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A B S T R A C T   

Autonomous ships require remote supervision from a human operator to ensure safety. However, there are knowledge gaps concerning human factor influences on 
remote supervisory control. We investigate the influence of five factors on remote supervisory control during simulated intervention scenarios: (i) Skillset, repre-
sented by gamers and navigators; (ii) Monitoring Time, represented by either 5 or 30 min of passive monitoring; (iii) Number of Vessels, represented by either one or 
three vessels; (iv) Available Time, represented by 20- or 60-s critical time windows; (v) Decision Support System (DSS), represented by availability of a DSS. The 
experiment was a randomized factorial design where participants (n = 32) completed two interventions: first a handover (automation detects a critical event and 
hands over control) and then a takeover (operator detects a critical event and takes over control). We observed: (i) gamers and navigators both demonstrated 
transferrable skillsets, but neither group excelled over the other; (ii) monitoring time affected boredom, but this translated to minor performance effects. Moreover, 
performance was reduced under conditions of (iii) supervising three vessels, (iv) low time availability, and (v) unavailable DSS. These outcomes contribute to the 
empirical basis for assessing maritime human factors in remotely controlled and autonomous ship design.   

1. Introduction 

Advances in navigation technology are heralding a new age of 
remotely controlled and autonomous vessels. Guided by sensors and 
control algorithms, autonomous ships break with the conventions of 
crewed navigation and may vastly improve safety, efficiency, and lo-
gistics at sea. Autonomous ships can perform path planning and collision 
avoidance automatically (Öztürk et al., 2022; Vagale et al., 2021), and 
can even perform delicate docking and undocking sequences on-par 
with experienced human operators (Martinsen et al., 2020; Suyama 
et al., 2022). While in operation, a fleet of autonomous ships can be 
overseen remotely from a single remote control center, where human 
operators are able to take preventative action, if needed. Several real-life 
application of autonomous vessels have been demonstrated, including in 
open water environments (e.g., Kim et al., 2022), inland waterways (e. 
g., Peeters et al., 2020), and constrained urban waterways (e.g., Brekke 
et al., 2022). However, despite constituting one of the major trends in 
ocean engineering research today (Tavakoli et al., 2023), relatively little 
is known about the role of the human operator of remotely controlled 
and autonomous vessels (Negenborn et al., 2023). Specifically, knowl-
edge gaps persist concerning maritime human factor influences on 

human supervisory control. 
One such knowledge gap presents itself in the risk sciences, where 

practitioners model human error probabilities in human-system inte-
gration of autonomous ships (Guo and Utne, 2022; J. Liu et al., 2022; 
Ramos et al., 2020). In this domain, charting the limits of human per-
formance translates to investigation of Risk-Influencing Factors (RIFs). 
In turn, risk-based design guidelines lack critical details related to 
human factors, such as the amount of time needed to safely take over 
control and gain situation awareness under various conditions (Hoem 
et al., 2021; Rødseth et al., 2022). In the design of Decision Support 
Systems (DSSs) for navigation, too, a gap has emerged between de-
signers’ and operators’ expectations of human-computer interaction, 
which may lead to inappropriate designs if left unaddressed (Aylward 
et al., 2022; Veitch et al., 2022). Important gaps have also been high-
lighted concerning recruitment, certification, and training of control 
room personnel (Emad et al., 2022; Sharma and Kim, 2021). Indeed, 
human factors have been explicitly highlighted by a considerable 
number of researchers as a critical knowledge gap in the development of 
remotely controlled and autonomous vessels (Kari and Steinert, 2021; 
MacKinnon et al., 2020; Öztürk et al., 2022; Ramos et al., 2018; Wróbel 
et al., 2021). 
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In the maritime domain, advances in automation have historically 
tended to underscore human factors, rather than circumvent them 
(MacKinnon et al., 2015). This is demonstrated in recent applications of 
machine learning in path planning (e.g., Deraj et al., 2023; Rongcai 
et al., 2023; Wang et al., 2022), whose results, despite utilizing methods 
like neural networks that claim to mimic the human brain, have not yet 
been shown to fully comply with the Collision Regulations (COLREGs) 
(Öztürk et al., 2022). In this regard, one of the greatest challenges is 
modeling decidedly human-orientated concepts like “good seamanship,” 
“proper look out,” and “making a full appraisal of the situation” (IMO, 
1972). Maritime navigation is, after all, a complex social activity, where 
decisions are based as much upon in-the-moment intuitions as on 
calculated plans (Hutchins, 1995; Suchman, 2007). 

The International Maritime Organization (IMO), for their part, has 
highlighted regulatory gaps concerning the role of remote operators for 
autonomous ships. In their “Outcome of the Regulatory Scoping Exercise 
for the Use of Maritime Autonomous Surface Ships” (IMO, 2021), the 
role of operators at the Remote Operating Center (ROC) was listed as 
among the most “high priority issues” to be addressed. A better under-
standing of these themes may serve to guide a new code for autonomous 
ships, expected to enter into force in 2028 (IMO, 2022). 

1.1. Research question 

Motivated by these knowledge gaps, the research question we 
address in this paper is, “What factors influence human supervisory 
control of highly automated vessels?” To this aim, our focus is on in-
terventions marking the transfer of control between the autonomy and 
the operator, and upon experimentally assessing intervention perfor-
mance under various conditions. The outcomes of this investigation will 
provide fundamental knowledge that will enable safe and timely 
monitoring and intervention by human operators, which ultimately is 
necessary to achieve an acceptable risk level of autonomous vessels. 

There are three major contributions: (i) the hypothesized effects of 
five selected human factor influences on remote supervisory control are 
tested, (ii) a method is described for rigorous testing of remote super-
visory control systems using a simulation experiment, and (iii) results 
are presented that build a better understanding of the role of human 
operators in autonomous ship systems. 

This article is organized as follows: In Section 1, we introduce five 
factors that we selected for experimental investigation; in Section 2, we 
describe the methodology we used to design the experimental campaign 
and the simulator used to host it; in Section 3, we present the result of 
the experiments; in Section 4, we discuss the implications of the results 
for fields of human factors and risk management; and in Section 5, we 
present our concluding remarks. 

1.2. Simulator test platform 

We used a simulator for our experiments that re-created a real 
autonomous research vessel called “milliAmpere2” (Fig. 1), designed 

and operated by the Norwegian University of Science and Technology 
(NTNU). Built in the Unity game platform (Version, 2022.2.8; Unity 
Technologies, 2022), the simulator architecture was based on the 
open-source Gemini platform (https://github.com/Gemini-team/Gem 
ini). Building on the original architecture, we built the simulator to 
re-create operations that the real “milliAmpere2” underwent during 
field trials in 2022 at a 100-m canal crossing in Trondheim, Norway. 
This version, which was used in this study, is available for download 
with some licensing restrictions (https://github.com/mikael-rh/Scenar 
ioBuilder). The simulator architecture design is documented in Hansen 
(2022) and its interface design is documented in Ek (2022). The simu-
lator is hosted at the NTNU Shore Control Lab (Alsos et al., 2022). 

1.3. Selection of five factors for investigation 

Based on a review of the literature, five factors were selected for 
investigation. These five factors are described below. Also described are 
the knowledge gaps associated with each of the five factors as well as 
how we planned to address these gaps experimentally. These five factors 
do not cover all possible maritime human factor considerations in 
remote supervisory control; however, they do represent a relevant 
subset where empirical contributions are currently needed. 

