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effectiveness of exploiting portfolio optimization compared to investing in renowned benchmarks.  

This journey would not have been possible without the guidance and expertise of Denis Becker. 

His support, insights, and ideas have been invaluable and deeply appreciated.  
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Abstract 
 

The Dow Jones Industrial Average, a cornerstone in the financial markets, measures the 

performance of the most influential entities in the United States. The index exhibits a price-

weighted structure, thereby ensuring diversification, making it a suitable alternative for risk-averse 

investors. However, this structure and diversification come at the cost of potentially higher returns, 

a trade-off that may not align with investors who are more focused on efficiency rather than a price-

weighted structure.    

This thesis introduces an algorithm and creates monthly portfolios aiming to maximize the 

expected Sharpe Ratio, an allocation that optimizes the estimated return per unit of anticipated risk. 

The algorithm is backtested on the period from 2013 to the end of 2023, where it estimates the 

expected return and covariance based on data from the previous twelve months. The analysis 

measures the aggregated return, annual compounded growth rate, volatility, and Beta to determine 

the risk -/ return profile.  

The algorithm nearly outperformed 75% of the assets within the Dow Jones Industrial Average, 

while also presenting more stable returns than ¾ of the assets. Furthermore, it surpassed the 

benchmark’s level of risk-adjusted return, achieving higher peaks, and a milder decline during the 

worst market downfall during the period analyzed. This finding illuminates a unique trading 

strategy for risk-tolerant investors seeking alternatives to traditional indices and suggests that using 

Modern Portfolio Theory, by means of Sharpe Ratio maximization, provides more efficient returns 

than an index composed of nearly identical components. 
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Sammendrag 
 

Formålet med denne oppgaven er å undersøke hvordan en portefølje, som består av aktiva fra Dow 

Jones Industrial Average, presterer mot indeksen over tid. Indeksen benyttes ofte som et anslag for 

hvordan større industrivirksomheter presterer i aksjemarkedet. Den følger en prisvektet struktur 

som gjør at medfører høy grad av diversifisering. Men denne strukturen -og diversifiserings formen 

går på bekostning av potensielt høyere avkastning, noe som ikke er ønsket for investorer som er 

mer vekstorientert. Dette leder til oppgavens hensikt og problemstilling: 

Kan en porteføljeoptimaliseringsstrategi, som benytter komponentene i Dow Jones Industrial 

Average, overgå indeksen ved å prioritere risikojustert avkastning? 

Dette undersøkes ved å konstruere en algoritme som søker å maksimere Sharpe Ratio, en allokering 

som optimaliserer forventet avkastning per enhet av estimert risiko. Strategien blir testet på data 

fra 2013 til slutten av 2023, hvor månedlig allokering baseres på bakgrunn av de tolv foregående 

månedene. Risiko -/ avkastningsprofil utføres på bakgrunn av volatilitet, Beta, akkumulert -og årlig 

effektiv avkastning.  

Strategien resulterte i avkastning som nesten utkonkurrerte 75% av aksjene i indeksen, og viste 

mer stabil avkastning enn ¾ av aksjene. Ytterligere overgikk den også referanseindeksens nivå av 

risikojustert avkastning. Avkastningen nådde høyere topper, og mildere reduksjon under den verste 

nedgangstiden i perioden som ble analysert. Funnet styrker en påstand om at Markowitz 

porteføljeteori, med utgangspunkt i maksimal Sharpe Ratio, generer mer effektiv avkastning per 

enhet risiko enn Dow Jones Industrial Average. 
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1 Introduction 
 

The Dow Jones Industrial Average (hereby abbreviated to DJIA) is an index that tracks the 

performance of thirty major publicly listed industrial corporations listed on the New York Stock 

Exchange (NYSE) and Nasdaq. It was created by Charles Dow and Edward Dow in 1896 and 

serves as a benchmark for the overall health of the United States stock market and economy (Ganti, 

2024).  

To maintain its bearing and accuracy, the index adjusts its value and composition based on the 

individual assets’ pricing and relevance. Furthermore, the index follows a price-weighted structure. 

The index’s value is based on the sum of each corporation’s respective share price, divided by a 

divisor (Ganti, 2024). This approach entails that companies with a higher share price are given 

more weight and yield a greater impact on the index’s value.  

Although there are ETFs designed to mimic the DJIA, investors focused on asset growth may miss 

out on higher returns. This is because the price-weighted nature renders it less sensitive to growth 

in lower-priced assets. Recognizing this restraint, a new strategy is proposed; a strategy that 

leverages the assets’ growth, regardless of share price, and considers risk-adjusted returns. This 

leads to the core of the thesis:  

Can a portfolio optimization strategy, targeting the components of the DJIA, outperform the index 

itself in terms of compounded return and risk-adjusted returns, by prioritizing efficiency over a 

price-weighted structure? 

To critically assess the thesis, an algorithm is created that optimizes the expected Sharpe Ratio for 

each month across the period of 2013-2013. The algorithm does not engage in short selling and 

uses historical data from the preceding twelve months to estimate the expected portfolio return and 

standard deviation.  

The thesis covers the pertinent theoretical material relevant to the analysis. It then moves on to 

outline the methodology employed. Subsequently, an analysis is conducted by examining the 

timeline and specific subperiods. Lastly, the thesis concludes by summarizing the findings and 

conclusions drawn from the research.  
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2 Theory 

2.1 Return and Expectancy 

 

Expected return refers to the yield an investor expects from an investment over a specified period. 

