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Abstract. To achieve autonomy at sea, it is believed simulations will be
essential in testing, analysing and verifying autonomous systems due to
the scarcity and high cost of obtaining real data for all relevant scenarios.
This reliance on simulation raises the question on how much synthetic
data can be trusted, especially from sensor data such as lidars, radars and
cameras. Methods for validating specific sensor models exists, however
these are often focusing on perceptional differences without considering
the sensors impact on the autonomy’s situational awareness. In this paper
we make an attempt to analyse this using a JIPDA target tracker, by
comparing its performance on real and synthetic lidar data with various
Hellinger metrics for Bernoulli and multi-Bernoulli multi-target densities.
Our work showcases a method that quantifies sensor fidelity of synthetic
data based on tracker performance, a step towards building trust to
simulators targeted at validating autonomy systems.
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List of Symbols

I Csiszár information functional
N (x; µ, P) Multivariate Gaussian distribution
wk Multivariate Gaussian measurement noise
vk Multivariate Gaussian process noise
C Kernel to Csiszár information functional
p Kinematic probability density function
NEES Normal estimation error squared
fz Sensor model for tracker
D Covariance matrix for Gaussian Hellinger metric
C Covariance matrix for Gaussian product
P Covariance matrix for multivariate Gaussian
J The Jacobian matrix of the polar to Cartesian conversion of the measurement
R Covariance for measurement noise in JIPDA
G Process noise input matrix
Qk Covariance of process noise
O Concatenated covariance matrix of Gaussian products
A Transition matrix for continuous time
F Transition matrix for discrete time
ξ Cardinality of X
d Covariance difference in Gaussian Hellinger metric
n Dimentionality of X, i.e. length of x
x Realised vector element of x
q Existence probability
i Index number
kξ Normalisation constant for concatenated Gaussian densities
s Number of Bernoulli components
k Time increment
gA,B Existence weight for active target occurrences in dataset A and B
X The random finite set of potential objects at each time instance k
σ Bernoulli components of active targets
A, B Subscript notation for dataset A and B
Ξ The space of the random finite set X
u Vector estimate of concatenated Gaussian densities
x Vector realisation of X
µ Estimate of x
n Random Gaussian white noise vector
v Estimate vector for product of Gaussian densities
fΞ Multi-density function for an arbitrary space Ξ
a, b Simplified terms in the Multi-Bernoulli Multi Denisty Function



1 Introduction

High fidelity sensor simulations is playing an ever increasing role in the devel-
opment of autonomous vehicles. Especially in the machine learning community
the use of simulation as a substitution for real world testing and training gives
the developers a source for variable, accurate and unlimited data. This has the
potential to give better generalisations and bigger test scopes which is required
to guarantee safe and reliable autonomous operations. Having high fidelity is
of benefit here as it is thought to help transition the artificial intelligence (AI)
algorithms from simulations to real world applications.

However, the simulations’ execution time is dependent on the level of fidelity,
meaning there must be a balance between data quantity and quality. Unfortu-
nately, judging fidelity of simulators targeting autonomy such as Carla [7], Gem-
ini [14] and AirSim [12] is often done by intuition on what ”looks” more real.
This is despite the driver, captain or pilot in autonomy cases being a machine.
This can lead us astray when improving simulation models and give us false
hope for the final deployment as what looks more real for us humans does not
necessarily imply the same for the AI [6, p. 3171]. To get an optimal relation be-
tween simulation and autonomy, we need to answer how fidelity affects the AI’s
performance. This will be the goal of any simulation framework that promises
to deliver on high data quantity at the right quality. Having adequate metrics
that measures fidelity relative to its impact on autonomy systems will help to
establish validation techniques that can benchmark the simulation performance,
moreover help ensuring the simulation development goes in the right direction.