Skillset (Factor A). The skillsets possessed by remote operators will 
likely influence their performance. A significant amount of research has 
investigated what skillsets – or, more specifically, what accumulated 
knowledge, understanding, and proficiencies (KUPs) (IMO, 2017, 
Table A-II/1) – are needed for remote operators (Veitch and Alsos, 
2022). Most researchers agree that remote operators should possess the 
essential skillsets of conventional navigators, including ship-handing 
and seamanship (Baldauf et al., 2019; Saha, 2021; Yoshida et al., 
2020). Indeed, during public trials of the “milliAmpere2,” the Norwe-
gian Maritime Authority required a “safety host” onboard with a mini-
mum certificate of competency of “D5” (Norwegian Maritime Authority, 
2011). While safety hosts are not the same as remote operators, their 
roles and responsibilities are both defined by completing manual in-
terventions, which implies that their required skillsets may be similar. 
However, researchers also point out that remote operators represents a 
fundamentally new role and as such will require new skillsets (Lutzhoft 
et al., 2019; Sharma and Kim, 2021). To date, the potentially trans-
ferrable skillsets of groups other that navigators have not been investi-
gated. To frame this debate, we introduced a second group; namely, 
video game players, whom we hereafter refer to as “gamers.” The 
question of whether gamer skillsets cross over to remote supervisory 
operations has been investigated in drone research (e.g., Lin et al., 2015; 
McKinley et al., 2011). However, this question has not yet been 
empirically tested in the context of supervisory control of maritime 
autonomous vessels. We hypothesized that both navigators and gamers 
would demonstrate relevant skillsets for the remote operator role, with 
one groups’ skillset complementing the other. To test this, recruited 
gamers and navigators and assessed how their unique skillsets trans-
ferred to the role of remote operator. 

Fig. 1. “MilliAmpere2” autonomous ferry during public trials (left); “milliAmpere2” digital twin in virtual simulator (right).  
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Monitoring Time (Factor B). The amount of time in a passive 
monitoring role affects vigilance (Warm et al., 2008), which in turn, is 
known to affect performance of operators working with automated 
systems (Parasuraman and Riley, 1997). In psychology experiments, a 
drop in vigilance has been shown to set in somewhere between 20 and 
30 min, traditionally by detecting increases in reaction times or error 
rates while assigned a tedious monitoring task (Cummings et al., 2016; 
Grier et al., 2003; Molloy and Parasuraman, 1996). For supervisory 
operators of highly autonomous ships, vigilance decrement is potentially 
dangerous if it undermines operators’ ability to take timely and decisive 
preventive actions (Ramos et al., 2018). Since timely and decisive pre-
ventive action is precisely what is required of remote operators during 
intervention, it is important to understand how vigilance decrement 
might affect its execution. In this study, we leverage the known associ-
ation between vigilance and boredom to gain insights into vigilance 
decrement (Pattyn et al., 2008). Boredom can be measured using a 
questionnaire approach by assessing boredom-related affects (van Til-
burg and Igou, 2012) and by direct appraisal (i.e., asking to what extend 
they feel bored). We hypothesized that a time-induced boredom expe-
rience may lead to poorer remote supervisory performance. To test this, 
we designed intervention scenarios that fell on both sides of the 20- to- 
30- minute “boundary” separating uncompromised attention from a 
vigilant decrement, selected 5- and 30-min scenarios as sufficient to 
instill a clear difference. 

Number of Vessels (Factor C). Simultaneous monitoring of multi-
ple assets is known to affect performance in remote supervision tasks, as 
shown in tests involving drone simulations (e.g., Cummings et al., 2013; 
Dixon et al., 2005). Since the early days of autonomous ship research, 
the question of “how many vessels per operator” has been raised (Man 
et al., 2015), suggesting that multi-asset supervision will, as for drones, 
affect operators’ capacity to supervise them safely. At least one test on 
the subject has been conducted, but with inconclusive results (Man 
et al., 2018). The lack of empirical studies about multivessel supervision 
for maritime remote supervision may lead to speculative claims about 
how many vessels should be allotted per operator, which, in turn, may 
lead to inappropriate designs (Dybvik et al., 2020). Some of the uncer-
tainly may stem from the general expectation that maritime vessels, 
which move relatively slowly, are natural candidates for a format where 
one remote operator is responsible for many vessels. While this “one to 
many” format may address a contemporary lack of skilled mariners 
(Laugaland, 2022), it must be formally tested to shore up our under-
standing of how multivessel supervision influences maritime supervi-
sory control. We hypothesized that multiple vessels would produce a 
measurable reduction in performance of remote supervisory duties, 
given the interface designs that are currently available. To test this, we 
tested remote operators under conditions of supervising either a single 
vessel or three vessels. 

Available Time (Factor D). The amount of time available to attend 
to a critical event is, like multivessel supervision, known to affect remote 
supervision performance in drone applications (Cummings and Mitchell, 
2006; Gutzwiller et al., 2016; D. Liu et al., 2016). However, the topic has 
not been formally investigated in the case of autonomous maritime 
vessels. Given that all critical events impose some sort of response 
window, an operator’s ability to take timely and decisive preventative 
actions may be considered their single most important role. Corre-
spondingly, the vessel’s “operational envelop,” which is defined partly 
by the amount of time needed for an operator to obtain situation 
awareness during intervention tasks, plays an important role in the 
approval of the vessel’s overall design (Rødseth et al., 2022). We hy-
pothesized that lower available time would hamper operators’ capacity 
to fulfill interventions, and vice versa. To test this, we varied the amount 
of available time to resolve an intervention to either “low” or “high” 
levels, in this case corresponding to 20 and 60 s, respectively. 

Decision Support System (Factor E). The presence of a Decision 
Support System (DSS) will likely affect the performance of maritime 
remote supervision. A DSS distills large amounts of information in a 

complex system into an integrated interface to help guide experts’ 
decision-making, often with prompts and warnings to guide their 
attention. DSSs follow the maxim of supporting human decision-making, 
rather than supplanting it, and as such fit well into the paradigm of 
human-machine teaming in automation applications (C. Liu et al., 
2022). Examples of DSS applications in supervisory control are most 
common in drone and aviation applications, and attempts have been 
made to transfer applicable design aspects to the maritime industry 
(Turan et al., 2016). In the maritime industry, some applications of DSSs 
already exist; examples include auto-crossing and auto-docking consoles 
on passenger ferries (e.g., Kongsberg, 2020) and DSSs based on publicly 
available Automatic Information System (AIS) data (e.g., Wu et al., 
2022). Some research has assessed navigators’ use of DSSs using both 
qualitative methods (e.g., Aylward et al., 2022; Costa et al., 2017) and 
quantitively methods (Man et al., 2015; Soper et al., 2023). However, 
there is a knowledge gap concerning empirical data that may shed light 
on the extent to which a DSS can support remote supervisory perfor-
mance for autonomous ships. In our aim to address this gap, we sought 
to test whether the availability of a generic DSS yielded a significant 
influence on performance compared to when the DSS was not available. 
To accomplish this, we designed a DSS that contained two generic fea-
tures: (i) object detection, inspired by recent work on automation 
transparency techniques developed by Helgesen et al. (2022); and (ii) 
warning prompts with a sound alert that appeared prior to the critical 
event, inspired by AI concepts developed by Wu et al. (2022). The 
generic DSS we tested is not based on any existing product. For more 
details about the DSS design, see Section 2.3. 

