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Marius, Md, Pedro, Peter, Rafael, Risvan, Robert, Saket, Simen, and Timur. Together
they created a dependable social circle, with joyful chats at lunch and the famous Friday
happy hours. Their diverse perspectives and friendships have made this academic journey
all the more enriching and enjoyable.

Since September 2023, I’ve been employed at ABB Efficiency Services while simultan-

v



eously working on my thesis during after-work hours. I feel fortunate to collaborate with
talented and amiable individuals as my new coworkers, and I’m thrilled to tackle exciting
process control challenges with them. I express my gratitude to them for their support
during the concluding months of this endeavor.

I am immensely thankful to my PhD evaluation committee, Prof. Radoslav Paulen and
Prof. Roshan Sharma, for giving their time and effort to read and evaluate this thesis. I
am grateful for their valuable insights, constructive criticism, and dedication to ensuring
the quality of this work.

To my family to which this work is dedicated, especially to my beloved wife, Naomi, thank
you for being my anchor and for your unwavering love. And my bundle of joy, Chantel,
thank you for your understanding and patience when I chose to write rather than spend
time with you. To my mom, Justina, thank you for your love, prayer, and encouragement.
And to my dad, Ntengua, thank you for paving the way and passing on to me the best
qualities. Your belief in me has been a constant source of strength and motivation.

Lastly, I want to express my sincere gratitude to all those whose names may not appear
here but have contributed in ways both seen and unseen to the completion of this disser-
tation. Your support, whether in the form of encouragement, assistance, or inspiration,
has been deeply appreciated.

Thank you all for being part of this incredible journey.

Zawadi Mdoe,
Trondheim, Norway
May 2024

vi



Abstract

Model predictive control is an optimization-based control strategy that has be-
come increasingly popular in industrial applications. This popularity stems from
its inherent capacity to handle complex control problems, such as those found in
multiple-input-multiple-output systems with inequality constraints. The current
actions of the MPC control strategy are obtained by optimizing an objective for a
certain look-ahead period. The constraints and objectives of the MPC problem can
be either linear or nonlinear, resulting in linear MPC and nonlinear MPC, respect-
ively. Nonlinear MPC is sought due to the greater accuracy offered by nonlinear
process models. Moreover, robust MPC schemes have garnered widespread atten-
tion to ensure that the control problem accounts for uncertainty. However, many
of these methods exhibit a high degree of conservativeness and have significant lim-
itations in practical implementation. This doctoral thesis focuses on multi-stage
MPC, a robust MPC approach that transcribes uncertainty into the optimization
problem using a scenario tree. The approach considers that recourse actions can
be taken, thus achieving robustness with lower conservativeness.

One significant drawback of multi-stage MPC is poor scalability with increasing
dimensionality of uncertainty. Assembling the scenario tree results in a computa-
tional burden that grows exponentially for larger problems. Furthermore, conven-
tional scenario selection approaches are based on heuristics that may be unsuitable
for the specific application, potentially resulting in unnecessary conservativeness.
This thesis addresses the aforementioned issues for multi-stage MPC, particularly
for robust nonlinear control, by proposing new methods and algorithms.

The first part of the thesis tackles computational delay in multi-stage MPC by
approximation strategies. In this part, a strategy is proposed to reduce the pre-
diction horizon as the controlled system approaches its optimal equilibrium. This
approach is based on performing approximate solution predictions of the subsequent
iterations and determining an updated horizon that will maintain closed-loop sta-
bility. The stability criterion is based on an approximation of terminal cost and a
common terminal region for the scenarios. This adaptive horizon approach in multi-
stage MPC demonstrates comparable robust control performance to conventional
fixed horizon multi-stage MPC, albeit at a significantly reduced computational
cost. Finally, a theoretical analysis shows the conditions for recursive feasibility
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and robust stability of the proposed methodology.

The second part of the thesis addresses the issue of conservativeness by pro-
posing scenario selection techniques that are representative of the actual process.
In this part, an approach combining multivariate data analysis and nonlinear pro-
gram sensitivity analysis is proposed. The proposed method aims to utilize existing
correlations in available uncertainty data and assemble a more compact scenario
tree that closely aligns with the process operation domain, thus reducing conser-
vativeness. Additionally, sensitivity analysis is employed to identify data-informed
scenarios that are most likely to lead to constraint violations. The findings show
that the data-driven sensitivity-assisted multi-stage MPC shrinks the optimization
problem size and has a reduced conservativeness while being robust and computa-
tionally efficient. This approach is also applied to a detailed case study on thermal
energy storage, demonstrating a reduction in peak heating requirements and an
enhanced robustness to uncertainty in energy supply and demand.
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1 | Introduction

“This attitude of mind – this attitude of

uncertainty – is vital to the scientist, and it is

this attitude of mind which the student must first

acquire. It becomes a habit of thought. Once

acquired, we cannot retreat from it anymore”

Richard P. Feynman (1918-1988)
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Introduction

1.1 Motivation

Industrial processes are subject to different operating conditions, safety lim-

its, and product specifications, often involving complex dynamics. As global

energy demands continue to rise, optimizing these processes from both en-

vironmental and economic standpoints is crucial. However, a significant

challenge in achieving this is that most real-world processes lack complete

information and are affected by considerable uncertainty. Advanced process

control methods are employed to optimize processes despite such uncer-

tainty.

Model predictive control (MPC) is a powerful tool commonly used for con-

trol and optimization in the chemical process industry due to its ability to

handle complex multivariable systems with process constraints by comput-

ing an optimal control trajectory that minimizes a specific cost function

over a prediction horizon [1]. Assuming a good systems model and dis-

turbance predictions, MPC proves more advantageous than classical control

structures for rejecting disturbances, particularly in frequently disturbed

processes, for example, energy systems. This is due to its ability to op-

timize transient operations effectively. However, in industrial applications,

MPC is commonly applied in the upper layer of the control hierarchy with

a slower time scale, above the classical control structures (PID controllers)

that make faster adjustments to stabilize the process locally.

As plant dynamics are often nonlinear, the nonlinear counterpart of MPC,

known as nonlinear MPC (NMPC), has recently gained considerable atten-

tion. Nevertheless, the performance of model-based controllers is impacted

by the accuracy of the model in describing the real system and the process

disturbances affecting the system dynamics. Plant-model mismatch can

cause the controlled system to violate constraints or even become unstable.

