
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Aleksandra Simić

Speaking the Same Language
Through Logic and Ontologies

Master’s thesis in Communication Technology
Supervisor: David Palma
February 2024

Aleksandra Simić

Speaking the Same Language Through
Logic and Ontologies

Master’s thesis in Communication Technology
Supervisor: David Palma
February 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Speaking the Same Language Through Logic and Ontologies
Student: Simić Aleksandra

Problem description:

Over the past few years, the requirements and expectations of end-users have
left an impact on the design and implementation of the computer networks infras-
tructure. As a result, technologies such as Network Function Virtualization (NFV)
and Anything as a Service (XaaS) have been developed to accommodate the growing
demand for cutting-edge technologies. Network softwarization, automation and pro-
grammability are some of the features added to improve the flexibility of computer
networks. However, an increase in the number of functionalities offered by computer
networks, and their expansion in size, has resulted in the growth in their complexity.

Furthermore, the operation of computer networks has become challenging because
different collaborators in the system frequently interact at varying levels of under-
standing. In addition, numerous actors typically do not speak the same language
which can lead to difficulties in knowledge management. In order for the information
to be arranged in a structured way and improve the interoperability, there is a need
to develop a common language. For that, ontologies can be used to describe the
knowledge of a specific domain and create a knowledge base. Additionally, this
approach might enable computer agents to verify specific policies using discrete logic.

This thesis will examine ontologies to establish a formal model that reflects the
processes of computer networks in order to handle their complexity. In particular,
the context of Docker containers and their networks will be analysed. Although
Docker provides a flexible networking model, the complexity of managing networks
can be high having in mind the scope of the applications running on containers. To
ensure that particular rules are upheld, a formal model can provide a structured
way of representing network functions and configurations. This will be done by
exploring the World Wide Web Consortium (W3C) specifications for formalising
ontologies and tools for representing knowledge that can be both machine and human
comprehensible.

Approved on: 2023-02-23
Main supervisor: Palma David, NTNU

Abstract

In recent years, with the development of technologies such as Software-
Defined Networking, Network Function Virtualization and Infrastructure
as Code (IaC), modern Information and Communication Technology
infrastructures have become more software-based, providing faster deploy-
ment, scaling and simplified network management. Moreover, the number
of organizations working with IaC is growing, typically consisting of highly
skilled professionals with different educational and cultural backgrounds.
In such organizations, effective collaboration between various human
actors is crucial, and it often relies on efficient knowledge management.

Various human participants, including application developers, policy
officers and network engineers, possess varying levels of understanding
regarding the system they collaborate around. To develop a common
language between them, we propose a knowledge-based approach, allowing
formal representation of different concepts and their relationships. By
adding semantics to the pre-deployment task of defining an infrastructure
and representing concepts based on Description Logics, we develop a
prototype interpretable by both humans and software agents.

In this thesis, we utilize the Semantic Web Technologies and follow the
ontology development process to define an ontology to represent knowledge
about Docker services and networks. We demonstrate the possible uses of
our knowledge-based approach by creating knowledge graphs with data
from several Docker Compose-based scenarios. Moreover, we apply the
reasoning mechanism to check the consistency of each knowledge base
and verify whether the definitions of web applications and two 5G Core
Network solutions comply with a set of pre-defined logic rules. With our
analysis of realistic IaC deployments, we confirm the potential of drawing
new conclusions based on formal knowledge management and well-defined
rules, which may assist various actors in making more informed decisions.

Preface

Together with the specialization project, this thesis concludes my
2-year international master’s program in Communication Technology and
the first phase of the Integrated PhD studies in Information Security and
Communication Technology at the Faculty of Information Technology
and Electrical Engineering at the Norwegian University of Science and
Technology (NTNU). The supervisor of the thesis has been Associate
Professor David Palma at the Department of Information Security and
Communication Technology.

The research conducted for this thesis has been carried out alongside
the duty and coursework involved in the PhD program. Moreover, the
background knowledge in Web Semantics has been acquired through
participation in the TM8110 — PhD Topics in Information Security and
Communication Technology course. Consequently, this work lays the
foundation for the upcoming second phase of the PhD studies.

Acknowledgements

This thesis is a result of my biggest academic challenge so far, and it
would not be possible without the people who supported me throughout
the past two years. To all of them, I must express my sincere gratitude.

To begin with, I would like to thank my supervisor, David Palma,
for his guidance, support, and valuable feedback. I am very grateful for
getting the opportunity to extend my academic path by enrolling in the
Integrated PhD program.

I would also like to acknowledge my friends back home for encouraging
me to pursue my dreams. To my friends in Norway, thank you for
providing comfort during moments of loneliness.

Lastly, heartfelt thanks go to my family. To my mother, Biserka,
and my father, Branko, thank you for having faith in me and teaching
me never to give up. To my sisters, Katarina and Sofija, thank you for
being my role models and unique sources of motivation. To my boyfriend,
Valentin, thank you for your boundless understanding and support.

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Knowledge-based Approach . 3
1.3 Research Questions . 4
1.4 Sustainability Aspects of the Thesis 5
1.5 Thesis Structure . 6

2 Background 7
2.1 Ontologies . 7
2.2 Description Logics . 8
2.3 Semantic Web Technologies . 9

2.3.1 Resource Description Framework 10
2.3.2 Resource Description Framework Schema 11
2.3.3 Web Ontology Language . 12
2.3.4 Semantic Web Rule Language 13
2.3.5 SPARQL Protocol and RDF Query Language 14

2.4 Virtualization and Containerization 15
2.4.1 Docker . 15
2.4.2 Docker Compose . 17

2.5 Discussion . 18

3 State of the art 19
3.1 Ontologies in Communication Networks 19
3.2 Ontologies and Knowledge Graphs in Software-Defined Networking . 21
3.3 Ontologies in Docker . 22
3.4 Validation of Compose Files . 23
3.5 Summary . 24

vii

4 Methodology 25
4.1 Research Design . 25
4.2 Ontology Development . 27

5 Container Networking Ontology 31
5.1 Designing the Ontology . 31
5.2 Data Parsing and Populating Module 34
5.3 Consistency Checks and Verifying Rules 35
5.4 Summary . 36

6 Semantically Enriched Infrastructure as Code 37
6.1 Extending Knowledge with Description Logics 37

6.1.1 Default Compose Network rule 38
6.1.2 Connectivity between Services rule 38
6.1.3 Exposed HTTP Port rule . 38
6.1.4 Compliance Check rule . 39

6.2 Exploring Knowledge with SPARQL 40
6.3 Application Deployment . 43
6.4 Docker-based 5G Core Network Deployment 46

6.4.1 Free 5G Core Solution . 47
6.4.2 Open Air Interface 5G Core Network Solution 48

6.5 Summary . 49

7 Concluding Remarks 51
7.1 Discussion . 51
7.2 Summary of Findings . 55

References 57

Appendix

A In-depth Knowledge Base Visualization 65
A.1 Free5GC Knowledge Graph . 65
A.2 OAI5GC Knowledge Graph . 67

List of Figures

1.1 A high-level view of IaC components. 2
1.2 Motivational scenario of a knowledge-based approach in a multidisciplinary

organization. 4

2.1 Example of a knowledge base with TBox and ABox. 8
2.2 Semantic Web Technology stack, specifications and solutions. Adapted

from [21]. 9
2.3 Example of an Resource Description Framework (RDF) triple, sourced

from Wikidata [36]. 10
2.4 Visualization of owl:Class and owl:differentFrom relationships, sourced

from DBpedia [40]. 12
2.5 An overview of a traditional, virtualized and containerized architecture.

Adapted from [44]. 16
2.6 A high-level view of Docker components. Adapted from [45]. 16
2.7 An example of services and networks definitions in a compose.yaml file.

Adapted from [47], [48]. 17

3.1 Example ontology-design pattern of network elements. Adapted from [53]. 20
3.2 High-level overview of Network, Data Center and Server ontologies.

Adapted from [58]. 21

4.1 The research design cycle. Adapted from [72]. 26
4.2 The ontology development process. Adapted from [74]. 27

5.1 The class hierarchy in the Container Networking Ontology. 33
5.2 Object and datatype properties in the Container Networking Ontology. 33
5.3 The input and output of the Data Parsing and Populating Module. . . . 35

6.1 Visual representation of classes, their instances and object properties of
the App 1 knowledge base. 44

6.2 Visual representation of classes, their instances and object properties of
the App 2 knowledge base. 46

ix

6.3 Visual representation of classes and object properties of the Free5GC
knowledge base, emphasizing the privnet custom network. 47

6.4 Visual representation of classes and object properties of the OAI5GC
knowledge base, emphasizing the oai-amf service. 49

A.1 Visual representation of classes, instances and object properties of the
Free5GC knowledge base. 66

A.2 Visual representation of classes, instances and object properties of the
OAI5GC knowledge base. 68

List of Tables

2.1 Response to the SPARQL Protocol and RDF Query Language (SPARQL)
query in Wikidata [43]. 15

6.1 Summary of responses to SPARQL queries for all use cases. 41
6.2 The result of the query presented in Listing 6.3 (i.e., connectivity between

services), based on App 1. 45
6.3 The result of the query presented in Listing 6.4 (i.e., compliance check),

based on App 1. 45
6.4 The result of the query presented in Listing 6.4 (i.e., compliance check),

based on App 2. 46
6.5 The result of the query presented in Listing 6.4 (i.e., compliance check),

based on OAI5GC. 50

xi

List of Acronyms

3GPP 3rd Generation Partnership Project.

5G the fifth generation of cellular networks.

6G the sixth generation of cellular networks.

AI Artificial Intelligence.

API Application Programming Interface.

CaaS Container as a Service.

CI/CD Continuous Integration and Deployment.

CLI Command-Line Interface.

CNF Container Network Function.

DevOps Development Operations.

DLs Description Logics.

DNS Domain Name System.

FAIR Findable Accessible Interoperable and Reusable.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IaaS Infrastructure as a Service.

IaC Infrastructure as Code.

ICT Information and Communication Technology.

xiii

IoT Internet of Things.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IRI Internationalized Resource Identifier.

IT Information Technology.

JSON-LD JavaScript Object Notation for Linked Data.

LTE Long-Term Evolution.

NF Network Function.

NFV Network Function Virtualization.

NTNU Norwegian University of Science and Technology.

OAI OpenAirInterface Software Alliance.

OS Operating System.

OWA Open World Assumption.

OWL Web Ontology Language.

RDF Resource Description Framework.

RDFa Resource Description Framework in Attributes.

RDFS Resource Description Framework Schema.

REST Representational State Transfer.

SDN Software-Defined Networking.

SLSA Supply-chain Levels for Software Artifacts.

SPARQL SPARQL Protocol and RDF Query Language.

SWRL Semantic Web Rule Language.

TCP Transmission Control Protocol.

Turtle Terse RDF Triple Language.

URI Uniform Resource Identifier.

VM Virtual Machine.

VNF Virtual Network Function.

W3C World Wide Web Consortium.

WWW World Wide Web.

XaaS Anything as a Service.

XML Extensible Markup Language.

XSD XML Schema Definition.

YAML Yet Another Markup Language.

Chapter1Introduction

With the expansion of various applications and services provided over the Internet,
underlying computer network infrastructures have become more complex than before.
Millions of devices, such as switches and servers, are connected to the Internet, and
billions of users connect daily through their smartphones or laptops [1]. As a result,
the networking infrastructure must be flexible to meet this increasing demand.

Different requirements, such as low latency, high reliability and the capacity for
quick recoveries in case of failures, have forced changes in networking infrastructure [2].
Therefore, Information and Communication Technology (ICT) infrastructures are
shifting from a legacy environment to a software-based approach that improves
flexibility and scalability. Technologies such as Software-Defined Networking (SDN)
and Network Function Virtualization are widely used in today’s computer networks,
with virtualization and containerization as the main enablers of independence from
dedicated hardware. In the realm of mobile networking, the underlying network-
ing infrastructure has changed with recent advancements from a Virtual Network
Function (VNF) based architecture to Container Network Function (CNF) Cloud
architecture [3].

To enable network automation and programmability, network administrators need
scripting to optimize the configuration and deployment of various network elements.
With that, human actors reduce the time needed for deploying and provisioning
different nodes of the ICT infrastructure.

Running nodes and network functions as virtual instances on the cloud led to
the great adoption of Infrastructure as Code. Some of the advantages are improved
consistency, transparency and reusability [4]. Different human actors can track code
modifications, deploy identical instances and suggest changes for improvement. It is
also easier to implement changes in the existing topology composed out of virtualized
resources compared to manual reconfiguration of physical hardware.

1

2 1. INTRODUCTION

Figure 1.1: A high-level view of IaC components. Adapted from [5].

Figure 1.1 illustrates the elements of IaC, showing the flow of processes from
the user (e.g. developer, network engineer, or Development Operations (DevOps)
engineer) to the deployment of infrastructure. The user initiates the process by
defining the infrastructure as code, which should capture the desired requirements
and configurations. With version control, it is easier to monitor updates in the code.
The code, then, interacts with the specific Application Programming Interface (API)
that deploys and manages the infrastructure according to the user’s specification.

Together with IaC, DevOps practices are changing infrastructure management.
They satisfy the need for continuous software updates in cloud-based environments [6].
As mentioned in [7], besides providing automation, another goal of DevOps is to
improve the collaboration between developers and Information Technology (IT)
operations professionals by combining both management and engineering perspectives.
However, organizations working around the IaC are typically composed of different
departments in which development, operations, product and DevOps teams cooperate
around the same product. They are usually highly skilled professionals who need to
collaborate in a cloud-based environment.

1.1 Motivation

IaC and Continuous Integration and Deployment (CI/CD) principles and container-
ized architecture are important aspects of the fifth generation of cellular networks
(5G) [3]. Containers are a more lightweight approach compared to Virtual Machines

1.2. KNOWLEDGE-BASED APPROACH 3

(VMs) solution which reduces costs and improves performance. Nevertheless, the
5G networks coexist with legacy networks that are mainly deployed via VMs, so the
network operators have to handle hybrid VNF and CNF networking systems.

One of the leading vendors in the telecommunications industry, Ericsson, uses
Kubernetes as a container management system as part of the cloud-native infrastruc-
ture [8]. However, according to Attaoui, Sabir, Elbiaze, et al. [3], Kubernetes has
some limitations, such as dealing with 5G services in various places while meeting
strict demands for speed and performance.

Wikström, Persson, Parkvall, et al. [9] explain the possibilities and future direc-
tions of the sixth generation of cellular networks (6G). They discuss the increase
of Artificial Intelligence (AI) and the possibility of having even more automated
networks. Some of the keywords mentioned are logic and intelligence. However, the
authors also point out that it will be essential to comprehend abstract knowledge and
make conclusions from existing information and data sets. Moreover, as future mobile
networks are growing in size, capabilities, services and importance, it is crucial to
highlight the collaboration between various actors, from business managers, network
and cloud providers to developers.

As discussed in the project preceding this thesis [10], the further adoption of IaC
made ICT infrastructure more operationally complex. Technologies such as SDN and
NFV enhanced the flexibility of networking infrastructure but also introduced a level
of abstraction that must be appropriately managed. With DevOps principles, many
different teams collaborate around the ICT infrastructure, and they do not necessarily
share a common understanding of a system’s behaviour, different components, and
the connections between them. In such cases, human communication and knowledge
sharing can be an issue.

In this thesis we propose the use of knowledge management tools and specifications
for complex knowledge formalization and representation. We apply an ontology-based
approach for conceptualization and formal representation of domain knowledge, and
create knowledge graphs to represent elements of IaC networking domain. Some of
the benefits of this approach are interoperability and extensibility, which can assist
the process of managing networking systems [11].

1.2 Knowledge-based Approach

Formal knowledge representation is a sub-field of AI, and it can help us to express
abstract knowledge uniquely. By enriching the information with semantics, we can
improve the interoperability among multidisciplinary human actors, who typically
have different educational and cultural backgrounds, especially in large cloud-based

4 1. INTRODUCTION

Figure 1.2: Motivational scenario of a knowledge-based approach in a multidisci-
plinary organization.

organizations.

Figure 1.2 illustrates an example of several actors working around the IaC, who
have different expectations of the system, thus do not necessarily speak the same
language. Since developers are typically not network specialists, they can struggle
with understanding specific network policies. Network engineers, on the other hand,
can find it challenging to grasp different definitions of particular software resources
and their relationships to the networking domain. Furthermore, policy officers may
have established distinct policies that the system must comply to.

