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Abstract

Glassy and amorphous materials have existed for a large part of human history
yet are not fully understood. However, glass and glass transitions are extremely
important for many real-world applications. In this report, a binary colloidal sys-
tem forming a glass under certain conditions has been modeled using the Yukawa
potential and the molecular dynamics simulator, LAMMPS. The implemented sys-
tem was prepared according to a standard protocol to characterize its solid, liquid,
and glassy state. To distinguish the three states, diffusion and structure of them
have been obtained by simulations and it has been found that they are in good
agreement with previous simulation studies.
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Chapter 1

Introduction

Glass is one of the oldest materials in human history that is still used on a large
scale today. It’s widely used in construction, science, and arts, but despite its long
history and many uses it’s a quite complex material we don’t fully understand.
Even though a lot of research has been done on it with one definition of glassy
materials being set in 1962 [1]. There’s still a lot that’s unknown or uncertain.
There are some important differences between glassy, solids, and liquid states.
Solids are characterized by a short and long order. The particles in a solid state
are vibrating around their equilibrium positions and in this state, the system is
occupying an energy minimum. This ordered and rigid structure is a characteriz-
ing feature of the solid state with the only movement being the vibration of the
particles that’s linked to the temperature. In general, a crystal state persists up to
a certain temperature range.

Increasing the temperature of the solid over the so-called melting temperat-
ure or Tm the particles can reach a high enough energy that allows the particles
to move over their equilibrium positions, at this point the system assumes a li-
quid state. In the liquid state, the system will be generally disordered with only a
short-range order. In this situation, the particles can move more freely and their
diffusion around the samples becomes important. In an equilibrium state, this dif-
fusion is only driven by random motion, also known as Brownian motion, and it
is called the self-diffusion. This self-diffusion phenomenon is negligible in perfect
crystals or solids. The liquid state persists at temperatures higher than Tm.

Certain systems exhibit the glassy state when they are cooled down very quickly
from the liquid state to a temperature Tg < Tm that is also called “glass-transition
temperature". In those materials, the cooling quench is so fast that the particles
are not able to settle into the order states or to crystallize. This state is known as
a glassy or amorphous state. In the glassy state, the particles do not have enough
energy to diffuse and the ordering of the previous liquid state persists. The quench-
ing speed is important in determining the properties of the glass, and if the system
is cooled down slowly enough it will crystallize instead of becoming a glass[2]. A
visual difference between crystal and glass on the atomic scale is shown in figure
1.1.
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Chapter 1: Introduction 2

(a) Arrangement of molecules in a
crystal lattice

(b) Arrangement of molecules in a
glass

Figure 1.1: Visualization of the difference between a crystal and an amorphous
solid [2]

A colloid is a mixture consisting of particles and a dispersing medium with
the size of the particles being defined by the type of colloid. If the size of the
particles in the mixture is less than 4 nm it’s considered a solution, if they are
larger than 1000 nm it’s considered a suspension, and if they’re between the two
it’s a colloid. In addition to the glassy state, certain colloidal systems assume also a
non-Newtonian behavior. A non-Newtonian material changes viscosity in response
to external stress. A common example of such a system is the mixture of water and
cornstarch. It behaves like a normal fluid under certain deformations, but under
certain stress, it thickens making it possible to walk on it as on a solid.

In this project, a binary colloidal system was modeled with a Yukawa potential
and simulated with a molecular dynamics engine known as LAMMPS. I have cre-
ated an initial configuration of the system with a bcc crystal structure consisting of
two particles kind with different sizes. This initial configuration was equilibrated
at Temperatures typical of its solid state. Afterward, the system was heated up to
obtain a liquid and then cooled down in separate steps to obtain a glassy state.
These three states were studied using different methods allowing characterization
of the different states. The diffusivity for the three states and at different temper-
atures was obtained and compared to the values found by J. Horbach et al. [3].