In most cases, the expected return is impacted by an influx of factors, such as historical data, 

theoretical probability of various scenarios, as well as the assessment of future market conditions 

(Team, 2023). The process of establishing an objective expected return is inherently difficult due 

to biases and endless possibilities of unforeseen circumstances. 

Moreover, this paper exploits two measurements of returns: arithmetic and logarithmic. The 

arithmetic method involves calculating the change from one date to another. For example, the 

absolute change between the asset price at the start of the investment compared to the value at the 

time of sale. This is particularly useful when we want to find the total absolute return or mean 

return throughout a time series.  

Arithmetic Return=  
𝑝𝑡−𝑝(𝑡−1)

𝑝(𝑡−1)
 

p = price  

t = point in time 

Equation 1: Arithmetic Return 

 

Natural returns, however, refer to the mathematical process of converting the prices to logarithmic 

values and then dividing the price from a specific point in time by the preceding logarithmic price. 

Unlike the arithmetic returns, the logarithmic returns employ symmetry, entailing that an increase 

or decrease has the same magnitude. The conversion also captures exponential growth and 

facilitates aggregation over time. The log returns can be converted back to arithmetic returns at any 

point in time by applying the sum to the power of e.   
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Natural Logarithmic Return = ln (
𝑝𝑡

𝑝(𝑡−1)
) 

p = price  

t = time 

Conversion to Arithmetic Return = 𝑒∑ (𝑟1+𝑟𝑡)𝑡
1 − 1 

r = Natural logarithmic return at a point in time 

Equation 2: Logarithmic Return 

 

In this analysis, the expected return is based on the mean monthly return of the preceding twelve 

months. While historic performance does not present a guarantee for future returns, it streamlines 

the process of computing the expected return, as estimating future price is inherently complex given 

the magnitude of factors that influence stock prices. The total portfolio expected return is calculated 

by summing the product of each asset's allocation and its respective expected return. 

 

Expected Return = 𝐸[𝑥]𝑝  =  ∑ (𝑛
𝑥=1 𝜔𝑥 ∗ 𝐸[𝑥]𝑥) 

𝜔𝑥 = Allocation of asset x in the portfolio 

𝐸[𝑥]𝑥 = Expected Return of asset x 

Equation 3: Expected Portfolio Return 
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Aggregated returns refer to the accumulated wealth over time compared to the original investment. 

It is calculated using the formula for the arithmetic return; however, the starting value is held 

constant. The conversion to aggregated returns is especially useful as it normalizes the prices, 

making it comparable to other investments. Additionally, it demonstrates the accumulated wealth 

in percent, effectively illustrating the investment’s growth over time.  

Aggregated Return = 
𝑝𝑡−𝑝0

𝑝0
 

p = price  

t = point in time 

Equation 4: Aggregated Return 

 

Moreover, another metric used to assess the return of an investment is the compounded annual 

growth rate (hereby abbreviated to CAGR). This metric measures the annual yield that must be 

produced to attain the final value, under the assumption that profits are reinvested (Fernando, 

2024). As it is a relative measure, it facilitates comparison between different investments.  

𝐶𝐴𝐺𝑅 = [(
𝐹𝑉

𝑆𝑉
)

1

𝑛
− 1] ∗ 100  

FV = Final Value 

SV = Starting Value 

n = years 

Equation 5: Compounded Annual Growth Rate (CAGR) 
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2.3 Risk 

 

Following the concepts of return and expected return, a myriad of factors can lead to a divergence 

between the projected returns and the actual returns. This divergence is also known as risk – the 

uncertainty of a financial asset’s return compared to the expected return (Chen, 2023).  

Unforeseen changes in macroeconomic factors such as geopolitical conditions, financial outlook, 

or changes in the corporation’s performance, can lead to a deviation from the expected value. These 

factors collectively represent the total risk inherent in an investment and can be classified into two 

groups: systematic -and idiosyncratic risk factors. Market risk, or systemic risk, pertains to the 

exposure of risk factors that affect the entire market. As it affects the entire market, it is rigorously 

challenging to reduce. However, risk associated with a specific company, or idiosyncratic risk, can 

be moderated through strategic portfolio diversification (Lake, 2022). 

 

2.3.1 Standard Deviation 
 

A key metric for quantifying risk is the standard deviation. It is a statistical measure of the 

dispersion of data points from the mean in a probability distribution (Institute of Business & 

Finance, n.d.). Given that the mean monthly return is used as a benchmark for the expected return, 

it measures the stability of the assets’ performance and the total risk exposure. A high standard 

deviation indicates higher volatility as the returns deviate from the expected return.  

𝜎𝑋 = √𝜎𝑋
2 =  √

∑(𝑥𝑖 − 𝑥̅)2

𝑛 − 1
 

𝑥 = asset 

𝜎𝑋  = standard deviation 

𝜎𝑋
2 = variance 

𝑥𝑖 = asset returns 

𝑥̅ = mean of data points 

𝑛  = number of data points 

Equation 6: Standard Deviation 
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2.3.2 Covariance and Correlation 
 

Following standard deviation, correlation, and covariance emerge as one the most significant 

factors for determining the portfolio components and the corresponding allocation. They gauge 

how variables move together, implying whether they exhibit similarities. These measurements 

identify assets that do not follow the same return, thereby revealing asset combinations that can 

mitigate portfolio risk.  

