensions (right).

6.2.1.2 Covariance transformation

The standard deviation of the signals can be seen as a meaningful way of sep-
arating the data. This suggests that other statistical properties of the signals
could be employed. Significant descriptive measures are provided by the co-
variance and correlation functions [33], therefore we introduce the covariance
matrix

Σ=


Var

(
X1

)
Cov

(
X1, X2

) · · · Cov
(
X1, Xn

)
Cov

(
X2, X1

)
Var

(
X2

) · · · Cov
(
X2, Xn

)
...

...
. . .

...
Cov

(
Xn , X1

)
Cov

(
Xn , X2

) · · · Var
(
Xn

)
 . (6.2.3)

Since we are working with standard deviations, we take the square root of the
covariance matrix, given by

Σ
1
2 =Q⊤Λ

1
2 Q,

where Q and Λ store the eigenvectors and eigenvalues of Σ. As standard devi-
ations are implicitly included in the covariance matrix, we highlight that the
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covariance transform expands the STD transform, thus adding more informa-
tion.

It is worth noting that the covariance and correlation matrices are closely
related since

Cor
(
X

)= diag
(
Σ

)− 1
2 Σ diag

(
Σ

)− 1
2 . (6.2.4)

For most of the classification methods later presented, the covariance matrix is
used, but in Section 6.7 correlation is indirectly utilized.

Given the symmetry of the covariance matrix, only the upper triangular part
of the matrix is used in the feature set. If m defines the number of channels, one
expects 1

2 m (m +1) features. For the data set at hand this corresponds to 6 or
21 features, depending on whether one is using one or two physical directions
from the sensor output.

In Figure 6.4 we have restricted the data set to one physical direction and
plotted a pairwise scatter plot to visualize the transformed data. We observe an
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Figure 6.4: Pair plot of the data after using aforementioned covariance transform. For
certain combinations the broken and intact cases separate quite well.

156



6.2 The data set under consideration

increased ability to distinguish between broken and intact compared to the stan-
dard deviation method, though the closeness of the point clouds still suggests
difficulty in making correct classifications. The main method of transforming
the data will mainly be through the use of the covariance matrix.

The attentive reader can also observe that the top left 3×3 block in Figure
6.4 is similar to its corresponding figure with the standard deviation transform.
This is to be expected, but underlines that the covariance matrix only adds
relevant features.

6.2.2 Principal Component Analysis

PCA is an unsupervised dimension reduction technique that finds patterns or
structures in the data and uses them to express the data in a compressed form.
This increases the interpretability of multidimensional data while preserving
the maximum amount of information and enables its visualization. Preserv-
ing the maximum amount of information is equivalent to finding uncorrelated
linear combinations of the original data set, called principal components, that
successively maximize variance in addition to being uncorrelated with each
other. Finding such new variables reduces to solving an eigenvalue-eigenvector
problem. More precisely, a data set X is given as input to Algorithm 6.1, pro-
vided below. In this work, X will be either the STD- or the COV-transformed
data. The algorithm starts by solving an eigenvalue problem for the covariance
matrix Σ. The m ×m matrix V of eigenvectors diagonalizes the covariance
matrix while D is the m ×m diagonal matrix of eigenvalues of Σ. The eigen-
vectors form a basis for the data and the eigenvalues represent the distribution
of the information of the source data.

Algorithm 6.1 Principal Component Analysis

1: function P = PCA(X ): ▷ X - input, P - output
2: X −→ X−µ

σ ▷ Normalize the data: µ - mean, σ - standard deviation
3: Σ= 1

n X ⊤X ▷ Calculate the covariance matrix
4: V TΣV = D ▷ Compute eigenvectors and eigenvalues of Σ
5: W =

[
w1, w2, . . . , . . . , wd

]
▷ Transformation matrix consisting on the

first d eigenvectors of V arranged in order of decreasing eigenvalues

6: P = X W ▷ Project the data onto the new basis
7: end function

The goal is to choose a small enough subset of d eigenvectors correspond-
ing to the d largest eigenvalues of Σ. These will be the new basis vectors onto
which we can project the data and still preserve a high quantity of information.

157



Supervised Time Series Classification for Anomaly Detection in Subsea Engineering

This is shown in the final step, where the i -th column of P is the projection of
the data points onto the i -th principal component.

Figure 6.5 shows the ratio each component explains in the cases when
the data is both STD- (left) and COV-transformed (right). In the first case,
we see that most of the information is contained in the first 3 components,
suggesting one only needs 3 PCs. In the second case, we see that the majority
of information is contained in the first 7 components. The accuracy of the
method increases along with the number of PCs.
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Figure 6.5: Ratio each component explains.

6.3 Baseline method

The baseline method relies on standard deviation and regression, and is cur-
rently being used in production. It was designed to enable continuous human in-
spection and provide an intuitive visual representation of the current behaviour
of the wellhead system. This is achieved by drawing regression lines on a
monitor.

The method works by sliding a ten-minute window over each of the time
series captured by the sensors. The window is split into one-minute intervals
for which the standard deviation is calculated. Assume m is the number of
sensor channels and let X ∈ Rm×10 represent a matrix storing 10 calculated
standard deviations for each channel. The method then relies on choosing two
rows from X and performing a linear regression. The two rows are typically
chosen to be a bending moment and a flex joint acceleration corresponding to
the same direction. The regression is given by the following equation[

β0

β1

]
=

[
x⊤x x⊤1
1⊤x 1⊤1

]−1 [
x⊤

1⊤

]
y, (6.3.1)
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where β0 is the intercept and β1 is the incline of the regression line, respectively.
The ten-minute time window is then moved one time step forward and a new
line is drawn. The time step is user defined and is typically set to one minute.

