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Abstract

Search-and-rescue operations at sea are supported by fast predictions of
drift trajectories that are classically based on operational ocean models.
This thesis promotes a complementary approach for drift forecasting based
on computationally efficient methodologies utilising simplified models and
ensemble-based data assimilation.

Simplified ocean models aim to capture only the most relevant dynam-
ics for short time horizons and they are hence more computationally ef-
ficient than complex operational models. Herein, the rotational shallow-
water equations and a massively parallel simulation framework are ex-
ploited for the simplified modelling. Given the inherent inaccessibility of
the true dynamics of the ocean, both presently and in the future, large en-
sembles of simplified models can be run to account for this spatio-temporal
uncertainty in local forecasts. Such ensemble-based representations enable
the incorporation of observations of ocean currents by data assimilation
techniques as new measurements are available. Consequently, the uncer-
tainty in the prediction is typically reduced. In this work, methodologies
behind such an on-demand system for local short-term drift trajectory pre-
diction are considered. The investigations include different modelling and
assimilation techniques suitable for search-and-rescue scenarios.

The first part of this thesis synthesises the background and the descrip-
tion of the general concepts, whereas the second part consists of the scien-
tific papers. The contributions in this thesis reach from the discussion of
numerical solvers for shallow-water simulations, over mathematical mod-
elling for simplified ocean dynamics, to tailored data assimilation methods
for sparse in-situ observations and settle with the advancement of compu-
tational efficient data assimilation, building on the foundations of multi-
level Monte Carlo methods and simulations on different resolutions.
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Part I

Background





Chapter 1

Introduction

Daily weather forecasts are a familiar service and they extensively influ-
ence people’s everyday lives on multiple aspects. For everyone at sea
or in coastal areas, ocean forecasts are equally important as atmospheric
weather forecasts. While numerical weather prediction and ocean fore-
casting share structural similarities, the preconditions for ocean forecasts
are more challenging: the dynamics are more complex due to feature sys-
tems of smaller scales and the amount of observation data is significantly
less.

Data plays a crucial role to improve the description of the current con-
ditions of the ocean, but observations alone are insufficient to recover the
complete ocean state and fall short to predict future ones. Therefore, ob-
servations are combined with numerical simulations. Mathematical mod-
els resemble the dominating physical processes in the ocean and generate
forecasts for future dynamics, while available measurements are sequen-
tially assimilated into model forecasts. After an update reflecting the latest
observations, new forecasts can be produced. As more data is assimilated
closer to the target time, the precision of statistical predictions is thereby
improved.

At sea, search-and-rescue (SAR) operations rely on fast and trustwor-
thy forecasts of drift trajectory to define search areas [27, 99]. Such drift
predictions are commonly produced by trajectory models using the oper-
ational forecasts. In that, operational ocean forecast architectures are built
on complex models that aim for as precise as possible simulations and as-
similation of all available data. Therefore, operational forecasts require
large computational resources and deliver predictions on a fixed resolu-
tion.

1
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Figure 1.1: Simplified models treat some of the physical complexity in favour for
computational efficiency which is useful for conducting uncertainty quantifica-
tion.

In Norway, 80% of the population lives within 10 km of the coast. Ad-
ditionally, the Norwegian coast line is the second longest in the world with
narrow fjords and archipelagos. For these reasons, high-resolution fore-
casts that capture local features in the ocean currents and that can be used
for rapid drift predictions are required.

In this thesis, we follow a complementary approach for local drift tra-
jectory forecasting that utilises ensembles of simplified models together
with multi-level data assimilation. Thereby, we facilitate lightweight
decision-support tools that exploit fast and flexible models and assimilate
sparse in-situ observations.

In general, ocean circulation models are capable of representing a wide
range of oceanographic processes and provide high-fidelity predictions.
These cutting-edge ocean models afford an accurate description of the
three-dimensional physics, and assimilation of data from different sources
for precise estimates of the true ocean state. However, they often produce
only a single simulation due to extensive computational demands and re-
stricted resources. Drift forecasts can then be generated by an offline tra-
jectory model using results of operational simulations.

In contrast, simplified ocean models offer a lightweight supplement
with reduced computational burden, enabling rapid and replicated sim-
ulations. Simplified models capture the dominant physical processes and
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Figure 1.2: Photos of experimental drifters used for drift trajectory monitoring
during a cruise in Inner Oslofjord on the 27.04.2023. Drifters can be used to gather
current observations in a specific area of interest.

can flexibly increase resolutions, making them suitable for local short-term
forecasting. They provide a valuable approximation of the real ocean state
over short time spans, allowing for efficient and timely predictions in ap-
plications like drift trajectory forecasting for SAR or emergency response
decision-support. This is a different use case than climate modelling where
the goals are involving long time horizons and global coverage [5]. Fur-
thermore, by running numerous simulations, an ensemble of simplified
models can feature enhanced statistical properties, efficiently explore the
uncertainty space, and yield improved probabilistic forecasts, a capabil-
ity not easily achievable with deterministic circulation models. Figure 1.1
exhibits these contrasts.

Observational data obtained from, e.g. drifters (see Figure 1.2), can be
used to improve the accuracy of ensemble forecasts by data assimilation
techniques. Hereby, relevant in-situ observations are sparse, since related
measurements are collected only at few locations in the ocean. Data as-
similation helps to calibrate models and to correct biases, and it adjusts
the model state to better match observations, yielding more reliable fore-
casts which often have reduced uncertainty. With deterministic models
on one end of the scale, machine learning models represent another ex-
treme approach where all physical behaviour is supposed to be learned
from data [65]. While the machine learning approach often suffers from
insufficient training data in the case of SAR missions, data assimilation is a
data-driven approach that combines the physical model and observational
data in a statistically principled framework.

The computational benefits of simplified ocean models facilitate pro-
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ducing ensemble forecasts in local domains with high spatial resolution
and assimilating latest in-situ observations that have not been respected in
the operational machinery. Consequently, we promote the application of
the simplified approach in time-sensitive SAR scenarios.

In this work, we advance the complementary approach that combines
simplified ocean models and data assimilation for the prediction of drift
trajectories in local areas. Therefore, we present contributions to the fol-
lowing research objectives:

I Adaption of the numerical simulations for simplified ocean models
to produce more realistic results.

II Extension of the modelling framework for simplified ocean models
to capture a variety of simplified dynamics.

III Dwelling on the data assimilation aspect with techniques that are tai-
lored for sparse observations.

IV Design of multi-level data assimilation for simplified ocean models
where simulations on multiple resolutions are exploited.

The havvarsel Project The havvarsel project is a collaboration among the
Norwegian Institute of Marine Research (HI), the Norwegian Meteorologi-
cal Institute (MET Norway) and SINTEF Digital, and aims to prepare next-
generation ocean forecast systems that provide personalised ocean fore-
casts in coastal zones. This PhD project was carried out within the frame
of the havvarsel project and builds academically on the work of Holm [72],
which was carried out during the previous GPU Ocean project. In the pre-
ceding project, a GPU-accelerated simplified ocean model that runs for real
conditions of the Norwegian coast was implemented and state-of-the-art
data assimilation methods for drift trajectories were explored. As techni-
cal results of the havvarsel project, a two-way data flow system has been
established which handles up- and download of individual ocean obser-
vations and the topic of ocean forecasting is presented to the public on the
web page https://havvarsel.no. Complementary, this PhD project
focuses on the research and the fundamental development of simplified
models and associated data assimilation techniques that are necessary to
incorporate such data to improve local forecasts in the future. To demon-
strate how decision-support can be advanced, SAR scenarios are consid-
ered in this thesis.

https://havvarsel.no
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Outline The remainder of this thesis is structured as follows. First, Chap-
ter 2 presents the simplified ocean models used throughout this thesis,
expounding the shallow-water equations, numerical methods for solving
them, and drift trajectory modelling. The Monte Carlo approach to quan-
tify inherent uncertainty by ensembles is explained in Chapter 3 and Chap-
ter 4 introduces ensemble-based data assimilation methods. Here, the data
assimilation problem is stated, followed by a discussion of particle filters
and ensemble Kalman filters that strive to modify uncertainty realistically
in the forecasts. Chapter 5 explains multi-level Monte Carlo estimation
along with the multi-level version of the ensemble Kalman filter. Chapter 6
summarises the contributions made in the attached papers and Chapter 7
concludes with a general summary and an outlook.
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Chapter 2

Simplified Ocean Models

In the context of geophysical fluid dynamics, mathematical modelling aims
at describing the flow processes and relies on the principles of conser-
vation laws, i.e. conservation of mass, momentum, internal energy, and
tracer quantities. While the Reynolds-averaged Navier-Stokes equations
serve as a starting point when studying ocean dynamics [63], additional
approximations are commonly introduced. The hydrostatic approxima-
tion assumes that the horizontal scale is large compared to the vertical
scale1, while the Boussinesq approximation assumes the incompressibil-
ity of ocean water. These approximations lead to the formulation of the
primitive equations for the ocean dynamics. For most operational fore-
casts, the primitive equations are solved in one way or another by fully
three-dimensional circulation models such as ROMS [123], NEMO [97], or
HYCOM [11].

These models find also application in the operational forecasting sys-
tems of MET Norway. For instance, the TOPAZ system encompasses the
North Atlantic region with a resolution of 12–16 km [119], while the
NorKyst model is nested into the TOPAZ domain to cover specifically the
Norwegian coast, offering a higher resolution of 800 m [2]. NorKyst is
the main operational forecast tool for the Norwegian coastal area and is
set up with boundary and forcing information from several sources and
with 35 vertical layers. In addition, NorFjord forecasts, that are nested
into NorKyst, can provide a 160 m resolution, but are not available oper-
ationally [1]. Moreover, specialised products can integrate additional ser-
vices like a sea ice model for Arctic waters [115]. Given the complexity
of these models and their computational requirements, supercomputer in-

1In the perspective of the hydrostatic approximation, the ocean is shallow while a glass
of water is deep.

7
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Figure 2.1: NorKyst is the ROMS-based model for the coast of Norway. Simplified
models can be nested into its domain locally. Here, we show a cut-out for the
Lofoten area in Northern Norway.

frastructure has to be employed, and model runs are typically scheduled
only once or twice a day.

These operational forecasts are the backbone of the ocean forecast ser-
vices [132]. However, when it comes to capturing information of high
spatial resolution on-demand, one has to compete for additional compu-
tational resources beyond the allocated slots for the scheduled runs. This
can take time and these efforts are often limited to a single high-detail de-
terministic forecast.

Simplified models provide a complementary approach: While they do
not attempt to produce the most detailed dynamics, these models are only
valid for short-term physics and can be run efficiently. The resolution can
be increased for improved representation of local conditions and the mod-
els can run on-demand as no large clusters are needed. Simplified models
for the Norwegian coast can be nested locally into NorKyst, see Figure 2.1.
Then, the simplified model inherits features from NorKyst through the ini-
tialisation or from the boundary. Simplified models are less complex and
potentially only two-dimensional, such that they can run on conventional
computers, for example on board of a vessel.

2.1 Shallow-Water Equations

The primitive equations of ocean dynamics can be further simplified by
assuming constant density and by integrating the variables over the full
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H

η

hhu

Figure 2.2: Cross section explaining the variables of the shallow-water equa-
tions. The momentum hu is the current u integrated over the entire water column
h = H + η, where H is an equilibrium depth and η is the deviation from this
equilibrium.

water column, see e.g. [114]. This results in the formulation of the shallow-
water equations (SWE) within a rotating frame of reference, which consti-
tutes our simplified ocean model in all our further studies. The rotational
SWE takes into account the Coriolis force that arises due to the Earth’s ro-
tation.

We consider the equilibrium water depth H and the deviation from this
equilibrium η, such that the total water column height becomes
h = H + η. The velocities in x- and y-direction are denoted as u and v,
respectively (see Figure 2.2). Then the SWE can be expressed as



η
hu
hv




t

+




hu
hu2 + 1

2 gh2

huv




x

+




hv
huv

hv2 + 1
2 gh2




y

=




0
f hv
− f hu


+




0
ghHx
ghHy


 , (2.1)

where g is the gravitational force and f the Coriolis parameter. These equa-
tions encapsulate the two-dimensional dynamics governed by the evolu-
tion of the sea surface elevation and the momenta (hu and hv), where the
source terms on the right-hand side account for the effects of the Corio-
lis force and the variations in the bottom topography. In practice, further
source terms can be added, accounting for atmospheric pressure forcing,
bed friction, wind stress, and so on.

A lake-at-rest with flat surface and no flow constitutes a trivial example
of a steady-state solution to the SWE. However, in the presence of Coriolis
forces, an important class of equilibria is described by geostrophic balance,
where the Coriolis force balances the pressure gradient. This concept yields
non-trivial rotating steady state solutions. As the SWE capture the Coriolis
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force as a source term and the pressure forces from the slope of the free
surface, they have the conceptual capability to sustain solutions of the type

f hv = gh
∂η

∂x
and f hu = −gh

∂η

∂y
(2.2)

over time. Geostrophic balance plays a significant role in physical oceanog-
raphy [134] and will arise in several of the examples throughout the thesis.

High-Resolution Finite-Volume Methods

The SWE are a non-linear hyperbolic conservation law. With the vector
of conserved variables q = [η, hu, hv]>, the SWE can be expressed in vec-
torised form as

qt +F (q)x + G(q)y = S(q). (2.3)

Here, F (q) and G(q) represent the flux functions in the x- and y- direc-
tion, respectively, and S(q) denotes the source terms. To numerically solve
this system, we employ finite-volume methods (FVM), which are designed
to preserve physical properties of the original equations, i.e. FVMs can
be composed to be conservative, see e.g. [133, 92, 102]. In our setting, we
discretise the computational domain into a regular Cartesian grid of size
nx × ny, with each grid cell representing a control volume of dimensions
∆x× ∆y. Then, we define Qj,k as the average of the conserved variables q
over the cell Γj,k with the indices (j, k) in the grid. We omit additional time
notation as long as it is not strictly necessary.

With Gauss’s theorem, eq. (2.3) can be rephrased into its integral form

∂Qj,k

∂t
= −

∫

∂Γj,k

F (q) · nx ds−
∫

∂Γj,k

G(q) · ny ds + S(Qj,k), (2.4)

where the integrals are evaluated over the boundary of the cell and nx and
ny are x- and y-contribution of the outer normal vector of the cell, respec-
tively.

FVMs utilise the integral form of eq. (2.3) and approximate the spatial
derivatives by the differences of the fluxes over opposite cell interfaces.
With numerical fluxes F and G, which approximate the flux terms over the
cell interfaces in x- and y-direction, respectively, the semi-discrete approx-
imation to eq. (2.3) becomes

∂Qj,k

∂t
= −Fj+1/2,k − Fj−1/2,k

∆x
− Gj,k+1/2 −Gj,k−1/2

∆y
+ S(Qj,k). (2.5)
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This is a set of ordinary differential equations that describes the evolution
of the cell averages in time and is a fundamental building block for many
modern FVMs.

One approach to proceed from eq. (2.5) is to utilise the so-called REA-
algorithm, which involves three key steps: reconstruction, evolution and
averaging. First, a polynomial is reconstructed per cell which enables a
better representation of the underlying functions. This provides also point
values on the interfaces for the evaluation of the numerical fluxes. Next,
the equations are evolved in time using appropriate time integration schemes.
Lastly, the FVM representation is again obtained by averaging the results
over the grid cells.

As geostrophic balance is a central concept in oceanography, special
effort is exerted in the design of the FVMs to guarantee that also the nu-
merical solutions preserve these steady states. Such FVMs are then called
well-balanced. Well-balanced schemes are a wider class of FVMs, but we are
particularly interested in those that are well-balanced with respect to an
instance of geostrophic balance.

In this thesis, we touch on two well-balanced FVMs for the SWE. These
are high-resolution schemes of second order that are derived from the REA-
algorithm. The first method by Kurganov and Petrova (KP, [87]) is con-
structed to be well-balanced for the lake-at-rest case, even in the presence
of discontinuous bottom topography. KP employs linear reconstruction
on the conserved variables and finds slopes using the generalised minmod
limiter [95]. The numerical fluxes are then evaluated by the central-upwind
scheme [88].

The second scheme by Chertock et al. (CDKLM, [25]) is similar to KP,
but it extends the well-balanced property to a larger subset of rotating equi-
libria. It is proposed for a special case of non-trivial geostrophic jets along
the coordinate axes, including the trivial lake-at-rest case. In contrast to
KP, the reconstruction is based on potential energies with respect to the
geostrophic imbalance and further, to obtain the well-balance for the jets,
the components of F and G that embrace the huv-term are evaluated with
a standard upwind scheme.

For the evolution in time, both methods employ the explicit second-
order total-variation-diminishing Runge-Kutta scheme for the time evolu-
tion [60], whose time step size ∆t is restricted by the Courant-Friedrich-
Levy (CFL)-condition, given by

∆t ≤ C
4

min
j,k





∆x

max
∣∣∣uj,k ±

√
ghj,k

∣∣∣
,

∆y

max
∣∣∣vj,k ±

√
ghj,k

∣∣∣



 , (2.6)
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Figure 2.3: Cross section along the y-axis through exemplary initial conditions of
the synthetic SWE experiment. Note that v = 0.

where C < 1 is the Courant number and grid values come from
[ηj,k, huj,k, hvj,k]

> = Qj,k.
Finally, to solve eq. (2.1), it is necessary to combine the SWE with ap-

propriate initial and boundary condition. In the context of simplified ocean
simulations, the initial conditions are imposed from operational models
without spin-up phase at the starting time of the simulation. Analogously,
the boundary conditions are set over the time span of the simulation from
the operational forecast data, where a flow relaxation scheme accounts for
the origin from a mismatching model [33].

Synthetic SWE Experiment Throughout the contributions of this thesis,
we consider the so-called double jet case to test numerical schemes and
data assimilation methods. Galewsky et al. [51] suggested a test case for
numerical solvers for the SWE on a rotating frame of reference. The case
starts from an initial steady state in form of a jet, but the system is unstable
in the sense that a small perturbation leads to turbulent behaviour. The
set-up was extended by Holm et al. [76] by a second jet in the opposite
direction and periodic boundary conditions. With that, the case gets more
demanding and creates near-realistic currents. The state is described by
a westward jet in the north and an eastward jet in the south, both along
the coordinate axes. The initial conditions, see Figure 2.3 for an exam-
ple, are designed to be in geostrophic balance and the example is therefore
within the subset for which the CDKLM scheme is well-balanced. Due to
its chaotic response to perturbations, the synthetic double jet case serves
also as a challenging test case for data assimilation scenarios in the remain-
der of this thesis.
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GPU OCEAN Code Base

While central processing units (CPUs) serve as the primary general-
purpose units of a computer system responsible for executing instructions
and performing calculations, graphics processing unit (GPUs) can be used
to accelerate computations through massive parallelisation. The GPU was
originally developed to accelerate and enhance the rendering and display-
ing of visual content and are therefore designed to handle typical compu-
tations on a grid of pixels in a highly parallel manner. As GPUs became
programmable, the potential of parallelism could be harvested for general-
purpose scientific computing tasks beyond graphics processing [14].
Whereas CPUs typically consist of dozens of computational cores, modern
GPUs consist of several thousands of simpler cores operating in the ‘single-
instruction, multiple-data’ paradigm of parallel computing. This means
that GPUs excel at problems that can be solved through embarrassingly
parallel algorithms, where the same instruction set can be applied to a large
set of input data to produce output that is independent from other output
values [16].

Due to the explicit time-stepping used to solve eq. (2.1), the FVMs
for simulating the SWE are perfect examples of parallel algorithms that
are well-suited for GPU accelerations [66, 127, 74]. Over the recent years,
the Applied Computational Sciences group (formerly Computational Geo-
sciences group) at SINTEF Digital, together with the Ocean and Ice re-
search unit at MET Norway, have developed the GPU OCEAN code base
as tool for simplified ocean forecasts. Therefore, the simulation framework
includes among others GPU-accelerated implementations of the KP and
CDKLM schemes for the efficient simulation of the SWE and supports
realistic scenarios by allowing initialisation from operational ocean fore-
casts, such as NorKyst or similar models, and handling domains with land
masks. Furthermore, the capabilities include fetching boundary conditions
and deriving forcing terms for wind and atmospheric pressure from oper-
ational models. Furthermore, the framework offers the flexibility to adjust
the resolution independent of the initial data resolution, accommodates for
ensemble simulations and enables the integration of data assimilation.

Computational Efficiency

The SWE, as simplified two-dimensional ocean model, are designed for
specific ocean processes and treat some of the physical complexity in favour
of computational efficiency. Still, the SWE can inherit dynamics from the
complex models through initial and boundary conditions and preserve
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Figure 2.4: GPU OCEAN logo and picture of the GeForce RTX3090 GPU, which
was used for most of the experiments in this thesis, taken on 11.09.2023 after it
burnt through.

structural patterns to some extent. Moreover, the efficient implementation
on GPUs makes the SWE a complementary special-purpose tool for shorter
time spans.

In this work, the GPU OCEAN framework has extensively been used
for the simulation of simplified forecasts such that a operating GPU set-up
was vital, see Figure 2.4. While a NorKyst simulations takes about 1 h 7 min
(v2, 512 cores) or 3 h 30 min (v3, 128 cores) on the ‘Stratus’ cluster at the
National Supercomputer Centre, Linköping University, the GPU OCEAN

simulation of the same domain and time span takes 1 min 13 s on a GeForce
RTX3090, which is an advanced GPU series, or 10 min 48 s on a Quadro
T2000, which is a more standard laptop GPU.

Reduced computational time due to accelerated models yields further-
more a cut of financial costs. Considering that financial expenses for the
computations are effectuated by number of hours of node usage, more effi-
cient methods reduce the associated price, whereas parallelisation only re-
duces the wall time but not the total node occupancy. Beyond the financial
impact, decreased computational requirements sparse the need for extra
hardware resources. This dual effect underscores advantages of efficient
computational methods seen from an alternative perspective.
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(a) Two-layer shallow-water model

h́

ζ

h́ú

Deep ocean

(b) Baroclinic shallow-water model

Figure 2.5: Schematic cross sections for the two-layer shallow-water and the baro-
clinic shallow-water model with schematic explanation of the variables.

2.2 Barotropic and Baroclinic Modelling

The integration of the primitive equations over a constant-density water
column leads to a pressure depending solely on the depth. As a result,
the SWE presented in eq. (2.1) serve as a textbook model for barotropic
ocean dynamics [113]. This captures, for example, tidal signals or Rossby
waves and finds practical applications in scenarios like storm surge fore-
casting [85]. However, this model ignores baroclinic dynamics, which is
driven by pressure gradients that are not aligned with the density gradient.
Seawater density typically increases with depth and it depends on temper-
ature as well as salinity. The latter quantities vary across space in the ocean
leading to varying density profiles for different locations. In particular,
protected fjords exhibit a distinct stratification, meaning that a shallow up-
per layer of lower density ρ1 and a deep lower layer of higher density ρ2
are separated by a sharp transition [31].

Determining a mixed-layer depth (MLD), that separates the low den-
sity layer on top from the high density region below, a two-layer shallow-
water ocean model can be formulated as

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This is a coupled system of shallow-water equations for both layers where
r = ρ2/ρ1, see Figure 2.5a, where H = H1 + H2 and h1, h2 are the depth
of the upper and lower layer, respectively. However, such a system is
no longer unconditionally hyperbolic [21] and the FVM schemes imple-
mented in GPU OCEAN are not sufficient to solve eq. (2.7) on GPUs [35].
Even though the system in eq. (2.7) has the abilities of barotropic as well
as baroclinic responses, we follow Røed [114] and continue to isolate the
baroclinic response by employing the rigid-lid assumption, meaning that
we set η = 0. By adding the mass conservation equations from eqs. (2.7a)
and (2.7b), this requires

h1u1 = −h2u2 and h1v1 = −h2v2, (2.8)

and the mass conservation reduces to

ζt + (h1u1)x + (h1v1)y = 0. (2.9)

Lastly, we assume an infinitely deep lower level which implies that we
neglect currents in the lower layer, i.e. u2, v2 = 0 using eq. (2.8). This
yields that the equations for the upper layer become decoupled and the
momentum equations of the lower layer reduce to

(
1
2

gh2
2

)

x
= gh2Hx − rgh2(h1)x and

(
1
2

gh2
2

)

y
= gh2Hy − rgh2(h1)y. (2.10)

With the chain rule, the terms (h2)x and (h2)y can be extracted and plugged
into the force terms of the upper layer.

The resulting so-called 1.5-layer shallow-water model boils down to
the same type of mathematics as the barotropic shallow-water model in
eq. (2.1). With the baroclinic variables as in Figure 2.5b, the model reads
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where the gravity is reduced according to

ǵ =
ρ2 − ρ1

ρ2
g (2.12)

and the forcing from the bathymetry cancel out. Due to eq. (2.12), the
system is also called ‘reduced-gravity model’ and we use it as a simpli-
fied model for the baroclinic dynamic in the ocean. Note that we initialise
the reduced-gravity model with the baroclinic currents in the mixed layer
ú = u1− u and v́ = v1− v for consistency, but this is different to the model
of Røed [114]. Moreover, the reduced depth of the water column and re-
duced gravity leads to significantly reduced phase speeds (ǵh́)1/2 in the
CFL-condition in eq. (2.6), such that larger time steps are achievable and
the system can be solved very efficiently in GPU OCEAN.

2.3 Trajectory Modelling

Drift trajectory predictions are, for example, important in SAR missions,
but also for collision forecasts of icebergs with offshore facilities or oil spill
clean-up. Hereby, the drift properties heavily depend on the shape of the
object, how deep the object is submerged into the ocean, and how it orients
relative towards the wind. For such incidents in Norwegian waters, trajec-
tories are computed with the OpenDrift software package [30]. Therewith,
the forecast outputs from operational models, which commonly have a 1 h
time resolution, are read in and trajectories are separately but rapidly sim-
ulated using a suitable module in the OpenDrift framework. Such work-
flows use the ocean models offline, meaning that the currents are not on-
the-fly updated according to the latest observations. Drift trajectory pre-
diction based on simplified models enables us to also update the ocean
states whenever additional data becomes available.