Correlation measures the strength of the relationship between two variables (Statista, n.d.). From 

a financial perspective, it is used to determine whether the assets’ returns have a strong linear 

affiliation, ranging from a -1 to 1. Either side of the scale entails a perfect linear relationship, 

where a value of 1 suggests that they are moving in an identical linear pattern, whereas a value of 

-1 portrays an opposite pattern.  

Covariance refers to the coherent relationship between two variables where a change in one 

reflects a change in the other (Surendran, 2022). It can be calculated by summing the product of 

the deviations from the mean, divided by the number of samples minus one (to account for a 

sampling).  

𝑅(𝑋, 𝑌) =
𝐶𝑂𝑉(𝑋, 𝑌)

𝜎𝑋 ∗ 𝜎𝑌
 

 

𝐶𝑂𝑉(𝑋, 𝑌) =   
∑[(𝑥𝑖 − 𝑥̅)2 ∗ (𝑦𝑖 − 𝑦̅)2]

𝑛 − 1
 

 

R =correlation between the assets, 

𝜎𝑋 and 𝜎𝑌 = standard deviations, 

𝑥𝑖 and 𝑦𝑖 = asset returns 

𝑥̅ and 𝑦̅ = mean returns of X and Y  

Equation 7: Correlation and Covariance 
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2.3.4 Beta 
 

Beta is a measure of the systemic risk of a portfolio compared to the market. It is used in the Capital 

Asset Pricing Model (CAPM), calculated by the covariance between the portfolio and the 

benchmark, divided by the benchmark’s variance (Team, 2024). A beta above 1 indicates the 

portfolio has a higher systemic risk compared to the market, whereas a beta below 1 suggests lower 

systemic risk. A beta of 1 means the portfolio's systemic risk matches the market. 

𝛽 =  
𝐶𝑂𝑉(𝑅𝑝, 𝑅𝑚)

𝑉𝑎𝑟(𝑅𝑚)
 

𝐶𝑂𝑉(𝑅𝑝, 𝑅𝑚) = Covariance between the portfolio return and the market return  

𝑉𝑎𝑟(𝑅𝑚) = (𝜎𝑚)2 = variance of market returns 

Equation 8: Beta 

 

2.3.5 Portfolio Standard Deviation 
 

The total portfolio risk is based on the weighted standard deviation for each asset and the 

covariances among the assets. The weights refer to the proportion of each asset in the portfolio.  

The standard deviation for the portfolio is given using the mathematical formula below.  

𝜎𝑝 = √∑ 𝜔𝑥
2𝜎𝑥

2

𝑁

𝑥=1

+ ∑ ∑ 𝜔𝑥𝜔𝑦 𝐶𝑜𝑣(𝑥, 𝑦)

𝑁

𝑥≠𝑦

𝑁

𝑥=1

 

𝜎𝑝 = portfolio standard deviation 

x,y =  assets in a portfolio consisting of N assets 

𝜔 = allocation -/ proportion  

𝐶𝑜𝑣(𝑥, 𝑦) = covariance between the assets 

Equation 9: Portfolio Standard Deviation 
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2.4 Sharpe Ratio 

 

Following returns and standard deviation, the Sharpe ratio measures the balance between the 

portfolio’s excess returns and standard deviation (Samaha, 2023). The excess return refers to the 

generated return compared to a risk-free alternative. It substantiates the return generated per unit 

of risk.  The Sharpe Ratio can be calculated for both the expected and the actual values, using the 

formula below.   

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝐸[𝑟]𝑝 − 𝑟𝑓

𝜎𝑝
 

𝐸[𝑟]𝑝 = expected portfolio return 

𝑟𝑓 = risk-free rate 

𝜎𝑝 = portfolio standard deviation.  

Equation 10: Sharpe Ratio 

 

2.5 Modern Portfolio Theory  

 

From a financial perspective, it is generally denoted that an asset with a high level of potential 

return carries higher risk. The optimal trade-off level between risk and return depends on the level 

of risk aversion, however, some portfolios are more efficient than others, as they preserve the 

expected return, while minimizing risk. As the portfolio’s standard deviation factors in the 

statistical relationship between assets, the total risk can be reduced by investing in assets that follow 

different patterns of return, thereby minimizing the standard deviation. This process of minimizing 

the standard deviation is called optimization. 

Optimization is a branch of applied mathematics serving to find the optimal solution for an 

objective function given constraints (Stanford, 2024). In terms of portfolio optimization, it entails 

minimizing-/maximizing the return, standard deviation, or Sharpe Ratio, by changing the asset 

allocations.  
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The economist Henry Markowitz is known for creating the framework for modern portfolio theory, 

seeking to optimize portfolios through diversification (Investopedia, 2023). This theory applies 

optimization to mitigate risk by diversifying investments, thus creating efficient portfolios and 

optimal asset allocations based on specific criteria  (University of Washington, 2024). The objective 

function in this framework can aim to either achieve the minimum variance for a given level of 

return or vice versa. Consequently, the lowest baseline expected return is the allocation resulting 

in the lowest portfolio variance, whereas the highest return is the asset allocation providing the 

highest return. Between these two extremes – minimum variance and maximum return – numerous 

portfolios can be constructed to achieve the lowest possible level of risk for a given level of return. 

Together, these portfolios make up the efficient frontier as illustrated in Figure 1. 