Any significant change between the drawn lines indicates a change in be-
haviour of the system. Therefore, the occurrence of a crack should be detectable
through continuous monitoring of the data. An example of the lines for the
cases of a broken/intact well, simulated in a similar environment, can be seen
in Figure 6.6. The event where a crack occurs has to the authors’ knowledge
not been measured, nor is it simulated in the data set.
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Figure 6.6: Left: Visualization of the lines capturing the relation between the standard
deviation of accelerations in the flex-joint and wellhead bending moments using linear
regression. The lines are meant to be displayed on a vessel’s monitor and gradually
fade over time highlighting the most recent behaviour. Right: Distribution of data for
the baseline method.

To analyse the method further, we look at the distribution of the intercept
and incline of the regression line. The plot to the right in Figure 6.6 illustrates
how data points are separated based on whether the well is broken or intact.
One may observe a noticeable separation of data, but there is overlap and they
lie very close. Similarly to what was observed in Figure 6.4, the closeness
of the two distributions suggests difficulty in detecting change in behaviour
implying difficulty in classifying the data.

An important feature with this baseline method is the temporal dependence
between the lines (left) or points (right) in Figure 6.6. Given the lack of
recorded cracking events, we can only speculate on its efficiency. We could
however expect a crack to cause the data points to move from their positions in
the point cloud representing intact cases to a similar position in the point cloud

159



Supervised Time Series Classification for Anomaly Detection in Subsea Engineering

representing broken. However, given the constraints of our data set, we limit
ourselves to examine individual data points whenever a method of dispersion
is used.

As a final remark, the linear regression is related to the covariance transform.
This becomes clearer when rewriting equation (6.3.1) using the mean, variance
and covariance as follows

β0 =µy −
µx Cov

(
x, y

)
Var (x)

,

β1 =
Cov

(
x, y

)
Var (x)

.

From the equation we read that the baseline method essentially approximates
the point clouds from a subplot, depending on the sensor chosen, in Figure 6.4
with a linear regression. The method does however suffer from high uncertainty
due to the small set of samples in each prediction.

6.4 Logistic Regression

Given the reduced feature matrix P from Algorithm 6.1 in Section 6.2.2, binary
LogR uses a regression technique to solve the two-class classification prob-
lem with the class variable Target = {Broken, Intact} by modelling the class
probability P = Pr

(
Target= Intact | P

)
as

log
P

1−P
=β0 +β⊤P ,

with an intercept β0 and a parameter vector β. The class probability is defined
as

P =
exp

(
β0 +β⊤P

)
1+exp

(
β0 +β⊤P

) .

Fitting a logistic regression model means estimating the intercept β0 and the pa-
rameter vector β. In our experiments, this is done via the LogisticRegress
ion from sklearn.linear_model with all parameters set to their de-
faults.

6.4.1 Experiments

In this subsection, we show experiments performed by applying LogR to the
reduced feature data set, the output of Algorithm 6.1. We utilize the existing im-
plementation of PCA outlined in Algorithm 6.1, available through the function
PCA from sklearn.decomposition. We fit LogisticRegression
to the training set and use the predict function to predict the test set result.
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The LogR-PCA approach is applied to both the STD- and the COV-transformed
data from the data set Noise 1, Noise 10, and Noise 50, respectively. For the
STD-transformed data, we test the accuracy of the method with the number of
PCs going from 1 to 6. In the case of the COV-transformed data, we test for
PCs from 1 to 7, since we see from Figure 6.5 that those contain the major-
ity of information. The accuracy of the method in such scenarios, measured
with accuracy.score of sklearn.metrics as the ratio of correctly
predicted samples to the total number of samples, is reported in Table 6.2. We
see that for the same number of PCs, a higher level of noise leads to a lower
accuracy. Hence, to achieve high accuracy even with noisy data, it is necessary
to increase the number of PCs. In Figures 6.7 and 6.8, the classification of
the time series in the training and test sets is shown for both the STD- and the
COV-transformed Noise 1 data.

Data set and
data transformation

Accuracy (%)
Number of PCs

1 2 3 4 5 6 7

Noise 1
STD 55.99 54.53 69.26 69.17 98.46 98.62 -
COV 55.24 55.56 65.88 99.69 99.84 100 100

Noise 10
STD 55.66 54.53 69.17 69.17 98.14 98.14 -
COV 55.56 55.87 64.16 99.53 99.84 99.84 99.84

Noise 50
STD 54.29 54.21 68.77 69.01 89.97 91.26 -
COV 55.56 56.81 54.93 79.34 91.06 95.62 96.09

Table 6.2: Accuracy of LogR-PCA applied to the STD and COV data from the different
data sets with different number of PCs. In bold are marked the scenarios that will be
reported in Table 6.6 for comparison purposes.

PCA-LogR with STD data 

 Training set                                                           Test set

Intact
Broken

Figure 6.7: Classification of the STD data from the Noise 1 data set with 3 principal
components.
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PCA-LogR with COV data 

 Training set                                                           Test set

Intact
Broken

Figure 6.8: Classification of the COV data from the Noise 1 data set with 4 principal
components. The 3D visualization is made with 3 components.

6.5 Decision trees

A decision tree (DT) is a model that predicts the value of a target variable
by learning simple decision rules inferred from the data features. Given a
labelled data set, the model categorizes the data into purer subsets, i.e., subsets
consisting of highly homogeneous data, based on a set of if-else conditions.
One can think of a DT as a piece-wise constant approximation of the final
classification. Figure 6.9 provides some common terminology and illustrates
the idea behind decision trees.