In GPU OCEAN, the drift modelling is integrated into the SWE simu-
lation, meaning that the drifter locations are updated during the simula-
tion. Drifters are passively advected using the currents u and v interpo-
lated from the relevant grid cells. Additionally, a drift contribution from
wind fields can be considered.

Let ψt ∈ R2 represent the location of a floating object within the com-
putational domain at time t. Further, we denote the bi-linearly interpolated
velocities by u(t, ψt) and v(t, ψt) where the interpolation is defined over
the grid cell that contains ψt and three of its neighbours. Then, the drifter
locations are advanced for the time step ∆tdrift, commonly chosen to be the
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same as the simulator time step ∆t, according to

ψt+∆tdrift
0 = ψt

0 + ∆tdrift
(
u(t, ψt) + windu(t, ψt)

)
(2.13a)

ψt+∆tdrift
1 = ψt

1 + ∆tdrift
(
u(t, ψt) + windv(t, ψt)

)
, (2.13b)

where windu, windv are contributions from the wind relative to the water
velocity. This is not the wind field directly but a function of the wind field.



Chapter 3

Ensemble Forecasts

Numerical simulations are a powerful pillar in the generation of ocean
forecasts, but even complex models are only an approximation of reality
such that the generated predictions contain inherent uncertainty. To quan-
tify the uncertainty, we consider statistical interpretation from a Bayesian
perspective and ensemble prediction systems (EPS) [91, 130, 34]. An en-
semble is a set of ocean simulations with slight perturbations and, for ex-
ample, the Barents-2.5 model of MET Norway is composed of 24 ensemble
members [81].

In general, larger ensembles are preferable for more realistic statistical
representation, but the ensemble size is limited by available computational
resources. Since the SWE are computationally highly efficient, they allow
to run ensembles with a bigger number of simulations. This means that
we invest the computational gain through the simplification into enhanced
statistical power and this is useful for reliable uncertainty quantification.

3.1 Sources of Uncertainty

In the process of mathematical modelling and numerical simulation in Chap-
ter 2, we imposed a series of simplifications and incorporated parameters
that are not perfectly known in real-world applications. Likewise, initial
conditions and additional forcing terms may be only poorly known. This
requires appropriate statistical representation in the forecast system.

To describe the state of a simplified ocean model, we use the state vector
x ∈ RNX . For the SWE model, the state vector collects all the variables over
all spatial grid cells at a certain time t, i.e.

x(t) =
(
Qj,k(t)

)nx,ny
j,k=1 (3.1)

19
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such that NX = 3 · nx · ny. Therewith, the state vector is naturally high-
dimensional. The Bayesian paradigm accounts for the inherent uncertainty
by prescribing distributions, such that the state vector is interpreted as
stochastic process.

Here, the uncertainty begins with the initial conditions x(t0) = x0. The
actual state of the ocean at time t0 is commonly inaccessible or only par-
tially known. Data from operational systems can provide information to
set x0 for the SWE, where the operational forecast already includes uncer-
tainty.

For the evolution of the states in time, we embrace the numerical SWE
model into the operatorMt0→T, which forwards the ocean state from time
t0 to time T. To account for the uncertainty in this temporal evolution, two
conceptually distinct statistical modelling approaches can be considered.

First, the simplified models represent only an idealised version of the
oceanographic reality and the numerical solution is again only an approx-
imation of the continuous model. To account for unresolved physics, we
add an additive error term ε to get

x(T) =Mt0→T(x0) + ε(ω), (3.2)

where ω denotes an element of a sample space. Here, one can include
features into the model error that are not captured by the model equations.

Second, the uncertainty in the model involves the parametrisation of
every single forcing term in the problem formulation. Hence, we consider
these values as random variables and can sample them from appropriate
distributions. This then means that we consider a set of random model
parametrisations by

x(T) =Mt0→T(x0, ω) (3.3)

such that the randomness gets directly incorporated into the model opera-
tor.

Note that model error is a design choice and should respect realistic
conditions, while still being efficient to sample. In particular, we use struc-
tures for ε that add random small-scale eddies onto the SWE states, where
the eddies are chosen in such a way such that extensive gravity waves are
avoided.

The conceptual difference between the model error ansatzes is illus-
trated in Figure 3.1. The distribution of states with the implicit model error
is propagated and transformed through the model equations as visualised
in the left display. In the right display, the additive model error determines
the distribution of states around the deterministic simulation at time T and
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(a) Implicit model error
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Figure 3.1: The stochastic model error can be incorporated into the model fore-
casts implicitly or additively. The dark curve represents a deterministic simula-
tion. The upper row depicts the timing when the model error shows effect. The
lower row shows an idealised illustration of a travelling wave. The implicit model
error perturbs parameters in the model evolution such that all realisations still
come from the modelled physics. Conversely, the additive model error allows the
inclusion of unresolved features at time T.

its characteristics has to be known a priori. In the lower panels, we also
consider a travelling wave to illustrate effects that come with the disparity
of the two model error formulations with respect to the introduced fea-
tures. However, we remark also that the additive model error can be ap-
plied with shorter time steps during the simulation from 0 to T. In that
case, model error features can develop distinct dynamics over time and
the distribution of states at time T is no longer a priori determined. Note
that it is also possible to combine both approaches.

3.2 Uncertainty Quantification

In forecast scenarios, it is of interest to quantify the influence of uncertainty
represented in the inputs and the model itself onto the final ocean states.
While a single deterministic forecast does not provide a comprehensive
uncertainty description, a fully probabilistic forecast for the states x with
a continuous probability density function (PDF, p) is inaccessible for com-
plex models. If p was available and the following high-dimension integral
was solvable, the expected value defined by

E [x] =
∫

x · p(x) dx (3.4a)
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Figure 3.2: Schematic depiction of different forecast types

or the covariance of the state with some random vector y ∈ RNY defined
by

Cov [x, y] = E
[
(x−E [x])(y−E [y])>

]
, (3.4b)

where also the associated PDF of y is assumed to be known, would be two
examples of extracting information from a fully probabilistic forecast.

In contrast to both deterministic and fully probabilistic forecasts, Monte
Carlo methods rely on repeated sampling of an experiment and are one
practical approach to provide forecasts together with the associated sta-
tistical uncertainty. In this setting, an ensemble is a set of Ne state vectors
(xe)

Ne
e=1, where all ensemble members xe are independent samples of the

same model.
In the Monte Carlo setting, an underlying PDF p is approximated by

the ensemble representation with discrete PDF p̂. The ensemble approxi-
mation of the marginal distribution of x becomes

p̂(x) =
Ne

∑
e=1

weδ(x− xe), (3.5)

where (we)
Ne
e=1 are weights that sum up to 1 and δ is the Dirac delta func-

tion. Starting from uncertain initial conditions x0 with a given distribution,
an ensemble forecast is generated by evolving all ensemble members inde-
pendently in time. The concept of ensemble-based forecasts in contrast to
deterministic and probabilistic forecasts is illustrated in Figure 3.2.

Further, the ensemble members can be used to estimate statistical quan-
tities like the first and second moments at certain times. With equal weights
we = 1/Ne for all members e = 1, . . . , Ne, the expected value in eq. (3.4a)
can be estimated by the sample average

E [x] =
1

Ne

Ne

∑
e=1

xe, (3.6)
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which is a vector in RNX , and using a corresponding ensemble (ye)
Ne
e=1 with

equal weights, the covariance Cov in eq. (3.4b) is approximated by

Cov [x, y] =
1

Ne − 1

Ne

∑
e=1

(xe − E [x]) (ye − E [y])>, (3.7)

which is a matrix in RNX×NY . The variance Var [x] is approximated by the
diagonal of Cov [x, x], which is denoted as Var [x] ∈ RNX . In the case of
arbitrary weights, the mean is estimated by

E [x] =
Ne

∑
e=1

wexe, (3.8)

and the covariance of x with itself is estimated by

Cov [x, x] =
1

1−∑Ne
e=1 w2

e

Ne

∑
e=1

we (xe − E [x]) (xe − E [x])>. (3.9)

From these estimators for the full state vector, statistics for variables
of interest can be derived by selecting the corresponding dimensions. For
example for the ocean currents in the SWE model, the statistics can be es-
timated through its mean E [u] , E [v] and variance Var [u] , Var [v], which
are vectors of the same dimension as the computational grid and can be
directly visualised.

Monte Carlo estimators are approximations to the true, but inaccessi-
ble, expected value and covariance, respectively, and the statistical accu-
racy of the estimates generally improves for a larger effective number of
samples. Hence, larger ensembles with more members are preferable for
the quantification of the uncertainty. In ocean forecasting, each Monte
Carlo sample corresponds to the simulation of an instance of an ocean
model. Since the ensemble size of complex models is limited by the avail-
able time budget and computational resources, operational systems pro-
vide commonly only a single forecast or a small ensemble. As seen in Sec-
tion 2.1, the SWE model is computationally more efficient, such that we
can afford an increased number of experiments and larger ensembles.

Exemplary, we consider an ensemble of with 500 SWE members for
the double jet case from Section 2.1. Each member is initialised by the
same initial conditions and evolved by the SWE model for 10 d, where the
simulations are perturbed every 1 min with some small additive model er-
ror. Then, Figure 3.3 shows the mean velocity in the upper row, meaning
(E [u]2 + E [v]2)1/2, and velocity fields for two ensemble members in the
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Figure 3.3: Velocities in a ensemble of double jet simulations. The mean is calcu-
lated over 500 ensemble members.

lower row. Clearly, the single ensemble members develop turbulent cur-
rent structures while the mean has a regular pattern reflecting smeared
initial conditions.

Ensemble Trajectory Modelling

In our application, the ensemble of ocean states supplies an ensemble of
drift trajectories (ψd)

Nd
d=1 for some drifter ensemble size Nd. We consider

two distinct approaches for the modelling of ensemble trajectories, where
both can be integrated into the simulation routine as generally described
in Section 2.3. The first one intrudes into every single simulator of the
ensemble, while the second one relies on ensemble statistics.

Trajectories by Ensemble Attachment

The most straightforward method for generating an ensemble of drift tra-
jectories from an ensemble of simplified ocean models, is to simulate one
realisation of drift trajectories connected to one ocean model. The drifter
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locations are updated every time step ∆t of the simulator using eq. (2.13)
and thee ensemble of drift trajectories is equally large as the ensemble of
SWE models, meaning Nd = Ne. The advantage of this is that each indi-
vidual drift trajectory is consistent with respect to the physics of the ocean
model, it is computationally inexpensive, and the statistical distribution of
the drift trajectories are in accordance with the distribution of the simu-
lated currents.

Trajectories by Ensemble Statistics

In contrast to the previous approach, the members of the ocean model
ensemble are not utilised individually in this alternative. Instead, esti-
mates of the ocean currents are computed and these statistics are used to
evolve the drifter ensemble. We sample drifter realisations from a Gaus-
sian process that is centred at (E

[
u(t, ψt)

]
, E
[
v(t, ψt)

]
) and is scaled by

(Var
[
u(t, ψt))

]
, Var

[
v(t, ψt))

]
). Note that the stochastic realisation spans

over the entire simulation time for a sample of this process. In this case, the
size of the drifter ensemble Nd can be chosen independent from the SWE
ensemble size Ne. To ensure that the realisation of modelled path is consis-
tent over time, we first sample a random component for the currents u and
v for every drifter member as

δd,u, δd,v ∼ N (0, 1) for d = 1, . . . , Nd (3.10)

and keep those fixed for the evolution of the drifter in time. The time steps
of the drifter evolution ∆tdrift is also independent of the simulator time
steps, but at relevant time steps the means E [u(t)] , E [v(t)] and variances
Var [u(t)] , Var [v(t)] are calculated. The drifter ensemble is then forwarded
as

ψt+∆tdrift
d,0 = ψt

d,0 + ∆tdrift

(
E
[
u(t, ψt

d)
]
+ δd,u

√
Var

[
u(t, ψt

d)
]
+ windu(t, ψt)

)

(3.11a)

ψt+∆tdrift
d,1 = ψt

d,1 + ∆tdrift

(
E
[
v(t, ψt

d)
]
+ δd,v

√
Var

[
v(t, ψt

d)
]
+ windv(t, ψt)

)

(3.11b)

for d = 1, . . . , Nd. The currents in eq. (2.13) are replaced by statistical terms.
As this approach does not require access to the individual simulations, it is
versatile, but assumes intrinsically a Gaussian distribution.
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Figure 3.4: Ensemble trajectories and visualisation by drifter paths and KDE

Statistical Modelling of Search Areas

In the Monte Carlo setting for drifters, a point cloud together with the tra-
jectories informs about the paths of the drifter ensemble. However, the
discrete representation does not necessarily result in comprehensive visu-
alisations for search areas. As the sampled drifter positions represent an
approximation to continuous PDFs, kernel density estimation (KDE) can
additionally provide a smooth representation based on the discrete sam-
ples at a certain time. For example, for huge ensembles of drift trajecto-
ries, a kernel-density presentation is more appropriate than a point cloud.
With the estimated covariance of the drifter locations Σψ,ψ = Cov [ψ, ψ]
the KDE can be a sum over Gaussian kernels centred at the Monte Carlo
samples

p̂KDE(ψ) ∝
Nd

∑
d=1

exp
(
−1

2
(ψ−ψd)(κΣψ,ψ)

−1(ψ−ψd)
>
)

, (3.12)

where κ is the bandwidth and by Scott’s rule set as N−1/6
e for a two-

dimensional variable [122].
Figure 3.4 pictures the difference between a trajectory plot with drifter

paths for every ensemble member from start to end time of the forecast
and the KDE of the drifter locations at the final time. The visualised drift
trajectory ensemble has 500 members with the same initial position and the
black dots mark the drifter locations at the end time of the forecast.



Chapter 4

Data Assimilation

In the previous sections, we have described simplified ocean model and
how these can be used to efficiently forecast drift trajectories. Alongside
these models and simulations, observation data plays a crucial role in oceano-
graphic forecasts [36]. In this section, we discuss the mathematical frame-
work for how ensembles of numerical models can be updated using such
observations through data assimilation.

In general, observations can be obtained from several sources such as
satellite images [29], high-frequency radars [126], or buoys [111, 17] and
exhibit diverse properties like various resolutions [68]. Similarly to the
routines in classical numerical weather prediction, these measurements
are utilised in the operational machinery to improve the accuracy of fore-
casts [98, 107]. However in comparison to the atmosphere, the ocean is
only sparsely observed [67]. Operational ocean forecast systems incorpo-
rate a wide range of the available observations into the assimilation, but as
the models are typically scheduled once or twice a day, the data has to be
available before or at least during the run.

In certain time-critical scenarios like SAR missions, additional obser-
vations of the real currents can become available during the mission [32].
Such data was not considered in the operational forecasts, as it was likely
not yet available during a scheduled run of the computationally intensive
models. However, these latest observations can be incorporated into on-
demand forecasts with simplified models instead. In this thesis, we con-
sider data from in-situ buoys as these typically take measurements fre-
quently. On the contrary, dozens of kilometres can lie between different
buoys, such that the observations are spatially very sparse. Simplified
models cannot be expected to resolve all characteristics from general cir-
culation models as there is a natural simplification in the equations and

27
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variables in the SWE compared to the complex models, but an SWE ensem-
ble can benefit from frequent updating according to measurements and can
thereby be steered towards the true dynamics.

4.1 The Data Assimilation Problem

To get started, we consider a series of time steps tn, n = 0, . . . , NT at which
new data is assimilated. Without loss of generality those time steps are as-
sumed to be equidistant. Moreover, we denote the state vector at time tn

as xn ∈ RNX . Starting from an ensemble representation of the initial distri-
bution (x0

e )
Ne
e=1 and assuming that the ensemble has reached time tn−1, we

evolve each member from the previous time step tn−1 to the current tn by

xn, f
e =Mtn−1→tn

(xn−1
e ) + εe. (4.1)

Here,M represents the numerical SWE model and εe is a realisation of the
model error as in eq. (3.2). Note that we employ the additive model error
as we will actively use its properties later on. Equation (4.1) is called the
‘forward step’ in the data assimilation cycle and executes for each ensemble
member independently. To pronounce that the resulting states are forecasts
generated from the physical model, we mark them with the superscript f .

In most geophysical systems, such as in the ocean, states can only be
partially observed. In our context, we assume that an observation of the
(inaccessible) true state xn

truth is extracted by an operator H and contains
some observation noise. We express the extraction of an observation yn ∈
RNY as

yn = H(xn
truth) + νn, (4.2)

where νn ∼ N (0, R) is a Gaussian random variable with independent com-
ponents. Due to the nature of in-situ observations, we restrict the follow-
ing considerations to linear observation operators H that are matrices of
dimensions NY × NX. In particular, if H has only a single 1 per row and
0 otherwise, then this means that H picks the measured state variables at
the measurement location. The noise term accounts for various sources
of uncertain errors in the data. The measurement tools have error toler-
ances themselves, and the observations might not directly represent the
actual variables in the computational grid. For example, point measure-
ments of currents using buoys do not directly represent the depth and cell
averaged values in the discretised SWE model, but they still contain valu-
able information. As those inaccuracies are often not elsewhere specified,
the Gaussian distribution is chosen as generic error law.
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A key assumption in the data assimilation framework of this thesis is
the sparsity of data in space. Mathematically speaking, we impose

NY � NX, (4.3)

which expresses the big contrast between the high-dimensional state space
and the low-dimensional space of observations.

Model forecasts and available observation data are integrated in data
assimilation workflows for updating predictions and reducing uncertainty.
As this procedure is sequentially repeated whenever new data becomes
available, we also speak of sequential data assimilation. Bayes’ rule pro-
vides the formal foundation for data assimilation as

p(xn|y1:n) ∝ p(yn|xn)p(xn|y1:n−1), n = 1, . . . , NT. (4.4)

starting from the unconditioned prior PDF p(x0) at t0. The forecast
p(xn|y1:n−1) that acts as prior is acquired from the forward model before
incorporating the latest observation. The likelihood p(yn|xn) is the PDF
of observing the new data yn given the model state. For the condition-
ing, we here use the assumptions of independent error terms in eq. (4.1)
and conditionally independent measurements in eq. (4.2). Finally, we are
interested in the resulting posterior p(xn|y1:n) or also called filtering PDF
that conjuncts the information of prior and likelihood. Together, the prior
and the likelihood are the main building blocks for Bayesian inference as
Bayes’ rule provides the optimal solution of the data assimilation problem,
i.e. the posterior, see e.g. [139]. In practice, however, only ensemble ap-
proximations of the probability distributions are viable, as we have already
acknowledged in Section 3.2. Therefore, Bayes’ rule must be interpreted
within a Monte Carlo setting.

In contrast to a Monte Carlo setting, ocean forecast systems with a sin-
gle simulation can only employ variational data assimilation techniques.
For this purpose, an optimisation problem is derived from Bayes’ rule un-
der the assumption of Gaussian model noise in addition to the Gaussian
observation noise. A new state is identified that fits best both the fore-
cast state and the data. In an ensemble version of variational methods, the
structures of the covariances in the system are estimated from the samples
and go into the optimisation problem, for a review, see [3].

4.2 Ensemble-Based Data Assimilation

In ensemble-based data assimilation, we strive to obtain an ensemble rep-
resentation of the posterior distribution, and for this task, two major ap-
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(a) Forecast ensemble
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Figure 4.1: Conceptual illustration of the data assimilation cycle.

proaches exist, see e.g. [46, 139, 20]. Particle filters (PFs) aim to solve Bayes’
rule directly [137], whereas ensemble Kalman filters (EnKFs) are derived
from the analytical solution of Gaussian linear problems [44]. In the fol-
lowing, we will give a short description of each of the two approaches.

Both PFs and EnKFs share the same conceptual cycle that is illustrated
in Figure 4.1 for ensemble-based data assimilation. Starting from an initial
state, ensemble forecasts are evolved until observations become available.
Through filtering methods, an updated ensemble is achieved in one way or
another. This is also called the analysis step and we will use the superscript
a for the resulting states. Finally, a new forecast step can start.

Particle Filters

PFs are data assimilation methods that are designed to approximate the
solution of data assimilation problem through a weighted ensemble. The
starting point is typically an ensemble of equiprobable states at time t0,
and throughout the data assimilation cycle, the PF updates the weights ac-
cording to Bayes’ rule. In the basic conception of PFs, the states themselves
are not manipulated by the assimilation of observation, such that PFs can
be considered to be as fully non-linear data assimilation methods and all
states remain consistent with the physics in the forward step at all time.
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Starting from a weighted ensemble as in eq. (3.5), representing an ap-
proximation to the PDF of the initial state denoted by p̂(x0) or an approxi-
mation to the PDF at the previous model time step denoted by
p̂(xn−1|y1:n−1), with weights (wn−1

e )Ne
e=1, the forecast PDF approximation

becomes

p̂(xn|y1:n−1) ∝
Ne

∑
e=1

wn−1
e p(xn|xn−1

e , y1:n−1). (4.5)

To return to a Monte Carlo representation of the forecast, the transition
probabilities have to be evaluated in a first step of an algorithm. In the
classical bootstrapping approach, this is done by evolving each ensemble
member xn−1

e by eq. (4.1) in order to obtain (xn
e )

Ne
e=1 [59]. In the succeeding

update step, the weights are updated according

wn
e ∝ p(yn|xn

e )w
n−1
e (4.6)

to approximate the posterior distribution. This assignment updates
weights according to the similarity of the observation and the forecast of
the ensemble member. Note that only the weights but not the states are ma-
nipulated in this purest form of the PF. Hence, we have dropped additional
superscripts for the distinction of forecast and analysis states.

The main issue with classical PFs is that over repeated updates, some
weights will vanish to almost zero influence, undermining the statistical
quality of the ensemble. Hence, resampling approaches are commonly
employed, where the goal is to completely disregard low-weight members
with negligible statistical contribution, and rather use these computational
resources by re-initialising new ensemble members similar to the states
of high-weight members [26]. Especially in high-dimensional system like
ocean models, it may happen that all states are far away from the obser-
vation and a single member carries almost all probability weight. This is
called the ‘curse of dimensionality’ and leads to ensemble degeneration
and non-useful results [125]. This is the main reason why PFs are uncom-
mon in ocean data assimilation.

To counteract this behaviour, one could increase the number of ensem-
ble members to postpone the degeneration, but this is rarely computational
feasible [75]. Alternatively, one can sample from a proposal density qe such
that the new weights become

wn,∗
e =

wn
e

qe(xn
e |xn−1

1:Ne
, yn)

. (4.7)

The choice for qe that minimises the variance in the weights is called the
optimal proposal and is given by qe(xn

e |xn−1
1:Ne

, yn) = p(xn|xn−1
e , yn), but this
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is generally hard to evaluate due to the conditioning on the future data [41].
However, in case of a normally distributed model error ε ∼ N (0, Q) the
optimal proposal remains Gaussian N (xn,∗

e , P) with

xn,∗
e =Mtn−1→tn

(xn−1
e )

+ QH>
(

HQH> + R
)−1 (

yn − HMtn−1→tn
(xn−1

e )
)

(4.8a)

P = Q−QH>
(

HQH> + R
)−1

HQ, (4.8b)

where we see that the model error covariance Q is actively used to steer
the update ensemble [41].

Since proposal density particle filters may still degenerate in high-
dimensional models [103], PF variants that retain equivalent weights have
gained attention [135]. The implicit-equal weights particle filter
(IEWPF, [145]) is one such example, which keeps all weights equal to a
target weight and is unbiased in its two-stage formulation [124]. Interest-
ingly, the IEWPF can be implemented efficiently on the GPU and has been
applied to simplified ocean models [76].

Ensemble Kalman Filters

In contrast to PFs that seek to solve the non-linear data assimilation prob-
lem directly, EnKFs stem from the linearised data assimilation problem
with Gaussian assumptions and the ensemble approximation of its ana-
lytical solution. The posterior representation is obtained by updating the
states vectors while all weight are kept equal and constant by construc-
tion [44].

Following the forward step from eq. (4.1), the EnKF estimates the state
covariance matrix from the ensemble and we use the short-hand notation
Σ

n, f
x,x = Cov

[
xn, f , xn, f ]. With this, the Kalman gain is constructed as

K = Σ
n, f
x,x H>

(
HΣ

n, f
x,x H> + R

)−1
. (4.9)

In accordance with the observation model for the true data in eq. (4.2), the
forecasted observations from the ensemble are generated as

yn
e = Hxn, f

e + νn
e , (4.10)

where (νn
e )

Ne
e=1 are independent realisations of the model error. Finally, the

ensemble is updated and the analysis ensemble is obtained by

xn,a
e = xn, f

e + K (yn − yn
e ) , (4.11)
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Figure 4.2: Schematic illustration of different ensemble-based data assimilation
approaches in one dimension.

see e.g. [19, 77, 47, 136]. Here, the state vectors are manipulated in the up-
date step according to a combination of the Kalman gain, that is the same
for all ensemble members, and an individual contribution from the differ-
ence between true and forecasted observation. This usually results in a
push of the ensemble states towards each other and towards the observa-
tion.

First, we note that the EnKF update is similar to the optimal proposal
in eq. (4.8a), but the covariance is estimated from the ensemble. Second,
for high-dimensional models Σ

n, f
x,x is a large matrix of size NX × NX, but its

assembling is actually not required. Instead, we can more efficiently use

Σ
n, f
x,y = Σ

n, f
x,x H> = Cov

[
xn, f , Hxn, f

]
, (4.12)

which is a matrix in dimensions NX × NY only. This simplifies the Kalman
gain as

K = Σ
n, f
x,y(HΣ

n, f
x,y + R)−1. (4.13)

Even though eq. (4.13) enables more efficient computations [45], further
developments as deterministic square-root filter are common, see e.g. [141,
139]. These methods exploit the assumption of a Gaussian posterior and
avoid sampling errors due to perturbed model observations. The analysis
distribution is defined as N (xn,a, Σn,a), which is again derived from the
linear Gaussian case. Then, the analysis samples are obtained by

xn,a
e = xn,a + x̃n,a

e (4.14)

where x̃n,a
e comes from a matrix square root of Σn,a. One such example

is the ensemble transform Kalman filter (ETKF, [10]) which works in the
ensemble subspace.