 

Figure 1: Illustration of Efficient Frontier 
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3 Methodology 
 

This project aims to investigate whether a portfolio composed of stocks from an established index, 

specifically the Dow Jones Industrial Average (DJIA) can be optimized to maximize the Sharpe 

Ratio, to achieve higher risk-adjusted returns compared to the overall index. It evaluates the 

effectiveness by exploiting a rolling window technique. The operation is performed by an algorithm 

that backtests the strategy from 2013 to the end of 2023.  

 

3.1 Trading Strategy  
 

The trading strategy employs a rolling window technique that seeks to maximize the expected 

Sharpe Ratio for each month throughout the entire period. To navigate through the unknown 

future movements, the trading strategy is based on historic performance. The monthly allocations 

are based on the logarithmic returns from the preceding twelve months. Given that the strategy 

looks back at historical data, instead of assessing current market conditions, it is expected that the 

algorithm will experience a delay in terms of optimal asset allocations. This means that the 

invests after growth has taken place, in anticipation that the asset will continue to grow in the 

future. Moreover, the intention behind the rolling window is to capture the general trajectory 

among the assets in the portfolio. Instead of using the previous month to establish the holdings 

for the upcoming month, a twelve-month window is used to mitigate anomalies that occur each 

month. This methodology entails that each month will have an impact of 1/12 on the overall 

assessment.  
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3.2 Data 
 

The dataset used in this analysis was derived from the Dow Jones Industrial Average Index (DJIA) 

as of January 1st, 2024, with the exception of Dow Inc. This asset was excluded from the dataset 

due to missing data prior to 1st of April 2019. General Electric was instead used as a substitution 

given its long historic standing in the index (Williams, 2017). Moreover, during the period in 

question, several stocks have been introduced and removed from the index. Table 1 illustrates the 

assets used in the portfolio, whereas Table 2 illustrates the changes in DJIA.  

Portfolio used for optimization 

Sector Ticker Distribution 

Technology AAPL, CSCO, INTC, MSFT, CRM, IBM 20.0% 

Financial Services AXP, GS, JPM, TRV, V 16.7% 

Industrial Goods BA, CAT, MMM, GE, HON 16.7% 

Healthcare AMGN, JNJ, MRK, UNH 13.3% 

Consumer Goods KO, MCD, PG, NKE 13.3% 

Retail WBA, WMT, HD 10.0% 

Energy CVX 3.3% 

Telecommunications VZ 3.3% 

Entertainment DIS 3.3% 
Table 1: Assets Used in The Analysis 

Changes in the Dow Jones Industrial Average Index (DJIA), 2013-2023 

Date Deleted Added 

September 20, 2013 AA NKE 

September 20, 2013 BAC GS 

September 20, 2013 HPQ V 

March 18, 2015 T AAPL 

June 26, 2018 GE WBA 

April 2, 2019 DD (due to separation from DOW)1 (DOW)2 

August 31, 2020 XOM CRM 

August 31, 2020 RTX HON 

August 31, 2020 PFE AMGN 
Table 2: Changes in the DJIA 2023-2023 

(Dogs of the Dow, 2024) 

1 DD (DowDuPont) separated into three individual publicly traded companies, with the following tickers: DOW, DD, 

and CTVA.   
2 DD Following the separation, DOW was the only company to remain in DJIA. 

(SEC, 2019) 
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The monthly holdings are based on the previous 252 trading days – the average number of trading 

days in a twelve-month period. As the time series stems from 2013 to the end of 2023, there are 

132 look-back periods, entailing a vast number of data points. To automate the process of data 

retrieval, the prices are fetched using the yfinance library in Python, an open-source tool that fetches 

data from Yahoo Finance through their public APIs (PyPi, 2024). To address inconsistencies 

identified in the data from Yahoo Finance, the prices are rounded to five decimal places, which is 

the lowest observed discrepancy.  

Upon collecting the data, the daily prices are converted to logarithmic returns. Subsequently, the 

covariances are calculated and converted to monthly figures. This is achieved by the multiplication 

of 21, the average number of trading days per month. The prices are then resampled to monthly 

values and converted to monthly returns. Consequently, the mean from the preceding monthly 

returns serves as the expected return.  

3.3 Optimization 
 

Having established the formulas for the expected return and covariance for each asset, the portfolio 

metrics are calculated, facilitating the maximization of Sharpe Ratio. The maximization is based 

on two constraints, no short selling and the sum of the portfolio must be equal to 100%, entailing 

that all available capital is invested. It should be noted that this investment strategy does not impose 

any bounds in terms of variety or number of asset classes, entailing that the algorithm is allowed 

to concentrate on a particular sector or asset. This can severely affect the level of diversification 

and result in increased idiosyncratic risk.  

Moreover, the optimization is solved in Python using the library SciPy which provides several 

minimization tools. Given the task at hand to maximize the Sharpe Ratio with minimization tools, 

the objective function is inversed to a negative form, thereby maximizing by means of 

minimization.  

