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Abstract

Superlattices with the anti reflection coating used in this article, have the interesting property that
they yield 100% and 0% transmission for spectra of energies. This property makes it possible to
have nearly 100% of electron wave packets tunnel through, or have nearly 100% of electron wave
packets reflected.Studying this, we operated within the tight binding model, running simulations
and calculating transmission spectras for these anti reflection coated superlattices (ARSLs) in
python. It was investigated how the transmission spectra for these ARSLs behaves with the
introduction of a single potential barrier placed behind. It was concluded that the transmission
spectrum follows the spectrum of the barrier in the regions the ARSL yields 100% transmission
and 0% transmission in the regions the ARSL yields 0% transmission. It was studied how an ARSL
affects the traveling time for electron wave packets traveling through it, to which it was concluded
that the wave packets traveled faster inside the ARSL. Lastly a simulation was made where an
electron was trapped between two ARSLs. The electron had more than twice the necessary energy
needed to escape classically, yet was stuck bouncing back and forth between barriers with potentials
less than half of the energy.
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Preface

The laws of quantum mechanics permits particles, lacking the kinetic energy to exist within a
region, to somehow travel through it. The region is referred to as a potential barrier and the event
itself is called quantum tunneling. This yields a lot of unexpected results, like for example when
you hit your hand at a desk, it may go through. A classical analogy would be a rock lacking the
necessary kinetic energy to reach the top of a hill, yet somehow managing to roll over it.
This behavior seems completely nonphysical, which is why most undergraduates (myself included)
have come to accept the phenomena under the understanding that this only occurs rarely, and
is under no circumstance something that can be guaranteed. One can sort of come close with a
double barrier. A double barrier has 100% transmission for certain energies below the potential.
At first glance this may seem like quantum tunneling can be guaranteed, however due to the
Heisenberg uncertainty principle, no particles realistically has a specific energy, which excludes
any possibility to guarantee tunneling with a double barrier. That is why anti-reflection coated
superlattice’s ARSLs are interesting. They may have 100% transmission probability for entire
spectra of energies lower than the potential. Additionally they have the interesting property of
having 0% transmission probability for energy spectra higher than the potential. Due to these
unintuitive properties, I wished to obtain a deeper insight into ARSL,s by focusing my thesis on
this.

My prior knowledge of quantum tunneling consisted of an introductory course in quantum mech-
anics where I simulated quantum tunneling through a single potential barrier, and briefly touched
the theory of resonant tunneling through double barriers. Additionally, when considering the tight
time-schedule to complete the thesis in under four months, the project has been quite the challenge.

I want to express a huge thanks to Jon Andreas Støvneng for agreeing to be my advisor. With his
guidance, I was able to understand the tight binding model, and the solution with retarded Green’s
functions. He pointed me to the literature of superlattices which eventually led to my discovery of
the ARSLs discussed in this thesis. His help was also very much appreciated in locating some of
the errors in my code. Lastly I want to express my thanks for the many pleasant conversations we
had throughout this period.

For the following, I express my thanks to various ”people” who also helped me throughout this
period:
Thanks to Camille Jaunsen for convincing me that sleep is important.
Thanks to Liesbeth Campbell for borrowing me her iPad, allowing me to create figure 1.
Thanks to Ellie (J. Støvneng’s dog) for her cuddliness which helped me through the mental load
of this project.
Lastly a huge thanks to Sam Rouppe van der Voort and John Aslak Wee Kleven for being my two
bachelorbros, sharing the experiences from our separate bachelor projects.
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1 Introduction

A superlattice is a system consisting of many alternating barriers and wells, where each barrier has
the same thickness and height and each well has the same thickness and depth (Nakagawa et al.
1985). The anti-reflection coating used in this article is taken from (Tung and Lee 1996), which
adjusts the heights and depths of barriers and wells in the superlattice to follow a Gaussian distri-
bution peaking at the center. Since we exclusively discuss this anti reflection coating, any reference
to ARSL specifically refers to this coating, unless stated otherwise. With this coating, we obtain
transmission spectra mainly consisting of regions with 100% transmission and 0% transmission.
We use transmission spectrum to refer to the transmission probability as a function of incoming
particle energy. We study the following properties of ARSLs:

– How the transmission spectra of an ARSL is affected by the introduction of a potential barrier
placed behind.

– How an ARSL affects the traveling time of electron wave-packets in the case where it allows
the entire wave-packet to tunnel through.

– The possibility of trapping an electron between two ARSLs with significantly lower potential
than the energy of the electron.

With Epitaxial growth technology, superlattices have been physically constructed by placing ultra
thin layers of different semi-conductor films on top of each other to form a chain with this potential
profile (Tung and Lee 1996). With this method, it should also be possible to produce ARSLs with
the properties we want to study. This makes it natural to study the tunneling phenomena from
the perspective of electrons traveling through a semi-conductor. To simulate this, we use the tight
binding model. Calculations of transmission spectra and simulations were done in python.