A schematic illustration for PFs and EnKF in a single dimension is pro-
vided in Figure 4.2. All data assimilation in this subsection methods in-
clude in one way or another a forward step yielding a prior ensemble. This
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is the equally-weighted dots lying on the lower line depicting the prior
states. The displays illustrate how ensembles are re-weighted or moved
in the assimilation step. The standard PF only updates the weights, rep-
resented by colour shades, while the optimal proposal PF also generates
updated states before weighting. In only one dimension, the EnKF update
becomes a weighted sum of the prior states and the observation rated by
the relation 1

1+σ/r between the prior variance σ and the observation noise
r. The states are moved closer to the observation similar to the update in
the optimal proposal PF, but in the EnKF all weights are kept equal.

Localisation

A single observation is mostly valid for describing the conditions in its
vicinity, but the limited ensemble size can lead to unintended effects that
thwart the filtering update. Therefore, localisation is an essential strategy
in practical high-dimensional data assimilation applications.

In the classical PF, we work with weights that are global parameters.
So, it may happen that one ensemble member fits well to an observation
in one area, but not to an observation in another area. Then, it is difficult
to merge different members in such a way that they are a good fit to both
observations. One approach lies in sequential processing of observations
and smooth reconstruction of posterior ensemble members [110]. In the
case of proposal density particle filters, we note that not only weights are
changed but also the analysis members are sampled from a new distribu-
tion. In particular, this proposal distribution is redefined for each member
and incorporates the latest observation data. Thereby, the new ensemble
can be steered locally towards each observation.

For EnKFs, there are two common localisation schemes: local analysis
and covariance localisation where in practice the decision for one or the other
depends on reasons like computational efficiency [118]. Local analysis fol-
lows the paradigm that only data in a certain neighbourhood should in-
fluence the update of a grid cell [18]. For each single grid cell or group
of grid cells, a subset of close observations is selected and then the up-
date is performed in the local state dimensions only, for example using
ETKF [108]. For scenarios with NY ≈ NX this scheme is very powerful and
can be efficiently parallelised or combined with tapering in the observation
influence [80].

Note that the low-rank Monte Carlo estimation of the covariance matrix
suffers from spurious correlations that would generate inadvertent long-
range updates. In contrast to local analysis, the point of view is reverted
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Figure 4.3: Schematic illustration of the interpretation of covariance localisation
showing an observation (blue grid cell) together with its area of influence (blue
frame). The mesh represents a computational grid for a FVM.

in covariance localisation and the idea is that an observation only affects
grid cells that are physically nearby to the observation location, see Fig-
ure 4.3. This is done by multiplying the covariance matrix elementwise
with a tapering function [78, 79]. As the covariance matrix is often not
assembled, this approach can be transferred to the observation space or
the Kalman gain [22]. Both localisation approaches can be formulated in
such ways that the Kalman gain is not formed in the full state dimensions
yielding improved computational efficiency in addition to the truncation
of spurious correlations. Herein, we will use Kalman-gain localisation for
NY � NX.

4.3 Assessment of Ensemble Forecasts

Apart from the generation of ensemble forecasts and their refinement by
data assimilation, the assessment of the forecast quality is crucial [128, 55].
Therefore, the role of new observational data is extended beyond its use in
the assimilation to also serve as reference to assess of the predictive skills.
This process where the ensemble forecast is assessed in relation to observa-
tions can also be called evaluation or verification [143, Chapter 7] and such
considerations enable to evaluate the propriety of the included dynamical
models and filtering methods.

Here, we start the discussion for a scalar observation y, meaning that
NY = 1 in eq. (4.2), and we again omit superscripts indicating the time step.
An ensemble forecast for the same time, usually after assimilating previ-
ously available data, generates synthetic observations ye as in eq. (4.10). In
the Bayesian framework, the observation is associated with some uncer-
tainty and hence it is not favourable when all ensemble members match
the observation, but the ensemble should provide a good fit and represent
the uncertainty appropriately.

Error metrics like the bias [37] or the root-mean square error [77] are
versatile applicable and give good indication of the forecast quality for
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single experiments. However, the ultimate ambition is that the synthetic
ensemble observations have the same statistical distribution as the real ob-
servations [57].

To this end, we recall some statistical foundations for scalar observa-
tions and introduce the cumulative distribution function (CDF, F) of a real-
valued random variable as

F(y) =
∫ y

−∞
p(y∗) dy∗ (4.15)

where p is the PDF. Then, the CDF takes values from 0 to 1 and is
monotonously increasing. A fundamental result states, if a random vari-
able Y is distributed according to F, then

F(Y) ∼ U [0, 1], (4.16)

meaning samples of F(Y) are uniformly distributed.
Probability-integral transforms (PIT) are intended to exploit the rela-

tion in eq. (4.16) for the assessment of an ensemble forecast. In the Monte
Carlo case, the CDF is approximated by the empirical cumulative distribu-
tion function (ECDF, F̂) which is calculated by eq. (4.15) where the EPDF p̂
substitutes the PDF p. The PIT value u is then defined as

u = F̂(y), (4.17)

meaning that it is the function value of the ECDF for the observation y.
Now, one assumes that the observations y follow an unknown statistical
distribution Y and if the ensemble represents the same distribution, then
the PIT values will be approximative samples from a uniform distribution.
For an ensemble with equal weights, the PIT value boils down to counting
the rank of the true observation in the sorted ensemble values and normal-
ising by the ensemble size. Therefore, the PIT value is also called ‘rank’.

To evaluate whether the observations and the ensemble forecasts have
the same distribution, the calculation of PIT values is repeated multiple
times for a set of independent observations and ensemble forecasts. This
can be done from historical time series or from repetitions of the full exper-
iment. Then, the results are visualised by a histogram and this is a popular
analysis tool [69]. Due to the result in eq. (4.16), the true distribution will
result in flat histograms that are indistinguishable from a uniformly dis-
tributed random variable subject to some Monte Carlo noise [43]. There-
fore, flat histograms are favourable. Convex shapes indicate an overdisper-
sive ensemble, while a concave shape is an indicator for underdispersion
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Figure 4.4: Exemplary PIT histograms

and one-sided histograms hint a bias [142, 117]. For an illustrative exam-
ple, see Figure 4.4.

Beyond histograms, scoring rules reward the conformity of the forecast
with the distribution of the observation and can be used to assess the sta-
tistical fit of an ensemble [56]. For example, the continuous ranked proba-
bility score (CRPS) as proper scoring rule is defined as

CRPS(F, y) =
∫ ∞

−∞
(F(y∗)− 1[y,∞)(y

∗))2 dy∗, (4.18)

where 1[y, ∞) is the indicator function for the set [y, ∞). For the ensemble
evaluation, the CDF F can be replaced by the ECDF F̂ and the experiment
can repeated similarly to the acquisition of PIT values obtaining an average
CRPS. If the ensemble and the observation come from the same distribu-
tion, then the average CRPS is minimal.

In context of the SWE model, an in-situ observation of the current at a
single location in the domain is actually two-dimensional, since currents
in both coordinate directions are measured. To use the PIT histograms or
CRPS directly, one has to be treated the dimensions individually such that
histograms or CRPS are often presented for each variable independently.
For the assessment of the joint two-dimensional vector of the current com-
ponents, there are efforts to elevate the same assessment concepts. Ranks
are re-defined to still produce one-dimensional histograms [131] and the
CRPS is generalised to the energy score [58].
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Chapter 5

Multi-Level Data Assimilation

In the previous chapters, we have laid the foundation for a complemen-
tary ocean forecasting system by introducing simplified ocean models and
data assimilation techniques as necessary components. In this chapter, we
continue the quest for computational efficiency and aim to save computa-
tional costs in the production of forecasts. Therefore, we investigate the
computational benefits of using simulations on multiple resolutions and
an alternative method to construct the Kalman gain in the data assimila-
tion routine.

To set the stage, it is helpful to revisit a few properties of the simplified
ocean model from Chapter 2: The SWE model offers flexibility in the spatial
resolution, where it can also run simulations on a coarser or finer resolution
than the operational data. The effect of varying resolution can be inspected,
for example, by the vorticity ωz, which is a measure for the rotation of the
water. The rate relative to the earth rotation is defined by

ωz =
∂v
∂x
− ∂u

∂y
, (5.1)

where the notation must not be mixed with the notation for a stochastic re-
alisation. Vorticity can be used to visualise eddies and the level of details in
a flow field, and Figure 5.1 shows the vorticity field of simulations with dif-
ferent resolutions in the Lofoten area. All simulations are initialised from
the same state extracted from NorKyst and evolved for 3 h. NorKyst runs
on the fixed resolution of 800 m, but the SWE in the local area can be run
on flexible resolutions [15]. For the SWE simulations, we consider a coarse
cell size of 1.600 m, the matching resolution of 800 m, and refined cells with
edge length 200 m. In the results on coarse grids, the general patterns of the
vorticity are reflected but details are lost. In contrast, the simplified simu-

39
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(a) SWE with ∆ = 1.600 m (b) SWE with ∆ = 800 m

(c) SWE with ∆ = 200 m (d) NorKyst with ∆ = 800 m

Figure 5.1: Vorticity after 3 h of simulation with the SWE on different resolutions
and with NorKyst on the operational resolution.

lation with the SWE on the finest resolution is very similar to the NorKyst
result and keeps the same amount of details as the complex model. The
simplified description of the dynamics can be compensated by increased
resolution. For this reason, the fine SWE model also stays valid for longer
time as the coarse set-ups. Therefore, the ambition is to provide forecasts
and conduct data assimilation on the grid with ∆ = 200 m.

In tandem with the level of detail, the computational run time of the
SWE increases towards finer resolutions, whereas coarse grids enable faster
simulations but might miss fine-scale details. Nonetheless, those coarse
simulations can still resolve large-scale dynamics and can contribute this
information inexpensively to statistical estimators. Then, the cost for gen-
eration of forecasts can benefit from ensembles of many cheap models on
coarse grids for the larger patterns, while more expensive ensembles on
fine resolutions fill in features stemming from small-scale dynamics. The
flexible resolution of the SWE facilitates to use information from multiple
resolutions at different computational cost per resolution.

In this chapter, we introduce multi-level methods in the data assimi-
lation context. The idea of multi-level methods originates from numeri-
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cal integration, where ensembles of different accuracy are combined by a
telescoping sum [70]. Thereby, computational costs can be saved as fewer
expensive samples of high accuracy have to be simulated.

This notion extends to statistical estimation such that under certain as-
sumptions a speed-up for the estimation is achieved by preserved statisti-
cal quality [52]. In the context of numerical solutions to PDEs, decreasing
grid resolutions yield decreasing accuracy by decreasing computational
costs. So, the multi-level approach got applied in PDE applications [28, 40]
and its potential to reduce computational costs got particularly analysed
for hyperbolic conservation laws [100, 96] and the SWE [101]. For data as-
similation problems, however, the multi-level concept is less established
yet, but it got recently explored for particle filters [82, 61, 90] and ensemble
Kalman filters [71, 24].

5.1 Multi-Level Monte Carlo Estimators

Up to this chapter, all members of an ensemble have shared the same com-
putational grid. However, in this chapter, we introduce a hierarchy of grids
that cover the same domain, and we use these grids to generate numerical
SWE solutions of different accuracy. In abuse of notation, both the grid
itself and the grid cell size of the original grid are simply referred to as ∆.
We define the hierarchy such that the finest resolution corresponds to the
original grid, meaning that we set ∆L = ∆. Then, the hierarchy considers
additionally a set of grids that are coarser than the original one. The grids
in the hierarchy are denoted as ∆l for l = 0, . . . , L with ∆0 > · · · > ∆L, such
that ∆0 is the coarsest and ∆L is the finest grid. Note here that the original
grid refers to the resolution of interest and should not be mixed with the
resolution of the operational grid.

For most of the following considerations, we restrict ourselves to a hier-
archy of nested grids, where the domain of a fine cell is covered by exactly
one coarser grid cell only. Nested grids can, for example, be generated
by iteratively merging neighbouring cells starting from the original grid:
two cells in x-direction and two cells in y-direction such that four cells are
merged into a coarser one [6]. Such a hierarchy is illustrated in Figure 5.2.

The resolutions in a hierarchy of grids are referred to as levels. To dis-
tinguish states on different levels, we use the superscript l for the reference
to a certain grid level l, and denote states as xl ∈ RNl

X . Hereby, the states
on different levels have distinct dimensions Nl

X according to the varying
number of grids cells on each level. Note that we still omit the usage of the
time step superscript to prevent confusion.



42 Multi-Level Data Assimilation

Figure 5.2: Illustration of hierarchy of grids. Original grid with index L on the
bottom and lower levels with coarser resolutions above.

In the aforementioned hierarchy of nested grids, the edges size of a grid
cell is increased by a factor of two between each level. Then, solving the
SWE with FVM on these different levels is associated with varying compu-
tational costs and we investigate this here in exemplary manner. Starting
from a given level, the number of grid cells on the next coarser grid is
reduced by a factor of four. Consequently, the theoretical computational
workload to solve the SWE is also diminished by the same factor. This
reduction is further amplified by the ability to double the time step size
according to the CFL condition in eq. (2.6) which leads to a halving of the
number of Runge-Kutta steps. In total, the theoretical cost is significantly
reduced by a factor of eight. The computational effort required for the nu-
merical solution of the SWE follows a scaling of O(∆−3) in a more general
notion [100].

States on all levels essentially describe the same physical quantities in
the same domain but on different grids. Then, performing calculations be-
tween the vectors of different dimensions necessitates transformations that
map a state xl from level l onto the other levels [48]. For the mathemati-
cal description, we denote the projection of a state on level l to a corre-
sponding state on level k as Pl→k : RNl

X → RNk
X . For a hierarchy of nested

grids as before, the projection between two consecutive grids Pl→l−1 is a
matrix of dimensions Nl−1

X × Nl
X with four 1/4 per row such that neigh-

bouring values are averaged. Vice versa Pl→l+1 is a matrix of dimensions
Nl+1

X × Nl
X with four 1 per row such that the same value is repeated on

the corresponding finer grid cells. Further projections are generated by
repeating these operators. This choice is easy and efficient to implement
without explicit construction of these matrices and it preserves global vol-
umes. With these projections, it is possible to execute statistical estimations
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on any level. Hereby, the following identities hold

E
[
Pl→kxl

]
= Pl→kE

[
xl
]

, (5.2a)

Cov
[
Pl→kxl , Pl→kxl

]
= Pl→kCov

[
xl , xl

]
P>l→k. (5.2b)

where the transposed projection acts column-wise. This means that there
is a direct transformation of states and operations between different levels,
such that we omit the explicit notation of projections in the remainder.

Next, we consider two SWE models on two consecutive levels that are
initialised with the same data. Note that this includes a projection, but we
do not symbolise that. Then, these models will still evolve differently due
to numerical errors in the FVM scheme, where we usually trust the simula-
tion on the fine grid more than on the coarse grid. Additionally to sharing
the same initial conditions, both instances on the different grids can be per-
turbed with the same realisation of the model error during the simulation
window. This leads to a stochastical coupling between both simulations.
Such a pair of simulations is then denoted (xl+, xl−), where xl+ is defined
on the grid ∆l and xl− on ∆l−1. On the finest level, we however elude this
notation and set xL+ = x as ∆L is the original grid.

Having defined states and pairs of states on a hierarchy of grids, we
return to statistical estimation. We then exploit a telescoping sum, such
that the expected value on the finest level L can be written as

E [x] =
L

∑
l=1

(
E
[

xl − xl−1
])

+ E
[

x0
]
, (5.3)

where the linearity of the expected value was used so that the expected
values for all levels l < L cancel out. Note that we do not explicitly denote
projections in (5.3), as we have justified after (5.2). Here, the telescoping
sum acts as a link between the estimation on the finest level and the incor-
poration of the coarser levels. The analogous formula holds for integrated
quantities of interest and motivates the further construction of multi-level
estimation methods.

In Section 3.2, the expected value was approximated by the Monte Carlo
technique and the use of ensembles. Since all ensemble members in the
corresponding estimation in eq. (3.6) are defined on the same grid, we also
refer to that classical estimator as a ‘single-level estimator’. Moreover, we
also use this nomenclature when states first have to be projected onto a
common grid, but the same formula is used. Similarly, we continue to ap-
proximate the expected values in eq. (5.3). Each of the expected values
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therein can be estimated by the single-level estimator, but the samples for
the estimation of the expected values E[xl − xl−1] are coupled in the sense
that the simulations share the same stochastic realisation on both levels.
Hence, a multi-level ensemble consists of

• a set of states on the coarsest level (x0
e )

N0
e

e=1 and

• pairs of states (xl+
e , xl−

e )
Nl

e
e=1 on all further levels l = 1, . . . , L,

where Nl
e are the ensemble sizes per level. The corresponding multi-level

estimator for E [x] is as an unbiased approximation defined as

EML [x] = E
[

x0
]
+

L

∑
l=1

(
E
[

xl+
]
− E

[
xl−
])

, (5.4)

where the single-level estimators are used on the right-hand side. While
the single-level Monte Carlo technique originates from an empirical mea-
sure as in eq. (3.5), this property is lost for the multi-level Monte Carlo set-
ting. In particular, a Dirac representation associated with the multi-level
Monte Carlo approach is in general not a measure, because it can take neg-
ative values. Moreover, it is not necessarily bounded by 1, but its approxi-
mations of E [x] have been proven to converge to the correct limit [53].

Beyond the approximation of the expected value, the multi-level for-
malism is versatile for handling arbitrary quantities of interest. Most im-
portantly for data assimilation, the multi-level approximation of the co-
variance [8, 105] can be expressed as

CovML [x, x] = Cov
[

x0, x0
]
+

L

∑
l=1

(
Cov

[
xl+, xl+

]
−Cov

[
xl−, xl−

])
, (5.5)

where again the single-level estimators from eq. (3.7) are recycled. Unlike
in the classical single-level estimation, there is no guarantee that
CovML [x, x] is a positive semi-definite matrix.

5.2 Practicalities for Multi-Level Ensembles

Having the formalism for estimators based on multi-level ensembles at
hand, we shift our attention more towards the practical implementation.
We return to the intention of achieving computational benefits by this pro-
cedure, where we aim to retain the statistical quality of the estimator and si-
multaneously reduce computational costs. Therefore, we start with
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analysing the computational costs and the associated statistical error, which
consequently enables us to choose appropriate ensemble sizes on each level.

To conduct the subsequent discussion slightly more general, we intro-
duce the quantity of interest E [g(x)] with g : RNX → RNg for some Ng.
The expected value from eq. (5.4) is then recovered with g equal to the
identity mapping. While this notation makes the examination applicable
to a larger range of quantities of interest, it also exhibits that the results in
the following are intrinsically dependent on g.

Computational Costs

Computational costs manifest in the wall time that it takes to evolve a SWE
simulation forward in time on available hardware. We usually simulate
until a certain time where we want to conduct an estimation such that this
corresponds, in other words, to the generation of the samples for the es-
timation. The multi-level approach gains advantage from coarse grids,
where the SWE are computationally less expensive to solve than on the
original grid. We keep all other factors like schemes for FVM fluxes and
time integration fixed, such that the computational cost is solely deter-
mined by the grid resolution. The computational cost associated with solv-
ing the SWE on level 0 are denoted as C0 and the costs for a pair (xl+, xl−)
are represented as Cl , where Cl for l > 0 actually entails the numerical
solution on two grids.

As motivated already in the previous section, the costs scale in theory
asO(∆−3) over the grids. In practice, the scaling of the computational costs
can however be influenced by technical factors. In ocean models, paralleli-
sation is a common strategy to accelerate the run times of simulations. Both
parallelisation and multi-level methods are primarily independent efforts
for reduced run times, but they follow different pathways and can interfere
in certain regards. Here, parallelisation leads typically to reduced compu-
tational costs at full scale of the problem, but for very small grid sizes that
do not utilise the entire parallelism of the implementation the theoretical
scaling may no longer hold true.

Statistical Error

After evolving simulations up to certain time, we consider the accuracy
of the statistical estimation itself. The statistical error in the estimation τg
is defined as the variance of the estimator for E [g(x)] and is given for a
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single-level ensemble by

τ2
g =
‖Var [g(x)] ‖

Ne
, (5.6)

where ‖ · ‖ is a norm over RNg . Both the ensemble size and also the quan-
tity of interest g itself influence the statistical quality. While Var [g(x)] is
unknown in practice and has to been estimated itself, the variance term is
determined by the inherent distribution of the states and the the function
g. Notwithstanding, an increase in ensemble size can reduce the statistical
error. In the classical single-level context, the choice of the ensemble size
is typically dictated by the available computational resources and it is sim-
ply accepted that, e.g. mean and covariance are estimated with different
statistical errors.

For a multi-level ensemble, the statistical error for the estimation is
analogously described by

(τML
g )2 =

‖Var
[
g(x0)

]
‖

N0
e

+
L

∑
l=1

‖Var
[
g(xl)− g(xl−1)

]
‖

Nl
e

, (5.7)

where the exact variances are again inaccessible in practise. Moreover, to
achieve a small statistical error for the multi-level estimator, the identity

Cov
[

g(xl)− g(xl−1), g(xl)− g(xl−1)
]

= Cov
[

g(xl), g(xl)
]
+ Cov

[
g(xl−1), g(xl−1)

]

− 2Cov
[

g(xl), g(xl−1)
]

(5.8)

suggests that the levels should be strongly correlated. This correlation is
a key indicator of scenarios where the multi-level approach can actually aid
computational efficiency. Subsequently, we use the notations
V0 = ‖Var

[
g(x0)

]
‖ and V l = ‖Var

[
g(xl)− g(xl−1)

]
‖ for l > 0.

Multi-Level Ensemble Size

A key design choice for the implementation of multi-level ensembles is
the assignment of the ensemble sizes Nl

e on each level. These ensemble
sizes are determined by solving an optimisation problem that minimises
the computational costs under the constraint of fixed statistical error for
the estimation of the quantity of interest [104]. Based on this, we obtain

Nl
e =




√
V l

Cl Cτ




with Cτ =
1
τ2

g

L

∑
l=0

√
V lCl , (5.9)
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where τg is in our case given by the statistical error of a reference single-
level ensemble. In relevant conditions, the ensemble sizes will typically
increase towards the coarser levels [53].

Beyond the definition herein, it is possible to construct best linear un-
biased multi-level estimators where the state pairs extend to more than
two levels, both for the scalar case [121] and for the multi-variate case [38].
The multi-level estimation is then reformulated as a linear regression prob-
lem and weights are introduced for the coupled simulations. The weights
are chosen to minimise the variance of the multi-level estimator further.
While it is conceptually possible to integrate this into the preceding defi-
nitions, the coupling of more than two levels introduces further computa-
tional overhead in the forward step due to the exchange of the perturbation
realisations between the different simulation instances such that we restrict
our considerations to the case with two coupled levels.

Computational Speed-Up

To evaluate the computational effect of the multi-level approach, we need
to examine the total computational costs of the different types of ensemble
simulations. In the case of a single-level ensemble, the total costs are ob-
tained from the product of ensemble members Ne and the computational
costs cL for a single simulation on the original level. This amounts to
C = Ne · cL. In the context of multi-level estimation, the costs are aggre-
gated over the levels and summarised as

CML =
L

∑
l=0

Nl
e · Cl . (5.10)

For ensembles that yield the same statistical error the computational
impact is quantified as the speed-up

S =
C
CML . (5.11)

An acceleration is indicated if S > 1 and the speed-up provides a measure
of how much faster the multi-level ensemble is compared to the single-
level ensemble or vice versa how much slower the single-level ensemble is
compared to the multi-level ensemble.

Albeit, the multi-level approach harvests the computational efficiency
of coarse grids, it will not always yield a speed-up. The potential of multi-
level estimation depends crucially on the coupling between the levels. Strong
coupling on fine levels in relation to the general variance in the system and
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steep computational scaling are favourable for a speed-up. If the system
we want to simulate is too turbulent on the small scale, meaning that the
correlation between levels is weak, we cannot expect any benefits from us-
ing coarser levels. The opposite situation can also be imagined, where the
correlations between levels are so strong such that there are effectively no
extra details to be found on the finest level compared to a coarser level.
In that case, the theoretical speed-up is large but the finest simulations do
not add any value to the results, such that in practice it would be better
to neglect fine levels or to use simply a single-level ensemble on a coarser
resolution.

Application to Simplified Ocean Models

As seen in Figure 5.1, the SWE model necessitates increased spatial reso-
lutions for high-quality forecasts. While the computational costs for simu-
lating the SWE grow in accordance with the resolution, the model can be
easily run on different resolutions in a hierarchy of nested grids. More-
over, the interpretation of the vorticity suggests that the levels are, to a vi-
sual extent, correlated, such that the simplified ocean model appears to be
suited for the application of multi-level methods. In this case, for instance,
we would be interested in constructing a multi-level SWE ensemble with
∆ = 200 m as resolution of interest.

Multi-level estimators enable to gather statistical information from a
multi-level SWE ensemble on the original grid. For example, mean veloc-
ity and variance can be calculated at certain times. These estimates there-
fore facilitate a seamless incorporation of a multi-level ensemble for drift
prediction according to the trajectory modelling by ensemble statistics in
Section 3.2, where the conventional estimators for mean and variance are
replaced by their multi-level analogons in eq. (3.11). This promotes the us-
ability of multi-level ensembles for the generation of drift trajectory fore-
casts for SAR scenarios.

5.3 Multi-Level Ensemble Kalman Filter

Transitioning from multi-level Monte Carlo methods without condition-
ing on observation data towards multi-level data assimilation (MLDA),
we build upon the EnKF method outlined in Section 4.2. The multi-level
ensemble Kalman filter (MLEnKF) applies multi-level estimation to the
Kalman gain [71] and has been extended by a version for spatio-temporal
data assimilation problems [24]. This approach has also been combined
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Figure 5.3: Illustration of the observation operations in a multi-level ensemble

with Bayesian model averaging (see e.g. [112]) and applied for reservoir
simulations [50, 106].

In the MLDA context, a multi-level ensemble of SWEs is evolved in
time until data becomes available. The observation model in eq. (4.2) means
then that the data is associated with the finest level. This implies that
coarser states have to be upscaled to the finest level before the observa-
tion operator is applied. For point observations in the SWE model, this is
still equivalent to picking the current values from the grid cell that con-
tains the observation location, see Figure 5.3. Therefore, we introduce the
shorthand notation H l for extracting data from level l.