While the conventional MPC, also known as standard MPC, provides some

inherent robustness against uncertainty, it becomes insufficient when the un-

certainty is significant. Therefore, robust MPC approaches that effectively

handle uncertainty have garnered attention in recent decades.

2



1.1. Motivation

An increasingly popular robust MPC approach is the multi-stage MPC,

which is based on the principles of multi-stage stochastic programming.

Multi-stage MPC is a scenario-based approach that aims at finding an op-

timal control input while satisfying constraints corresponding to all possible

scenarios in a scenario tree. The earliest ideas of scenario-based MPC on

linear systems appear in a paper by Scokaert and Mayne [2], where it was

referred to as “feedback min-max MPC”. The approach was extended to

nonlinear systems by Lucia [3], and was termed multi-stage NMPC.

In stochastic programming, the decision variables may take one of two forms:

here-and-now variables, representing decisions that must be made before the

uncertainty is realized, and wait-and-see variables, representing decisions

that must be made after the uncertain data becomes known, and that can be

used to hedge against future realizations of the uncertainty [4]. The latter

variables allow for recourse actions that can reduce the conservativeness

of the here-and-now decision variables. This is the fundamental concept

behind the multi-stage MPC approach, where future control decisions serve

as recourse action to the uncertainty evolution in response to the current

control decision. A key feature of this approach is its robustness in terms

of constraint feasibility without being overly conservative or cautious with

control decisions.

Multi-stage MPC has been successfully applied to various applications, such

as to semi-batch polymerization [5–8], a batch bioreactor [9], hydrodesul-

furization [10], gas lifted wells in oil and gas production [11], multi-product

distillation [12], and thermal energy storage operation [13] providing robust

constraint satisfaction.

The multi-stage MPC framework involves modeling parametric uncertainty

using a scenario tree that tracks uncertainty over time, with each scenario

representing a unique parameter realization across the prediction horizon.

The finite realizations of uncertain parameters are combined to form each

scenario, and the controller performance is influenced by the selection of

these realizations, particularly in terms of how conservative the controller

is. The scenario tree formulation results in an exponential growth in the
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number of scenarios with both the number of uncertain parameters and the

number of discrete realizations of each parameter, which increases problem

size and computational complexity. This causes a time delay in obtaining

solutions, which may result in suboptimality or closed-loop instability.

Therefore, the primary focus of this doctoral thesis centers around two im-

portant aspects of multi-stage MPC:

1. Improving the computational efficiency by limiting the large problem

size that results from the exponentially growing scenario tree.

2. Selection of scenarios and disturbance realizations in the scenario tree

that best capture the uncertainty hence avoiding unnecessary conser-

vativeness.

1.1.1 Improving computational efficiency

Improving the computational efficiency in multi-stage MPC can be ad-

dressed by (i) decomposition and (ii) approximation methods. Decomposi-

tion methods decouple all the scenarios and solve smaller subproblems sep-

arately, while approximation methods replace the larger problem with a

smaller problem without losing its main features.

Currently, primal decomposition [14] and dual decomposition [15, 16] al-

gorithms have been proposed for multi-stage MPC. Approximation methods

that have been proposed include the use of neural networks to approximate

the cost-to-go functions in each scenario [17], advanced-step MPC [18], and

an online scenario tree generation [19]. The online approximation method by

Holtorf et al. [19] approximates the multi-stage MPC with a smaller scen-

ario tree by first identifying the worst-case uncertainty realizations with

respect to constraint feasibilities. Further, Thombre et al. [20] proposes a

nonlinear programming (NLP) sensitivity-based approximation strategy for

multi-stage NMPC, which prunes the scenario tree by identifying scenarios

most likely to cause constraint violations.

In Part I of this thesis, an online prediction horizon update algorithm for

the multi-stage NMPC is proposed. The strategy reduces the multi-stage

NMPC problem size and maintains its closed-loop stability properties [21,
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22]. The horizon update is efficiently determined online with the aid of NLP

sensitivity analysis, and pre-determined terminal ingredients (i.e. terminal

cost and terminal region).

1.1.2 Scenario selection

The best way to select scenarios in the scenario tree of the multi-stage MPC

is to find uncertain parameter realizations that most accurately describe

the system’s uncertainty. In nonlinear systems, one can treat uncertainty

by using first-order approximations of the process model with respect to

the uncertain parameters [23–25]. Moreover, the formulation may include

probabilistic chance constraints generated by polynomial chaos expansion

to propagate the uncertainty through the system model [26–28].

A heuristic by Lucia et al. [6] suggests building a scenario tree by taking com-

binations of {max, nominal, min} values of the uncertain parameter ranges

as discrete realizations in each stage. However, this heuristic may lead to

highly conservative performance, and computational delay due to having

many unnecessary constraints and variables in the optimization problem.

To obtain less conservative but robust solutions, a range reduction using

a dynamic design of experiments has been suggested by Lucia and Paulen

[29]. Also use of recursive Bayesian weighting approaches has been pro-

posed by Krishnamoorthy et al. [30]. These approaches focus on tightening

the uncertainty set but do not necessarily ensure computational efficiency.

To achieve computationally efficient scenario selection, data-driven scenario

selection approaches based on sampled uncertainty data are proposed in

Part II of this thesis.

1.2 Scope of the thesis

In the author’s view, this thesis aims to improve the multi-stage MPC frame-

work in two ways.

1. Increasing the computational efficiency while maintaining its robust

performance, and

2. More accurate uncertainty modeling, for a less conservative, efficient,
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and robust performance.

They are achieved by incorporating multivariate data analysis, nonlinear

systems theory, nonlinear optimization theory, and sensitivity analysis. These

method extensions enable efficient real-time implementation of robust MPC

on large-scale problems, which can be formulated easily. The performance

of these approaches is evaluated through various case studies and shown to

outperform standard MPC in terms of constraint satisfaction, and conven-

tional multi-stage MPC in the computational speed metric.

