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Abstract

Objective: This study aimed to predict fatigue 18 months post-stroke by utilizing comprehensive data from the acute and sub-acute phases after

stroke in a machine-learning set-up.

Design: A prospective multicenter cohort-study with 18-month follow-up.

Setting: Outpatient clinics at 3 university hospitals and 2 local hospitals.

Participants: 474 participants with the diagnosis of acute stroke (mean § SD age; 70.5 (11.3), 59% male; N=474).

Interventions: Not applicable.

Main Outcome Measures: The primary outcome, fatigue at 18 months, was assessed using the Fatigue Severity Scale (FSS-7). FSS-7≥5 was

defined as fatigue. In total, 45 prediction variables were collected, at initial hospital-stay and 3-month post-stroke.

Results: The best performing model, random forest, predicted 69% of all subjects with fatigue correctly with a sensitivity of 0.69 (95% CI: 0.50,

0.86), a specificity of 0.74 (95% CI: 0.66, 0.83), and an Area under the Receiver Operator Characteristic curve of 0.79 (95% CI: 0.69, 0.87) in

new unseen data. The proportion of subjects predicted to suffer from fatigue, who truly suffered from fatigue at 18-months was estimated to 0.41

(95% CI: 0.26, 0.57). The proportion of subjects predicted to be free from fatigue who truly did not have fatigue at 18-months was estimated to

0.90 (95% CI: 0.83, 0.96).

Conclusions: Our findings indicate that the model has satisfactory ability to predict fatigue in the chronic phase post-stroke and may be applicable

in clinical settings.
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Fatigue is a multidimensional, subjective experience, character-

ized by a sensation of early exhaustion, and aversion to effort.2

The reported prevalence of post-stroke fatigue (PSF) ranges from
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25% to 85%. As much as 40% of people suffering from PSF con-

sider it to be one of the worst consequences of stroke.4

The current body of literature suggests that the brain lesion,

stroke-related inflammatory and neuroendocrine changes as well

as impairment in attention and executive function can serve as a

trigger for developing early fatigue.5 The risk for persisting

fatigue increases with the prevalence of pre-stroke fatigue and

early PSF.6-8 In line with this observation, most longitudinal stud-

ies report stable fatigue levels after the subacute phase.8,9
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However, besides persistent forms of fatigue trajectories, one may

recover from fatigue or develop late-onset fatigue.5 Symptoms of

fatigue seem to be linked to affective, physical, psychological,

and behavioral factors, that also interact with each other, and may

also coexist in combination with related symptoms.5,10,11 In fact,

fatigue may be more common among stroke survivors with

depression, anxiety, pain, sleeping disturbances and attentional-

executive impairment,8,12-14 while conflicting evidence has been

found for the relationship between age and fatigue.8,13,15

Because fatigue still seems to be an overlooked part in stroke

care, the Canadian Stroke Best Practice Recommendations stress

the importance of screening and evaluation procedures early after

a stroke.16 Identification of individuals at high risk of persisting

fatigue may help to provide more targeted interventions, at the

right time. Previous attempts to develop reliable prediction tools

to identify individuals at risk of suffering from PSF have been

found to have limited predictive value.7,17 In addition, most clini-

cal risk models have been based on simple regression models,

including only a small number of predictors.18 With regard to the

increasing availability of large, comprehensive datasets and the

risk of complex variable interactions, machine learning techniques

may represent a viable solution to current prediction challenges.19

Therefore, this study aimed to apply a machine-learning approach

in predicting fatigue 18 months post-stroke by utilizing compre-

hensive data from the acute and sub-acute phases.
Methods
Study design and participants

This study utilized data from a national, multicenter, prospective,

cohort study with consecutive inclusion during hospital admission

with the diagnosis of acute stroke. Eligibility criteria of the main

study (N=815) were: 1) Admittance to 1 of the 5 participation hos-

pitals within 7 days after onset of symptoms; 2) acute stroke diag-

nosed according to the World Health Organization criteria or with

findings of acute infarction or intra-cerebral hemorrhage on mag-

netic resonance imaging; 3) able to speak a Scandinavian lan-

guage; 4) age≥18 years; and 5) living in the catchment area of the

recruiting hospitals. An expected survival of less than 3 months

led to exclusion from the study. The study protocol was approved

by the regional committees for medical and health research.