Root node

Decision node

Leaf node

Leaf node

Decision node

Decision node

Leaf node

Leaf node

Leaf node
Splitting

1

2

3

Branch/sub-tree

Figure 6.9: Example of a horizontal decision tree with depth 3. Node 1 is the parent
node of nodes 2 and 3.

The quality of the splitting, which refers to the purity of the resulting nodes,
is measured with Attribute Selection Measure (ASM) techniques. The root
node feature is selected based on the results of the ASM, and the procedure
is repeated until a node cannot be split into sub-nodes, i.e., until it becomes
a leaf node. More specifically, starting from the root node, we evaluate how
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poorly each feature splits the data into the correct classes, intact or broken. The
feature resulting in the lowest impurity is chosen as the best feature for splitting
the current node. This is repeated for each subsequent node. There exist two
typical ASM techniques for measuring purity, namely Gini impurity or Gini
index and information entropy or information gain, [22, 30, 35].

The Gini impurity, or the Gini index, (G I ) measures the probability of a
particular variable being wrongly classified when randomly chosen. In node d ,
the quantity G I is calculated as

G Id = 1−
l∑

k=1
p2

d ,k , (6.5.1)

where pd ,k denotes the probability of an object in node d being classified into
the class k = 1, . . . , l . When the parent node d is split, based on a feature f ,
into m nodes di , i = 1, . . . ,m, the resulting GI is calculated as the following
weighted average:

G Id | f =
m∑

i=1

|di |
|d | G Idi , (6.5.2)

where | · | denotes the number of data in a node and G Idi are calculated as in
Equation (6.5.1). When this criterion is used for the selection of the root node
feature, the feature with the smallest G I is selected. The lower the G I of a node,
the closer the node is to being a leaf node. The G I of a pure node is 0.

The information Gain (IG) criterion is based on the entropy (E) measured
in each node, which decreases as the purity of the node increases. A pure node
has entropy 0. In node d , the quantity E is calculated as:

Ed =−
l∑

k=1
pd ,k ̸=0

pd ,k log2

(
pd ,k

)
, (6.5.3)

where pd ,k is as before. The information Gain (IG) measures the decrease in
entropy by computing the difference between entropy before the split and aver-
age entropy after the split of the node, based on the chosen feature. Suppose,
similarly to above, that the parent node d is split, based on a feature f , into m
nodes di , i = 1, . . . ,m. Then IG of the feature f in node d is calculated as:

IGd | f = Ed −
m∑

i=1

|di |
|d | Edi , (6.5.4)

where Edi are calculated as in Equation (6.5.3). The feature yielding the highest
IG is chosen as the splitting feature for the node in consideration.

There is no big difference between Gini impurity and entropy when it
comes to efficiency, see [29]. The choice varies significantly on the particular
circumstances and the data set. One advantage of the GI to the entropy approach
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Data set

Training data

Test data

Measure purity
and select the best
feature using ASM

Split the data set
into smaller subsets

Repeat recursively
for each child node

Test the model
on unseen data

Generating the decision tree

Figure 6.10: Decision tree algorithm illustrated as in [15].

is that it does not involve logarithms, which are expensive from a computational
point of view. Figure 6.10 shows how the DT algorithm works.

One common difficulty for DTs is overfitting. It can be prevented in two
common ways, namely constraining the tree size and pruning the tree, often
known as pre-pruning and post-pruning, respectively. Pre-pruning is done
by controlling the following parameters: the minimum number of samples
required for a node to split, the minimum number of samples for a leaf node, the
maximum number of leaf nodes, the maximum depth of the tree, the maximum
number of features to consider while searching for the best split. In post-
pruning, nodes and subtrees are replaced with leaves to reduce the complexity
of the tree.

6.5.1 Experiments

In the numerical experiments, the trees are generated using the function tree.
DecisionClassifier from sklearn of Python, where one can choose
between entropy or Gini splitting criterion, and they are displayed us-
ing the visualization tool of the tree class. sklearn uses an optimised ver-
sion of the CART algorithm [19] which uses gini as splitting criterion and con-
siders a binary split for each attribute. When entropy is chosen as splitting
criterion, the ID3 algorithm [28] is used. Pre-pruning is performed using the
function GridSearchCV from sklearn, which does a thorough search for
an estimator over the specific set of parameter values described in the previous
section. For the post-pruning, the cost_complexity_pruning_path
function is used, which is parameterized by the cost complexity parameter
ccp_alpha. By increasing the value of ccp_alpha, the number of pruned
nodes increases, and consequently the accuracy decreases, see Figure 6.12.
Therefore, one has to make a clever choice of this parameter in order to have
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significant results. One has to accept a decrease in accuracy in return for a
significant reduction in tree complexity.