1.3 Thesis structure and main contributions

Apart from this chapter, the introductory part includes three more chapters

with preliminary information before the main part of the thesis. Chapter 2

briefly describes model predictive control, MPC stability theory, and non-

linear programming theory. Chapter 3 presents the relevant background for

multi-stage NMPC and its formulations. Chapter 4 presents a computation-

ally efficient multi-stage MPC formulation known as the sensitivity-assisted

multi-stage NMPC (SAMNMPC).

As explained in the previous section, this thesis consists of two major parts

that are organized as follows: Part I focuses on achieving multi-stage MPC

with fast computation times. The goal is to improve the computational

efficiency of multi-stage MPC by reducing the problem size using an ap-

proximation method. In Chapter 5, an adaptive horizon multi-stage MPC

algorithm is presented that gives a prediction horizon update at each multi-

stage MPC iteration. This chapter shows a significant reduction of compu-

tational delay as the controlled system approaches its optimal equilibrium

point. The approach is based on the approximation of terminal cost and

region for closed-loop stability and an approximate prediction of the solu-

tion in the subsequent iteration using nonlinear optimization theory and

sensitivity analysis. The results in this chapter are published in [21] and

[22].

Chapter 6 presents a recursive feasibility and robust stability analysis of

the proposed adaptive horizon multi-stage MPC. The results show that the
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recursive feasibility of the framework is guaranteed with a fully branched

scenario tree. A relaxed formulation can be implemented in practice to

avoid infeasibility but the robust constraint satisfaction of multi-stage MPC

is given up. Provided that the recursive feasibility property and terminal

conditions such as a non-empty common terminal region are satisfied, the

closed-loop system is proven to be input-to-state practical stable (ISpS).

This result also applies to the multi-stage MPC formulation with a robust

horizon. These results are published in [22].

Part II is concerned with improving robustness and reducing conservative-

ness of the multi-stage MPC by improved scenario selection. The general

idea is to combine data-driven methods and NLP sensitivities for better

scenario selection. Chapter 7 examines with the aid of a simple optimiz-

ation with uncertainty problem, the benefit of using both PCA and NLP

sensitivities to select scenarios for the approximate optimization problem.

This new approach was compared with other scenario selection approaches

such as the conventional box over-approximation, PCA-based (PCA only,

without sensitivities) approach, and sensitivity-assisted (without PCA) ap-

proach. The proposed approach demonstrated the best cost at the solution

and the smallest problem size. The content of this chapter is based on an

unpublished article [31].

In Chapter 8 the proposed scenario selection approach is applied to the

multi-stage MPC formulation. The aim is to improve the performance of

the overly conservative SAMNMPC using realizations from principal com-

ponents. This PCA-SAMNMPC framework is a SAMNMPC with linearly

transformed model parameters such that the sensitivities of the MPC prob-

lem are evaluated along the principal components instead. The results show

that the PCA-SAMNMPC when compared to SAMNMPC has a significant

reduction in conservativeness while maintaining its robustness and computa-

tional efficiency. Moreover, the results demonstrated on a simplified energy

network with a thermal storage tank that the solution increases savings in

peak heating compared to the PCA-based strategy. This chapter is mainly

adopted from [32] and [31].
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The thesis concludes with a summary of the contributions in each chapter,

highlights its limitations, and provides possible avenues for future research.

1.4 List of publications

During the PhD study, a total of six articles have been produced. This thesis

includes results from four of the articles. Some of the results have been

presented in the form of oral presentations on several occasions. Detailed

lists of the research papers and presentations are presented below.

Papers included in the main part of this thesis

1. Zawadi Mdoe, Dinesh Krishnamoorthy, and Johannes Jäschke. Sta-

bility properties of the adaptive horizon multi-stage MPC. Journal of

Process Control. 128: 103002, 2023. - Chapters 5 and 6

2. Zawadi Mdoe, Dinesh Krishnamoorthy, and Johannes Jäschke. Ad-

aptive Horizon Multi-stage Nonlinear Model Predictive Control. In

2021 American Control Conference (ACC). pages 2088-2093. IEEE,

2021. – Chapter 5

3. Zawadi Mdoe and Johannes Jäschke “Scenario selection for multi-

Stage MPC using NLP sensitivities along principal components: ap-

plication to robust optimal operation of thermal energy storage.”Com-

puters & Chemical Engineering. (Under review), 2024. – Chapters 7

and 8

4. Zawadi Mdoe, Mandar Thombre, and Johannes Jäschke. Data-driven

online scenario selection for multi-stage NMPC. Computer Aided Chem-

ical Engineering. Vol. 49. pages 1627-1632. Elsevier, 2022. –

Chapter 8

Papers not included in this thesis

1. Evren Turan, Zawadi Mdoe, and Johannes Jäschke. Learning con-

vex objectives to reduce the complexity of model predictive control.

Systems & Control Letters. IEEE, 2023. (Under review) [33]

2. Mandar Thombre, Zawadi Mdoe, and Johannes Jäschke. Data-driven

robust optimal operation of thermal energy storage in industrial clusters.

8



1.4. List of publications

Processes 8.2: 194, 2020. [13]

Accepted abstracts and invited presentations

1. Zawadi Mdoe, Dinesh Krishnamoorthy, and Johannes Jäschke. Im-

proving the computational efficiency of multi-stage NMPC using an

adaptive horizon. AIChE Annual Meeting. Phoenix, AZ, USA, Novem-

ber 2022. - Accepted abstract.

2. Zawadi Mdoe and Johannes Jäschke. Improving the computational ef-

ficiency of robust multi-stage MPC. Internal Ph.D./Post.Doc Seminar

HighEFF. Trondeim, Norway, May 2022. - Invited.

3. Zawadi Mdoe, Dinesh Krishnamoorthy, and Johannes Jäschke. Ad-

aptive horizon multi-stage nonlinear MPC: Stability and Recursive

feasibility. 23rd Nordic Process Control Workshop. Lule̊a, Sweden,

March 2022. - Accepted abstract.

4. Zawadi Mdoe, Mandar Thombre, and Johannes Jäschke. Data-driven

online scenario selection for multi-stage NMPC. AIChE Annual Meet-

ing. Boston, MA, USA, November 2021. - Accepted abstract.