Details of the main study’s protocol are described elsewhere.20

For the present analyses we included subjects that had a valid mea-

surement of fatigue 18 months post-stroke.
Main outcome variable

The primary response variable, fatigue 18 months post-stroke, was

assessed using the Fatigue Severity Scale (FSS-7).21,22 On a Likert

Scale ranging from 1 (Strongly disagree) to 7 (Strongly agree),
List of abbreviations:

FSS-7 Fatigue Severity Scale

HADS Hospital Anxiety and Depression Scale

PA physical activity

PPV Positive predictive value

PSF Post-stroke fatigue

ROC-AUC area under the receiver operator characteristic curve
participants were asked to rate 7 fatigue-related statements in the

last week. For the analysis, the mean score of FSS-7 was dichoto-

mized in accordance with the recommendation to define high-level

fatigue as a mean score of 5 or above.23
Prediction variables

Table 1 provides an overview over all prediction variables,

obtained at baseline and at 3 months post-stroke, for participants

with and without fatigue 18 months post-stroke.
Baseline

Measures of pre-stroke physical activity (PA) and pre-stroke

fatigue were obtained using the standardized questions from the

North-Trøndelag Health Study.24,25 Pre-stroke global functioning

was classified with the modified Rankin Scale.26 The National

Institutes of Health Stroke Scale was used to measure stroke

symptoms and severity at the time of admission (day 1), and

7 days later (at discharge if discharged earlier than the seventh

day).27 The Oxfordshire Stroke Classification Project28 and the

Trial of Org 10172 in Acute Stroke Treatment classification were

used to classify the stroke.29
Three months testing

The neuropsychological testing was based on a recommended test

battery after stroke,30,31 including the Trail Making Tests A and

B,32 the Verbal Fluency Test Letter,33 and the Global Deteriora-

tion Scale.34 The Global Detoriation Scale was scored by a trained

research assistant, based on the combination of available informa-

tion from tests and interviews. The Montreal Cognitive Assess-

ment was also included in the assessment.35

Occurrence and severity of neuropsychiatric symptoms, like

delusions, hallucinations and aggression, was assessed based on

self-report or proxy information using the 12-item Neuropsychiat-

ric Inventory questionnaire.36 While, symptoms of anxiety and

depression were screened using the Hospital Anxiety and Depres-

sion Scale (HADS).37 If the participants were not able to respond,

proxy information on depression was collected using the Cornell

scale.38 Post-stroke global functioning was measured with the

modified Rankin Scale. Physical capacity was classified with the

Short Physical Performance Battery (SPPB).39 Grip-strength was

measured using a Jamar handhold dynamometer. The Nine Hole

Peg Test was used to assess dexterity.40 Gait speed at preferred

and fast speed, and during dual task-performance (counting back-

wards) were assessed on a 10-meter distance, with flying start. We

also assessed fatigue at 3 months as a predictor variable. The FSS-

7 served as continuous predictor variable at 3 months using the

mean score and as dichotomized outcome variable at 18 months.

Further, PA was measured over a course of 4-7 days, using a 3-

axial accelerometer, activPALa monitors.41 We used a tailored

MATLABa script (available upon request) to extract mean weekly

moderate PA (walking at intensities ≥3 metabolic equivalent of

task, METs), mean weekly light PA (standing or walking at inten-

sities <3 METs), mean weekly time upright, and mean weekly

time standing, from the data. In addition, weekly time spent in

moderate PA was split into short (<10 minutes) and long-bout

activities (≥10 minutes). We only considered daytime PA between

8.00 AM and 11.30 PM.
www.archives-pmr.org

http://www.archives-pmr.org


Table 1 Participant characteristics

Fatigue (FSS-7>=5), 18 Months

Overall No Yes

Characteristics Missing N=474 N=378 (79.7) N=96 (20.3)