2 Theory

2.1 Predictions

To make a prediction for how transmission spectra of ARSLs are affected by the introduction of
a single potential barrier, we compare it with how the transmission spectrum of a single potential
barrier is affected by the introduction of another potential barrier. This creates a double barrier,
which for some energies yields a higher transmittance than each barrier does individually. This
effect is highlighted if the second barrier is placed further back, as this allows for higher transmit-
tance for even more energies. Thus we also expect a non-trivial behavior when adding a potential
barrier behind an ARSL.

To make predictions for the wave packet traveling time through an ARSL, we compare the system
to a double barrier. When a wave packet tunnels through a double barrier at a resonant energy,
it spends some extra time between the two barriers before finally coming through. This creates
a time delay in comparison to a wave packet moving in a free potential. Thus it is reasonable
to expect the same time delay to occur for a tunneling electron wave packet through an ARSL.
Additionally, we expect the time delay to be greater the more barriers are in an ARSL.

2.2 Constructing the Tight Binding Model

To simulate quantum tunneling in a semiconductor crystal, we wish to construct a system consisting
of a barrier area surrounded by two semi-infinite lattice chains. On the two chains, the potential
is constant allowing transport of a ”free” electron. The following sections explains how the tight
binding model can be solved with retarded Green’s functions to simulate this system.

1



2.2.1 The tight binding approximation

We consider our system as an infinite 1-dimensional lattice with a constant lattice spacing of 5Å
and with lattice points representing atoms in a semiconductor crystal. The potential for this lattice
is illustrated (not approximated) with square wells, close to the atoms, separated by barriers, in
figure 1. The Hamiltonian describing this system may be written as

H = − ℏ2

2m

∂2

∂x
+
∑
i

Vi, (1)

where Vi is the potential near a single atom, so that the sum describes the complete potential in
figure 1.

Figure 1: An illustration that shows how a wavefunction i(x) for an orbital of an isolated atom
can be used as a position basis for the lattice. Neighbouring wavefunctions h(x) and j(x) at sites
i− 1 and i+ 1 overlap with i(x) inside the barriers, but (approximately) not inside the well.

We define the wavefunction |ψ⟩ to describe an electron in this system. We choose a basis of wave-
functions |i⟩ for |ψ⟩, where |i⟩ is an orbital state of an independent atom i. The time independent
Schrödinger equation for this orbital state of atom i is(

− ℏ2

2m

∂2

∂x
+ Vi(x)

)
|i⟩ = ϵi|i⟩. (2)

Here the potential Vi(x) only corresponds to a single well in figure 1 and ϵi is the eigenenergy of
this orbital. Given that the distance between atoms is sufficiently large, we can approximate the
wavefunctions i(x) to be zero in neighboring wells, making this an orthogonal basis if we were to
only consider the wells. This approximation is reasonable given the wavefunction in the atomic
orbitals decrease exponentially with distance from the nuclei. Inside the barriers however, we
do not assume the wavefunctions to vanish. This overlap is essentially what allows transport of
electrons in our model (Støvneng 1991), and concludes the necessary assumptions for the Tight
binding model (Kittel 2018).
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2.2.2 The tight binding Hamiltonian

To find an expression for the general Hamiltonian H from eq (1), in the basis of |i⟩, we apply H
to |ψ⟩ and obtain the following:

H|ψ⟩ =

(
− ℏ2

2m

∂2

∂x
+
∑
m

Vm

)∑
n

cn|n⟩. (3)

By applying ⟨i| to the left we obtain the energy in well i, and get

⟨i|H|Ψ⟩ = ⟨i|

(
− ℏ2

2m

∂2

∂x
+
∑
m

Vm

)∑
n

cn|n⟩. (4)

In our approximation the wavefunction i(x) is zero in all wells except well nr i, meaning that the
only contributing potential in the Hamiltonian is Vi. Additionally the basis functions only overlap
with neighboring basis functions inside the barriers, where the potential is zero. This means that
the contribution from all n ≥ i+ 2 and n ≤ i− 2 are zero. Eq (4) reduces to

⟨i|H|ψ⟩ = ⟨i|
(
− ℏ2

2m

∂2

∂x
+ Vi

)
|i⟩+ ⟨i|

(
− ℏ2

2m

∂2

∂x

)
|i− 1⟩+ ⟨i|

(
− ℏ2

2m

∂2

∂x

)
|i+ 1⟩. (5)

The first term in eq (5) is ϵ1 from eq (2). The two other terms are the energy contributions due to
closeness of neighboring atomic orbitals, referred to as hopping amplitudes. We call these energy
contributions ui,i−1 and ui,i+1 respectively, and get

⟨i|H|ψ⟩ = ϵi + ui,i−1 + ui,i+1. (6)

Since this applies for any ⟨i|, the general Hamiltonian can be expressed as

H =
∑
i

|i⟩ϵi⟨i|+ |i⟩ui,i−1⟨i− 1|+ |i⟩ui,i+1⟨i+ 1|, (7)

which is known as the tight binding Hamiltonian. The elements ϵi are effectively what determines
the potential profile of our system, so these parameters are determined through our choice of barrier
in the barrier area.