Transferring autonomy systems developed in simulation to reality is a par-
ticular case of domain adaptation [6, p. 3]. Here the simulation the autonomous
agent is trained and tested in is defined as the source domain, and its real
world deployment defined as the target domain. There are several known meth-
ods that helps to improve this transition. Domain randomisation is a technique
where the simulator uses procedural generation to vary textures, content and
situations to increase the chance for the AI to perceive the real world as yet
another variation [13]. Augmenting the source domain to better reassemble the
target domain from generative adversarial networks (GAN) [11] is yet another
technique. However most, of these methods rely on machine learning concepts
to make autonomy deployable in target domains. Since machine learning uses
a black box modelling concept that is unexplainable and unpredictable, it is
questionable if these techniques can be considered safe and viable for validation.
As an example, the use of CycleGAN [19] to improve the quality of synthetic
images showed no performance increase for the autonomy despite the images
looking more realistic [6]. If this problem applies in general to machine learning
is speculative, as reasoning about black box systems is far from trivial. This
gives motivation for a validation approach that relies less on black box systems
to be more explainable.

Instead of focusing on what the AI perceives, one could instead focus on what
the AI understands of the situation, i.e., to study the Situational Awareness
(SITAW) of the AI. The approaches we have discussed so far and which is fairly



popular is end-to-end learning. Here SITAW is incorporated into a black box
system often created through machine learning using artificial neural networks.
The input to these systems are raw sensor data while the output may be signals
to actuators, meaning that SITAW may actually not exist in any meaningful
sense. Without any internal insight of the black box system, validation of these
systems are hard to do without testing the whole system. A more validation
friendly approach is to modularize the system as much as possible, so that the
pipeline can be divided into components using machine learning and explainable
model-based techniques. Here SITAW plays a role in the higher modularisation
scheme in addition to containing modules of its own.

Core tasks in a SITAW system are detection and tracking, which can be solved
by means of Bayesian filters. The role of detectors is to give information about
potential surrounding entities, i.e., detections. The tracker on the other hand,
consists (among others) of filters with the purpose of ensembling the present
detections with previous beliefs about the targets to establish tracks on them.
When assuming that the targets’ measurements, processes and initialisations
follow Gaussian models, the Kalman filter or its extended version can be used
as a closed form solution of the general Bayesian filter. Here target states are
estimated based on noisy measurements originating from either targets or from
false alarms. This requires the tracker to also associate measurements to targets
which can be done in several ways. In the Probabilistic Data Association (PDA)
[3] family of tracking methods, individual measurements are used to update
target states based on the likelihood of it originating from the target or from
clutter. The Joint Integrated PDA (JIPDA) [10] is a multi-target extension of
the Integrated PDA [9] which extends PDA with estimates of target existence
probability.

A concept similar to domain adaptation for trackers is filter tuning. Here
various metrics help guide the developer to tune the tracker towards the final
deployment. For single-target / single-sensor analysis, metrics could either be
measuring a point-point distance, or probability distribution distance between
what is estimated by a tracker and what is considered to be the ground truth.
The current state of the art in the tracking field is however in multi-target
tracking, where Finite-Set Statistics (FISST) have been responsible for several
innovations. Among these are the creation of metrics better suited for evaluating
multi-target trackers, where the Csiszár’s Information Functionals is an example
of a mathematical framework responsible for several of them [18]. Albeit this was
originally intended for developing performance, efficiency and robustness metrics
to evaluate tracker to tracker, the Csiszár information functional more generally
compares probability distributions. This have found use cases in fields outside
the tracking community, where the functional have among others been used in
domain adaptations for GAN [2].

Other attempts of measuring autonomy performance have also been con-
ducted in recent years, among which the robotic platform RoboThor have tar-
geted how well robots can adapt to real world situations when being trained in
synthetically recreated environments [6]. Here the agents performance is judged



by its navigational performance using Success Rate and Success weighted by Path
Length for each completed task. Results shows that even with almost pixel per-
fect reconstructed camera data used for navigation, there can be a significant
difference in the agent’s performance between simulation and reality. However,
since the metrics mainly measures the navigational performance, moreover relies
on end-to-end testings for obtaining results, this makes it hard to tell where in
the autonomy pipeline the simulation and real world performance diverges.