For the assimilation of observation data into the multi-level ensemble,
we adapt the method of Chernov et al. [24] and apply multi-level esti-
mation for the Kalman gain, but phrase it for nested grids as introduced
above. In the construction of the Kalman gain, the estimate of the state-
observation covariances in eq. (4.12) is replaced with an estimate as in
eq. (5.5). At the n-th time step of the sequential data assimilation cycle,
we obtain

Σ
n, f ,ML
x,y = Cov

[
x0,n, f , H0x0,n, f

]

+
L

∑
l=1

(
Cov

[
xl+,n, f , H lxl+,n, f

]
−Cov

[
xl−,n, f , H l−1xl−,n, f

])
. (5.12)

This multi-level covariance estimate is plugged in to eq. (4.13) and the re-
sulting Kalman gain, denoted by KML, has the same dimensions as a single-
level Kalman on the finest level.

In the update step, all levels are conditioned using KML. To do so, the
spatial dimension of the Kalman gain is downscaled onto the respective
level and the analysis multi-level ensemble is given on the coarsest level
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by

x0,n,a
e = x0,n, f

e + KML
(

yn − H0x0,n, f
e − ν0,n

e

)
(5.13a)

and on the higher levels by

xl+,n,a
e = xl+,n, f

e + KML
(

yn − H lxl+,n, f
e − νl,n

e

)
(5.13b)

xl−,n,a
e = xl−,n, f

e + KML
(

yn − H l−1xl−,n, f
e − νl,n

e

)
, (5.13c)

where pairs share the same observation noise νl,n
e , recall eq. (4.10).

The MLEnKF framework enables to combine multi-level ensembles in
the forward model and EnKF-based data assimilation. Hereby, a compu-
tational speed-up for MLDA can originate from exploiting cost efficient
coarser levels in the forward step. While the updating with MLEnKF shares
the basic concept with the corresponding single-level data assimilation
workflow, the forecast and analysis ensemble are represented on multi-
ple levels. On the one hand, MLEnKF inherits the computational benefits
of multi-level Monte Carlo methods in the forward step, but on the other
hand it also takes over the shortcomings. In particular, the multi-level en-
semble size in a MLDA workflow is fixed, where the optimal configuration
is usually chosen for the single estimation of a certain quantity of interest,
but the ensemble is used for repeated estimations of multiple quantities
of interest. Also negative eigenvalues in the covariance estimation gain
new significance since these covariances are used in the update process
and thereby corrupted estimations during one update step could be trans-
ported into the further evolution of the ensemble.

5.4 Assessment of Multi-Level Ensemble Forecasts

Analogously to the Section 4.3, there arises the need to assess multi-level
ensemble forecasts originating from a MLDA workflow with respect to ob-
servations. For error metrics like the bias and the root-mean square error,
the multi-level estimation framework as in eq. (5.4) can be employed with
a relevant quantity of interest. Beyond those, we emphasise the evaluation
whether forecast and observation distributions are in accordance. As for
single-level ensembles, the assessment of the calibration of multi-level en-
semble forecasts with the traditional means relies on approximations of the
EPDF or ECDF. However, those are less straight forward to determine for
multi-level ensembles, since there is no associated measure [54, 86].
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Here, we give a short survey of selected approaches for the assessment
of multi-level ensemble forecasts. In the case of scalar observations, Gre-
gory and Cotter [62] suggest to resample a single-level ensemble such that
the classical evaluation tools can be employed. Hereby, the resampled en-
semble is a set of new scalar values (yL

e )
Nr
e=1 for Nr ≤ N0 + ∑L

l=1(Nl − 1)
with dedicated analytical weights. With the resampled single-level ensem-
ble, PIT histograms or the average CRPS can be calculated as in Section 4.3.

Alternative ways, that also work in two dimensions, take advantage of
multi-level estimation. Given an observation y, the identity
F(y) = E[1(−∞,y](y∗)], where y∗ is distributed according to the CDF F, can
be used to re-define the PIT value u from Section 4.3 in terms of an expected
value. Then, the expected value can be approximated by the multi-level es-
timator. However, the multi-level ensemble size is not optimised for this
quantity of interest and due to the discontinuity the approximation con-
verges poorly [42]. This leads to artefacts like a non-monotonous ECDF
and PIT values outside the interval between 0 and 1. Therefore, the indi-
cator function can be replaced with kernel-based smoothing to diminish
artefacts [129].

Moreover, a polynomial approximation to the PDF can be calculated
based on Legendre polynomials and the maximisation of the Shannon en-
tropy [9]. In doing so, the coefficients in the optimisation problem are set
using the multi-level estimation. The numerical optimisation involves it-
erative solvers that are not guaranteed to converge, but when converged
the resulting ECDF is monotonously increasing from 0 to 1. With approx-
imations of the CDF, it becomes possible to re-use PIT histograms and the
CRPS from Section 4.3 also for multi-level ensembles.
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Chapter 6

Paper Contributions

The path towards improved local ocean and drift forecasting is genuinely
interdisciplinary. Therefore, the papers in this thesis traverse through dif-
ferent scientific fields. While each paper focuses on a particular problem,
they all contribute to the same goal and are thereby closely connected. This
is a typical example that developments in applied computational statistics
require to link knowledge from several mathematical disciplines to solve
the problem at hand.

The papers in this thesis cover multiple aspects in the data assimila-
tion value chain. Starting from the design of a simplified ocean model
and its numerical simulation, via a filtering case study, to state-of-the-art
assimilation with multi-level ensembles, the papers explore the suitability
of advanced methods for their application in local ocean drift forecasting
systems by proofs-of-concepts. Hereby, each paper is dedicated to one the
research objectives from Chapter 1.

Paper I Considerations for the FVM that is used solve the SWE. Field
of numerical mathematics.

Paper II Simplified ocean modelling with the SWE respecting different
dynamical modes for efficient drift trajectory forecasting. Field of
mathematical modelling for EPS in oceanography.

Paper III In-depth comparison of two conceptually different filters and
discussion of localisation strategies tailored for sparse observations
in simplified oceanographic applications. Field of data assimilation.

Paper IV Combination of the multi-level approach from the field of un-
certainty quantification with practical EnKF-based data assimilation.
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Open-Source Software

Reproducibility is a key principle in scientific research and refers to the
practice of making methodologies, data, and computational workflows
openly available so that others can verify and replicate the findings. In
computational science, open-source code plays a vital roles in enabling re-
producible science, advancing scientific knowledge, and promoting trans-
parency and collaboration [93, 94]. As all papers in this thesis rely es-
sentially on numerical and statistical implementations, all supplementary
material is available in an open persistent repository alongside with the
manuscripts to foster to the reproduction and extension of the presented
results. The source code and data is published under the GNU Public Li-
cence version 3.
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This contribution was presented by Håvard at the FVCA10 conference 2023 in
Strasbourg (France).

The CDKLM scheme is well-balanced for geostrophic jets along the co-
ordinate axes. To achieve this, it employs a reconstruction based on poten-
tial energies with respect to geostrophic imbalance and a standard-upwind
(SU) flux in one of the vector components instead of the central-upwind
(CU) flux as in the other components, recall Section 2.1. In this paper, we
show that this choice of fluxes can lead to oscillatory artefacts in cases that
differ from geostrophic jets. In particular, by considering an independent
implementation of KP, we confirm that the main source of this numerical
behaviour is the flux choice and not the reconstruction. Therefore, we pro-
pose to use a weighted sum of SU and CU flux instead of the pure SU flux
to suppress the unintended artefacts.

For the testing of the scheme, we consider five cases that are relevant for
oceanographic applications. We present that already a small fraction of CU
is able to reduce oscillations. On the contrary, the well-balance guarantee
is lost, but we note that this guarantee for CDKLM anyways only holds for
the jets and not for other types of geostrophic steady states. However, for
suitable choices of the slope limiter parameter in the reconstruction step,
we see that even a pure CU flux preserves geostrophic jets within accept-
able tolerances.

While FVM schemes generally have few tuning parameters, we have
hereby introduced one more for the weighting of the flux terms. This
comes at the advantage of more realistic simulations, though, and based
on a test case with challenging topography and currents, we suggest to use
a fraction of 0.8 for the SU flux and 0.2 for the CU flux.

Contribution

While the development of generally well-balanced schemes is still ongo-
ing [39], specific FVMs are only well-balanced for particular steady states.
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We demonstrate that a FVM that is well-balanced for a superset of steady
states compared to another gives more numerical artefacts when applied
to other general problems. This shows that the use of a simpler flux ex-
pression in favour for the theoretical results is not fruitful for practical ap-
plications. With these results, this paper supports the discussion around
the choice of numerical solvers for realistic situations where no scheme is
well-balanced for all general steady-states.

In particular, the CDKLM scheme for the rotational SWE is well-
balanced for a superset of geostrophic steady states compared to the KP
scheme, but it replaces a CU with a SU flux. By weighting both flux for-
mulations, we have adapted numerical simulations for simplified ocean
model to produce more realistic results.

Further Work

The development of numerical FVM schemes is not the core of this work,
but is a necessary ingredient on the way to the full workflow. Therefore,
it will be relevant to follow the advances in the development of new well-
balanced schemes.

Comments

This paper tackles a problem that has been observed in some debugging
cases, but for a long time the cause of these artefacts was not found. Fi-
nally, in this paper, we identify the issue and present a pragmatic strategy
for how to mitigate these oscillations where we sacrifice the well-balance
in favour for the reduction of numerical artefacts. The test cases are taken
from previous publications [73, 15] and we see generally only minor im-
provements compared to the overall flow patterns what implies that their
results stay qualitatively valid.

Xing et al. [144] note that well-balanced schemes whose equilibrium is
closest to the present case should be used. However, this becomes difficult
in practice. Geostrophically balanced states are central in many real-world
applications, nonetheless, we still believe that improved realistic simula-
tions are more important than the well-balanced guarantee in academic
test cases as long as the loss of well-balance in those cases is within accept-
able limits.
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In review

A summary of this paper was presented in the October 2023 instalment of Ocean
Modelling Seminar organised by Tor Nordam in SINTEF Ocean under the title
‘Combining simplified models in GPU OCEAN’. The seminar series takes place

in Trondheim, but is broadcast online to the interested audience.

In this study, we place emphasis on simplified ocean models as
lightweight decision-support tool for ensemble predictions of drift trajec-
tories. We exploit the SWE and the GPU OCEAN software for the efficient
simulation of barotropic and baroclinic dynamics independently, i.e. we
use the reduced-gravity model as a simplified model for first-order baro-
clinic dynamics as outlined in Section 2.2. The choice of using either the
barotropic or baroclinic model or both is determined based on the specific
local conditions in the area of interest, and the existence of a well-defined
mixed layer. We describe how the same structure of equations is re-used
and how the system can be parameterised. Given the uncertainties, when
complex effects are parameterised and several parameters are not precisely
known in realistic scenarios, we sample these randomly from appropri-
ate probability distributions and analyse sensitivities. This means that the
model error here is implicit, see eq. (3.3). Yet, the reduced-gravity model
can be simulated faster in relation to the barotropic SWE, such that we can
afford a large ensembles to represent the uncertainty adequately. By com-
bining the currents from both simplified models, we construct large ensem-
bles of drift trajectories for short-term prediction. As proof-of-concept, we
showcase the feasibility of our approach for three distinct regions along the
Norwegian coast and generate drift ensembles of up to 27,000 members.

Contribution

In this paper, we promote simplified ocean models as complementary tool.
While operational ocean models prioritise physical complexity and become
computationally expensive, we explore how lightweight simplified ocean
models can be used for ensemble predictions and uncertainty representa-
tion. We demonstrate the fast prediction of drift trajectory ensembles using
a computationally efficient framework.
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In particular, the existing SWE simulation framework is expanded by
the reduced-gravity model for respecting simplified baroclinic dynamics.
Moreover, we present a concept to efficiently sample a large number of
drift trajectories by the combination of simplified models for barotropic
and baroclinic modes that pushes the ensemble size to new magnitudes.
The efficient generation of large sample sets is fundamental for ensemble-
based data assimilation and therewith this work can be seen as enabler for
the combination of drift simulations and filtering.

Further Work

To leverage the light-weight computations even further, one could take ad-
vantage of non-linear data assimilation methods. Here, parameter choices
that turn out to be a good representations of the true dynamics acquire
larger weights, while those parameters that fit poorly are rejected. Thereby,
the predictive power will be increased.

Moreover, the initialisation of models and ensembles is a well-known
challenge in the oceanography community. For example, the definition of
meaningful MLDs is non-trivial, but has substantial influence on the re-
sults. There is always potential for improving the initial conditions and
the models that parameterise, e.g. wind forcing and friction. This will be-
come more relevant when validating the ensemble drift trajectories against
real drifter data.

Comments

While we categorised this work first as low-hanging fruit, the reality of
ocean states crossed our assessment. The proper initialisation and pa-
rameterisation is essential, i.e. we have seen that the MLD and the baro-
clinic currents as integrated from three-dimensional models may not be
geostrophically balanced. Therefore, the reduced-gravity model is eas-
ier to initialise in local areas such that this approach is mostly suited for
local drift trajectory forecasting, which is in line with our original inter-
ests, though. We see significantly improved drift trajectories in the fjords,
when also baroclinic dynamics is considered. Moreover, for drift trajecto-
ries, the wind acts twofold: on the drifting object itself and the currents
in the upper ocean layer. The baroclinic model responds faster to winds
than the barotropic model and hereby increases the realism. In a nutshell,
this methodology can be useful as one applies the simplified framework
and interprets the result with care. Furthermore, the generation of drift
trajectory ensembles has direct implication for SAR cases.
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Early versions of the content of this paper were presented at NORDSTAT 2021 in
Tromsø (Norway) under the title ‘Comparison of ensemble-based data

assimilation methods for drift trajectory forecasting’ and at the EnKF Workshop
2022 in Balestrand (Norway) under the title ‘Handling sparse observations in

ensemble-based filtering with an application to drift trajectory forecasting’.

In this paper, we focus on spatially very sparse in-situ observations
and compare two ensemble-based data assimilation methods, namely the
IEWPF and the ETKF with localisation. We elaborate on the handling of
sparse observations Ny � Nx and localisation in the context of both meth-
ods. We go step-by-step through the update of the IEWPF and describe
how these concepts are built into the IEWPF by design. Hereby, all proper-
ties of the IEWPF are tightly dependent on the structure of the model error
covariance matrix Q. Moreover, we explore what happens if different Q
matrices are used in the optimal proposal. For the ETKF, we employ co-
variance localisation in observation space. Together with serial processing
of observations, this gives us good control of the correlations between ob-
servations and of the computational costs. We calculate the updates only
for grid cells within the localisation radius, and since the Kalman gain is
never explicitly constructed in the ETKF, we apply tapering in the final
analysis computation step.

As a test case, we use the double jet where the experiment is set up with
450,000 state variables and 120 observation variables. For the comparison
of the data assimilation methods, we investigate a broad range of evalua-
tion metrics: quantitative skill scores, qualitative spatial state estimation,
and drift trajectory forecasting. First of all, we emphasise that a set of met-
rics, rather than a single one, should always be used when comparing dif-
ferent methods to gain a deeper insight. Then, we conclude that the IEWPF
does not degenerate in this application, but introduces artefacts originat-
ing from the model error covariance matrix into the ensemble spread. In
the ETKF with localisation, we utilised relaxation-to-prior that is depen-
dent on a tuning factor. Upon proper tuning, the ETKF with localisation
outperformed the IEWPF in all metrics.
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Contribution

This paper provides the first extensive and structured comparison of the
IEWPF with an established version of the EnKF respecting the special sce-
nario of sparse observations. Moreover, we present an elaborate set of
metrics to gain insight in the filtering results of two conceptually differ-
ent methods.

In particular, we dwell on tailored techniques for sparse in-situ buoy
observations and on characteristics of the assimilation step itself in the con-
text of the SWE model.

Further Work

Even though this study is rather self-contained, parts of the results open
up for a discussion on parameter optimisation in the filter. In particular,
the parametrisation of the covariance structures in IEWPF could be a topic
of further analytical considerations. From a practical perspective, the pa-
rameters in the localisation and relaxation could be more interesting.

Comments

The setting of this paper is motivated by the conditions during SAR op-
erations, i.e. only simplified ocean models are feasible due to their com-
putational efficiency and only sparse in-situ observations are available for
assimilation. In this work, we tailor data assimilation methods to these
conditions and this study is therefore relevant for the identification of suit-
able filters. The findings herein support our choice to utilise the EnKF with
the employed localisation scheme in our next article.

While Holm et al. [76] focused on GPU-acceleration, we have shifted
our focus to the comparison with the ETKF and sacrificed the GPU discus-
sion in this paper. In addition to the SWE model, we also include a linear
Gaussian example that provides an analytical reference solution. This ex-
ample allows us to verify our implementations, analyse the impact of tun-
ing parameters in the localisation, and emphasise the importance of using
a comprehensive set of evaluation metrics.



Paper IV

Multi-Level Data Assimilation for Simplified Ocean Models
Florian Beiser, Håvard Heitlo Holm, Kjetil Olsen Lye, Jo Eidsvik

In review

The presentation at the ISDA conference 2023 in Bologna (Italy) with the title
‘Rank Histogram Estimators for Multi-level Data Assimilation’ originated from

discussions around this article.

We pursue the gain of computational efficiency in the data assimila-
tion cycle for the EnKF by employing multi-level methods. Therefore, we
commence by revising the MLEnKF for the GPU OCEAN framework. We
put special effort into the discussion of the configuration of the multi-level
ensemble and of the practical applicability of the MLEnKF in a relevant
setting with simplified ocean models. To that end, we investigate the dis-
crepancy between theoretical and practical scaling of computational costs,
analyse the coupling between the levels, and their effects for the multi-level
speed-up. This means that we determine trial experiments to set the values
for computational costs Cl and the variances V l from Section 5.2. While the
choice of the quantity of interest, i.e. the function g, emerges as a central
design choice for the configuration of a multi-level ensemble, we disclose
that data assimilation routines necessitate the estimation of various quan-
tities of interest. Moreover, we incorporate localisation into the Kalman
gain construction and a mitigation strategy for negative eigenvalues in the
estimated covariance matrices.

We resume to the double jet case, but in contrast to Paper III we use a
finer resolution and a Karhunen-Loeve-type model error. On a hierarchy
of four nested grid levels, the coarsest grid clearly lacks details that are
resolved on the finer grids. We set up three multi-level configurations that
share the same theoretical statistical error for a quantity of interest as a
given single-level ensemble, but achieve a theoretical speed-up of up to
more than a factor 2 in the forward step. Numerical experiments for the
double jet case confirm that the state estimation with the MLEnKF is of
the same quality as with the corresponding single-level EnKF while the
spread of the multi-level ensemble is slightly higher. Finally, we present
the usability of the multi-level ensemble for drift trajectory forecasting by
exploiting ensemble statistics, see Section 3.2.
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Contribution

Multi-level Monte Carlo estimation is an established tool in the uncertainty
quantification community, but the application of the multi-level idea to
spatio-temporal data assimilation problems is so far still limited. With
this paper, we elevate the MLEnKF one step from analytical test cases to
application-driven proof-of-concept studies. Moreover, we provide an ex-
tensive discussion around the construction of suited multi-level ensembles.

In particular, we design multi-level data assimilation for simplified
ocean models, where the forward step exploits simulations on different res-
olutions, and investigate the applicability of the MLEnKF for the shallow-
water equations with sparse observations.

Further Work

This work can be extended in several directions. Our example was only
one step towards more realistic settings, and we had periodic boundary
conditions and a flat sea bed. To continue this direction, the consistent in-
corporation of a varying bathymetry and land mask will become relevant.
Hereby, special care has to be dedicated again to the coupling between the
levels such that artificial noise is avoided.

The calculation of computational costs is purely based on the forward
step, while the update step is assumed to be of negligible cost for all meth-
ods. For a naive implementation of the MLEnKF, we have observed that it
takes longer than a naive implementation of the single-level EnKF. Natu-
rally, it could be worth to examine this effect and do the technical labour
to tune the implementation of the update step itself as the total run time
matters.

In addition, we have discussed that suboptimal scaling of the GPU
OCEAN simulator on very coarse grids diminishes the speed-up through
the use of multi-level methods. Also the multi-level ensemble benefits from
the fast computation on the fine levels, but the potential of MLDA could
be increased when approaches for the acceleration of coarse levels are in-
spected. While the computational costs of small problem sizes is usually
not relevant in the development of ocean modelling software, it matters for
multi-level methods.

Furthermore, it is conceptually not necessary to use the same model
equation on all levels. While keeping the variables projectable and the per-
turbations transferable, the simplified models in our study could be ex-
tended by levels l > L from more complex models. In such multi-fidelity
hierarchies [64], the increased accuracy of the results does not only come
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from increased resolution but also from increased physical complexity.

Comments

While we keep structurally the same data assimilation method as in Paper
III, the multi-level method focuses on accelerating the data assimilation
cycle by a speed-up in the forward step. As computational efficiency is a
key for drift predictions in SAR scenarios, reducing computational time for
the generation of trajectories is beneficial.

With the formulation of the MLEnKF, we stay close to the formulation
of Chernov et al. [24], but we use practical evaluation metrics as we do
not restrict ourselves to analytical cases. Also Fossum et al. [50] employ
multi-level data assimilation in a practically relevant case, but we do not
decouple the higher levels by hybridisation with Bayesian model averag-
ing in our notion. Still, it is remarkable how little the MLEnKF results are
sensitive to the evaluated configurations. Moreover, in the composition of
the paper, the design of the model error became a discussion in itself, since
it has to be communicated between two levels each and has to be appro-
priately parameterised.

Finally, the application of MLDA is only beneficial in very specific con-
ditions. On the one hand, the correlation between the finest levels has to
be sufficiently strong to obtain a speed-up, and on the other hand, there is
no need to refine if the fine resolution does not contribute with increased
detail information. Hereby, the double jet is actually a representative case
and it is challenging for multi-level estimators since the dynamics between
the jets becomes turbulent with many small-scale details.
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Chapter 7

Concluding Remarks and
Outlook

In this thesis, we have pursued a complementary approach for local drift
forecasting motivated by search-and-rescue scenarios. Rather than relying
on a single prediction from a complex model, we have employed ensem-
bles of simplified ocean models to represent the probability distribution
of the currents and to assimilate observation data from in-situ measure-
ments into the forecasts. The computational efficiency of the shallow-water
model and the flexibility of the numerical solvers have facilitated the gen-
eration of large ensembles on different resolutions and multi-level data as-
similation has enabled to refine the statistics for high-resolution forecasts.

Numerical simulations of simplified ocean models can be nested locally
into operational forecasts and predict drift trajectories on demand. Here,
we have utilised the shallow-water equations for the simplified modelling
of barotropic and, in the presence of a distinct mixed-layer, also baroclinic
dynamics.

In a Monte Carlo approach, we used ensembles of simulations to rep-
resent uncertainty in the forecast arising, among others, from the initial
states and the dynamical model. Furthermore, this approach has taken
benefit of assimilating measurements that had not been considered in the
operational workflow. While we assume that observational data is sparse
in time-critical applications, we have analysed tailored data assimilation
techniques that steer the ensemble forecasts towards the observations and
generally improve the forecast skills.

Finally, as computational efficiency plays a crucial role in search-and-
rescue operations, we have explored ensembles on a hierarchy of levels
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and their potential for further computational speed-ups. Therefore, we
have used the multi-level ensemble Kalman filter to assimilate observa-
tional data into shallow-water ensembles.

7.1 Concluding Remarks

Seen in the bigger picture, the combination of simplified models and data
assimilation enables rapid forecasts with flexible resolutions and uncer-
tainty information in local areas, making this approach a well-suited addi-
tion for search-and-rescue scenarios. The work in this thesis constitutes a
proof-of-concept and an in-depth study of the methods in the development
chain towards a complementary system for drift trajectory forecasting.

While simplified methods do not aim to replace the operational fore-
casting systems, the concepts in this thesis represent novel pathways and
build a base for further steps to establish the combination of simplified
models and data assimilation as on-demand tool. In the frame of develop-
ing such a complementary system, this thesis provides scientific contribu-
tions for the proof-of-concept of the involved dynamical model and data
assimilation techniques. Also in the scientific context, our considerations
are motivated by the application in mind and the results show the value,
but also limitations, of shallow-water models and multi-level data assimi-
lation as a special-purpose ensemble prediction system for drift trajectory
forecasting.

For the simplified ocean models, we have confronted well-balanced
finite-volume methods and purely barotropic models with realistic con-
ditions accentuating the need for pragmatic solutions. In the finite-volume
scheme, we have discussed the trading of well-balance in favour for reduc-
ing numerical artefacts in classical oceanographic cases and have improved
the results for general applications. Moreover, we have investigated an
extension of the barotropic shallow-water model by the reduced-gravity
models and have manifested the efficient generation of large ensembles of
drift trajectories.

Continuing with ensemble-based data assimilation, we have compared
two conceptually different filtering methods for the handling of sparse ob-
servations. Here, we have evaluated a recent particle filter and a version of
the ensemble Kalman filter, such that we have gained further insights into
their implicit or explicit localisation. In this assessment, we exhibit that
the use of advanced non-linear data assimilation methods does not always
lead to better forecast statistics than linear updating methods.
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Last, we have brought multi-level data assimilation one step ahead and
have addressed practical challenges on the way. We have presented the
applicability of multi-level ensemble and the associated potential for com-
putational speed-ups for challenging data assimilation problems. Here, we
have succeeded to apply the ensemble Kalman filter for simplified ocean
models.

From my personal perspective, as if our project leader Jan Erik Stiansen
would ask for an appraisal of the research in this thesis, the general ap-
proach of simplified models and multi-level data assimilation can find its
place in future ensemble prediction systems for drift trajectories. While
offline drift models will stay faster and complex models will stay more
precise, ensembles of simplified models fit in between. The advantages of
efficient forecasts with realistic uncertainty representation and the assimi-
lation of observations that would have otherwise been ignored are preva-
lent.