To improve overall knowledge management, we can create an ontology that
represents entities of an infrastructure declared as code. The knowledge-based
approach should allow a formal representation of a domain of interest and enable
both human and machine comprehension. Moreover, with formal logic and added
semantics, software reasoners can deduct new information and make conclusions
based on explicitly defined knowledge. Additionally, by applying and verifying rules,
the policy officers, developers and network engineers can better understand the
system they collaborate around and share their expertise.

1.3 Research Questions

The high-level objective of this master’s thesis is to create a semantically enriched
model for checking the networking rules of containerized services. We aim to extend

1.4. SUSTAINABILITY ASPECTS OF THE THESIS 5

existing ontologies to create knowledge graphs to automate the process of checking
networking rules based on formal logic.

Within this thesis, we expect to find answers to the following research questions:

RQ1: What existing ontologies are available for representing knowledge about con-
tainer networking?

RQ2: How can these ontologies be adjusted to align with the requirements of specific
network policies?

RQ3: How can we integrate generic rules to query knowledge graphs in order to
validate network policies?

To answer these research questions, we look into the Semantic Web Technologies
and the Docker Compose specification. Moreover, we explore various Compose-based
scenarios to validate our approach and perform reasoning to infer new knowledge.

1.4 Sustainability Aspects of the Thesis

The semantically enriched model for checking networking rules of containerized
services can facilitate better collaboration between multidisciplinary actors and
improve knowledge sharing. Our approach can help improve interoperability and
collaboration and, therefore, can be used to tackle social sustainability issues [12].
Moreover, the work presented in the rest of the thesis contributes to the following
Sustainable Development Goals and their targets [13]:

– Goal 8: Decent work and economic growth. Our approach is based on
the use of ontologies, which can assist people of various educational and cultural
backgrounds to improve the decision-making process. Moreover, through a
well-defined system representation, different stakeholders and software agents
can increase their level of understanding, which can contribute to a more
efficient working environment.

– Goal 9: Industry, innovation and infrastructure. We aim to foster
trust among various human actors by implementing policies in the form of
logic rules within the deployed infrastructure. Our approach can improve
the trustworthiness of an infrastructure developed as code since application
developers would also gain more control over their design decisions. Ontologies
(and vocabularies) contribute to the interoperability aspect of the Findable
Accessible Interoperable and Reusable (FAIR) principles [14]. Moreover, our
approach is applicable for detecting issues and understanding the reasons behind

6 1. INTRODUCTION

certain deviations from the specified logic-based rules in a container-based ICT
infrastructure.

– Goal 17: Partnership for the goals. In our motivational scenario (cf.
Section 1.2), we illustrate diverse participants: network engineers, developers
and policy officers who do not typically speak the same language. With the
knowledge-based approach, we intend to improve collaboration and minimize
interoperability issues related to technical cooperation between both human
and machine processes.

To conclude, the model created in this thesis is intended for different devel-
opers who aim to improve their understanding of the networking aspects of their
container-based applications. Moreover, the knowledge-based approach fosters better
collaboration within organizations working around the infrastructure defined as code.

1.5 Thesis Structure

The remaining chapters of this thesis are organized as follows:

– Chapter 2 introduces the definition of an ontology, presents an overview of
Description Logics (DLs) and the Semantic Web Technologies used in the rest
of the thesis. Additionally, it introduces the concepts of Docker and Docker
Compose.

– Chapter 3 presents a literature review with the focus on ontologies representing
software-based networks and container-based infrastructures.

– Chapter 4 covers the followed research methodology and the ontology design
process.

– Chapter 5 focuses on the ontology created to represent core networking aspects
of Docker containers. In addition, it presents the module designed to facilitate
the creation of knowledge graphs, querying them, and the process of verifying
logic-based rules.

– Chapter 6 provides an analysis of several knowledge graphs representing
Docker Compose-based deployments. Moreover, it presents the definition of
logic rules and queries equally applied to each knowledge base.

– Chapter 7 discusses the possible implications and avenues of the research
presented and summarizes main contributions.

Chapter2Background

This chapter provides an overview of different terms and specifications used in this
thesis. It begins with the ontology definition and a brief overview of DLs. After that,
the review of some Semantic Web Technologies that allow software agents to interpret
the knowledge will be presented. Since we identified that ICT infrastructures widely
employ containerized platforms, this chapter concludes with the summary of Docker,
the IaC platform for running containerized applications.

2.1 Ontologies

The term ontology is rooted in philosophy. It is a philosophical discipline that studies
the existence of entities and their relationship [15].

In Computer Science, one of the first definitions, widely adopted by knowledge
engineers, states that an ontology is “an explicit specification of a conceptualiza-
tion” [16]. This definition went under later revisions, and the widely accepted
interpretation of an ontology was introduced by Studer, Benjamins, and Fensel [17]:

Definition 2.1. “An ontology is a formal, explicit specification of a shared concep-
tualization”.

The term formal indicates that an ontology should be interpreted by machines [17].
Explicit suggests that the types of concepts and their properties are clearly defined.
Shared means that an ontology should capture general knowledge. The word concep-
tualization, implies that an ontology is an abstract model representing a phenomenon
within a domain through concepts and their relations.

In the following sections of this thesis we will refer to Definition 2.1, when using
the term ontology.

7

8 2. BACKGROUND

Figure 2.1: Example of a knowledge base with TBox and ABox.

2.2 Description Logics

Description Logics are a family of knowledge representation logics that allow concept
definition. DLs support the modelling of ontologies, and they serve as a foundation
logic for the Web Ontology Language (OWL) [18].

As outlined by Rudolph [18], DLs model concepts (classes), roles (binary relation-
ships), and individuals (instances of classes). Within DLs, we can define a knowledge
base as KB = (A, T), where:

– A is a set of assertions, descriptions about named individuals (ABox).

– T is a set of terminologies, concepts’ descriptions(TBox).

More advanced DLs have as their integral part an RBox or R, representing
role-centric knowledge.

Figure 2.1 shows a sample knowledge base, where we have defined two classes,
namely IP Address and IP Network. Along with their relationship, they constitute
the TBox. The knowledge base is populated with the real-world instances (Backend
and 10.10.10.1) which form the ABox.

The core concepts of DLs are negation (¬B), intersection (B ⊓ C), and union
(B ⊔ C), with B and C representing concepts. Additionally, DLs enable the rep-
resentation of implicit relationships between concepts [18]. For example, the isA
relationship allows inheritance from concepts to sub-concepts, as well as the definition
of individuals (like in Figure 2.1).

2.3. SEMANTIC WEB TECHNOLOGIES 9

Figure 2.2: Semantic Web Technology stack, specifications and solutions. Adapted
from [21].

DLs support restrictions such as ∀R.B, meaning that, for a given concept, all
individuals with a role R belong to the concept B. Basic inferences in DLs involve
checking subsumption B ⊑ C or equivalence B ≡ C. More expressive constructors
include number restrictions or role inversion [19].

2.3 Semantic Web Technologies

To enable machine interpretation of an information within a domain, we need lan-
guages and specifications that allow ontology modelling. Semantic Web Technologies
provide tools for creating ontologies and specifications for managing, storing and
querying data.

In [20], Tim Berners-Lee, the inventor of the World Wide Web (WWW), proposed
an extension of the traditional web to make data on the web machine-readable
by adding semantics. With the Semantic Web, it is possible to reuse information
specified by one individual in various contexts. Additionally, we can connect diverse
systems handling large amounts of data, reason over it, and make logical inferences.

Figure 2.2 illustrates the four bottom layers of the Semantic Web Technology
stack:

1. Uniform Resource Identifier (URI) [22] and Internationalized Resource Identifier
(IRI) [23] identify resources on the web (first layer).

2. Formats for the creation of structured documents such as Extensible Markup
Language (XML) [24], Terse RDF Triple Language (Turtle) [25], Resource De-
scription Framework in Attributes (RDFa) [26] and JavaScript Object Notation
for Linked Data (JSON-LD) [27] serialization formats (second layer).

10 2. BACKGROUND

Figure 2.3: Example of an RDF triple, sourced from Wikidata [36].

3. Information exchange with RDF [28], used for simple representation of facts
(third layer).

4. Models for more descriptions of facts, OWL [29] and Resource Description
Framework Schema (RDFS) [30], query language SPARQL [31] and rule lan-
guages, such as Semantic Web Rule Language (SWRL) [32] (fourth layer).

Semantic Web Technologies allow us to integrate data from various sources while
adding meaning and representing them in a standardized way. These specifications
have been widely used in sharing and organizing information, especially in fields
such as digital humanities [33] and biomedicine [34]. In the computer networking
field, Semantic Web Technologies offer modelling capabilities to improve monitoring,
management and overall operations of the ICT services [35].

2.3.1 Resource Description Framework

The Resource Description Framework [28] is a simple data model for expressing facts
in a <subject> <predicate> <object> format, in the same manner as we construct
simple sentences. A block composed of these three elements is called a triple. We
can represent triples as directed graphs of two nodes connected via an edge. In RDF:

– A subject is a resource that must have a URI. In a graph structure, the subject
represents a node.

– A predicate is a property which must be uniquely identified with URI. It
can be represented as an edge in a graph structure. Edges are also known as
directed relationships or links between nodes.

– Besides being a resource and identified as a URI, an object can refer to a
literal that has a data value. XML Schema Definition (XSD) data types are
prevalent in the use specification of literals.

Figure 2.3 demonstrates an intuitive way of representing RDF triples, in the form
of a directed, labelled, graph. With RDF, we can store sentences, created using a

2.3. SEMANTIC WEB TECHNOLOGIES 11

natural language, in a structured format and enable their machine interpretations.
The triple, stored as a graph, can be mapped to the following human-understandable
statement:

localhost︸ ︷︷ ︸
subject

has an IPv4 routing prefix︸ ︷︷ ︸
predicate

127.0.0.1/8 .︸ ︷︷ ︸
object

Here, both subject and predicate are identified via the URIs, while the object
is a literal of a type xsd:string. This example is retrieved from one of the largest
knowledge graphs, Wikidata [37]. In Wikidata, data is labeled with identifiers, such
that resources are denoted as Q, while properties and lexemes have prefixes P and L,
respectively [38]. As a result, in Wikidata, the localhost is denoted as Q153799
and the predicate IPv4 routing prefix as P3761.

2.3.2 Resource Description Framework Schema

RDF provides the structure for representing statements, but, it does not allow us to
add constraints and meaning to data. For instance, in Figure 2.3, 127.0.0.1/8 is
an object whose meaning is not explicitly specified. It might be obvious to people
knowledgeable about networking that it is an Internet Protocol version 4 (IPv4)
address with a subnet mask, yet it might have different interpretations.

The Resource Description Framework Schema provides more semantic expressivity
and descriptions for the data stored as triples [39]. It allows the definition of classes
to categorize resources that share similar attributes with rdfs:Class1. The individuals
or instances of a class can be defined with rdf:type2. With RDFS, it is possible to
describe the hierarchical relationship between classes. We can define rdfs:subClassOf
relationship between classes, which means that any individual belonging to a subclass
is also a member of its superclass.

It is also possible to describe properties and their hierarchy with rdf:Property
and rdfs:subPropertyOf, respectively. We can use rdfs:domain and rdfs:range to put
more restrictions on a property, to specify that a subject or object of a triple should
belong to a specific class [30].

The example illustrated in Figure 2.3, can be extended using RDFS. For instance,
we can define a class IPv4 address range and put a constraint on the value of the
IPv4 routing prefix property:

– IPv4 address range rdf:type rdfs:Class .

– IPv4 routing prefix rdfs:range IPv4 address range .
1The URI for rdfs is http://www.w3.org/2000/01/rdf-shema#.
2The URI for rdf is http://w3.org/1999/02/22-rdf-syntax-ns#.

http://www.w3.org/2000/01/rdf-shema#
http://w3.org/1999/02/22-rdf-syntax-ns#

12 2. BACKGROUND

Figure 2.4: Visualization of owl:Class and owl:differentFrom relationships, sourced
from DBpedia [40].

This addition would help us to state that the object of the triple, 127.0.0.1/8, is
of a type IPv4 address range3. Then, this conclusion would not be an assumption
because every individual should understand what the object represents. Moreover,
in RDFS we can add human-readable annotations with rdfs:label, rdfs:comment and
rdfs:seeAlso [30].

2.3.3 Web Ontology Language

The Web Ontology Language [29] builds on RDFS adding more semantic expres-
sivity and allowing the representation of complex relationships. It is created for
knowledge representation, and grounded on DLs. OWL axioms consist of classes,
individuals (instances in RDFS) and properties. Pre-existing classes always de-
fined in OWL are: owl:Thing to which all individuals belong; and its opposite
owl:Nothing4. Custom-specific classes can be defined with owl:Class, and there are
two possible types of properties: owl:ObjectProperty which relates two individuals;
and owl:DatatypeProperty whose range is a data value [39].

OWL follows the Open World Assumption (OWA), and therefore all the indi-
viduals may be identical. The OWA implies that we should not consider something
untrue just because it has not been explicitly mentioned [41]. For example, with
owl:disjointWith we can specify that two classes cannot possibly share the same
individuals. Conversely, if we want to define that two classes are identical, we can
use the owl:equivalentClass. Similarly, to denote identical or different individuals
owl:sameAs and owl:differentFrom can be used [29].

3Following the naming convention, the class and property could be written as :IPv4AddressRange
and :ipv4RoutingPrefix, respectively. The colon (:) is associated with a default namespace.

4The URI for owl is http://www.w3.org/2002/07/owl#.

http://www.w3.org/2002/07/owl#.

2.3. SEMANTIC WEB TECHNOLOGIES 13

Figure 2.4 illustrates an example from a publicly available knowledge graph,
DBpedia [40]. It shows the subset of the IP_address resource’s description, which
is of a type dbo:RecordLabel. In the DBpedia Ontology, dbo:RecordLabel is an
owl:Class. owl:differentFrom is used to distinguish IP_address, a label used in
computer networking, from IP_code, which is used for measuring if a device is dust
and waterproof [40].

Properties in OWL can be further characterised if we describe them, as re-
flexive, transitive, or symmetric. Logical relationships between classes (logical
and, or and negation) can be defined with owl:intersectionOf, owl:unionOf and
owl:complementOf. For even higher expressivity, it is also possible to add cardinality
and value restrictions on properties [29].

2.3.4 Semantic Web Rule Language

The Semantic Web Rule Language [32] is built on top of OWL aiming to create state-
ments that cannot be expressed in OWL. It assists in addressing specific constraints
of OWL, such as the intersection of properties and certain arithmetic operations.

According to the W3C specification [32], SWRL allows us to apply DATALOG [42]
logic rules to the OWL ontologies. Those rules are in the form of implications of
body (antecedent) and head (consequent). In the human-readable syntax, a rule can
be written as:

antecedent︸ ︷︷ ︸
body

⇒ consequent︸ ︷︷ ︸
head

Both antecedent and consequent are conjunctions of atoms in the form of C(x),
P (x, y), sameAs(x, y) or differentFrom(x, y), where C(x) is an OWL class axiom
and P (x, y) is a property description. To enable even more complex rules, SWRL
is extended to support arithmetic operations, manipulation with string values, and
more built-in functions, such as swrlb:equal for comparison [32].

To show the possibilities of SWRL, we can extend the knowledge base illustrated
in 2.1, and define the following:

– IPNetwork and IPAddress as an owl:Class.

– belongsToIPNetwork as an owl:ObjectProperty.

– hasLabel as an owl:DatatypePoperty, where:

◦ rdfs:domain of hasLabel is IPAddress.

◦ rdfs:range of hasLabel is xsd:string.

14 2. BACKGROUND

We can also assume that if the label, which is a string value of an IPAddress,
contains /, then it includes a subnet mask (i.e., the number of bits used to define a
network). Therefore, we can further extend our ontology with hasSubnetMask as an
owl:DatatypeProperty, as such:

– rdfs:domain of hasSubnetMask is IPAddress.

– rdfs:range of hasSubnetMask is xsd:boolean.

This restriction can be made by defining the following SWRL rule:

IPAddress(?x) ∧ hasLabel(?x, ?y)

∧ swrlb:contains(?y, "/") → hasSubnetMask(?x, true)

Based on SWRL rules, by employing various reasoning algorithms, we can draw
additional conclusions and further expand the knowledge base.

2.3.5 SPARQL Protocol and RDF Query Language

SPARQL Protocol and RDF Query Language [31] is a query language designed for
both accessing and modifying RDF data. It provides different ways to create flexible
queries using pattern matching. Within a graph pattern, wildcards represent entities
to be fetched. Variables or question words can be associated with any element of an
RDF triple [39].