5. Zawadi Mdoe, Mandar Thombre, and Johannes Jäschke. Data-driven

online scenario selection for multi-stage NMPC. 2021 HighEFF Cross-

sector Workshop. Hell, Norway, October 2021. - Invited.
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2 | Model predictive control

“Kupanga ni kuchagua”

Mwl. Julius K. Nyerere (1922-1999)

This chapter presents a short historical background on optimal control using

model predictive control (MPC) and introduces the MPC algorithm. After

introducing the general notation used in the thesis, the standard MPC for-

mulation is presented. Further, some definitions of terms used in nonlinear

stability theory are presented. Since MPC formulations generally involve

nonlinear optimization problems, this chapter also gives a brief introduc-

tion to nonlinear optimization theory and properties that are used in the

main parts of the thesis.
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2.1 Background

Model predictive control (MPC) is a model-based control strategy that ori-

ginates from optimal control theory. Optimal control theory involves solving

for the extremum of a function that is subject to system dynamics usually

modeled as continuous-time ordinary differential equations (ODEs) or differ-

ential and algebraic equations (DAEs). Over the years, the optimal control

field has focused on solving these infinite-dimensional problem formulations

which are generally not easy to solve.

In the special case of unconstrained linear systems, the analytic solution that

minimizes an infinite time quadratic cost is the Riccati differential equation.

This is called the linear quadratic regulator (LQR). On the other hand, a

linear quadratic estimator (LQE) problem finds the optimal state estimates

when a model is affected by process noise and/or noisy measurements. The

Kalman filter (KF) proposed by Kalman in 1960 converges to the optimal

solution (the “truth”) using a recursive formulation. Combining the two

problems (the LQR and the KF) results in the linear quadratic Gaussian

(LQG) problem.

The robustness of LQG was famously investigated by Doyle in 1978 and

the controller was not found to be robust even for very small perturba-

tions. Therefore, the robustness of linear controllers was brought to light

and gained strong attention resulting in robust linear control theory. The

most common approaches to the robust synthesis and analysis of linear con-

trollers include set-theoretic methods such as using bounding ellipsoids in

[36], Kharitonov’s methods [37], and H∞ control [38].

Until the 1970s, the main focus was to find analytical solutions to optimal

control problems. However, finding the analytical solution for nonlinear sys-

tems, including the robust optimal control problem, is impossible. There-

fore, to solve general optimal control problems, numerical methods are often

required. These methods are typically divided into two categories: indirect

and direct methods.

Indirect methods involve formulating the optimality conditions, such as
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those derived from Pontryagin’s minimum principle [39], and then discret-

izing them to obtain a numerical solution. As a result, these methods are

sometimes referred to as first optimize then discretize methods, as explained

in the article by [40].

Direct methods to solve optimal control problems were introduced by sev-

eral researchers including Bosarge and Johnson [41]. These methods include

the control vector parametrization approach [42], the multiple shooting ap-

proach [43], and the collocation approach [44, 45]. Direct methods are also

known as first discretize then optimize methods since the system dynamics

and control inputs are initially discretized to form a nonlinear programming

problem (NLP) to be solved numerically. These methods are commonly used

in dynamic optimization applications including in model predictive control.

Moreover, for robust optimal control problems, direct methods transform

the problem into an optimization problem making it possible to apply gen-

eral techniques used for optimization under uncertainty such as stochastic

programming principles.

2.2 MPC algorithm

MPC framework was initially proposed by Richalet et al. [46] and Cutler and

Ramaker [47] as a control heuristic in industrial processes. MPC has been

used in industrial processes even before most of its theory was developed.

The MPC control strategy is described by Mayne et al. [48] as:

A form of control in which the current control action is obtained

by solving online, at each sampling instant, a finite horizon open-

loop optimal control problem, using the current state of the plant

as the initial state; the optimization yields an optimal control

sequence and the first control in this sequence is applied to the

plant.

In MPC, a process system is optimized with respect to a control objective

subject to constraints at each sampling time. It computes at each sampling

time a sequence of optimal control inputs by solving an optimization prob-
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lem that minimizes some pre-defined cost function over a finite prediction

horizon, subject to the state and input constraints at each time step in the

future. Only the first control input is applied to the plant and the process

is repeated at the next sampling time using the new state measurements or

estimates as the initial condition.

MPC includes constraints for online decision-making and has a good con-

trol performance even when the system is disturbed away from the desired

reference trajectory. The equality constraints include the system dynam-

ics which are usually a set of DAEs for most chemical processes, and the

inequality constraints are usually bounds for the control inputs and states.

The control inputs are usually considered piece-wise constants in between

time intervals.

Most models are inaccurate causing plant-model mismatch, usually as a

result of uncertainty caused by (i) unknown changes in process behavior

and (ii) measurement noise. It is necessary to have feedback to control

such an uncertain system. In MPC, steady-state accuracy can be achieved

by adding a bias correction term to the predicted output that is obtained

from the last measurements. Feedback information enters the MPC control

loop only by the re-initialization of the optimization problem and the bias

term, hence the controller performance and closed-loop stability are strongly

reliant on the model accuracy.

2.2.1 System notation

As previously stated, chemical processes are generally represented by a set

of dynamic and algebraic equations (DAEs). There exist several techniques

for solving DAEs [49], and collocation methods, in particular, have demon-

strated high efficacy for the simultaneous optimization of DAEs [50, 51].

Hence, for the objectives of this study, the direct focus is on a general un-

certain discrete-time system that is written as follows:

xk+1 = f(xk, uk, dk) (2.1)
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where xk ∈ X ⊂ Rnx is a state vector that fully defines the system model

at time tk where k ≥ 0, uk ∈ U ⊆ Rnu is a control input vector that is

implemented at time tk, and dk ∈ D ⊂ Rnd is the uncertain parameter

(disturbance) vector realized at time tk. The set of real numbers is de-

noted by R, and the set of integers by Z, with the subscript + referring to

their non-negative counterparts. The Euclidean vector norm is | · | and the

corresponding induced matrix norm is ∥ · ∥.

The nominal parameter value (vector) is denoted as d0 with the nominal

model written as:

xk+1 = f(xk, uk) := f(xk, uk, d
0) (2.2)

where the function f : Rnx+nu+nd 7→ Rnx is assumed to be twice differenti-

able in all its arguments, has Lipschitz continuous second derivatives, and

can be transformed to obtain the steady state nominal model f(0, 0, d0) = 0

where d0 is the nominal disturbance.