2.2.3 The energy eigenvalues and energy eigenstates

The energies ϵi and hopping elements ui,i±1 are all equal to ϵ0 and u respectively on the two semi-
infinite lattice chains outside the barrier area. Physically, this means that the atoms constructing
these chains are equal. In order to find the eigenenergies on these lattice chains we write the
Hamiltonian as two matrices, one for the left semi infinite chain and one for the right. The matrix
elements Hi,j are ⟨i|H|j⟩, which by eq (7) gives the tridiagonal matrices

Hleft =



. . .
. . . . . . 0

. . .
. . .

. . .
...

. . . ϵ0 u
... u ϵ0 u
0 . . . u ϵ0


, Hright =



ϵ0 u . . . 0

u ϵ0 u
...

u ϵ0
. . .

...
. . .

. . .
. . .

0 . . .
. . .

. . .


. (8)

It is well known (Silvia Noschese and Reichel 1982) that the eigenvalues of a corresponding finite
tridiagonal matrix with N ×N entries are on the form Ek = ϵ0 + 2u cos (ka/ (N + 1)). Here k is
an index from 0 to N counting the eigenvalues. In the case where N goes to infinity, as is the case
for our Hamiltonian matrices, we get a continuous spectrum of eigenenergies

E(k) = ϵ0 + 2u cos (ka) . (9)

3



The k interval [−π/a, π/a] is the 1st Brillouin zone, and spans an energy band from ϵ0 − |2u| to
ϵ0 + |2u|. The energy eigenstates |ψE⟩ are Bloch functions on the form

|ψE⟩ =
∑
j

eikja|j⟩, (10)

where E denotes the corresponding eigenenergy of the state. This is proven by showing that |ψE⟩
solves the time independent Schrödinger equation, and yields the same energy band as eq (9). We
have

H|ψE⟩ =

(∑
i

|i⟩ϵ0⟨i|+ |i⟩u⟨i− 1|+ |i⟩u⟨i+ 1|

)∑
j

eikja|j⟩

=
∑
j

eikja|j⟩
(
ϵ0 + ueika + ue−ika

)
=(ϵ0 + 2u cos(ka))

∑
j

eikja|j⟩ (11)

=E(k)|ψE⟩ (12)

which proves that |ψE⟩ are the energy eigenstates. This also relates k to a physical property, the
particle momentum, instead of simply being an arbitrary index for the eigenenergy.

In the limit of small ka, the Taylor expansion of E(k) to second order gives the equation E(k) ≈
ϵ0 + 2u− ua2k2. By cleverly choosing ϵ0 = −2u, the energy resembles that of a free particle

E(k) ≈ −ua2k2 =
ℏ2k2

2m∗ . (13)

The hopping amplitude is determined as u = −ℏ2/2a2m∗, where m∗ is the effective mass of an
electron moving inside the crystal, assumed to be 0.067 times the actual electron mass . This
means that in the limit of small ka, the behavior of an electron in this lattice is analogous to that
of a free electron.

2.3 Time independent solution with Green’s functions

We define the barrier area from |0⟩ to |N⟩. From now on, the orbital basis states |j⟩ are simply
treated as positions in our system. In a scattering system, the scattering eigenstates (Støvneng
1991) can be expressed as

|ψE⟩ =


∑

j

(
eikja + r(k)e−ikja

)
|j⟩ j ≤ −1∑

j t(k)e
ikja|j⟩ j ≥ N + 1∑

j cj |j⟩ 0 ≤ j ≤ N

(14)

where the first term describes an incoming and a reflected electron wave on the left side of the
barrier, the second term describes a transmitted wave on the right side of the barrier, and the
last term gives the values of |ψE⟩ inside the barrier. The coefficient t(k) gives the transmission
spectrum T (k) by T (k) = |t(k)|2, which is the term we want. We write the scattering state as

|ψE⟩ = |SE⟩+ |ϕE⟩, (15)

where |SE⟩ is the source term, describing the incoming electron in eq (14), thus taking the form

|SE⟩ =
∑
j≤−1

eikja|j⟩. (16)

The scattered term |ϕE⟩ needs to contain everything in (14) that is not contained within |SE⟩. It
takes the form

|ϕE⟩ = r(k)
∑
j≤−1

e−ikja|j⟩+ t(k)
∑

j≥N+1

eikja|j⟩+
N∑
j=0

cj |j⟩. (17)

4



Although |ϕ⟩E is defined inside the barrier, we are not interested in this term. To obtain the
reflection and transmission probabilities we need to solve the Schrödinger equation H|ψE⟩ = E|ψE⟩
for |ϕE⟩. We insert eq (15) and write it as

(E −H)|ϕE⟩ = −(E −H)|SE⟩. (18)

To isolate |ϕE⟩ we apply a retarded Green’s function G(z) to the left of eq (18) where z is an
arbitrary complex number. G(z) is an inverse matrix to (z−H) given that the H matrix takes on
values for the entire system. To elaborate on this, since |ϕE⟩ is defined on the entire system, H
operating on |ϕE⟩, means it can be written as a matrix with elements regarding the entire system.
Since |S(k)⟩ is only defined on the left semi-infinite chain, when H operates on it, the matrix
formed will have zeros at all elements not concerning the rest of the system. This means G(E) will
be an inverse to the (E −H) operator on the left term in eq (18), but not to the one on the right.
Thus we get the equation:

|ϕE⟩ = −G(z −H)|SE⟩ (19)

to which we are now tasked to find the matrix elements of G.