A series of experiments are run on different scenarios and the results are
reported in Table 6.3. The hyperparameter range for the pre-pruning and choice
of the α for the post-pruning of the DTs, used to obtain the results reported in
Table 6.3, is provided in Appendix 6.B. There is no sign of overfitting of the
model in the case of Noise 1 and Noise 10 but we notice overfitting in the case
of Noise 50. We can also see the positive effect of pruning in the reduction
of overfitting, in particular when post-pruning. In Figure 6.11, this is shown
for the Noise 50, COV-PCA(4) data split with Gini criterion, corresponding
to the values in the bottom-right block in Table 6.3. In Figure 6.13, we show
the tree generated with entropy as splitting criterion applied to the data set
consisting of the first four PCs of the COV data. In Figure 6.14, the post-
pruned version of the same tree with ccp_alpha = 0.01 is shown. The value
for ccp_alpha is suitably chosen in Figure 6.12. For presentation purposes,
the labels are shown only on the root node. The root and decision nodes include
the following information: the feature in the data set that best divides the data,
the value of the entropy, the number of the samples, their division into the
classes and the dominant class, respectively. Leaf nodes are pure and there is
no decision to be made.
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Figure 6.11: The effect of post-pruning in the reduction of overfitting. Scenario: Noise
50, COV-PCA(4), Gini (bottom-right block of Table 6.3.)
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Figure 6.12: The effect of ccp_alpha on the structure and the accuracy of the tree.
Scenario: Noise 1, COV-PCA(4), Entropy (marked in bold in Table 6.3.)
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Figure 6.13: DT generated with entropy as splitting criterion on the data set consisting
of the first four PCs of the COV data. Blue and orange are used for intact and broken,
respectively. A light colour indicates a high entropy, an intense colour a low entropy.

0.095
165

[163, 2]
Broken

0.592
7

[1, 6]
Intact

PC2 <= 4.698
0.271
172

[164, 8]
Broken

0.528
92

[11, 81]
Intact

0.0
37

[37, 0]
Broken

0.0
66

[0, 66]
Intact

PC4 <= -0.793
0.922
264

[175, 89]
Broken

0.038
1002

[998, 4]
Broken

0.01
1185

[1, 1184]
Intact

PC4 <= 1.016
0.942
103

[37, 66]
Intact

PC3 <= -0.756
0.379
1266

[1173, 93]
Broken

PC3 <= 1.32
0.192
1288

[38, 1250]
Intact

PC4 <= -0.195
entropy = 0.998
samples = 2554

value = [1211, 1343]
class = Intact

Figure 6.14: The same DT as in Figure 6.13 post pruned with ccp_alpha = 0.01.
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6.6 Support Vector Machine

Support Vector Machines (SVMs) are ML algorithms that attempt to draw a
plane between binary classified data. In the original paper [5], the authors first
explain how an optimal hyperplane can be found. This plane can be described
as

D (x) =
N∑

i=0
ωiφi (x)+b, (6.6.1)

where x is the input and φi is a user-defined basis function. Lastly, ωi and
b are the trainable weights and bias usually found by solving an optimisation
problem. The binary classification of the data is based on the sign of the
decision function D(x).

The decision function may also be written as

D (x) =
l∑

j=0
y jα j K

(
x j , x

)
+b. (6.6.2)

Here, αi and b are the trainable parameters. The function K is a kernel related
to the user functions φi and x j are input data. These components are obtained
from the dual of the optimisation problem referred to above. In modern soft-
ware, the kernel is typically defined by the user such that the basis function is
never explicitly defined. Commonly used kernels are linear, polynomial and a
variety of radial basis functions (RBF).

In [5], the authors demonstrate that training the ML method involves solv-
ing a convex quadratic program. The soft margin was later introduced in [8],
using l2-penalization of mislabelled data points, thereby allowing for a feasible
solution in the case of overlapping classes. Our model is trained by solving the
quadratic program that follows,

Primal

min
α,ξ,b

1

2
ω2 +Cξ⊤1

s.t. yi

(
ω⊤φ

(
xi

)+b
)
> 1−ξi

ξi ≥ 0

for all i

Dual

min
α

1

2
α⊤Hα−α⊤1

s.t. α⊤Y = 0

0 ≤α≤C1,

and differs slightly from the original method in [5] as it uses l1-penalization of
mislabelled data. Here Y = {y0, . . . , yp } are the classifications of the data set, H

is an l × l matrix with elements Hi j = yi y j K
(
xi , x j

)
. The hyperparameter C

allows for a soft margin and ξi is the measure of the deviation of point xi from

168



6.6 Support Vector Machine

the margin. Any data point xi for which the corresponding αi > 0 is consid-
ered a support vector. Penalizing the deviations by increasing C increases the
number of support vectors, which may lead to overfitting.

6.6.1 Experiments

In this subsection, we evaluate the performance of the SVM through a set of
experiments. As in the previous two sections, we apply a dispersion method
to transform the data. When the transformation involves the covariance matrix
we have also, for comparability between transformations, applied SVM to the
top three PCs.

For experiments limited to three dimensions the results are visualised in
Figure 6.15. The plots illustrate how a linear plane is able to separate the data
points. One can see how the data is relative to the decision border of the linear
SVM both for STD transform and COV transform with 3 PCs.

Data
trans.
(#PCs)

Noise 1 Noise 10 Noise 50
Linear RBF Linear RBF Linear RBF

Acc. Acc. SV Acc. Acc. SV Acc. Acc. SV
STD(3)* 0.940 0.950 1264 0.866 0.874 1866 0.650 0.668 3591
COV(3)* 0.986 0.986 465 0.974 0.987 568 0.928 0.923 1066
COV(4)* 0.983 0.990 418 0.988 0.984 441 0.927 0.940 980
COV(6)* 0.994 0.999 364 0.983 0.994 444 0.933 0.942 954
STD(6) 0.978 0.983 969 0.926 0.942 1345 0.682 0.726 3239
COV(6) 0.988 0.993 621 0.982 0.994 616 0.946 0.958 992
COV(7) 0.993 0.998 484 0.993 0.996 481 0.953 0.970 853
COV(21) 0.999 1.000 462 0.996 0.998 519 0.947 0.972 923

Table 6.4: Accuracy for linear SVM and RBF SVM applied to the noisy test sets.
The number of support vectors for the SVM with the RBF kernel is given in the SV
columns. An asterisk (*) indicates that only one physical direction was used from
the sensors. In bold are marked the scenarios that will be reported in Table 6.6 for
comparison purposes.

