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Universidad Nacional de San Juan
San Juan, Argentina

amicarelli@inaut.unsj.edu.ar

5th Hernan Alvarez
Facultad de Minas

Universidad Nacional de Colombia
Medellı́n, Colombia
hdalvare@unal.edu.co

Abstract—Mathematical models have increased their applica-
tions in physiology, control and systems science, and biomedical
engineering because they offer the opportunity to examine the
structure and behavior of complex physiological systems. They
provide a concise description of complex dynamic processes,
indicating ways to improve experimental design and allowing the
testing of hypotheses related to physiological structure. When
building a mathematical model, it is important to assess the
impact of different factors on the overall behavior of the system
being modeled and determine which variables significantly influ-
ence the system. Properties such as identifiability, sensitivity, and
interpretability in mathematical models are crucial for represent-
ing real-world phenomena. In this paper, a sensitivity, structural
identifiability, and qualitative parameter interpretability analysis
are carried out in a new version of the minimal model of the
glucose-insulin system. The aim was to evaluate the structure
of this new mathematical model and the existing relationship
among sensitivity, identifiability, and interpretability of the model
parameters. The findings show that although the model is
identifiable, the identifiability analysis can be affected by the lack
of interpretability of the parameters, evidencing an important
connection between the properties of the model such as sensitivity,
structural identifiability, and parameter interpretability, which
provide important details about the model structure.

Keywords—Interpretability, parametric interpretability, gray
box models, semi-physical models, biotechnological processes.

I. INTRODUCTION

Diabetes mellitus is a metabolic disease that is growing
exponentially around the world. Despite notable advances in
the treatment of diabetes, patients continue to have difficulty
achieving glycemic targets [1]. Different strategies have
been proposed to face the challenges in diabetes mellitus
treatment. In this regard, mathematical models have played
an essential role in the understanding of homeostatic control,
analyzing experimental data, identifying and quantifying
relevant biophysical parameters, designing clinical trials,
and evaluating diabetes prevention or disease modification
therapies. One of the most widely used mathematical models

in clinical assessments, such as glucose efficiency and insulin
sensitivity, is the well-known minimal model proposed by
Richard Bergman [2], in which the glucose–insulin system is
modeled to offer one of the clearest and simplest examples
of homeostatic control in the organism.

In the domain of mathematical modeling, it is extremely
important that modelers have confidence in the model they are
constructing, regardless of whether the model is a mechanistic
or data-driven model. Confidence in a model is strongly
related to its properties, such as structural identifiability,
parameter sensitivity, and model interpretability. Structural
identifiability refers to the ability to find the best unique
value of the set of model parameters from the available
measurements [3]. It is said that if the model output can
faithfully reproduce the measured data, the model is good
enough to represent the system and can therefore be trusted.
However, in practice, incorrect specification of the model
structure and noise data may affect the identifiability of
the model parameters [4], and therefore their identification
is not guaranteed to be accurate. Interpretability, as a
property of the mathematical models, could help parameter
identification by adding prior knowledge that can be used to
constraint parameter estimation [5], i.e., to narrow the search
space/domain of the parameters where the identification
procedure operates.

The identifiability property of mathematical models is usu-
ally considered a pre-requisite to experiment design, system
identification, and parameter estimation [6], [7]. Before per-
forming an identifiability analysis, a sensitivity analysis is
useful to understand how model outputs are influenced by
variations in model inputs, possible disturbances, or model
parameters [8]. Sensitivity analysis can be approached with
local and global methodologies. Global sensitivity analysis



allows exploration of the space of possible assumptions and
alternative model structure in the model prediction, thus
testing both model quality and the robustness of model-
based inference [9]. In addition, it contributes to the output
uncertainty and fulfills the function of ordering the model
parameters according to their relevance in determining the
variation in the model outputs. In this work, a sensitivity
analysis, a structural identifiability analysis, and a qualitative
interpretability analysis have been carried out for a particular
model structure of the glucose minimal model. The new form
of the minimal model uses the rate of glucose appearance in
the portal system calculated by the physiological model of the
human gastrointestinal tract reported in [10] and the hepatic
glucose production calculated by the liver model reported in
[11], as detailed in Section II. A brief theoretical call of each
property is introduced in Section III and the results of the
analysis of the mentioned properties of the model and the
discussion are reported in IV and V, respectively.

II. MATHEMATICAL MODEL

An extended version of the glucose minimal model reported
in [12] was modified by coupling some estimations from a
physiological model representing the gastrointestinal tract,
which includes the stomach, the small intestine, and the liver.

