
ar
X

iv
:2

30
9.

11
78

1v
1

 [
m

at
h.

C
O

]
 2

1
Se

p
20

23

MULTISET PERMUTATION GENERATION BY

TRANSPOSITIONS

HANS JAKOB RIVERTZ

Abstract. This paper proposes a new algorithm for generating all
permutations of multisets. The method uses transpositions only and
adjacent transpositions are favoured. The algorithm requires a strong
homogeneous transposition condition: non-adjacent transpositions are
allowed only if all elements between the two permuted elements are
equal to the smallest of those two elements. The storage required by the
algorithm is small.

1. Introduction

1.1. General introduction. Combinatorics is considered as an indepen-
dent discipline in mathematics and its history goes back several thousand
years. It is the origin of many of the branches of modern mathematics [7].
The results and methods of combinatorics are also used in fields of mathe-
matics with origin independent to combinatorics. Problems of combinatoric
nature exist in many of the several branches of mathematics today. Differen-
tial geometry is not an exception. It has even a sub field called combinatorial
differential geometry. This paper contains a solution to a combinatoric prob-
lem that arose in an ongoing research in differential geometry. Section 1.2
gives a brief description of this problem.

Permutations and combinations are related through permutations of mul-
tisets. In a set the elements are unique, whilst in a multiset, elements can
occur several times. A multiset can be described by a list of r symbols
1, 2, . . . , r, and their multiplicities m1,m2, . . . ,mr. The set {1, 2, . . . , r} is a
special case of a multiset.

A k-combination of elements in a set S = {1, 2, 3, . . . , n} is a subset A
of S of size k. Representing A as a string of ones and zeros (a bit-string),
where a one on the place i says that i is in A and a zero on place j tells that
j is not in A, gives a one-to-one correspondence between subsets of S and
bit-strings of length n. Since A has k elements, the corresponding bit string
has k ones and n− k zeros. This is a permutation of the multiset consisting
of k ones and n− k zeros. Thus, generating all k-combinations is a special
case of listing all permutations of the multiset 1k0n−k. The super script k
indicates there are k copies of the element 1 in the multiset.

By carefully designing the k-combination generating algorithm, it can be
used to generate all permutations of any multiset. In fact, in a multiset

1

http://arxiv.org/abs/2309.11781v1

2 HANS JAKOB RIVERTZ

consider the element 1 and treat the remaining elements as 0. We require
two conditions.

1. The transposition condition requires that two successive permu-
tations differs only in two bits.

2. The zero stability condition require that the order of the zeros
is not changed.

For algorithms generating combinations, the first condition is equivalent to
the strong minimal change property. There is a rich literature considering
those algorithms. A selection of algorithms can be found in [5, 6, 14, 15, 16,
17].

The second condition is similar to the homogeneous transpositions con-
dition in [9]. There are many algorithms [4, 9, 10, 11, 12, 13, 19] that meet
other requirements. These algorithms however, are not in the scope of this
paper.

1.2. Motivating introduction. The algorithm in the presented paper was
developed to be used in making some huge polynomials. The variables in
these polynomials are the coefficients of the Riemann curvature tensor. The
polynomials are defined by using Young tableaux, which are diagrams filled
with numbers. The forms of the diagrams are defined by partitions. A
partition of n is a sum λ1 + λ2 + · · ·+ λk = n, where the terms are positive
and non-increasing. There are λi boxes in row i and the numbers 1, 2, . . . , n
are distributed in the boxes. The following Young tableau B2,2,2,2 is defined
from the partition 2 + 2 + 2 + 2 = 8.

B2,2,2,2 =

1
2

3
4

5
6

7
8

This Young Tableau was used by Agaoka [1] to find a necessary condition on
isometric immersions of four-dimensional Riemann spaces into the Euclidean
space of dimension five.

A Young tableau has a corresponding Young symmetrizer which is used
to produce symmetric polynomials. The symmetrizer is defined through
subgroups of the symmetric group S8. The vertical subgroup VB consists
of all elements in S8 that preserves the columns of the Young Tableau B.
It’s size is (4!)2 = 576. The horizontal subgroup HB consists of all elements
in S8 that preserves the rows of the Young Tableau B. The size of HB is
(2!)4 = 16. The polynomial is defined as

∑

σ−1 ∈VB

sign(σ)R(Yσ(1), Yσ(2), Yσ(3), Yσ(4))R(Yσ(5), Yσ(6), Yσ(7), Yσ(8)),

where Yi = XR(i). R(i) is the row where the number i is in the Young
tableau B. The symbols

X1,X2,X3,X4

MULTISET PERMUTATION GENERATION 3

denotes a basis for R
4. The multivariate function R is a (0, 4)-tensor, that

is a real valued multilinear function with arguments in R
4. Let R have the

symmetries

S1. R(X,Y,Z,W) = −R(Y,X,Z,W),
S2. R(X,Y,Z,W) = −R(X,Y,W,Z),
S3. R(X,Y,Z,W) = R(Z,W,X, Y), and
S4. R(X,Y,Z,W) + R(Z,X, Y,W) + R(Y,Z,X,W) = 0. (The first

Bianchi identity.)

(0, 4)-tensors R that have these symmetries are called curvature like tensors
since they share the same symmetries as the Riemann curvature tensor.
From the first symmetry, we have for example

R(Yσ(1), Yσ(2), Yσ(3), Yσ(4)) = −R(Yσ(2), Yσ(1), Yσ(3), Yσ(4)).