Queries in SPARQL are written in Turtle. SELECT and WHERE keywords are needed
for constructing a basic query. As described in [31], we can write more complex
queries by combining logical operators. SPARQL supports different aggregation
functions such as COUNT(), SUM(), AVG(), MIN(). Besides querying, with SPARQL
we can assign a value to a variable with BIND() and use the CONSTRUCT keyword to
create a new RDF graph based on a desired pattern.

In Listing 2.1, we can see a SPARQL query obtained using the Wikidata Query
Service [43]. The query aims to determine whether the object of a triple illustrated
in Figure 2.3 is a literal, and what is its data type. With the SELECT keyword, the
?ip variable is bound to the graph pattern from WHERE statement. We use BIND
in combination with two built-in functions: 1) isLiteral() checks whether the
selected RDF term is a literal, returning true or false, while 2) dataType() returns
its datatype value. The SERVICE keyword is used in Wikidata for retrieving labels.

The result of this query is shown in Table 2.1, while it is visually represented
in Figure 2.3, as the object of the RDF triple. Here, we have one match to the graph
pattern specified inside the WHERE block, and it is returned as a row in the table.

2.4. VIRTUALIZATION AND CONTAINERIZATION 15

1 SELECT ?ip ? isLiteral ? dataType WHERE {
2 wd: Q153799 wdt:P3761 ?ip.
3 BIND(isLiteral (?ip) AS ? isLiteral)
4 BIND(dataType (?ip) AS ? dataType)
5 SERVICE wikibase :label { bd: serviceParam wikibase : language "en". }
6 }

Listing 2.1: SPARQL query through Wikidata Query Service.

Table 2.1: Response to the SPARQL query in Wikidata [43].

ip isLiteral dataType

127.0.0.1/8 true xsd:string

2.4 Virtualization and Containerization

Virtualization and containerization refer to the creation of virtual computing envi-
ronments that are abstract from the physical hardware. They enable easier scaling
and better utilization of computing resources [44]. As illustrated in Figure 2.5, in
a virtualized architecture, VMs are computing instances that share the physical
resources but can have different a Operating System (OS) than the host.

Containers provide a more lightweight approach compared to VMs [44]. Con-
tainers use the host’s OS while only needing storage space for binaries, libraries
and applications, which reduces the hardware costs. They are suitable for running
multiple applications sharing the same OS.

2.4.1 Docker

Docker [45] serves as a tool for container configuration and provisioning. By encap-
sulating applications within containers, it is easier to share the application code,
regardless of the underlying platform. According to Guerriero, Garriga, Tamburri, et
al. [6], Docker is the most used tool for building containers among IaC developers.
Moreover, Docker Swarm5, the orchestration engine for clusters of containers, is one
of the most frequently employed containerization orchestration tools within Container
as a Service (CaaS) platforms [3].

5The Docker Swarm documentation is available at https://docs.docker.com/engine/swarm/key-
concepts/.

https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/engine/swarm/key-concepts/

16 2. BACKGROUND

Figure 2.5: An overview of a traditional, virtualized and containerized architecture.
Adapted from [44].

Figure 2.6: A high-level view of Docker components. Adapted from [45].

Docker is one of the key technologies of DevOps as it provides the environment
for fast deployment of containers [46]. Additionally, several developers can easily
share their applications packed in an isolated environment. Therefore, the delay
that usually occurs between developing the application code and the testing phase is
reduced. The components of Docker, illustrated in Figure 2.6, are [45]:

– Docker deamon, also known as the Docker engine, responsible for building,
running and distributing Docker objects. It communicates with Docker clients

2.4. VIRTUALIZATION AND CONTAINERIZATION 17

Figure 2.7: An example of services and networks definitions in a compose.yaml file.
Adapted from [47], [48].

using a Representational State Transfer (REST) API.

– Docker registry, responsible for storing Docker images. The largest public
database that stores Docker images is called Docker Hub6. Images can be
stored in private repositories, too.

– Docker objects:

◦ Images are read-only templates that contain instructions for building
Docker containers. We can use pre-existing images stored on platforms like
Docker Hub or create a Dockerfile that contains instructions for generating
and executing images.

◦ Containers are based on Images, and they are used to encapsulate the
applications and their dependencies.

2.4.2 Docker Compose

Docker Compose [49] is a tool that allows the definition of multi-container applications
through an orchestration file, based on Yet Another Markup Language (YAML).

6The Docker Hub is available at https://hub.docker.com/.

https://hub.docker.com/

18 2. BACKGROUND

Then, using the docker compose up command, we can build Docker containers based
on the description of the application’s services from the YAML file [50].

Figure 2.7 illustrates the example of a compose.yaml file, which specifies a multi-
container application. We constructed this example based on the Docker Networking
documentation [47] and the example shown in [48]. The shown proxy and app services
are built from a local image, while the db service uses postgres Docker image from the
Docker Hub registry that corresponds to a PostgreSQL7 setup. Each service connects
to its own custom network(s). Services that do not share the same network, db and
proxy in this case, are isolated from each other. For the app service, port mapping
is explicitly stated with the ports key. In this example, port 8000 on the Docker Host
is mapped to the port 8000 of the app container. Additionally, the other ways to
specify ports exposed to the host are IPADDRESS:HOST_PORT:CONTAINER_PORT
and CONTAINER_PORT .

2.5 Discussion

At first glance, it might not be obvious what is the connection between the various
technologies presented in this chapter. Although Docker provides flexibility for
IaC and DevOps, containerized tools are missing certain aspects that could be
complemented by the features native to the Semantic Web Technologies. Despite its
well-known syntax, Docker and Docker Compose lack a way of providing a higher-level
representation of their services and their relations. On the other hand, ontologies
capture the general knowledge while providing information share and reuse. Through
the integration of these technologies, we aim to provide a more structured approach
to working with IaC, enhanced by the validation of defined concepts and principles.
Therefore, this chapter contains a description of Semantic Web Technologies and
Docker as a containerization tool, that serve as a basis for the rest of this thesis.

7The PostgresSQL Image is available at https://hub.docker.com/_/postgres.

https://hub.docker.com/_/postgres

Chapter3State of the art

This chapter provides a short overview of previous studies and findings which are
relevant to our research questions. Ontologies that represent different elements of
communication networks have been proposed, and there are several attempts to build
a knowledge graph with the aim to ease network management. Since our point of
interest is the networking domain of containerization platforms, we focused our search
on relevant papers addressing the application of knowledge graphs and ontologies in
communication networks and Docker. Within this chapter, we delve into the relevant
literature concerning knowledge representation in Docker, as it has been employed as
a tool within cloud-native architectures [51], and open-source 5G deployments [52].
Moreover, the related work on validating Docker Compose files will be presented.

3.1 Ontologies in Communication Networks

According to the recent study by Javier Zorzano Mier and Iglesias [11], ontologies
have been used in the past to represent hybrid telecommunication systems, which
are composed of various access networks such as wired, cellular and optical. Since
networks greatly expanded in size, with many connected devices made by various
manufacturers, the configuration and management of such networks can be difficult.
Moreover, as demonstrated by Zhou, Gray, and McLaughlin [53], we can build and
query a knowledge graph to get specific information about the state of the network
and ease network management.

An existing ontology known as the Toucan ontology (ToCo) offers a comprehensive
representation of entities within hybrid telecommunications systems [54]. It is
composed of physical components, users, services and metrics for channel quality
assessment. As showed in the recent analysis by Tesolin, Demori, Moura, et al.
[55], ToCo ontology can be, to some extent, utilized while assessing the mobility
management in Long-Term Evolution (LTE), the fourth generation of wireless cellular
technology. The core of ToCo ontology is an ontology-design pattern named “Device-

19

20 3. STATE OF THE ART

Figure 3.1: Example ontology-design pattern of network elements. Adapted
from [53].

Interface-Link”. Zhou, Gray, and McLaughlin [53] identify those three elements as
the most important and repetitive in all telecommunication systems. Figure 3.1,
provides a simplified illustration of the core of the ToCo ontology outlining its
essential elements.

With the deployment of 5G networks, the operations and monitoring of heteroge-
neous mobile networks are complex [56]. Therefore, those processes are becoming
more automated and controlled by machines. One of the goals of automation is to
make both the management of different network functions easier for human actors.
However, the link between human and machine must be formally defined in order to
guarantee a seamless co-existence. Saraiva de Sousa, Lachos Perez, Esteve Rothen-
berg, et al. [56] propose a module for defining metrics for service monitoring in
zero-touch networks. Service requirements are transformed into the RDF format,
mapped to the monitoring ontology and queried with SPARQL. As a result, the
module creates a service monitoring template that is agnostic from the underlying
network infrastructure.

The introduction of different paradigms, such as Infrastructure as a Service (IaaS)
and NFV, as well as the adaptation of DevOps principles within ICT infrastructures
brought an additional level of complexity. Modern underlying infrastructures of ICT
systems are more software-based, with many highly interdependent components. In
the case of failures, it is important to follow the failure chain, track changes in the
system and have an overview of the dependencies between the system’s components.
The Supply-chain Levels for Software Artifacts (SLSA) framework aims to prevent
the unauthorized modification of a source code [57]. It represents the checklists for
standards addressing the issue of software reliability, though does not explicitly cover

3.2. ONTOLOGIES AND KNOWLEDGE GRAPHS IN SOFTWARE-DEFINED
NETWORKING 21

Figure 3.2: High-level overview of Network, Data Center and Server ontologies.
Adapted from [58].

the networking aspects. Nevertheless, modern computer networks are being deployed
as a code, which implies that there is a potential to adapt SLSA principles on the
SDN and container-based orchestration systems.

Corcho, Chaves-Fraga, Toledo, et al. [58] propose an ontology network to solve
the issue of heterogeneity in ICT systems. The ontology is composed of 10 ontolo-
gies, each of them representing different aspects of an ICT system, from network
infrastructure to organisational entities and business products and services. The
core entities and their relationships are commonly described in configuration and IT
service management databases. This ontology is properly documented and allows
the interoperability that is one of the requirements of the FAIR data principles [14].
In Figure 3.2, a high-level perspective of Data Center, Server, and Network on-
tologies are presented, with specific relevance to the networking aspect of the ICT
infrastructure.

3.2 Ontologies and Knowledge Graphs in Software-Defined
Networking

In the field of SDN, knowledge graphs and ontologies emerged as a paradigm for
enhancing network management, decision-making, and efficiency. Researchers com-
bined knowledge-based approach and SDN to solve tasks related to configuration,

22 3. STATE OF THE ART

resource allocation and to enable autonomic management of SDN networks. Some of
the issues such as complex configuration of devices in hybrid networks, where SDN
coexists with traditional networking models have been explored in [59]. In traditional
networks, the configuration of devices depends on the specifications from different
vendors, which is a challenge for network managers. Martinez, Yannuzzi, Vergara,
et al. [59] demonstrate the possibility of automatically deducing Command-Line
Interface (CLI) semantics using an ontology-based information extraction system.

Enabling autonomic management of SDN networks is explored by Tran, Tran,
Nguyen, et al. [60] and Zhou, Gray, and McLaughlin [61], each offering different
perspective. The former presents an ontology of Internet of Things (IoT) devices,
locations, applications, and their relationships to optimize device allocation. An
SDN controller uses the ontology to decide which devices will be used for a specific
user requirement, and based on that manages flows. The latter utilizes knowledge
graphs to ease network information extraction and querying. They create a system
that extracts information about the SDN-enabled network and stores it in the
knowledge graph. Through an API, network managers can query the knowledge
graph and perform tasks related to configuration and management, without the need
to understand the syntax of SPARQL.

3.3 Ontologies in Docker

The focus of the research community in the area of Docker infrastructures and their
formalization has mostly been directed towards understanding Dockerfiles, and the
process involved in constructing Docker images. Dockerfile instructions are not easy
to understand without additional comments added by creators, and the information
about packages or versions installed is missing.

Tommasini, Meester, Heyvaert, et al. [62] have created a vocabulary for repre-
senting Dockerfile by adding annotations and using instructions that are not strictly
related to Docker. With this, the specific commands used for building Docker
container are more understandable. Another ontology pattern described by Huo,
Nabrzyski, and Ii [63] represents high-level Docker concepts with the focus on Docker
infrastructure that hosts computational experiments. The main focus of their work
is to represent concepts related to building the Docker images.

Osorio, Buil-Aranda, Santana-Perez, et al. [64] present an ontology called Dock-
erPedia, which is composed of software images, package versions of the software
installed on the Docker container. They analyze Docker images and their content,
available in Docker Hub, and create a knowledge graph. The authors demonstrate
querying the knowledge graph with the goal to obtain more information about images,
packages and their dependencies. Instead of checking them manually, the task of

3.4. VALIDATION OF COMPOSE FILES 23

comparing images or finding ones with specific software packages can be done faster
with SPARQL queries. Zhou, Chen, Liu, et al. [65] propose a model that parse
the information about instructions in Dockerfiles, which is then combined with the
information extracted from images found in Docker Hub. They use the DockerPedia
ontology to construct a knowledge graph.

In addition to the ontologies depicting Docker Images, there have been efforts to
develop ontologies specifically for representing Docker containers. Within the W3C,
a community group focusing on vocabularies for Big Data analysis has published
draft versions of ontologies for Docker [66]. The Docker Ontology defines classes such
as Image, Container and Network, incorporating datatype properties to represent the
relationships within the Docker environment [67]. This ontology serves as the basis
for the Container Description Ontology (CDO) that has been extended with the
entities related to the container orchestration systems [68]. The definition of classes
is visible in this ontology, but it is impossible to determine the exact relationship
between them. Boukadi, Rekik, Bernabe, et al. [68] present only the high-level
view of the networking concepts of containerized platforms, meaning the Classes
are visible, however, the description of properties is missing, which leaves room for
improvements.

3.4 Validation of Compose Files

Docker Compose checks the syntax of YAML files with the docker compose up
command [50], by default. However, it might not detect some of the unintentional
configurations made by the IaC developers. Depending on their background and
expertise, the developers may face challenges in identifying misconfiguration issues in
the Compose file. To address this, the research community has developed tools such
as the Label Checker1 and Docker Compose Validator [69], which can be employed
to validate the compose.yaml file before launching the intended containers. This
additional validation tool can help the developers to detect:

– Duplicate images, ports, key, service and container names.
– Labels and typing mistakes, such as version, services, networks and volumes.
– Expose, depends_on and Domain Name System (DNS) directives.
– Invalid volume directory.

Another approach that aims at helping the developers to reduce mistakes while
creating compose.yaml files signifies the need for the visualization of a given configu-
ration. Tools, such as DockStation [70], have been developed to graphically assist
developers in deploying the desired infrastructure. A study presented by Piedade,

1The script is available at https://github.com/serviceprototypinglab/label-consistency.

https://github.com/serviceprototypinglab/label-consistency

24 3. STATE OF THE ART

Dias, and Correia [71] shows that a similar prototype (named Docker Composer)
can significantly improve the experience of developing Docker containers. It provides
a visual overview of services, their dependencies, the exposed ports, links and net-
works. This study demonstrates that using the visualization tool makes is simpler to
understand the simple configuration of containers within the Docker environment.
Nevertheless, as the authors highlight, their empirical study has been done on a
limited group with similar cultural and educational backgrounds.

3.5 Summary

The literature review presented in this chapter shows us that prior research has been
made to understand the role of ontologies, in both communication networks and
Docker. While these studies have provided valuable insights, some of the ontologies
presented lack proper documentation, which does not allow their reuse. The ontology
created by Corcho, Chaves-Fraga, Toledo, et al. [58] has been annotated following
the FAIR principles, and it covers our domain of interest. However, a detailed
examination, of the ontology network presented, suggests that its subset can be
reused to cover the networking aspects of Docker containers, while the concepts
of a Docker service or a container cannot be mapped fully. Additionally, based
on the literature survey related to Docker, we can observe that specific aspects of
container networking are not being covered. As a result, the DevOps Infrastructure
Ontology [58] represents the basis for our ontology development.

Chapter4Methodology

This chapter provides an overview of the research methodology implemented through-
out this thesis. It contains the adaptation of a design science methodology with a
description of the iterative steps of the design cycle. Additionally, the outline of the
methodology that guided our ontology development process will be presented.