The physiological-based model contains three submodels,
one for each major organ of the gastrointestinal tract, including
the liver. These three organs were modeled knowing the
physiological phenomena involved in the glucose homeostasis
mechanism that takes place in each one of them and using
analogies from the process engineering. The stomach was
considered a closed assembly of circular pipes where the
heterogeneous mixture flows. However, two reactors and
one continuously stirred tank [13] were also considered as
the process systems to apply the conservation principle and
get the structure of the model. One reactor represents the
internal part of the stomach where food is mixed with gastric
juices and digested, and the other is the muscular wall where
enzymes are produced and glucose combustion occurs. The
continuously stirred tank represents the blood supplying the
stomach tissue, which carries substances important to the cells
in the stomach wall. The small intestine was modeled as a set
of stirred tanks, each with an elastic and semi-permeable wall
that hypothesizes intestinal peristalsis and the absorption of
nutrients into the blood, and connected between them through
a valve that regulates the outflow according to the pressure
drop between two connected tanks [10]. To model the liver,
a continuously stirred tank is considered to represent the
liver sinusoid, and a two-zone continuous stirred tank reactor
hypothesizes the total amount of hepatocytes in a sinusoid
[11]. The main objective of the physiological-based model of
the human gastrointestinal tract was to estimate the glucose
rate of appearance in the portal vein after a mixed meal and
calculate the hepatic glucose production.

The extended minimal model is a two-compartmental model
that represents glucose-insulin interactions, considering the
triangular meal and insulin subsystems. The first compartment
represents the time-varying plasma glucose concentration
G and the second compartment predicts a growth rate
inversely proportional to the effective insulin concentration
in the remote compartment X . The model includes also
compartments for oral consumption of carbohydrates and
subcutaneous insulin infusion, representing in a good way
the pharmacokinetics of the insulin after subcutaneous
injection. In this regard, the triangular subsystem considers
a first compartment where the insulin is injected Isc1, then
the insulin passes to a second compartment Isc2 before
reaching the plasma. The aim of this model was to create
individualized meal disturbance profiles that could be used
within a context of a model predictive controller to stabilize
blood glucose excursions, anticipate the occurrence of meals,
and improve postprandial blood glucose control in people
with type I diabetes mellitus.

With the aim to reproduce a blood glucose time series
from a continuous glucose monitor (CGM) and show different
scenarios of blood glucose variability with an insulin dose
calculated by the patient, this extended version of the minimal
model was coupled with the gastrointestinal model as follows.
The glucose compartment equation was modified by replacing
the rate of glucose appearance (Ra) and hepatic glucose
production (HGP ) estimated by [10] and [11], respectively,
leading to Equation 1.

Ġ(t) = −Sg G+
HGP

∆t
−XSIG+

Ra

Vg BW
(1)

In this way, original equations in the extended minimal
model with two compartments representing the oral glucose
transport in the gastrointestinal submodel and estimating the
glucose rate of appearance were not considered in the coupled
model. The equations for the insulin compartment remained
the original ones in the minimal model as shown in the set of
Equations 2.

Insulin subsystem


Ẋ = −p2X + p2(I − Ib)

İsc1 = −(k1 + kd)Isc1 + j(t)

İsc2 = −k2Isc2 + kdIsc1
İ = −nI + IRa

VI ·BW

(2)

with all the parameters defined by assessment equations, i.e.,
directly with a numerical value. The parameters are reported
in Table I.

III. MODEL PROPERTIES

A. Sensitivity
The sensitivity analysis of a mathematical model allows

classifying and ranking the model parameters according to
their relative influence on the model predictions [14]. This
provides valuable information on the practical identifiability
of the model by highlighting the parameters that are most
strongly correlated, and those that do not significantly affect
the model output [15]. This is useful for debugging the
mathematical model while facilitating the optimal design of
experiments [16]. Local parametric sensitivities Seeθi,j are
calculated as shown in Equation 3, where e corresponds to



the experiment number, o represents the model output, and θi
denotes the parameters of the mathematical model.

Seeθi,j =
∂yj

e,o

∂θi
(te,os ) (3)

The factors of significance (λθ), which were introduced
in [14], [17], are employed to extract valuable information
from the sensitivity calculations. In this context, λmsqr

θ , as
depicted in Equation 4, enables the quantification of the
model’s sensitivity towards a specific parameter.