2.3 Standard MPC

The standard MPC for the system (2.1) is defined as follows. The MPC

receives the current state xk and assumes a nominal parameter d0. The

optimal control problem for standard MPC is an NLP, parametric in xk

and d0 and can be written as follows:

V nom
N (xk, d

0) =min
zi,νi

ψ(zN , d
0) +

N−1∑
i=0

ℓ(zi, νi, d
0) (2.3a)

s.t. zi+1 = f(zi, νi, d
0), i = 0, . . . , N − 1 (2.3b)

z0 = xk, (2.3c)

zi ∈ X, νi ∈ U, (2.3d)

zN ∈ Xf (2.3e)

where N is the prediction horizon, V nom
N is the optimal cost function, zi

and νi are the predicted state and input variable vectors, respectively at

time tk+i. The objective (2.3a) consists of a stage cost ℓ : Rnx+nu+nd 7→ R,
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and a terminal cost ψ : Rnx+nd 7→ R. The initial condition (2.3c) is the

current state xk. The equations (2.3b) are constraints predicting system

dynamics, and (2.3d) are the bounds on state and input variables. The

terminal constraints are in (2.3e), where Xf ⊂ X is the terminal region

set. This thesis consistently assumes that all the vector sets are subsets of

the real-vector space. Further, X and Xf are closed, while Xf and U are

compact. Additionally, the constraint sets defined by (2.3d) are treated as

box constraints unless explicitly stated otherwise.

The standard MPC receives xk and solves (2.3) for an optimal input se-

quence v⋆[0,N−1] and their corresponding state predictions z⋆(0,N ] in the time

interval (tk, tk+N ] at every iteration k. The first stage input from the se-

quence is applied to the plant as uk. Then the prediction horizon is shifted

one step, and the problem is reinitialized from the new state xk+1.

Since the current optimal input is obtained with respect to xk, the stand-

ard MPC policy yields an implicit feedback control law uk = κ(xk), where

κ : Rnx 7→ Rnu . This gives standard MPC limited robustness to model un-

certainty [52–54]. However, standard MPC exhibits a substantial decline in

performance for significant plant-model mismatch due to uncertainty.

2.4 Stability theory

This section presents basic definitions of the Lyapunov stability theory that

is used to analyze the stability properties of nonlinear systems. Depending

on whether model uncertainty is present, either nominal or robust stability

analysis must be performed.

2.4.1 Nominal stability

The following definitions are relevant to the nominal stability analysis of

discrete-time nonlinear systems.

Definition 1. (Comparison functions [55]) A function α : R+ 7→ R+ is said

to be of class K if α(0) = 0, α(n) > 0 for all n > 0 and is strictly increasing.

It becomes of class K∞ if in addition, α is unbounded. A function β : R+×
Z+ 7→ R+ is of class KL if β( · , k) is of class K for each fixed k ≥ 0, and
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β(n, · ) is decreasing for each fixed n ≥ 0 and β(n, k)→ 0 as k →∞.

Definition 2. (Attractivity) The system (2.2) is attractive on X if limk→∞ xk =

0 for all x0 ∈ X.

Definition 3. (Stable equilibrium point) The system (2.2) is asymptotically

stable on X if limk→∞ xk = 0 for all x0 ∈ X and x = 0 is a stable equilibrium

point.

Definition 4. (Asymptotic stability) The system (2.2) is attractive on X if

limk→∞ xk = 0 for all x0 ∈ X.

Definition 5. (Positive invariant set) A closed set Γ ⊆ Rn is a positive

invariant set for an autonomous system x+ = F (x) if x ∈ Γ implies F (x) ∈
Γ.

Definition 6. (Control positive invariant set) The set Γ ⊆ Rn is a control

positive invariant set for a system x+ = f(x, u) and for each x ∈ Γ there

exists a control input u ∈ U such that f(x, u) ∈ Γ.

Definition 7. (Local Lyapunov function) A function V : Rn 7→ R+ is a local

Lyapunov function for an autonomous system x+ = F (x) if there exists a

positive invariant set Γ, a feedback control law κN , K∞ functions α1, α2

and K function α3 for all x ∈ Γ such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.4a)

V (x+)− V (x) ≤ −α3(|x|) (2.4b)

Nominal stability analysis is only suitable for deterministic systems. For

a system affected by uncertainty, a robust stability analysis must be per-

formed.

2.4.2 Robust stability

The following are relevant definitions in robust stability analysis of discrete-

time nonlinear systems.

Definition 8. (Robust positively invariant (RPI) set, [56]) A set Γ ⊆ Rn

is a robust positively invariant for an autonomous system x+ = F (x, d) if
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F (x, d) ∈ Γ holds for all x ∈ Γ and for all d ∈ Ω, where Ω is the uncertain

parameter (disturbance) set.

Definition 9. (Robust control invariant set, [57]) A set Γ ⊆ Rn is a robust

control invariant set for a system x+ = f(x, u, d) if for all x ∈ Γ, there exists

an admissible control input u ∈ U such that f(x, u, d) ∈ Γ for all d ∈ Ω,

where Ω is the uncertain parameter (disturbance) set.

Definition 10. (Regional input-to-state practical stability (ISpS), [58]) An

autonomous system x+ = F (x, d) is ISpS in Γ ⊆ Rn and 0 ∈ Γ if there

exists a KL function β, a K function γ, and a constant c ≥ 0 such that for

all k ≥ 0:

|xk| ≤ β(|x0|, k) + γ(∥d[0,k−1] − d0∥) + c, ∀x0 ∈ Γ (2.5)

where d[0,k−1] :=
[
d0, d1, . . . , dk−1

]
is the sequence of true parameter

realizations and d0 is a sequence of nominal parameters of the same length.

Definition 11. (ISpS Lyapunov function in Γ, [57]) Suppose Γ is an RPI set

and there exists a compact set Θ ⊆ Γ with the origin as an interior point.