Taken together, the factors A through E, although not an exhaustive 
list, represent important considerations in the effort towards under-
standing human factor influences in remote supervisory control. To 
illustrate this with a real-world example, consider the roles of Factors A 
through E in the Helge Ingstad (HI) accident in 2018. The HI was a 
Norwegian frigate which collided at night with an oil tanker with 137 
people onboard (Norwegian Safety Investigation Authority, 2021). This 
accident could have led to several fatalities and a devastating oil spill 
potentially damaging large parts of Norway’s coastline. Fortunately, 
only a few injuries occurred, but the whole frigate had to be scrapped 
afterwards. The main findings of the accident investigation pointed to 
multiple contributing factors: namely, the bridge crew lacked sufficient 
skills and training; the Vehicle Traffic Services (VTS) failed to monitor 
HI on their screens; the navigator in charge (with limited experience 
themselves) was responsible for training two persons at the same time as 
they were navigating the ship; HI was sailing with a speed of 16–17 
knots in a congested area leaving a short reaction time for everybody 
involved; and, finally, the DSS on the bridge was inadequately used and 
had an inefficient design and location. This example serves to underline 
the importance of maritime human factor influences on ship safety. 

1.4. Two types of interventions: handover and takeovers 

To approach the research question, we first defined two types of 
interventions in maritime supervisory control: (i) handovers, where the 
automation hands over control to the operator (or vice versa), and (ii) 

Fig. 2. Illustration of handover and takeover interventions.  
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takeovers, where the operator takes over control from the automation 
(Fig. 2). In this study, we frame the investigation of influencing factors 
on supervisory control around these two types of interventions. 

It is important to consider that interventions are not considered 
failures of the system. Rather, interventions are part of the system design 
functionality, whose intention is to combine human and autonomous 
control in way that extends operational capabilities and makes the 
system more resilient to real-world conditions. A description of the au-
tonomy system and its integration with redundant hardware and the 
ROC is out of the scope of this work; for more information on this, see 
Brekke et al. (2022). 

2. Method 

In the experiment, 32 volunteer participants without any prior 
knowledge of the experiment or simulator individually completed two 
virtual scenarios. These were completed in the “Remote Operating 
Center” (ROC) at the NTNU Shore Control Lab. The two scenarios were 
initiated with the ferry in autonomous mode, whereupon it crossed back 
and forth a 100-m-wide urban canal at a top speed of 3 knots, with 
passengers embarking and disembarking. The choice of the vessel and 
operational areas was based on the public trials of the “milliAmpere2,” 
which took place from September to October 2022 (Fig. 1). Each 
participant was assigned the role of a “remote operator” whose role was 
to “ensure the safety of the ferry and its passengers” and whose primary 
task was to “monitor the ferry and control it remotely, if necessary.” 

The key events in the two virtual scenarios were interventions, 
defined by either a “handover” or a “takeover” (Fig. 2). When under 
remote control, the operator uses a joystick controller to maneuver the 
ferry. When appropriate, the remote operator can hand control back to 
autonomous mode, marking the end of the intervention. Data latency (i. 
e., the network lag between vessels and the ROC) was not modelled in 

the simulator and is out of the scope of this experiment. 
The NTNU Shore Control Lab test facility allowed the simulator 

experiment to be undertaken in controlled conditions. The lab is based 
on a standard simulator set-up: the experimenter orchestrates the 
simulator from a separate room (Fig. 3a) and the test participant uses the 
simulator at the ROC (Fig. 3b). Further details about the lab, including 
its technical specifications and its design process, are available in Veitch 
et al. (2021). 

For gameplay in the simulator, two controllers are available: (i) a 
customized button panel with basic controls (dock/undock, manual 
control on/off, switch between vessels, change camera view) and (ii) a 
joystick controller for maneuvering the vessel and changing camera 
angle and input source. Details about the simulator and its controllers 
and configuration are found in Hansen (2022). 

2.1. Recruitment of participants and demographics 

Sixteen individuals were recruited from each of two groups: (i) 
gamers and (ii) navigators. Basic selection criteria were for individuals 
between 18 and 65 years of age who, to permit use of eye-tracking, did 
not use eyeglasses (corrective contact lenses were permitted). De-
mographic information is presented in Table 1.  

i. Gamers. These consisted of individuals who self-identified as 
gamers, without any strict criteria for how much or how often they 
played, or what type of games they played. Recruitment channels for 
gamers included: (i) poster with QR code displayed around the 
campus of NTNU, (ii) posting on Facebook groups for local interest 
groups in gaming, (iii) posting in Discord channels for forums about 
gaming, (iv) snowball sampling through recruits once experiments 
began. Upon registering, we collected preliminary information about 

Fig. 3. NTNU Shore Control Lab layout with separate experimenter room (bottom left) and Remote Operating Center (bottom right).  
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recruits’ gaming skills, frequency, and experience, and sampled the 
most skilled to participate.  

ii. Navigators. These consisted of individuals with a valid certificate 
for maritime navigation in Norway, ranging from Class 1 to Class 6 
according to the Norwegian Maritime Directorate (Norwegian 
Maritime Authority, 2011). Recruitment channels for navigators 
included: (i) email invitations to managers at local companies 
involved in relevant business sectors (ferry operator, tug services, 
high-speed ferry operator, harbor authority), (ii) email invitations to 
managers of local organizations with members potentially consisting 
of individuals with maritime background (e.g., yacht club, maritime 
training facility, local traditional boatbuilding club), (iii) snowball 
sampling through recruits once experiments began. 

2.2. Experiment protocol and data collection 

A detailed plan for ethical conduct of the experiment and manage-
ment of personal data was approved by the Norwegian Agency for 
Shared Services in Education and Research (Sikt) (Project Number 
493904). Informed consent was provided by all participants, and all 
participants were rewarded with a gift card. 

Every trial underwent the same procedure according to a prescribed 
experimental protocol (Fig. 4). The instructor (first author) was present 

for all trials; the co-instructor varied (either the second or fourth author 
or a graduate student) but the latter was always briefed on the protocol 
prior to testing. This helped to control experimental conditions. Addi-
tional control variables included the lighting in the room, time of day, 
participants’ skillsets, and participants’ baseline familiarization with the 
simulator. Trials took approximately 1–2 h to complete, depending on 
the length of the scenarios. 

Each trial started with the participant providing informed consent 
and filling out an “Experience Questionnaire.” Following this, partici-
pants completed two 10-min training scenarios designed specifically to 
familiarize participants with the interface, controls, and tasks. Most 
importantly, this included familiarization with transitions between 
autonomous mode and manual mode. After completing the training 
scenarios, the participant completed a “Simulator Sickness Question-
naire” (SSQ; Kennedy et al., 1993) to record their “before test” condi-
tion. The SSQ was used to gauge participants’ level of comfort before 
and after data collection, helping to monitor for signs of simulator 
sickness and to help explain any potential data anomalies. 

Next, all data collection devices were calibrated and initiated along 
with the first of the two test scenarios. After completing Scenario 1, the 
participant was asked to fill out the “Boredom Questionnaire” (adapted 
from van Tilburg and Igou, 2012). Then, after a short break, they 
completed Scenario 2 and filled out a second SSQ to record their “after 
test” condition. 

Table 2 lists the data collected for this study. All data collected 

Table 1 
Demographic information and skillset characterization for gamer and navigator 
samples (n = 16 per group).  

Gamers Navigators 

Gender (n/16) Gender (n/16) 
3 females 13 males 2 females 14 males 
Age (years) Age (years) 
Mean St. Dev. Min Max Mean St. Dev. Min Max 
25 5.0 20 41 43 9.5 28 62 
Total gaming experience (years) Total seafaring experience (years) 
Mean St. Dev. Min Max Mean St. Dev. Min Max 
15 5.6 7.0 30 14 8.1 3.0 28 
Gaming frequency (hours/week) Deck officer certificatea (n/16) 
Mean St. Dev. Min Max Class 1: 

Class 2: 
Class 3: 
Class 4: 
Class 5: 
DP certificate: 
Auto-crossing: 

11 
1 
1 
2 
1 
10 
2 

16.5 8.9 4.5 35 
Self-reported skill level (n/16)b 

Expert: 
Advanced: 
Intermediate: 
Novice: 

8 
4 
4 
0  

a Class 1–5 based on Norwegian certificates for seafarers (Norwegian Mari-
time Authority, 2011). 

b Based on top three games played in the past three years (highest skill level is 
reported). 