2.3.1 Finding the Green’s matrix elements

We start by defining a perturbed term as H ′ = |l⟩u⟨l+1|+ |l+1⟩u⟨l| and write our Hamiltonian as
H = H0 +H ′. Since the hopping terms between l and l+1 are contained within H ′, H0 describes
two separate chains split between l and l + 1. We say H0 has a cut at [l, l + 1]. We define G0 as
an inverse to (z −H0). We have G(z −H)G0 = G(z −H0 −H ′)G0 which by our definitions of G
and G0 becomes G0 = G−GH ′G0, rewritten to give the Dyson equation

G = G0 +G0H ′G. (20)

Alternatively by using G0(z −H)G = G0(z −H0 −H ′)G:

G = G0 +GH ′G0. (21)

Since H0 contains no information across the cut, neither does G0. This means that all off-
diagonal elements in G0 crossing the cut are zero, (all elements G0

m,n withm ≤ l, n ≥ l + 1 and
m ≥ l + 1, n ≤ l of G0 are zero).
We define the diagonal elements of G0 at a cut as:

Γ−
l = G0

l,l

Γ+
l+1 = G0

l+1,l+1

(22)

where the - and + denote that the chain corresponding to G0 continues to the left and to the right,
respectively.

By making a cut at [l +m − 1, l +m], we get H ′ = |l +m − 1⟩u⟨l +m| + |l +m⟩u⟨l +m − 1|.
With this H ′, we apply ⟨l +m| to the left and |l⟩ to the right of eq (20) to obtain the following
expression:

⟨l +m|G|l⟩ = ⟨l +m|G0|l⟩+ ⟨l +m|G0 (|l⟩u⟨l +m|+ |l +m⟩u⟨l|)G|l⟩
Gl+m,l = G0

l+m,l +G0
l+m,luGl+m,l+m + Γ+

l+muGl+m−1,l

Here G0
l+m,l is zero since it is an off-diagonal element crossing the cut. We are left with

Gl+m,l = Γ+
l+muGl+m−1. (23)

We repeat this process, to find Gl+m−1,l, making another cut at [l+m− 2, l+m− 1], and so on,
until we eventually reach the diagonal element l, l. This finally leads to

Gl+m,l =

 l+1∏
j=l+m

Γ+
j u

Gl,l, (24)

5



which is an expression for any off-diagonal element on the upper half of G, expressed by its
diagonal elements and the diagonal elements of G0 at the cuts. Since G is symmetric due to H
being symmetric, the lower half of G has the same values, effectively making eq (24) a way to find
any off-diagonal element of G.
To find the diagonal elements Gl,l we again use eq (20) with a cut at [l, l + 1]. We get

Gl,l = Γ−
l + Γ−

l uGl+1,l. (25)

By using eq (24) and setting m = 1 we get Gl+1,l = Γ+
l+1uGl,l. Substituting this into eq (25), and

rearranging the terms we obtain:

Gl,l =
((

Γ−
l

)−1 − uΓ+
l+1u

)−1

, (26)

which gives any diagonal element in G expressed by the diagonal elements of G0 at the cuts.
To find Γ+ and Γ−, we take a G0

l,l that correlates to a cut at [l, l + 1], and make G00
l,l which in

addition correlates to a cut at [l, l − 1]. We then do the same process as we did to arrive at eq
(26), but with G0 instead of G. We get

Γ−
l =

((
G00

l,l

)−1 − uΓ−
l−1u

)−1

. (27)

The corresponding H00 of G00
l,l is a Hamiltonian for two separate chains and a separate atom at l.

This means that ⟨l|H00|l⟩ = ϵl, and (G00
l,l)

−1 = ⟨l|z −H00|l⟩ = z − ϵl. This gives the expression

Γ−
l =

(
z − ϵl − uΓ−

l−1u
)−1

. (28)

Analogously, by doing the process with Γ+
l and using eq (21) instead, one obtains

Γ+
l =

(
z − ϵl − uΓ+

l+1u
)−1

. (29)

To the left of the barrier area all Γ−
l are equal, and to the right all Γ+

l are equal. Outside the
barrier, eq (28) and eq (29) become a quadratic equation with the solution

Γ =
1

2u2
(z − ϵ0 ±

√
(z − ϵ0)2 − 4u2). (30)

The sign in eq (30) must be chosen so that Γ is continuous in z, and yields a non-negative density
of states (Economou 2005). For z = E(k) the sign is positive when considering an electron coming
from the left, and negative for an electron coming from the right. For these z values, eq (30) can
be rewritten to

Γ =
1

u
eika. (31)

Now, we have a process to calculate any matrix element of G. By using eq (30) in eq (28) and eq
(29), we can find all Γ+ and Γ−. Then we find any diagonal elements of G with eq (26), and use eq
(24) to find any off-diagonal elements. Note that in this derivation it was not necessary to specify
that z is an eigenenergy of H, for G to be an inverse to (z −H). It will be an inverse as long as
the z used in (28) and (29) is the same used in (z −H). This is a subtle, yet important point for
solving the time-dependent case.