Therefore, the two permutations which only differs by a transposition of 1
and 2, gives the same term in the polynomial. The same is true for the pairs
(3, 4), (5, 6), and (7, 8). Instead of summing over VB, we will sum over all
permutations of the multiset obtained by identifying elements in the same
pair. The number of terms in the sum has been reduced by a factor of 24 to
(4!)2

16 = 36. In addition to the four symmetries of R, there is a symmetry in
the polynomial: interchanging the factors in each term is in fact equivalent
to a permutation in VB. This permutation is (1, 5)(2, 6)(3, 7)(4, 8). This
paper considers first the symmetry types S1 and S2 mainly. The other
symmetries are applied in Section 4.

As can be seen, the symmetries in the tensors reduce the complexity of
the calculations. Using transpositions in the generation of the permutations
also makes it trivial to calculate the factor sign(σ); it changes sign for each
step.

2. Related algorithms and theory

2.1. The Steinhaus-Johnson-Trotter algorithm. The Steinhaus-Johnson-
Trotter algorithm [3, 18] generates all permutations of n distinct elements
by adjacent transpositions only. As Donald Knuth points out on page 321,
volume 4 in The ‘Art of Computer Programming’ [4], it is impossible to
generate all permutations even, the simple multiset {1,1,2,2}. The proof
is an application of graph theory. The edges in the following diagram are
adjacent transpositions.

1122

1212

1221

2112

2121

2211

(2,3)

(3,4) (1,2)

(1,2) (3,4)

(2,3)

There is no Hamilton path in the graph above, so there is no way of gener-
ating all permutations of {1, 1, 2, 2} by successive adjacent transpositions.

4 HANS JAKOB RIVERTZ

2.2. Gray codes. For combinations, a Gray code is a complete list of all
k-combinations of n elements listed by successive transpositions of the bit-
string representation. On page 127 in [9], Ruskey presents the following
algorithm. The list C(n, k) of all permutations of 1k0n−k is given recursively
by

C(n, k) =







0n if k = 0

1n if k = n
[

C(n− 1, k) · 0

C(n− 1, k − 1) · 1

]

if 0 < k < n

.

The line over C(n − 1, k − 1) indicates reversion of the list and the dot in
L · c means concatenating the character c to all of the elements in the list
L. The production of C(4, 2) is described in the following diagram.

C(4, 2)

C(3, 2) C(3, 1)

C(2, 2) C(2, 1) C(2, 0)

C(1, 1) C(1, 0)

This gives the listing 1100, 0110, 1010, 0011, 0101, 1001. In the adjacent
transposition diagram, this list is represented as following.

1100

1010

1001

0110

0101

0011
2

1 3 1

12

The thick arrows correspond to adjacent transpositions. The non-adjacent
transpositions are shown as dashed arrows. The numbers on the arrows show
the distance between the changing bits. Notice that there is a transposition
from the last bit string to the first bit string. In fact, the algorithm produces
a loop of transpositions, where the list can be repeated. In the process of
the above example, if the zeros and the ones where marked, their order will
change. However, when flipping back to start, the order is unchanged. For
example the marked listing C ′(4, 2) is

MULTISET PERMUTATION GENERATION 5

1a1b0a0b

1b0a1a0b

1a0b0a1b

0a1b1a0b

0b1a0a1b

0b0a1a1b
2

11 3

12

In general, the order of the marked ones will change as is seen in the following
example:

1a1b0a

1b0a1a

0a1b1a
2

11

However, it is known that the order of the marked zeros will not change in
the closed loop of the algorithm. Define the marked zeros version of the
algorithm recursively by

C ′(n, k) =







0001 · · · 0n−1 if k = 0

1n if k = n
[

C ′(n− 1, k) · 0n−k−1

C ′(n− 1, k − 1) · 1

]

if 0 < k < n

.

The line over C ′(n− 1, k − 1) indicates reversion of the list and subtracting
one from each index modulo n− k.

Lemma. For all n > 0 and for all k so that 0 ≤ k ≤ n the following is true.

1. The first element of the list C ′(n, k) is

1k0001 · · · 0n−k−1.

2. When 0 < k < n, the last element of the list C ′(n, k) is

1k−10n−k−10001 · · · 0n−k−21.

3. Each two successive elements in the list C ′(n, k) differ in exactly two
symbols, a marked zero and a one.

Notice that the first and last elements in the list differs in only in the k-th
and n-th bit when the list has more than one element.

Proof of the lemma. The proof is by induction on n. Notice that the lemma
is true if n = 1, k = 0, or k = n. Assume the lemma is true for n < r, for
some r > 1. It is sufficient to prove the lemma for n = r and 0 < k < n.
First, from the definition one can see that the first element in C ′(r, k) is
equal to the first element in C ′(r − 1, k) · 0r−k−1. That is

1k0001 · · · 0n−k−2 · · · 0n−k−1.

Second, from the definition, the last element in C ′(r, k) is the first element
of C ′(r − 1, k − 1) · 1 with one subtracted from the indices modulo r − k.

6 HANS JAKOB RIVERTZ

That is

1k−1 · · · 0r−k−10001 · · · 0r−k−21.

Finally, it is sufficient to prove the third point in the lemma for the last
element in C ′(r − 1, k) · 0r−k−1 and the first element in C ′(r − 1, k − 1) · 1.
The last element in C ′(r − 1, k) · 0r−k−1 is

1k−10r−k−10001 · · · 0r−k−21.

The first element in C ′(r − 1, k − 1) ·1 is the last element in C ′(r−1, k−1)·1
with the one subtracted indices modulo r − k. That is

1k−20r−k−20r−k−10001 · · · 0r−k−311.