Baseline measurement

Age at baseline, y, mean § SD 0 70.49 (11.3) 70.67 (10.6) 69.79 (13.5)

Sex, n (%) 0

Male 279 (58.9) 239 (63.2) 40 (41.7)

Female 195 (41.1) 139 (36.8) 56 (8.3)

Living conditions, n (%) 0

Home without nursing care 455 (96.0) 365 (96.6) 90 (93.8)

Home with care/ nursing home 19 (4.0) 13 (3.4) 6 (6.2)

Marital status, n (%) 2

Married or cohabitant 323 (68.1) 264 (69.8) 59 (61.5)

Single 73 (15.4) 54 (14.3) 19 (19.8)

Widow 76 (16.0) 58 (15.3) 18 (18.8)

Living situation, n (%) 0

Living alone 139 (29.3) 109 (28.8) 30 (31.2)

Pre-stroke Activity score, mean § SD 64 2.0 (0.5) 2.0 (0.5) 1.9 (0.6)

Pre-stroke mRS, mean § SD 3 0.6 (0.8) 0.6 (0.8) 0.7 (0.9)

Pre-stroke fatigue self-reported, n (%) 8

Yes 119 (25.1) 74 (19.6) 45 (46.9)

Dominant hand, n (%) 6

Right 433 (91.4) 345 (91.3) 88 (91.7)

Left 27 (5.7) 22 (5.8) 5 (5.2)

No dominant side 8 (1.7) 8 (2.1) 0 (0.0)

Years of education, mean § SD 0 12.8 (3.8) 12.8 (3.7) 12.7 (3.9)

Educational degree, n (%) 16

Unskilled 165 (34.8) 123 (32.5) 42 (43.8)

Skilled worker 108 (22.8) 91 (24.1) 17 (17.7)

University degree 185 (39.0) 150 (39.7) 35 (36.5)

Affected side, n (%) 4

Right 194 (40.9) 157 (41.5) 37 (38.5)

Left 199 (42.0) 155 (41.0) 44 (45.8)

Bilateral 15 (3.2) 12 (3.2) 3 (3.1)

Not relevant 53 (11.2) 43 (11.4) 10 (10.4)

Unknown 9 (1.9) 9 (2.4) 0 (0.0)

Stroke severity, mean § SD

NHISS at admission 8 3.6 (4.8) 3.6 (5.02) 3.6 (4.1)

NHISS at day 1 12 2.7 (3.9) 2.51 (4.0) 3.23 (3.5)

NIHSS at day 7 17 1.7 (2.5) 1.6 (2.5) 2.1 (2.4)

Oxfordshire classification, n (%) 2

TACI 14 (3.0) 13 (3.4) 1 (1.0)

PACI 159 (33.5) 129 (34.1) 30 (31.2)

LACI 127 (26.8) 103 (27.2) 24 (25.0)

POCI 95 (20.0) 72 (19.0) 23 (24.0)

Hemorrhagic 37 (7.8) 28 (7.4) 9 (9.4)

Not classifiable 40 (8.5) 31 (8.2) 9 (9.4)

TOAST classification, n (%) 51

Atherosclerosis 46 (9.7) 36 (9.5) 10 (10.4)

Cardiac embolic 95 (20.0) 76 (20.1) 19 (19.8)

Small vessel disease 100 (21.1) 78 (20.6) 22 (22.9)

Other 12 (2.5) 9 (2.4) 3 (3.1)

Unknown 170 (35.9) 140 (37.0) 30 (31.2)

3-months measurement

mRS, mean § SD 11 1.4 (1.0) 1.3 (1.0) 1.8 (0.9)

MoCA, mean § SD 30 24.5 (4.1) 24.4 (4.3) 24.9 (3.5)

Cornell, mean § SD 326 2.8 (3.7) 2.4 (3.5) 4.1 (3.9)

GDS, mean § SD 14 1.9 (1.0) 1.9 (1.0) 2.0 (1.0)

(continued on next page)
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Table 1 (Continued)

Fatigue (FSS-7>=5), 18 Months

Overall No Yes

Characteristics Missing N=474 N=378 (79.7) N=96 (20.3)