In the experiments, SVMs are trained with either an RBF or a linear kernel.
For each choice of kernel, every combination of number of PCs, transforma-
tion method and noise level is tested. For each test, the hyperparameter C is
optimised using sklearns GridSearchCV method. The test accuracy is
reported in Table 6.4 along with the number of support vectors needed by the
RBF SVMs. For the linear SVM the hyperplane is defined by n+1 coefficients,
where n is the number of PCs.

Although there is overlap between all the point clouds in Figure 6.15, the
PCA based model manages a greater relative distance to the hyperplane, indi-

169



Supervised Time Series Classification for Anomaly Detection in Subsea Engineering

0.4 0.2 0.0 0.2 0.4 0.6
2

1

0

1

2

3

View 0
Intact Broken

0.4 0.2 0.0 0.2 0.4 0.6

4

2

0

2

View 1

2
0

2
4

2

0

2
4

0.4

0.2

0.0

0.2

0.4

3D view

2.0 1.5 1.0 0.5 0.0 0.5 1.0

2

0

2

4

View 0
Intact Broken

2.0 1.5 1.0 0.5 0.0 0.5 1.0
4

2

0

2

4

6

View 1

4
2

0
2

4
6 4

2
0

2
4

6

1.0
0.5
0.0

0.5

1.0

1.5

3D view

Figure 6.15: Figure showing linear SVMs performance on dataset with STD transform
(left column) or COV transform and 3 PCs (right column). Both are created from a
subset of the data set containing only one physical direction.

cating higher robustness. This also becomes apparent by inspecting the number
of support vectors for the cases with the same number of PCs, but different
transformations, in Table 6.4. The STD based approaches need significantly
more support vectors than the COV based, while still performing worse on the
test set. SVMs using the COV transform and 7 PCs, essentially spanning the
whole data set, only needed a few more support vectors than the ones with
21 PCs. Given that the SVM with RBF kernel relies on a number of support
vectors much larger than the number of PCs, it is slower to evaluate than the
linear SVM.

6.7 Convolutional Neural Networks

As mentioned in Section 6.2, the supervised learning task consists of estimating
the function F in (6.2.2) through a parameterized function Fθ, with θ repre-
senting the parameters to be learnt. In this section, we illustrate how neural
networks can provide a useful framework to achieve this task.

In the most basic form of fully connected, feedforward neural networks, the
input-output mapping Fθ is obtained by a composition of nonlinear functions
φ:

Fθ
(
x0

)=φL ◦φL−1 ◦ · · · ◦φl ◦ . . .φ1
(
x0

)
, (6.7.1)

with x0 ∈Rn0 a given input data, L the number of layers in the network, which
determines its depth, and φl : Rnl−1 → Rnl , φl

(
xl−1

)
:= σ

(
W l xl−1 +bl

)
for

l = 1, . . . ,L. We also refer to these networks as multilayer perceptrons (MLPs).
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Weight matrices W l ∈ Rnl×nl−1 and bias vectors bl ∈ Rnl contain trainable pa-
rameters. The nonlinear activation function σ : Rnl → Rnl , acting component-
wise, typically belongs to C 0 and is monotonically non-decreasing. Examples
of such functions are the sigmoid function and the rectified linear unit (ReLU).
The training procedure consists of minimising a differentiable loss function,
that quantifies the discrepancy between the predictions of the network and the
labels, over the network parameters. Usually, a stochastic gradient descent
algorithm is used.

Convolutional Neural Networks (CNNs) use particular affine mappings in
the feedforward propagation of the input data. In the following, we consider
one-dimensional CNNs, where each layer applies a one-dimensional linear
kernel K over sections S of the input data, to detect relevant features. Assuming
that both the filter K and the receptive field S are defined on the integer i , with
S ∈ Rs and K having finite support in the set

{
1− s,2− s, . . . , s −2, s −1

}
, this

operation corresponds to a discrete convolution

(
S ∗K

)(
i
)= s∑

j=1
S

(
j
)

K
(
i − j

)
.

The parameters to be determined during the training are the entries of the linear
filters. This results in a significant reduction in parameters, in contrast to dense
fully connected neural networks. It should be noted that, reflecting the filter,
the convolution operation can be interchanged with correlation. Therefore,
since the filter is learnable, its application can also be described in terms of
correlation. Input data can include multiple channels, which may vary across
different layers. In such cases, the filters are represented by tensors and the
convolution operation becomes multidimensional. This allows for the learning
of unique features for each channel and the generation diverse feature maps.
Each convolutional layer is followed by a pooling layer which uses pooling
filters to reduce the dimensionality of the feature maps. The most commonly
used pooling techniques are max pooling and average pooling, which, respec-
tively, propagate the maximum and average values from sections of the feature
maps [11].

As a result, we can model the forward propagation of the input data in a
CNN as a composition of mappings φcn given by

φcn :Rnl−1×ml−1 →Rnl×ml , φcn(xl−1) = P

(
σ

(
C

(
xl−1

)))
,

where nl and ml are, respectively, the length and the number of channels of
the output tensor of layer l , C is a convolution operator resulting from sliding
linear filters across the feature maps from the previous layer and adding a bias,
σ is a nonlinear activation function, and P is a pooling operator that coarsens
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the grid over which the feature maps are defined [6]. Moving deeper into the
network, higher-level features are created. The ones returned from the final
pooling layer are usually mapped to a vector and fed to an MLP, which returns
a prediction about the class label.
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Figure 6.16: A typical one-dimensional CNN architecture.