Notice that these two displayed elements differs in place k−1 and r−1 only.
The lemma follows from induction. �

An implementation of the definition of C(n, k) requires memory allocated
for the entire list. Two alternative algorithms are given in chapter 5.3 on
the pages 128 and 129 in [9]. In the algorithm on page 128, each element is
obtained from the previous by a transposition. The bit-string representation
of a k-combination is equivalent to an ascending ordered sequence p1p2 · · · pk
of the position of the ones in the bit-string. The second algorithm gives the
list C(n, k) in terms of position sequences. Mütze has written a recent
survey [8] on combinatorial Gray codes.

2.3. The piano chords algorithm. Eades and McKay [2] found an algo-
rithm that theoretically goes through all chords using k fingers on a piano
with n keys without crossing any finger and moving only one finger at the
time. It is theoretical because no human has so large or flexible hands that
they can play the chords in this list. The algorithm is described as following
in [9].

E(n, k) =







0n if k = 0

[10n−1, 010n−2, . . . , 0n−11]T if k = 1





E(n − 1, k) · 0

E(n − 2, k − 1) · 01

E(n − 2, k − 2) · 11




 if 1 < k < n

1n if k = n

For n = 6 and k = 3, this gives the list given in Table 1. There are
16 adjacent transpositions in the generation, two transpositions of distance
two and one transposition of length three. The total distance moved in this
algorithm is 23.

MULTISET PERMUTATION GENERATION 7

state trans. state trans.
1 111000 11 001101 (5,6)
2 110100 (3,4) 12 100101 (1,3)
3 101100 (2,3) 13 010101 (1,2)
4 011100 (2,3) 14 011001 (3,4)
5 011010 (4,5) 15 101001 (1,2)
6 101010 (1,2) 16 110001 (2,3)
7 110010 (2,3) 17 100011 (2,5)
8 100110 (2,4) 18 010011 (1,2)
9 010110 (1,2) 19 001011 (2,3)

10 001110 (2,3) 20 000111 (3,4)

Table 1. The piano chord algorithm by Eades and McKay
applied with n = 6 and k = 3. The third and sixth columns
show the transposition that created the state from the pre-
ceding state.

3. The new algorithm

3.1. Definition and proofs. The algorithm start with k identical elements
marked with the letter x placed in location 1, 2, . . . , k along a linear array
with n places

x · · · x
︸ ︷︷ ︸

k copies

o · · · o.

The empty places are marked with the letter o. The algorithm describes a
process of transpositions that ends up in the state

o · · · o x · · · x
︸ ︷︷ ︸

k copies

,

and in the process going through all the
(
n
k

)
configurations of k number of

x’s and n− k number of o’s exactly once.

Algorithm 1. Given an array of k number of x’s distributed in an array
with n positions. The x’s are given an orientation coded by left (<) or right
(>). The empty places are represented by o and they have no orientation.
The x’s are therefore redundant and are represented by the symbol assign-
ing its orientation. The algorithm moves the elements and changes their
orientation by the following set of rules.

1. Output the state. The active element is set to the element furthest
to the right.

2. If the active element faces an adjacent empty place, it interchanges
with that empty place.

. . . > o . . . 7→ . . . o > . . . or . . . o < . . . 7→ . . . < o . . .

Go back to step 1.

8 HANS JAKOB RIVERTZ

3. If the active element faces left and faces an empty place to its left
and all places between are occupied by elements facing to the left,
it permutes with that empty place. The elements between change
orientation to right (>). Go back to the first step.

4. If the active element faces an empty place to its right, it will permute
with the closest empty place to its right if and all elements between
are oriented to the right (>). The algorithm goes to step 1.

5. The active element changes its orientation. The nearest element to
the left of the active element becomes the active element and the
algorithm goes to step 2.

6. The algorithm terminates if there are no elements to the left of the
active element.

The algorithm runs through all combinations with the following initial states.

a. If the initial state is

> · · · >
︸ ︷︷ ︸

k copies

o · · · o,

the procedure defined in point 1 to 6 describes an algorithm that will
terminate with the last output on the form

o · · · o > ∗ · · · ∗
︸ ︷︷ ︸

k−1 copies

,

where ∗ can be any of the two symbols < and >.
b. If the initial state is the negative of the last output in case a:

o · · · o < ∗ · · · ∗
︸ ︷︷ ︸

k−1 copies

,

the procedure defined in point 1 to 6 describes an algorithm that will
terminate with the last output on the form

< · · · <
︸ ︷︷ ︸

k copies

o · · · o.

A proof of the Algorithm is given at the end of this section. Table 2 shows
the process with three elements and six places. The first column counts the
set permutations, the second column shows the state, and the third column
indicates the rules that produced that state. Notice that Table 2 shows
all

(
6
3

)
= 20 combinations of three unmarked elements in six places. The

orientations are for book-keeping only.
Table 3 shows the algorithm when the start configuration is ooo<>>. No-

tice the symmetry of the algorithm in Table 2 and Table 3. This symmetry
is independent of the number of places and arrows.