λmsqr
θi

=
1

nd

√√√√ nlhs∑
mc=1

ne∑
e=1

no∑
o=1

ns∑
s=1

(
se,oθi,j

(te,os )
)2

(4)

where ne is the number of experiments, no the number of
observed variables (observable), nlhs the number of samples
in the LHS algorithm, ns the specific sampling time for each
experiment with a given observable, nd = nlhsninons, and
se,oθi,j

(te,os ) the parameter sensitivity θi, with observable j,
in experiment e (with sampling time ts). For the sensitivity
analysis of the modified version of the minimal Bergman
model, all model parameters were included.

B. Identifiability

The parameter estimation process in semi-physical models
based on first principles often faces difficulties that arise
mainly from the identifiability that is usually overlooked [18],
[19]. Structural identifiability refers to the ability to compute
a unique solution for the parameters of a model [20] and
can be local or global depending on whether it is satisfied
in a specific neighborhood or in the entire parameter space
[21]. Although the identifiability property is useful for both
parameter estimation and optimal design of experiments, its
definition is based on the assumption that one has noise-free
experimental data [22]. Several tools are available in the
literature to facilitate the calculation and analysis of the
structural identifiability property. Some of these tools include
SIAN software [23], DAISY software [4], STRIKE-GOLDD
software [7], and GenSSI software [18]. In this particular
work, the GenSSI software is used to perform the structural
identifiability analysis using the series generation method.

The series generation method involves the generation
of a system of nonlinear equations involving the model
parameters, through the calculation of successive Lie
derivatives on these parameters of the mathematical model.
This method provides sufficient but not necessary conditions
for structural identifiability. Therefore, if the solution of the
system of equations is unique, the parameters are globally
identifiable in structural terms [14]. Considering the analytical
difficulty for the solution of the resulting set of algebraic
equations is difficult to solve analytically, we use the tool
of identifiability tables proposed by Balsa Canto et al. [14].
The identifiability table is constructed by considering the
Jacobian of the coefficients of the series with respect to the
set of unknown parameters considered. The Jacobian has as
many columns as unknown parameters and as many rows as
non-zero coefficients. The identifiability tables and how to

interpret them are described in [24].

For the structural identifiability analysis, a realistic scenario
was considered in which it is possible to measure only the
blood glucose concentration G. In addition, insulin dose (u2 =
J) was considered as the input variable. For the particular
case of the new version of the Bergman’s minimal model, the
parameters to be identified are essentially of two types. First,
those that, although physiological parameters, are difficult to
measure or model in terms of other easily measurable physio-
logical variables (see Equation 5). Secondly, those parameters
that have no physical meaning in the context of the application
of the mathematical model or whose meaning is strongly
linked to the modeling hypothesis used for the derivation of
the mathematical model, and whose value is therefore difficult
to determine a priori (see Equation 6). Considering the above,
the identifiability analysis was performed considering the total
vector formed by θ1 and θ2, and the vector of initial conditions
presented in Equation 8.

θ1 =
[
Sg IRa Ra SI HGP

]
(5)

θ2 =
[
k1 k2 kd n

]
(6)

x =
[
G X Isc1 Isc2 I

]
(7)

x0 =
[
100 0 358 285 4.92

]
(8)

C. Interpretability

The interpretability concept has rarely been addressed
as a property of mathematical models [25], therefore, as
far as the authors know, there is still no consensus so far
about how to define, quantify, or measure the interpretability
of a mathematical model. The most common approach to
interpretability is to improve the level of explanation in
machine learning models or black box models. Furthermore,
many articles consider interpretability as a property of the
modeler, rather than of the model itself, seeking to gender
trust and understand the behavior of the model and its
results [26]. According to the available literature, when
a model is interpretable, the modeler can trust it, being
certain that the results given by the model correspond to those
of the process of the real object being modeled [25], [27], [28].

Interpretability as a latent property of the model can be
influenced by different factors such as the number of features,
the complexity of the model, transparency of the model [27],
the level of detail, the level of specification, the basic structure
of the model [29], and the relationship of the output behavior
of the model with the existing physical principles [30]. The
interpretability of a mathematical model is also related to
the physical meaning of its parameters, i.e., a model is more
interpretable the more parameters with real physical meaning
it has. In this regard, white-box models have a higher degree
of interpretability than black-box models [23]. However, it
is possible to furnish interpretability to a gray or black box
model through its parameters. The first approximation to
provide a model with interpretability is reported in [29] and
consists of distinguishing the basic structure of the model
from the extended structure and thus obtaining its first level of
specification. Once all the functional parameters are known,
they must be classified into scalars, coupled, and non-coupled



according to their mathematical definition [29]. The next step
is evaluating the functional parameters according to their
capability to describe the phenomena occurring in the process
under study [29]. In this study, the following classification
proposed in [29] is used to analyze the interpretability of the
parameters of the new version of Bergman’s minimal model:

• General interpretability: Inherent physical meaning of a
model parameter independent of the assumptions used to
derive the basic structure of the model.