 

  

 

 

The optimization problem is formulated as the following 
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Minimize:   
 

 − (
𝐸[𝑥]𝑝−𝑟𝑓

𝜎𝑝
) 

 
Given constraints: 
 

0 ≤ 𝜔𝑥  ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

∑ 𝜔𝑥

𝑛

𝑖=1

= 1 

 
Where: 

 

 𝐸[𝑥]𝑝 = ∑ 𝜔𝑥
𝑛
𝑥=1 ∗ 𝐸[𝑥]𝑥   

 𝑟𝑓 = 0   
 

p= portfolio,  

x = asset 

𝜔 = allocation -/ proportion 

E[x] = expected return 

rf = risk-free rate 

 
Equation 11: Optimization of expected Sharpe Ratio 
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4 Results and Analysis 
 

4.1 Entire Window 

4.1.1 Correlation 

 

All of the assets in the portfolio exhibited a positive correlation with each other during the period 

period in question, 2013-2023. As illustrated in the frequency table below, most of the assets had a 

moderate degree of correlation, with a minimum of 0.21 and a maximum of 0.81. These findings 

imply that the assets have a moderate degree of linear similarities in their levels of return. 

Furthermore, this is an indication that the portfolios constructed present limited diversification, as 

the potential for reducing portfolio risk is limited.  

Correlation, summary 

Correlation value Frequency Distribution  

−𝟏 ↔ 0 0 0.0 % 

0.1 ↔ 0.2 2 0.5% 

0.2 ↔ 0.3 47 10.8 % 

𝟎. 𝟑 ↔ 0.4 144 33.1 % 

0.4 ↔ 0.5 160 36.8 % 

0.5 ↔ 0.6 67 15.4 % 

0.6 ↔ 0.7 13 3.0 % 

0.7 ↔ 0.8 1 0.2 % 

0.8 ↔ 0.9 1 0.2% 

0.9 ↔ 1.0 0 0.0% 

Total 435 100% 

Table 3: Correlation Frequency 

Moreover, it should be noted that a strong correlation is expected for comparable assets operating 

in the same industry, as they often are impacted by the same variables. For instance, both Morgan 

Stanley (MS) and Goldman Sachs (GS) operate as financial institutions and generate income from 

investment banking, wealth management, trading, and other financial services (McClay, 2023). 

They exhibited a correlation of 0.82. The lowest correlation observed was between Walmart 

(WMT) and General Electric (GE) with a value of 0.18. 

One noteworthy topic following the positive correlation values is that most industry leaders tend 

to move in the same direction over time, depending on the perceived market outlook. For instance, 

during bullish periods, investors are fueled by optimism, causing the general stock market to rise 

(Gallagher, 2024). Furthermore, renowned indexes and corporations with significant market 

Figure 2: Correlation Distribution 
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capitalization are also deeply correlated with broad macroeconomic indicators and conditions 

(Danso, 2020). Since the DJIA is an indicator of the financial market, it is natural the assets in the 

portfolio are impacted by the same variables, thus producing a positively correlated relationship.  

Nevertheless, as illustrated in Table 3, the majority exhibited a correlation between 0.3 and 0.6. 

These levels of correlation are evident when examining the assets’ compounded return over time.  

 

4.1.2 Compounded Returns 
 

Figure 3 illustrates the aggregated return over time, compared to their initial price at the start of 

the timeline. Table 4 serves as a statistical summary of the figure. Almost all of the assets 

exhibited positive growth during the period. In extension to the correlation analysis, this positive 

growth innately contributes to an underlying positive correlation, as the majority of the assets 

move in the same direction over time.  

 

Figure 3: Aggregated Returns – Assets, DJIA, Algorithm 
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The lowest observed return was -2.80% which is attributable to the performance of WBA. This was 

the only asset analyzed that provided a negative yield. Moreover, GE is also notable for its poor 

performance, totaling a return of 23% over an eleven-year period. This was far below the general 

tendency. However, poor performance leading up to mid-2018 was expected given its removal from 

the index. Nevertheless, it experienced significant growth in 2023, which enabled it to recapture 

its standing and provide an overall positive yield. The best-performing asset during the timeframe 

was MSFT. It showcased stable growth maintaining a standard deviation below the 50th percentile 

and yielded a fifteenfold return, corresponding to a compounded annual growth rate of 29.16%.  

In extension to the assets’ performance, the DJIA itself delivered a positive return alongside the 

lowest standard deviation among the assets considered. The low level of fluctuations can be 

attributed to the level of diversification inherent in the index’s price-weighted structure. 

Furthermore, the returns generated from the DJIA placed it in the lower quartile, with a total return 

of 181% and a CAGR of 9.86%. This entails that 75 percent of the assets analyzed yielded a higher 

return than the index itself.  

The algorithm achieved a notable total return of 334%, corresponding to a compounded annual 

growth rate of 14.29%. This positioned it near the 75th percentile of returns. It also presented a 

standard deviation below the 25th percentile, with a value of 5.29%. In comparison to the DJIA, the 

algorithm surpassed the DJIA compounded returns in 125 out of 132 months. DJIA had a higher 

aggregated return between the end of 2016 to mid-2017.  

 

 

 

 

Measurement CAGR% Total Return Monthly Mean 
Return 

Monthly Standard 
Deviation 

Mean 12,47 341,60 1,18 6,57 

Min -0,26 -2,80 0,28 4,27 

25th percentile 9,27 166,12 0,84 5,33 

50th percentile 12,50 265,01 1,20 6,25 

75th percentile 14,67 350,42 1,42 7,81 

Max 29,16 1565,77 2,36 10,65 

Table 4: Descriptive Statistics based on aggregated returns for DJIA, Assets, and Algorithm 
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4.1.3 Monthly Performance 
 

Aggregated returns are particularly sensitive to outliers; a brief period of substantial returns can 

offset a long period of subpar performance. Consequently, this section focuses on the monthly 

returns. Figure 4 presents the monthly change of both the DJIA and the algorithm. Notably, they 

shared many of the same characteristics, moving in unison on many occasions.   