However, to add value to trajectory predictions, all methods have to be
adequate. While the barotropic shallow-water model is hereby rarely suffi-
cient for drifter modelling in protected fjords, the supplementary reduced-
gravity model enables even larger ensembles, but its robust initialisation
in complex conditions remains a challenge for further research.

We have identified suitable data assimilation methods for sparse in-situ
observations. Moreover, we have incorporated multi-level ensembles into
the architecture, where the theoretical computational cost was halved in an
exemplary scenario with the shallow-water equations. Transferring the ac-
quired knowledge to the broader perspective of a complementary forecast
system for search-and-rescue systems, the practical impact of multi-level
data assimilation for local high-resolution ensemble forecasts depends on
multiple factors. The computational scaling is one aspect and, for parallel
code infrastructures, this depends on the number of grids cell on the level
of interest. While the restriction to local domains casts scepticism whether
the massive parallelisation in the GPU OCEAN simulation framework will
be fully occupied, yielding suboptimal scaling, the high resolution of in-
terest indicates big problem sizes and allures the utilisation of cost efficient
coarser grids. In addition, the correlation of the levels in relation to the
ensemble variance on the coarsest level indicates whether one can expect
a reduction of computational costs in the ensemble simulation compared
to single-level ensembles. These variances are still unknown for real-word
scenarios, but could be subject of further investigations.
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7.2 Outlook

For practical impact on search-and-rescue operations at sea, it would be
necessary to elevate the discussed methods onto a robust operational level
with support for all potentially occurring real-world conditions. This would
involve a lot of technical work, but also gives rise to further scientific in-
vestigations.

As the complex ocean models and data assimilation frameworks will
develop in future, those will also become computationally more efficient.
However, if simplified models with rapid data assimilation ripens further,
they can find their place as complementary first-response systems in the
operational architecture. As mentioned in Chapter 6 for each individual
paper, there are several directions to expand the research. Most promi-
nently for the technology readiness of the general approach are develop-
ments for respecting real-world conditions. Beyond this, multi-resolution
simulations, transfer to other application scenarios or machine learning
forecasts are interesting topics.

Real-world Conditions

The most natural extension would be to take the methods from this thesis
to real-world domains. As the SWE model already accommodates for real-
world domains and topographies, the challenges will lie in the ensemble
initialisation and generating a realistic ensemble spread through out the
simulation.

The initial conditions are not perfectly known and the ensemble is sup-
posed to properly account for this uncertainty. However, for instance in
the case of NorKyst, only a single forecast is available such that it requires
innovative ways to initialise an ensemble that represents a realistic uncer-
tainty. Moreover, we have used two different types of model errors in this
thesis for temporal perturbations of the ocean states, but for both types it
remains an open challenge to create a realistic ensemble spread respect-
ing the actual uncertainty in the dynamics [49]. These facts demand the
analysis of real-world data compared to the simplified models and iden-
tification of suitable perturbation designs, this can, for instance, include
machine learning techniques for error corrections [140].

The aforementioned steps will be relevant to both single-level and multi-
level ensemble methods. For the multi-level case also further work, e.g. for
mismatching land masks on different levels, see Chapter 6, is needed and
the variances between the levels should be analysed to evaluate the poten-
tial for a computational speed-up through the use of multi-level methods.
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Thereafter, it will be interesting to benchmark the approach of simpli-
fied ocean models and data assimilation against operational drift trajectory
forecasts and real drifter data.

Assessment of Multi-Level Ensemble Forecasts

With real-world data, the proper assessment of ensemble forecast will be-
come pivotal. For the evaluation of multi-level ensemble forecasts with
respect to observational data by conventional techniques, like probability
integral transform histograms or scoring rule, multiple approaches have
been presented in Chapter 5. Hereby, all methods involve preparatory
steps, such as resampling, smoothing, or polynomial approximation, be-
fore the actual assessment. Consequently, it could be interesting to study
the potential effect of these methods on the validation outcomes in more
detail.

Multi-resolution Models

In Paper IV, we have employed global coarsening in our examples, but it
may be prohibitive to coarsen in the full domain as too many features are
lost, e.g. in some coastal or turbulent areas, whilst in other areas coarsening
is still feasible. Therefore, it could be relevant to keep high-resolution in
some areas and coarsen only in others [84].

Vice versa, the ambition can be to even increase the resolution in spe-
cific areas of interest [116]. High-resolution data of the topography may
be easier accessible than corresponding forecasts for the ocean currents on
such a fine grid. Hereby, challenges will occur, for example, when initial-
ising currents around small islands that have not been resolved in the op-
erational data. For ensembles of multi-resolution models, the same locally
refined grid could be used for all ensemble members or a hierarchy of such
grids could supply a multi-level ensemble. Accordingly, either the single-
level or the multi-level data assimilation methods from this thesis could
be applied. In contrast, super resolution data assimilation [4] follows an
alternative approach and simulates only coarse ensemble members glob-
ally, but uses neural nets to fill in high-resolution features. Here it can be
interesting to compare both approaches in the end.

Combined Barotropic and Baroclinic Simplified Models

Foremost, the initialisation of the reduced-gravity model could be further
explored. Such simplified approaches do not have the ambition to be a
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perfect model of the real dynamics, but enhanced by observational data
they could be advanced to special-purpose tools for drift trajectory predic-
tion. Therefore, the impact of data assimilation on combined barotropic
and baroclinic simplified models could be analysed. For details, see Chap-
ter 6.

Other Applications

Search-and-rescue operations have motivated the setting of this thesis, but
the developed methods are not restricted to this. Storm surges are dom-
inantly a barotropic phenomenon, such that the barotropic shallow-water
model could be re-used for storm surge modelling and rapid sea level rise
forecasting [85]. In addition to current observations, measurements of the
sea level would be a relevant data source for assimilation in such an ap-
plication [138]. The framework could be extended to other current-driven
tracers as long as the interest lies in local short-term trajectories. For ice
berg drift [23], the use of an ensemble of simplified ocean model together
with stochastic drift and forcing parameters could represent the uncer-
tainty in the driving currents better than a single deterministic current field
with corresponding parameter samples. Observations in the arctic would
rather originate from satellite pictures than from buoys. Furthermore, sup-
plementary models, for instance for feed or waste in fish farming, and data
collection types could be coupled with the shallow-water model and the
ensemble Kalman filter. Also in other societal and economical relevant
contexts, such a combination of models can be applied. For example, the
predictions for the spread of an acute algae bloom require efficient mod-
els and fast updates [120]. In all cases, the data assimilation techniques
would need to be adapted to the specific application. This may include
multi-level formulations of other versions of the EnKF, when the data is no
longer sparse.

Machine Learning Models

Machine learning models are an emerging technology also in typical data
assimilation applications, like meteorology or oceanography. After an ex-
tensive training period, these models produce partial or full forecasts very
fast as they circumvent to solve the physical equations directly. These
methods can either be used in combination with classical data assimila-
tion [13, 12] or replace the traditional workflow completely as presented
very recently for weather forecasting [109, 89, 7, 83]. During all further
development on simplified models for drift trajectory forecasting, it could
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be reasonable to keep an eye on the progress of machine learning models
whether those can be a useful and practical enhancement or supplement.
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term predictions of oceanic drift. Oceanography, 31(3):59–67, 2018.

[28] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel Monte
Carlo methods and applications to elliptic PDEs with random coefficients.
Computing and Visualization in Science, 14:3–15, 2011.

[29] J. Cummings, L. Bertino, P. Brasseur, I. Fukumori, M. Kamachi, M. J. Martin,
K. Mogensen, P. Oke, C. E. Testut, J. Verron, et al. Ocean data assimilation
systems for GODAE. Oceanography, 22(3):96–109, 2009.
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Abstract

We consider the problem of rotational shallow-water flow for which non-trivial rotating steady-state
solutions are of great importance. In particular, we investigate a high-resolution central-upwind scheme
that is well-balanced for a subset of these stationary solutions and show that the well-balanced design
is the source of numerical artifacts when applied to more general problems. We propose an alternative
flux evaluation that sacrifices the well-balanced property and demonstrate that this gives qualitatively
better results for relevant test cases and real-world oceanographic simulations.

Keywords: high-resolution finite-volume schemes, rotating shallow-water equations, oceanography,
numerical artifacts

1 Introduction

Over the past few years, we have developed a GPU-accelerated simulation framework [1] for oceanographic
applications and ensemble prediction systems. At the core of the framework is a simplified ocean model based
on the shallow-water equations in a rotational frame of reference. This hyperbolic system is solved using a
slightly modified version of the numerical scheme proposed by Chertock et al. [2] (abbreviated as CDKLM).
This is an explicit high-resolution finite-volume scheme that is conservative, second order, and consistent,
formulated on Cartesian grids. Its main advantage compared to similar schemes is that it is well-balanced
with respect to some non-trivial steady-state solutions in geostrophic balance, namely geostrophic jets along
the coordinate axes. Hereby, the rotational pull on the jets is equal to the gravity-induced potential energy
from a non-flat ocean surface. The geostrophic jets are however not the only steady-state solutions based
on geostrophic balance, and in real-world oceanographic applications, rotational steady-states are often of
greater importance.

The CDKLM scheme is based on central-upwind schemes [3], which are attractive as “black-box” solvers
as they do not require solutions to the Riemann problem. An alternative to CDKLM is the earlier scheme
proposed by Kurganov and Petrova [4] (abbreviated as KP), which also uses central-upwind flux evaluations
but is not well-balanced for any non-trivial rotational steady-state solutions. When considering alternative
numerical schemes, one that is well-balanced for some geostrophic steady-state solutions and one that is not,
it is easy to choose to implement the former also for more complex applications. However, as we will show
in this paper, one should be more careful in this selection.

In this work, we demonstrate that the CDKLM scheme gives oscillatory artifacts and show that we can
achieve solutions that are qualitatively better for rotational flow by using a non-well-balanced variation of
CDKLM. Thereafter, we continue by investigating how to tune the resulting finite-volume scheme when
applied to real-world oceanographic problems.
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2 Rotational Shallow Water Equations

The shallow water equations in a rotational frame of reference are given by
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and conserve mass and momentum. The variable η represents the water surface as a deviation from the
mean equilibrium depth H, so that h = H + η becomes the total water depth. Momentum is given by hu
and hv in x- and y-direction, respectively. Furthermore, g is the gravitational constant, and f is the Coriolis
parameter, which is a function of latitude. We define the vector q = [η, hu, hv]T to contain the conserved
variables, so that we can write (1) as

qt +F(q)x + G(q)y = S(q) . (2)

Rotating steady-states solutions of (1) are given by geostrophic balances, where

ux + vy = 0 , gηx = fv , and gηy = −fu . (3)

In [2], the last two expressions are rewritten in terms of potential energies as

K(x, y) := g

(
η −

∫ x

−∞

f

g
v dx′

)
, L(x, y) := g

(
η −

∫ y

−∞

f

g
u dy′

)
, (4)

so that they can be written as Kx = 0 and Ly = 0. In particular, the CDKLM scheme is well-balanced with
respect to the geostrophic jets

u ≡ 0, vy ≡ 0, ηy ≡ 0, Hy ≡ 0, K ≡ const, (5)

v ≡ 0, ux ≡ 0, ηx ≡ 0, Hx ≡ 0, L ≡ const, (6)

which are special cases of (3).

3 Finite Volume Schemes

In the following, we summarize only the relevant parts of the CDKLM scheme; the reader can find all details
in [2]. We start by discretizing the domain in a regular Cartesian grid with cells of size (Δx,Δy), and define
Qj,k to be the average of q within the cell with center at

(
(j + 1

2 )Δx, (k + 1
2 )Δy

)
. Equation (2) can then

be written in semi-discrete form as

∂Qj,k

∂t
= −Fj+1/2,k − Fj−1/2,k

Δx
− Gj,k+1/2 −Gj,k−1/2

Δy
+ S(Qj,k). (7)

The system is solved in time with the second-order total-variation-diminishing Runge-Kutta scheme [5] with
time steps satisfying the CFL condition. In the rest of the paper, we focus on the spatial reconstruction and
fluxes.

3.1 Well-balanced scheme

To design a well-balanced finite-volume scheme for (1) with respect to (5) and (6), Chertock et al. [2] propose
to reconstruct the face values of q by computing the slopes of the equilibrium variables p = [u, v,K,L]T

rather than the slopes of q directly. Values for Kj,k and Lj,k are obtained by evaluating the integrals in (4)
by a recursive sum starting from zero at the boundary. Note that the recursive sums for K and L mostly
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cancel in the reconstruction and are reduced to local operations [1, Sect. 3.1]. The slopes are then found by
the generalized minmod limiter (c.f. [6]), which in the x-direction is

(px)j,k = minmod

(
θ
pj+1,k − pj,k

Δx
,
pj+1,k − pj−1,k

2Δx
, θ

pj,k − pj−1,k

Δx

)
, (8)

where θ ∈ [1, 2] controls numerical dissipation.
Using (px)j,k and (px)j+1,k, we can reconstruct one-sided point values for q at the face between the two

cells as Qr
j+1/2,k and Ql

j+1/2,k from the right and left, respectively, using the discretized version of (4) to

reconstruct values for η. The flux terms in (7) are computed using the central-upwind (CU) scheme [3]

F
(i)
j+1/2,k =

a+F (
Ql

)
− a−F (Qr)

a+ − a−
+

a+a−

a+ − a−
(
Qr −Ql

)
(9)

for i = 1, 2, where we have omitted the subscript (·)j+1/2,k for all Q (including its entries) and a variables
for readability. The variables a+ and a− represent the largest positive and negative wave speeds at the cell
interface, respectively,

a± =
max
min

{
ul ±

√
ghl, ur ±

√
ghr, 0

}
. (10)

For the scheme to be well-balanced with respect to (6), however, Chertock et al. [2] propose to use a

standard-upwind (SU) scheme for F
(3)
j+1/2,k, given by

F
(3)
j+1/2,k =

{
hrurvr, if ur + ul > 0,

hlulvl, otherwise.
(11)

The scheme is defined analogously in the y-direction, where the CU flux in (9) is used for G
(i)
j,k+1/2, i = 1, 3,

and the SU in (11) is used for G
(2)
j,k+1/2.

3.2 Unbalanced alternatives

As we will see in Section 4, the use of the SU flux in (11) produces artifacts when applying CDKLM to
rotational and realistic problems. To investigate the problem, we consider a convex combination of the two
fluxes

F
(3)
j+1/2,k = φ(FSU )

(3)
j+1/2,k + (1− φ)(FCU )

(3)
j+1/2,k, (12)

in which FCU comes from (9), FSU comes from (11), and φ ∈ [0, 1].
In contrast to CDKLM, KP reconstructs the slopes of q using the conserved variables directly and

evaluates all flux components using the central-upwind scheme. We implement (12) also for KP and compare
it with CDKLM to better assess the effects of different reconstructions and flux terms in isolation.

4 Numerical Experiments

We consider five experiments to evaluate the pros and cons of using the reconstruction and flux that make
the scheme well-balanced for geostrophic jets.

Case A: Radial wave without rotation. First, we consider a simple radial wave in a non-rotating
domain (meaning f = 0), initialized by

η(x, y, 0) = exp−10−5(x2+y2), and hu(x, y, 0) = hv(x, y, 0) = 0. (13)

The domain consists of 400 × 400 cells with Δx = Δy = 100m, centered at the origin. The equilibrium
depth is H(x, y) = 60m.
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Figure 1: Artifacts in hv from an initial bump using CDKLM with SU flux (left) and CU flux (center), and
cross section of hv at y = −1 km (right).

Figure 1 shows hv at t = 1000 s in the central part of the domain after most of the energy has traveled
outwards. In the plots of the y-momentum shown in the two leftmost plots for the CDKLM scheme with
SU and CU fluxes, we clearly see an oscillating artifact when using SU. This is even more pronounced in the
right-hand plot of Fig. 1, which shows a cross section at y = −1 km. The CU flux gives numerical artifacts
along the grid diagonals, but these are smooth in contrast to the SU artifacts. Both solutions are symmetric
in hv and hu, and the artifacts are observed for any spatiotemporal resolution satisfying the CFL conditions
with Courant number less or equal to 0.5.

Note that with f = 0, the CDKLM reconstruction reduces to that of the the KP scheme. We have
implemented the KP scheme independently, and get exactly the same results as for CDKLM using both
types of fluxes. This excludes the possibility that the artifacts are caused by a programming bug.

Case B: Rossby adjustment. We continue by considering Rossby adjustment, in which a rotational
steady state is generated when running Case A with f = 0.0012 s−1. The presence of Coriolis forces will
establish a rotating bump in the center of the domain and create a steady-state that is not covered by the
jets described in (5) and (6).

In Fig. 2, we consider the flux in (12) and assess different values for φ. The leftmost plot uses φ = 1.0,
which corresponds to a pure SU flux as in the original CDKLM scheme, whereas φ = 0.0 to the far right
corresponds to the CU flux. Again, hu and hv are symmetric, so we only show results for hv. We see
a similar nonphysical oscillation pattern as in Case A when using the SU flux, and the rotating bump is
dragged along the grid axes. In contrast, the CU flux results in a circular bump that captures (3) much
better. It is interesting that it is sufficient to introduce just a small CU contribution to the SU flux to
improve the numerical behavior, and the results are already significantly better with φ = 0.9. The figures
are visually the same when using KP.

Figure 2: Numerical steady-states in hv from an initial bump with different φ-values in flux (12) in the
presence of Coriolis forces.
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Figure 3: Cross-sectional plots of a Kelvin wave after ten periods for CDKLM and KP with CU flux and
θ = 1.5. Tail on the left and wave center on the right panel.

Case C: Kelvin wave. Kelvin waves are relatively fast travelling waves trapped along the coast by
the Coriolis forces. They are travelling with the coast to their right on the Northern hemisphere and are
important in realistic applications, as the tides often form them. Here, we consider a periodic domain in the
east-west direction with wall boundary conditions in the north and south, and initialize a wave travelling
eastwards along the southern wall. Sufficiently small waves follow linear physics and give periodic solutions,
but the amplitudes used herein give nonlinear responses that develop a shock over time; see [7, Sect. 4.4]
for details.

Figure 3 compares the CDKLM and KP schemes when using the CU flux and θ = 1.5 for both, meaning
that the only difference is in the slope reconstruction. The figure shows the solution after ten periods,
corresponding to more than 60,000 time steps, at two cross sections for fixed y. We see how both schemes
capture the nonlinear behavior of large waves. CDKLM manages, however, to maintain a taller wave front
than KP, whereas KP produces a long nonzero tail. We argue that these results favor CDKLM for this case.

Case D: Geostrophic jets. We consider a double geostrophic jet that satisfies the steady-state given by
(6), with one jet travelling eastward in the northern part of the domain and an westward jet in the southern
part. We use periodic boundary conditions; the case is described in full in [8, Sect. 5]. This case exposes
what we lose by not using the well-balanced SU flux for CDKLM, as this flux preserves this steady state for
any slope limiter θ.

Figure 4 shows a cross section along y after running CDKLM for a long time using the CU flux with
different values for θ. With θ = 1.0, the numerical dispersion smooths out the jet streams significantly, but
a moderate increase in θ compensates for using a non-balanced flux, and the jets stay captured and only cap
the extrema slightly. With the maximal possible θ = 2.0, we lose only 4.5% of the momentum in the center

Figure 4: A double jet state after 9 simulation days with the CU flux: the plots show cross-sections of η
(left) and hu (right).
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Figure 5: Real-world simulation for the Lofoten archipelago in Northern Norway. The axes show position
within the computational domain in km.

of the jets.
To see how much of the CU flux we can incorporate without diminishing the preservation of geostrophic

jets, we run the experiment for decreasing values of φ with fixed θ = 1.8. For all φ ≥ 0.52, we conserve the
maximum momentum within 4.5%.

Case E: Real-world simulation. Finally, we study the consequence of using different flux terms and
slope limiters when using the CDKLM scheme for simulating a real-world oceanographic scenario. Here, we
utilize the full GPU-accelerated framework from [1], in which land mask, bathymetry, initial and boundary
conditions, domain orientation, and wind forcing are taken from the operational model NorKyst800 [9], with
800m horizontal resolution.

Figure 5 shows water velocity at 23 h for a few selected values of φ and θ for CDKLM. The first thing
to notice is how the SU flux gives visible artifacts around the outermost islands at (100, 150). Secondly, the
CU scheme gives visibly slower currents than SU, e.g., at (300, 150). Since the tidal Kelvin wave follows the
coast from left towards right, the Lofoten islands trap the tidal wave, causing strong currents in between
the islands. With CU, we do not resolve this, but setting φ = 0.8 helps significantly. It is hard to see visual
differences between setting θ = 1.3 and θ = 1.8, but examining cross sections (not shown) reveals that we
indeed get sharper fronts but no oscillations with the latter, which is preferred.

5 Conclusion

We have demonstrated numerical artifacts in the CDKLM scheme in cases that differ from geostrophic
balanced jets along the coordinate axes. We identified the source of the oscillations to be the standard-
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upwind flux in the huv fluxes. By combining the standard-upwind flux with the central-upwind flux with a
factor φ, we reduced unintended numerical behavior significantly and made the results more physical, even
though we lose the well-balanced property for the jets.

We have illustrated the artifacts in Cases A and B, where Case B indicates that combining the SU flux
with a small factor of CU is sufficient to smooth out these oscillations. In Case C, we see that the slope
reconstruction in CDKLM still gives a small advantage over the more standard reconstruction used by the
KP scheme. By using a large value θ in the slope limiter, we demonstrated that also pure CU can preserve
the geostrophic jets from Case D within acceptable tolerances. Case E, however, shows that the pure CU
flux is unable to capture strong realistic currents in narrow straits. The conclusion is then to use values
close to φ = 0.8 and θ = 1.8 as flux parameter and slope limiter, respectively, for real-world oceanographic
applications. This reduces the observed artifacts and gives a practical compromise between the well-balanced
SU flux and the smoother behaving CU flux.

Acknowledgement This work is supported by the Research Council of Norway (RCN) through grant
number 310515 (Havvarsel). The numerical examples are made with the GPU Ocean software [10], and can
be reproduced by [11].
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Abstract

Probabilistic forecasts in oceanographic applications, such as drift trajectory forecasts for search-
and-rescue operations, face challenges due to high-dimensional complex models and sparse spatial ob-
servations. We discuss localisation strategies for assimilating sparse point observations and compare
the implicit equal-weights particle filter and a localised version of the ensemble-transform Kalman fil-
ter. First, we verify these methods thoroughly against the analytic Kalman filter solution for a linear
advection diffusion model. We then use a non-linear simplified ocean model to do state estimation and
drift prediction. The methods are rigorously compared using a wide range of metrics and skill scores.
Our findings indicate that both methods succeed in approximating the Kalman filter reference for linear
models of moderate dimensions, even for small ensemble sizes. However, in high-dimensional settings
with a non-linear model, we discover that the outcomes are significantly influenced by the dependence
of the ensemble Kalman filter on relaxation and the particle filter’s sensitivity to the chosen model error
covariance structure. Upon proper relaxation and localisation parametrisation, the ensemble Kalman
filter version outperforms the particle filter in our experiments.

Keywords: Spatio-temporal Statistics, Data Assimilation, Sparse Observations, Oceanographic Ap-
plications

1 Introduction

Data assimilation plays an essential role in enhancing the reliability of operational oceanographic and atmo-
spheric forecasts by providing a framework to update and calibrate numerical models using observed data
(Evensen, 2009; Asch et al., 2016). There is typically a wide array of available observations, such as satel-
lite imagery, radar measurements, weather stations, and ocean buoys. These observations represent various
physical quantities and can exhibit diverse connections to the dynamical model, necessitating substantial
pre-processing efforts in operational prediction systems. Furthermore, assimilating the observations and
running the complex numerical simulations often demands substantial computational resources.

In addition to regularly updated operational forecasts, there is a crucial need to provide targeted predic-
tions for localized and time-sensitive scenarios, including search-and-rescue operations or sea contamination
incidents (Breivik et al., 2013; Röhrs et al., 2018). To gain a better understanding of the local conditions in
such situations, it is possible to deploy and gather in-situ observations using drifters. However, due to the
fixed schedules for the operational forecasts, such in-situ observations will rarely be processed immediately
by the operational data assimilation cycle. Instead, we aim to concurrently assimilate these observations into
ensembles of efficient simplified models. This approach complements the traditional operational framework
by enabling rapid predictions with quantification of associated uncertainties, possibly without requiring ac-
cess to supercomputers. This study aims to investigate efficient data assimilation methods tailored for sparse
observations for such scenarios.
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We limit our scope to point observations, such as information gathered from buoys and drifters. Although
these observations provide valuable insight into the ocean state at their respective locations, they are often
separated by significant distances, necessitating spatio-temporal modelling to fill the gaps between sparse
data points. In this paper, we utilize buoy information for two purposes: i) to constrain an advection
diffusion process for particle concentration (Foss et al., 2021), and ii) to constrain drift trajectories in an
simplified ocean model (Holm et al., 2020). Case i) involves a linear system in space-time, allowing us
to explore the properties of the targeted data assimilation methods for sparse observations by comparing
their results to the optimal analytic Kalman Filter (KF) solution. In contrast, case ii) deals with a highly
non-linear dynamical model, prompting us to compare the different approaches using various performance
metrics through synthetic simulation studies. Our primary motivation for focusing on case ii) is to improve
short-term predictions for search-and-rescue missions by leveraging the utilisation of spatially sparse buoy
observations.

To effectively model and estimate the uncertainty associated with discretised high-dimensional state
variables governed by (non-)linear partial differential equations, we base our work on ensemble prediction
and ensemble-based data assimilation. From a statistical perspective, data assimilation methods share the
objective of representing a conditional distribution given the available observations. In our case, as we
are motivated by search-and-rescue applications, we focus on filtering distributions rather than smoothers
that also give improved estimates of past states. The ensemble Kalman filter (EnKF) proposed by Evensen
(1994) is widely used in practice, and various numerical adaptions have been developed to address specific
practical challenges and problems. Sparse observations pose challenges related to filtering efficiency and
quality and our focus centers around the ensemble transform Kalman filter (ETKF, Bishop et al. (2001))
and explores localisation strategies for Kalman filters. In contrast to EnKF and its variants, particle filters
(PFs, see, e.g. Van Leeuwen (2009) or Chopin and Papaspiliopoulos (2020)) are appealing as they do not rely
on assumptions of a linear model and Gaussian probability distributions, at least in their most basic forms.
However, PFs are less commonly employed in high-dimensional real-world applications due to the issue of
degeneracy. Holm et al. (2020) demonstrated a modern PF approach based on the implicit equal-weight
particle filter (IEWPF) proposed by Zhu et al. (2016), which shows promising forecasting results for drift
trajectories.