4.1 Research Design

We start our research design process by examining the relevant literature in the
field of IaC and cloud-based networking infrastructure. This phase assists us in
determining the scope of our work, by identifying Docker, as the IaC tool widely used
to develop different applications as a code. Concurrently, we delve into the domains
of Web Semantics and formal knowledge representation. In the starting phase of the
thesis, we examine the context of the thesis and the potential issues to be solved,
which led to the definition of the research questions, presented in Chapter 1. To be
able to establish a research design methodology and find the answers to the research
questions, we define the following design tasks:

1. Create the ontology to represent the knowledge about core networking aspects
between Docker services.

2. Design a module to automatically parse the Docker compose files and populate
the previously defined ontology.

3. Extend the prototype to check whether the definition of Docker services complies
with a specific set of policies.

These tasks present the action points to be executed through the modified version
of the design cycle proposed by Wieringa [72]. The author states that the problem-
solving process in research projects usually includes several iterations over the steps
within the design cycle. Figure 4.1 depicts the iterative steps within our research
design process, including the following stages:

25

26 4. METHODOLOGY

Figure 4.1: The research design cycle. Adapted from [72].

– Problem investigation, also a starting phase. This stage aims to evaluate the
problem framework within the context1 of IaC and the possible effects. In our
adapted version of the design cycle we perform a literature review and, based
on the state of the art, we identify possible challenges. During this phase of
the research design, we assess the possibilities of the ontology-based approach
and analyze our target containerization platform, Docker.

– Treatment2 design. According to Wieringa, we should study the domain,
requirements, and available treatments and design the artefacts throughout this
stage. However, in our design cycle, the main action in this step is designing the
artefact3. In the first iteration of the design cycle, we create a simple ontology
to represent the knowledge about some of the core networking concepts of
Docker infrastructure and a module to automatically populate the ontology.
These two components are a part of the artefact that expands in the following
iteration of the design cycle. Towards the end of the design process, we extend
the artefact to check whether the definition of Docker services complies with a
specific set of policies. To solve the third design task, we include logic rules to
broaden the functionality of the artefact.

– Treatment validation is a phase in which the investigation of the interaction
between the artefact and the problem context takes place. During our design
cycle, we assess how the artefact behaves in a different use-case, meaning that
we validate the consistency of the populated ontology.

Treatment implementation and evaluation are not part of our design cycle as we
do not study how the artefact interacts in a real-world environment. As suggested by
Wieringa [72], a potential way of executing these two tasks might include artefacts’
interaction with the stakeholders (human evaluators) through surveys. Although we

1The context can be any element (for example, people, norms, methods) that interacts with the
artefact [72].

2Treatment refers to the solution that can potentially solve the research problem.
3Different artefacts can be created in the research project, such as service, method, software or

hardware components of the system and conceptual structure.

4.2. ONTOLOGY DEVELOPMENT 27

Figure 4.2: The ontology development process. Adapted from [74].

do not implement our treatment in the production environment, we do use publicly
available data to test the behaviour of the artefact in different scenarios throughout
the treatment validation phase.

To conclude, as illustrated in Figure 4.1, we repeat the three steps of the design
cycle to find the answers to our research questions. We follow an agile development
process and start by designing a small-scale prototype, progressively testing and
adding more functionality. Moreover, additional details about solving the design
tasks are presented in the following chapter.

4.2 Ontology Development

The first design task, presented in the previous section, involves creating an ontology
to better understand the networking aspects of Docker services. Several studies
suggest different methodologies for ontology development. For instance, Poveda-
Villalón, Fernández-Izquierdo, Fernández-López, et al. [73] emphasize the need for
collaboration between ontology developers, users and domain experts. The authors
propose a methodology that aligns with industrial projects, and they suggest that
the interaction between different actors should last throughout the entire life cycle of
the ontology.

To create an ontology that captures our domain of interest, we follow the simple
knowledge-engineering methodology, widely adopted among ontology developers [74].
Throughout the design cycle, we do not interact with other human actors as we do not
place the treatment in the industrial environment. Noy and McGuinness [74] describe
many approaches to model a domain. Despite the specific steps followed during the
ontology development process, the ontology should be created in several iterations
with continuous updates. The authors also emphasize that the representation of
concepts and roles, within the determined scope, should be closely aligned with the
physical (real-world) objects and their relationships.

28 4. METHODOLOGY

Figure 4.2 illustrates adapted version of the simple knowledge-engineering method-
ology suggested by Noy and McGuinness [74]. Based on this methodology, our
ontology development process considers the following steps:

1. Determine the domain and scope of the ontology: This step aims
to examine the domain of interest, construct competency questions4, and
determine the possible users of the ontology. We look into the Docker Compose
specification and its networking domain, analyze who can use our ontology,
and define technical questions that limit the scope of the ontology.

2. Consider reusing an existing ontology. One of the main principles of
ontology development is “. . . enabling reuse of domain knowledge. . . ” which
implies that one ontology should potentially be reused in different contexts.
For instance, Dublin Core (DC) ontology is widely used to add annotation
properties such as creator and applied in various ontologies with different
scopes5. In our research design process, we conduct a literature review to
find existing ontologies and look into the knowledge representation of Docker
containers and the networking aspects. As presented in Chapter 3, we detected
prior studies that aim to organize knowledge within the Docker and cloud-
based architecture. As a result, we identified the properly documented DevOps
Infrastructure Ontology [58], which covers our domain of interest.

3. Enumerate important terms in the ontology: This step aims to detect all
the significant terms within the determined scope and evaluate their attributes
and relationships. Moreover, Noy and McGuinness assume that the reusable
ontology might not be available, which is not the case in our development
process. We examine the DevOps Infrastructure Ontology to identify terms that
can be reused and select those that need to be added to answer the competency
questions.

4. Define the classes and the class hierarchy: In this step, we define classes
and their taxonomy. The creation of class hierarchy can start from the broadest
concepts (top-down approach), specific concepts (bottom-up approach), or
concepts that are neither general nor specific. Our ontology development
process employs the top-down approach since we follow the class hierarchy
from the DevOps Infrastructure Ontology.

5. Define the properties of classes: This step aims to specify object and
datatype properties. In our ontology development process, cardinality, value,
domain and range restrictions on properties are also part of this step. In

4According to Grüninger and Fox [75], competency questions are the set of problems that should
be solved through an ontology. They assist in determining what information the ontology should
capture.

5The list of properly documented and interoperable ontologies, published by W3C, is available
at https://www.w3.org/wiki/Good_Ontologies.

https://www.w3.org/wiki/Good_Ontologies

4.2. ONTOLOGY DEVELOPMENT 29

opposition to the simple knowledge-engineering methodology, we consider the
definition of “the facets of the slots” as part of properties’ definitions and not
as a separate stage.

6. Create instances: Finally, we populate our ontology with individuals.

In conclusion, the simple knowledge-engineering methodology provides the founda-
tion for the steps we follow during the ontology development process. After making
a decision to reuse a part of the existing ontology (step 2), we begin our process by
extending the ontology with classes and properties that cover the identified scope.
Then, we iterate over the next four steps to answer the competency questions. Finally,
our ontology serves as an input for a knowledge graph creation. It represents the
proof of concept that demonstrates the feasibility of the knowledge-based approach
within IaC definitions.

Chapter5Container Networking Ontology

In this chapter, we present the ontology created to meet the high-level objective
of this thesis. We design a model that aims to represent the knowledge within the
domain of container networking, and to make it comprehensible by both human
actors and software agents. Our model consists of the following two components:

1. The Container Networking Ontology, through which some of the core
networking concepts between Docker containers are represented.

2. The Data Parsing and Populating Module, that automates the parsing of
compose.yaml files and populates the ontology.

The Container Networking Ontology in Turtle and XML formats, the script for
parsing and populating the knowledge base and the script for creating the knowledge
graph for each use case in HyperText Markup Language (HTML) format, can be
found in the public repository on GitHub1.

5.1 Designing the Ontology

As discussed in Chapter 4, we follow the main principles of the simple knowledge-
engineering methodology during the ontology designing process. In the first phase,
we determine the domain of the ontology by examining the networking concepts of
the Docker Compose documentation [47]. We observe concepts that can be defined
through the Compose files, such as Internet Protocol (IP) address, network and
subnet. In addition, we look into the definition of an exposed port mapping between
a container and Docker Host.

Following the motivational example presented in Chapter 1, the potential users
of our ontology can be anyone interested in understanding the networking between

1The GitHub project is available at https://github.com/aleksandra-simic/TTM4905.git.

31

https://github.com/aleksandra-simic/TTM4905.git

32 5. CONTAINER NETWORKING ONTOLOGY

services in a container-based infrastructure. Those can be application developers,
network and DevOps engineers. The scope of the ontology is determined through com-
petency questions that are oriented towards understanding the network connectivity
between services:

– How can two services (and their respective containers) be connected?
– What type of port mapping is possible in service definition?
– What type of IP Address allocation can a service have?
– How can we ensure that two services are connected through the specific IP

network?

Faithful to the FAIR principles (cf. Chapter 3), and considering ontology reuse,
we detect that the ontology network, also known as the DevOps Infrastructure
Ontology [58], enables data interoperability, and it is available for modifications and
extensions. This ontology contains entities that can potentially map to the Docker
infrastructure and its networking definition. By representing the network-related
parts of the DevOps infrastructure 2, this ontology network provides definitions of
the IP Address and IP Network class with a set of properties that can be useful to
address our competency questions.

The reflection of the real-world relationships of Docker Containers, or the definition
of services in a Docker Compose file, might potentially be expressed through the
Virtual Server class, available in the Server Ontology 3. The IP Network, IP
Address and Virtual Server classes are defined in different ontologies, and although
they are connected through the Data Center Ontology, we could not observe a direct
connection between them. Therefore, we extend the Network Infrastructure Ontology
by defining classes and properties within the determined scope to assess the service
connectivity questions.

The class hierarchy in the defined Container Networking Ontology is illustrated
by Figure 5.1. The classes Configuration Item and Resource are defined within the
Core ontology of the DevOps Infrastructure Ontology. The class Configuration Item
is any item, Resource, group of items, or Resource Group, that can be configured in
a DevOps infrastructure 4. The Core ontology is the top-level ontology of the ontology
network presented by Corcho, Chaves-Fraga, Toledo, et al. [58], as it connects the
other nine ontologies. The classes IP Address and IP Network are imported from
the Network Infrastructure Ontology, while we define a new class Service which is an

2The Network Infrastructure Ontology is available at https://oeg-upm.github.io/devops-infra/
ontology/network/index-en.html.

3The Server Infrastructure Ontology can be found at https://oeg-upm.github.io/devops-infra/
ontology/server/index-en.html.

4The Core ontology is available at https://oeg-upm.github.io/devops-infra/ontology/core/index-
en.html#classes-headline.

https://oeg-upm.github.io/devops-infra/ontology/network/index-en.html
https://oeg-upm.github.io/devops-infra/ontology/network/index-en.html
https://oeg-upm.github.io/devops-infra/ontology/server/index-en.html
https://oeg-upm.github.io/devops-infra/ontology/server/index-en.html
https://oeg-upm.github.io/devops-infra/ontology/core/index-en.html#classes-headline
https://oeg-upm.github.io/devops-infra/ontology/core/index-en.html#classes-headline

5.1. DESIGNING THE ONTOLOGY 33

Figure 5.1: The class hierarchy in the Container Networking Ontology.

Figure 5.2: Object and datatype properties in the Container Networking Ontology.

abstract definition of a Docker container in a compose.yaml file. The class Service
is defined as an owl:Class, while the subclass relationship is achieved through the
rdfs:subClassOf property. Additionally, all the subclasses of the class Resource are
mutually disjoint.

When it comes to the definition of properties, we begin with the simple relation-

34 5. CONTAINER NETWORKING ONTOLOGY

ships between classes (object properties), which we further extend with datatype
properties. Figure 5.2 shows the resulting object and datatype properties of the
Container Networking Ontology. The properties belongs To IP Network and ip
Address Version are imported from the Network Infrastructure Ontology. To fur-
ther describe each of the properties, we define their domain and range. Moreover,
all entities within the Container Networking Ontology are further described with
rdfs:label and rdfs:comment to improve human readability.

Finally, the tasks carried out in this section were accomplished using Protégé, a
widely adopted open-source ontology editor [76].

5.2 Data Parsing and Populating Module

The Container Networking Ontology is intended for different deployments of Docker
containers and can be used for complex applications defined as services and networks
through a compose.yaml configuration. With this in mind, we design the Data Parsing
and Populating Module, which automatically creates a knowledge base for a given
use case. It is implemented in Python, specifically, using the owlready2 package [77].
Besides loading the ontology with the get_ontology function, we use this package
to define different individuals. Since OWL follows the OWA (cf. Section 2.3.3), we
use the AllDifferent function, ensuring that each knowledge base contains different
individuals of the Service and the IP Network classes.

Figure 5.3 presents a high-level view of this module, where the Container Net-
working Ontology and Docker Compose files serve as inputs. As output and based
on the rules defined in the ontology, the parsing and populating process produces a
file that can be represented as a knowledge graph with real-world instances.

To visualize the produced knowledge base, we use OntoGraf within Protégé for
the representation of classes, instances of classes and their relationships. For the
knowledge graph creation, we use the kglab package [78] in Python. The input of the
script for knowledge graph creation is the knowledge base file in the Turtle format.
It generates the graph of nodes and edges based on all the RDF triples, and OWL
axioms found in the input file. The output of this script is a file in HTML format,
which we can open in any browser to interactively navigate the knowledge graph.
For readability, the knowledge graph in each assessed use case is accessible within
the public project on GitHub5.

5The knowledge graphs can be found at https://github.com/aleksandra-simic/TTM4905.git.

https://github.com/aleksandra-simic/TTM4905.git

5.3. CONSISTENCY CHECKS AND VERIFYING RULES 35

Figure 5.3: The input and output of the Data Parsing and Populating Module.

1 INFO 13:45:12 ----------- Running Reasoner ------------
2 INFO 13:45:12 Pre - computing inferences :
3 INFO 13:45:12 - class hierarchy
4 INFO 13:45:12 - object property hierarchy
5 INFO 13:45:12 - data property hierarchy
6 INFO 13:45:12 - class assertions
7 INFO 13:45:12 - object property assertions
8 INFO 13:45:12 - same individuals
9 INFO 13:45:12 Ontologies processed in 123 ms by Pellet

Listing 5.1: A snapshot of the Log, showing the result of the consistency check
with Pellet.

5.3 Consistency Checks and Verifying Rules

To check the consistency of the knowledge base, we run the Pellet reasoner [79],
available as a plugin in Protégé. Reasoners help us to determine whether a knowledge
base is created based on the definition of concepts and their relationships, as defined
by our ontology. Listing 5.1 shows the output of the consistency check in Protégé.
In this example, we can see which inferences the reasoner makes and how fast it
processes the populated ontology, in this case, in 123 milliseconds.

After creating a knowledge base and checking its consistency, we add more
expressivity to the Container Networking Ontology by exploring DLs through the
creation of Semantic Web Rule Language rules (cf. Section 2.3.4). This can be done
with SWRLTab (available in Protégé), following steps below:

1. Define the object or datatype property that will be a property description in
the consequent.

36 5. CONTAINER NETWORKING ONTOLOGY

2. If needed, define the domain and range for a given property.
3. Construct the SWRL rule in the antecedent → consequent format.
4. Start Pellet to make inferences over the knowledge base and extend it.

With different rules, we can check if specific network policies are maintained across
the knowledge base and infer new knowledge. When executing Pellet in Protégé, we
can observe newly drawn conclusions as highlighted property assertions. Finally,
with SPARQL, we can check which triples have been added to the knowledge graph
by asking questions to access the RDF data. The use of a reasoner such as Pellet
is a prerequisite for getting the results from a SPARQL query within the SPARQL
Query Tab in Protégé. However, the created knowledge graph may also be imported
into several programming languages (e.g., Python) or into a Triple/QuadStore [80]
allowing SPARQL to be used directly.

5.4 Summary

The Container Networking Ontology is designed based on a properly annotated ontol-
ogy network that represents different concepts within the cloud-based organization.
Since it could not assist us in fully representing our determined scope, we extend it
to create a domain ontology that captures core concepts in the domain of networking
in Docker Compose.

The Data Parsing and Populating module presents the script used to populate
the ontology with individuals from different container-based applications. For each
use case, the output is a knowledge base on which we use reasoners to formally verify
if it complies with the rules defined in the ontology. For rules that go beyond the
definitions provided by OWL, we extend the knowledge base by defining SWRL rules
that allow further reasoning and inferring new knowledge. Finally, this chapter lays
the foundation for a better comprehension of Docker-based IaC deployments that we
analyse in the next chapter.