A similar attempt of comparing simulation to reality with the use of synthetic
reproduction have also been done for SITAW [15]. Here an autonomous ferry [4]
including a digital twin representation [14] was used to gather datasets running
through a detection and JIPDA tracking pipeline on both synthetic and real sen-
sor data, comparing the trackers Gaussian posteriors using a Hellinger distance
as a performance metric (Figure 1). One of the benefits of this was the ability to
analyse arbitrary sensor data that could individually and collectively be studied
for its impact on the tracker. In addition, the metric measures a particular por-
tion of the autonomy pipeline rather the full end-to-end performance, making
it both fast and specific of what it is measuring in the autonomy. However, the
proposed Hellinger metric only considered single target kinematics with no at-
tention to the trackers existence probability moreover track associations between
synthetic and real data. The full output of a JIPDA have in contrary been shown
to be a multi-Bernoulli multi-object density function (MBMDF) [16], which have
also been confirmed by recent studies of the Visual Interacting Multiple Model
JIPDA (VIMMJIPDA) extension [5].
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Fig. 1: Pipeline description



In this paper we will extend the attempt of comparing tracker performance on
synthetic and real data using the same dataset as [15] focusing on its lidar data.
We will include Bernoulli and multi-Bernoulli existence models by using Csiszár
information functionals to facilitate for both single and multi-target cases. The
new metrics will generalise and be compared to the previous Hellinger attempts
in [15] by evaluating simulation performance with respect to reality, the effects of
existence probabilities, and the metrics ability to measure tracker performance.
This analysis can be used to obtain perspectives on 1) the simulations validity
such as sensor fidelity, 2) scenario reproduction, and 3) the tracker’s indifference
or sensitiveness to simulated data with respect to reality.

We begin with outlining core concepts and definitions from FISST in Section
2 before detailing each step in the pipeline description (Figure 1) in the sub-
sequent sections. Here we begin defining and deriving Hellinger metrics, before
venturing into the JIPDA tracker in Section 4 where data is being processed
to estimates, co-variances and existence probabilities of target entities in the
datasets. This is followed by describing the synthetic and real dataset in Section
5. In Section 6 we go through some of the findings when comparing the datasets
with the various performance metrics before we have a discussion in Section 7.
Finally, we do a summary and conclude the paper with suggestions of future
work in Section 8.

2 Finite-Set Statistics (FISST) for Metric Constructions

In order for target trackers to be considered viable, filter tuning is a necessary
step in any research and design process. This relies on performance metrics, of-
ten based on statistical properties and assumptions of the filter. For the JIPDA
tracker, targets are assumed to be represented as multivariate Gaussian distri-
butions:

N (x; µ, P) :=
1

(2π)
n
2 |P| 12

exp

(
−1

2
(x− µ)TP−1(x− µ)

)
(1)

for a vector x with n-dimensions subjected to the expectation value µ and
covariance matrix P. Relying on the Gaussian distribution allows us to check
statistical metrics that must be in place for the filter to be considered viable.
Among these are the Normalised Estimation Error Squared (NEES):

NEES(x,µ,P) := (x− µ)TP−1(x− µ). (2)

This measures the distance between a point x with a distribution consisting
of an estimate µ and covariance P. In filter tuning for single target tracking,
x is thought to be the ground truth giving us NEES values we interpret as
filter confidence. The name ground truth refers to high accuracy measurements
of target states that will be compared to the less perfect filter estimates. This
becomes a comparison between two datasets we will note as A and B.



However, when the datasets are both distributions as is the case when com-
paring tracker outputs, a different approach is needed to handle additional in-
formation such as having two sets of covariance matrices instead of just one
as in (2). In addition, distributions coming from the tracker is often accompa-
nied by existence probabilities, which requires special treatment for single and
multi-target cases.

In this section we will introduce mathematics from FISST that can be used
to handle these concerns. We begin with defining random finite sets before we
continue with multi-object density functions (MDF) for cases of Bernoulli and
multi-Bernoulli (MB) distributions for existence probabilities. This is followed by
defining Csiszár’s information functionals from which special cases of Hellinger
metrics is further derived and analysed in Section 3.

2.1 Random finite sets

We define X to be the set of potential objects at each time instance k: X =
{x1 , ..., xξ}, with each vector containing states of the object x = [x1, ..., xn]

T . ξ
is the cardinality of the set which represents the number of object realizations:
|X| = ξ.