Chapter 2

Methods

2.1 Molecular Dynamics

To simulate the evolution and properties of a system of particles a Molecular Dy-
namics (MD) simulation program was used. The MD technique can be applied
to study samples containing up to billions of particles [4]. A molecular dynamics
algorithm works by taking the positions and velocities of the particles and calcu-
lating the new positions and velocities from Newton’s laws of motion [5]:

Fi = mi × d v⃗i

d t
(2.1)

v⃗i =
d r⃗i

d t
(2.2)

so that the velocities and positions of the particles are updated using numerical
integration over several time steps. Here Fi is the force on particle i. Whilst mi is
the mass, vi is the velocity, and ri is the position of particle i. The force on each
particle is found by the gradient of the interaction potential between the particles,
the velocities are found by integrating the forces, and finally, the positions are
found by the velocities. In conclusion, positions and velocities are updated based
on the potential that is describing at every time step the interaction between the
particles. The MD technique can provide different values and properties from the
system.

When working with numerical simulations or calculations it’s common to use
dimensionless variables. In this project, the Lennard-Jones units will be used mean-
ing that the temperature used in this project is the reduced temperature defined
as:

T ∗ = kB T
ϵ

(2.3)

Here T ∗ is the reduced temperature used in this project while kB is the Boltzmann
constant. The variable T is the real temperature measured in Kelvin and ϵ is the
energy parameter of the potential. In this context, when the temperature in the
simulation is the reduced temperature.

3
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The system was modeled to be in the Canonical ensemble. This means that
the number of particles N, the volume of the system V, and the temperature of
the system T are conserved for the entire simulation which is why it is sometimes
referred to as a NVT simulation. Though it could have been possible to use the
Micro Canonical ensemble or NVE simulation, using the NVT allows us to control
the temperature much like one would in a physical experiment. Thus it’s more
appropriate for this project. To have a constant temperature the system is coupled
to a thermostat. The thermostat exchanges heat with the system allowing a change
of internal energy within the system and changing the environment of the system.

The particular MD simulation software used in this project was LAMMPS [6],
or Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS works
well for large-scale molecular dynamics simulations as it’s capable of running
parallel simulations on computers with different hardware or operating systems
whilst still getting the same results. It’s also capable of using customized setups
of atom styles, potentials and external temperatures or forces. This makes it well
suited for the study of our binary colloidal system.

2.1.1 System parameters

The system we are studying is a binary colloidal system consisting of two types of
particles with diameters d ≡ dAA = 1.0 and dBB = 1.2d respectively. The system
consists of a 50:50 mixture of these particles A and B so that the total number
of particles is 2NA = 2NB = 1600. The initial system was built with a density of
0.675mA/d

3
AA with the two particle types having mass equal unity, i.e. m = ma =

mb = 1.0.
The interaction between particles was modeled with the Yukawa potential.

This potential can be used for systems with attractive or repelling particles and is
given by [3]

uab = εabdab
exp (−κab(r − dab))

r
(2.4)

where we use α,β = A, B. The energy parameters are then set to be ε ≡
εAA = 1.0, εBB = 2.0ε and εAB = 1.4ε ,and the screening parameter used is κAA =
κBB = κAB = 6/d. This potential is always repulsive and it is sometimes called the
screened Coulomb potential because when the screening parameter is set to 0 the
formula reduces to the Coulomb potential.

When the potential is implemented in LAMMPS the expression used for the
Yukawa pair style is instead,

E = A
exp(−κr)

r
(2.5)

where A is a an energy·distance parameter. If these two expression are expected
to give the same values then A can be calculated as

A= εabdab exp(κabdab) (2.6)
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The calculated parameters from this equation as well as the cut-off distances are
seen within the code excerpt in the appendix A.1

To control the temperature of the system a thermostat that uses the Dissipative
Particle Dynamics (DPD) was chosen. The DPD thermostat can be expressed by
the equation:

˙⃗ri =
p⃗i

mi
= F⃗i + F⃗ D

i + F⃗R
i (2.7)

where F⃗i is the gradient of the Yukawa potential giving a conservative force,
while the dissipative force F⃗ D

i =
∑

i ̸= j F D
i j and the random force F⃗R

i =
∑

i ̸= j FR
i j are

introduced by the DPD to function as a thermostat. The dissipative force is given
by