2.3.2 Finding the transmission spectrum

Next, we find the transmitted state ϕE(N +1) = ⟨N +1|ϕE⟩. By inserting eq (16) and eq (7) into
eq (19):

ϕE(N + 1) = −⟨N + 1|G

(
z −

(∑
i

|i⟩ϵi⟨i|+ |i⟩u⟨i− 1|+ |i⟩u⟨i+ 1|

)) ∑
j≤−1

eikja|j⟩ (32)
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For z = E(k) = ϵ0 + cos(ka) the expression simplifies to

ϕE(N + 1) = ue−ikaGN+1,0 − uGN+1,−1. (33)

By eq (21) with a cut at [−1, 0], GN+1,−1 = GN+1,0uΓ
−
−1, and by eq (31) Γ−

−1 = eika/u. Inserting
all this into eq (??) we get

ϕE(N + 1) = −2iuGN+1,0 sin(ka) (34)

By eq (17), for N+1, we have ϕE(N + 1) = t(k)eik(N+1)a which together with eq (34) gives the
following expression for the transmission coefficient:

t(k) = −2iuGN+1,0 sin(ka)e
−ik(N+1)a. (35)

It is possible to solve for the reflection coefficient r(k) by repeating the process for ϕE(−1), however
we can easily obtain the reflection probability once we have t(k), by the correlation: R = 1− T .

2.4 Time dependent solution with Green’s functions

To study the time it takes a wave packet to travel through the barrier, we need to solve the time
dependent Schrödinger equation. We write it as(

iℏ
∂

∂t
−H

)
|Ψ(t)⟩ = 0. (36)

To solve (36) we use the Laplace transfrom∫ ∞

0

dte−st

(
iℏ
∂

∂t
−H

)
|Ψ(t)⟩ = 0. (37)

By doing a partial integration with the time derivated term, having |Ψ(∞)⟩ = 0 and also moving
terms not dependent on t out of the integral, we get

−e−stiℏ|Ψ(0)⟩ − (s · iℏ+H)

∫ ∞

0

e−stdt|Ψ(t)⟩ = 0 (38)

By rewriting the arbitrary complex number s as −iz/ℏ where z is still an arbitrary complex number,
and introducing τ = t/ℏ as a new measure of time, we obtain

−eizτ iℏ|Ψ(0)⟩+ (z −H)

∫ ∞

0

eizτdτℏ|Ψ(τ)⟩ = 0. (39)

We apply the same retarded Green’s function G(z) as derived from 2.2.1. Since |Ψ(τ)⟩ is defined
on the entire system, it will be an inverse to the (z −H) operator. We rearrange some terms to
get ∫ ∞

0

e−izτdτ |Ψ(τ)⟩ = e−izτ iG(z)|Ψ(0)⟩ (40)

to which we can now solve for |Ψ(t)⟩ by taking the Laplace inverse. The Laplace inverse is taken
by doing a complex integral around the poles of the function. The matrix G(z) has singularities
when z is equal to the eigenvalues E(k). This means iG(z)|Ψ(0)⟩ has poles on the real line within
the interval of E(k). We name the path taken around this interval for P , so the final expression
takes the form.

|Ψ(τ)⟩ =
∮
P

dz
1

2π
e−izτ iG(z)|Ψ(0)⟩. (41)

Now by eq (41) we have a way to calculate the state for any time τ given an initial state Ψ(0)⟩.
All information of the potential profile in the system lies within G(z). Thus by making an initial
wave packet |Ψ(0)⟩, we can use eq (41) to simulate any tunneling event.
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2.4.1 Constructing an initial wave packet |Ψ(0)⟩ with minimal uncertainty

We make the initial wave packet |Ψ(0)⟩ by writing it as a linear combination of plane wave states
travelling to the right, located on the left semi-infinite chain.

|Ψ(0)⟩ =
∑
j≤−1

cje
ikja|j⟩ (42)

The coefficients cj are determined through the desired traits for the wave packet. We wish the
wave packet to have a minimal uncertainty product with respect to the Heisenberg uncertainty
principle, meaning

∆x∆k = 1/2. (43)

This is only the case if the coefficients cj are chosen (Støvneng 1991) so that eq (42) has the form
of a Gaussian distribution,

P (x) =
1

∆x
√
2π
e−

1
4 (

x−⟨x⟩
∆x )

2

. (44)

Here ∆x is the standard deviation and ⟨x⟩ is the average position. Given that the wave packet in
eq(42) occupies S sites from j = 0 to j = −S + 1, cj must fulfill

|cj |2 =
(S − 1)!