2.2 Multi-object Density Functions (MDF)

A MDF is written as fΞ(X) where the subscript Ξ notes the space containing
the RFS X.

Set integral. For an MDF the set integral is defined to be [8, p. 62]:∫
fΞ(X)δX :=

∑
ξ≥0

1

ξ!

∫ ∞

−∞
fΞ({(x1) , ..., (xξ)})dx1...dxξ (3)

Bernoulli. The simplest MDF to choose for a tracker is the Bernoulli distribu-
tion [8, p. 100]:

fΞ(X) :=


1− qΞ when X = {∅}
qΞpΞ(x) when X = {x}
0 when |X| ≥ 2

, (4)

where q denotes the existence probability of a target and pΞ(x) the kinematic
probability density function.

Multi-Bernoulli (MB). For handling multiple targets, the Bernoulli distri-
bution is generalised to the MB distribution. Where Bernoulli can handle a
maximum of one target, MB can handle multiple targets in a total of s Bernoulli



components each with a unique existence probability. The MBMDF can be writ-
ten as follows [8, p. 101]:

fΞ(X) :=
∑
σ⊆1:s

s∏
i=1

aiΞ

ξ∏
i=1

b
σ(i)
Ξ ,

aiΞ :=
(
1− qiΞ

)
,

b
σ(i)
Ξ :=

q
σ(i)
Ξ p

σ(i)
Ξ (xi)

1− q
σ(i)
Ξ

,

(5)

where aiΞ and b
σ(i)
Ξ are used for simplifying notations later in Section 3.3.

The Bernoulli components of active targets are selected by a mapping σ from
{1, . . . ξ} to {1, . . . s} where the total quantity of active targets becomes |σ| = ξ.

Special case of Bernoulli and MB. If there is only a single Bernoulli com-
ponent, then the Bernoulli distribution fB(X) is a special case of the MB dis-
tribution fMB(X):

fB(X) = fMB(X) when s = 1. (6)

2.3 Csiszár Information Functionals

Csiszár information functionals are defined as [8, p. 154]:

IC(fA ; fB) :=

∫
C
(

fA(X)

fB(X))

)
fB(X)δX, (7)

where fA and fB are MDF posteriors for multi-object trackers. If C is a
convex kernel then IC(fA ; fB) ≥ 0 where equality occurs only if fA = fB

almost everywhere.

3 Hellinger Performance Metrics

A special case of Csiszár’s information functionals can be derived by choosing
the kernel C(x) = 1

2 (
√
x − 1)2, giving us a normalised Hellinger information

functional that can be used to derive various Hellinger metrics [8, p. 155]:

IH(fA ; fB) = 1−
∫ √

fA(X)fB(X)δX. (8)

We will begin by using this to derive the conventional Hellinger metric. This
will then be generalised to consider the case of single-target existence, before we
end the section with our most generic metric that handles the case for multi-
target tracking.



3.1 Hellinger distance for Gaussian distributions

For Hellinger distances of single valued functions, the Hellinger functional be-
comes a normal Hellinger distance:

IH(fA ; fB) = IH (pA ; pB) = 1−
∫ √

pA(x)pB(x)dy. (9)

Where pA and pB are kinematic probability density functions for each re-
spective dataset. If the distributions are in additional Gaussian, the term takes
the special form [1, p. 6]:

IH (NA ; NB) =

√
1− d× exp

{
−1

8
NEES (xA,xB ,D)

}
,

d :=

√√
|PA||PB |
|D|

,

D :=
PA +PB

2
,

(10)

where d gives information about the co-variance difference and the exponen-
tial term of the bias, both between the value 0 and 1. The united covariance be-
tween the distributions is noted as D. Note we use NEES here to reuse notation,
not to draw parallels to its other known properties in the tracking community.

3.2 Bernoulli Hellinger distance for Gaussian distributions

It can be shown that the Bernoulli case of the Hellinger functional can be ex-
pressed as:

IB,H(fA ; fB) = 1−
∫ √

fA(X)fB(X)dx

= 1−√
qAqB −

√
(1− qA)(1− qB) +

√
qAqBIH.