Trail Making Test A, s, mean § SD 39 58.9 (48.4) 57.0 (45.9) 66.5 (57.1)

Trail Making Test B, s, mean § SD 47 146.2 (81.3) 143.0 (79.5) 159.0 (87.3)

FAS, mean § SD 0 32.6 (21.0) 33.1 (20.8) 30.7 (21.6)

NPI-Q, mean § SD 29 1.4 (2.3) 1.2 (2.2) 2.1 (2.3)

HADS Anxiety, mean § SD 0 3.4 (3.5) 3.0 (3.4) 4.7 (3.7)

HADS Depression, mean § SD 0 3.1 (3.2) 2.8 (2.9) 4.6 (3.8)

SPPB, mean § SD 36 9.6 (2.9) 9.7 (2.9) 8.9 (3.0)

Gait speed, s, mean, (SD)

preferred 65 8.9 (3.6) 8.7 (3.5) 9.8 (4.1)

maximum 68 6.7 (2.8) 6.6 (2.8) 7.4 (2.8)

dual task 73 10.6 (5.5) 10.3 (4.5) 11.9 (8.5)

Peg test (pegs pr min), mean § SD

best 66 0.5 (0.2) 0.5 (0.2) 0.5 (0.2)

lowest 66 0.4 (0.2) 0.4 (0.2) 0.4 (0.2)

difference 66 0.1 (0.2) 0.1 (0.2) 0.1 (0.1)

PA in min/week, mean § SD

Total MPA 113 265.2 (164.3) 272.6 (162.0) 235.8 (170.9)

Total LPA 113 244.5 (124.9) 250.2 (127.1) 222.0 (113.6)

Upright 113 1894.2 (775.1) 1929.2 (781.2) 1756.1 (739.5)

Standing 113 1384.6 (603.1) 1406.5 (616.9) 1298.4 (540.7)

Long-bout (≥10 min) MPA 113 18.0 (51.5) 19.4 (55.6) 12.6 (29.9)

Short-bout (<10 min) MPA 113 247.1 (143.4) 253.2 (139.7) 223.1 (156.1)

FSS-7-score, mean § SD 46 3.2 (1.8) 2.9 (1.7) 4.5 (1.8)

NOTE: Table 1 presents characteristics of all participants measured in the acute phase (baseline) and subacute phase (three months after stroke). Pre-

stroke characteristics were measured retrospectively at baseline. All variables were used to develop the prediction models.

Abbreviations: mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; TACI, total anterior circulation infarct; PACI, partial ante-

rior circulation infarct; LACI, lacunar infarct; POCI, posterior circulation infarct; TOAST, Trial of Org 10172 in Acute Stroke Treatment; MoCA, Montreal

Cognitive Assessment; GDS, Global Deterioration Scale; FAS, Verbal Fluency Test Letter; NPI-Q, Neuropsychiatric Inventory questionnaire; HADS, Hospi-

tal Anxiety and Depression Scale; MPA, moderate physical activity; LPA, light physical activity;
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Analysis

In a machine learning set up, the data were randomly split into a

training data set (75%) and a test data set (25%). The split was

stratified to ensure a balanced proportion of fatigue in both data

sets. Missing values were imputed with missForest function.42,43

The training and test data set were imputed separately. The impu-

tation model included baseline and 3-month data. Each scale was

imputed on an item level before new sum-scores were calculated.

The 18-month fatigue score was not part of the imputation model.

As fatigue occurred in only 20% of the population, we used an

oversampling method with the training data set. The Random

Over-Sampling Examples were used to balance the proportion of

people with and without fatigue to reduce bias towards majority

classes in the training data.44 Random Over-Sampling Examples

is a bootstrap-driven method that generates synthetic examples

from conditional density estimates of both classes, accommodat-

ing continuous and categorical data.45

For the classification modeling we performed a cross-valida-

tion procedure. The process of randomly splitting the training data

in 2 parts was repeated 10 times. This gave 20 different training/

validation sets that were used to evaluate model performance in

the training data set. We explored the performance of recursive

partitioning using the rpart package,46 random forest modeling
using the ranger package,47 and extreme gradient boosting models

using the xgboost package48 in R (version 4.3.0).b The perfor-

mance in all models was evaluated with the area under the

Receiver Operator Characteristic curve (ROC-AUC). Recursive

partitioning involves iteratively dividing data into subsets based

on feature values to create a hierarchical structure that optimally

separates the data. For the recursive partitioning models, we tuned

minimum node size, tree depth and cost complexity parameters.