F D
i j = −ζω2(ri j)(r̂i j · v⃗i j)r̂i j (2.8)

where r̂i j is the unit vector of ri j = ri − r j and ri j is the distance between the
particles i and j. v⃗i j = v⃗i − v⃗ j is the difference in velocity between the particles.
The function ω(ri j) =

Æ
1− ri j/rc is a weight function that vanishes whenever

the distance between the particle reaches the critical distance rc = 1.25d. And
ζ = 12 is the friction coefficient. Its value is set so that the microscopic properties
are close to those of purely Newtonian dynamics with ζ = 0 [3]. The dissipative
force F⃗ D then describes a frictional force between particles. Similarly, the random
force is given by

FR
i j = σω(r)θi j r̂i j (2.9)

Here σ =
p

2kB Tζ is the noise strength mainly responsible for the change
of internal energy in the system as T is the temperature of the thermostat. θi j
is a Gaussian white noise variable and ω is the same weight function as in the
dissipative force equation. This thermostat is implemented through an internal
LAMMPS command as shown in the code excerpt A.1

2.1.2 Diffusivity

One of the ways to characterize the different states of a material is the diffus-
ivity. Quantitatively, the diffusivity is studied using three types of process; Flick,
Collective, and Self-Diffusion. Flick and Collective refer to the gradients of chem-
ical potential and particles which is commonly connected to the flux. However, as
only equilibrium states are being considered in this project only the self-diffusion
is used. Self-diffusion is caused by the Brownian motion of particles in the system
and is thus linked to the temperature of the system. The self-diffusivity can be
found using the Mean-squared-displacement (MSD) given by,

MSD = 〈|r(t)− r(0)|2〉= 1
N

N∑
i=1

|r(i)(t)− r(i)(0)|2 (2.10)
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Here r(i)(t) is the position of particle i at time t, r(i)(0) is the position of particle
i at the start of the run and N is the total number of particles. Beyond just being
a useful way of measuring the movement of particles within the system it’s also
possible to use it to calculate the self-diffusivity of the system. This is estimated
using the Einstein relations:

MSD = 2nDt (2.11)

where n is the number of dimensions, t is the time and D is the self-diffusivity. Due
to the linear form of this equation, it’s possible to approximate the self-diffusivity
using a linear regression of the MSD and equation 2.11. For the linear regression
the first bulk of time steps is ignored due to the rapid growth there clearly not
being part of the linear regime. For this project it will be important as it can be
used as a measure to show when the particles stop moving or when they "freeze".
This is because for solids or crystals there will be no possible movement and thus
no self-diffusivity, this is also what we see in a glassy state. Whilst for liquid states
there will always be some movement and in turn a non-zero self-diffusivity.

2.1.3 Radial Distribution function

A different way to measure the level of order within a system is through the use of
the Radial Distribution function (RDF). The RDF calculates the amount of particles
around a particle in a spherical shell of thickness dr and distance r from the
particle. By dividing the found particles by the volume of the shell and the bulk
density ρ the RDF is found as:

g(r) =
nr

4πr2ρdr
(2.12)

Here nr is the amount of particles in the shell with thickness dr at a distance r
from the particle.

The RDF can be considered to be the probability of finding a particle in a dis-
tance r around a reference particle. For ordered systems such as crystals the RDF
will then give distinct peaks relative to the lattice parameter as seen in 2.2. Since
for all nonzero temperatures there will be some vibrations in the particles the peak
start to widen and become less distinct as the temperature increases. When the
system reaches sufficiently high temperatures and goes through a phase transition
the order breaks down and only a portion of the short range peaks remain as the
RDF becomes more continuous. Should the system reach a gaseous phase there
will be no distinct peaks at all. Due to it’s dependence on the structure’s order the
RDF is well suited to characterize the different states of the system. The RDF is
computed both through an internal function in LAMMPS and through the use of
OVITO [7]. In both programs the RDF is calculated for each pair of particle types
A-A, A-B, and B-B separately. For LAMMPS the RDF is calculated both at the start
of the equiliberation and at the end, whilst OVITO calculates the RDF using the
positional data gathered at equilibrium.
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2.2 Initialization of system

The system is initialized by creating a body centered cubic (bcc) system consisting
of the two different particles A and B. This system is an inherent binary system
as the two particles are differentiated by their size, with particle A having the
diameter dAA and particle B having the diameter dBB. The lattice parameter was
chosen to achieve the wanted density giving the resulting colloidal system in fig
2.1.