 

Figure 4: Monthly Return – Algorithm vs. DJIA 

The summer months of 2020 stood out as the algorithm generated substantial returns. June, July, 

and August recorded returns of 14.74%, 16.51%, and 21.66%. These months also entailed high 

growth for the DJIA, but with less intensity. More detailed descriptive statistics are provided in 

Table 5, highlighting the percentiles, mean, standard deviation, and monthly wins.  

 

 

Measurement Mean Standard 
Deviation 

Min 25th 
percentile 

50th 
percentile 

75th 
percentile 

Max Monthly 
wins 

Algorithm 1.25% 5.31% -10.62 -2.49% 0.84% 4.13% 21.66% 71 

DJIA 0.89% 4.27% -13.74% -1.50% 1.13% 3.28% 13.95% 61 

Table 5: Descriptive Statistics Based on Monthly Returns for DJIA – Algorithm 
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The 25th percentile indicates that the algorithm experienced declines more often than the 

benchmark. Furthermore, the median, illustrated by the 50th percentile, reveals that the DJIA 

provided more stable returns. However, the upper quartile signifies that the algorithm is better 

equipped to provide higher returns than the DJIA.  This is more clearly depicted in Figure 5 

showcasing the quartiles and outliers.  

 

Figure 5: Boxplot of DJIA and algorithm's monthly distribution 

The potential for greater returns is highlighted by a higher 75th percentile and a greater number of 

positive outliers. Nevertheless, the increased opportunity for superior returns is accompanied by 

increased volatility, as evidenced by a differential of 1.04% in the standard deviations. Furthermore, 

the algorithm also portrayed a wider range of returns, spanning a range from -10.62% to 21.66%. 

This outcome was anticipated as the algorithm’s architecture enables it to invest in fewer assets 

with substantial positions, making it more prone to volatility. However, the DJIA recorded the 

bottommost return with a nadir of -13.74 %. This was not anticipated given that the index held a 

lower standard deviation and a higher median return.  

Nevertheless, this occurrence was an outlier and does not reflect the broad trend of negative returns. 

The DJIA encountered a negative monthly return in 34.09% of the observed periods with a median 

of -3.50%. In contrast, the algorithm encountered a higher frequency of negative returns, occurring 

in 39.39% of the months, and a less severe median of -2.83%.   
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The algorithm achieved the highest monthly yield 71 times out of a total of 132 possible, equaling 

a win percentage of 53.79%. Despite having a relatively similar frequency of monthly wins as the 

DJIA, the algorithm provided markedly higher total yield, thus endorsing the assertion that the 

outperformance was due to a higher 75th percentile and positive anomalies.   

 

4.1.4 Sharpe and Beta 
 

Measurement Algorithm DJIA 

Correlation 0.754 0.754 

Monthly Sharpe Ratio  0.236 0.209 

Annualized Sharpe Ratio 0.818 0.725 

Beta (DJIA as the benchmark)   0.938 1.000 

Table 6: Sharpe and Beta – Algorithm and DJIA 

Following the affirmation that the algorithm’s performance is caused by few, but high returns, the 

algorithm still generated a superior Sharpe Ratio, as presented in Table 6. The algorithm’s mean 

monthly return of 1.25% and standard deviation of 5.31% generated a score of 0.236, thereby 

beating the index’s monthly Sharpe Ratio of 0.209. In an annualized context, the product of the 

monthly Sharpe Ratio and the square root of twelve, the algorithm attained a ratio of 0.818, whereas 

the DJIA achieved a ratio of 0.725. This entails that, despite higher volatility, the algorithm was 

slightly more efficient at delivering returns per unit of risk than the DJIA. 

The assessment of market sensitivity revealed a Beta of 0.938 against the DJIA. Although the assets 

in the portfolio are an appropriation of the index, the algorithm is set to maximize the Sharpe Ratio, 

leading to a different weight structure. These disparities abate the correlation between the portfolio 

and the DJIA, resulting in a correlation of 0.754. Since the Beta is derived from the strength of the 

relationship between the market and the portfolio, the covariance between them was below the 

market’s variance, leading to a Beta below 1.  

The Beta indicates that the portfolio’s performance was less volatile to changes in the overall stock 

market, in this case measured by the DJIA. In more detail, with a lower Beta, it substantiates that 

the algorithm experienced less systematic risk. Given that the algorithm presented a higher standard 

deviation, it signifies that the algorithm was more concentrated on individual assets, leading to 

more exposure to idiosyncratic risk and individual risk factors. 
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4.2 Timeline Subset Analysis 
 

4.2.1 Bull market 

Market Growth measured by well-known indices  

Index Ticker Compounded Average 

Growth Rate (CAGR) 

2009-2019 

Historic Compounded 

Average Growth Rate 

DJIA ^DJI 11.03% 8.16% 

Nasdaq 100 ^NDX 19.22% 13.56% 

S&P500 ^GSPC 11.97% 5,83% 

NYSE Composite ^NYA 8.09% 6.24% 

Nasdaq Composite ^IXIC 16.76% 9.63% 

Vanguard Total Stock 

Market Index Fund 

VTI 14.46% 7.99% 

Table 7: Market Growth, Bull Window 

During the period leading up to 2020, a majority of the assets experienced significant returns, 

showcasing the dynamics of a bullish market. This phase is marked by robust growth across the 

overall stock market. After the financial crisis in 2008, prominent indices such as the NYSE 

Composite, Nasdaq Composite, and Vanguard Total Stock Market Index Fund experienced 

considerable returns. These indices present an overview of the performance of publicly traded 

companies listed on both the NYSE and Nasdaq. Furthermore, indexes such as the Nasdaq 100 and 

the S&P500 measure the companies with the highest market capitalization. As seen in Table 7, all 

of them outperformed their historic CAGR, denoting a bullish period from 2009-2019. This growth 

is also illustrated in Figure 6. As the bull period overlaps with the window in the analysis, it entails 

that the returns generated by the algorithm are not just specific for the algorithm, but rather the 

stock market in general.  