Fig. 4. Experimental protocol and data collection.  

Table 2 
Description of collected data.  

Data Description Source 

Demographics Information about 
participants, with a focus on 
relevant skillsets and 
experience 

“Experience Questionnaire” ( 
Veitch, 2023) 

Boredom Participants’ subjective 
feeling of boredom and 
related affective experiences 

“Boredom Questionnaire” 
(adapted from van Tilburg 
and Igou, 2012) 

Ferry position 
and heading 

Position and heading for all 
vessels (4 Hz) 

Simulator (Hansen, 2022) 

Ferry status Docking status, collision 
status, boarding status, 
camera status (4 Hz) 

Simulator (Hansen, 2022) 

Button presses All inputs registered on button 
panel and handheld joystick 
controller (4 Hz) 

Simulator (Hansen, 2022) 

Screen recording Video recordings of all screens 
used by participants in the 
simulator 

Simulator (Hansen, 2022)  
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during the experiment was archived in the NTNU DataverseNO (avail-
able in Veitch, 2023), including copies of the original questionnaires. All 
numerical recordings were Unix time-stamped to allow for synchroni-
zation during post-processing. 

2.3. Scenario design & factor settings 

In preparation for the experiment, two scenarios were designed in 
the simulator. Both scenarios were designed to investigate performance 
for manual intervention in a safety-critical situation. 

The design of the scenarios was reached iteratively and was influ-
enced by the Scenario Analysis in the Crisis Intervention and Operability 
study (CRIOP) framework (Johnsen et al., 2004). Hoem et al. (2021) 
described this process in detail, using early versions of the simulator 
scenarios used herein as case studies. The two scenarios were designed 
to be realistic enough to represent takeover and handover situations in 
supervisory control, yet straightforward enough to allow drawing “most 
likely” conclusions from the results. Prior to testing, iterations of sce-
nario designs were tested internally among students, graduate students, 
and faculty members, as well as by experienced navigators. 

From the two simulation scenarios, all test trials were developed. 
Table 3 lists the five factors and the two levels at which they were tested, 
which in combination yielded 25 = 32 unique permutations, or “treat-
ments” (for the complete run log, see Veitch, 2023). Each treatment was 
tested first on Scenario 1, then on Scenario 2—for a total of 64 sets of 
outcomes. 

2.3.1. Intervention scenario 1: “handover” 
In this scenario, the autonomous mode hands over control to the 

remote operator following a failure in the autonomy system. The oper-
ator thereafter manually drives the ferry to one of the two ferry termi-
nals using the controller (Fig. 5). The prompt to take over control is an 
on-screen alert that flashes, accompanied by a beeping sound. Variations 
of the scenarios according to factor level are listed in Table 3. When the 
DSS is available, an additional alert message appears in the upper center 
of the screen 10 s prior to the critical event, reading “Fatal system error! 

Prepare for POSSIBLE manual control.” 

2.3.2. Intervention scenario 2: “takeover” 
In this scenario, the autonomous mode cannot resolve a traffic situ-

ation and the operator must take over control. The operator needs to 
identify this situation and take evasive action to avoid the impending 
collision (Fig. 6). Unbeknownst to the participant, the collision path is 
programmed so one of the boats will always crash into the ferry unless 
specific actions are taken to complete the takeover. Variations of the 
scenarios according to factor level are listed in Table 3. When the DSS is 
available, an additional orange alert message appears in the upper 
center of the screen 10 s prior to the collision target leaving its berth that 
reads “Watch for crossing boat. Target approaching: distance X m, speed 
Y knots” (where X and Y corresponded to the scenario settings). 

Note that Scenario 2 (takeover) was always run after Scenario 1 
(handover). While learning effects were expected, they were considered 
negligible due to the novelty of Scenario 2 compared to Scenario 1. For 
those participants engaged in 30-min scenarios, a short break of about 
5–10 min was allotted in between trials. 

2.4. Design of experiments 

The methodology for structuring the experimental trials and con-
ducting the analysis was based on “Design of Experiments” (DOE; 
Montgomery, 2017). DOE emphasizes controlled testing and random-
ized order of test trials and a statistical inference approach to data 
analysis. The chosen experimental design was a factorial experiment 
with five factors, each tested at two levels, with a total of 25 = 32 trials 
(for the complete run log, see Veitch, 2023). No repetition points were 
conducted, which is acceptable considering the purpose of the experi-
ment is factor screening, not model prediction. 

One of the most important features of the experimental design was 
run order randomization. However, while the factor settings in the 
simulator were easy to change, the factor setting representing partici-
pants’ skillsets was relatively hard to change. To handle this “hard-to- 
change variable,” we repeated the experiment in four “blocks:” groups of 
eight participants in random order. The first two groups were gamers, 
and the second two groups were navigators. This approach of blocking 
runs by levels of a hard-to-change variable is called a “split-plot design” 
(Montgomery, 2017, Chaper 14.5.3). The resulting restricted randomi-
zation was accounted for in the data analysis (see Section 2.7). 

2.5. Handover scenario metrics: track score and handover time (scenario 
1) 

The performance metric in Scenario 1 was based on how effectively 
the operator was able to accept a handover in a timely and controlled 
way. A perfect score (100%) represents an immediate control transfer 
with no interval of time passing between automatic control, followed by 
a chosen track equivalent to the automation track. The track score was 
computed by comparing the trajectory after the handover to its equiv-
alent in automatic mode (Equation (1)). A score approaching 0% rep-
resents a state of remaining stopped (or drifting a small distance towards 
the dock), having never taken manual control. In the case where a 
participant reversed direction after handover, their score was computed 
by comparing to the trajectory in the corresponding reverse direction. 

The score is computed at each time step recorded in simulator log 
data, as follows: 

Scorei = 1 −
dai − dmi

dai
× 100% =

dmi

dai
(1)  

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xmi − x0)
2
+
(
ymi − y0

)2

(xai − x0)
2
+
(
yai − y0

)2

√
√
√
√ (2)  

Table 3 
Factor settings for simulated scenarios.  

Factor Level Description of 
Scenario 1: 
“Handover” 

Description of 
Scenario 2: 
“Takeover” 

Skillset (A) Gamer Participants are individuals with video game- 
playing skillsets 

Seafarer Participants are individuals with maritime 
navigation skillsets 

Monitoring 
Time (B) 

5 min Five minutes passes 
before handover 
intervention is 
initiated 

Five minutes passes 
before takeover 
intervention is 
initiated 

30 min Thirty minutes passes 
before handover 
intervention is 
initiated 

Thirty minutes passes 
before takeover 
intervention is 
initiated 

Number of 
Vessels (C) 

1 ferry Single autonomous vessel in operation for 
monitoring 

3 ferries Three autonomous vessels in operation for 
simultaneous monitoring 

Available 
Time (D) 

20 s 20 s available to 
complete handover 
before scenario ends 

20 s available to take 
over control and 
avoid collision 

60 s 60 s available to 
complete handover 
before scenario ends 

60 s available to take 
over control and 
avoid collision 

Decision 
Support 
System (E) 

Available DSS interface 
displayed; warning 
provided from 
autonomy system 

DSS interface 
displayed; warning 
provided about CPA 

Unavailable Default interface is displayed (e.g., video 
streams, speed, heading, basic alarms)  
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Where dmi is the absolute distance travelled after handover (manual 
mode) and dai is the absolute distance travelled by the baseline (auto-
matic mode). (x0, y0) represents the location of the handover event. The 
final track score was taken as the median of Scorei. 