Figure 2.1: Initial configuration of the system in the form of a body centered
cubic crystal

The high ordering of the bcc system makes it well suited for this experiment
as the yukawa potential is capable of making a disordered or glass like structure
even without the quenching step if the initial configuration of the system isn’t well
ordered. The high order of the bcc crystal can be confirmed by the RDF plot in
figure 2.2
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Figure 2.2: Radial Distribution of the initial crystal structure
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Results And Discussion

First, the initial configuration was heated to a temperature of T = 0.14 to get a
solid state. We wanted to follow the article specification of the system. However,
1600 particles in a bcc configuration inside a cubic cell and with the described
density made it difficult to study the equilibrium solid configuration because not
all the positions could be occupied by a particle. To have a realistic fully occupied
solid structure we consider several particles equal to N = 2NA = 2NB = 2000.
The blue lines in figure 3.1 show the radial distributions in the solid for particles
A, (a) sub-figure, and particles B, (b) sub-figure. When compared with figure 2.2
it’s clear that in the solid state, the particles are still bound by the potential but
they’re able to vibrate giving the radial distribution wider and lower peaks around
the same positions as in the bcc crystal. Looking at the MSD in figure 3.2 it’s also
clear that there is negligible movement of the particles as expected for a solid
material.

9
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(a) RDF for particle A
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(b) RDF for particle B

Figure 3.1: Radial Distribution functions for the A-A pairs and B-B pairs at tem-
peratures T = 1.00 and T = 0.14

The 1600 particle configuration was then heated to the temperature T = 1.00
at which a liquid state was expected. I have built the RDF for this temperature
that is represented by the orange lines in the figure 3.1. The radial distribution
for particles A and B are plotted as the orange lines in figure 3.1. With the only
peaks present in the plots around the diameters dAA and dBB of the particles in
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their respective plots. The graphs show a lack of any order in the long range that
is typical for the liquid state. The measure of movement for the particles can be
studied with the mean square displacement of the particles shown by the orange
line in figure 3.2. The orange line shows a very high diffusion in the system as
expected for the liquid state.

0 1 2 3 4 5
Time

0.0

0.2

0.4

0.6

0.8

1.0

M
SD

T = 0.14 (solid)
 T = 1.00 (liquid)
T = 0.14 (glass)

Figure 3.2: The linear regression of the mean square displacement for type A
particles in the three characterized states of the system. Particles of type B would
have the same dynamics and are therefore not plotted.

After this, the system was quenched from the temperature T = 1.00 down to
T = 0.14 allowing a new state to form. The radial distribution is visualized by the
green lines in figure 3.1. Much like in the liquid state, there’s only a distinct peak in
the short range and no clear order in the long range. Thus one could assume that
the particles haven’t settled into any specific structure and that they’re still moving
around. But by looking at the self-diffusivity it’s clear that this isn’t necessarily the
case. The self-diffusivity is shown by the green line in figure 3.2. Indeed, diffusion
of the system is close to zero indicating that there is little to no movement of
particles. This is typical of a glassy state. The glassy state has no long-range order
like the liquid state, but it also has low self-diffusivity like the solid state.
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0 2000 4000 6000 8000 10000
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0
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2

3
M

SD
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Type B

Figure 3.3: The mean squared displacement of both particle types in the binary
colloidal system at temperature T = 0.28. The linear regression is displayed as
the gray dashed lines.