6.7.1 Experiments

The time series in the original data set were split into one-minute intervals and
collected into non-overlapping training and test sets, with the former containing
80% of the resulting series and the latter the remaining 20%. In Figure 6.17,
we show the results obtained using a CNN with 3 convolutional layers, each of
which doubles the number of channels and is followed by an averaging pooling
layer. Finally, an MLP consisting of one hidden layer and an output layer
consisting of a sigmoid function is used for prediction. To assign a label to the
input data, a threshold is fixed to 0.5, so that when the output is greater than
or equal to the threshold, the input time series is classified as broken, or intact
otherwise. Details on network architecture can be found in the code snippet
listed in Appendix 6.C, written in PyTorch [25].

The experiments are run with the number of epochs set to 100. The activa-
tion function and certain hyperparameters in the training procedure are varied
using the Optuna software framework [1]. More specifically, we evaluate
different values of batch size, learning rate, and weight decay for the Adam
algorithm [16], which is used as optimiser. The specific ranges for each pa-
rameter are listed in Table 6.8 in the Appendix. The loss function is defined as
the mean squared error (MSE) between the true labels and the predictions of
the network. The combinations of hyperparameters yielding the best results on
the test set for each level of noise, along with the corresponding mean squared
errors on the training and test sets, are presented in Table 6.5.
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Selected hyperparameters

Noise 1 Noise 10 Noise 50

activation function LeakyReLU LeakyReLU Swish
learning rate η 2.562 ·10−2 2.102 ·10−3 1.017 ·10−2

weight decay 1.243 ·10−5 1.221 ·10−5 1.520 ·10−7

batch size 30 10 30

MSE train 8.856 ·10−6 5.968 ·10−5 6.068 ·10−4

MSE test 2.815 ·10−5 3.054 ·10−4 2.427 ·10−3

Table 6.5: Combination of hyperparameters yielding the best results in each scenario,
corresponding to the plots in Figure 6.17, after conducting 100 trials with Optuna.

Training set CNN - Noise 1 Training set CNN - Noise 10

intact
broken

Training set CNN - Noise 50

Test set CNN - Noise 1 Test set CNN - Noise 10 Test set CNN - Noise 50

Figure 6.17: The figures illustrate the transformation of the input data by the CNN in
both the training and test sets, under the three different noise scenarios. Prior to the
output layer, which predicts the class, each individual time series is converted into a
two-dimensional vector and can be visually represented as a point on a plane. In the
case of Noise 1 and Noise 10, the data points belonging to the two categories form
separate clusters.

6.8 Comparison of methods

In this section, we compare the tested methods based on performance metrics.
We consider precision, recall and F1-score, defined in terms of the entries in
the so-called confusion matrix in Figure 6.18 as:

Precision= T P

T P +F P
, Recall= T P

T P +F N
, F1-score= 2 ·Precision ·Recall

Precision+Recall
.

In Table 6.6, we report the performance of the methods measured with the
Python functions of sklearn.metrics: classification_report
gives the precision, recall and F1 scores.

For the methods where we have tested different scenarios, we report here
only the best-performing ones, marked in bold in the respective sections. The
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TP

true positives - number of cor-
rectly classified broken wells

FP

false positives - number of
wrongly classified broken wells

FN

false negatives - number of
wrongly classified intact wells

TN

true negatives - number of cor-
rectly classified intact wells

Broken Intact

Actual values
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ct

P
re
d
ic
te
d
va
lu
es

Figure 6.18: Confusion matrix used to evaluate the performance of the classification
techniques.

results indicate that all the classical ML algorithms perform similarly well in
terms of accuracy, but are outperformed by the more advanced CNN. For the
different methods there are significant differences in the train and test times.

Already with 4 PCs, LogR-PCA shows almost perfect results. The number
of parameters needed to make the classifications is only one more than the
dimensionality of the data, proving that non-complex algorithms could suffice
in classification of the data. The decision trees score second to best using 4 PCs,
but needs significantly more parameters than the LogR. As the dimensionality
increases so does the number of parameters, making it prone to overfitting.
The SVM gets a lower comparative score than the two previously mentioned
methods, and needs 940 support vectors. However, as the number of PCs
increases, the number of support vectors is reduced, as seen in Section 6.6.
This suggests that the SVM would perform better and with higher robustness
on a data set with increased dimensionality than e.g. the DTs. Finally, CNN
provides the best results in terms of accuracy, and is able to correctly classify
all the time series in the Noise 1 and Noise 10 datasets, without requiring pre-
processing with PCA and COV-transform. As is common for deep learning
algorithms, however, it requires longer offline training time, and a fine tuning
of different hyper-parameters.

6.9 Conclusion

We observed in Section 6.2 that measures of statistical dispersion applied to
shorter time series are a good preprocessing tool for ML algorithms not specif-
ically designed to handle temporal dependencies. Additionally, we observed
how the dimensionality of the COV-transform data set could be significantly
reduced using PCA.