• Contextualized interpretability: Physical meaning of a
parameter valid only in a specific mathematical model
and dependent on the considerations and hypothesis used
to deduce the mathematical model within a given context.

• Noninterpretability: The parameter has no physical
meaning within the model. Noninterpretable parameters
must be then represented by a symbol without an inter-
pretable property in the knowledge domain of the process.

IV. RESULTS AND DISCUSSION

A. Sensitivity analysis

In this section, qualitative results are presented for the
sensitivity analysis of the new version of the minimal Bergman
model, using the importance factor λmsqr

θ . For this purpose,
AMIGO toolbox is used to calculate the absolute and relative
ranking of the parameters, indicating a descending order of
sensitivity. This method uses advanced numerical techniques
that cover the full iterative identification procedure. It enables
the evaluation of the impact of model parameters on the model
output by conducting a sensitivity analysis of its parameters
[31]. The objective function selected for the analysis is the
variable G, which represents the glucose measurement in
blood. The sensitivity coefficients resulting from the sensitivity
analysis are shown in Table I. This table displays which
parameters have the most significant impact on the model’s
behavior. It is important to clarify that ∆T explicitly represents
the simulation sampling time and is not the sampling time used
by the glucose sensor.
Figure 1 shows the same findings. The left-side figure displays
the absolute indices, which represent the global full ranking of
the model’s parameters. The middle figure presents the global
relative ranking values. In both curves, it is possible to visual-
ize the correspondence between the sensitivity coefficient (axis
y) and a specific parameter (axis x), ordered in descending
order. The results in the figure on the right-hand side show
the global MSQR relative sensitivity analysis using heat maps.
Visualization using heatmaps facilitates the presentation and
interpretation of the results and provides an effective graphical
tool to highlight the relative importance of the parameters in
the analyzed system.

From the sensitivity analysis, 3 of the 15 parameters of the
model have an index equal to zero. This implies that these
parameters do not affect or are not related to the output of
the model, changes or variations in this set of parameters
have no impact on the model response. It is also observed
that the parameters Sg and SI have significant absolute and

Tabla I
SENSITIVITY COEFFICIENTS OF THE PARAMETERS OF THE NEW VERSION

OF BERGMAN’S MINIMAL MODEL (IN DESCENDING ORDER).

Parameter Description Relative λ Absolute λ

HGP
Hepatic glucose
production. 5.24× 10−2 4.11× 10−1

∆T
Simulation
sampling time. 5.24× 10−2 8.63× 10−1

Sg
Fractional glucose
effectiveness. 3.78× 10−2 8.61× 101

n Rate constant. 2.35× 10−2 5.55
SI Insulin sensitivity. 2.28× 10−2 1.84× 103

IRa
Insulin rate of
appearance in plasma. 2.28× 10−2 4.78× 10−2

VI
Distribution volume
of insulin. 2.28× 10−2 1.43× 101

BW Body weight. 1.93× 10−2 1.14× 10−2

Ra

Glucose rate of
appearance in the
portal system.

4.55× 10−3 2.46× 10−2

Vg
Distribution volume
of glucose. 4.55× 10−3 7.49× 10−2

p2

Rate constant of the
remote insulin
compartment.

3.25× 10−3 6.93

Ib Basal insulin. 9.12× 10−4 3.81× 10−2

k1

Rate constant of
nonmonomeric
insulin absorption.

0 0

k2

Rate constant of
nonmonomeric
insulin absorption.

0 0

kd
Rate constant
insulin dissociation. 0 0

relative sensitivity, indicating that their values are relevant to
the model’s output. However, according to the heat map, the
parameters that have the greatest impact on the model’s output
are HGP and ∆T because their relative sensitivity indices are
the highest.

B. Identifiability analysis

The structural identifiability analysis of the new version
of Bergman’s minimal model was performed as described
in Section III-B. It took 4 Lie derivatives to complete the
structural identifiability analysis. The identifiability table
turned out to be of incomplete rank (R = 5) so the model,
considering the parameters presented in Equations 5 and 6 as
unknown, is structurally unidentifiable.