(11)

Where qA and qB are existence probabilities for the target existing in each
respective datasets. If we set the existence probabilities to 1, most terms can-
cels out and we are left with the conventional Hellinger distance, i.e., Bernoulli
Hellinger is a generalisation of Hellinger.

If the distributions are Gaussian, (10) can be used for an explicit solution for
IH. Otherwise, (9) must be handled either analytically or numerically for IH

3.3 MB-Hellinger distance for Gaussian distributions

IMB,H(fA ; fB) = 1−
∫ √

fA(X)fB(X)δX.

In the MB case the MDF’s are MB (5), where (3) expresses the integral form.
The product of the two MDF’s can be written as:



fA(X)fB(X) =
∑

σA⊆1:sA

sA∏
i=1

aiA

ξ∏
i=1

b
σA(i)
A

∑
σB⊆1:sB

sB∏
i=1

aiB

ξ∏
i=1

b
σB(i)
B

=
∑

σA⊆1:sA

∑
σB⊆1:sB

sA∏
i=1

aiA

sB∏
i=1

aiB

ξ∏
i=1

b
σA(i)
A b

σB(i)
B ,

Since a single MB is non zero only if the cardinality is less than or equal
the amount of track instances, when combining two MB we get the following
criteria: |σA| = |σB | = ξ, i.e we only need to sum the minimum number of track
instances found in one of the datasets since rest will be zero. Given that the
probability density functions are Gaussian, the last product can be written as
follows:

b
σA(i)
A b

σB(i)
B = gA,BN (x; µ

σA(i)
A , P

σA(i)
A )N (x; µ

σB(i)
B , P

σB(i)
B )

= gA,BN (µ
σA(i)
A ; µ

σB(i)
B , P

σA(i)
A +P

σB(i)
B )N (x; vi, Ci),

where the terms are defined as:

gA,B :=
q
σA(i)
A q

σB(i)
B(

1− q
σA(i)
A

)(
1− q

σB(i)
B

) ,
vi := Ci

(
(P

σA(i)
A )−1µ

σA(i)
A + (P

σB(i)
B )−1µ

σB(i)
B

)−1

,

Ci :=
(
(P

σA(i)
A )−1 + (P

σB(i)
B )−1

)−1

.

Finally, the products of the Gaussian densities can be concatenated as follows:

ξ∏
i=1

N (x; vi, Ci) = kξN (x; u, O),

u :=

v
1

...
vξ

 ,O :=

C
1

. . .

Cξ

 , kξ :=
|O| 12∏ξ

i=1 |Ci| 12
.

Importance sampling. In comparison to Hellinger and the Bernoulli Hellinger
metrics, the integral term in MB-Hellinger is not trivial to solve explicitly due
to the square root of sums. Because of this we use importance sampling to
approximate the integral. We choose our importance density to be the normalised
version of the Gaussian mixture fA(X)fB(X), with its co-variances inflated by
more than 2 to compensate for the square root (we have used a value of 3.6).
This gives us enough coverage of the sampling area to estimate the integral.



4 JIPDA Tracker

In this section we give a brief introduction to the JIPDA tracker used in this
work as well as the sensor pipeline used to process lidar data.

4.1 Lidar detection pipeline

Sensor data from the lidar is natively supplied as a point cloud and requires
multiple processing steps before it can be utilized by the tracker.

Land filtering. Active sensors such as lidar will, if in range, yield positive
returns from non-target entities such as land and buildings. If these detections
are used directly in the tracker without processing they might induce a large
amount of false tracks. To combat this, map based filtering is employed to remove
unwanted lidar returns. Based on data from the Norwegian Mapping Authority,
a binary occupancy grid is generated for the operating area. The lidar point
cloud is then projected onto this map and any point falling within a land cell is
removed.

Clustering. Another issue with lidar sensor data is that the sensor resolution
is high enough to yield multiple returns from a single target. This violates the
assumption that only one measurement originates from each target that JIPDA
makes in the data association process. To mitigate this issue a single-link hi-
erarchical clustering method [17] is employed which merges any point within a
specified distance threshold into a single cluster. The center of this cluster is
then assumed to be the true detection.