Note that scores of all trials were computed only up to the time series 
where the baseline trajectory slowed to begin its docking sequence. This 
was done to fairly compare scores across 20-and 60-s scenarios, the 
latter of which may obtain higher scores if there is more time to “catch 
up” to the baseline trajectory at it nears its docking position. 

Fig. 7 illustrates the track of participant B03 after handover, where 
the track score is 63%. 

Handover time was computed as the first controller input after the 
ferry automation failed, measured in seconds. For example, if the first 
controller input was logged at 1807 s for a scenario where the critical 
event occurred after 30 min (1800 s), then the reaction time was 7 s. 

2.6. Takeover scenario metric: collision outcome (scenario 2) 

Takeover performance in Scenario 2 was measured by how effec-
tively the participant was able to avoid a collision. This was done by 
categorizing each trial as “Collision Avoided,” “Near Miss,” or “Colli-
sion.” The categories were chosen by individually analyzing the recor-
ded log files from the simulator in addition to replaying the video from 
the trial. Fig. 8 shows examples of the three performance categories. 

For “collision avoided” and “near miss” categories, the Closest Point 
of Approach (CPA) was also computed from the log data during the 
collision event sequence. The CPA accounted for the outermost edge of 
the two targets using shape approximations of the two hull structures 
(approximated to the nearest 0.1 m). 

Fig. 5. Handover scenario underway for participant D27 (left) with accompanying scenario illustration (right).  

Fig. 6. Takeover scenario underway for participant X77 (left) with accompanying scenario illustration (right).  

Fig. 7. Track score was computed by comparing manual track to autonomy 
track; the example presented is participant B03 who achieved a track score 
of 63%. 
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2.7. Quantitative analysis 

The aim of the quantitative analysis was to estimate the extent to 
which the five factors independently influenced performance metrics. 
Towards this aim, statistical tests of significance were used to assess the 
extent to which one could reject the null hypothesis that each factor did 
not affect the response. In line with the exploratory nature of the study, a 
significance level of α = 0.10 was set as the prescriptive baseline of 
significance to help minimize risk of Type II errors. Running these sta-
tistical tests involved several steps, which were followed strictly to 
ensure that they were employed appropriately and did not produce 
misleading results.  

i. Compute Analysis of Variance (ANOVA) for the response in 
question, including all second-order interaction effects. Because 
we used a split-plot experiment with restricted run-order 
randomization, a special form of ANOVA was used called 
Restricted Maximum Likelihood (REML) ANOVA (Corbeil and 
Searle, 1976).  

ii. Remove terms from the model that are not significant, based on a 
P-value greater than 0.10. Hierarchy was maintained during this 
model selection process, meaning that insignificant first-order 
effects were included in the case where second-order interac-
tion effects were significant.  

iii. The resulting model was checked for appropriateness. First, a plot 
of model residual errors was visually checked for heteroscasticity 
(evenness of residual errors versus model predictions). Should the 
plot not show heteroscasticity, a transformation was applied to 
the responses and the ANOVA was repeated. Guidance on 
appropriate transformations was provided by a Box-Cox plot (Box 
and Cox, 1964).  

iv. Once the resulting model showed heteroscasticity (whether a 
transformation was applied or not), two other diagnostic checks 
were completed to ensure that all assumptions imposed by 
ANOVA were appropriately met. First, a normal plot of residuals 
was visually inspected to ensure that residuals were normally 
distributed. Second, residuals were plotted against run order to 

check that the residuals were visually random and independent of 
run order. Should any of these diagnostics reveal signs that 
ANOVA assumptions were not met, then the analysis was deemed 
inappropriate for presentation.  

v. The results presented are those that meet the conditions listed 
above. 

3. Results 

The results are divided into three sections.  

i. The first section presents results of the “Boredom Questionnaires” 
(Section 3.1).  

ii. The second section reports on the handover metrics, assessed in 
terms of track score and handover time (Section 3.2).  

iii. The third section reports on the takeover metrics, assessed in 
terms of collision avoidance outcome (Section 3.3). 

All data reported in this article is available in the DataverseNO re-
pository (Veitch, 2023). 

Fig. 8. Collision outcomes for takeover scenario: “collision avoided” (left), “near miss” (center), and “collision” (right).  

Table 4 
ANOVA for boredom responses.  

Source of 
variation 

Responses from “Boredom 
Questionnaire” (Part 1/2) 

Responses from “Boredom 
Questionnaire” (Part 2/2) 

DF F- 
value 

P-value DF F- 
value 

P-value 

Skillset (A) 25.00 1.58 0.2208 26.00 0.0269 0.8710 
Monitoring Time 

(B) 
25.00 5.68 0.0251* 26.00 3.43 0.0753* 

Number of Vessels 
(C) 

25.00 0.0002 0.9880 26.00 0.1228 0.7289 

Available Time 
(D) 

25.00 0.0160 0.9002 26.00 1.39 0.2494 

DSS (E) 25.00 1.22 0.2600 26.00 0.5375 0.4700  
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3.1. Boredom results 

Table 4 presents ANOVA for the boredom responses collected from 
the two-part “Boredom Questionnaire.” From the results, Monitoring 
Time (B) was the only significant effect at the 90% confidence level (P <
0.10). This result was the same for both parts of the “Boredom 
Questionnaire.” 

For the analysis, Likert scale responses from the questionnaires was 
normalized and an arcsine square root transformation was applied to 
uphold ANOVA assumptions (see Section 2.7 for details). In the ANOVA 
table (as in all ANOVA tables presented in this article), we list three test 
statistics: (i) Degree of freedom (DF; the number of estimated parame-
ters used to compute the effect’s sum of squares and variance), (ii) F- 
value (test for comparing the effect’s variance to the residual variance; i. 
e., signal-to-noise), and (iii) P-value (probability of observing the F- 
value given the null hypothesis is true). 

The “Boredom Questionnaire” data is presented in Figs. 9 and 10 in a 
series of boxplots, arranged by factor and sub-divided by level. Note that 
one participant did not fill out Questionnaire Part 1 (n = 31). All par-
ticipants filled out Part 2 (n = 32). 

In the boxplots (as with all boxplots presented in this article), thick 
lines indicate median values and crosses indicate mean values. The 
upper and lower bounds of the box depict the interquartile range (IQR); 
the lines extend to the minimum and maximum, unless there are one or 
more outliers, in which case they extend to 1.5 times the IQR. Outliers 
are marked as dots. 

3.2. Handover scenario results: track score and handover time 

Table 5 presents the ANOVA for the track score and handover time 
metrics, measured in the handover scenario (Scenario 1). 

For track score, the ANOVA confirms that the effects of Skillset (A), 
Monitoring Time (B), Number of Vessels (C), and DSS (E) were all sig-
nificant at the 90% confidence level (P-values less than 0.10). The effect 
of DSS was highly significant (very small P-value). Note that a square 
root transformation was applied to the track score data to adhere to 
ANOVA assumptions (see Section 2.7 for details). 

For handover time, the ANOVA confirms that the effects of Number 
of Vessels (C) and DSS (E) were highly significant (very small P-value). 
In addition, three interaction effects were found to be significant (AC, 
AE, and CE). 

The handover metrics are presented in Figs. 11 and 12 as series of 
boxplots, grouped by factor and sub-divided by level (n = 16 per 
boxplot). 