We presented in Section 6.3 a baseline method for classifying the time
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6.9 Conclusion

Data set Method Precision Recall
F1

Score

Train
Time
(ms)

Test
Time
(ms)

Noise 1

LogR-PCA 0.997 0.997 0.997 10.195 0.990
DT-PCA 0.997 0.987 0.992 6.662 0.998
SVM-PCA 0.990 0.990 0.990 133.799 51.615
CNN 1.000 1.000 1.000 ∼ 3 min 30.535

Noise 10

LogR-PCA 0.997 0.994 0.995 12.408 1.001
DT-PCA 1.000 0.987 0.993 5.207 0.999
SVM-PCA 0.988 0.988 0.988 24.639 3.003
CNN 1.000 1.000 1.000 ∼ 3 min 27.133

Noise 50

LogR-PCA 0.808 0.750 0.778 11.026 1.016
DT-PCA 0.830 0.808 0.819 10.910 0.994
SVM-PCA 0.940 0.940 0.940 212.493 106.985
CNN 0.995 1.000 0.998 ∼ 4 min 49.181

Table 6.6: Performance of the methods. Given the high scoring of the classical
ML algorithms on the full data set they are here compared using 4 PCs of the COV-
transformed data set.

series and discussed its efficiency. Given the method’s reliance on human
assistance, we were unable to evaluate its performance. However, we found
that the method, to a certain extent, would be able to distinguish between
broken or intact. Although the method is based on known statistical properties
and visualization techniques, making it easy to use for practitioners, it is prone
to human error.

In Sections 6.4-6.7, popular ML algorithms were trained on the prepro-
cessed data set. The tests showed that they performed remarkably well. In
particular, the good results obtained with a simple and popular method like
LogR validates the data transformation in the preprocessing phase. It was ob-
served that the performance of SVM deteriorated faster than LogR and DTs
as the dimensionality, i.e., the number of principal components, was reduced.
However, the low number of support vectors needed by the SVM with suffi-
ciently high dimensionality makes it a viable choice.

Our findings indicate that classical ML algorithms, even when they are
not originally designed to take temporal dependencies into account, can ex-
cel in TSC given proper pre-processing. CNNs, on the other hand, suggest
that deep learning is a powerful tool to extract discriminative features in time
series, without the need of any data manipulation other than normalization.
However, a common downside of deep learning algorithms is that the learned
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features do not have an immediate interpretation. Additionally, when choosing
an ML method to be used in production one must carefully weigh the need for
computational power versus accuracy.

Given the experimental results, we conclude that ML algorithms are advan-
tageous in order to reduce dependence on human decision making. In future
work, it would be of interest to investigate the use of both one-class ML and
unsupervised ML algorithms trained on field-measured data, as there are, to the
author’s knowledge, no documented measurements of a broken well. Such al-
gorithms could be, among others, one-class SVM [31], autoencoders [2], CNN
with Long Short Term Memory algorithms [3] or isolation forests [20], which
have shown good results for anomaly detection.
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6.A Data set

In the given maintenance operations, referenced in Section 6.1, the BOP is
monitored through the use of Deep Water Strain sensors (DWS) and Subsea
Motion Units (SMU). The DWSs give strain values at a cross-section close
to the well, which again may be used to calculate loads. The SMUs are used
to measure accelerations and rotational velocities above and below the flex
joint that connects the riser to the BOP. In certain cases, a load relief system
may be applied. One of these is the Wire Load Relief (WLR), which consists
of attaching wires to the BOP and securing it to a nearby sturdy structure.
Whenever WLR is used, one may also get access to the loads on each wire, but
we assume that we do not in this project.

A challenge in this project is that there exist no measurements of a well
with a confirmed crack. We model several different cases with an intact and
a broken well and analyze the data. The model is set up in the commercial
software Orcaflex [24]. The data set we work with is simulated based on a
generic well in the North Sea.

When accessing a well, a decision must be made about which tools and con-
figurations to use. This is planned before the start of each operation. Whether
one or more configurations will be used varies depending on the operation be-
ing carried out. There are, however, specific configurations that, once selected,
cannot be changed easily. We set up the data set as follows. We first consider a
realistic combination of permanent configurations based on

• load relief (3 settings),
• drilling or completion (2 settings),
• slack or tight wellhead housing (2 settings).

Other configurations may vary. In our case, we look into

• drillpipe tension (3 settings),
• sea states (18 settings).

NoWLR

XT

Slack

94

Tight

108

BOP

Slack

103

Tight

108

WLR-1

XT

Slack

108

Tight

108

BOP

Slack

108

Tight

108

WLR-2

XT

Tight

46

BOP

Tight

96

Figure 6.19: Number of analyses for fixed configurations. In red is the combination of
configurations that we analyze in this work.
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Finally, for each combination of the above configurations, two simulations
are run with either the well broken or intact. Some settings do not combine
and some analyses are not able to converge, hence a total of 987 different
analyses are generated, each one hour long. Figure 6.19 gives an overview of
the structure of the data set.

For each analysis, three sensors are simulated at likely sensor positions.
Two of these sensors, known as subsea motion units (SMUs), measure accel-
eration. One sensor measures strains at the wellhead and calculates bending
moments, and is known as a deep water strain sensor (DWS). All of these sen-
sors give information about the x- and y-direction and are logging at 5 Hz. A
possible setup is shown in Figure 6.1.

The specific configuration about the wellhead housing (slack/tight) is of
particular importance as one might not be sure about this property before ac-
cessing the well. If the wellhead housing is slack the BOP is prone to move
more around, which is a similar property to a cracked well. In such case we
observe an increased difficulty in classifying on slack data. This becomes ap-
parent when we view the data of the slack and tight WH housing in Figure 6.20
to 6.23.