Chapter6Semantically Enriched
Infrastructure as Code

In this chapter, we provide the results of populating the Container Networking
Ontology with data acquired from Docker-based applications. The goal is to analyse
these applications based on the rules within the Ontology, to check the consistency
of the generated knowledge base and to explore the potential of DLs through SWRL
rules to infer new knowledge.

Docker is widely used for deploying web-based applications, which take advantage
of the IaC features of Docker Compose to interconnect multiple services (e.g., a web
frontend, a backend and a database). However, these features are also exploited
by larger projects aimed at complex infrastructures such as a 5G Core Network
comprising multiple VNF. The following sections present two use cases, preceded by
the definition of queries and logic rules that can help us to analyse each one.

In our first use case, we examine compose.yaml files used for applications that
rely on various technologies. To conduct our analysis, we pool data from Docker
Compose files publicly available on GitHub1. The first analysis provides a macro
view of 21 applications as a whole. Afterwards, we choose two multi-container web-
based applications, reasoning over each knowledge base for a more extensive analysis.
To better illustrate the capabilities of our approach, we present a second use-case
for deploying a container-based 5G Core Network infrastructure and look into the
compose.yaml files within the Free5GC project [81] and the Open Air Interface 5G
Core Network solution [82].

6.1 Extending Knowledge with Description Logics

As discussed in Chapter 2, the formal definition of a knowledge base through ontologies
allows extending that knowledge base through DLs. In this section, we provide an

1The used reference repository is available at https://github.com/docker/awesome-compose,
contains different compose.yaml files with multiple containers. The hash of the version used is
e6b1d2755f2f72a363fc346e52dce10cace846c8.

37

https://github.com/docker/awesome-compose

38 6. SEMANTICALLY ENRICHED INFRASTRUCTURE AS CODE

overview of how a set of logic rules can be used universally to achieve this for each
of the use cases (i.e., the same principles can be applied to all use cases without
requiring changes in the inference mechanisms).

We used SWRL to define the rules presented in the following subsections.

6.1.1 Default Compose Network rule

The definition of services within compose.yaml file does not always include a custom
network which is, as a concept, represented as the class IPNetwork in the Container
Networking Ontology. When the connection between containers is not specified,
Docker Compose creates a default network that connects all the deployed containers
defined through the same file.

To extend our ontology with additional information about the used networking
solution, we create a new SWRL rule. This rule, based on the definition of the
hasIPNetwork property, inspects whether the instances of the class Service are
connected to the default network, such that:

Service(?x) ∧ hasIPNetwork(?x,?y) → hasDefaultIPNetwork(?x, false)

6.1.2 Connectivity between Services rule

Two Docker containers running on the same host and belonging to the same custom
network should communicate with each other. However, a misconfiguration of the IP
segment of a pair of containers may break connectivity between them. Therefore,
we create a rule to check which instances of the class Service within the knowledge
base have the same IP Network defined.

Besides other atoms, the antecedent contains differentFrom(?x,?y) meaning
that it must be satisfied for different individuals. The resulting SWRL rule is defined
as follows:

Service(?x) ∧ Service(?y) ∧ hasIPNetwork(?x,?s) ∧ hasIPNetwork(?y,?s)

∧ differentFrom(?x,?y) → hasConnectivityWith(?x,?y)

6.1.3 Exposed HTTP Port rule

Hypertext Transfer Protocol (HTTP) is one of the core protocols used in web
applications. Moreover, it has been defined as a signalling protocol in 5G Core
Networks [83]. The standard port for plain text HTTP traffic is 80, which can be
expected to be exposed internally in a private network domain. However, if this
port is exposed to the Docker Host (i.e., externally), it may indicate a potential
vulnerability.

6.1. EXTENDING KNOWLEDGE WITH DESCRIPTION LOGICS 39

Bearing in mind the prevalence of HTTP traffic in modern applications and in 5G
Core Networks, we create rules to check whether this port is exposed. In addition,
port 80 can be denoted as 80/tcp, which indicates Transmission Control Protocol
(TCP) as a transport protocol. Based on the definition of the class Service and its
properties, the following two logic rules inspect if this particular port is exposed to
the Docker Host:
Service(?x) ∧ exposesPortToHost(?x,?p) ∧ swrlb:equal(?p,"80")

→ exposesHTTPPortExternally(?x,true)

Service(?x) ∧ exposesPortToHost(?x,?p) ∧ swrlb:equal(?p,"80/tcp")

→ exposesHTTPPortExternally(?x,true)

Similarly, due the importance of HTTP traffic between services and VNFs, the
logic rules below check if the default port is exposed internally to the other containers
within the same network:
Service(?x) ∧ exposesPortToServices(?x,?p) ∧ swrlb:equal(?p,"80")

→ exposesHTTPPortInternally(?x,true)

Service(?x) ∧ exposesPortToServices(?x,?p) ∧ swrlb:equal(?p,"80/tcp")

→ exposesHTTPPortInternally(?x,true)

6.1.4 Compliance Check rule

Network security officers may implement policies that container-based applications
must adhere to. For instance, to prevent exposing port 80 to the Docker Host, they
might establish a rule allowing only port 443 (and 443/tcp), used by Hypertext
Transfer Protocol Secure (HTTPS) protocol, encouraging external HTTP traffic to
be encrypted. Additionally, the security officers may restrict internal host traffic (i.e.,
the ports exposed by containers) to port 80 (and 80/tcp).

The following two logic rules illustrate how the previously described network
security compliance check could be defined:
Service(?x) ∧ exposesPortToServices(?x,?p) ∧ swrlb:notequal(?p, "80")

∧ swrlb:notequal(?p,"80/tcp") → nonCompliance(?x,true)

Service(?x) ∧ exposesPortToHost(?x,?p) ∧ swrlb:notequal(?p, "443")

∧ swrlb:notequal(?p,"443/tcp") → nonCompliance(?x,true)

The prerequisite to verify whether these network-related rules are maintained
is to extend the Container Networking Ontology with the properties that ap-
pear as a consequent of SWRL rules. With this in mind, we extend the On-
tology with the hasConnectivityWith object property. Additionally, we create

40 6. SEMANTICALLY ENRICHED INFRASTRUCTURE AS CODE

1 SELECT DISTINCT (COUNT (?s) AS ?x) (COUNT (?n) AS ?y) (COUNT (?ip) AS ?z)
2 WHERE {
3 # instance of the class Service (Total Services)
4 ?s rdf:type : Service .
5 # instance of the class IPNetwork (# IP Networks)
6 ?n rdf:type netw: IPNetwork .
7 # instance of the class IPAddress (# IP Addresses)
8 ?ip rdf:type netw: IPAddress .
9 }

Listing 6.1: SPARQL query for retreiving the total number of services, IP addresses
and custom networks.

datatype properties in which the domain is restricted to the class Service and
the range is xsd:boolean. These datatype properties are hasDefaultIPNetwork,
exposesHTTPPortExternally, exposesHTTPPortInternally and nonCompliance.

6.2 Exploring Knowledge with SPARQL

With SPARQL, we can retrieve knowledge stored as RDF triples in each knowledge
graph. Therefore, we utilize SPARQL to analyze how well these graphs comply with
the rules within the Ontology as well as with the previously presented logic rules,
defined with SWRL.

The knowledge bases we analyze are denoted as:

– All (21) — large knowledge base created based on 21 compose.yaml files with
different services.

– App 1 and App 2 — the knowledge base of two representative web-based
applications is presented in Section 6.3.

– Free5GC — 5G Core network knowledge base, created by Free5GC [81],
presented in Section 6.4.1.

– OAI5GC — Basic 5G Core network knowledge base, created by OpenAirIn-
terface Software Alliance (OAI) [82], presented in Section 6.4.2.

For example, after parsing a compose.yaml file into a knowledge graph, we may
want to determine how many services were defined. Listing 6.1 shows the combination
of example three queries used to obtain the total number of instances of each class

6.2. EXPLORING KNOWLEDGE WITH SPARQL 41

Table 6.1: Summary of responses to SPARQL queries for all use cases.

Awesome Compose 5G Core

All (21) App 1 App 2 Free5GC OAI5GC

Total Services 55 3 3 15 9

Host Ports 43 4 1 3 0

Internal Ports 11 0 1 12 16
HTTP Host
Ports 13 1 1 0 0

HTTP Internal
Ports 0 0 0 0 6

Custom IP
Network 20 3 0 15 9

IP Networks 12 2 0 1 1

IP Addresses 0 0 0 1 9

Non-compliances 40 2 2 11 7

defined by our Container Networking Ontology2. In more detail, with the COUNT()
function the query engine produces the total number of all the matches for the graph
pattern defined. The response to this query is recorded in Table 6.1, as the number
of Total Services, # IP Network and # IP Addresses.

Another example is the analysis of the total number of exposed ports and HTTP
ports to both the Docker Host and internally between containers, as seen in the
query of Listing 6.2. The obtained results are documented as Host Ports, Internal
Ports, HTTP Host Ports and HTTP Internal Ports also in Table 6.1.

In Listing 6.2, we also inspect the “Default Compose Network” rule (see Sec-
tion 6.1.1), where we search for the number of services that connect to their own
network and instead of a default Docker network. The number of services connected
to the custom network is shown as Custom IP Network in Table 6.1.

The final graph pattern in Listing 6.2 focuses on the “Compliance Check” rule
(see Section 6.1.4) for each created knowledge base. Table 6.1 includes the resulting
number of services that are not compliant with this rule as Non-compliances.

2The prefixes must be defined in order to execute queries in Protégé, however, we exclude
them from the Listings. The URI for netw: and : are http://w3id.org/devops-infra/network# and
http://www.semanticweb.org/ontologies/2024/ContainerNetworking#, respectively.

http://w3id.org/devops-infra/network#
http://www.semanticweb.org/ontologies/2024/ContainerNetworking#

42 6. SEMANTICALLY ENRICHED INFRASTRUCTURE AS CODE

1 SELECT DISTINCT (COUNT (? service) AS ?x)
2 WHERE {
3 ? service rdf:type : Service .
4
5 # service with exposed ports to the Host (Host Ports)
6 ? service : exposesPortToHost ?port .
7
8 # service with exposed ports internally (Internal Ports)
9 ? service : exposesPortToServices ?port .

10
11 # service with HTTP port exposed to the Host (HTTP Host Ports)
12 ? service : exposesHTTPPortExternally true .
13
14 # service with HTTP port exposed internally (HTTP Internal Ports)
15 ? service : exposesHTTPPortInternally true .
16
17 # service with custom network (Custom IP Network)
18 ? service : hasDefaultIPNetwork false .
19
20 # service that is non - compliant (Non - compliances)
21 ? service : nonCompliance true .
22 }

Listing 6.2: SPARQL query for analyzing the impact of SWRL rules in each
knowledge graph.

In addition to counting the occurrence of certain graph patterns, SPARQL al-
lows retrieving specific information from the edges and vertices of the knowledge
graph. For example, to further examine which two individuals have connectiv-
ity between themselves, based on the “Connectivity between Services” rule (see
Section 6.1.2), we can perform the query shown in Listing 6.3. By using the
FILTER keyword, we set a condition that limits the output to all the matching
instances from the class Service without repetitions. For example, when the rea-
soning engine infers that backend hasConnectivityWith database and database
hasConnectivityWith backend, the output of this query would include only the
backend database pair, meaning that these two instances of the class Service have
connectivity between each other.

The goal of the SPARQL query presented in Listing 6.4 is to combine the
knowledge resulting directly from the parsing of the compose.yaml files and the
defined SWRL rules. In the analysis of each of our use cases, we look for non-
compliant services and list all the ports they expose. In particular, with the UNION
keyword, we seek all the non-compliant services and their exposed ports, determining
whether these are exposed to the Docker Host, and therefore potentially to public

6.3. APPLICATION DEPLOYMENT 43

1 SELECT DISTINCT ? service1 ? service2
2 WHERE {
3 ? service1 rdf:type : Service .
4 ? service2 rdf:type : Service .
5 ? service1 : hasConnectivityWith ? service2 .
6 FILTER (STR(IRI (? service1)) < (STR(IRI (? service2))))
7 }

Listing 6.3: SPARQL query for retreiving distinct pairs of services that have
connectivity.

1 SELECT DISTINCT ? service ? hostPort ? internalPort
2 WHERE {
3 ? service rdf:type : Service .
4 ? service : nonCompliance true.
5 {? service : exposesPortToHost ? hostPort } UNION
6 {? service : exposesPortToServices ? internalPort } .
7 }

Listing 6.4: SPARQL query for obtaining non-compliant services and their exposed
ports.

networks, or internally only to other Docker containers.

6.3 Application Deployment

In this section, we present how the semantically enriched IaC approach can be used
for understanding the definition of various services within a compose.yaml file.

First, we populate the Ontology with all of the 21 compose.yaml files used for
deploying different applications composed of multiple defined services. The resulting
knowledge base is represented as All (21) in Table 6.1. It is built based on the
definition of networks and services within the Container Networking Ontology, and it
contains 55 instances of the class Service and 12 instances of the class IP Network.
The first striking result is that no instance of the class IP Address can be found.

While it is possible to have an overview of a Docker Compose repository by com-
bining multiple compose.yaml files into one knowledge base, we also lose granularity.
Given the complexity of such a large knowledge graph, we choose to focus on a more
detailed examination of these applications. Therefore, we select two representative

44 6. SEMANTICALLY ENRICHED INFRASTRUCTURE AS CODE

Figure 6.1: Visual representation of classes, their instances and object properties
of the App 1 knowledge base.

application deployments with their respective compose.yaml files (out of the total
21) and create two corresponding knowledge bases.

Figure 6.1 illustrates the visual representation of the first knowledge base, which
we named App 1. It is created based on an application that has three services,
backend, frontend and db3. To assess the connectivity between these services, we
can examine the visual representation of instances and the has IP network property.
Alternatively, we can also execute the SPARQL query shown in Listing 6.3. When
the “Connectivity between Services” rule is incorporated, we can obtain the direct
relationship between services that have connectivity. Table 6.2 illustrates the result
of the SPARQL query which reveals that the backend service has connectivity with
both the frontend and db services.

By referring to the results presented in Table 6.1, we can verify the existence of the
two non-compliant services within the App 1 knowledge base. We can determine the
cause of the conflict by querying the corresponding knowledge graph, which returns

3This application has a React frontend, a NodeJS backend and a MySQL database. The descrip-
tion of this application is available at https://github.com/docker/awesome-compose/tree/master/
react-express-mysql. The hash of the version used is c2f8036fd353dae457eba7b9b436bf3a1c85d937.

https://github.com/docker/awesome-compose/tree/master/react-express-mysql
https://github.com/docker/awesome-compose/tree/master/react-express-mysql

6.3. APPLICATION DEPLOYMENT 45

Table 6.2: The result of the query presented in Listing 6.3 (i.e., connectivity between
services), based on App 1.

App1
?service1 ?service2

:backend :frontend
:backend :db

Table 6.3: The result of the query presented in Listing 6.4 (i.e., compliance check),
based on App 1.

App 1
?service1 ?hostPort ?internalPort

:backend 80ˆˆxsd:string
:backend 9230ˆˆxsd:string
:backend 9229ˆˆxsd:string
:frontend 3000ˆˆxsd:string

the contents observed in Table 6.3. Here, we verify that the backend service exposes
port 80 to the Docker Host, which goes against the defined policy to encourage only
encrypted HTTP traffic (cf. Section 6.1.4). In addition to this port, backend service
exposes ports 9230 and 9229, while frontend exposes port 3000, which they should
not, by definition.

The second knowledge base, denoted as App 2, results from another application
deployment that also has three services, named backend, db and proxy4. As shown
in Table 6.1 and illustrated by Figure 6.2, this knowledge base does not contain
any instances of the IP Network or IP Address classes. This implies that a default
Docker network is used to interconnect all services, and therefore, there is no need to
verify the “Connectivity between Services” rule. However, we can observe that one
HTTP port is exposed to the Docker Host and that two services do not adhere to the
“Compliance check” rule. Looking in more detail by referring to the response obtained
through the query in Listing 6.4, and presented in Table 6.4, we can determine the
reason for this discrepancy. The proxy service exposes port 80 to the Docker Host,
while the db service exposes port 5432 internally5.