Theorem. For each string S of the characters ‘o’, ‘<’, and ‘>’, define its
negative N(S) by keeping ‘o’, replacing ‘<’ with ‘>’, and replacing ‘>’ with

MULTISET PERMUTATION GENERATION 9

state rules state rules
1 >>>ooo 11 o>oo<> 6,6,2
2 >>o>oo 2 12 o>o<o< 6,2
3 >>oo>o 2 13 o>o<<o 2
4 >>ooo> 2 14 o><>oo 3
5 >o>oo< 6,2 15 o><o>o 2
6 >o>o<o 2 16 o><oo> 2
7 >o><oo 2 17 oo>>o< 6,6,4
8 >oo>>o 6,4 18 oo>><o 2
9 >oo>o> 2 19 oo>o>> 6,4
10 >ooo>< 6,2 20 ooo><< 6,6,2

Table 2. The table shows the algorithm applied on the state >>>ooo.

state rules state rules
1 ooo<>> 11 <ooo<> 6,6,2
2 oo<o<< 6,6,2 12 <oo<o< 6,2
3 oo<<>o 3 13 <oo<<o 2
4 oo<<o> 2 14 <o<>oo 3
5 o<>oo< 6,3 15 <o<o>o 2
6 o<>o<o 2 16 <o<oo> 2
7 o<><oo 2 17 <<ooo< 6,2
8 o<o>>o 6,4 18 <<oo<o 2
9 o<o>o> 2 19 <<o<oo 2
10 o<oo>< 6,2 20 <<<ooo 2

Table 3. The table shows the algorithm applied on the state
ooo<>>, the negative state of the end result in Table 2.

‘<’. For example N(o<oo<>) = o>oo><. Let M(S) be the result of run-
ning one iteration of the algorithm. Then for all strings S formed by the
characters ‘o’, ‘<’,and ‘>’ the following holds:

M ◦N ◦M(S) = N(S).

Consider an integer represented in the balanced ternary number format
representation. This is

(tntn−1 . . . t2t1t0)3̄ =
n∑

i=0

ti3
i, ti ∈ {−1, 0, 1}, i = 0, 1, . . . , n.

For instance, 42 = (11̄1̄1̄0)3̄, where 1̄ is the digit −1. If o represents the
digit zero, > represents the digit one, and < represents digit negative one,
then N(S) represents the negative value of S. Thus, the notation N(S) is
chosen.

10 HANS JAKOB RIVERTZ

>>ooo

>o>oo

>oo>o

o><oo

o>o<o

>ooo>

o>oo<

oo>>o

oo>o>

ooo><

(2,3)

(3,4)

(4,5) (1,2)

(4,5)

(3,4)

(2,4) (4,5)

(3,4)(2,3)

(2,3)
(1,2)

(1,2)

Figure 1. The adjacent transpositions graph for permuta-
tions of the multiset xxooo. The bold arrows correspond to
the adjacent transpositions in the algorithm. The dashed ar-
row shows the only case where the transposition fails to be
adjacent.

Proof of the theorem. An unsuccessful iteration runs through all elements
and changes their orientation. That is the same as the taking the negative.
Then N ◦ M(S) = S. A successful iteration interchanges an element with
an empty space. The proof is divided into three cases:

• If the interchange happens in step 2, all elements to the right of the
current active element has changed orientation before the current
element became active. These elements are changed back again with
negation, and therefore are unchanged by N ◦M . The current active
element is contained in a substring >o or o<. This is changed by
N ◦M to o< or >o respectively. No elements to the left of the active
element is changed by M . Therefore, N ◦M ◦N ◦M(S) = S.

• If the interchange happens in step 3, just as for step 2, all elements
to the right of the active element changes orientation by M and
therefore unchanged by N ◦M . The active element is the element
furthest to the right in a series o< . . . <. This is changed to <> . . . >o
byM and then to >< . . . <o byN . The element furthest to the right of
these elements will be the active element in the second application
of M , but then step 4 in the algorithm applies. The string will
change to o> . . . > and then to o< . . . < by N . The elements to the
left and to the right will not be changed by N ◦M ◦N ◦M , therefore
N ◦M ◦N ◦M(S) = S.

• If the interchange happens in step 4, all elements to the right of the
active element has changed orientation. The active element is the
left most element in a string > . . . >o before the action in step 4. The
action in step 4 changes this string to 0> . . . >. Then N changes this
substring to 0< . . . <. The next time M acts on this it will change
the string to <> . . . >0 by step 3. Then N will change the string to
>< . . . <0 this was the original state. The elements to the left and
right are not changed by N ◦M ◦N ◦M , so N ◦M ◦N ◦M(S) = S.

MULTISET PERMUTATION GENERATION 11

This completes the proof. �

Consider the reduction map r : S 7→ r(S) that removes the rightmost
character > or < from the string S. For example if S = >oo>>o then r(S) =
>oo>o. This map transforms Table 2 into the shorter Table 4. Multiple
recurring states are removed. The numbering of the states in Table 2 is kept
in Table 4. Notice that the same table would be obtained if the algorithm
was used directly on the start configuration >>ooo. This observation is basis
for the proof of the algorithm.

state rules state rules
1 >>ooo 12 o>o<o 2
5 >o>oo 2 14 o><oo 2
8 >oo>o 2 17 oo>>o 6,4

10 >ooo> 2 19 oo>o> 2
11 o>oo< 6,2 20 ooo>< 6,2

Table 4. This table shows the algorithm applied on the
state >>ooo. It also shows the reduction of Table 2.

Proof of Algorithm 1. Consider any state S′ in the algorithm with k = l
and n = m. This state can be extended to a state S by adding an extra
character > or <.

(R) The character > is placed just to the right of the element element
furthest to the right different from o in S′. After successive iterations
with rule 2 we run through all states that reduces to S′. In the next
iteration, the element element furthest to the right in S changes ori-
entation and the element element furthest to the right in S′ becomes
the new active element. If S = ...>oooo>, S = ...<o...o> or S =
...<> or S = ...>>, the result of the iteration on S will commute
with the reduction. M ◦ r = r ◦M .