(S − 1 + j)!(−j)!2S−1
, (45)

which in the limit S → ∞ becomes

lim
S→∞

|cj |2 =

√
2

π(S − 1)
· e

−
(

2(j+(S−1)/2)2

S−1

)
. (46)

By comparing eq (46) with eq (44) we find that the average position is expressed as
⟨x⟩ = −(S − 1)/2, and the standard deviation is

∆x =

√
S − 1

4
. (47)

Thus by inserting eq (45) into eq (42) we get

|Ψ(0)⟩ =
−S+1∑
j≤−1

(
2

π(S − 1)

) 1
4

· e
−
(

(j+(S−1)/2)2

S−1

)
eikja|j⟩ (48)

For a more detailed understanding of this inital wave packet see, (Støvneng 1991)

The relation between the standard deviation for the momentum wavenumber k and number of sites
S is calculated by using eq (43) and eq (47). We have

S − 1 =
1

∆k2
(49)

A fourier transform of |Ψ(0)⟩ gives a wave packet |Φ(k)⟩ for k space. The wave packet |Φ(k)⟩
is also a Gaussian, due to the fourier transform of Gaussian’s being Gaussian’s. This enables us
to ensure that 99.7% of the wave packet is within an interval of [k0 ± kint] in k space by letting
3∆k = kint in eq (49), and solve for S. This is calculated to ensure a predictable behaviour of the
wave packet when it interacts with the potential barrier.

3 Method

To acquire the necessary data, two python programs was created. One is for solving eq 35 to obtain
transmission spectra and the other is for solving eq 40 to simulate time evolution of a system for
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an initial wave packet created in accordance with eq 48. The calculations of transmission spectra
usually took less than a second while a simulation of time evolution took up to sixteen hours.
Thus in order to save time, the cases where simulation of time evolution was required, a search for
ARSLs with desired transmission spectra was conducted beforehand.

The system is numerically discretized so that a numerical point corresponds to a lattice point in
the tight binding model. We make the ARSLs on the interval [0, N ]. The entire interval is filled
with alternating barriers and wells. The Gaussian distribution expressed as

V0 exp

(
− (j −N/2)

2

σ2

)

is used to determine the potential height/depth of a barrier or well starting at position j. We
define σ = N/4, where N is the total number of lattice points in an ARSL. The barriers and wells
peaks near N/2 to a potential of +V0 and −V0 respectively. We define c as the number of lattice
points in the barriers and b as the number of lattice points in the wells.

To obtain ARSLs with desired transmission spectra the parameters c, b, V0 and N were adjusted.
Due to calculations of these spectra taking less than a second, it was practical to test lots of various
combinations to obtain the desired characteristics. It is not within the scope of this project to make
a systematic overview of how the parameters V0, c, b and N affects transmission spectra. However
it is worth to mention that varying N did not change any main characteristics of transmission
spectra, but only affects how sharply the transmission transitions from 0% to 100%, and vice
versa, which was a useful insight into making desired ARSLs.

To study the time delay due to resonant tunneling, wave packets was sent with 100% transmission
probability through ARSLs. By only varying N and keeping all other parameters constant, 100%
transmittance was always guaranteed due to the transmission characteristics being unfazed under
variations of N . This allowed us to study how the number of barriers inside of ARSLs affects
the time delay. To find a comparable way of measuring the traveling time, the integral of the
absolute square of the wave packet was calculated over a fixed interval and plotted over time τ .
We assume that when this integral yields a value of less than 0.01, it is due to at least 99% of
the wave packet having traveled past this interval. Thus by recording the time this happens, we
obtain a comparable traveling time.

4 Results and Discussion

4.1 ARSL in series with a single potential barrier

To study a system of a barrier in series with an ARSL, the potential in figure 2, was used to
create the (green) transmission spectrum in figure 3. Another potential corresponding to figure 2,
where the barrier was instead placed 100 lattice points to the right, was used to create the (green)
transmission spectrum of figure 4. The individual transmission spectra of the ARSL (blue) and
barrier (orange) was plotted together with the combined system to obtain a systematic overview.
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Figure 2: An ARSL with V0=3eV, c=1, b=1 and N=100 and a barrier placed right behind with
V1=1eV and a thickness of 4 lattice points. Note that the barriers are not actually slanted, this is
merely an unfortunate side effect of the way they are plotted.

In both figure 3 and figure 4, it is clear that the transmission spectrum for the combined system
overlaps with the transmission spectrum of the barrier, so long the transmission of the ARSL is
100%. In the area where the transmission of the ARSL is 0%, the transmission of the combined
system is 0% as well. Due to this being so clear in both figures, it suggests that this characteristic
is unaffected by the distance between the ARSL and the barrier. In the relatively short interval
where the ARSL transitions between 100% and 0% transmission it displays a non-trivial behavior
of rapid oscillations.

It was unexpected that the behavior of the combined transmission spectra would be this simple,
since addition of a barrier to other potentials such as another barrier usually yields non-trivial
behavior for the entire spectrum. However in figure, 3 and 4, it is clear that any non-trivial
behavior is restricted to the area where the ARSL transitions from 100% to 0% transmission.
To further test this, a new transmission spectrum figure5 was constructed with an ARSL with a
sharper transition, which was accomplished by increasing N to 500. We would expect the interval
of non-trivial behavior to be shorter.