4This application has a Go backend, an Nginx proxy and a PostgreSQL database. The description
of this application is available at https://github.com/docker/awesome-compose/tree/master/nginx-
golang-postgres. The hash of the version used is c2f8036fd353dae457eba7b9b436bf3a1c85d937.

5It is expectable for the db service to expose PostgreSQL’s default port to the backend, but not
to all other services. This verification could potentially be added to our rule policy too.

https://github.com/docker/awesome-compose/tree/master/nginx-golang-postgres
https://github.com/docker/awesome-compose/tree/master/nginx-golang-postgres

46 6. SEMANTICALLY ENRICHED INFRASTRUCTURE AS CODE

Figure 6.2: Visual representation of classes, their instances and object properties
of the App 2 knowledge base.

Table 6.4: The result of the query presented in Listing 6.4 (i.e., compliance check),
based on App 2.

App 2
?service1 ?hostPort ?internalPort

:proxy 80ˆˆxsd:string
:db 5432ˆˆxsd:string

6.4 Docker-based 5G Core Network Deployment

The 5G Core Network definition is cloud-native and composed of VNFs that can
be realized as micro services [84]. In 5G networks, Network Functions (NFs) have
different functionalities, with a clear decoupling between control and data plane NFs.
These properties make the deployment of 5G network elements as Docker containers,
as well as the verification of certain rules, an interesting exercise.

This section presents automated deployment scenarios for VNFs, whose definition
is provided through compose.yaml files. It explores the possibilities of the Container
Networking Ontology to improve the comprehension of Docker-based 5G Core Network

6.4. DOCKER-BASED 5G CORE NETWORK DEPLOYMENT 47

Figure 6.3: Visual representation of classes and object properties of the Free5GC
knowledge base, emphasizing the privnet custom network.

deployments. Moreover, it contains an overview of two knowledge bases populated
using publicly available compose.yaml files, commonly used for deploying open-source
5G Core Network infrastructures.

6.4.1 Free 5G Core Solution

Free5GC [81] is a project established for developing an open-source 5G Core Network.
This Docker-based 5G Core Network solution is aligned with the 3rd Generation
Partnership Project (3GPP) Release 15 [85].

Based on the publicly available Docker Compose file6 created as part of the
Free5GC project, we build a knowledge base named Free5GC, included already
in Table 6.1. The resulting knowledge base has 15 instances of the class Service, one
instance of the class IP Network and another of the class IP Address. For enhanced
clarity and visibility, only one instance of the class Service and its neighbouring

6The docker-compose.yaml file is available at https://github.com/free5gc/free5gc-compose/tree/
master. The hash of the version used is f37df73be36da7d0752e9a7075e588bcec8e0815.

https://github.com/free5gc/free5gc-compose/tree/master
https://github.com/free5gc/free5gc-compose/tree/master

48 6. SEMANTICALLY ENRICHED INFRASTRUCTURE AS CODE

nodes are presented in Figure 6.3. However, the entire graph structure can be found
in the Appendix A.

In this scenario, all services share the network definition since they all connect
to the privnet IP Network, as presented in Table 6.1 for the Free5GC knowledge
base. Consequently, the “Connectivity between Services” rule is maintained between
all the services since they have connectivity among themselves. Furthermore, there
are no specific HTTP ports defined, implying that the 11 Non-compliances arise from
ports other than HTTP and HTTPS.

6.4.2 Open Air Interface 5G Core Network Solution

Another 5G Core Network deployment, also compliant with the 3GPP standalone 5G
deployment scenario, specifically Release 16, is provided as part of the OAI project [82].
This project presents a Docker Compose-based solution that is regularly updated. To
build the OAI5GC knowledge base, we refer to the Basic 5GC deployment mode7.

As presented in Table 6.1, there is a total of nine instances for each of the classes
Service and IP Address, with a single IP Network defined. Additionally, the result
for the Custom IP Network suggests that all the services connect to the same custom
network. Therefore, the reasoning engine creates the hasConnectivityWith property
between each pair of services, based on the “Connectivity between Services” rule.
Moreover, with the visual representation of classes, properties and instances, we can
observe the networking definitions for each service. In Figure 6.4, we highlight the
oai-amf instance of the class Service to allow a more focused examination of a
service and its relationships with instances of the other two classes. However, the
knowledge graph corresponding to this case, which includes all the instances of the
class Service, is available in the Appendix A.

Table 6.1 provides more information about the OAI5GC knowledge base. Within
this knowledge base, there are 16 Internal Ports defined, out of which six are detected
as HTTP Internal Ports. To investigate the cause behind the seven identified Non-
compliances, or seven services with forbidden ports defined, we execute the query
presented in Listing 6.4. In Table 6.5, we can observe the services which, besides port
80, expose other non-allowed ports internally. As a result, we can see the discrepancy
between the service definition and the “Compliance Check” rule.

7The docker-compose-basic-nrf.yaml file is available at https://gitlab.eurecom.fr/oai/cn5g/oai-
cn5g-fed/-/tree/master/docker-compose?ref_type=heads. The commit hash for the version used is
8848fde594081b07e44abd777321a6c29b993363.

https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/tree/master/docker-compose?ref_type=heads
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/tree/master/docker-compose?ref_type=heads

6.5. SUMMARY 49

Figure 6.4: Visual representation of classes and object properties of the OAI5GC
knowledge base, emphasizing the oai-amf service.

6.5 Summary

Based on the survey of different Docker Compose-based applications, we utilize the
Container Networking Ontology to capture the implicit knowledge of various IaC
solutions that rely solely on the syntax of compose.yaml files. Accordingly, we enrich
each IaC deployment with explicit semantics and further explore and reason with
additional knowledge by resorting to formal logic and graph querying. Moreover, we
present scenarios that rely on different technologies, from web applications to the 5G
Core network Docker-based deployments.

Our results reveal that the analysis of IaC deployments can be conducted by
defining rules and principles that services must comply with. In particular, we
demonstrated that these principles can be represented universally (i.e., mapped to
well-defined concepts) and be transparently applied to a wide variety of diverse IaC
applications without requiring any modification. Besides drawing of new conclusions
about these applications, this allows the development of a common understanding
between different stakeholders. For instance, based on the cumulative analysis of the

50 6. SEMANTICALLY ENRICHED INFRASTRUCTURE AS CODE

Table 6.5: The result of the query presented in Listing 6.4 (i.e., compliance check),
based on OAI5GC.

OAI5GC
?service1 ?hostPort ?internalPort

:oai-amf 8080/tcpˆˆxsd:string
:oai-amf 38412/sctpˆˆxsd:string

:oai-amf 80/tcpˆˆxsd:string
:oai-ausf 8080/tcpˆˆxsd:string

:oai-ausf 80/tcpˆˆxsd:string
:oai-nrf 8080/tcpˆˆxsd:string

:oai-nrf 80/tcpˆˆxsd:string
:oai-smf 8080/tcpˆˆxsd:string
:oai-smf 8805/udpˆˆxsd:string

:oai-smf 80/tcpˆˆxsd:string
:oai-udm 8080/tcpˆˆxsd:string

:oai-udm 80/tcpˆˆxsd:string
:oai-udr 8080/tcpˆˆxsd:string
:oai-udr 80/tcpˆˆxsd:string
:oai-upf 8805/udpˆˆxsd:string
:oai-upf 2152/udpˆˆxsd:string

Awesome Compose samples, we can observe that IP Address definitions are excluded.
This suggests that application developers rely on the default assignment of private
IP addresses provided by Docker Compose, disregarding typical network security
conventions. Conversely, the developers of the presented 5G Core Networks, likely to
be more familiar with network management, opt for static IP address allocations.
By having a collective view of different approaches to IaC deployments enabled by
our proposed ontology, we believe that sharing best practices and common security
policies will be facilitated.

Chapter7Concluding Remarks

Throughout this thesis, we capture the definitions of networking concepts within a
container-based ICT infrastructure by creating an ontology. By its very nature (cf.
Section 2.1), an ontology allows machine interpretation and intelligible definitions
of concepts by abstracting their representation. Through our semantically-enriched
IaC approach, we explored ontology extension and reuse, the integration of network
policies as logic-based rules, the inference of new knowledge, and applied these
concepts to assess different applications defined as code.

In the following two sections of this concluding chapter, we discuss our approaches
in more detail and provide an overview of contributions through the recapitulation
of our research questions.

7.1 Discussion

In this section, we reflect on the possible implications and constraints of the research
presented in this thesis. Furthermore, we examine potential avenues for improving
our findings.

The scope of the thesis

The high-level objective of this thesis is to demonstrate the potential of a knowledge-
based approach to represent IaC deployments and enhance the understanding of the
networking domain. To achieve this goal, our scope converged towards Docker, even
though we could have referred to other container orchestration platforms such as
Kubernetes [86] to validate our approach. However, by narrowing the scope to the
Docker and Docker Compose, we have been able to delve deeper into key concepts
and achieve progress in adding explicit semantics to the applications defined through
compose.yaml files.

51

52 7. CONCLUDING REMARKS

Besides the ability to formalize the definition of container-based applications, we
also demonstrated the practice of inferring new knowledge, based on well-defined
concepts within the Container Networking Ontology. Moreover, the analysis of various
Compose-based applications provides suggestions for improving the knowledge sharing
between stakeholders, such as application developers, network managers and policy
officers.

Ontology design

As presented in Chapter 5, the Container Networking Ontology represents the
extension of the Network Infrastructure Ontology created by Corcho, Chaves-Fraga,
Toledo, et al. [58]. In our literature search, in which we focused on the ontologies for
software-based networks and containers, we identified that prior studies often do not
fully comply with the FAIR principles. Furthermore, we observed that an ontology
must be publicly accessible to use the definition of concepts within a context which
aligns with our determined scope.

The ontology network presented in [58] provides definitions of concepts which
match our motivational example and follow the standards for ontology reuse. To
create the ontology network, the authors follow the human-centric ontology design
process by considering collaboration with multiple stakeholders. Furthermore, it
supports our aspiration to use an ontology as a tool for enhancing the comprehension
of network-related concepts of IaC systems and for assisting different human actors in
making informed decisions. We acknowledge this effort and extend it to demonstrate
its applicability in container-based IaC.

The potential for expanding the ontology

The Container Networking Ontology contains IP Address, IP Network and Service
classes, which are mutually disjoint. Based on the definition of concepts within our
target platform, Docker, we designed relationships between these three classes using
object properties. In addition, we defined the datatype properties used to provide
additional details to each class. In particular, the IP Network class has an attribute
representing the subnet, specified by the datatype property hasSubnet. In Docker
terms, this class represents a custom or user-defined network.

The concept of a network can be further characterized with additional keywords
such as host, none, ipvlan or macvlan [87]. Other container-specific concepts,
such as link which allows two containers to communicate using aliases, may also be
interesting to consider in the future. Therefore, the Container Networking Ontology
has the potential for extension, enabling it to encompass more networking options
available in different IaC specifications. This is indicated in the ontology development
methodology (cf. Section 4.2), which suggests updates during the ontology life-cycle.

7.1. DISCUSSION 53

Annotations for a more robust parser

The Container Networking Ontology was designed to enable knowledge representation
of containerized platforms beyond Docker. This was the rationale that motivated the
exclusion of Docker-specific attributes. However, the developed Data Parsing and
Populating Module (cf. Section 5.2) is a prototype and is solely based on the Docker
Compose syntax. Nevertheless, this module can be adapted to be agnostic to the
underlying containerization platform. For instance, we could resort to annotations in
the compose.yaml file, or equivalent in other tools, in order to allow more explicit
mapping of concepts and properties as well as to add explanations for networks and
services.

A similar principle of annotations already exists for HTML documents in the field
of Web Semantics. It is achieved with RDFa, which embeds attributes like typeof
or property to make human-readable content in web pages machine-readable too
(i.e., hints on the semantics of specific data such as a name or a phone number) [26].
Similarly, we could utilize the comment symbol (#) or YAML’s reserved character
(@) to explicitly include information about services, such as their connectivity
requirements, or even specific network policies across the deployment. This approach
intends application developers, network engineers and others to have an active role
in including annotations and enhancing the definition of infrastructure with meaning
for both humans and machines. Moreover, such an extension would directly map the
definition of container-based infrastructure to our ontology, and the parser would
not be limited to the Docker Compose. With this in mind, the Data Parsing and
Populating Module would be compatible with other container-based platforms using
YAML, such as Kubernetes.

Post-deployment knowledge

We utilized the Container Networking Ontology and the Data Parsing and Populating
Module to create knowledge graphs of different sizes, representing the content of
the Docker Compose files. This would commonly be considered a pre-deployment
task, which does not cover operation, management and maintenance of a typical
infrastructure. Nevertheless, our model has the potential to be extended beyond
adding meaning to static definitions of services and networking configuration. For
example, we could resort to a monitoring agent to track changes and populate the
knowledge graph. With the up-to-date knowledge base, compliance checks against
defined logic rules can be verified in real time while the application is running. By
tracking changes, and being assisted by a reasoner, we could detect misconfigurations
and gain a deeper understanding of sources for non-compliance. Potentially, this
approach could even be used to prevent changes that would cause an issue or even a
network security risk.

54 7. CONCLUDING REMARKS

Increased automation

Handling post-deployment knowledge would require creating an automated process
for reasoning over the populated knowledge base. Since our solution presents the
proof of the ontology-based concept in IaC, we executed actions of rule creation
and consistency checks in Protégé. This is a well-known tool among ontology
engineers which is fully compatible with OWL, SWRL and other Semantic Web
Technologies of interest [76]. However, it has certain limitations, such as the need for
manual interaction with the interface and reasoner compatibility for Windows OS.
In particular, after significant effort, we realised that the reasoning with Pellet over
SWRL rules did not work in this OS, while the same process immediately worked in
Linux and Mac.

To understand the potential of automation, we explored the use of general-purpose
programming languages like Python. We utilized the owlready2 package in Python,
compatible with Semantic Web Technologies, to create and query the knowledge
base. Moreover, we identified the potential of running the reasoner and developing
a monitoring agent in one tool (e.g., a Python-based application), which could
potentially increase control and efficiency. Nevertheless, we did not manage to
reason over logic rules written in SWRL using owlready. Therefore, future work
would require a detailed investigation of software compatible with Semantic Web
Technologies to create a more automated solution.

Human-centric evaluation

The aim of the semantically-enriched IaC is to assist human actors by creating a
common understanding of the system. The results presented in Chapter 6 suggest
that the Container Networking Ontology can assist multidisciplinary actors in
making informed conclusions, based on the rules written through DLs. Bearing
in mind the results of various deployment scenarios that we assessed, we can verify
that traditional application developers tend to overlook network management best
practices, in contrast with the developers of 5G Core Networks, which include a
more explicit network definition in their deployment. By arranging knowledge about
the services and network-related definitions in a structured way, we argue that best
practices and coding patterns in IaC can be more easily identified, and expertise can
be shared.

In addition to knowledge sharing, developers can utilize the Container Networking
Ontology to understand better if their defined infrastructure as code is in accordance
with the rules specified by experts in varied domains, such as network security officers.
For that reason, we could expand our methodology to include an assessment of our
model in a real-world environment. With the assistance of stakeholders, especially

7.2. SUMMARY OF FINDINGS 55

experts in the IaC field, we would be able to better understand how IaC practices
could be improved by our approach.

7.2 Summary of Findings

In this section, we highlight the key contributions achieved while creating a semanti-
cally enriched model for checking networking rules in a container-based infrastructure.
Moreover, we provide an overview of the main findings obtained by answering the
research questions.

RQ1: What existing ontologies are available for representing knowledge
about container networking?

To answer this research question, we performed a literature review, which we organized
into three subcategories: (1) ontologies in communication networks, (2) ontologies
in Docker and (3) validation of Compose files. We examined these ontologies,
focusing on the software-based networks and network management of Information
and Communication Technology infrastructures. Moreover, we explored the ontologies
related to Docker infrastructure and the different tools used for the Docker Compose
files validation. Based on our literature search, we identified that prior research
studies have been made in our domain of interest, contributing to the improvement of
knowledge management and interoperability. Specifically, we discovered the DevOps
Infrastructure Ontology that follows the FAIR guidelines and a human-centric ontology
design while it also aligns with our high-level objective.

RQ2: How can these ontologies be adjusted to align with the
requirements of specific network policies?

Upon reviewing the relevant literature, we observed that the existing ontology
representing ICT infrastructure did not incorporate all the core concepts associated
with the chosen container-based definitions. Following ontology design best practices,
we developed the Container Networking Ontology. For this, we extended the Network
Infrastructure Ontology by introducing the class Service, representing the definition
of a Docker container. To validate network-related policies within the containerized
infrastructure, we adopted the definition of IP address and network from the Network
Infrastructure Ontology and created new properties that capture additional networking
aspects.