A function V : Rn 7→ R+ is an ISpS Lyapunov function in Γ for the system

x+ = f(x, d), if there exist K∞ functions α1, α2, α3, K function σ, and

constants c1, c2 ≥ 0 such that:

V (x) ≥ α1(|x|), ∀x ∈ Γ (2.6a)

V (x) ≤ α2(|x|) + c1, ∀x ∈ Θ (2.6b)

V (x+)− V (x) ≤ −α3(|x|) + σ(|d− d0|) + c2,

∀x ∈ Γ, ∀ d, d0 ∈ Ω.
(2.6c)

2.5 Nonlinear programming properties

Parametric nonlinear programming (NLP) properties are presented because

the variants of the MPC problem are nonlinear parametric problems, being

parametric in the current state xk and the model uncertain parameters,

d0 for nominal MPC or dc for multi-stage MPC. Let us consider a general
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parametric NLP form:

min
w

J(w, p) (2.7a)

s.t. h(w, p) = 0, (2.7b)

g(w, p) ≤ 0 (2.7c)

where w ∈ Rnw is the vector of all optimization variables and p ∈ Rnp is

the vector of all the parameters in the NLP. The problem (2.7) has a scalar

objective function J : Rnw+np 7→ R, equality constraints h : Rnw+np 7→ Rne ,

and inequality constraints g : Rnw+np 7→ Rni .

Definition 12. (Lagrange function and KKT conditions) The Lagrange func-

tion of (2.7) is:

L(w, λ, µ, p) = J(w, p) + λ⊤h(w, p) + µ⊤g(w, p) (2.8)

where, λ and µ are the Lagrange multipliers of appropriate dimension. A

point that satisfies the Karush-Kuhn-Tucker (KKT) conditions is known as

a KKT-point [59]. Given a parameter p, a point w⋆ is called a KKT-point

if there exists some multipliers (λ, µ) that satisfy:

∇wL(w⋆, λ⋆, µ⋆, p) = 0

h(w⋆, p) = 0

g(w⋆, p) ≤ 0

0 ≤ µ⋆ ⊥ g(w⋆, p) ≤ 0

(2.9)

The set of all multipliers λ and µ that satisfy the KKT conditions for a

certain parameter p is denoted asM(p). The active constraint set is given

by A(w⋆) = {j | gj(w⋆, p) = 0}. ⊥ is the complementarity operator, i.e.

either µ or g (or both) must be zero.

Then we define strict complementarity as follows.

Definition 13. (SC, [59]) At the KKT point w⋆ of (2.7) with multipliers (λ⋆,

µ⋆), strict complementarity (SC) condition holds if µj + gj(w
⋆, p) > 0 for
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all j ∈ A(w⋆).

For the KKT conditions to be first-order necessary optimality conditions,

the KKT point w⋆ requires a constraint qualification to be satisfied. Further,

it requires a constraint qualification to be a local minimizer of (2.7). The

following are the definitions of three well-known constraint qualifications.

Definition 14. (LICQ, [59]) The linear independence constraint qualification

(LICQ) holds at w⋆ when the gradient vectors

∇h(w⋆, p) and ∇gj(w⋆, p), j ∈ A(w⋆) (2.10)

are linearly independent. LICQ implies that the multipliers λ⋆, µ⋆ are

unique i.e. M(p) is a singleton.

Definition 15. (MFCQ, [59]) The Mangasarian-Fromovitz constraint quali-

fication (MFCQ) holds at w⋆ if and only if, ∇h(w⋆, p) has full column rank

(linearly independent), and there exists a non-zero vector q, such that:

∇h(w⋆, p)⊤q = 0,

∇gj(w⋆, p)⊤q < 0, ∀j ∈ A(w⋆)
(2.11)

MFCQ implies thatM(p) is a compact convex polytope [60].

Definition 16. (CRCQ, [59]) For problem (2.7), the constant rank constraint

qualification (CRCQ) holds at w⋆(p), when for any subset Ā ⊆ A(w⋆), the
gradients:

∇h(w⋆, p)⊤q = 0,

∇gj(w⋆, p)⊤q < 0, ∀j ∈ Ā
(2.12)

retain constant rank near the point w⋆(p) .

The KKT conditions are necessary but are not sufficient conditions for op-

timality. A second-order condition is needed to guarantee a minimizer. Here

are the definitions of the two second-order sufficient conditions.
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2.5. Nonlinear programming properties

Definition 17. (SSOSC, [61]) The strong second-order sufficient condition

(SSOSC) holds at w⋆ with multipliers λ⋆ and µ⋆ if:

q⊤∇2
wwL(w⋆, λ⋆, µ⋆, p)q > 0 ∀q ̸= 0 (2.13)

such that

∇hi(w⋆, p)⊤q = 0, ∀i = 1, . . . , ne

∇gj(w⋆, p)⊤q = 0, ∀j ∈ A(w⋆) ∩ {j |µj > 0}
(2.14)

Definition 18. (GSSOSC, [62]) The general strong second-order sufficient

condition (GSSOSC) holds at w⋆(p) if:

q⊤∇2
wwL(w⋆, λ⋆, µ⋆, p)q > 0 ∀q ̸= 0 (2.15)

such that

∇h(w⋆, p)⊤q = 0, and ∇g(w⋆, p)⊤q = 0 (2.16)

holds for all λ⋆, µ⋆ ∈M(p).

2.5.1 Parametric nonlinear programming sensitivity

The sensitivity of the primal-dual solution s⋆ = [w⋆⊤, λ⋆⊤, µ⋆⊤]⊤ shows how

it changes with respect to a perturbation in the parameter p, from p = p0 to

p = p. Assuming SC, LICQ, and SSOSC and applying the Implicit Function

Theorem (IFT) to the KKT conditions in (2.9) we obtain Theorem 1.

Theorem 1. (IFT applied to KKT conditions) Assume a KKT point w⋆(p0)

that satisfies (2.9), and that SC, LICQ and SSOSC hold at w⋆(p0). Fur-

thermore, the functions F , h, and g are at least k + 1 times differenti-

able in w and k times differentiable in p. Then the primal-dual solution

s⋆(p)⊤ = [w⋆(p)⊤, λ⋆(p)⊤, µ⋆(p)⊤] has the following properties:

• s⋆(p0) is an isolated local minimizer of (2.7) at p0 and contains unique

multipliers (λ⋆(p0), µ
⋆(p0)).