(L) The character < is appended at the right end of S′. That is S =
..>o..o<. Repeated iterations with step 2, goes through all states
of S with r(S) = S′ until we get one of the following states. S =
..?><o..o or S = ..<<o..o. The next iteration for the first case in-
vokes step 6 once and step 4 once, the result is M(S) = ..?o>>o..o.
Again r ◦M = M ◦ r. In the second case step 3 or 6 is invoked and
again the iteration M commutes with reduction r.

The statement in the algorithm is trivially true for all n if k = 1. Assume
that the algorithm part a is true for n = m and for k = l. We will prove
that the algorithm is true for n = m+ 1 and k = l + 1.

From the start configuration S0 = >...>>o...o with k = l + 1 and
n = m+ 1, the element furthest to the left is moving to the right for each
iteration in the algorithm until it comes to the right most place. Rule 2
in the algorithm is applied each time. After m − l iterations, the state is

12 HANS JAKOB RIVERTZ

Sm−l = >...>o...o>. The reduction map maps each of these states to
the start configuration >...>o...o for k = l and n = m. In the next
iteration rule 6 is applied, the orientation of the active element changes to <

and the next element is the active element. The state is now >...>o...o<

and rule 2 is invoked on the element at position l. That results in the
state Sm−l+1 = >...>o>o...o<. The reduced map sends this state onto
S′

1 = r(Sm−l+1) = >...>o>o...o. This is equivalent with running the first
iteration with k = l and n = m.

In general consider any output state in the algorithm on one of the two
forms:

(F) S =?...*>o...o with possible zero o’s at the right end.
(B) S =?...*o...o< with possible zero o’s between * and <.

As explained in (R) and (L), each time the right most element changes
orientation, r ◦M = M ◦ r.

Since part a of the algorithm goes through all states exactly once with
k = l and n = m, we have that it also goes through all states exactly once
with k = l+1 and n = m+1. The b-part of the algorithm follows from the
a-part and the above theorem. �

3.2. The tale of the wolves in the staircase. The following description
is equivalent to the rules in the algorithm. Imagine k wolves in a staircase
with n steps. There is only one wolf on each step and each wolf can only face
upwards or downwards. The highest ranked wolf is the wolf that is located
highest in the staircase at a present time. This wolf is the only one that can
initiate a move by itself. If it cannot move, it must wait until another wolf
has moved to an empty step. A wolf can only go forwards to the nearest
empty step. However, it cannot pass a wolf that faces it. It can pass as many
wolves as it can as long as there is an empty step to go to and it passes all
wolfs in between from behind. Wolves that are passed by another wolf shall
turn upwards. A wolf that cannot move with these rules shall turn around
and howl. The bark signals that the closest wolf downstairs should try to
move. If the lowest ranked wolf barks, no wolves move. The wolfs are now
at the top of the staircase.

3.3. Applying the algorithm on multisets. Given the multiset 112233
our algorithm gives the result as shown in Table 5. First start with the
ones and treat the remaining elements as empty places. For each time the
algorithm exits, one step of the algorithm is applied on the string where
the ones are removed and the twos are represented by > or <, the threes
are treated as empty places. Table 5 shows the process. The table is read
columnwise from the top to the bottom and from the left to the right. The
extension of our algorithm to arbitrary finite multisets is as following.

Algorithm 2. Given the multiset S = [1, . . . , k] with n elements and Si ≤
Sj for 1 ≤ i < j ≤ n. The following algorithm traverses all permutations P
of S exactly once.

MULTISET PERMUTATION GENERATION 13

(1) Let P = S and define the array V = [1, . . . , 1] with n elements
Vi = 1.

(2) Set T = 1. This is the active element type.
(3) Set M = n+ 1.
(4) Set M := max

i<M,Pi=T
i.

(5) If M does not exist:
• Set T := T + 1
• If T > k. Exit the algorithm.
• Go to step (3)

(6) Let N :=







min
i>M,Pi>T

i if VM = 1

max
i<M,Pi>T

i if VM = −1

(7) If N does not exist, go to step (9).
(8) If VM = Vi for all i between M and N

• Swap PM with PN and VM with VN

• Set Vi = 1 for all i between M and N .
• Go to step (2)

(9) Set VM := −VM .
(10) Go to step (4)

3.4. A circular Gray code for a multiset. Our algorithm is circular in
the case mk−1 = mk = 1. Fig. 4 shows the result of the algorithm applied
on the multiset 122234.

</> States
2 >>33 >3>3 >33> 3>3< 3><3 33>>

1 >>2233 2323<< >>2332 3232<< >>3223 3322<<

>2>233 232<>3 >2>332 323<>2 >3>223 332<>2

>22>33 232<3> >23>32 323<2> >32>23 332<2>

>223>3 23<23< >233>2 32<32< >322>3 33<22<

>2233> 23<2<3 >2332> 32<3<2 >3223> 33<2<2

2>233< 23<<23 2>332< 32<<32 3>223< 33<<22

2>23<3 2<>323 2>33<2 3<>232 3>22<3 3<>322

2>2<33 2<3>23 2>3<32 3<2>32 3>2<23 3<3>22

2><233 2<32>3 2><332 3<23>2 3><223 3<32>2

22>>33 2<323> 23>>32 3<232< 32>>23 3<322<

22>3>3 <2323< 23>3>2 <3232< 32>2>3 <3322<

22>33> <232<3 23>32> <323<2 32>23> <332<2

223>3< <23<23 233>2< <32<32 322>3< <33<22

223><3 <2<323 233><2 <3<232 322><3 <3<322

2233>> <<2323 2332>> <<3232 3223>> <<3322

Table 5. The table shows how the algorithm permutes the
multiset 122232.