3.3. Takeover scenario results: collision outcome 

Table 6 presents the ANOVA for the collision outcome metric, 
measured in the takeover scenario (Scenario 2). The ANOVA confirms 
that the effect of Available Time (D) was highly significant (very small P- 
value). Furthermore, the BD interaction was highly significant. Note that 
the data was transformed to a scale between 0 and 1 and an arcsine 
square root transformation was applied to uphold ANOVA assumptions 
(see Section 2.7 for details). The transformation mapped “Collision 
Avoided” to 1, “Near Miss” to 0.5, and “Collision” to 0 (see Section 2.6 
for definitions of these three categories). 

The takeover scenario performance data is presented in Fig. 13 as a 
series of stacked bar charts, grouped by factor and sub-divided by level. 

4. Discussion 

Number of Vessels (C) influenced performance during hand-
overs. When the number of autonomous vessels increased from one to 
three, handover performance diminished. On average, operators with 
three vessels had a 10% drop in track score (P = 0.06; Fig. 11) and a 3-s 
increase in handover time (P = 0.01; Fig. 12), compared to those su-
pervising one vessel. 

There are several studies in the literature that corroborate the finding 
that performance of remote operations may be diminished as the num-
ber of assets under supervision increases. For example, in one experi-
ment, operators of aerial drones were found to have “significantly 
degraded” situation awareness when tasked with handling 16 missiles 
compared to 8 or 12 (Cummings and Guerlain, 2007). In another 
experiment, air traffic controllers were found to have significantly lower 
situation awareness when tasked with handling more than 12 aircraft 
(Endsley and Rodgers, 1996). 

That the number of supervised vessels should negatively affect op-
erators’ performance runs counter to the promise that autonomous ships 
will improve overall mission performance, operational efficiency, and 
safety. This reflects Bainbridge’s “ironies of automation,” which artic-
ulate the paradoxical undermining of human abilities through the use of 
technologies designed to enhance those very abilities (Bainbridge, 
1983). Before remotely operated and autonomous ships can be suc-
cessfully implemented, the question of how to appropriately support 
multivessel operations must be addressed. 

One way to support multivessel operations is through re-design of 
the HMI. The interviews with participants after their trials shed light on 
how this may be done (interview transcripts are available in Veitch, 
2023). Specifically, responses to the questions “What can be improved?” 

Fig. 9. Boxplots of normalized Likert responses from Boredom Questionnaire Part 1, grouped by factor and sub-divided by level.  
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and “What could have made the scenario easier for you?” uncovered 
three ideas for improved support of multivessel operations. The most 
reported suggestion (17 out of 32 participants) was to enhance the 
tracking functionality of the DSS based on CPA, whereby warnings 
would we provided for possible collisions. Another common suggestion, 
(reported by 11 out of 32 participants), was to use 360-degree cameras 
onboard the vessels. This would remove the need to switch front and 
back camera angles—a feature of the current interface that was reported 
to disrupt situational awareness. Another suggestion (reported by 5 out 
of 32 participants), was to display all vessels simultaneously on a large 
screen display. Further testing would need to be conducted to verify that 
these three features, uncovered in exit interviews with participants, 
would result in measurably improved multivessel operations. 

Number of Vessels (C) also played an important role in the interac-
tion effects Skillset- Number of Vessels (AC; Fig. 14a) and Number of 
Vessels-DSS (CE; Fig. 14c). For example, handover time tripled from 5 to 

15 s when the DSS was unavailable for three-ferry operations; by 
contrast, handover time increased from only 5–8 s when the DSS was 
unavailable for single-ferry operations (Fig. 14c). This result suggests 
that the pernicious effects of supervising multiple vessels can largely be 
circumvented with the availability of a DSS. Considering the importance 
of time-critical response during handover, the interaction effects AC and 
CE underscored the role of decision support in remote supervisory 
control. 

The Decision Support System (E) significantly influenced per-
formance during handovers. This was reflected in the track scores and 
handover times for participants in the handover scenario, for which the 
availability of the DSS had the largest effect on performance of all factors 
tested (Figs. 11 and 12, respectively). 

Interestingly, the DSS did not affect takeover performance. One 
reason for this may be that takeovers relied more on the operator’s own 
situation awareness-related cognitive processes than on DSS prompts. 
This is in line Mica Endsley’s “Guidelines for the Design of Human- 
Autonomy Systems,” which includes the maxim: “Use automated assis-
tance for carrying out routine tasks rather than higher-level cognitive 
functions” (Endsley, 2016). From this perspective, the DSS, in attempt-
ing to assist the user with high-level cognitive processes involved in 
collision target diagnosis and avoidance, may have unintentionally been 
distracting operators more than helping. Compared to takeovers, 
handovers were a more passive form of intervention that did not sum-
mon the full breadth of operators’ cognitive powers, which might 
explain why the DSS helped for handovers, but not for takeovers. 

Remote operators experienced boredom after 30 min of passive 
monitoring, but the effect on intervention performance was mini-
mal. The findings from both questionnaires confirmed that remote op-
erators experienced boredom after 30 min of passive monitoring, but not 
after 5 min (P1 = 0.03, P2 = 0.08; Figs. 9 and 10). This suggested the 
presence of a vigilance decrement, in line with the literature (Sections 
1.2). The fact that only Monitoring Time (B) had a significant effect on 
boredom affirmed that the vigilance decrement was only a function of 
time and no other factor tested. 

The experiment replicated others’ empirical investigations on vigi-
lance decrement, showing that it sets in between 5 and 30 min of passive 
monitoring (Cummings et al., 2016; Grier et al., 2003; Molloy and 
Parasuraman, 1996). The main difference between our finding and that 
of previous research is that previous research has assessed vigilance 
decrement in terms of secondary task completion while assigned a 
tedious task. Our approach, by contrast, assessed the subjective expe-
rience of boredom in a relatively complex remote operator role with the 
aid of questionnaires. In addition, our use of questionnaires, which 

Fig. 10. Boxplots of normalized Likert responses from Boredom Questionnaire Part 2, grouped by factor and sub-divided by level.  

Table 5 
ANOVA for handover metrics (track score and handover time).  

Source of 
variation 

Handover scenario: Track 
scores 

Handover scenario: 
Handover time 

DF F- 
value 

P-value DF F- 
value 

P-value 

Skillset (A) 26.00 2.93 0.0989* 1.94 4.64 0.1679 
Monitoring Time 

(B) 
26.00 3.24 0.0836* 17.99 0.3688 0.5513 

Number of 
Vessels (C) 

26.00 4.01 0.0557* 17.99 8.36 0.0097* 

Available Time 
(D) 

26.00 2.76 0.1087 17.99 0.3010 0.5900 

DSS (E) 26.00 21.56 <0.0001* 18.23 21.69 0.0002* 
AC – – – 17.99 5.45 0.0314* 
AE – – – 18.18 5.51 0.0305* 
CE – – – 18.23 8.06 0.0108*  

Table 6 
ANOVA for takeover metric (collision outcome).  

Source of variation DF F-value P-value 

Skillset (A) 2.00 0.1250 0.7575 
Monitoring Time (B) 23.00 0.2277 0.6377 
Number of Vessels (C) 23.00 0.9109 0.3498 
Available Time (D) 23.00 14.57 0.0009* 
DSS (E) 23.00 <0.0001* 1.0000 
BD 23.00 8.20 0.0088*  
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Fig. 11. Boxplot of handover track scores grouped by factor and sub-divided by level.  

Fig. 12. Boxplot of handover times grouped by factor and sub-divided by level.  

Fig. 13. Stacked bar charts of collision outcomes, grouped by factor and sub-divided by level.  
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centered the experience of boredom, could be translated to vigilance 
decrement only to the extent that boredom and vigilance decrement are 
associated phenomena (Pattyn et al., 2008). 