In this paper, we systematically compare the statistical properties and performance of two ensemble-based
data assimilation methods for sparse observations in practical oceanographic applications. We compare
the ETKF with localisation for sparse observations against the state-of-the-art particle filter IEWPF. The
comparison involves appraising their ability to reproduce analytic solutions for the linear model in the first
case by assessing a range of statistical performance metrics and evaluating forecast skills in the non-linear
case. Furthermore, we provide comprehensive discussions on the localisation techniques applied to the ETKF
and the inherent localisation mechanism within the IEWPF.

The remainder of this article is organised as follows: Section 2 explicates state-of-the-art ensemble-based
data assimilation techniques and reviews localisation strategies in the context of sparse observations. In
Section 3, we use the dynamical model based on the advection diffusion equation to verify the relevant
ensemble-based filtering methods against an analytical solution. Section 4 outlines the non-linear simplified
ocean model for drift trajectory prediction, and we compare the performance of the data assimilation methods
in this context. Finally, closing remarks are in Section 5.

2 The Data Assimilation Problem and Ensemble-based Filtering

Spatio-temporal quantities are denoted by x(t, s), for time t > 0 and location s where we restrict ourselves to
s ∈ R2. Upon discretisation of the spatio-temporal domain of interest, the locations are represented at grid
nodes of spatial locations (si)

Ns

i=1 and time steps tn, n = 1, . . . , NT , where we will work with equidistant time
steps without loss of generality. The state vector at time tn is denoted xn ∈ RNX and can hold more than
one physical variable per location if necessary (NX ≥ Ns). In oceanographic applications, the dimension
NX is usually very high due to large domains and several physical variable.

The numerical model is embraced in the model operator M. It propagates the state vector from the
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previous time step tn−1 to the current tn, defining the so-called forecast state. The model usually describes
the physics of the ocean. To account for uncertainty coming from external factors, unknown model parameters
and non-modelled physics, a Gaussian model error νn ∼ N (0,Q) is added every time step. It is assumed
that Q is known, and that the error terms are uncorrelated in time. Starting from initial state x0, the model
evolves as

xn = Mxn−1 + νn, n = 1, . . . . (2.1)

The oceanographic state xn is often only partially observed and sometimes even indirectly. An observation
is extracted from the true state vector by the measurement operator H. Due to the nature of the problems
within this work, we impose the restriction that this operator is linear, and that H only extracts variables
directly from a subset of spatial locations, meaning that the matrix consists of at most one 1 entry per row
and otherwise 0 entries. The observation locations could change every time step, but for the sake of eased
reading we ignore this in our notation. Measurement and representation inaccuracies are represented by the
addition of a zero-mean Gaussian error εn ∼ N (0,R) with known covariance matrix R and no correlations
in time. We model observations yn ∈ RNY by

yn = Hxn + εn, (2.2)

and assume that data comes from this observation model employed on the unknown true state. The covari-
ance matrix R is assumed to be diagonal, representing conditional independence between the observations
given the state variables. A characteristic of many oceanographic applications, and a key assumption in
our setting, is that in-situ observations are spatially sparse and of low dimension compared to the high-
dimensional state vector, i.e.,

NY � NX . (2.3)

Sequential data assimilation refers to the workflow of sequentially updating the probability density of
the state variables as more data gets available. Often, this results in reduced uncertainty, especially in the
neighbourhood of the observed variables. This kind of data assimilation is formalised in Bayes’ rule. Using
the state’s density conditioned on all previous observations p(xn|y1:n−1) as the forecast (prediction or prior),
this rule is used to assimilate the new observation yn and thus provides the analysis (filtering or posterior)
density p(xn|y1:n) of the state. With the independence assumption for the observation noise terms, this
formalism can be applied recursively as

p(xn|y1:n) ∝ p(yn|xn)p(xn|y1:n−1), n = 1, 2, . . . , (2.4)

starting with only prior information at the first time step.

Kalman filtering In the case of a linear model M = M and an initial Gaussian distribution for the
state x0 ∼ N (μ0,Σ0), all forecast and analysis distributions remain Gaussian. The data assimilation
problem is then Gauss-linear and Bayes’ formula (2.4) takes closed form solutions for the mean vectors
and covariance matrices. Assuming that we have an analysis (superscript a) distribution characterised
by the mean μn−1,a and covariance matrix Σn−1,a, the forecast (superscript f) distribution xn|y1:n−1 ∼
N (μn,f ,Σn,f ) is obtained by evolving the first and second moments from the previous time step to the next
by

μn,f = Mμn−1,a (2.5a)

Σn,f = MΣn−1,aM� +Q. (2.5b)

The analysis distribution xn|y1:n ∼ N (μn,a,Σn,a) is achieved by assimilating the latest observation yn

via Bayes’ rule for the given Gaussian model, resulting in

μn,a = μn,f +K(yn −Hμn,f ) (2.6a)

Σn,a = Σn,f −KΣn,fK�. (2.6b)
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Here, K = Σn,fH�(HΣn,fH� +R)−1 is the Kalman gain, which in eq. (2.6a) maps the so-called innova-
tion, yn−Hμn,f , to the state space using the state covariance matrix and the observation model. From the
numerical perspective, note that the Kalman filter requires storage and propagation of the size NX × NX

covariance matrix, which can be infeasible for high-dimensional systems.

Ensemble-based data assimilation In oceanographic applications the linearity assumptions of the
Kalman filter are rarely met, and linearised approaches can suffer from divergence challenges. There is
hence a need for more flexible methods, and ensemble-based approaches have been employed as a computa-
tionally feasible method to represent statistical solutions of non-linear systems, even for large NX .

Therein, the continuous distribution of the state variable is approximated by an ensemble of realisations
(xn

e )
Ne

e=1 and potentially by corresponding weights (we)
Ne

e=1. Following the Monte Carlo idea, the marginal
distribution of xn at time tn becomes

p(xn) ≈
Ne∑

e=1

wn
e δ (x

n − xn
e ), (2.7)

where δ is the Dirac delta function and
∑Ne

e=1 w
n
e = 1.

In the statistical literature (see, e.g. Asch et al. (2016) and Vetra-Carvalho et al. (2018)), there are two
popular groups of methods for ensemble-based data assimilation, whose foundations and latest variants for
the aforementioned problems is outlined in the next subsections.

2.1 Particle filters in oceanographic applications

PFs are ensemble-based methods for solving the data assimilation problem using the Monte Carlo approach.
In their simplest form, starting from a weighted ensemble approximation for p(x0) or p(xn−1|y1:n−1) in the
form of eq. (2.7), the forecast distribution p(xn|y1:n−1) can be approximated by propagating each ensemble
member xn−1

e individually by the model eq. (2.1) to obtain xn
e . Plugging this into Bayes formula (2.4), the

weights are updated as
wn

e ∝ p(yn|xn
e )p(x

n
e |xn−1

e )wn−1
e . (2.8)

Since ensemble members that have weights very close to zero do not contribute to the posterior probability
distribution, it is common to combine eq. (2.8) with a discrete resampling of the ensemble members based on
their weights (see, e.g. Van Leeuwen (2009); Chopin and Papaspiliopoulos (2020) for reviews of resampling
schemes). In practice, this means that we discard ensemble members with low weights and duplicate those
with higher weights, thus ensuring that computational resources are used to describe the non-negligible
part of the probability distribution. In high-dimensional applications, however, these basic PFs are prone
to degenerate, i.e. all but one ensemble member get a weight close to zero, leading to loss of statistical
properties (Snyder et al., 2008).

Among other concepts, one way to counteract such degeneracy is to sample from a proposal density qe
instead of evolving the ensemble directly according to p(xn

e |xn−1
e ) (van Leeuwen et al., 2019). The proposal

density can be conditioned on the latest observation yn and the previous state xn−1
e for all ensemble members

e = 1, . . . , Ne. The weights are then modified to

wn,∗
e =

wn
e

qe(xn
e |xn−1

1:Ne
,yn)

.

The variance in the weights can be reduced in this way, and the minimal variance is achieved by qe(x
n|xn−1

1:Ne
,yn) =

p(xn|xn−1
e ,yn) as described in Doucet et al. (2000) and often referred to as the optimal proposal. Under

the assumption of Gaussian errors and linear observation operator, which applies to our case, this proposal
is a Gaussian distribution N (xn,opt

e ,P ) with

xn,opt
e = Mxn−1

e +QH� (
HQH� +R

)−1 (
yn −HMxn−1

e

)
(2.9a)

P = Q−QH� (
HQH� +R

)−1
HQ. (2.9b)
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Note that the expression for xn,opt
e is similar to the KF update in eq. (2.6a), but it uses the covariance

structure from the model error Q instead of the forecast Σn,f . Even this formulation of the PF will
degenerate for high-dimensional systems, see, e.g. Morzfeld et al. (2017).

The optimal proposal density filter can be modified such that all posterior ensemble members obtain
a certain target weight wn

target, and thus avoiding ensemble collapse and the need of resampling. Instead
of drawing realisations from the proposal distribution directly, the IEWPF first samples ξe and ζe from
N (0, INX

) and next implicitly transforms the samples to a target distribution. This filter, introduced by
Zhu et al. (2016) and modified by Skauvold et al. (2019), utilises a version of the optimal proposal density

where ξe and ζe are constructed to be perpendicular and scaled according to factors α
1/2
e for e = 1, ..., Ne

and β1/2, respectively, before being transformed by P according to

xn
e = xn,opt

e + P 1/2
(
α1/2
e ξe + β1/2ζe

)
. (2.10)

Here, the constant β is a tuning parameter that influences the statistical quality of the results, whereas the αe

values are calculated implicitly for each ensemble member to ensure equal weights. To get an intuition of the
idea behind IEWPF, we observe that eq. (2.9a) develops the state using M but with no model error. These
unperturbed states are then used to get xn,opt

e by assimilating the observations. We then perturb xn,opt
e in

(2.10), but instead of using the model error, which is sampled from N (0,Q), we sample perturbations from
N (0, αeP ) and N (0, βP ) in such a way that we counteract the change of weights in the ensemble. Note that
P is constructed from Q as seen in eq. (2.9b), so that these perturbations can be thought of as targeted
sampling of the model error.

The tuning parameter β needs to be selected with care. A small value gives small spread of the ensemble
that likely underestimates the variability, whereas a bigger β increases the spread. Holm et al. (2020,
Appendix A) derived lower and upper bounds for this tuning parameter. In the subsequent experiments, we
tune β manually, mainly by calibration of coverage probabilities as suggested in Skauvold et al. (2019). By
experience it seems that β values around 0.5 are a good start. Albeit the choice of β is independent of the
ensemble size, it is influenced by the dynamics of the problem. Hence, one can find a suitable choice of β for
a specific kind of scenario and then keep it fixed in future experiments with similar characteristics.

It should be noted that in contrast to general PFs, the IEWPF requires that the model error is additive
and from a Gaussian distribution. Furthermore, there are no guarantees on how the IEWPF performs, even
when the ensemble size goes to infinity. Still, the performance tends to be very good in large-size systems.
With β = 0, the implicit transform has a gap that leads to asymptotic bias (Skauvold et al., 2019), but
this seems to be adjusted reasonably well by the second part having β > 0. The IEWPF has recently been
shown to be applicable and efficient for assimilating point-based observations into a simplified ocean model
based on the shallow water equations (Holm et al., 2020). Herein, this method represents a state-of-the-art
PF and is investigated more thoroughly.

2.2 Ensemble Kalman filters in oceanographic applications

The EnKF (Evensen, 1994, 2009) is an ensemble-based version of the KF, given in eqs. (2.5) and (2.6).
Originally presented as a data assimilation method for non-linear systems, it also solves the problem of
having to store and propagate the NX ×NX state covariance matrix Σ.

In the ensemble representation from eq. (2.7), all weights are kept equal, and the state of each ensemble
member is propagated by the model in eq. (2.1). The forecast state covariance is estimated from the ensemble,
as

Σ̂n,f =
1

Ne − 1

Ne∑

e=1

(
xn,f
e − xn,f

) (
xn,f
e − xn,f

)�
, (2.11)

where xn,f denotes the ensemble mean. The ensemble members are then updated along the same linear
projection

xn,a
e = xn,f

e + K̂
(
yn −Hxn,f

e − εne
)
, (2.12)
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where the Kalman gain becomes K̂ = Σ̂n,fH�(HΣ̂n,fH� + R)−1. In eq. (2.12), the perturbation εne ∼
N (0,Rn) is added to adjust the variance in the solution ensemble, motivated by exact sampling in the linear
Gaussian situation. This solution is therefore termed the stochastic EnKF (SEnKF, see (Burgers et al.,
1998; Houtekamer and Mitchell, 1998; van Leeuwen, 2020)). The classical SEnKF in eq. (2.12) requires
that we obtain and store the relevant covariances from the ensemble, and then factorize matrices to solve
a linear system. For high-dimensional applications, this quickly becomes expensive, and it is therefore
common to circumvent the covariance assembling (Evensen, 2003) or to use so-called deterministic square-
root formulations instead (Whitaker and Hamill, 2002).

To avoid working in the state space, the ensemble transform Kalman filter (ETKF, Bishop et al. (2001))
reformulates eq. (2.12) via linear algebraic identities into a particular example of a deterministic square-root

filter, which works in ensemble dimensions instead. Mathematically, let Xn,f =
[
xn,f
1 , . . . ,xn,f

Ne

]
be the

matrix of prior ensemble states, and let X
n,f

be a NX ×Ne matrix where all columns are xn,f . The ETKF

then works on the state perturbation matrix Xn,f
pert = Xn,f −X

n,f
, and calculates the mean of the analysis

ensemble
X

n,a
= X

n,f
+Xn,f

pertA(HXn,f
pert)

�R−1
(
yn −Hxn,f

)
, (2.13)

where

A =
(
(Ne − 1)INe + (HXn,f

pert)
�R−1HXn,f

pert

)−1

(2.14)

plays the role of the analysis covariance matrix. The ensemble members are then spread around xn,a

according to

Xn,a = X
n,a

+Xn,f
pert ((Ne − 1)A)

1/2
, (2.15)

where we use a singular-value decomposition to find the square-root of A. The properties of the ETKF
remain the same as for the EnKF and we refer to Li (2007) for further details on the transform.

The derivation of these methods assume a linear model, and asymptotic convergence results for increased
ensemble size cannot be proved for non-linear cases. Still, the EnKF and its variants have been prevalent
and successfully used in oceanographic applications (see, e.g. Carrassi et al. (2018)).

The error covariance matrix in this kind of filters is estimated from the ensemble and can lead to sys-
tematic underestimation. Typical approaches to counteract this are inflation or localisation. Anderson and
Anderson (1999) introduced covariance inflation by a multiplicative factor to keep more variability in the
ensemble, where several suggestions for the determination of an adaptive factor exist in literature, see, e.g.
Desroziers et al. (2006); Anderson (2009); Sætrom and Omre (2013); Raanes et al. (2019). Similarly, additive
inflation was presented by (Ott et al., 2004). However, Li et al. (2009) also point out that covariance inflation
may not work appropriately in large complex models. Hence, we will mainly concentrate on localisation.

2.3 Sparse observations

The focus of this paper is on assimilating spatially sparse point observations. This naturally suggests to look
closer on localisation in the filters. Although localisation is important for general applications, the sparse
observations scenario considered here motivates one to study specific methods with good assimilation quality
and algorithmic efficiency.

Localisation and sparse observation handling in the IEWPF The need for localisation in EnKF-
based schemes arises from the spurious correlations introduced by the term Σ̂n,fH�, which represents the
estimated covariance terms between all state variables and all observations in eq. (2.12). As pointed out in
Section 2.1, the optimal proposal distribution in eq. (2.9a) updates the state vector with a similar expression,

but it uses the correlations in the model error, QH�, rather than the empirical Σ̂n,fH�. This means that
the optimal proposal filter by design does not lead to spurious correlations. Still, the structure of Q of course
influences the distribution, and in particular a local structure in Q that do not overlap between observation
sites, entails updates in eq. (2.9a) that are local as well.
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To show that the IEWPF updates in eqs. (2.9a) and (2.10) are local if Q is local, we consider the pattern
of non-zero values in the matrix operations in the two equations. First, let us use rQ to denote the radius
in terms of number of grid cells that information is spread through the model error covariance matrix.
This means that Q1/2 contains at most (2rQ + 1)2 non-zero elements, whereas Q = Q�/2Q1/2 spreads
the information twice as far, thus having at most (4rQ + 1)2 non-zero elements. Second, we observe that
eq. (2.9b) can be rewritten as

P = Q�/2
(
INX

−Q1/2H�(HQH� +R)−1HQ�/2

︸ ︷︷ ︸
=:S

)
Q1/2, (2.16)

where we for convenience use S to represent the longest matrix expression. This means that P 1/2 =
(INX

− S)1/2Q1/2, which is what we need in eq. (2.10).
In Table 1, we give upper bounds on the number of non-zero elements when stepping through the matrix

operations in eqs. (2.9a) and (2.16). In the rightmost column, we assume that observations are sufficiently
sparse so that both HQH� and R are diagonal, whereas we make no such assumption in the second column
from the right. We do however assume that H maps a subset of the state variables directly to observational
space. If we now consider a single observation, meaning NY = 1 and scalar (HQH� +R)−1, we see from
Table 1 that the innovation in eq. (2.9a) is spread in the neighbourhood of the observation location within
a radius of 2rQ grid cells. Thus, xn,opt

e differs from Mxn−1
e only locally around the observation.

To see the resulting non-zero pattern for S in eq. (2.16), we realize that HQ�/2 consists of a single row
from Q�/2. Furthermore, we have that the leftmost term Q1/2H� is the same as (HQ�/2)�. Consequently,
S is simply the (scaled) outer product of the column from Q1/2 corresponding to the observation, and
therefore has the local correlation pattern in both its rows and columns, but zero in all rows and columns
for which the observed state variable is not correlated with through Q1/2. This then means that (INX

−S)
differs from the identity only locally to the observed state variable as well, which finally means that P 1/2 =
(INX

− S)1/2Q1/2 differs from Q1/2 only locally to the observations as well.
It should be noted though, that the values of αe and β depend on the innovation obtained from all

observations in the domain. These parameters are therefore global parameters, but since they are scalars,
they do not contribute to any change in the local correlation structures. Related discussions on how to utilize
local covariance structures and sparse observations for efficient implementations of the IEWPF can be found
in Holm (2020).

In addition to demonstrating the built-in localisation in the IEWPF, Table 1 shows how sensitive the
IEWPF is to the structure of the model error covariance matrix Q for spreading observed information in
the state space. In the extreme case of a diagonal Q (meaning rQ = 0) all matrix operations will contain
exactly NY non-zeros, and only the observed state variables will be affected by the data assimilation.

Localisation in the EnKF In a statistical sense, the spurious correlations in the EnKF are due to a poor
Monte Carlo approximation of the true covariance matrix, see, e.g. Houtekamer and Zhang (2016). In the
spatio-temporal physical model, information propagates at finite speed and long-distance correlations are
unlikely to be significant. Prevailing techniques to counteract these artefacts are covariance or observation
localisation as they are outlined in Sakov and Bertino (2011). Both of these exploit the physical distance
between two points in space to reduce information propagation effects, and this has been demonstrated to
work well in practice, see e.g. Soares et al. (2021). For many oceanographic applications, it is important
that the geostrophic imbalance introduced by the localisation in the EnKF does not outweigh the natural
imbalance - Greybush et al. (2011) provide a discussion and representative experiments to this issue.

For the ETKF, Ott et al. (2004) introduce an efficient localisation scheme and this is referred to as
LETKF. Further developed implementations using parallelisation and observation batching exist, see e.g.
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Table 1: Number of non-zero elements in the matrix operations used in IEWPF

Eq. Matrix operations Dims
# non-zeros for # non-zeros for
any (HQH� +R)−1 diag (HQH� +R)−1

Q1/2 NX ×NX ≤ (2rQ + 1)2NX ←
Q NX ×NX ≤ (4rQ + 1)2NX ←
H NY ×NX NY ←

(HQH� +R)−1 NY ×NY ≤ NY
2 NY

H�(HQH� +R)−1 NX ×NY ≤ NY
2 NY

(2.9a) QH�(HQH� +R)−1 NX ×NY ≤ (4rQ + 1)2NY
2 ≤ (4rQ + 1)2NY

HQ�/2 NY ×NX ≤ (2rQ + 1)2NY ←
(HQH� +R)−1HQ�/2 NY ×NX ≤ (2rQ + 1)2NY

2 ≤ (2rQ + 1)2NY

H�(HQH� +R)−1HQ�/2 NX ×NX ≤ (2rQ + 1)2NY
2 ≤ (2rQ + 1)2NY

S in (2.16) Q1/2H�(HQH� +R)−1HQ�/2 NX ×NX ≤ (2rQ + 1)4NY
2 ≤ (2rQ + 1)4NY

Hunt et al. (2007), and the LETKF variants are popular in numerical weather prediction, see e.g., Szunyogh et al. (2007),
where for example global satellite data is common. In the LETKF, one loops over the state locations or sets
of state locations in a batch area. Doing so, one updates state variables by means of the ETKF using only
a specified set of local observations per batch.

Sparse observation handling in the ETKF In an oceanographic scenario with observations at only a
few locations, we prefer to use covariance localisation (Houtekamer and Mitchell, 2001) to achieve compu-
tational control as we explain further down. One then defines local domains around each observation site
only, where the size N loc

X of a local area is significantly smaller than the full state space. For the choice of
the radius of the resulting local domains, several approaches exist, see e.g. Kirchgessner et al. (2014), but
we advocate using model-informed radii such as the model error range. We next assume that observations
with non-overlapping local areas have negligible correlation, and they can be updated separately. Due to the
motivating case with sparse observations, we expect to have few overlapping areas. The reduced dimension
of the local area compared to the full state vector will make computations more efficient.

Still, with non-linear dynamical models, it is sometimes difficult to predict the possibly undesired effects
of local approximations. Using sequential data integration, one can run through the data in multiple assimila-
tion steps and in doing so one properly accounts for the correlations. In cases of overlapping local observation
areas, we therefore recommend splitting the observations into observational batches Bb, b = 1, . . . , B of as-
sumed uncorrelated observations for serial processing as originally introduced in Houtekamer and Mitchell
(1998). In our context, the batches at each step are constructed from far-apart observations. The local areas
and the sequential processing give good control for handling correlations from sparse spatial observations.
Nerger (2015) discusses how interactions of localisation and serial observation processing could destabilise
the filter, but with reasonably set local areas and minimal correlation within a batch, this effect seems to be
minuscule.

Figure 2.1(left) illustrates the definition of local areas around depicted observation sites. The figure
further indicates the splitting into batches (middle and right display), with observations sites within a batch
being sufficiently far apart from each other.

For the covariance localisation, we consider weighting vectors wb and assume a tapering that assures
wb = 1 at an observation site and wb = 0 outside the local areas. While veering away from an observation
site, w should transit decreasingly monotone and smoothly from one to zero. An example of a kernel
fulfilling those requirements locally in continuous space is the Gaspari-Cohn function (GC) introduced in

Gaspari and Cohn (1999), which enjoys popularity in EnKF-localisation. We let wloc,j ∈ RN loc
X be a properly

scaled discretisation of the GC kernel around observation j, such that its support matches the radius of the
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Figure 2.1: Schematic decomposition of the physical space (left panel) into local areas N loc
X � NX around

observations, indicated by a filled grid cell, and the separation into two batches of uncorrelated observations
(middle and right panel)

local area. With the same notation, the weighting is composed as

wb =
∑

j∈Bb

wloc,j . (2.17)

For the observation batch from Figure 2.1, the weighting vectors w1 and w2 are illustrated in Figure 2.2
together with the contributions from wloc,1, . . . ,wloc,5.

w1

=

wloc,3

+

wloc,2

+

wloc,1

w2

=

wloc,5

+

wloc,4

0

0.5

1

Figure 2.2: Schematic construction of the weighting wb using the wloc,j within the groups: For batch 1 and
2 from Figure 2.1, the weighting vectors w1 and w2 are built from the Gaspari-Cohn kernel around each
observation with in the two groups. At the corresponding center, each wloc,j equals one and decays towards
the boundary of the local domains. By definition the supports are non-overlapping and the contributions
are added up.

Within the recursion of batches Bb, the local analysis states x
n,a(j) ∈ RN loc

X are calculated independently
in each local area around the observation sites j ∈ Bb, whereby the computational overhead in presence of
sparse observations is implicitly controlled as the assimilation scheme operates in much smaller dimensions
than NX . Note that the processing of a batch can hence influence the ensemble that is used as the next fore-
cast. The analyses only take values in their respective small local regions, but to avoid cumbersome notation
for transformations, we abuse the same notation for their extension to the full state size xn,a(j) ∈ RNX .
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Because the ETKF constructs neither the covariance matrix nor the Kalman gain, we do not incorporate
the weights directly into the Kalman update, but rather calculate the ETKF analysis state by eq. (2.15)
and weight it with the forecast afterwards. (Recall that xn,a(j) are the columns of Xn,a in eq. (2.15).) For
the SEnKF, we see that this corresponds to tapering the Kalman gain and both approaches boil down to
equivalent implementations. The weighting reads

xn,a,b
e = (1−wb)x

n,a,b−1
e +wb

∑

j∈Bb

xn,a
e (j), (2.18)

where xn,a,0 = xn,f and after the last batch, we set xn,a = xn,a,B to obtain a final analysis state. For
the global analysis state, this means that most analysis information is used near observation sites, whereas
the forecast with its full spread is retained far away from data. The formulation of covariance location in
the form of eq. (2.18) is furthermore convenient since the ETKF analysis scheme can be used as black-box
without interference of the localisation weights. From a principled statistical perspective, one could process
each individual observation in a serial manner, but the collection in prescribed batches reduces iterations.
In doing so, one assimilates the spatial data recursively, similar to the assimilation over time, albeit without
the dynamical state evolution because all updates happen at the time when the data gets available. For
computational efficiency one again imposes some kind of local routine, and in practice this may rely on GC
tapering of the matrices involved. This is commonly done in implementations of Kriging, or in applications
with sequential uncertainty reduction, where the analysis can depend on the choice of conditioning order,
see, e.g. Nussbaumer et al. (2018).