Figure 3: (Green) shows the transmission spectrum of the potential in figure 2. (Blue) and (Orange)
shows respectively the transmission for the ARSL and barrier seperately.
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Figure 4: (Green) shows the transmission spectrum of the potential in figure 2 except the barrier
has been moved 100 lattice points to the right. (Blue) and (Orange) shows the transmission spectra
for the ARSL and barrier separately.

It is clear in figure 5 that by having an ARSL with a sharper transition, the non-trivial behavior is
confined to an even shorter interval. This is an interesting result as it indicates that the non-trivial
behavior that arises when combining ARSL in series with barriers can be kept to a minimum by
arbitrarily increasing N .

Figure 5: (Green) shows the transmission spectrum of the potential in figure 2 except with N =
500 instead of 100, and the barrier has been moved 100 lattice points to the right. (Blue) and
(Orange) shows the transmission spectra for the ARSL and barrier separately.

To minimize the possibility that this effect is only restricted to an ARSL and barrier with the
specific parameters in figure 2, transmission spectra for other ARSLs and barriers were tested like
the one showed in figure 6.
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Figure 6: Transmission spectrum from an ARSL with V0 = 1eV, c =1, b =1, N =100 and a barrier
with V1 1.5eV and thickness of 4 lattice points lattice points placed 100 lattice points to the right

Combinations of ARSLs with N ranging from 100 to 1000, c and b ranging from 0 to 4 and V0
ranging from 1 to 3 eV were tested in series with different barriers with V1 ranging from 1 to 3 and
barrier thickness ranging from 0 to 4, placed anywhere from right behind the ARSL up to 1000
lattice points to the right. They all display the same characteristic behavior mentioned previously.

It was also attempted to mirror these systems, placing the barrier in front of the ARSLs instead.
They all yielded the same transmission spectra for when it was placed behind. It is unknown
whether this is a characteristic of ARSLs specifically, or a general behavior in quantum tunneling.

For further work, it would be interesting to study how ARSLs ineracts when placed in series with
other potentials to see if the characteristic effects displayed here is due to a general property of
ARSLs.

4.2 Tunneling delay time for an ARSL

To study the tunneling delay time, ARSLs with the same parameters as that in figure 2 were
used, except for N which varies depending on the simulation. Simulations were run to study the
tunneling delay time through this ARSL for N = 50, N = 100, N = 200, N = 500 and one where
there were no potential at all, which could be used as a reference point. The average energy of the
electron wave packet was set to 0.36eV, which is less than a fifth of V0. Figure 7 highlights where
in the transmission spectrum we are sending these wave packets. By having S = 200 for the initial
wave packet, see eq 48 we guarantee that the entire packet is within the 100% transmission area
of the ARSLs with the N values used.
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Figure 7: Transmission spectrum of an ARSL that has N=200 V0=3eV, c=1 and b=1. The vertical
(Orange) line highlights the average energy of the incoming electron wave packet.

The interval of the system is always between 0 and 4000 Å (0 and 800 lattice points). The initial
wave packet is placed at 500Å and the barriers always start at 1000Å. Figure 8 illustrates an
example of the setup for the ARSL with N = 200.

Figure 8: An illustration showing a wave packet at two different time frames, traveling through
the ARSL with N = 200. The wave packets are plotted so that their base is at the their average
energy of 0.36eV

The time τ when 99% of the wave packets has left the interval (0 to 4000Å), was used as the
comparable traveling time. The data is presented in table 1 and figure 9.

Table 1: Travel time for a system of 800 lattice points for ARSLs with varying N . Travel time was
calculated by finding the time step for which 99% of the wave packet had left the system

Length of ARSL Travel time τ
N=0 (No barrier) 664

N=50 652
N=100 640
N=200 612
N=500 536
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Figure 9: The integral over the interval 0 to 4000Å of the absolute square of wave packets traveling
through ARSLs with varying N , plotted for time τ .

Table 1, shows a clear indication that the electron travels faster through ARSLs than no barrier. It
also shows a trend of higher N in an ARSL, gives shorter traveling times. This was the opposite of
what was expected, as it was assumed that ARSLs would give a tunneling delay time comparable
to that of a double barrier. A possible explanation is that ARSLs and double barriers are not
comparable in this regard due to the ARSLs having wells between its barriers while a double
barrier does not. To test this, a second set of simulations were run with the same setup, but
setting the potential in all of the wells of the ARSLs to 0, effectively removing them. Thus we
expect the second set of simulations to yield a delay in traveling time which increases with N due
to the wells being removed. Ideally, we would not want to make any further changes to the ARSLs,
since this adds a layer of uncertainty when comparing the second set of results with that in table
1. However by removing the wells, the transmission spectra no longer yielded 100% transmission
for 0.36eV, so V0 was also adjusted to 0.2eV to account for this giving the transmission spectrum
in figure 10.

Figure 10: Transmission spectrum for the ARSL with removed wells, and V0 adjusted to 0.2eV.
The vertical (Orange) line highlights the average energy of the incoming electron wave packet.