14 HANS JAKOB RIVERTZ

4. Generating the polynomials

In this section, we apply the algorithm on the Young tableaux B2,2,2,2.
Apply the algorithm on each column. In the first column, the algorithm
identifies 1 with 2, and 5 with 6. The algorithm gives the sequence:

1256, 1526, 1562, 5162, 5126, 5621.

Similarly, for the second column of B2,2,2,2, it produces the list:

3478, 3748, 3784, 7384, 7348, 7843.

Table 6 shows the result. This gives the polynomial

1
2
5
6

3
4
7
8

−

1
5
2
6

3
4
7
8

+

1
5
6
2

3
4
7
8

−

5
1
6
2

3
4
7
8

+

5
1
2
6

3
4
7
8

−

5
6
2
1

3
4
7
8

+

5
6
2
1

3
7
4
8

−

5
1
2
6

3
7
4
8

+

5
1
6
2

3
7
4
8

−

1
5
6
2

3
7
4
8

+

1
5
2
6

3
7
4
8

−

1
2
5
6

3
7
4
8

+

1
2
5
6

3
7
8
4

−

1
5
2
6

3
7
8
4

+

1
5
6
2

3
7
8
4

−

5
1
6
2

3
7
8
4

+

5
1
2
6

3
7
8
4

−

5
6
2
1

3
7
8
4

+

5
6
2
1

7
3
8
4

−

5
1
2
6

7
3
8
4

+

5
1
6
2

7
3
8
4

−

1
5
6
2

7
3
8
4

+

1
5
2
6

7
3
8
4

−

1
2
5
6

7
3
8
4

+

1
2
5
6

7
3
4
8

−

1
5
2
6

7
3
4
8

+

1
5
6
2

7
3
4
8

−

5
1
6
2

7
3
4
8

+

5
1
2
6

7
3
4
8

−

5
6
2
1

7
3
4
8

+

5
6
2
1

7
8
4
3

−

5
1
2
6

7
8
4
3

+

5
1
6
2

7
8
4
3

−

1
5
6
2

7
8
4
3

+

1
5
2
6

7
8
4
3

−

1
2
5
6

7
8
4
3

Table 6. The multi-set permutations of the diagram
B2,2,2,2. The multi-sets are defined by grouping the elements
in the equivalence classes {1, 2}, {3, 4}, {5, 6}, and {7, 8}.
The signs are the signatures of the permutations.

MULTISET PERMUTATION GENERATION 15

P (R) = R1212R3434 −R1312R2434 +R1412R2334 −R2412R1334 +R2312R1434

−R4312R1234 +R4313R1224 −R2313R1424 +R2413R1324 −R1413R2324

+R1313R2424 −R1213R3424 +R1214R3423 −R1314R2423 +R1414R2323

−R2414R1323 +R2314R1423 −R4314R1223 +R4324R1213 −R2324R1413

+R2424R1313 −R1424R2313 +R1324R2413 −R1224R3413

+R1223R3414 −R1323R2414 +R1423R2314 −R2423R1314

+R2323R1414 −R4323R1214 +R4343R1212.−R2343R1412

+R2443R1312 −R1443R2312 +R1343R2412 −R1243R3412

By using the symmetries of R, this simplifies to

P (R)/2 = R1234
2 +R1423

2 +R1324
2 +R1212R3434

+R1313R2424 +R1414R2323 + 2R1214R2334 + 2R1223R1434

− 2R1213R2434 − 2R1224R1334 − 2R1314R2324 − 2R1323R1424.

This is equal to the polynomial IB2,2,2,2
on page 118 in [1]. For the larger

Young tableau,

B5,5,5,5,4,4 =

1 3 5 7 9
2 4 6 8 10
11 13 15 17 19
12 14 16 18 20
21 23 25 27
22 24 26 28

the saved amount of calculation is significant. The size of VB5,5,5,5,4,4
is

(6!)24!= 6,449,725,440,000. By using the first two symmetries in the curva-

ture tensor, the algorithm reduces the complexity to (6!)24!
214 = 393,660,000.

Using the remaining symmetries will reduce the complexity of the calcula-
tions even more. That is a topic for another paper.

5. Discussion

5.1. Comparison to Eades McKay. Our algorithm is quite similar to
Eades-McKay’s algorithm. Both methods uses transpositions (i, j) only.
Eades-McKay’s algorithm require the homogeneous transpositions condition
in [9]. Our algorithm follows a strong version of the homogeneous transpo-
sitions condition for the empty spaces. The elements between two inter-
changing elements must be equal to the smallest of the two interchanging
elements.

5.2. Notes on an algorithm of Takaoka. Takaoka’s algorithm [15] for
generating all combinations of k elements in a finite set seems to be a special
case (a.) of our Algorithm 1. Although, Takaoka’s algorithm is for gener-
ating combinations, both his and our algorithms produce the same result
for the multisets 1204 and 1303. It remains to prove that those algorithms
are the same. Takaoka’s algorithm [14] for producing all permutations of a
multiset is different from our algorithm.