Complementary to inflation as mentioned in Section 2.2, Zhang et al. (2004) present relaxation-to-prior
to counteract overfitting. Introducing a scaling parameter φ ∈ [0, 1], the weighting vector can be constructed
with neatly integrated relaxation as

wrelax
b =

∑

j∈Bb

φ wloc,j . (2.19)

Here, φ = 0 represents a pure Monte-Carlo simulation while φ = 1 is the previously presented scheme without
relaxation.

Algorithm 1 summarizes the ETKF with covariance localisation as we will use it later on. We will refer
to it as ”SparseObsETKF” in order to avoid mixing up with the LETKF. This implementation help us to
keep good control of correlations as well as computational overhead in the presence of sparse observations,
and it provides a convenient integration of tapering and relaxation.

Algorithm 1 Analysis scheme with localisation for sparse observations (SparseObsETKF)

Given Xn,f . Parameters: localisation radius and relaxation φ
Set Xn,a,0 = Xn,f

for b = 1, . . . , B do
Allocate wrelax

b � NX

for j ∈ Bb do
Calculate local Xn,a(j) using the ETKF where Xn,a,b−1 is the forecast � N loc

X

wrelax
b += φwloc,j

end for
Xn,a,b = (1−wrelax

b )Xn,a,b−1 +wrelax
b

∑
j∈Bb

Xn,a(j) � NX

end for
Xn,a = Xn,a,B

3 Comparison against the Analytical Kalman Filter in a Linear
Gaussian Advection Diffusion Model

In this section, we examine a linear Gaussian spatio-temporal model. As mentioned in Section 2, this means
that the analytic KF in eqs. (2.5) and (2.6) defines the optimal solution. Ensemble-based approximations
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and localisation effects of the different filtering techniques from Section 2 can be verified against the KF.

3.1 Advection diffusion model

Inspired by Sigrist et al. (2015), we consider a stochastic advection diffusion equation for state c given by

∂c(t, s)

∂t
= ∇ · d∇c(t, s)− vt · ∇c(t, s) + ζc(t, s) +W (t, s). (3.1)

The model’s parameters are d = 0.25 for the diffusion, v = (1.0, 0.1)� for the advection, and ζ = −0.0001
for the damping. We assume the stochastic error process W has uncorrelated elements over time but smooth
dependent spatial components at each time, and that eq. (3.1) holds for one sampled path (realisation) of
W . We consider a rectangular spatial domain [0, 5]× [0, 3] with periodic boundary conditions, and c will be
initialised at time t = 0 as a Gaussian random field.

Equation (3.1) can be used to represent for instance marine pollution dynamics (Foss et al., 2021), where
the goal is to predict the concentration c = c(t, s) of a contaminant over time and space in the ocean. In
that case, the advection parameter v would typically come from a full ocean model if vertical currents are
ignored.

In the discretised setting, the spatial domain is covered by a uniform Cartesian grid with center points
(si)

Ns
i=1 in quadratic cells of size 0.1× 0.1. The state vector xn collects all concentrations c(tn, si) at regular

time steps tn. The initial state is represented by x0 ∼ N (μ0,Σ0) with mean vector μ0 and covariance
matrix Σ0 having Matérn-type

Σ0
k,l = σ2(1 + ψDk,l) exp(−ψDk,l),

where σ = 0.5 is the standard deviation (assumed constant at all locations) and ψ = 3.5 is the Matérn
correlation decay parameter, and Dk,l is the distance between sk and sl. The mean μ0 equals 10 in the
north-east with higher bell-shaped concentration values in the south-west, see Figure 3.2 (left).

For the numerical solution of the SPDE in eq. (3.1), a temporal forward and spatial central finite-difference
scheme is employed such that the model resembles eq. (2.1) with the linear operator M = M . With periodic
boundary conditions the low-concentration area leaves the domain on the east boundary and enters from the
west. The model error ν is again represented by a Gaussian random field with a covariance matrix Q of a
similar Matérn-type. A smaller standard deviation σ = 0.125 is used, and larger correlation decay parameter
ψ = 7.0 leading to model noise with smaller correlation.

3.2 Experiment design and analytic solution

A single realisation of the advection diffusion generated by the forward model is used to retrieve observations
for the filtering, see Figure 3.1. It is simulated for 250 time steps with Δt = 0.01 on a grid of size 50 × 30.
The simulated process is observed at tn = 25n, n = 1, . . . , 10 at 15 grid cells marked red in Figure 3.1. These
direct state observations are made with a small observation error εn ∼ N (0, r2I), r = 0.1.
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Figure 3.1: The ”truth” realisation of the stochastic process at the initialisation and selected observation
times with black dots marking the observation sites and black crosses signifying two selected locations of
interest.

The KF reference solution is depicted for a selection of time steps in Figure 3.2. As for the truth in
Figure 3.1, the filtering mean (Figure 3.2, top) shows an east north-east movement of the concentrations
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as expected from the advection term. The standard deviations (Figure 3.2, bottom) are clearly reduced by
the data assimilation, especially around the observation sites and in the advection direction. With time,
however, the accuracy of the solution converges as the corrections from doing data assimilation are balanced
out by the dynamic model errors.
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Figure 3.2: For the same times as in Figure 3.1, the resulting analysis mean (upper row) and standard
deviation (lower row) of the KF.

3.3 Numerical results and evaluation metrics

We now solve this concentration advection diffusion problem using the ensemble-based methods IEWPF,
ETKF, and SparseObsETKF from Section 2. The parameter β emerging in the IEWPF is tuned manually
and set to 0.55, and this will be discussed further in relation to some of the results. We set the localisation
radius of the SparseObsETKF equal to the correlation range of the model error, which leads to four obser-
vational batches. First, we do not use any relaxation in the perfect linear model, as suggested by Raanes
et al. (2019). The performance of ensemble-based solutions are opposed to the KF reference solution. We
use a set of metrics to evaluate different statistical aspects of the data assimilation methods.

Root-mean-squared error The ensemble mean xa is compared with the KF mean μa. Here, we consider
the state at t = 250 after assimilating all available observations. The error in the mean at each position is
then the vector errKF

mean = (μa − xa). As a scalar metric to compute the behaviour over all grid cells, we
use the root-mean-squared error (RMSE)

RMSE = ‖errKF
mean‖2. (3.2)
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(a) IEWPF [1.76]
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(c) SparseObsETKF [2.26]

Figure 3.3: Mean error errKF
mean at t = 250 for assimilation experiments with Ne = 50 ensemble members.

RMSE is given in the bracket for each specified method.

Figure 3.3 shows errmean at each grid cell for a single data assimilation experiment with Ne = 50 ensemble
members for each method. The RMSEs are the caption brackets. All three ensemble-based data assimilation
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methods lead to means that closely resemble the KF reference solution. The mean error is in general low
and smoothly distributed for both IEWPF and SparseObsETKF, whereas the errors of EKTF are somewhat
bigger. Based on RMSE, IEWPF performs slightly better than SparseObsETKF, whereas the RMSE for
ETKF is about twice that of IEWPF.

To deduce reliable conclusions beyond one data set and single ensembles, we repeat the data assimilation
experiment multiple times for several independently generated true states. In Table 2, we report averaged
results for 20 replicate synthetic truths and five ensemble-based data assimilation experiments each. For
this relatively small ensemble size of Ne = 50, the localisation in the SparseObsETKF halves the RMSE
compared to the standard ETKF, and the RMSE of the IEWPF lies in the middle of the ETKF with and
without localisation.

Frobenius covariance difference We contrast the empirical covariance estimates Σ̂a in eq. (2.11) with
the KF reference Σa. We compute the Frobenius covariance difference (FCD) to compare these covariance
matrices:

FCD = ‖Σa − Σ̂a‖F,
where ‖ · ‖F denotes the Frobenius norm (elementwise sum). Averaged results for the FCD over replicate
experiments are presented in Table 2 using Ne = 50. Here, we see that the FCD for IEWPF and SparseOb-
sETKF are very similar for all cases. The covariance approximations show smaller errors for the ETKF
solution than for the other methods. At a single step, the ETKF approximation to the covariance is un-
biased, while the other methods have no such guarantee. Still, it is not obvious that the ETKF performs
better after many data assimilation steps. Also, when we test the entries close and far from the diagonal of
the covariance matrix, we cannot see any other behaviour in the results.

Integrated quadratic distance We next study a metric for the marginal distribution mismatch of discrete
ensemble-based distribution approximations to the Gaussian KF reference solution. The reference cumulative
distribution function (CDF) of the KF is denoted F a. The empirical cumulative distribution function

(ECDF) of the ensemble-based solutions are denoted F̂ a.
In the analysis two specific locations shown in the far right panel of Figure 3.1 are studied based on their

different characteristics: s1 = (0, 0) is an observation site and s2 = (2.5, 1.5) is as far away from observation
data as possible.
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SparseObsETKF

(a) CDF and ECDFs at s1

12 12.5
0
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1

(b) CDF and ECDFs at s2

Figure 3.4: For two distinct positions, s1 as observation site and s2 far away from observation sites, at t = 250
the CDF of the Kalman filter is compared to the ECDFs of IEWPF [0.0242, 0.0238], ETKF [0.0164, 0.0254],
and SparseObsETKF [0.0093, 0.0117], respectively, with Ne = 50. In brackets, the integrated quadratic
difference dIQ for s1 and s2, respectively.

In Figure 3.4, the CDF of the KF is depicted in comparison with the ECDFs of IEWPF, SparseObsETKF,
and ETKF at the two different locations for a small ensemble size. First, since the scales of the x-axis in
both displays are the same, it becomes obvious that the standard deviation at an observation site is much
smaller than at an unobserved location. Next, we see that the different filtering methods differ in quality
when compared to the analytic solution. For the observation site s1, there is no clear qualitative difference,
but at s2 one may already identify a slight divergence in ETKF’s ECDF, whereas SparseObsETKF and
IEWPF still approximate the reference CDF quite well.
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The tuning parameter β steers the spread in the analysis ensemble of the IEWPF and among the presented
evaluation metrics the ECDF reveals the scale the best. We used it to optimise the filtering distribution
manually and found 0.55 as best choice. For smaller values, the ECDF gets too sharp and for higher values
the spread gets too large. Similarly, the variance in the SparseObsETKF-ensemble usually increases as the
relaxation parameter φ decreases. When using φ < 1 we observed that the spread in the ensemble becomes
too big compared to the CDF and the best match is achieved for φ = 1.

Thorarinsdottir et al. (2013) suggest a proper divergence function to compare marginal CDFs, condensing
the error into a scalar number. The integrated quadratic difference is defined by

dIQ =

∫ (
F a − F̂ a

)2

dx,

where the quadratic error is integrated over the sample space of the variable. Errors captured in dIQ can
originate from either a lack of Gaussianity, or a wrong scaling or a bias, or a combination.

Table 2 shows averaged results for dIQ at s1 and s2 for the three ensemble methods. IEWPF and ETKF
produce similar results, while SparseObsETKF clearly gives the best results. The reason is twofold: First,
the IEWPF and ETKF update the entire field at each data assimilation time, even at locations like s2 that
are far away. With the limited ensemble size, this is likely to induce some undesired bias and variability far
from data. Second, the SparseObsETKF is rather accurate near the observations sites, like the other filters,
and because the advection and diffusion are known, the local updating propagates reasonably over time to
the far location s2.

Probability coverage level Based on the mean and variance of the ensemble-based solutions, we can
check how often a prediction interval covers the true realisation. For the KF reference, we will have near
nominal coverage because the truth is simulated from the same model. Coverage probabilities (CPs) of the
analysis after the first observation time are

CP 1
1.64 := P

(
x1
true ∈

[
μ1,a ± 1.64σ1,a

] )
≈ 0.90.

This means that the probability that the truth is covered in the interval of 1.64 standard deviations from
the mean is 90%. For all methods, we use replicated synthetic truths, and estimate the CPs.
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Figure 3.5: Estimated CP 1
1.64 using 500 replication experiments for the KF and the ensemble-based methods

with Ne = 50. The brackets show the averaged estimated coverage probabilities. The color scale is centered
at the target probability of 90%.

Figure 3.5 shows the estimates of the CPs averaged over 500 runs. The KF results cover the nominal 90%
very well, with a variability as expected from 500 replicates. Even though that the KF is analytic, the truths
are generated stochastically and we see the Monte Carlo error here. The IEWPF and the SparseObsETKF
also give very good estimates even though the ensemble size of 50 members is low, and there are no visible
structures around observation sites. In contrast, the ETKF without localisation suffers from strong under-
coverage in this experiment. The CPs are around 0.9 near observation sites but fall to lower levels, which
are outside the truncation interval of the plot, away from these.

14



10−1 100 101
10−1

100

101

(a) KF

10−1 100 101
10−1

100

101

(b) IEWPF

10−1 100 101
10−1

100

101

(c) ETKF

10−1 100 101
10−1

100

101

(d) SparseObsETKF

Figure 3.6: Eigenvalue update in the very first (crosses) and very last (dots) data assimilation step. Prior-
vs-prior in red, prior-vs-posterior in blue.

Eigenvalues analysis An eigendecomposition of the covariance matrix yields eigenvalues representing the
variability among orthogonal axes of linear combinations of state variables. The largest (first) eigenvalue is
the variance in the direction of the first eigenvector, and for a Gaussian distribution this represents the largest
half-axis in the ellipsoid defined via the quadratic form. Further, for a Gaussian distribution, the entropy
(disorder) is defined via the log-determinant of the covariance matrix which is the sum of the log-eigenvalues.
By studying the eigenvalues of the covariance matrices of the different data assimilation methods, we hence
gain insight in the variability reduction and the disorder of the distributions. Since it does not make sense
to average eigenvalues over multiple realisation, we leave the spectral analysis to a qualitative view with
cross-plots of eigenvalues for the different methods.

Figure 3.6 shows cross-plots of the covariance matrix eigenvalues of forecast (first axis) and assimilated
(second axis). In all displays, the crosses represent the first data assimilation step while the dots are at the
last data assimilation step. For the KF, eigenvalues are computed directly from the covariance matrix and
for the ETKF variants this is the eigenvalues of the estimated covariance matrix in eq. (2.11). In the case
of the IEWPF, the prior ensemble is without model error and hence we perturb the prior before plotting.

In Figure 3.6, the forecast-vs-forecast points (red) lie on a straight line, but we still notice that all the
red dots are closer to the origin than some of the crosses. Hence, the eigenvalues are clearly smaller at the
last step, indicating that the data assimilation over time gives smaller entropy. Going from forecast (red) to
assimilated (blue), the eigenvalues of the covariance matrix are reduced. Taking the KF as a benchmark, this
reduction is particularly large for the biggest eigenvalues, indicating the updating is not only local but also
shrinks the variability of dominating linear combinations and the entropy of the distribution. At the first
step (crosses), the ETKF updating appears very similar to that of the KF. At the last step, the eigenvalues
of the ETKF are larger and not reduced quite like for the KF. This indicates that even though the ETKF
undercovers the distribution (Figure 3.5), there is not quite sufficient reduction in the largest eigenvalues.
Both IEWPF and SparseObsETKF get smaller reduction in eigenvalues than the KF. At the first data
assimilation step the reduction is larger for SparseObsETKF than for the IEWPF, while the IEWPF has
more reduction at the last data assimilation step.

Spatial connectivity While the previous metrics have considered the marginal solution at one time step
only, the correlation between different time steps and between different spatial positions gives further insight
into the statistical quality of the filtering methods.

Given data up to time tn−1, the correlation between the concentration at sk at tn−1 = 225 and sl at t
n

can then be calculated from the KF results via

Corr
(
xn−1,a
k ,xn,f

l

)
=

Cov
(
xn−1,a
k ,xn,f

l

)

σa,n−1
k σf,n

l

=
MΣa,n−1

k,l√
Σa,n−1

k,k

√
Σf,n

l,l

. (3.3)
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Figure 3.7: Correlations Corr
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)
and Ĉorr
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)
between fixed locations sk and all other grid

points in the domain sl, for k = 3 in the upper and k = 2 in the lower row, respectively. The ensemble-based
methods use Ne = 250 ensemble members, and the respective CE estimates are given in the square brackets.

Similarly, we can estimate these correlations from the ensemble-based methods by

Ĉorr
(
xn−1,a
k ,xn,f

l

)
=

1

Ne − 1

1

σ̂n−1,a
k σ̂n,f

l

Ne∑

e=1

(xn−1,a
e,k − xn−1,a

k )(xn,f
e,l − xn,f

l ).

In Figure 3.7, we show the correlation fields of the state between a reference grid cell at t9 = 225 and
all other grid cells at t10 = 250. As reference locations sk, we consider s2 positioned far away from any
observations in the top row, and s3 at an observation site in the middle of the domain displayed in the
lower row. First, from the KF solution (left), we recognise the advection field in the model that transports
information towards east-north-east from both locations, as well as the diffusion causing the correlation to
have longer range than the model error correlation radius. Second, the maximal correlation to the reference
point is higher when sk is not an observation site. In spatial statistics, conditioning on data breaks up some
of the prior correlations. Since most of the update from the data assimilation occurs near the observation
locations, the conditional correlation tends to be smaller in the proximity of data. At locations that are far
from observations, more of the prior correlation remains.

In the three rightmost columns of Figure 3.7, we see the correlations estimated with the three ensemble-
based methods using an ensemble with Ne = 250 members. We see that all methods capture a similar
correlation structure with respect to the advection and diffusion, and the relative balance between prior
model and information from the observation. With Ne = 250, results are less smooth than the KF solution.
In the upper scenario, the area of high analytical correlations becomes less apparent among background
noise, while in the lower scenario the respective regions are easier to identify in all methods.

The spatial error in the approximation of correlation between two consecutive model steps for the reference
location sk is evaluated collectively across all grid cells as

CE(sk)
2 =

Ns∑

l=1

∣∣∣Corr
(
xn−1,a
k ,xn,f

l

)
− Ĉorr

(
xn−1,a
k ,xn,f

l

)∣∣∣
2

. (3.4)

The CE for the specific data assimilation run shown in Figure 3.7 are given in square brackets in the figure
captions. These results for a single run with Ne = 250 already reveal that the contribution to CE can
come from multiple sources, such as over- or under-estimation of the actual correlations and from spurious
correlations. The final CE does not qualitatively expose which of the error sources are present to which extent,

but it quantifies how well the analytical structure is approximated. The chosen Corr and Ĉorr suggest that
spurious correlations are a present error source in all methods, but IEWPF and SparseObsETKF tend to
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overestimate the high correlations. Meanwhile, ETKF underestimates the correlations, thus leading to a
smaller CE.

3.4 Sensitivity to localisation

In the IEWPF the localisation properties are steered by the structure of the model error covariance Q and
in the SparseObsETKF by the definition of the localisation radius, which we again defined according to the
correlation range of Q, see Section 2.3. In the rest of the section those choices are hold fixed, but here
we showcase their influence. To do so, we consider four different ψ for the model error covariance matrix,
while keeping everything else unaltered, i.e. the standard derivation and the IEWPF tuning parameter β.
Analogously, we vary the localisation radius in the SparseObsETKF. The parameter ψ = 3.0 corresponds
to no localisation and ψ = 5.0, 11.0 represent roughly a doubling and halving of the localisation radius,
respectively. Importantly, it should be noted that the GC and the Matérn-type covariance kernel decay with
different rates such that the results are not one-to-one comparable, but we can still record trends within
each method.
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Figure 3.8: Different localisation parametrisations for the IEWPF. Averaged results over 20 truth realisations
and 5 ensemble initialisation each.
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Figure 3.9: Different localisation parametrisations for the SparseObsETKF. Averaged results over 20 truth
realisations and 5 ensemble initialisation each.

Figure 3.8 and Figure 3.9 allow to get an impression of the RMSE together with spatial effects. Since
the localisation is in-build into the IWEPF, one has to be careful with the interpretation of the left-most
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Table 2: Metrics for marginal distribution averaged over 20 synthetic truths and 5 ensemble realisations,
each with Ne = 50. Standard deviations are given in brackets.

RMSE FCD dIQ at s1 dIQ at s2
MC 8.27 [2.88] 47.0 [8.35] 12.8E-02 13.5E-02
IEWPF 1.67 [0.43] 2.77 [0.14] 2.51E-02 2.58E-02
ETKF 2.14 [0.40] 2.14 [0.04] 2.57E-02 2.86E-02
SparseObsETKF1.15 [0.24] 2.79 [0.15] 1.29E-02 1.68E-02

row (a). Nevertheless, there are clear unintended artefacts in mean and variance errors. Even though the
mean for ψ = 5.0 in row (b) is very well calibrated in the entire field, the variance is slightly underestimated
and the error shows structures around observation locations. Note that an increase of β may counteract the
underestimation. For the standard IEWPF, this is the opposite way around, here the error in the variances is
minuscules, but the mean is not eqully well calibrated. The IEWPF with reduced localisation radius performs
poorly when further away from observation locations. The ETKF without localisation underestimates the
variance of the KF. The SparseObsETKF with a localisation radius that spans the full y-extent of the
domain (row (b)) performs for mean and variance estimation slightly better than the parametrisation as we
have chosen in the rest of the section. We remind that the usually used localisation yields a computational
advantage due to reduced analysis dimensions. Again the smallest localisation parametrisation fails to
assimilate the entire domain.

We note that the localisation parametrisation as used in the rest of the section work reasonably well.
Nevertheless we notice that there is potential to fine-tune both methods further, but in the interest of a
limited number of tuning parameters we continue with the native parameters.

3.5 Discussion of evaluation metrics

The set of comparative metrics from the previous subsection has given us a collection of metrics that quantify
some statistical qualities of the ensemble-based data assimilation methods in reference to the analytical KF
solution.

Table 2 shows the statistically averaged results for these performance scores at t = 250. These results are
obtained across five data assimilation runs for 20 different synthetic truths and are therefore more reliable
than the single realisations demonstrated in Figures 3.3, 3.4 and 3.7. We have here used Ne = 50 ensemble
members for each run. In addition to comparing the data assimilation methods against each other, we have
also included the results using pure Monte Carlo simulations without observations (top row). These serve
to demonstrate the worst-case scenario for each metric, and we see how all three data assimilation methods
clearly outperform this, as expected. In the experiments, we have observed that the IEWPF takes several
assimilation steps until it is sufficiently calibrated, what is respected by the the choice of t here such that
the comparison stays fair, see Section 4 for details.

Based on the results in Table 2 there is no method that clearly dominate on all individual criteria. For
RMSE, it seems that SparseObsETKF is much better than ETKF, but this is not as clear when considering
FCD, where ETKF scores best. Maybe more surprising, SparseObsETKF is significantly better than ETKF
when measuring the error in the ECDF at s2 far from the observation, but not at s1 at an observation site.
A plausible explanation is that when updating the state far from an observation, all covariances are relatively
weak, which means that spurious correlations more easily dominate data assimilation. With localisation, we
ensure that only the most relevant small correlations are considered, thus improving the result. This effect
will then be less at an observation site as the most important correlations are stronger. IEWPF gets all
metrics between ETKF and SparseObsETKF. We observe that worse FCD has no influence on the dIQ at
the considered positions.

Effects of ensemble size In Figure 3.10, we study how different ensemble sizes influence RMSE, dIQ, and
correlations for the three ensemble-based methods. We use ensemble sizes Ne ∈ {25, 50, 100, 250, 1000, 5000},
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Figure 3.10: Evolution of the comparison measures in depends of the ensemble size Ne.

and the results are averaged across multiple experiments for each of these sizes. In general, we expect that
increased ensemble size leads to more accurate statistical estimates and thereby better results. This is
clearly the case for ETKF for all metrics, and SparseObsETKF shows the same trend, but not as strongly.
We see that SparseObsETKF outperforms ETKF with respect to RMSE and dIQ for small ensemble sizes,
but ETKF is better with large ensembles as the performance of SparseObsETKF stagnates for Ne > 250.
SparseObsETKF improves less than ETKF with larger ensembles because it ignores correlations, and this
gives bias in the analysis. The IEWPF yields results between ETKF and SparseObsETKF for small sample
sizes, but there is slower convergence as the ensemble size increases. Unlike ETKF, which converges to the
true Gaussian distribution in this case, there is no such guarantee for the IEWPF. Since the second stage
perturbation step of the IEWPF is designed to reduce a systematic bias and help performance, fine-tuning
the choice of β scaling parameter could improve convergence for some properties, but maybe not similarly
so for all the desired scores. The correlations mismatch compared with the KF in Figure 3.7 are slightly
different depending on the fixed reference point, but they converge with increasing sample, especially so for
the ETKF which has curves going faster to 0. For both SparseObsETKF and IEWPF there seem to be a
remaining mismatch in this CE score even for thousands of ensemble members.

Effects of sparsity of observational data In a regime dominated by the sparsity of observations, we
also want to stress-test all methods with respect to the amount of observational data. For this purpose,
we repeat the case study using NY ∈ {8, 15, 60, 104, 170} regularly placed observation sites. These numbers
are chosen such that the observation locations have distance of 15, 10, 5, 4, and 3 grid cells apart from
each others, respectively. We use Ne = 50 ensemble members. Of course, the localisation scheme for the
SparseObsETKF is not designed for dense data and will get computationally very inefficient due to a high
number of batches that are processed serially. The localisation radius is not modified.

Figure 3.11 shows the same averaged metrics as before, with respect to a growing number of observations.
Note that it no longer makes sense to distinguish between locations near and far from observations, since
the observation sites get denser over the domain. The increase in observation data leads to a sharpening in
the reference distribution calculated from the KF. For the ETKF, we observe that RMSE does not improve
and its ECDF approximation gets worse, compared with the KF. This is because of the underestimation
in variance and a slight bias which strongly penalises the dIQ. Both SparseObsETKF and IEWPF improve
their quality for increasing observation data size. This is surprising and noteworthy for IEWPF, as PFs
tends to collapse for high dimensional observations. In contrast to RMSE and dIQ, the CE does not depend
on the observation sparsity and is practically constant on the level that we saw in Figure 3.10c.