Since tight wellhead housing leads to a simpler classification problem than
the case with slack, the data set used in the main sections was limited to slack
wellhead housing.

6.A.1 Prepocessing the data set

Whether the time series are passed through a transformation described in Sec-
tion 6.2 or fed directly to the ML algorithm, they need to be pre-processed to
improve performance.

To standardize the data set’s features to unit scale, i.e., mean equal to 0 and
variance equal to 1, we use StandardScaler from sklearn.preproce-
ssing. We may then apply Algorithm 6.1 to the standardized training and test
set, using PCA from sklearn.decomposition, to reduce the dimension-
ality.

To train and validate the methods, we divide our data set into a training set
and a test set. Typically, these contain 80% and 20% of the original data set,
respectively. The machine learning algorithms in this paper makes predictions
on the training data and then corrects itself based on the true outputs. Learning
stops once the algorithm has achieved an acceptable level of performance on
the training set, and the accuracy is measured on the unseen data in the test set.
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Figure 6.20: To the left a pair plot of the data after using aforementioned standard deviation
transform on wells with a tight wellhead housing. For certain combinations the broken and intact
cases separate quite well. To the right a 3D plot showing the spread of the data.
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Figure 6.21: Pair plot of the data after using aforementioned covariance transform on wells
with a tight wellhead housing. For certain combinations the broken and intact cases separate
quite well.
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Figure 6.22: To the left a pair plot of the data after using aforementioned standard deviation
transform on wells with a slack wellhead housing. For certain combinations the broken and
intact cases separate quite well. To the right a 3D plot showing the spread of the data.
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Figure 6.23: Pair plot of the data after using aforementioned covariance transform on wells
with a slack wellhead housing. For certain combinations the broken and intact cases separate
quite well.
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6.B Supplementary material for the reproducibility of the experiments: DTs

6.B Supplementary material for the reproducibility of
the experiments: Decision trees

blanktext Pre-
pruning

Post-
pruning

Data
transformation

Splitting
criterion

Hyperparameter Range α

STD

Entropy
max_depth [2,13]∩N
min_samples_split [2,4]∩N 0.003
min_samples_leaf [1,2]∩N

Gini
max_depth [2,13]∩N
min_samples_split [2,4]∩N 0.002
min_samples_leaf [1,2]∩N

COV

Entropy
max_depth [2,5]∩N
min_samples_split [2,4]∩N 0.01
min_samples_leaf [1,2]∩N

Gini
max_depth [2,6]∩N
min_samples_split [2,4]∩N 0.003
min_samples_leaf [1,2]∩N

COV-PCA(4)

Entropy
max_depth [2,8]∩N
min_samples_split [2,4]∩N 0.01*
min_samples_leaf [1,2]∩N

Gini
max_depth [2,8]∩N
min_samples_split [2,4]∩N 0.003
min_samples_leaf [1,2]∩N

Table 6.7: Hyperparameter ranges for the pre-pruning and choice of the α for the post-pruning
of the DTs, used to obtain the results reported in Table 6.3.
* except for the Noise 50 data set where α = 0.003.

6.C Supplementary material for the reproducibility of
the experiments: Convolutional Neural Networks

blanktextHyperparameter Range Distribution

activation function {Tanh, Swish, Sigmoid, ReLU, LeakyReLU} discrete uniform
learning rate [1 ·10−4,1 ·10−1] log uniform
weight decay [1 ·10−7,5 ·10−4] log uniform

batch size {10,30,50,100} discrete uniform

Table 6.8: Range of values allowed for each hyperparameter in the experiments with CNNs,
with the third column describing how the values were explored using Optuna.
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1 class cnnseries(nn.Module):
2 def __init__(self, act_name=’lrelu’):
3 super(cnnseries, self).__init__()
4

5 torch.manual_seed(1)
6 np.random.seed(1)
7 random.seed(1)
8

9 self.conv1 = torch.nn.Conv1d(in_channels = 6,
out_channels = 12, kernel_size = 30, stride=1, padding=0,
dilation=1, groups=1, bias=True)

10 self.conv2 = torch.nn.Conv1d(in_channels = 12,
out_channels = 24, kernel_size = 30, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode=’zeros’,
device=None, dtype=None)

11 self.conv3 = torch.nn.Conv1d(in_channels = 24,
out_channels = 48, kernel_size = 30, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode=’zeros’,
device=None, dtype=None)

12

13 self.avgpool = torch.nn.AvgPool1d(kernel_size = 15,
stride=5, padding=0, ceil_mode=False, count_include_pad=
True)

14

15 self.fc2 = nn.Linear(2, 1, bias=True, device=None,
dtype=None)

16 self.fc1 = nn.Linear(48, 2, bias=True, device=None,
dtype=None)

17

18 self.act_dict = {"tanh":lambda x : torch.tanh(x),
19 "sigmoid":lambda x : torch.sigmoid(x),
20 "swish":lambda x : x*torch.sigmoid(x),
21 "relu":lambda x : torch.relu(x),
22 "lrelu":lambda x : F.leaky_relu(x)}
23 self.act = self.act_dict[act_name]
24

25 def forward(self, x):
26 x = self.act(self.conv1(x))
27 x = self.avgpool(x)
28 x = self.act(self.conv2(x))
29 x = self.avgpool(x)
30 x = x.view(x.size(0), -1)
31 x = self.act(self.fc1(x))
32 x2 = x
33 x = torch.sigmoid(self.fc2(x))
34 return x, x2

Listing 6.1: Architecture of the CNN used in the eperiments of Section 6.7.
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