4.2 Tracker outline

The tracker used in this work is a special case of the VIMMJIPDA [5] using
only a single constant velocity (CV) model. In continuous-time this model is
described by

ẋ := Ax+Gn (12)

with x as the current target state given by x =
[
x1 x2 x3 x4

]T
where x1 and

x2 denote the north and east position while x3 and x4 are the corresponding
velocities. The process noise n models target acceleration and is assumed to be
white with diagonal covariance. The matrices A and G are defined as

A :=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 G :=


0 0
0 0
1 0
0 1

 (13)

which in discrete form result in the model

xk := Fxk−1 + vk vk ∼ N (0,Qk) (14)



where F is the discrete state transition matrix and vk the discretized process
noise.

For each return the lidar measures the range of the object using time-of-flight
as well as the direction of the return signal. By discarding height information
this results in a sensor model using polar coordinates given by

fz(xk) :=

[ √
x2
1 + x2

2

arctan(x2/x1)

]
+ wk wk ∼ N (0,R) (15)

where fz is the measurement function and wk the sensor noise described by
the covariance matrix R. Due to non-linearities in the measurement function,
this would usually require an extended Kalman filter (EKF). However, by pro-
jecting the measurements into Cartesian coordinates [17] we can use the linear
measurement model

fz(xk) =

[
x1

x2

]
+ wk wk ∼ N (0,JRJT) (16)

where J is the Jacobian of the polar to Cartesian conversion and R the mea-
surement noise in polar coordinates.

5 Datasets

The datasets used in this paper comes from experiments done in [15] where an
autonomous ferry named milliAmpere was used as a research platform to record
sensor data [4]. From this a synthetically reconstructed dataset was also made
using the Gemini platform [14]. In this section we go through a brief description
of the datasets from this study.

5.1 Setup

MilliAmpere was setup as ownship consisting of multiple exteroceptive sensors
such as electro-optical and infrared cameras as well as radar and lidar. In ad-
dition, the ferry used a highly accurate navigation system based on Real-Time
Kinematic GPS with sub-metre level position accuracy. To generate scenarios
of multi-target interest, multiple targets equipped with GPS sensors for ground
truth recording were used. Target 1, Havfruen, was used as a medium sized leisure
craft capable of high speeds and rapid maneuvers. Target 2, Finn, functioned as
a small leisure craft slower and less maneuverable than Havfruen. Target boats
and ownship can be seen in Figure 3b.

5.2 Ground Truth Recording

Positional data of target vessels and ownship were recorded using different re-
ceivers as described in Table 2. Each vessel had 2 receivers in order to validate
position, increase ground truth accuracy, and give a heading estimate later used
by Gemini to generate correct ship orientations.



Fig. 2: Images from the visual analysis of the synthetic reconstruction done
in [15]. Geometric and positional reconstruction of targets is intact, but dis-
crepancies of the city model can be seen from e.g the missing red building.

.

Table 2: GNSS recievers.

Ship GNSS Receiver Accuracy

milliAmpere Hemisphere Vector VS330 1-10 cm
Havfruen ZED-F9P 1 cm

Finn Garmin eTrex 10 1 m

5.3 Scenarios

In the original study, a total of 9 scenario recordings was created. We chose to
focus on scenario 8 with the target vessels following each other (Figure 3a). A
drone footage of the scenario can be seen in Figure 3b that was recorded at
Ravnkloa in the city of Trondheim.

5.4 Lidar

The experiment used a Velodyne VLP-16 puck that was later reconstructed syn-
thetically using Gemini’s lidar sensor [14] with improved beam modelling using
among others a spherical projection filter [15, p.40]. To get suitable reconstruc-
tion of the real lidar data, 3D models of Trondheim city and participating target
boats where used in conjunction with recorded ground truth data. The original
data contained both camera and lidar data, while our analysis choose to use
lidar only for simplicity. Instead the camera data was used as a visual confir-
mation to see the synthetic reconstruction besides real images from the ownship
perspective (Figure 2).



(a) Paths of the attending boats starting from locations marked with a circle and
ending with stars. Illustration is taken from [15]

.

milliAmpere

Havfruen

Finn

(b) Scenario setup in the operating environment with the image facing south. Photo:
Mikael Sætereid / Fosen innovasjon

Fig. 3: Illustrations of scenario 8. The attending boats Havfruen, Finn and mil-
liAmpere (ownship) are coloured as red, green and blue respectively in each
illustration.