This finding raises the question of whether operator boredom and the 
associate vigilance decrement led to reduced performance. Indeed, the 
results showed that operator boredom led to reduced track score in the 
handover scenario (13% reduction, P = 0.08; Fig. 11). Note that while 
this result was significant (P ≤ 0.10), it was not highly significant (P <
0.05). Moreover, this effect was not detected for other performance 
metrics (namely, handover time and collision outcome). It follows that 
we cannot conclude from this experiment that boredom led to reduced 
performance in general. On the contrary, the findings suggested that 
remote operators who experienced boredom after extended passive 
monitoring generally performed similarly to vigilant operators during 
interventions, despite the clear difference in boredom. 

Skillset (A) did not influence boredom and the associated vigilance 
decrement. Prior to this empirical evidence, one might have reasonably 
argued that gamers, who are accustomed to high-paced video games, 
might have experienced higher degrees of boredom than navigators 
during passive monitoring. Navigators, by contrast, are accustomed to 
sustaining attention during longs periods of relative calm. The evidence 
counters this prior assumption. Parallels can be drawn from the litera-
ture; Warm et al. (2008), for instance, in summarizing research about 
vigilance, show that vigilance decrement affects experienced and 

inexperienced operators in equal measure. van Tilburg and Igou (2012), 
concluded their in-depth studies on boredom by describing boredom as 
“a chore:” an undesired burden, granted—but one that will be managed 
irrespective of an individual’s skillset or experience. 

The interaction of Monitoring Time (B) and Available Time (D) 
tipped the balance for collision outcome during takeovers. One 
instance where the effect of boredom most clearly manifested itself was 
in the interaction effect Monitoring Time-Available Time (BD). This 
interaction effect was highly significant in terms of collision outcome (P 
= 0.009; Fig. 14d). When interventions occurred after 5 min of moni-
toring, 20 s was not sufficient time to avoid the collision (100% collision 
rate) and 60 s was sufficient (100% collision avoidance rate). However, 
when interventions occurred after 30 min, the amount of available time 
made no difference to collision outcome (both 20- and 60-s time avail-
ability resulted in 50% collision rate) (Fig. 14d). What makes this result 
striking is that overall, the collision outcomes were impartial to Moni-
toring Time. So, why were collision outcomes so markedly split in the 
group with 5 min of monitoring time? And what was it about 5 min of 
monitoring combined with 20 s available time that led to such dire 
collision outcomes? One explanation is “cognitive tunneling” (also 
known as “attentional narrowing”). Cognitive tunneling is an increased 
selectivity of attention that results from various stressors (Kahneman, 
1973). One well known example occurred during the Three Mile Island 
meltdown, whose investigation revealed that operators had become 

Fig. 14. Interaction plots for handover and takeover results. (a) Skillset-Number of Vessels (AC), (b) Skillset-DSS (AE), (c) Number of Vessels-DSS (CE), (d) 
Monitoring Time-Available Time (BD). 
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erroneously fixated on a single indicator showing that water levels were 
too high in one of the reactors as the explanation for the unfolding event 
(Rubinstein and Mason, 1979). This fixation effectively “tunneled” their 
attention and blinded them to information that might have challenged 
this hypothesis. Similarly, the heightened sense of stress in the 5-min 
scenarios may have led operators to fixate on features of the interface 
that effectively blinded them to the impending collision. Indeed, this 
effect might be amplified by “automation complacency,” a state where 
operators place trust in automatic processes to such an extent that 
detecting its failures or shortcomings may become challenging (Para-
suraman and Riley, 1997; Wickens and Alexander, 2009). 

Skillset (A) had a minor effect on performance overall, yet its 
effect shone through during multivessel operations. The difference 
in performance metrics, when compared across the two Skillset levels 
(gamer and navigator), was minimal. The only difference was in track 
score (8% higher for gamers, P = 0.10; Fig. 11). Although, since this 
difference that was not highly significant (0.05 < P ≤ 0.10), the evi-
dence is not strong that any significant difference exits between the two 
groups. 

There were two exceptions to this finding, both of which lay in 
interaction effects on handover time. The first of these was the inter-
action effect Skillset-Number of Vessels (AC) and the second was 
Skillset-DSS (AE). To illustrate the effect of AC, consider that when 
compared to navigators, gamers’ handover times in the three-vessel 
condition were significantly lower than in the single-ferry condition 
(7-s deviation, P = 0.03; Fig. 14a). As for the effect of AE, consider that 
when compared to navigators, handover times in the DSS-unavailable 
condition were significantly lower than in the DSS-available condition 
(6-s deviation, P = 0.01; Fig. 14b). This implies that gamers were 
quicker to react during multivessel operations and that their swiftness 
relied less on decision support than navigators. 

In the literature, similar observations have been made when 
comparing gamers and pilots during aerial drone operations. For 
example, Lin et al. (2015) found that video gaming expertise was asso-
ciated with better performance during simulated multi-drone opera-
tions. Furthermore, McKinley et al. (2011) found that gamers were 
especially adept at “visually acquiring, identifying, and tracking targets” 
when compared to conventional pilots. Indeed, cognitive science 
research has indicated that gamers may have better spatial abilities than 
non-gamers (Sims and Mayer, 2002), which might explain one mecha-
nism behind their improved performance. Further afield, research on 
human-machine teaming, which often employs video games as their 
testing arena, (e.g., Crandall et al., 2018; Shirado and Christakis, 2017) 
suggests that expert-level gameplay may harbor transferrable skillsets to 
the unique demands encountered in human-machine interaction 
applications. 

Despite the advantages of lowering handover time under these 
conditions, though, it is important to consider that neither AC nor AE 
interaction effects were detected for the two other performance metrics. 
This raises the important point that handover time and overall perfor-
mance were largely independent. Indeed, handover times and track 
scores were only weakly correlated (Kendall’s τ = − 0.53, p < 0.001, 
where a strong correlation is represented by − 1.00 ≤ τ < 0.80). In other 
words, gamers may have been faster in some conditions, but this did not 
mean they performed better than navigators. In fact, the findings may 
suggest that gamers were characterized as more “trigger happy”: quick 
to react, although not correspondingly more effective in their choice of 
action. Navigators, by contract, appeared more “level-headed”: slower 
to commit to a course of action, yet more deliberate when they did so. 

Taken individually, neither gamers nor navigators portrayed the 
exclusive skillsets needed for remote operators of autonomous vessels. 
Instead, both groups possessed unique attributes of relevance to a 
remote operator. Without a control in our experiment, however, it is 
impossible to know to what extent gamers and navigators performed 
better than a group possessing neither skillset. However, we were able to 
identify that gamers’ adeptness at multivessel operations and 

navigators’ deliberateness in intervention execution were both desirable 
in remote operations. Moreover, it is important to consider that many of 
the skillsets that the navigators possessed went untested in the experi-
mental setup. For example, the set up did not include standard naviga-
tion equipment like radar or chart plotting, nor did the boat traffic in the 
scenarios adhere to COLREGs—two elements that under most circum-
stances underpin maritime navigation. These specific navigation skills, 
which went untested in this experiment, would likely be included in the 
list of desirable attributes for future remote operators. 

Available Time (D) influenced takeover performance. The situ-
ation awareness demands associated with takeovers appeared to impose 
a time limit for completion of the intervention. Specifically, it imposed a 
time limit to complete the three stages commonly associated with situ-
ation awareness: namely, information gathering, information process-
ing, and projection (Endsley, 2016). This is analogous to the “maximum 
response time” defined by Rødseth et al. (2022), expressed as “the 
maximum time the operator will need to reach the control position, gain 
situational awareness and be ready to perform actions to maintain 
safety” (p. 70). In this experimental set up, the “maximum response 
time” was closer to 60 s (resulting in 4 collisions) than 20 s (resulting in 
11 collisions) (Fig. 13). Putting the finding into context, though, one 
must consider that the experiment took place in a simulated waterway, 
which featured congested traffic and relatively constrained maximum 
response time compared to coastal or open water operational envelopes. 
Still, the finding suggests that there may be ways to effectively increase 
the maximum response time: for example, by enforcing external con-
straints like lowering the maximum speed in the waterway. 