19



101 102
0

1

2

3

4

NY

(a) RMSE

101 102
0

2

4

6
·10−2

NY

IEWPF ETKF SparseObsETKF

(b) dIQ at s0

101 102
0

2

4

6

8

NY

(c) CE(s3)

Figure 3.11: Evolution of the comparison measures as we change the sparsity/density of observation data
through the number observations NY . The ensemble size is fixed at Ne = 50.

Summary In this case study, we verify the ensemble-based methods from Section 2 for a linear Gaussian
data assimilation problem with the analytical KF reference. The SparseObsETKF and IEWPF include
localisation, either explicitly or implicitly, which is connected to the correlation radius of the model error.
Beyond the verification, we can in particular record that SparseObsETKF outperforms ETKF and IEWPF
for smaller ensemble sizes (about Ne ≤ 250). While the ETKF reduces the spectral radius in every data
assimilation step more than the other methods, it requires a large ensemble size to obtain a reasonable
approximation of the full covariance matrix. The localised version that ignores large-distance correlations
is performing well for small ensemble sizes, but it does not improve much more for larger sizes. Similar
tendencies are seen with the IEWPF. The approximation of the correlations between different time steps
depend mostly on the ensemble size - the model error plays a major role in the evaluation and this criterion
requires a higher ensemble size for a sufficient representation. For reasonable ensemble sizes, say 100, both
IEWPF and SparseObsETKF operate well for any density of observation data. For most criteria we tested in
this example with sparse point data, the SparseObsETKF tends to give slightly better performance than the
IEWPF. Based on this extensive statistical evaluation, we hence recommend considering the SparseObsETKF
for similar kinds of applications with sparse data and limited ensemble sizes.

4 Comparison for Drift Trajectory Forecasting in a Simplified
Ocean Model

We now increase both dimensionality and complexity as we turn to a non-linear simplified ocean model.
This gives insight into the behaviour of the ensemble-based data assimilation methods on a challenging case
with applied relevance. The practical purpose of this configuration is to use ensembles of computationally
efficient simplified ocean models instead of or complementary to single realisations of complex operational
ocean models in time critical situations. The simplified models allow for larger ensembles and hence fa-
cilitate uncertainty quantification. Such an approach can be useful in search-and-rescue operations, where
drifters released by the vessel or relevant anchored buoys (also called moorings) can give sparse in-situ ob-
servations during the operation. These point observations can then be assimilated into the ensemble-based
representation to improve the drift trajectory forecasts that specify a search area.

Due to the non-linearity of such an model, there is no analytical reference solution for the ensemble
distributions available. We can nevertheless compare SparseObsETKF and IEWPF by studying their pre-
dictive properties with the ground truth in a simulation study. We base our numerical experiments on those
presented in Holm et al. (2020), where the IEWPF was successfully tailored for efficient GPU-accelerated
assimilation of point observations of a chaotic shallow-water model. We expand on the numerical result
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from that work by evaluating more skill scores, and by providing an in-depth comparison between IEWPF
and SparseObsETKF for state estimation and drift trajectory forecasts. In particular, this will also serve as
more thorough evaluation of the applicability of IEWPF in this context.

4.1 Simplified ocean model

The simplified ocean model is represented by the rotational shallow-water equations given by

ηt + (hu)x + (hv)y = 0

(hu)t +

(
hu2 +

1

2
gh2

)

x

+ (huv)y = fhv

(hu)t + (huv)x +

(
hv2 +

1

2
gh2

)

y

= −fhv.

(4.1)

This is a non-linear two-dimensional hyperbolic conservation law, which models conservation of mass through
the deviation η from equilibrium sea level, and conservation of momentum through hu and hv, which are
vertically integrated ocean currents in x- and y-direction, respectively. By denoting the equilibrium depth
of the ocean by H, we get the total depth as h = H + η. Furthermore, g is the gravitational constant and f
is the Coriolis parameter that accounts for the rotating frame of reference.

We solve eq. (4.1) using the high-resolution central-upwind finite-volume scheme proposed by Chertock
et al. (2018). In our notation from the model equation eq. (2.1), the state vector xn consists of the cell
averaged values (ηni , (hu)

n
i , (hv)

n
i ) at time tn for all cells i in the discretised domain. The Mn operator then

applies the finite-volume scheme to evolve the state from xn−1 to xn. Note that the time step used by the
numerical method can be chosen independently from the model time step, meaning that M might consist of
multiple iterations of the numerical scheme.

We apply a small-scale Gaussian model error ν ∼ N (0,Q). It is constructed from a coarse-scale pertur-
bation of η, which is smoothed by a second-order autoregressive function and projected onto the numerical
grid. The model error for hu and hv is then inferred according to geostrophic balance to ensure physical
feasibility. Further details about this model are available in Brodtkorb and Holm (2021) and Holm et al.
(2020).

4.2 Experiment design

In the following, we use the same experimental design as in Holm et al. (2020). We consider a rectangular
domain covering 1100 km×666 km that is discretised as a uniform Cartesian 500×300 grid. The domain has
periodic boundary conditions and constant equilibrium depth H = 230.0m. The initial conditions, for the
ground truth as well as for all ensemble members, consist of a westward jet in the north part of the domain
and an eastward jet in the south, with hv = 0. Both jets are balanced according to geostrophy by η so that
the initial conditions are in steady state. This steady state is however unstable, and slight perturbations,
such as those from the model error ν, cause chaotic behaviour.

As an example of the turbulent behaviour, Figure 4.1 shows the water velocities for one realisation that is
labeled as the synthetic truth xtrue. Here, the model error is added every 60 s, and the model error correlation
radius is approximately 40 km. From Figure 4.1, we see that the jets in xtrue are still quite regular after
3 days, but grow more irregular after 6 and 10 days. It should be noted that the mean state from a pure
Monte Carlo experiment without data assimilation will results in hv ≈ 0 even after 10 days. This indicates
that it is challenging to correctly capture where and how the turbulent behaviour will develop.

From xtrue, we extract direct observations of only (hu, hv) at 60 locations in the domain every 5 minutes
between day 3 and day 10, with observational noise sampled from N(0, I). The turquoise dots in Figure 4.1
show the observation sites. In total, the experiment is characterised by 450.000 state variables versus only
120 very sparse noisy observations. After day 10, three drifters are released in the domain, and advected
according to the simulated currents at every time step of the numerical scheme using a simple Euler scheme.
Part of the challenge for the data assimilation methods is to forecast the trajectories of these drifters.
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Figure 4.1: State of the synthetic truth after 3, 6, and 10 simulation days. The arrows indicate the direction
as well as strength of the ocean currents derived from u and v, respectively. The background visualises the
magnitude of velocity in m

s . The turquoise dots mark the fixed-point buoy positions.

The data assimilation start at simulation day 3 after each ensemble member has been spun up from the
steady state through independently sampled model errors. Even though all ensemble members are visually
very similar at this stage, they have started to develop internal instabilities that will grow over time unless
the observations are successfully assimilated.

This case is much more challenging than the advection diffusion model in Section 3: The shallow-water
model is non-linear, there are unobserved variables, and it has significantly higher dimensionality. Critically,
the non-linear dynamics of the shallow-water model is challenging to capture. In the advection diffusion
model, the state converges towards an equilibrium due to the diffusion, whereas our shallow-water equation
case gets chaotic dynamics that makes the ensemble naturally diverge in time.

4.3 Numerical results

Classical EnKF approaches like the ETKF lead to useless results for this difficult case, and only results
of the IEWPF and SparseObsETKF are shown in the comparison. We use Ne = 100 as a compromise
between computational effort and statistical quality. Based on our experiments on this high-dimensional
non-linear model, the IEWPF performance is not very sensitive to the explicit choice of β and we use the
maximal allowed value. The localisation radius for the SparseObsETKF is chosen slightly larger than the
model error correlation radius. In contrast to Section 3, we now also investigate the influence of relaxation
in the SparseObsETKF. We present results for the SparseObsETKF without relaxation (φ = 1.0) and for
the SparseObsETKF whose weights in the localisation are scaled by φ = 0.5. We compare data assimilation
methods with the simulated truth using a number of skill scores that refer to this ground truth.

State estimation We first look at deviations of the ensemble mean from the truth by

errday10, truemean = xday10 − xday10
true , (4.2)

which represents the error in the correct physical unit. We also investigate the standard deviation in the
ensemble

STDday10 =
1

Ne − 1

√√√√
Ne∑

e=1

(
xday10
e − xday10

)2

, (4.3)

which gives insight about the ensemble spread around its mean.
Figure 4.2a shows the mismatch between the truth and the ensemble means of the conserved variables

after assimilating the final observations on day 10. Significant differences become clear in the error of the
sea-surface elevation η (left): While the IEWPF has some moderate, relatively smooth error over the entire
domain, the mean of the SparseObsETKF is far off in half of the domain. In particular, the rims in the
error field are very sharp, also recognisable in the error spots of the currents at the edges of the jets. This
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Figure 4.2: Properties of the state estimation for the different physical variables in this simplified ocean
model (sea-surface elevation η as well as momenta hu and hv) after day 10 measured in the error of the
mean versus the truth and the standard deviation presented for the IEWPF as well as SparseObsETKF
without and with inflation.
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indicates that the ensemble produces very fast changing ocean fields with the tendency to non-physical
members. However, relaxation with φ = 0.5 (bottom) impressively fixes some of those issues and the error
fields become much smoother and closely calibrated, even though there is still a recognisable, but weak
inherited pattern in the error for elevation.

There are structured artefacts identifiable around the observation sites for IEWPF in Figure 4.2b. Even
though Figure 4.2a shows that the ensemble mean gives a very precise description of the ground truth, the
ensemble variance is large. As discussed in Holm et al. (2020), the IEWPF updates the momentum locally
by inducing a corrective current formed by the structure in the model error covariance matrix Q. In this
case, Q induces geostrophically balanced dipole structures, which means that while improving the state at
the observation site, we risk deteriorating the solution in its vicinity. This illustrates a weakness of IEWPF,
showing that its quality is only as good as the structure of Q.

In the standard deviations for the SparseObsETKF in Figure 4.2b (middle row), there is an expected
pattern of low values around observation sites. Since the localisation only corrects around the buoys and
leaves the forecast otherwise unchanged, the variance in one data assimilation step is mainly reduced in local
areas. With the dynamical model over time, the variance reduction is disseminated over the entire domain.
Furthermore, the standard deviation in the SparseObsETKF is on a very low level. Having areas of low error
together with the sudden changes towards big errors suspects overfitting. Also the relaxed SparseObsETKF
(lower row) achieves a similarly low standard deviation after day 10.

Drift trajectory forecasting To further compare the practical applicability of IEWPF and SparseOb-
sETKF, we look at forecasts of drift trajectories starting at day 10.

Figure 4.3 demonstrates the forecasted trajectories of drifters that are realised after ten simulation days
in the simplified ocean model. The three drop locations are selected to capture different characteristics in
the currents: Drifter 1 (display (a)) starts in the middle of a rather weak and big east stream. Drifter 2
(display (b)) starts in a rather strong west stream and drifter 3 (display (c)) starts in a turbulent area in
between the dominating streams. For the first two days of forecast, we show the true trajectory along with
the trajectories for all ensemble members and the ensemble mean, whereas for the third day (right) we show
the estimated kernel density (Scott, 1992) of the final drifter locations along with the true trajectory.

For drifter 1, all trajectories have an east-wards drift, but the IEWPF members fan out from the beginning
while the SparseObsETKF trajectories stay close together. Without relaxation, the truth becomes an outlier
in the SparseObsETKF forecast. With relaxation, the truth stays within the forecast. The trajectories from
the IEWPF catch the truth in a high-probability area, but their spread covers almost the entire extent of
the domain in the y-direction.

Even though drifter 2 starts within a jet, it drifts only shortly west-wards before it takes a sudden turn
towards the north. Here, we can again see the turbulent behaviour of this non-linear model. The trajectories
of the IEWPF again spread out widely, and therefore does not reveal any consistent dynamical pattern
in the underlying currents. SparseObsETKF not only misses the true trajectory completely, it also shows
some wriggling trajectories which indicates that there are unbalanced gravitational waves in the ensemble.
Relaxation increases the spread in the trajectories up to day 2, and most of the ensemble members capture
the sudden turn in the truth, even though this happens a day after assimilating the final observations.

Drifter 3, which is released in an unstable area, follows what is almost a rotation-like pattern. Here,
the IEWPF is unable to estimate a clear direction even for the first 24 hours, and after day 10 the drifter
distribution stretches out across almost half the simulation domain. In contrast, SparseObsETKF with and
without relaxation the ensemble gives a precise forecast for the first day, only showing a spread for the two
last days. The truth is well represented by the ensemble for both experiments, but we see that the spread is
remarkably reduced when using relaxation.

In general, we see that even though IEWPF is able to give a good state estimation through the mean, the
spread in the underlying ocean state is too large to facilitate precise drift trajectory forecasts. Furthermore,
LETKF without relaxation shows clear signs of overfitting, as the forecasts have low spread and do not match
the ground truth. Introducing relaxation into the SparseObsETKF reduces this overfitting such that the
true trajectories are correctly forecasted and uncertainty is better represented. Even more important, giving
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Figure 4.3: Drift trajectory forecasts for three different starting positions. True trajectories represented in
red, and for the first two days trajectories of ensemble members are light blue and the ensemble mean in
dark blue. For the third day, the forecasted drifter positions of all ensemble members are shown with black
dots and selected levels of the estimated kernel density are visualised.
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more weight to the forecast that comes from the physical model prevents the ensemble from unintended
anomalies. The drift trajectories estimation draws attention away from the ocean states towards dynamic
visual characteristics in the ensemble.

4.4 Discussion of skill scores

Complementary to drift trajectory forecasts, we look into characteristics of both methods during the data
assimilation phase between day 3 and day 10. We compare statistical properties of the ensemble against the
observation data. In this setting, the key idea of skill scores is to evaluate how reliably the ensemble can
forecast the next observation. An illustrative introduction with a lot of examples from atmospheric weather
forecasting can be found in Wilks (2005, Chapter 7). Mathematically speaking, in this setting with data
comparison, a score is

s
(
F̂n,f ,yn

)
∈ R, (4.4)

which in our case quantifies some property of the empirical distribution from an ensemble forecast
(
Hxn,f

e

)Ne

e=1
against the true observation yn, meaning huj and hvj for all j = 1, . . . , NY . We consider three different skill
scores to judge the performance.

Bias After asserting the calibration of the full analysis mean in Figure 4.2a, we investigate this further by
evaluating the bias of the forecast as

sn1 =
1

NY

NY∑

j=1

[
hu

n,f

j − yn
j,1 + hv

n,f

j − yn
j,2

]
. (4.5)

Here, hu and hv are the ensemble means. The bias discovers systematic trends off in the estimator.

Mean square error We further investigate the distance of each ensemble member individually from the
data by measuring the MSE as

sn2 =
1

Ne

Ne∑

e=1

⎡
⎣ 1

NY

NY∑

j=1

|hun,f
e,j − yn

j,1|2 + |hvn,fe,j − yn
j,2|2

⎤
⎦ . (4.6)

The MSE equals zero only when all ensemble members predict the observation exactly. However, this is of
course not desired from a probabilistic forecast representing associated uncertainty. Nevertheless, a small
MSE is desired and yields accurate fit to the data respecting the standard deviation in the observation error.

Continuous ranked probability score Similar to the integrated quadratic differences which compared
distribution forecasts, we use a scoring rule that analyses the distribution of the ensemble members with the
observation, see Gneiting and Raftery (2007). The CRPS is here defined by

sn3 =
1

NY

NY∑

j=1

[
1

Ne

Ne∑

e=1

|hun,f
e,j − yn

j,1|+ |hvn,fe,j − yn
j,2| −

1

2Ne
2

Ne∑

e=1

Ne∑

k=1

|hun,f
e,j − hun,f

k,j |+ |hvn,fe,j − hvn,fk,j |
]
.

(4.7)
Large CRPS values can originate from bias (first terms) or the spread in the ensemble (last terms). Together
with the scores for the bias and MSE, this allows one to identify the source of ensemble errors and to infer
the properties of the ensemble.

Figure 4.4 presents the evolution of these skill scores for each data assimilation time step. These results
are obtained from the same run as in Section 4.3. Note that when we assimilate the first observation after
spin-up on day 3, the spread in the ensemble is relatively large by construction for all methods. It should
be noted that hu and hv take values up to 500m2/s, which means that all methods have a relatively small
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Figure 4.4: Evolution of skill scores for the IEWPF (red), SparseObsETKF without relaxation (blue), and
SparseObsETKF with relaxation (turquoise) for the data assimilation phase in the experiment.

bias. In the starting phase, the SparseObsETKF immediately calibrates to the observations, whereas the
IEWPF and relaxed SparseObsETKF require several data assimilation steps to correct the bias. We see
however, that the bias for all methods grow over time, but with the relaxed SparseObsETKF keeping the
smallest values. The systematic bias from the relaxation becomes negligible as it is sufficiently often reduced
by repeated weighting with the unbiased analysis.

Looking at the MSE and CRPS, we see that both SparseObsETKF versions improve during the first few
assimilation steps and stabilise at a certain level. As expected, the initial improvement with relaxation is
slower than without relaxation, but this gap is closed already after 1 simulation hour, which corresponds to 12
data assimilation cycles. The quality of both SparseObsETKF versions are then stable until approximately
simulation day 5, when the model dynamics gets more turbulent. At this point, the solution without
relaxation starts to deteriorate due to the overfitting. Note that we see a similar trend for the relaxed
SparseObsETKF later in the experiment. By relaxing even more (φ = 0.25, not shown), we confirm the
trend with even slower convergence in the beginning and later divergence at the end.

Similarly to the relaxed SparseObsETKF, IEWPF also converges during the initial data assimilation
cycles, but the skill scores do not stabilise and instead diverge slowly. The slow initial convergence was also
pointed out in Section 3, where we had to run the data assimilation sufficiently long to reach a stable level
before being able to provide a fair comparison.

Note that the ensemble variance can be derived from MSE and bias. Then we see that the forecast
variance behaves qualitatively similar as the MSE (not shown here). For a full assessment of the skills
of a data assimilation method a single skill score gives only limited information. But for instance, the
combinations of bias and CRPS broadens the insights, since the bias helps to explain the contributions in
the CRPS. However, the differences especially between SparseObsETKF without relaxation and IEWPF
in the skill score results do not seem substantial, whereas we have seen contrary properties in the drift
trajectories that stay concealed in the monitoring of the skill scores. In general, this discussion tells us that
the SparseObsETKF assimilates the ensemble much stronger towards data than the IEWPF and exemplifies
the effects of relaxation.

Rank histograms We next look at rank histograms to analyse the adequacy of the ensemble spread. A
short time-span in the simulation is repeated multiple times and the rank of the simulation truth in the
ensemble ordering is monitored at six dynamically independent locations. Rank histograms then present the
frequency of which a certain rank is reported among the Ne realisations of the ensemble and the shape of the
histograms is used as a diagnostic tool to identify shortcomings of methods (Saetra et al., 2004). Flat rank
histograms are commonly understood as indication for ensemble consistency or reliability of the ensemble,
as it means that every ensemble member is sampled from the same distribution as the truth.
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Figure 4.5: Rank histograms recording the rank of the true observation within the ensemble for the observed
variables. The dashed line indicates the hypothetical uniform distribution.

In Figure 4.5, we show rank histograms from repeating our experiment 1000 times, using Ne = 40
and simulating the first hour of data assimilation after the spin-up only. The most striking result is the
clear U-shape in hu for SparseObsETKF without relaxation, which indicates that the truth often is an
outlier in the ensemble and that the ensemble is underdispersive. Furthermore, we observe that IEWPF
produces a slight hill-shaped rank histogram for hu, corresponding to an overdispersive ensemble. Both
these observations match well with what we saw in Section 4.3. In comparison, the hu rank histogram for
the relaxed SparseObsETKF closely resembles a uniform distribution. Note also that the rank histograms
for hv are flatter for all three methods, but with a slight tendency towards overdispersion for the relaxed
SparseObsETKF. This might be from the nature of the problem, as almost all dynamics in the case is along
the x-axis.

While the rank histograms give insights how able the ensemble is to respect the uncertainty and we are
able to draw similar assertions from them as we suspected already before, Hamill (2001) and Wilks (2011)
advice to be careful with their interpretation, since, e.g. spatial effects between the different locations become
hidden.

Summary Based on these results for the nonlinear model, we see that the CRPS together with the bias
are a good start for an analysis of the ensembles during the data assimilation phase. These scalar scores are
simple to include into any data assimilation sequence. By also analysing statistics over all state variables,
we are able to identify additional spatial artefacts and a fundamentally different variance in the ensemble.
Even though the rank histogram for the IEWPF looks reasonably flat and we get a well-calibrated mean for
the state estimation, we see through the standard deviation that there are artefacts in the ensemble, leading
to a higher spread than what we see for SparseObsETKF. This also made us realise how sensitive IEWPF
is to the covariance structure in the model error.

Stress-testing the SparseObsETKF in this high-dimensional non-linear experiments with very sparse
data discloses that the SparseObsETKF has a tendency of overfitting to the observations, resulting in
an underestimated variance in the ensemble. SparseObsETKF is also not able to correctly estimate the
unobserved variable η. In practice, we see that relaxing the ensemble to prior perturbations is a good
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remedy for these flaws. It significantly weakens the defects, but still inherits the structures from the full
SparseObsETKF. We experienced that it is not necessary to fine-tune the relaxation parameter as results
were similar for φ = 0.25 and φ = 0.75. We further point out that we tested classical covariance inflation,
but this led to nonphysical states for η, while the variance of hu and hv was barely effected. Hence, it is fair
to use the SparseObsETKF and the in-built relaxation with caution.

5 Conclusion

We have compared two conceptually different state-of-the-art ensemble-based data assimilation methods,
namely IEWPF and ETKF with localisation, with emphasis on the handling of sparse observation data
and studied how their performances compare to each other. We have shown how localised updates are
implemented by design in the IEWPF, provided that the model error covariance matrix has a local pattern,
and that observations are only spread in a certain radius around the observation locations and that this is
especially enhanced for sparse observations. For the ETKF, we employ a explicit localisation scheme that
gives good control of computations in reduced dimensions and of the correlations between observations. We
have considered two distinct cases, both motivated by simplified models applicable to oceanography. The
first case studied state estimation of a linear Gaussian advection diffusion model, for which we also computed
the analytical filtering distribution. This facilitated for an in-depth statistical verification of the two methods
in terms of estimation of the mean, covariances, distribution coverage, spectral radius and spatial-temporal
connectivity. In the assessment, which also included the standard ETKF, we recorded the performance of the
ensemble-based methods in relation to the number of ensemble members and observation size. The second
case was a non-linear shallow water model used for forecasting of drift trajectories. Here, we compared the
performance of SparseObsETKF and IEWPF in terms of skill scores and forecast abilities. We also discussed
relaxation for the SparseObsETKF localisation scheme for this case. The extensive collections of comparison
metrics allowed us to analyse several properties in the ensemble representations.

Our results for the first case verified that both the IEWPF and the SparseObsETKF give very good esti-
mates of the analytical reference solution. Additionally, we exhibit effects of different localisation parametri-
sations for the SparseObsETKF and IEWPF. For moderate ensemble sizes, both methods delivered on par
with the KF and clearly outperformed the ETKF in terms of RMSE and coverage probabilities. ETKF was
best at estimating the covariance matrices, but it suffers from spurious correlations in the updates. The
SparseObsETKF yields small divergences independent of the ensemble size. In the estimation of spatio-
temporal model correlations, our results revealed that all three methods performed quite evenly. ETKF
converges fastest with respect to the ensemble size. Interestingly, we found that SparseObsETKF and
IEWPF only showed minor improvements when increasing the ensemble size, meaning that it is most ben-
eficial to choose one of these methods when computational resources are limited. IEWPF was the scheme
benefiting the most from increased number of observations.

In the non-linear case, we learned that both IEWPF and SparseObsETKF gave estimations of the ob-
served momentum variables with bounded errors, but SparseObsETKF without relaxation did so at the
expense of nonphysical fields and small spread, causing the drift trajectory forecast in some cases to diverge
from the truth. These issues were also seen in the skill scores. IEWPF, on the other hand, showed artefacts
around observation sites, indicating that the model error correlation matrix might not always represent the
optimal mapping for assimilating the observations. This also caused a large spread in the forecasted drift
trajectories. In the case of SparseObsETKF, we showed that applying relaxation clearly improved calibra-
tion, resulting in very good general performance. These results were backed up with high-quality results in
the skill scores throughout the data assimilation period and precise predictions of the drift trajectories.

To summarise, the most important findings in this paper where we consider spatially very sparse obser-
vations can be listed as follows:

• Evaluating a broad range of statistical metrics and skill scores proves to be a huge advantage as it
gives a deep insight into the data assimilation methods that are not obtainable through only looking
at single metrics. We recommend to start with testing bias and CRPS as one-dimensional quantities,
but urge to continue with qualitative analysis for the entire spatial field.
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• We strengthen the argument that IEWPF, in contrast to most other PFs, is applicable to high-
dimensional applications, but that its results are highly dependent on the structure of model error
covariance matrix.

• We have seen that the SparseObsETKF works well even for relatively small ensemble sizes, but good
calibration of the relaxation is required to retain good results also for complex models. Upon proper
relaxation, the results from the SparseObsETKF outperformed the ones of the IEWPF.

These results moreover open up new directions for future research. For instance, it would be interesting
to investigate in more detail how sensitive IEWPF is to the structure of the model error covariance matrix.
In our work, we tested our implementation of the covariance localisation only with respect to the ETKF.
It would be interesting to check whether other variants of the EnKF work equally well, or if they have
advantages or disadvantages over ETKF. Beyond this, the sensitivity of the localisation concept to the
relaxation parametrisation could be tuned adaptively. Finally, it would also be interesting to test the
IEWPF and the SparseObsETKF in a real-world settingby assimilating real observations into an ensemble
of simplified ocean models with the aim to predict true drift trajectories.
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