Once the general characterization of the different states had been done for
the liquid and glassy states the self-diffusion coefficients were calculated for dif-
ferent temperatures. These were reached by cooling down the liquid state from
T = 1.00 to several temperatures. At each temperature, the MSD was calculated,
and from it, the self-diffusion coefficients were obtained using the equation 2.11.
An example of one of these MSD measurements along with the linear regression
is plotted in figure 3.3. The found coefficients are plotted against the inverse tem-
perature in figure 3.4 along the equilibrium coefficients found by J. Horbach et
al. [3].
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1/T
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Type B (J Horbach et al (2008))
Type B

Figure 3.4: Self-diffusion coefficients of type B particles for different temperat-
ures. The blue circles are values measured by the MSD and Einstein relation.
Whilst the red line are the values found by J. Horbach et al. [3]

The values found from the simulations are quite close to those found by J.
Horbach et al. [3]. However, the value at T = 0.14 is not included as reaching the
expected self-diffusion coefficient would take far too long. The lower the temper-
ature of the system, the higher the viscosity becomes and the longer it takes for
the sample to reach equilibrium. Only particles of type B were plotted for compar-
ison reasons, but the dynamics are the same for type A. However for type A the
diffusivity will be slightly higher as the particles are smaller and thus more likely
to be able to move through a dense volume. My simulation data, red points in Fig.
3.4, are in very good agreement with the data extracted from the publication of
J. Horbach et al. [3].
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Conclusion

The simulation of the binary colloidal system and the three states observed; solid,
liquid and glassy gave the expected results for the radial distribution and cal-
culation of the self-diffusion coefficients. Using these two methods it’s possible
to characterize and differentiate between the different states as well as showing
the similarities between the glass state and the two others. By calculating the
self-diffusion coefficient for the different temperatures it’s clear how temperature
dependent the diffusivity is.

14
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Appendix A

Lammps Input File

The following input file was run using the LAMMPS software in order to simulate
the binary colloidal system. The input file was either the initial configuration file
pos1_1600.dat or an output file of the form T_x_1600.data from a previous.

Code listing A.1: Lammps input file used for the simulations. Temperature is easy
to change through the T variable.

units lj
dimension 3
boundary p p p
atom_style sphere
read_data T_1_1600.data #pos1_1600.dat #T_x_1600.data

set type 1 mass 1.0
set type 2 mass 1.0
set type 1 diameter 1.0
set type 2 diameter 1.2

group 1 type 1 #Creates group in order to compute for the specific types
group 2 type 2

#Current temperature
variable T equal 0.01 #Target temperature for the dpd

#Potential
pair_style hybrid/overlay yukawa 6.0 2.5 dpd/tstat $T &

$T 1.25 34387

#Yukawa Potential
pair_coeff 1 1 yukawa 403.429 3.47858
pair_coeff 2 2 yukawa 3214.63 3.80935
pair_coeff 1 2 yukawa 1132.05 3.64285
#DPD thermostat
pair_coeff 1 1 dpd/tstat 12 1.25
pair_coeff 1 2 dpd/tstat 12 1.25
pair_coeff 2 2 dpd/tstat 12 1.25

neighbor 2.0 bin
neigh_modify delay 20 check yes one 10000
comm_modify vel yes

16
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#Self-diffusion coefficient
compute msd_1 1 msd #
compute msd_2 2 msd #
compute myRDF all rdf 50 1 2

#Data for self calculation

timestep 0.0083

#Graphing of variables
thermo 100
thermo_style custom step time temp vol density lx ly lz c_msd_1[1] c_msd_2[1]
#Dump to file
#dump 1 all atom 100 T=${T}.lammpstrj

fix msd 1 ave/time 1 1 100 c_msd_1[1] c_msd_2[1] file msd_T=${T}.txt
#Writes msd to file in a structured way

fix rdf all ave/time 1 1 10000 c_myRDF[*] file rdf_T=${T}.txt mode vector
#Writes rdf to file in a structured way

#Gif creation
dump 4 all movie 100 T=${T}.gif type type size 640 640 #view 90 0
#Fun, but ultimatly pointless
dump_modify 4 adiam 2 1 adiam 1 0.5 acolor 1 gray acolor 2 green

#NVE run
fix 4 all nve
run 10000

write_data T_${T}.data
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