Although the algorithm yielded a higher 

total return in the bull window than the 

DJIA, it does not mean that it is a better 

investment during a bull window. 

Several other indexes outperformed 

both the DJIA and the algorithm’s 

returns.  

 Figure 6: Algorithm vs. market Indexes during bull window 
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The Beta value stood at 1.037, indicating that the algorithm was more responsive to fluctuations in 

the DJIA during the time bull window, meaning more exposure to systemic risk. Moreover, during 

the downfall in late 2018, the compounded return across the indices declined ranging from -24% 

at its lowest to -38% at the most. The DJIA’s decline was recorded at -24%. The algorithm, 

however, only experienced a downfall of -18%, beating both the DJIA and the other indices.  

 

Figure 7: Boxplot of DJIA and algorithm's monthly distribution 2013-2019 

The boxplot of the bull window shares several similarities with the one observed over the total 

period. Once again, the algorithm presented a wider interquartile range and registered a lower 25th 

percentile. The 75th percentile was also higher. The median was also higher for the algorithm, a 

disparity from the total window, indicating that the algorithm normally provided a higher yield, as 

half of the months were higher than those of the DJIA. During the total window, the high mean 

return was caused by extreme values north of the median. This was not the case during the bull 

window. In short, the algorithm provided more positive returns, leading to a general 

outperformance of the DJIA. 
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4.2.2 COVID-19 pandemic 

 

The year 2020 was marked by uncertainty, lockdowns, and insecurity regarding the future financial 

outlook. As previously illustrated in Figure 3, the assets in the portfolio experienced a decline until 

reaching a bottom in March 2020, innately causing both the DJIA and the portfolio to produce a 

negative result. Consequently, the financial markets experienced substantial turbulence, causing 

the algorithm and DJIA to produce a negative yield for the first few months. This is illustrated in 

Figure 8.  

 

Figure 8: Compounded Returns– Algorithm vs DJIA 2020-2023 

The DJIA experienced the heaviest downfall, with a negative aggregated return at -23.20% at the 

end of March, compared to the algorithm at -15.67%.  The period after March 2020 was followed 

by a phase of recovery and growth. Shortly after experiencing the nadir, the algorithm rapidly 

experienced superior growth. This was caused by abnormal levels of high returns. As stated earlier, 

June, July, and August recorded figures of 14.74%, 16.51%, and 21.66%. These values are 

attributed to Apple’s (AAPL) growth, as the algorithm exclusively invested in this single asset 

during that period. The returns from this asset exceeded the DJIA, causing the algorithm to generate 

a higher compounded return throughout the period. The specific monthly returns are provided in 

Figure 9, showcasing the monthly change throughout the period marked by COVID-19 to 2023.  
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Figure 9: Monthly Return – Algorithm vs. DJIA 2013-2023 

After the extensive period of growth, the algorithm and the DJIA exhibited many similarities. 

Notably, the algorithm experienced more volatility, marked by a higher degree of fluctuations in 

highs and lows. Similarly to the total window, the algorithm produced a higher 75th percentile and 

a lesser median, as marked by the boxplot in Figure 10. Contrary to the previous analysis of the 

bull window, the DJIA experienced a lower 25th percentile, entailing that the bottom 25% of returns 

were lower than the algorithm. Furthermore, the mean monthly returns were also higher for the 

algorithm, much attributed to the high returns generated and an elevated bottom quartile.  

 

 

 

 

 

 

 

Figure 10: Boxplot of DJIA and the Algorithm's Monthly Distribution 2020-2023 
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5 Summary and conclusion 
 

During the bull window leading up to 2020, the assets and broader indices experienced significant 

growth and returns. During this subperiod, the algorithm experienced a higher monthly median 

return than the DJIA. However, the trajectory was affected by a wider range of interquartile returns 

and a higher standard deviation. Although the algorithm yielded higher returns, there were other 

indices, such as the Nasdaq Composite and Nasdaq100, that outperformed the algorithm,  

Moreover, during the subperiod dominated by the pandemic, the algorithm demonstrated resilience 

to low extreme values, dampening the effect of the market turndown. Nevertheless, it still 

experienced a decline in value, but less profound than the DJIA. The diminished effect was due to 

more concentration on individual assets, generating more exposure to individual risk factors. This 

proved to be more beneficial as the holdings were less affected by the pandemic and thrived during 

the recovery period. It capitalized on Apple’s (AAPL) growth, resulting in a solid yield throughout 

the summer of 2021. After 2021, both the algorithm and the DJIA experienced many of the same 

highs and lows. However, given the substantial return from Apple, the algorithm was better 

positioned to yield a higher accumulated return, and thereby a higher CAGR.  