Extreme Gradient Boosting (XG-boost) combines multiple weak

predictive models into a robust ensemble. It iteratively refines pre-

dictions by minimizing a loss function through gradient descent

and employs regularization techniques to prevent overfitting. For

the XG-boost models, we tuned the learn rate, tree depth and sam-

ple size. Finally, the prediction performance was validated with

the test data set and the training model was refitted with the 10

most influential variables. The positive predictive value (PPV)

was calculated to estimate the proportion of patients with a posi-

tive fatigue test who were correctly identified by the model. The

negative predictive value (NPV) was defined as the proportion of

patients with a negative test result who were correctly identified

by the model. A simplified outline of the model development pro-

cess is presented in figure 1. The script is available in the supple-

mental material (available online only at http://www.archives-

pmr.org/).
www.archives-pmr.org
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Fig 1 Model development strategy. The dataset from baseline and 3-months testing was divided into training data set (75%) and test data set

(25%). Model development and model structure analysis were done using the training set. Model performance was validated using the test data set.
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The Kuder Richardson (KR) coefficient was employed to

assess the agreement between predicted and actual levels of

fatigue, with the response scale of this variable categorized as no/

yes. The KR coefficients can range from 0 to 1, where higher val-

ues indicate greater internal consistency.49
Results

Altogether, 474 participants (mean § SD age; 70.5 (11.3), 59%

male), mainly suffering from mild to moderate stroke, were

included in the study. All participants were home-dwelling prior

to the stroke. In total, 119 (25.1%) participants reported pre-stroke

fatigue, and the mean § SD FSS-7-scores at 3 and 18 months

post-stroke were 3.18 (1.82) and 3.24 (1.78), respectively. The

estimates of all 45 prediction variables are presented in table 1.
Table 2 Model selection: Performance of classification models

Model
Train Data Set

ROC-AUC Sensitivity Specificity

Recursive partitioning 0.69 0.68 0.60

Random forest 0.82 0.76 0.72

Extreme gradient boosting 0.81 0.74 0.72

NOTE: Table 2 presents the performance of each of the classification

models, recursive partitioning, random forest, and extreme gradient

boost modeling.
Selecting a prediction model for post-stroke
fatigue

Fatigue was observed in 20.3% (N=96) of all subjects 18 months

post-stroke. During the cross-validation procedure, the best tuned

recursive partitioning model had a minimum node number of 40, a

tree depth of 8, and cost complexity rate of 10-10. On average the

recursive partitioning models correctly identified 68% of subjects

with a mean FSS-7-score of 5 or higher (sensitivity) and correctly

classified 60% of the subjects with a mean FSS-7-score lower than

5 (specificity). The ROC-AUC was estimated as 0.69.

The most appropriate tuning of the extreme gradient boosting

model was achieved at a tree depth of 15, a learn rate of 0.001 and

an exposed sample size of 0.55. On average the XG-boost model

achieved a ROC-AUC of 0.81, and correctly classified 74% of the

subjects with fatigue and 72% of the subjects without fatigue.

The random forest model showed the best performance during

the cross-validation procedure with a ROC-AUC of 0.82. This

was slightly above the estimated ROC-AUC of the XG-boost

model. On average the random forest model correctly identified
www.archives-pmr.org
76% of fatigued subjects, and 72% of nonfatigued subjects. The

overall performance measures for the 3 different models are given

in table 2.
The ability to predict fatigue in new data

In the test data 26 participants were classified as having fatigue at

18 months post-stroke. The refitted random forest model identified

18 (sensitivity: 0.69, 95% CI: 0.50, 0.86) of these subjects. Of the

101 subjects that did not report fatigue 18 months post-stroke 75

were correctly identified (specificity: 0.74, 95% CI: 0.66, 0.83).