16 HANS JAKOB RIVERTZ

5.3. Inspiration from Steinhaus-Johnson-Trotter. Our method was
inspired by the Steinhaus-Johnson-Trotter algorithm [3, 18]. In their algo-
rithm, the element 1 goes back and forth. Each time it turns around, the
next element 2 takes one step and so on. Fig. 2 shows that their algorithm
and our algorithm are equal when applied on the set {1, 2, 3, 4}. We believe
that our algorithm is a generalisation of their algorithm.

1234

2134 2314

3214

31241324

1243

2143 2341

3241

31421342

1423

2413 2431

3421

34121432

4123

4213 4231

4321

43124132

(1,2)

(2,3)

(1,2)

(2,3)

(1,2)

(2,3)

(3,4)

(3,4) (3,4)

(3,4)

(3,4)(3,4)

(1,2) (1,2)

(1,2)

(2,3)

(2,3) (2,3)

(2,3)

(2,3)(2,3)

(3,4)

(3,4)(3,4)

(1,2)

(1,2) (1,2)

(1,2)

(1,2)(1,2)

(2,3)

(3,4)

(2,3)

(3,4)

(2,3)

(3,4)

Figure 2. The vertices of the graph are all permutations of
1234. The edges are transpositions. Our algorithm is marked
with a thick line which forms a Hamilton circuit. This circuit
is exactly the same as the one produced by the Steinhaus-
Johnson-Trotter algorithm [3, 18]. The graph is homomor-
phic to the truncated octahedron, one of Archimedes solids
as shown in Fig. 3.

5.4. Unanswered question. Each step in our algorithm is a transposition
(i, j). In other words, the Hamming distance is two between successive
elements in the list B of all permutations of the multiset 1k0n−k. This
is the first order closeness measure. The width of a transposition (i, j) is
defined as w(i,j) = |i − j|. The sum of the widths for all transitions in the
algorithm is called the total motion WB =

∑

σ wσ. It is an open question
if the presented algorithm has the minimal total motion. In the case n = 6
and k = 3, the Eades–McKay algorithm has 16 adjacent transpositions,
two moves of distance two and one move of distance 3. The total distance

MULTISET PERMUTATION GENERATION 17

moved is therefore 16 + 2 × 2 + 3 = 23. Our method has 15 adjacent
transpositions and 4 moves of distance 2. The total distance moved is for
our method is 15+4×2 = 23. Another condition is to only accept adjacent or
transpositions with width 2. A known algorithm [9] that have this condition
has total distance moved 25, for n = 6 and k = 3.

Let B(n, k) be the list of bit-strings produced by our method. Experi-
ments show that:

a) WE(n,n−k) = WB(n,k) for all n < 30 and 0 < k < n.
b) WE(n,k) > WB(n,k) for all n < 30 and 0 < k < n/2.
c) WE(n,k) < WB(n,k) for all n < 30 and n/2 < k < n.

It is not known which method has the lowest value for WE(n,k). The values
in the list above is limited to the case where n < 30 and for two different
algorithms only.

1234

2134

23142341
3241 3214

3124

1324

1342

31423412

3421

4321

4312

4132 1432
14234123

4213

4231

2431

2413 2143

1243

(2, 3)

(1, 2)

(3, 4)

Figure 3. The graph in Fig. 2 is drawn as a truncated oc-
tahedron. The edges are adjacent transpositions. Our algo-
rithm is marked with a thick line which forms a Hamilton
circuit.

Listing 1. Python implementation
from collections.abc import Iterator
def swap elements (a list ,i,j):
tmp = a list[i];

a list[i] = a list[j];

a list[j] = tmp

class setperm(Iterator):
def init (self,multiplicity):

self.m = multiplicity

18 HANS JAKOB RIVERTZ

red

yellow

green

blue

Figure 4. The picture shows the result of our algorithm
applied on the multiset 112234. Notice that the pattern is a
circular Gray code. The colour codes are 1=red, 2=yellow,
3=green, and 4=blue. The inner circle shows the output from
the algorithm for the multiset 1123. Notice that the order of
yellow, green, and blue in the inner figure is the same as the
order of the same colors in the outer figure.

self.k = len(multiplicity)
self.P = []

for i in range(self.k):
self.P += [i+1]∗ multiplicity[i]

self.n = len(self.P)
self.D = [1]∗ self.n

self.T = 0 # No a c t i v e e l emen t t y p e
def next (self):

if self.T == 0:
self.T = 1

return self.P.copy()
else:
return self.one step(self.n).copy()

MULTISET PERMUTATION GENERATION 19

def swap(self,i,j,df):
swap elements (self.P,i,j)

swap elements (self.D,i,j)

for k in range(i+df,j,df):
self.D[k] = 1

self.T = 1

def one step(self,n): # One i t e r a t i o n o f t h e
d = −1 # a l g o r i t hm
T = self.T

for i in range(n−1,−1,−1): #
if self.P[i] == T:
d = i

break
df = self.D[d]

j = d + df

if d>−1:

while j>−1 and j<self.n:
if self.P[j] != T or self.D[j] != df:
if self.P[j] > T:
self.swap(d,j,df)

return self.P
break

j = j+df

self.D[d] = −self.D[d]

return self.one step(d)
else: # No e l eme n t s o f t y p e T can move !
self.T = self.T+1 # Next t y p e !
if self.T >= self.k: # No e l em e n t s can move .
raise StopIteration # Ex i t !

return self.one step(self.n)
Example c ode :
for perm in setperm([2,2,1,1]):
print(perm)

References

[1] Y. Agaoka. On the curvature of Riemannian submanifolds of codimension 2. Hokkaido

Mathematical Journal, 14:107–135, 1985.
[2] Peter Eades and Brendan McKay. An algorithm for generat-

ing subsets of fixed size with a strong minimal change prop-
erty. Information Processing Letters, 19(3):131–133, 1984. URL:
https://www.sciencedirect.com/science/article/pii/0020019084900917,
doi:https://doi.org/10.1016/0020-0190(84)90091-7 .