RQ3: How can we integrate generic rules to query knowledge graphs in
order to validate network policies?

To address this research question, we designed the Data Parsing and Populating
Module, responsible for the construction of a knowledge base for a given IaC definition.

56 7. CONCLUDING REMARKS

Moreover, we explored the capabilities of Description Logics and Semantic Web Rule
Language to establish four groups of rules related to the connectivity between services
and to detect possible port exposure vulnerabilities. To examine various Compose-
based scenarios, we applied these rules and used a consistent reasoning mechanism to
query each knowledge graph. The obtained results confirm our approach’s capability
of inferring new knowledge using logic-based rules, which can be readily used in
assessing IaC deployments.

In conclusion, the research presented in this thesis highlights a knowledge-based
approach that can assist humans in understanding the deployment of the container-
based infrastructure as code. This is achieved through a human-readable definition
of concepts represented in a flexible ontology. Moreover, with a formal knowledge
representation and the utilization of Semantic Web Technologies, we demonstrated
machine-based interpretation and reasoning of the parsed IaC data. Based on this
reasoning, newly inferred insights, such as the detection of non-compliance, may serve
as a basis for human actors to make more informed decisions, which can become an
integral part of the life cycle of an infrastructure. By enriching IaC with semantics,
we enable machines and humans with different expertise to speak the same language.

References

[1] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 8th ed.
United Kingdom: Pearson Education Limited, 2022.

[2] T. Wood, K. K. Ramakrishnan, et al., “Toward a software-based network: Integrating
software defined networking and network function virtualization”, IEEE Network,
vol. 29, no. 3, pp. 36–41, 2015.

[3] W. Attaoui, E. Sabir, et al., “VNF and CNF Placement in 5G: Recent Advances and
Future Trends”, en, IEEE Transactions on Network and Service Management, vol. 20,
no. 4, pp. 4698–4733, Dec. 2023. [Online]. Available: https://ieeexplore.ieee.org/docu
ment/10090468/ (last visited: Dec. 18, 2023).

[4] K. Morris, Infrastructure as Code, en. O’Reilly Media, Inc., Dec. 2020, Google-Books-
ID: UW4NEAAAQBAJ.

[5] A. Valdes, The Best Infrastructure as Code Tools for 2024. [Online]. Available: https:
//www.clickittech.com/devops/infrastructure-as-code-tools/ (last visited: Dec. 18,
2023).

[6] M. Guerriero, M. Garriga, et al., “Adoption, Support, and Challenges of Infrastructure-
as-Code: Insights from Industry”, en, in 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Cleveland, OH, USA: IEEE, Sep.
2019, pp. 580–589. [Online]. Available: https://ieeexplore.ieee.org/document/8919181/
(last visited: Dec. 18, 2023).

[7] L. Leite, C. Rocha, et al., “A Survey of DevOps Concepts and Challenges”, en,
ACM Computing Surveys, vol. 52, no. 6, pp. 1–35, Nov. 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3359981 (last visited: Apr. 21, 2023).

[8] Cloud Container Distribution. [Online]. Available: https://www.ericsson.com/en/port
folio/cloud-software-and-services/cloud-core/cloud-infrastructure/cloud-native-inf
rastructure/cloud-container-distribution (last visited: Dec. 19, 2023).

[9] G. Wikström, P. Persson, et al., 6G – Connecting a cyber-physical world. [Online].
Available: https://www.ericsson.com/en/reports-and-papers/white-papers/a-research
-outlook-towards-6g (last visited: Dec. 19, 2023).

[10] A. Simic, “Speaking the same language through logic and ontologies”, Department of
Information Security, Communication Technology, NTNU – Norwegian University of
Science, and Technology, Project report in TTM4502, Nov. 2022.

57

https://ieeexplore.ieee.org/document/10090468/
https://ieeexplore.ieee.org/document/10090468/
https://www.clickittech.com/devops/infrastructure-as-code-tools/
https://www.clickittech.com/devops/infrastructure-as-code-tools/
https://ieeexplore.ieee.org/document/8919181/
https://dl.acm.org/doi/10.1145/3359981
https://www.ericsson.com/en/portfolio/cloud-software-and-services/cloud-core/cloud-infrastructure/cloud-native-infrastructure/cloud-container-distribution
https://www.ericsson.com/en/portfolio/cloud-software-and-services/cloud-core/cloud-infrastructure/cloud-native-infrastructure/cloud-container-distribution
https://www.ericsson.com/en/portfolio/cloud-software-and-services/cloud-core/cloud-infrastructure/cloud-native-infrastructure/cloud-container-distribution
https://www.ericsson.com/en/reports-and-papers/white-papers/a-research-outlook-towards-6g
https://www.ericsson.com/en/reports-and-papers/white-papers/a-research-outlook-towards-6g

58 REFERENCES

[11] F. Javier Zorzano Mier and C. Á. Iglesias, “Applications of Knowledge Graphs in
Telecommunication Systems Management”, IEEE Internet Computing, vol. 27, no. 3,
pp. 29–34, May 2023, Conference Name: IEEE Internet Computing.

[12] Social Sustainability. [Online]. Available: https://unglobalcompact.org/what-is-gc/ou
r-work/social#:~:text=Social%20sustainability%20is%20about%20identifying,with
%20its%20stakeholders%20is%20critical. (last visited: Feb. 19, 2024).

[13] THE 17 GOALS. [Online]. Available: https://sdgs.un.org/goals (last visited: Feb. 19,
2024).

[14] M. D. Wilkinson, M. Dumontier, et al., “The FAIR Guiding Principles for scientific
data management and stewardship”, en, Scientific Data, vol. 3, no. 1, p. 160 018, Mar.
2016, Number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://w
ww.nature.com/articles/sdata201618 (last visited: Sep. 6, 2023).

[15] Logic and Ontology. [Online]. Available: https://plato.stanford.edu/entries/logic-ont
ology/#Onto (last visited: Dec. 22, 2023).

[16] T. R. Gruber, “A translation approach to portable ontology specifications”, Knowledge
Acquisition, vol. 5, no. 2, pp. 199–220, Jun. 1993. [Online]. Available: https://www.sci
encedirect.com/science/article/pii/S1042814383710083 (last visited: Aug. 30, 2023).

[17] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering: Principles and
methods”, Data & Knowledge Engineering, vol. 25, no. 1, pp. 161–197, Mar. 1998.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169023X970
00566 (last visited: Dec. 22, 2023).

[18] S. Rudolph, “Foundations of Description Logics”, en, in Reasoning Web. Semantic
Technologies for the Web of Data, A. Polleres, C. d’Amato, et al., Eds., vol. 6848,
Series Title: Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 76–136. [Online]. Available: http://link.springer.com/10.1007/9
78-3-642-23032-5_2 (last visited: Sep. 5, 2023).

[19] F. Baader, D. L. McGuinness, et al., The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, 2003.

[20] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web: A New Form of
Web Content that is Meaningful to Computers will Unleash a Revolution of New
Possibilities”, en, in Linking the World’s Information, O. Seneviratne and J. Hendler,
Eds., 1st ed., New York, NY, USA: ACM, Jul. 2023, pp. 91–103. [Online]. Available:
https://dl.acm.org/doi/10.1145/3591366.3591376 (last visited: Dec. 23, 2023).

[21] The Semantic Web - Not a piece of cake... [Online]. Available: https://web.archive.or
g/web/20220628120341/http://bnode.org/blog/2009/07/08/the-semantic-web-not-
a-piece-of-cake (last visited: Dec. 23, 2023).

[22] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform Resource Identifier (URI):
Generic Syntax, 2005. [Online]. Available: https://www.ietf.org/rfc/rfc3986.txt (last
visited: Jan. 8, 2024).

[23] M. Duerst and M. Suignard, Internationalized Resource Identifiers (IRIs), 2005.
[Online]. Available: https://datatracker.ietf .org/doc/html/rfc3987 (last visited:
Jan. 8, 2024).

https://unglobalcompact.org/what-is-gc/our-work/social#:~:text=Social%20sustainability%20is%20about%20identifying,with%20its%20stakeholders%20is%20critical.
https://unglobalcompact.org/what-is-gc/our-work/social#:~:text=Social%20sustainability%20is%20about%20identifying,with%20its%20stakeholders%20is%20critical.
https://unglobalcompact.org/what-is-gc/our-work/social#:~:text=Social%20sustainability%20is%20about%20identifying,with%20its%20stakeholders%20is%20critical.
https://sdgs.un.org/goals
https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
https://plato.stanford.edu/entries/logic-ontology/#Onto
https://plato.stanford.edu/entries/logic-ontology/#Onto
https://www.sciencedirect.com/science/article/pii/S1042814383710083
https://www.sciencedirect.com/science/article/pii/S1042814383710083
https://www.sciencedirect.com/science/article/pii/S0169023X97000566
https://www.sciencedirect.com/science/article/pii/S0169023X97000566
http://link.springer.com/10.1007/978-3-642-23032-5_2
http://link.springer.com/10.1007/978-3-642-23032-5_2
https://dl.acm.org/doi/10.1145/3591366.3591376
https://web.archive.org/web/20220628120341/http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
https://web.archive.org/web/20220628120341/http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
https://web.archive.org/web/20220628120341/http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
https://www.ietf.org/rfc/rfc3986.txt
https://datatracker.ietf.org/doc/html/rfc3987

REFERENCES 59

[24] T. Bray, J. Paoli, et al., Extensible Markup Language (XML) 1.0 (Fifth Edition),
2008. [Online]. Available: https://www.w3.org/TR/xml/ (last visited: Jan. 8, 2024).

[25] D. Beckett, T. Berners-Lee, et al., RDF 1.1 Turtle, 2014. [Online]. Available: https:
//www.w3.org/TR/turtle/ (last visited: Jan. 8, 2024).

[26] I. Herman, B. Adida, et al., RDFa 1.1 Primer - Third Edition, 2015. [Online]. Available:
https://www.w3.org/TR/rdfa-primer/ (last visited: Jan. 8, 2024).

[27] M. Sporny, D. Longley, et al., JSON-LD 1.1, 2020. [Online]. Available: https://www
.w3.org/TR/json-ld11/ (last visited: Jan. 8, 2024).

[28] F. Manola, E. Miller, et al., RDF 1.1 Primer, 2014. [Online]. Available: https://www
.w3.org/TR/rdf11-primer/#section-data-model (last visited: Jan. 1, 2024).

[29] S. Bechhofer, F. van Harmelen, et al., OWL Web Ontology Language Reference, 2004.
[Online]. Available: https://www.w3.org/TR/owl-ref/ (last visited: Jan. 4, 2024).

[30] D. Brickley, R. Guha, and B. McBride, RDF Schema 1.1, 2014. [Online]. Available:
https://www.w3.org/TR/rdf-schema/ (last visited: Feb. 1, 2024).

[31] S. Harris, A. Seaborne, and E. Prud’hommeaux, SPARQL 1.1 Query Language, 2013.
[Online]. Available: https://www.w3.org/TR/sparql11-query/ (last visited: Jan. 4,
2024).

[32] I. Horrocks, P. F. Patel-Schneider, et al., SWRL: A Semantic Web Rule Language
Combining OWL and RuleML, 2004. [Online]. Available: https://www.w3.org/submi
ssions/SWRL/ (last visited: Jan. 5, 2024).

[33] P. Hitzler, K. Janowicz, and E. Hyvönen, “Using the Semantic Web in digital hu-
manities: Shift from data publishing to data-analysis and serendipitous knowledge
discovery”, Semantic Web, vol. 11, no. 1, pp. 187–193, Jan. 2020. [Online]. Available:
https://doi.org/10.3233/SW-190386 (last visited: Jan. 21, 2024).

[34] T. Tudorache, C. I. Nyulas, et al., “Using Semantic Web in ICD-11: Three Years
Down the Road”, en, in The Semantic Web – ISWC 2013, H. Alani, L. Kagal, et
al., Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 2013,
pp. 195–211.

[35] J. M. Serrano Orozco, Applied Ontology Engineering in Cloud Services, Networks
and Management Systems, en. Boston, MA: Springer US, 2012. [Online]. Available:
https://link.springer.com/10.1007/978-1-4614-2236-5 (last visited: Sep. 10, 2023).

[36] localhost (Q153799). [Online]. Available: https://www.wikidata.org/wiki/Q153799
(last visited: Jan. 1, 2024).

[37] Wikidata:Introduction. [Online]. Available: https://www.wikidata.org/wiki/Wikidata
:Introduction (last visited: Jan. 1, 2024).

[38] Wikidata:Identifiers. [Online]. Available: https://www.wikidata.org/wiki/Wikidata:
Identifiers (last visited: Jan. 1, 2024).

[39] D. Allemang, J. Hendler, and F. Gandon, Semantic Web for the Working Ontologist:
Effective Modeling for Linked Data, RDFS, and OWL, 3rd ed. New York, NY, USA:
Association for Computing Machinery, 2020, vol. 33.

https://www.w3.org/TR/xml/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/rdf11-primer/#section-data-model
https://www.w3.org/TR/rdf11-primer/#section-data-model
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/submissions/SWRL/
https://www.w3.org/submissions/SWRL/
https://doi.org/10.3233/SW-190386
https://link.springer.com/10.1007/978-1-4614-2236-5
https://www.wikidata.org/wiki/Q153799
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Identifiers
https://www.wikidata.org/wiki/Wikidata:Identifiers

60 REFERENCES

[40] About: IP address. [Online]. Available: https://dbpedia.org/page/IP_address (last
visited: Jan. 3, 2024).

[41] C. M. Keet, “Open World Assumption”, en, in Encyclopedia of Systems Biology, W.
Dubitzky, O. Wolkenhauer, et al., Eds., New York, NY: Springer, 2013, pp. 1567–1567.
[Online]. Available: https://doi.org/10.1007/978-1-4419-9863-7_734 (last visited:
Jan. 3, 2024).

[42] Datalog for Data Analysis: A Beginner’s Guide. [Online]. Available: https://datalog
.dev/article/Datalog_for_data_analysis_A_beginners_guide.html (last visited:
Feb. 25, 2024).

[43] Wikidata Query Service. [Online]. Available: https://w.wiki/8hGP (last visited:
Jan. 1, 2024).

[44] A. Bhardwaj and C. R. Krishna, “Virtualization in Cloud Computing: Moving from
Hypervisor to Containerization—A Survey”, en, Arabian Journal for Science and
Engineering, vol. 46, no. 9, pp. 8585–8601, Sep. 2021. [Online]. Available: https://doi
.org/10.1007/s13369-021-05553-3 (last visited: Jan. 5, 2024).

[45] Docker overview. [Online]. Available: https://docs.docker.com/get-started/overview
/#docker-architecture (last visited: Jan. 8, 2024).

[46] J. Turnbull, The Docker Book, 2016. [Online]. Available: https://dockerbook.com/
(last visited: Jan. 8, 2024).

[47] Networking in Compose. [Online]. Available: https://docs.docker.com/compose/netw
orking/ (last visited: Jan. 8, 2024).

[48] M. H. Ibrahim, M. Sayagh, and A. E. Hassan, “A study of how Docker Compose
is used to compose multi-component systems”, en, Empirical Software Engineering,
vol. 26, no. 6, p. 128, Sep. 2021. [Online]. Available: https://doi.org/10.1007/s10664-0
21-10025-1 (last visited: Jan. 8, 2024).

[49] Docker Compose overview. [Online]. Available: https://docs.docker.com/compose/
(last visited: Jan. 8, 2024).

[50] Why use Compose? [Online]. Available: https://docs.docker.com/compose/intro/feat
ures-uses/ (last visited: Jan. 8, 2024).

[51] Docker/Kubernetes Projects. [Online]. Available: https://www.ericsson.com/en/caree
rs/global-locations/poland/dockerkubernetes-projects (last visited: Jan. 26, 2024).

[52] 4G/5G Networks Software. [Online]. Available: https://www.northeastern.edu/coloss
eum/cellular-software/ (last visited: Jan. 26, 2024).

[53] Q. Zhou, A. J. G. Gray, and S. McLaughlin, “ToCo: An Ontology for Representing
Hybrid Telecommunication Networks”, en, in The Semantic Web, vol. 11503, Series
Title: Lecture Notes in Computer Science, Cham: Springer International Publishing,
2019, pp. 507–522. [Online]. Available: http://link.springer.com/10.1007/978-3-030-2
1348-0_33 (last visited: Jan. 31, 2023).