• For p in a neighborhood of p0 the active constraint set A(w⋆) remains

unchanged.
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Model predictive control

• For p in a neighborhood of p0 there exists a unique, continuous and dif-

ferentiable function s⋆(p) which is a local minimizer satisfying SSOSC

and LICQ for (2.7) at p.

• There exists positive Lipschitz constants Ls, Lv such that |s⋆(p) −
s⋆(p0)| ≤ Ls|p − p0| and |J(p) − J(p0)| ≤ Lv|p − p0|, where | · | is the

Euclidean norm.

Proof. see Fiacco [61].

Theorem 1 above establishes Lipschitz continuity of the optimal solution and

optimal objective function of (2.7) with respect to the NLP parameters.

This result is important for the sensitivity-based approximation schemes

of the multi-stage NMPC that have been proposed in this thesis, and their

stability analysis. The theorem ensures that we can always obtain from (2.9)

the following linear system for NLP sensitivity if SC, LICQ, and SSOSC hold

at a KKT point w⋆(p),∇
2
wwL ∇h ∇gA
∇h⊤ 0 0

∇g⊤A 0 0


∇pw

⋆

∇pλ⋆
∇pµ⋆A

 =

∇
2
wpL
∇h⊤
∇g⊤A

 (2.17)

where all the derivatives of are evaluated at w⋆, p0, (λ
⋆, µ⋆) ∈M(p0), and gA

and µ⋆A are vectors with elements gj and µ
⋆
j for all j ∈ A(w⋆), respectively.

2.5.2 Nonlinear program solution approximation

The Taylor expansion of the primal solution at p0 is written as:

w⋆(p) = w⋆(p0) +∇pw⋆⊤(p− p0) +O(|p− p0|2) (2.18)

As a result, a first-order approximation is obtained in the neighborhood of

p0 using:

w⋆(p) ≈ w⋆(p0) +∇pw⋆⊤(p− p0) (2.19)
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2.5. Nonlinear programming properties

The KKT matrix in (2.17) is evaluated at p0 and is obtained for free from

the previous solution. The benefit of the sensitivity step (2.19) is to perform

one-step-ahead predictions of the solution at the subsequent MPC iteration

with a minimal computational effort compared to solving the NLP from

scratch. The following subsection presents the horizon update algorithm for

adaptive horizon multi-stage MPC using the sensitivity update.

The weakest conditions that ensure a perturbed solution of (2.7) is locally

unique are MFCQ and GSSOSC [63]. Further, Lipschitz continuity of w⋆(p)

with respect to p is guaranteed.
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3 | Robust Multi-stage MPC

“Some see the glass half full, some see it half

empty, and some see it crawling with toxic alien

parasites who want to devour your pancreas.”

James Alan Gardner (1955-present)

This chapter provides a brief history leading up to the development of robust

MPC approaches. It then describes the multi-stage MPC and the robust

horizon assumption which is the conventional approximation strategy to

reduce the multi-stage MPC problem size. Finally, it introduces several

multi-stage MPC formulations, which are essential for comprehending the

novel techniques presented in later chapters.
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Robust Multi-stage MPC

3.1 Model predictive control under uncertainty

When the system model and measurements are inaccurate the performance

of the standard MPC degrades. Although standard MPC has some inherent

robustness against uncertainty, this property may break when there are

significant disturbances that cause problem infeasibility. As a result, MPC

approaches have been developed to account for the influence of uncertainty

and can be broadly categorized as follows:

1. MPC reformulation with softened constraints and a violation penalty,

2. Stochastic MPC with chance constraints that allow violations only at

a prespecified probability, and

3. Robust MPC where constraint satisfaction is guaranteed for a set of

expected uncertain parameter realizations.

3.1.1 MPC reformulation to avoid infeasibility

The state constraints in standard MPC may result in problem infeasibility

when there is uncertainty. To ensure that the MPC problem is always feas-

ible, a reformulation of the MPC problem is done by adding softened state

constraints and a penalty for the slack variables in the objective function.

The reformulated standard MPC problem is written as:

V rf
N (xk,d

0) := min
zi,νi,εi

ψ(zN , d
0) +

N−1∑
i=0

ℓ(zi, νi, d
0)

+ ρψe
⊤εN +

N−1∑
i=0

ρℓe
⊤εi

(3.1a)

s.t. zi+1 = f(zi, νi, d
0), i = 0, . . . , N − 1 (3.1b)

z0 = xk, (3.1c)

xL − εi ≤ zi ≤ xU + εi, (3.1d)

xLf − εN ≤ zN ≤ xUf + εN , (3.1e)

νi ∈ U, εi ≥ 0, εN ≥ 0
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3.1. Model predictive control under uncertainty

where V rf
N is the optimal value function of the relaxed formulation, εci , ε

c
N ∈

Rnx , are the slack variables to the corresponding state variables, ρcψ and

ρcℓ are large weights on penalty terms, and e⊤ = [1, . . . , 1]. The state con-

straints in (2.3) are replaced by bound inequalities to easily depict the con-

straint relaxations. Further, this type of constraint is the most common in

process applications, to keep a specific variable within its operational limits.

The presence of slack variables in the inequalities (3.1d) and (3.1e) guar-

antees the existence of strictly feasible directions into the interior of the

feasible region. In that case, the relaxed problem (3.1) guarantees that

MFCQ always holds at the optimal solution. The optimal value function

V rf
N is uniformly continuous in its argument xk.

3.1.2 Stochastic MPC

Stochastic MPC is an optimal control approach that systematically handles

system uncertainties by transcribing them into a stochastic program. Al-

though stochastic MPC is not the focus of this thesis, it is briefly presented

because multi-stage MPC also applies stochastic programming principles.

Stochastic MPC considers that real-world systems have probabilistic uncer-

tainties. When it is possible to characterize stochastic system uncertainties,

they should be accounted for in the controller framework. Stochastic MPC

uses probabilistic uncertainty definitions to describe chance constraints,

which specify in advance that state and output constraints are to be sat-

isfied to a minimum probability level. Therefore, it provides a systematic

way of establishing the tradeoffs between fulfilling control objectives and

guaranteeing probabilistic constraint satisfaction [64].