Figure 2 shows the identifiability charts generated with the
Genssi software. Figure 2(a) corresponds to the general iden-
tifiability table, in which all the parameters considered for the
analysis appear. As can be seen in the figure the parameters k1,
k2, and kd have a value of zero in the table, which means that
it was not possible to find a unique solution for the parameter
neither in general nor in a neighborhood, so the parameters
turned out to be structurally unidentifiable. On the other hand,
Figure 2(b) corresponds to the reduced identifiability tableau,
resulting from eliminating the unidentifiable parameters and
recalculating the necessary relations to find a solution to
the problem of identifying the remaining parameters. Finally,



(a) Global full ranking of parameters. (b) Global relative ranking of parameters. (c) Global MSQR relative sensitivity analysis (heat map)
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Fig. 1. Global sensitivity analysis using the AMIGO toolbox [31].

Figure 2(c) shows those parameters for which the analysis
was not conclusive in terms of their structural identifiability.
The parameter SI can be described in terms of two or more
coefficients of the Lie derivatives, with a single solution, so it
is considered structurally globally identifiable (SGI).

C. Parameter interpretability analysis

Model interpretability is not an on-off property, its evalua-
tion requires grading a model on a scale that requires a metric
to quantify the interpretability in a mathematical model [29].
In this study, an interpretability analysis of the model described
in Section II is presented from a qualitative point of view,
given the interpretability of its parameters.

Tabla II
INTERPRETABILITY ANALYSIS OF THE PARAMETERS OF THE MODIFIED

VERSION OF BERGMAN’S MINIMAL MODEL.

Interpretability classification Parameter
General BW
Contextualized Vg , Ra, SI , VI , IRa, HGP , Ib
Noninterpretability n, p2, Sg , k1, kd, k2

In the modified version of Bergman’s minimal model, the
zero specification level is hidden, meaning that the model’s
basic structure is not reported in a way to easily distinguish
it from the extended structure. In this case, it is hard to
classify the parameters as structural or functional. Based on
that, we consider the scenario in which all parameters belong
to the first specification level, i.e., all are considered structural
and are defined directly by a numerical value. As can be
seen in Equations 1 and 2, the set of differential equations
originated from balances between two compartments declared
by the authors [12]. In this version of the minimal model, all
parameters are defined directly with a numeric value, which
leads to a non-existent extended structure of the model and
a classification of the parameters as scalars. A qualitative
evaluation of the interpretability of the parameters is reported

in Table II. It’s unsurprising that as a result non-interpretable
parameters (k1, k2, and kd) have no sensitivity and indeed
the same parameters cannot be identified. It suggests that
determining a particular set of parameters that allows the
model to reflect the dynamics of the modeled system cannot
be uniquely resolved. Moreover, the identifiability analysis is
affected by the lack of interpretability of these parameters, as
it is hard to set maximum and minimum values for them if
their physical meaning is unknown. On the other hand, among
the parameters with contextualized interpretability (SI , Ra,
IRa, HGP ), there is the parameter with the highest absolute
sensitivity coefficient (SI ) which, although it is a physiological
parameter that is difficult to measure, is the only globally
structural parameter identifiable. The other parameters do not
provide a clear result, indicating that the model’s structure
may need to be adjusted to increase its interpretability in terms
of parameters. If those parameters become interpretable and
interpretability is considered a property of the model, it is
likely that the identification of the parameters will be facil-
itated with prior information about the modeled system, and
the descriptive capacity of the model itself can be exploited.

V. CONCLUSIONS

The structure of the mathematical model can be signifi-
cantly improved with the information provided by the intrinsic
properties of the model, such as sensitivity, identifiability,
and interpretability of its parameters, but these properties can
also be helpful for the optimal design of experiments and
improve the model-user interaction. After analyzing the new
version of Bergman’s minimal model, it became clear that
these three properties are closely linked and offer valuable
insights into the model structure. In this regard, it is important
to continue researching and developing a formal framework
for the concept of interpretability. This would create a reliable
metric for evaluating the grade of interpretability of mathe-
matical models. This, in turn, would help shed light on the
identifiability of the model being analyzed.
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Fig. 2. Identifiability tableaus for the coupled Bergman minimum model obtained using GenSSi software [18].
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parámetros del proceso de crecimiento de lobesia botrana,” Revista
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