The model performance as shown in figure 2 (ROC-AUC = 0.79,

95% CI: 0.69, 0.87) was fairly close to the performance seen

throughout the cross-validation procedure. If the model predicted

fatigue, we could expect that 41% of the subjects would truly have

fatigue 18 months post-stroke (PPV=0.41). If the model predicted

no fatigue, we could expect that 90% of the subjects would truly

not have fatigue 18 months post-stroke (NPV=0.90). See table 3

for more details.

The KR reliability coefficient was 0.54.
Explorative simple model

The variable importance plot (fig 3) shows the 10 most influential

variables identified in the random forest model. Those were

http://www.archives-pmr.org


Fig 2 ROC-AUC of the best performing model, random forest.

Table 3 Performance of the random forest model in new data

Predicted Fatigue

ROC-AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)No Yes

Fatigue No 75 26 0.79 (0.69, 0.87) 0.69 (0.50, 0.86) 0.74 (0.66, 0.83) 0.41 (0.26, 0.57) 0.90 (0.83, 0.96)

Yes 8 18

NOTE: Table 3 represents the measures of prediction and prediction performance.

Fig 3 Variable importance plot. The 10 most influential prediction variables from the baseline and 3-months examinations are presented from

descending importance. The top variables contribute more to the model than the bottom ones and have higher predictive power in classifying

fatigue at 18 months post-stroke. Abbreviations: FSS-7, fatigue severity scale; HADS, hospital anxiety and depression scale; MPA, moderate physi-

cal activity; NPI-Q, neuropsychiatric inventory questionnaire; NHPT, nine hole peg test.
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Prediction model for post-stroke fatigue 927
fatigue (FSS-7), symptoms of anxiety and depression (HADS),

neuropsychiatric symptoms (Neuropsychiatric Inventory question-

naire and Cornell scale), gait speed during dual task, Nine Hole

Peg Test (difference between hands), and mean weekly long-bout

moderate PA, all measured 3 months post-stroke; in addition to

self-reported pre-stroke fatigue, and sex, assessed at baseline. We

were able to train an explorative simpler model that correctly pre-

dicted fatigue in 17 of the 26 participants with an FSS-7-score of 5

or above after refitting the train model with these 10 variables

using the same random forest approach. This resulted in a sensitiv-

ity of 0.65 (95% CI 0.51, 0.78). The simple model successfully

predicted absence of fatigue in 73 of the 101 patients with an FSS-

7-score less than five, yielding a specificity of 0.72 (95% CI 0.67,

0.80). The explorative simple model’s ROC-AUC was 0.79 (95%

CI 0.73, 0.86), with a PPV of 0.38 (95% CI 0.31, 0.52), and NPV

0.89 (95% CI 0.85, 0.92).
Discussion

By employing a machine-learning methodology to analyze extensive

data from individuals who have survived stroke, we have determined

that the random forest model offers the most accurate predictive capa-

bility compared to other models. The model demonstrated satisfactory

performance in predicting future fatigue in a new data set. The preva-

lence of fatigue doubled from around 20% in the general sample to

40% in subjects identified by the model being at risk of fatigue. More-

over, our results suggest that a streamlined approach utilizing a simple

model, incorporating the 10 most influential variables identified, could

suffice for identifying individuals at risk of fatigue during the long-

term post-stroke chronic phase, while maintaining a satisfactory level

of predictive performance. On the other hand, the model is even better

in ruling out the risk of fatigue, as 90% of those with a negative test

will not suffer from PSF at 18 months.