The data from the second set of simulations is presented in table 2 and in figure 11. It should also
be noted that since the particle energy is higher than the potential this is technically no longer
quantum tunneling.
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Table 2: Travel time for second set of simulations. The wells in the ARSLs has been removed, and
V0 set to 0.2eV. Travel time was calculated by finding the time step for which 99% of the wave
packet had left the system

Length of ARSL Travel time τ
N=0 (No barrier) 664

N=50 654
N=100 672
N=200 708
N=500 837

Figure 11: The integral over the interval 0 to 4000Å, of the absolute square of wave packets
traveling through ARSLs without wells for the second set of simulations.

From table 2, we can see the traveling time for the second set of simulations increases with N , for
N = 100 and greater, which was expected. It was however unexpected that the traveling time once
again was shortened for N = 50. This was likely due to the transmission spectra for the ARSL
without wells, having less of a clean 100% transmission area for low N, meaning some of the wave
packet was likely reflected. Given that a part of a wave packet is reflected, it will leave the interval
earlier since the distance traveled to the left is shorter than to the right. Due to the nature of how
the travel time is calculated this error leads to a shorter traveling time. Upon further inspection,
this suspicion was confirmed by plotting the system for N = 50 at time τ = 240 (figure 12), where
a reflected part can be seen at the bottom left. By integrating the absolute square of only the
reflected part, it showed that about 0.5% of the wave packet had been reflected. For comparison,
the same analysis was made for N = 100, where it was calculated that less than 0.05% had been
reflected. Thus we choose to rule out N = 50 for the second set of simulations, while keeping the
rest when forming our conclusion.

15



Figure 12: Wave packet from second set of simulations for N = 50 plotted at τ = 240. The larger
wave to the right has mostly passed the barrier, while a reflected part can be seen at the bottom
left.

The second set of simulations with the removal of barriers shows a trend of increased traveling
time with increasing N , as we would expect when comparing to a double barrier. However due
to V0 simultaneously being reduced in the second set of simulations, it is not possible to conclude
certainly that this is due to the removal of wells, the decrease in V0, or a combination of the two.
Nonetheless we can only conclude that this somewhat gives an indication that it is the inclusion of
wells between the barriers in ARSLs that drives the tunneling time down. This should be studied
further to make a certain conclusion.

The first set of simulations clearly displayed that the traveling time goes down with increasing
N in ARSLs. However it is unclear whether this correlation means that the electron’s traveling
speed inside an ARSL increases with the parameter N , or if it simply travels at a fixed yet higher
speed inside an ARSL. The latter gives the same correlation due to the wave traveling with this
higher fixed speed for longer parts of the interval with increasing N . This distinction would also
be interesting to find in a further study.

4.3 Trapping an electron between ARSLs

Two ARSLs with the parameters V0 = 0.4eV, c =3, b =2 and N = 100 are used to trap an electron
wave packet with an average energy of about 0.9 eV. The transmission spectrum for these ARSLs
is plotted in figure 13 with the average electron energy highlighted.
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Figure 13: Transmission spectrum of an ARSL with V0 = 0.4eV, c = 3, b = 2 and N = 100. The
vertical (Orange) line highlights the average energy of the initial electron wave packet.

An initial wave packet was created on an interval with length 4000Å (S = 800 in eq 48) between
the two ARSLs, to which the time evolution was simulated up to τ = 15000. This was done for no
other reason than to highlight the unintuitive properties of ARSLs in an amusing way. In figure 14,
we can see the electron at τ = 2000 and τ = 15000 after having bounced back and forth countless
times. We have effectively trapped an electron with more than twice the amount of energy needed
to escape classically.

Figure 14: An illustration showing different time frames of an electron wave packet trapped between
two ARSLs. The wave packets are plotted so that their base is at the their average energy of 0.9eV

The leakage was measured by integrating the absolute square of the wave packet for the entire
interval, and plotting over time (see figure 15). For the entire time period up to τ = 15000, less
than 3% leaked out of the system.
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Figure 15: The integral of the absolute square of the trapped wave packet for the entire interval
plotted over time τ .

5 Conclusion

With the use of the tight binding model, the transmission and reflection properties of ARSLs were
studied and demonstrated through simulations and analyses of their transmission spectra. It was
discovered that the parameter N in an ARSL does not influence the main characteristics of its
transmission spectrum, but only how sharply the transmission transitions between 0% and 100%.

A system of a potential barrier placed behind or in front of an ARSL was found to yield the
transmission spectrum of the barrier in the region where the ARSL yields 100% transmission
and 0% transmission when the ARSL yields 0% transmission. In the regions where the ARSL
transitions between 0% and 100% transmission the spectrum of the combined system displays a
non-trivial behavior.

It was found that tunneling electron wave packets travels faster through an ARSL than no potential
at all. It was indicated that this faster traveling time is due to the wells between the barriers, as
it is well known that resonant tunneling through a double barrier has a delay time.

Lastly the unintuitive properties of ARSLs were highlighted by trapping an electron between two
ARSLs when the electron had more than twice the energy needed to escape classically.
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