[3] Selmer M. Johnson. Generation of permutations by adjacent trans-
position. Mathematics of Computation, 17(83):282–285, 1963. URL:
http://www.jstor.org/stable/2003846.

https://www.sciencedirect.com/science/article/pii/0020019084900917
https://doi.org/https://doi.org/10.1016/0020-0190(84)90091-7
http://www.jstor.org/stable/2003846

20 HANS JAKOB RIVERTZ

[4] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Gen-

erating All Combinations and Partitions. Addison-Wesley Professional, 2005.
[5] James F. Korsh and Paul LaFollette. Multiset permutations

and loopless generation of ordered trees with specified de-
gree sequence. Journal of Algorithms, 34(2):309–336, 2000. URL:
https://www.sciencedirect.com/science/article/pii/S0196677499910593 ,
doi:https://doi.org/10.1006/jagm.1999.1059.

[6] Vladimir Kruchinin, Yuriy Shablya, Dmitry Kruchinin, and Victor Rulevskiy. Un-
ranking small combinations of a large set in co-lexicographic order. Algorithms, 15(2),
2022.

[7] Jacob T. Schwartz Mark Kac, Gian-Carlo Rota. Discrete Thoughts, Essays on Math-

ematics, Science and Philosophy. Birkhäuser Boston, MA, 2 edition, 1992.
[8] Torsten Mütze. Combinatorial gray codes-an updated survey, 2022. URL:

https://arxiv.org/abs/2202.01280, doi:10.48550/ARXIV.2202.01280.
[9] Frank Ruskey. Combinatorial generation. Preliminary working draft. University of

Victoria, Victoria, BC, Canada, Oct 2003.
[10] Frank Ruskey and Aaron Williams. Generating combinations by prefix shifts. volume

3595, pages 570–576, 08 2005. doi:10.1007/11533719_58.
[11] Frank Ruskey and Aaron Williams. The coolest way to generate

combinations. Discrete Mathematics, 309(17):5305–5320, 2009. Gen-
eralisations of de Bruijn Cycles and Gray Codes/Graph Asymme-
tries/Hamiltonicity Problem for Vertex-Transitive (Cayley) Graphs. URL:
https://www.sciencedirect.com/science/article/pii/S0012365X07009570 ,
doi:https://doi.org/10.1016/j.disc.2007.11.048.

[12] Joe Sawada and Aaron Williams. A universal cycle for strings with fixed-content
(which are also known as multiset permutations). 04 2021.

[13] Joe Sawada and Aaron Williams. Constructing the first (and coolest)
fixed-content universal cycle. Algorithmica, pages 1–32, 11 2022.
doi:10.1007/s00453-022-01047-2.

[14] Tadao Takaoka. An o(1) time algorithm for generating multiset permutations. In Al-

gorithms and Computation, pages 237–246, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[15] Tadao Takaoka. O(1) Time Algorithms for Combinatorial Generation by Tree Tra-
versal. The Computer Journal, 42(5):400–408, 01 1999.

[16] Tadao Takaoka and Stephen Violich. Combinatorial generation by fusing loopless
algorithms. In Proceedings of the 12th Computing: The Australasian Theroy Sympo-

sium - Volume 51, CATS ’06, page 69–77, AUS, 2006. Australian Computer Society,
Inc.

[17] Jose Torres-Jimenez and Idelfonso Izquierdo-Marquez. A low spatial complex-
ity algorithm to generate combinations with the strong minimal change prop-
erty. Discrete Mathematics, Algorithms and Applications, 11(05):1950060, 2019.
doi:10.1142/S1793830919500605.

[18] H. F. Trotter. Algorithm 115: Perm. Commun. ACM, 5(8):434–435, aug 1962.
doi:10.1145/368637.368660.

[19] Aaron Williams. Loopless generation of multiset permutations using a
constant number of variables by prefix shifts. pages 987–996, 01 2009.
doi:10.1145/1496770.1496877 .

https://www.sciencedirect.com/science/article/pii/S0196677499910593
https://doi.org/https://doi.org/10.1006/jagm.1999.1059
https://arxiv.org/abs/2202.01280
https://doi.org/10.48550/ARXIV.2202.01280
https://doi.org/10.1007/11533719_58
https://www.sciencedirect.com/science/article/pii/S0012365X07009570
https://doi.org/https://doi.org/10.1016/j.disc.2007.11.048
https://doi.org/10.1007/s00453-022-01047-2
https://doi.org/10.1142/S1793830919500605
https://doi.org/10.1145/368637.368660
https://doi.org/10.1145/1496770.1496877

	1. Introduction
	1.1. General introduction
	1.2. Motivating introduction

	2. Related algorithms and theory
	2.1. The Steinhaus-Johnson-Trotter algorithm
	2.2. Gray codes
	2.3. The piano chords algorithm

	3. The new algorithm
	3.1. Definition and proofs
	3.2. The tale of the wolves in the staircase
	3.3. Applying the algorithm on multisets
	3.4. A circular Gray code for a multiset.

	4. Generating the polynomials
	5. Discussion
	5.1. Comparison to Eades McKay
	5.2. Notes on an algorithm of Takaoka
	5.3. Inspiration from Steinhaus-Johnson-Trotter
	5.4. Unanswered question

	References