To our knowledge, this is the first study to use a machine learn-

ing approach to predict PSF. Previous attempts to predict fatigue

symptoms post-stroke were based on regression modeling

only.7,17,50-52 In 2021, Su et al developed a prediction model

including sex, pre-stroke sarcopenia, acute phase fatigue, dyspha-

gia, and depression, which effectively predicted the risk of PSF at

the discharge from hospital with good discrimination (concor-

dance-index = 0.801, 95% CI: 0.700-0.902).50 Another study

found that Montreal Cognitive Assessment score as proxy for cog-

nitive function in the acute stage post-stroke could not account for

symptoms of fatigue.51 Their hypothesis that the link between

these 2 variables may only become evident in later stages after the

stroke, aligns with our findings. Yet another regression-based pre-

diction model was developed to identify predictors 3 months after

stroke that may aid identify individuals with increasing symptoms

of fatigue over the course of 24 weeks. Results showed that only

FSS-7 score at discharge was an independent predictor, accurately

identifying 7.9% of patients with increasing fatigue symptoms.7

This finding, despite its limited predictive value, is in line with

previous results8 as well as those of our study, indicating that the

level of fatigue experienced shortly after a stroke is a crucial pre-

dictor of fatigue in later stages post-stroke. However, it appears

that the predictive value of early fatigue may diminish over even

longer follow-up periods: a recent study found that fatigue

assessed after acute stroke could not predict the level of fatigue

7 years later. Yet, acute stroke severity as well as female sex were

substantiated as predictors of higher fatigue scores after 7 years.17

In fact, sex has repetitively been linked to the prevalence of
www.archives-pmr.org
PSF,15,17,50 and was also identified as 1 of the 10 most influential

predictors of fatigue in our study. Previously suggested explana-

tions of the observed link between female sex and PSF include

potential sex-differences in expressing feelings of tiredness and

effects of biological mechanisms related to sleep.17 The rather low

positive predictive value and high negative predictive value indi-

cate that the model is better at ruling out fatigue at 18 months

post-stroke than at confirming its presence. In general, this can be

acceptable in situations where the benefit of identifying too many

cases exceeds the potential disadvantages and where the risk of

overtreatment is low. According to the moderate KR coefficient,

caution should be exercised in interpreting fatigue scores.

Strengths

One of the key benefits of utilizing data from Nor-COAST is the pro-

spective multicenter design, the large sample size, and the comprehen-

sive test-battery, comprising widely used, reliable, and validated

assessment tools.20 Nor-COAST was designed to identify predictors

for post-stroke cognitive impairment, with a test battery that is sensi-

tive to mild cognitive impairment including nonamnestic deficits.20

The latter is important, as many previous studies have excluded

patients with cognitive deficit from their study populations.15 Given

the complexity of potential PSF prediction variables,5 the use of

machine learning is another strength.19
Study limitations

Firstly, we want to point out that fatigue is a poorly defined symptom,

which can make quantification and classification difficult.2 Also, the

differentiation of fatigue symptoms from motoric impairment after

stroke may be challenging for some individuals.53

Secondly, even though our study population is assumed to be

representative for the majority of the national stroke population

who suffers from mild to moderate impairment,54 selection bias

must be considered a threat. Particularly individuals with severe

impairment may be underrepresented.

Thirdly, when modeling a large set of prediction variables espe-

cially when introducing synthetic data, we must assume that the varia-

bles identified as most important for prediction, or their order, may

vary when the analyses are repeated. Further it is not possible to draw

conclusions on mechanisms underlying the association of predictors

and outcome but provide further observational information only.

Even if the most influential variables may make sense in a clinical set-

ting, it is important to keep in mind that we used mathematical mod-

els, that are solely suited for generating theoretical models about the

relationship between predictors and dependent variables.

Fourthly, previous studies have suggested that other variables

like stressful life-events,55 sleep patterns,15,56 serum and cytokines

levels,57 dysphagia and pre-stroke sarcopenia,50 magnetic reso-

nance imaging58 and inflammation59 may be important to consider

as well. By adding some of these variables in future models the

predictive values might improve even more.
Conclusions

In conclusion, our models demonstrate a promising capability in

predicting 18-month PSF. The best performing model, the random

forest, showed comparable prediction performance when only

using the 10 most influential prediction variables. Our findings

highlight the significance of monitoring fatigue early after a

http://www.archives-pmr.org
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stroke, to consider the prevalence of pre-stroke fatigue, and to

assess levels of PA and function in addition to cognitive and neu-

ropsychiatric symptoms.
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