6 Evaluation

Our intention is to study effects that contribute to the Hellinger metrics derived
in Section 3, and what relations they have to each other.

Previous analysis of the dataset showed the ground truth for the ownship
velocity to be noisy [15, p. 92]. Moreover, getting good velocity estimates for
VIMMJIPDA trackers have in addition proven itself to be difficult [5], especially
for targets with large extensions. The synthetic data also have discrepancies due
to incomplete 3D models as seen earlier in Figure 2. To lessen the influence of
these known effects, we choose to run the Hellinger metrics on tracks in near
proximity of the target vessels and disregard the velocity estimates from the
tracker.

We have chosen to study the remaining effects by comparing the metrics in
context of how tracks overlap in position when generated by real and synthetic
data (Figure 4). Each track are here represented as a covariance ellipse based of
a 95% confidence interval from the Gaussian distribution it represents (1).

6.1 Track Association

For Hellinger and Bernoulli Hellinger a validation gate with radius 5m centered
at ground truth is used for track association (Figure 4). Tracks outside the gate
are discriminated, while if more than one track from a dataset is present in
the gate, the closest estimate to ground truth is chosen. For the MB-Hellinger,
no association method is required since each track is compared to each other
weighted by their existence probability. As a result, from Table 3 we have a low
MB-Hellinger distance in the first case while for Hellinger and Bernoulli Hellinger
the distances are high at the same time instances since there’s no pair of tracks
inside their gates. Furthermore, the MB-Hellinger is always defined since it does
not need validation gates that risks being empty as happens with Finn in two
cases.

6.2 False Tracks

False tracks from the datasets can be seen in Figure 4 as ellipses without a real
or synthetic counterpart. Due to their high existence probabilities we get a large
MB-Hellinger distance. By manually downweighting the existence probabilities
of these tracks, we see in Figure 4c a large effect when comparing the normal
and weighted MB-Hellinger.

6.3 Bernoulli Hellinger a Special Case of MB-Hellinger

In (11) we showed that the Hellinger is a special case of the Bernoulli Hellinger.
We also stated in section 2.2 to the Bernoulli Hellinger being a special case of
MB-Hellinger. In Figure 4c we have a situation with Havfruen where we can
see tendencies of this relationship. Also the succeeding dip for Finn in the same



figure can be seen in the MB-Hellinger metric as well. It is worth noting that in
these occasions the MB-Hellinger is always bigger than Bernoulli, which can be
explained by MB evaluating all tracks instead of specific tracks as with the other
metrics. This shows how difficult it is for MB-Hellinger to be equal to Bernoulli
Hellinger in comparison to Hellinger being equal to Bernoulli Hellinger as seen
in the metric plots for either Havfruen or Finn in Figure 4.

Table 3: Metric results for normal (N) and weighted (W) MB-Hellinger,
Bernoulli-Hellinger (B-H) and Hellinger (H) from cases shown in Figure 4
.

MB-Hellinger Havfruen Finn
Case N W H B-H H B-H

a 0.11 0.11 1.00 1.00 N/A N/A
b 0.92 0.92 1.00 1.00 N/A N/A
c 1.00 0.10 0.44 0.44 1.00 1.00

7 Discussion

In this paper we have been focusing on analysing results from a real and synthetic
lidar sensor. It is, however, worth pointing out that because of how the Bayesian
filter works, the method presented here can be used for all sensor types given
there is a detection model (e.g as in section 4.1), and models on how to handle
the detections in the filter (e.g as in section 4.2). This have been previously
demonstrated in [15] where the impact of individual sensors (such as lidars and
cameras) on the tracker could be quantified using the metric.