Across the entire timeline, all the assets displayed a correlation, with the majority exhibiting 

moderate levels. The parallel movements entailed limited opportunities to offset risk and hence 

limited diversification. Consequently, the algorithm exhibited a deeper concentration on fewer 

assets. This concentrated strategy proved to be more beneficial in terms of risk-adjusted returns.  

The strategy to maximize the Sharpe Ratio using a twelve-month rolling window proved to 

outperform the benchmark in terms of compounded annual growth rate. It nearly generated returns 

beating 75% of the assets, while simultaneously presenting more stable returns than ¾ of the assets. 

The algorithm achieved higher peaks and a milder decline during the worst market downfall during 

the period analyzed. This finding illuminates a unique trading strategy for risk-tolerant investors 

seeking alternatives to traditional indices and suggests that using Modern Portfolio Theory, by 

means of Sharpe Ratio maximization, provides more efficient returns than an index composed of 

nearly identical components. 
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Given the conclusion and the findings in the paper, an analysis was conducted by using the monthly 

weights one month ahead. It should be noted that this is not feasible, except for instances of 

backtesting, as it involves using future data. Nevertheless, it yielded some very interesting results, 

where it dominated both the DJIA and the algorithm. Several attempts were made to construct a 

Deep Learning algorithm to predict the values one month ahead in time, by using an LSTM 

architecture. This entailed using historic returns to determine the next month’s returns. 

Unfortunately, due to the inherent complexity of the stock market, it did not provide sufficient 

results. Furthermore, other attempts involved predictions of covariance and monthly returns. Due 

to poor model statistics, these findings were not presented. The topic of portfolio optimization 

combined with artificial intelligence is nevertheless an interesting subject. Further study is strongly 

endorsed as it may yield significant enhancements in portfolio management.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 32  

 

References 
Chen, J., 2023. Investopedia. [Online]  

Available at: https://www.investopedia.com/terms/r/risk.asp 

CorporateFinanceInstitute, 2024. Dow Divisor. [Online]  

Available at: https://corporatefinanceinstitute.com/resources/equities/dow-divisor/ 

Danso, E. I., 2020. Assessing the Impact of Macroeconomic Variables on the Performance of the 

U.S. Stock Market. Research Journal of Finance and Accounting, p. 67. 

Dogs of the Dow, 2024. Dow Additions and Deletions Since 1929. [Online]  

Available at: https://www.dogsofthedow.com/djdelete.htm 

[Accessed 11 March 2024]. 

Fernando, J., 2024. Compound Annual Growth Rate (CAGR) Formula and Calculation. [Online]. 

Gallagher, G., 2024. Worried about a recession? Heed the lessons from the bulls and bears. 

[Online]  

Available at: https://www.citizensbank.com/learning/bull-market-vs-bear-market.aspx 

Ganti, A., 2024. What is the Dow Jones Industrial Average (DJIA)?. [Online]  

Available at: https://www.investopedia.com/terms/d/djia.asp 

Institute of Business & Finance, n.d. The Importance of Standard Deviation in Investment. 

[Online]  

Available at: https://icfs.com/financial-knowledge-center/importance-standard-deviation-

investment 

[Accessed 2 February 2023]. 

Investopedia, 2023. Modern Portfolio Theory: What MPT Is and How Investors Use It. [Online]  

Available at: https://www.investopedia.com/terms/m/modernportfoliotheory.asp 

Lake, R., 2022. Smart Asset. [Online]  

Available at: https://smartasset.com/investing/systematic-risk-vs-unsystematic-risk 

PyPi, 2024. Download market data from Yahoo! Finance's API. [Online]  

Available at: https://pypi.org/project/yfinance/ 

[Accessed 11 March 2024]. 

QuantPy, 2024. Portfolio Optimisation. [Online]  

Available at: https://quantpy.com.au/python-for-finance/portfolio-optimisation/ 

Samaha, L., 2023. The Motley Fool. [Online]  

Available at: https://www.fool.com/terms/s/sharpe-ratio/ 

SEC, 2019. Form EX-99.1, New York: SEC. 



Page | 33  

 

Stanford, 2024. Introduction to Mathematical Optimization. [Online]  

Available at: https://web.stanford.edu/group/sisl/k12/optimization/MO-unit1-

pdfs/1.1optimization.pdf 

Statista, n.d. Definition Correlation. [Online]  

Available at: https://www.statista.com/statistics-glossary/definition/326/correlation/ 

[Accessed 2 February 2024]. 

Surendran, P., 2022. Covariance vs Correlation: The Most Comprehensive Guide. [Online]  

Available at: https://www.turing.com/kb/covariance-vs-correlation#what-are-covariance-and-

correlation? 

Team, C., 2023. Expected Return. [Online]  

Available at: https://corporatefinanceinstitute.com/resources/career-map/sell-side/capital-

markets/expected-return/ 

Team, C., 2024. Beta. [Online]  

Available at: https://corporatefinanceinstitute.com/resources/valuation/what-is-beta-guide/ 

University of Washington, 2024. Markowitz Mean-Variance Portfolio Theory. [Online]  

Available at: https://sites.math.washington.edu/~burke/crs/408/fin-proj/mark1.pdf 

Williams, S., 2017. 6 Stocks That Have Been in the Dow the Longest. [Online]  

Available at: https://www.fool.com/investing/2017/08/24/6-stocks-that-have-been-in-the-dow-

the-longest.aspx 

 

 