[54] Z. Qianru, TOUCAN Ontology (ToCo). [Online]. Available: https://github.com/Qian
ruZhou333/toco_ontology (last visited: Aug. 4, 2023).

https://dbpedia.org/page/IP_address
https://doi.org/10.1007/978-1-4419-9863-7_734
https://datalog.dev/article/Datalog_for_data_analysis_A_beginners_guide.html
https://datalog.dev/article/Datalog_for_data_analysis_A_beginners_guide.html
https://w.wiki/8hGP
https://doi.org/10.1007/s13369-021-05553-3
https://doi.org/10.1007/s13369-021-05553-3
https://docs.docker.com/get-started/overview/#docker-architecture
https://docs.docker.com/get-started/overview/#docker-architecture
https://dockerbook.com/
https://docs.docker.com/compose/networking/
https://docs.docker.com/compose/networking/
https://doi.org/10.1007/s10664-021-10025-1
https://doi.org/10.1007/s10664-021-10025-1
https://docs.docker.com/compose/
https://docs.docker.com/compose/intro/features-uses/
https://docs.docker.com/compose/intro/features-uses/
https://www.ericsson.com/en/careers/global-locations/poland/dockerkubernetes-projects
https://www.ericsson.com/en/careers/global-locations/poland/dockerkubernetes-projects
https://www.northeastern.edu/colosseum/cellular-software/
https://www.northeastern.edu/colosseum/cellular-software/
http://link.springer.com/10.1007/978-3-030-21348-0_33
http://link.springer.com/10.1007/978-3-030-21348-0_33
https://github.com/QianruZhou333/toco_ontology
https://github.com/QianruZhou333/toco_ontology

REFERENCES 61

[55] J. C. C. Tesolin, A. M. Demori, et al., “Enhancing heterogeneous mobile network
management based on a well-founded reference ontology”, Future Generation Computer
Systems, vol. 149, pp. 577–593, Dec. 2023. [Online]. Available: https://www.sciencedi
rect.com/science/article/pii/S0167739X23003084 (last visited: Jan. 22, 2024).

[56] N. F. Saraiva de Sousa, D. Lachos Perez, et al., “End-to-End Service Monitoring
for Zero-Touch Networks”, en, Journal of ICT Standardization, May 2021. [Online].
Available: https://journals.riverpublishers.com/index.php/JICTS/article/view/5789
(last visited: May 31, 2023).

[57] About SLSA. [Online]. Available: https://slsa.dev/spec/v1.0/about (last visited:
Jan. 26, 2024).

[58] O. Corcho, D. Chaves-Fraga, et al., “A High-Level Ontology Network for ICT In-
frastructures”, en, in The Semantic Web – ISWC 2021, A. Hotho, E. Blomqvist,
et al., Eds., ser. Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2021, pp. 446–462.

[59] A. Martinez, M. Yannuzzi, et al., “An Ontology-Based Information Extraction Sys-
tem for bridging the configuration gap in hybrid SDN environments”, en, in 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM), Ot-
tawa, ON, Canada: IEEE, May 2015, pp. 441–449. [Online]. Available: http://ieeexpl
ore.ieee.org/document/7140321/ (last visited: Jan. 31, 2023).

[60] H. A. Tran, D. Tran, et al., “A novel SDN controller based on Ontology and Global
Optimization for heterogeneous IoT architecture”, en, in Proceedings of the Eighth
International Symposium on Information and Communication Technology, Nha Trang
City Viet Nam: ACM, Dec. 2017, pp. 293–300. [Online]. Available: https://dl.acm.org
/doi/10.1145/3155133.3155143 (last visited: Jan. 31, 2023).

[61] Q. Zhou, A. J. G. Gray, and S. McLaughlin, SeaNet – Towards A Knowledge Graph
Based Autonomic Management of Software Defined Networks, arXiv:2106.13367 [cs],
May 2022. [Online]. Available: http://arxiv.org/abs/2106.13367 (last visited: Aug. 4,
2023).

[62] R. Tommasini, B. D. Meester, et al., “Representing Dockerfiles in RDF”, en, [Online].
Available: https://ceur-ws.org/Vol-1963/paper528.pdf (last visited: Aug. 15, 2023).

[63] D. Huo, J. Nabrzyski, and C. F. V. Ii, “Smart Container: An ontology towards
conceptualizing Docker”, en, [Online]. Available: https://ceur-ws.org/Vol-1486/paper
_89.pdf (last visited: Aug. 15, 2023).

[64] M. Osorio, C. Buil-Aranda, et al., “DockerPedia: A Knowledge Graph of Software
Images and Their Metadata”, en, International Journal of Software Engineering and
Knowledge Engineering, vol. 32, no. 01, pp. 71–89, Jan. 2022. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/S0218194022500036 (last visited:
Feb. 15, 2023).

[65] J. Zhou, W. Chen, et al., “DockerKG: A Knowledge Graph of Docker Artifacts”,
en, in Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, Seoul Republic of Korea: ACM, Jun. 2020, pp. 367–372.
[Online]. Available: https://dl.acm.org/doi/10.1145/3387940.3392161 (last visited:
Aug. 1, 2023).

https://www.sciencedirect.com/science/article/pii/S0167739X23003084
https://www.sciencedirect.com/science/article/pii/S0167739X23003084
https://journals.riverpublishers.com/index.php/JICTS/article/view/5789
https://slsa.dev/spec/v1.0/about
http://ieeexplore.ieee.org/document/7140321/
http://ieeexplore.ieee.org/document/7140321/
https://dl.acm.org/doi/10.1145/3155133.3155143
https://dl.acm.org/doi/10.1145/3155133.3155143
http://arxiv.org/abs/2106.13367
https://ceur-ws.org/Vol-1963/paper528.pdf
https://ceur-ws.org/Vol-1486/paper_89.pdf
https://ceur-ws.org/Vol-1486/paper_89.pdf
https://www.worldscientific.com/doi/abs/10.1142/S0218194022500036
https://dl.acm.org/doi/10.1145/3387940.3392161

62 REFERENCES

[66] L. Jonathan, Docker Ontology, 2017. [Online]. Available: https://www.w3.org/comm
unity/bigdata-tools/2017/10/30/docker-ontology/ (last visited: Jan. 8, 2024).

[67] Docker Ontology, 2017. [Online]. Available: https://github.com/langens-jonathan/do
cker-vocab/blob/master/docker.md (last visited: Jan. 8, 2024).

[68] K. Boukadi, M. Rekik, et al., “Container description ontology for CaaS”, International
Journal of Web and Grid Services, vol. 16, no. 4, pp. 341–363, Jan. 2020. [Online].
Available: https://doi.org/10.1504/ijwgs.2020.110944 (last visited: Nov. 20, 2023).

[69] Introducing the Docker Compose Validator, 2019. [Online]. Available: https://blog.zh
aw.ch/splab/2019/10/04/introducing-the-docker-compose-validator/ (last visited:
Jan. 8, 2024).

[70] DockStation, 2017. [Online]. Available: https://dockstation.io/ (last visited: Jan. 8,
2024).

[71] B. Piedade, J. P. Dias, and F. F. Correia, “Visual notations in container orchestrations:
An empirical study with Docker Compose”, en, Software and Systems Modeling, vol. 21,
no. 5, pp. 1983–2005, Oct. 2022. [Online]. Available: https://doi.org/10.1007/s10270-
022-01027-8 (last visited: Jan. 16, 2024).

[72] R. J. Wieringa, Design Science Methodology for Information Systems and Software
Engineering, en. Berlin, Heidelberg: Springer, 2014. [Online]. Available: https://link.s
pringer.com/10.1007/978-3-662-43839-8 (last visited: Oct. 13, 2023).

[73] M. Poveda-Villalón, A. Fernández-Izquierdo, et al., “LOT: An industrial oriented
ontology engineering framework”, Engineering Applications of Artificial Intelligence,
vol. 111, p. 104 755, May 2022. [Online]. Available: https://www.sciencedirect.com/sc
ience/article/pii/S0952197622000525 (last visited: Sep. 7, 2023).

[74] N. F. Noy and D. L. McGuinness, Ontology Development 101: A Guide to Creating
Your First Ontology. [Online]. Available: https://protege.stanford.edu/publications/o
ntology_development/ontology101.pdf (last visited: Jan. 24, 2023).

[75] M. Grüninger and M. S. Fox, “The role of competency questions in enterprise engi-
neering”, in Benchmarking — Theory and Practice, A. Rolstadås, Ed. Boston, MA:
Springer US, 1995, pp. 22–31. [Online]. Available: https://doi.org/10.1007/978-0-387-
34847-6_3.

[76] M. A. Musen, “The Protégé Project: A Look Back and a Look Forward”, AI matters,
vol. 1, no. 4, pp. 4–12, Jun. 2015. [Online]. Available: https://www.ncbi.nlm.nih.gov
/pmc/articles/PMC4883684/ (last visited: Jan. 28, 2024).

[77] J.-B. Lamy, “Owlready: Ontology-oriented programming in Python with automatic
classification and high level constructs for biomedical ontologies”, Artificial Intelligence
in Medicine, vol. 80, pp. 11–28, 2017. [Online]. Available: https://www.sciencedirect.c
om/science/article/pii/S0933365717300271.

[78] P. Nathan, kglab: a simple abstraction layer in Python for building knowledge graphs,
2020. [Online]. Available: https://github.com/DerwenAI/kglab.

[79] Pellet. [Online]. Available: https://www.w3.org/2001/sw/wiki/Pellet (last visited:
Feb. 1, 2024).

https://www.w3.org/community/bigdata-tools/2017/10/30/docker-ontology/
https://www.w3.org/community/bigdata-tools/2017/10/30/docker-ontology/
https://github.com/langens-jonathan/docker-vocab/blob/master/docker.md
https://github.com/langens-jonathan/docker-vocab/blob/master/docker.md
https://doi.org/10.1504/ijwgs.2020.110944
https://blog.zhaw.ch/splab/2019/10/04/introducing-the-docker-compose-validator/
https://blog.zhaw.ch/splab/2019/10/04/introducing-the-docker-compose-validator/
https://dockstation.io/
https://doi.org/10.1007/s10270-022-01027-8
https://doi.org/10.1007/s10270-022-01027-8
https://link.springer.com/10.1007/978-3-662-43839-8
https://link.springer.com/10.1007/978-3-662-43839-8
https://www.sciencedirect.com/science/article/pii/S0952197622000525
https://www.sciencedirect.com/science/article/pii/S0952197622000525
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://doi.org/10.1007/978-0-387-34847-6_3
https://doi.org/10.1007/978-0-387-34847-6_3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883684/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883684/
https://www.sciencedirect.com/science/article/pii/S0933365717300271
https://www.sciencedirect.com/science/article/pii/S0933365717300271
https://github.com/DerwenAI/kglab
https://www.w3.org/2001/sw/wiki/Pellet

REFERENCES 63

[80] LargeTripleStores - W3C Wiki. [Online]. Available: https://www.w3.org/wiki/Large
TripleStores (last visited: Feb. 16, 2024).

[81] What is free5GC? [Online]. Available: https://free5gc.org/ (last visited: Feb. 1, 2024).

[82] 5G CORE NETWORK. [Online]. Available: https://openairinterface.org/oai-5g-core-
network-project/ (last visited: Feb. 1, 2024).

[83] N. Wehbe, H. A. Alameddine, et al., “A Security Assessment of HTTP/2 Usage in
5G Service-Based Architecture”, IEEE Communications Magazine, vol. 61, no. 1,
pp. 48–54, Jan. 2023, Conference Name: IEEE Communications Magazine. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9952199 (last visited:
Feb. 8, 2024).

[84] J. J. Mats, Your guide to building a cloud native infrastructure for 5G. [Online].
Available: https://www.ericsson.com/en/blog/2020/10/guide-to-building-cloudnative
-infrastructure (last visited: Feb. 21, 2024).

[85] Releases. [Online]. Available: https://www.3gpp.org/specifications-technologies/relea
ses (last visited: Feb. 12, 2024).

[86] Why you need Kubernetes and what it can do. [Online]. Available: https://kubernete
s.io/docs/concepts/overview/ (last visited: Feb. 17, 2024).

[87] Network drivers overview. [Online]. Available: https://docs.docker.com/network/driv
ers/ (last visited: Feb. 17, 2024).

https://www.w3.org/wiki/LargeTripleStores
https://www.w3.org/wiki/LargeTripleStores
https://free5gc.org/
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-core-network-project/
https://ieeexplore.ieee.org/abstract/document/9952199
https://www.ericsson.com/en/blog/2020/10/guide-to-building-cloudnative-infrastructure
https://www.ericsson.com/en/blog/2020/10/guide-to-building-cloudnative-infrastructure
https://www.3gpp.org/specifications-technologies/releases
https://www.3gpp.org/specifications-technologies/releases
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://docs.docker.com/network/drivers/
https://docs.docker.com/network/drivers/

AppendixAIn-depth Knowledge Base
Visualization

This Appendix provides a more comprehensive view of Docker-based 5G Core Net-
work deployments, presented in Chapter 6. The following two sections present the
Free5GC [81] and the OAI5GC [82] knowledge base, visualized with Ontograf, in
Protégé [76].

A.1 Free5GC Knowledge Graph

As presented in Section 6.4.1, the Free5GC knowledge base consists of 15 instances
of the class Service, which is also shown in Figure A.1 (extended view of Figure 6.3).
In this knowledge graph, we can observe one instance of the class IP Network and
verify that all instances of the class Service are connected to this custom network
via the has IP Network object property. As a result, we can confirm that all pairs
of instances of the class Service have the connectivity between each other, even
without querying data with SPARQL. Moreover, we can see that static IP allocation
has been defined only for the free5gc-n3iwf service.

65

66 A. IN-DEPTH KNOWLEDGE BASE VISUALIZATION

F
ig

ur
e

A
.1

:
V

isu
al

re
pr

es
en

ta
tio

n
of

cl
as

se
s,

in
st

an
ce

s
an

d
ob

je
ct

pr
op

er
tie

s
of

th
e

Fr
ee

5G
C

kn
ow

le
dg

e
ba

se
.

A.2. OAI5GC KNOWLEDGE GRAPH 67

A.2 OAI5GC Knowledge Graph

Figure A.2 shows a more detailed knowledge graph compared to the visual represen-
tation presented in Section 6.4.2. Here, we can observe all the instances of the class
Service, their relationship with the public_net instance of the class IP Network
and all the instances of the class IP Address. The knowledge graph presented in Fig-
ure A.2 does not include the has static IP object property between all instances
of the class Service and public_net network. To reduce the number of edges in
the graph, similarly as in Figure 6.4, we emphasize the oai-amf service.

68 A. IN-DEPTH KNOWLEDGE BASE VISUALIZATION

F
ig

ur
e

A
.2

:
V

isu
al

re
pr

es
en

ta
tio

n
of

cl
as

se
s,

in
st

an
ce

s
an

d
ob

je
ct

pr
op

er
tie

s
of

th
e

O
A

I5
G

C
kn

ow
le

dg
e

ba
se

.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Knowledge-based Approach
	Research Questions
	Sustainability Aspects of the Thesis
	Thesis Structure

	Background
	Ontologies
	Description Logics
	Semantic Web Technologies
	Resource Description Framework
	Resource Description Framework Schema
	Web Ontology Language
	Semantic Web Rule Language
	SPARQL Protocol and RDF Query Language

	Virtualization and Containerization
	Docker
	Docker Compose

	Discussion

	State of the art
	Ontologies in Communication Networks
	Ontologies and Knowledge Graphs in Software-Defined Networking
	Ontologies in Docker
	Validation of Compose Files
	Summary

	Methodology
	Research Design
	Ontology Development

	Container Networking Ontology
	Designing the Ontology
	Data Parsing and Populating Module
	Consistency Checks and Verifying Rules
	Summary

	Semantically Enriched Infrastructure as Code
	Extending Knowledge with Description Logics
	Default Compose Network rule
	Connectivity between Services rule
	Exposed HTTP Port rule
	Compliance Check rule

	Exploring Knowledge with SPARQL
	Application Deployment
	Docker-based 5G Core Network Deployment
	Free 5G Core Solution
	Open Air Interface 5G Core Network Solution

	Summary

	Concluding Remarks
	Discussion
	Summary of Findings

	References
	In-depth Knowledge Base Visualization
	Free5GC Knowledge Graph
	OAI5GC Knowledge Graph