A big difference between single versus multi distribution metrics is the way
track association between the datasets are handled. From Figure 4a we can see
that increasing the validation gates slightly would have allowed Hellinger and
Bernoulli-Hellinger to give a measure on Havfruen. This measure would likely
have been closer to that of MB-Hellinger rather than 1. Similarly, the gates also
causes trouble in several cases for Finn, where the metric becomes undefined
when the gates are empty (Table 3). A solution could be to say empty gates
gives a metric value of 0, but given that there might be tracks just outside the
gate as we see in Figure 4b, moreover that a low metric value would bias the
results to seem better from the lack of track data, the proper way of handling an
empty gate becomes questionable. In comparison to dealing with gates, this is
a task easier handled by MB’s checking and weighting each tracks permutation.
However, if downgrading of existence probabilities for false tracks is necessary,
one would need to argue why this tuning is needed for comparing datasets.
One reason could be if the tracker is overconfident on false tracks stemming
from differences such as water reflections. This would be both computationally
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Fig. 4: Cases of interest. Left: Distances for single and multi-target Hellinger
metrics. Right: covariance plot for tracks with ground truth and validation gates.



demanding to simulate and to properly reconstruct, while likely being a non
crucial difference between synthetic and real data for autonomy purposes.

The close similarity of Bernoulli-Hellinger and Hellinger for both Finn and
Havfruen in Figure 4 and the fact that this only happens when the existence
probabilities in both datasets are close to 1 (section 3.2), shows that the JIPDA
is overconfident on tracks close to the targets. Furthermore, the false tracks in
Figure 4c contribute 0.9 to the metric when looking at the difference between the
normal and weighted MB-Hellinger in Table 3. This shows how much false tracks
impacts the MB-Hellinger metric when dealing with an overconfident JIPDA. If
we argue that the situation depicted in Figure 4c should have resulted in a lower
metric value, the Hellinger metric might be to strict in comparison to other
metric candidates suited for the Csiszár Information Functional.

False tracks is not the only discrepancy we have between the datasets. Even
after removing these and the presumed sub-optimal velocity estimates, there
is still fairly high metric values with huge spread in range over time. These
differences could range from transformation errors due to sensor mountings to
environmental reproduction discrepancies as seen in Figure 2 that have a sub-
stantial enough effect on the tracker. More elaborate visualisation techniques are
needed to see metrics, sensor data and the situational awareness picture layered
on top of each other or being interchanged to make further analysis on this.

What might be of benefit in this regard is the ability to do single target anal-
ysis such as Hellinger and Bernoulli Hellinger in contrary to the MB-Hellinger.
For judging sensor fidelity where a complete environment reconstruction is not
possible, studying single targets with proper ground truth and 3D models might
be easier to do and quantify. MB-Hellinger on the other hand takes a more global
approach of measuring everything found in a specified area, potentially including
unfortunate discrepancies as seen in the missing building in Figure 2. The land
filtering done as a preprocessing step in the JIPDA pipeline can accommodate
for portions of this, but in uncontrolled environments where autonomy operates,
even a bird which have not been accommodated for could show up as a false
track not seen in the simulated dataset. If the tracker is over confident on these
tracks, the result will be high MB-Hellinger distances which is the tendency
seen in Figure 4. On the other hand, if the goal of the metric is to measure the
complete reprodusability of an experiment including that of false tracks, this
may still be of benefit. Otherwise for purposes concerning sensor modeling, MB-
Hellinger would need a better method for discriminating the unintended tracks
in the environment.

8 Conclusion

In this paper we have shown the use of single-target and multi-target Hellinger
metrics for quantifying the performance difference of a multi-target tracker when
subjected to real and synthetically reconstructed data. We have demonstrated
how the Hellinger distance can be used in various ways to judge single target
as well as multi-target comparisons, their relationship to each other in addition



to their various pros and cons in analysis work. From this the paper have con-
tributed with a method of evaluating the MB-Hellinger by means of importance
sampling. In addition we have presented results from a use case where the metric
is used for comparing real and simulated data created with respect to validating
SITAW systems. Further work includes more sophisticated visualisation tools to
be able to explain and analyse the remaining Hellinger distance obtained in the
results. Due to the close dependency on a tracker for establishing the metrics in
the first place, an interesting study would also be to see how well the metrics
would perform as an alternative to existing validation metrics such as COSPA
and OSPA. In this work exploring other distances such as the Kullback-Leibler
in Csiszár’s information functionals and doing a sensitivity analysis of existence
would be in place.
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