The results have implications for risk monitoring and manage-
ment of autonomous vessels. The risks associated with autonomous 
vessels are of technical, environmental, human, and organizational na-
ture. The outcomes of the study in this paper provide valuable infor-
mation related to human and organizational risk influencing factors 
(RIFs). The results constitute a basis for developing safety requirements 
for systems; for example, related to the time that should be available for 
the operators for both takeover and handover control. The results are 
also supported by the findings of Hogenboom et al. (2021), who 
concluded that not taking the time aspect into consideration for Dy-
namic Positioning (DP) operations prevents efficient risk mitigation. 

In operation, both the autonomous systems and the human operators 
must be able to control risk (Utne et al., 2017). Situation awareness and 
decision making is transferred between the human operator and the 
control system with shifting levels of autonomy. The present study 
shows, for example, that the availability of a DSS influences the hand-
over performance of the human operators. Furthermore, the results 
showed that the operators needed sufficient time to react, and that the 
number of vessels involved influenced the handover time. This under-
scored the need for having risk monitoring to provide early warnings of 
potential system deviations outside the operating envelope of the 
autonomous vessels. This may enhance situation awareness and prepare 
and support the decision making of operators in critical situations. The 
RIFs can provide a foundation for the development of risk and safety 
indicators to be used in risk monitoring, both by the human operators, 
but also potentially by the control systems of the autonomous systems. 
Vigilance, for example, is already monitored by some automated sys-
tems (e.g., in cars). 

The study showed limited positive effect of navigational experience 
compared to gaming skills in the two scenarios tested. This contradicts 
findings, for example, in accident investigations, in human reliability 
studies, and the requirements to certification and training in many high- 
risk automated industries, such as for DP operations. In light of these 
contradictory findings, the results may be indicative of the limitations of 
using a simulator instead of real-life ship operations, especially if the 
scenarios were not sufficiently complex to heed the full breadth of 
navigator experience or did not utilize standard navigation tools like 
radar or ECDIS. Similar tests in real-life ship operations should therefore 
be investigated in future studies to verify findings in relation to risk 
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monitoring and management. 
The results of this study can guide further investigations on 

maritime human factors. As a starting point, continued research 
attention should be directed towards those factors producing observable 
effects on performance (e.g., number of vessels, DSS, available time). 
However, there are some important limitations that must be considered 
going forward. 

Firstly, due to the design of the experiment, the results are only ac-
curate for determining whether the human factor influences investigated 
existed; any indications of how much they influenced performance were 
limited by the fact that no repetitions of treatments were included in the 
experimental design. Repetitions are needed for estimates of error and 
making predictions; our experiment, lacking repetitions, was thus only 
appropriate for factor screening. Furthermore, the nature of the simu-
lation study means the results represent a model of the factor influences. 
The results must be verified in a real-world setting. At the time of 
writing, “Degree 3” automation as defined by IMO is still under devel-
opment; however, as the technology matures, verification tests should 
eventually be completed to ground our screening study in real-world 
data. Furthermore, we constrained our model space to five major fac-
tors; however, this by no means represents the entire model space of 
human factor influences on supervisory control. As a final remark on 
limitations, the applicability of the results must be carefully considered 
when weighed against other operational envelops and interface designs. 
Some results may be different in, say, an open-water operational 
envelop, or if the interface included standard maritime navigation 
components like radar or ECDIS. 

The study also demonstrated some considerable strengths. Firstly, 
the factorial experimental design approach allowed for a rigorous 
methodology for investigating factor effects, which can be of value for 
future experimenters in the field of human factors and HCI. In addition, 
results are fully transparent given that full dataset is openly available 
(Veitch, 2023). Moreover, the experiment is repeatable, given that the 
simulator is available on an open-source license (see Section 1.2). 
Finally, the two types of interventions adopted in this study (namely, 
“handovers” and “takeovers”) provided a useful typology for studying 
the distinct mechanisms at play during modal transfers of control. We 
hope that others may find this typology useful in future studies of human 
supervisory control. 

5. Conclusion 

In this study, we screened five influencing factors (labeled A through 
E) on human supervisory control performance of highly automated 
vessels. We defined performance in terms of three metrics assessed 
during handover and takeover interventions: (i) handover time (sec), (ii) 
track score (%), and (iii) collision avoidance outcome (collision avoided, 
near miss, or collision). We found that the effect of Skillset (A), defined 
in this experiment as gamer and navigator skillsets, had only a minor 
effect on overall performance. However, the interaction effect Skillset- 
Number of Vessels (AC) was significant, with gamer skillsets produc-
ing considerably faster handover times under multivessel operations. 
However, considering that track score and collision avoidance metrics 
were not affected, this indicated that although gamer skillsets resulted in 
faster handovers, they did necessarily produce better outcomes. In other 
words, neither gamer nor navigator skillsets alone produced stand-out 
performance results in this experiment. This suggests that future 
remote operators’ skillsets should possess a wholly distinct skillset that 
may lend some attributes from both gamer and navigator skillsets (e.g., 
multitarget tracking, assessment of traffic regulations). 

Monitoring Time (B), while significantly affecting the reported levels 
of boredom experienced during simulated trials, had only minor impact 
on performance. This showed that although boredom experience was 
associated with negative affects (e.g., restlessness, the desire to do 
something more meaningful), the vigilance decrement that was present 
for operators in 30-min trials yielded comparable intervention 

performance to those in 5-min scenarios. One interpretation of this 
result is that boredom and the associated vigilance decrement do not 
constitute a major hazard in supervisory control. However, this inter-
pretation should be carefully assessed in terms of the potentially long- 
term effects of boredom, which were not captured in this study. 

The effects of Number of Vessels (C), Available Time (D), and DSS (E) 
were all significant. The effects of C and E manifested themselves in 
handover interventions; the effect of D was present exclusively in 
takeover interventions. Overall, these three factors play a significant 
role in supervisory control of autonomous vessels, which has implication 
for design and risk management. The interactions of the factors were 
also important to consider. For example, the interaction effect Number 
of Vessels-DSS (AE) showed that performance-inhibiting effects of su-
pervising three vessels simultaneously was almost entirely circumvented 
when a DSS was made available. 

The factor screening outcomes of this experiment can help guide 
further research and design activities. For example, aware of the sig-
nificant effects of a DSS on intervention performance, engineers and 
designers can be guided towards creating interfaces that leverage these 
performance enhancements (e.g., during multivessel operations). To-
wards this aim, the study reifies tenants of human-centered design ap-
proaches that encourage designers to test interfaces iteratively and to 
observe them after implementation to understand how prototypes may 
produce advantages or trade-offs in performance, efficiency, and safety. 

Overall, there are several outcomes of the study. Firstly, it contrib-
utes to providing a basis for improved research on risk assessment and 
modeling of human and organizational factors, as well as to risk miti-
gation related to human operator performance. Secondly, it contributes 
to engineering and human-centered design activities aimed at devel-
oping remote supervisory infrastructure for autonomous maritime ves-
sels. Finally, it outlines a path forward for continued experimental 
testing to advance maritime human factors research. Unlocking the 
potential of reliable, safe, and sustainable automation technology will 
hinge on the extent to which well-designed interfaces can provide 
seamless interaction with human supervisors. 
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