The following is a general stochastic MPC problem formulation with joint

chance constraints on states.

V smpc
N (xk) := min

zi,νi
Exk
[
ψ(zN , di) +

N−1∑
i=0

ℓ(zi, νi, di)
]

(3.2a)

s.t. zi+1 = f(zi, νi, di), i = 0, . . . , N − 1 (3.2b)

z0 = xk, (3.2c)
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Robust Multi-stage MPC

νi ∈ U, i = 0, . . . , N − 1 (3.2d)

Prxk [gj(zi, νi, di) ≤ 0, ∀ j = 1, . . . , ng] ≥ β, i = 1, . . . , N (3.2e)

di ∼ Pd, i = 0, . . . , N − 1 (3.2f)

where Pd is the (multivariate) probability distribution of the unknown dis-

turbances and measurement noise d and β ∈ (0, 1) is the lower bound for

the probability that the inequality constraint gj ≤ 0 must be satisfied. The

conditional probability Prxk in (3.2e) shows that the probability that gj ≤ 0

for all j = 1, . . . , ng through the prediction horizon holds and it is depend-

ent on the initial state xk. V smpc
N (xk) is the optimal cost function. The

optimal cost function for stochastic MPC is denoted by V smpc
N (xk), com-

monly defined as the conditional expectation of the sum of stage costs and

terminal cost.

Most of the stochastic MPC literature focuses on stochastic linear systems.

The development of stochastic nonlinear MPC has been limited due to the

computational complexities of uncertainty propagation in nonlinear systems

[65]. This thesis focuses on multi-stage MPC for nonlinear systems because

it has a more computationally feasible uncertainty propagation strategy.

Multi-stage MPC also derives its objective function from stochastic pro-

gramming principles as in stochastic MPC.

3.1.3 Robust MPC strategies

Two major ways have been proposed to achieve robust constraint satisfac-

tion for MPC. The first is the direct way where a contraction in the reachable

set is included in the optimization problem, to guarantee constraint satisfac-

tion. This direct strategy is adopted by the tube-based MPC first proposed

by Mayne et al. [66] for linear systems. In this approach, a nominal con-

troller predicts a nominal trajectory and an ancillary controller is used to

keep the uncertain system within a tube centered on the nominal traject-

ory. While this tube-based control method can ensure robustness, it is often

excessively conservative. Additionally, calculating the ancillary control law

for nonlinear systems can be challenging, restricting the practical usefulness

of tube-based robust NMPC.
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3.2. Multi-stage MPC

The second approach is the indirect way which does not explicitly include

a reachable set contraction in the problem formulation but is implied in

its solution. The min-max MPC approach is a robust MPC strategy that

uses an indirect way to compute the optimal control trajectory, aiming to

minimize the cost of the worst-case scenario [67]. However, this framework

overlooks future recourse actions that could counteract the uncertainty, res-

ulting in overly conservative or infeasible outcomes. A feedback min-max

MPC was introduced by Scokaert and Mayne [2], addressing this issue by

seeking closed-loop optimization over different control policies for various

uncertainty realizations, leading to a lower degree of conservativeness and

avoiding infeasibility. This approach uses a scenario tree to describe the

evolution of uncertainty, incorporating aspects of stochastic programming.

The scenario tree framework was extended to nonlinear systems by Lucia

et al. [68], leading to the development of the robust multi-stage NMPC,

which is the primary focus of this thesis. The next section presents the

robust multi-stage MPC and its formulation in further detail.

3.2 Multi-stage MPC

Multi-stage MPC is a robust MPC approach that models the evolution of

the uncertainty of the system along the prediction horizon as a tree of dis-

crete scenarios, known as a scenario tree [2, 6, 67]. This approach is based

on stochastic programming principles and is known as multi-stage stochastic

programming in decision theory and finance [69]. Fig. 3.1 is an illustration of

a scenario tree that is fully branched to the end of the prediction horizon N ,

with a selection of three uncertain parameter realizations. The total number

of scenarios in a fully branched scenario tree is given by (ND)
N , where ND

is the number of discrete parameter realizations selected. This thesis gener-

alizes that each branch in the scenario tree represents a selected uncertain

parameter realization regardless of the selection strategy. However, it is a

common heuristic in multi-stage MPC literature to select the realizations

such that three levels, usually {min, nominal, max}, are considered for each

uncertainty. Then, the number of selected discrete parameter realizations

becomes ND = (nd)
nlevels where nlevels is the number of levels picked from
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Figure 3.1: A fully branched scenario tree with three selected uncertain parameter
realizations, ND = 3, and prediction horizon, N . The dashed lines represent all
the nodes in between tk+3 and tk+N .

each uncertainty. For this specific case, the total number of scenarios in a

fully branched scenario tree is given by (nd
nlevels)N .

Each branch from a node represents the effect of the unknown disturbances

or modeling errors, and the selected control inputs. Multi-stage MPC uses

the tree structure to explicitly account for uncertainties in future control

inputs. This structure considers that new information will be available in

the future that can inform new decisions. The approach allows for adjusting

the control inputs to counteract the effects of uncertainties, resulting in a

closed-loop robust MPC with lower conservative performance than other

robust MPC approaches with no recourse, such as the open-loop min-max

MPC, multi-model or multi-scenario approaches. Scokaert and Mayne [2]

presented the feedback min-max MPC where the scenario tree was first

applied for MPC. Then de la Peña et al. [70] and Bernardini and Bemporad

[71] followed with more results for its application in linear MPC. In his

doctoral thesis, Lucia [3] presents the application of the scenario tree to

handle uncertainties for nonlinear systems.

It is worth noting that the tree structure does not necessarily indicate time-

varying uncertainties or disturbances, but rather signifies that if the uncer-

tainty is not identified at any given sampling time, it will remain unknown
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3.3. Robust horizon assumption

in the subsequent sampling time when a new tree (shifted forward in time)

will need to be taken into account.

3.3 Robust horizon assumption

When the prediction horizon is long, or when there are many branches

(many parameter realizations selected), the number of scenarios in the scen-

ario tree increases exponentially resulting in an intractable problem. This

is a major challenge in the implementation of multi-stage MPC. A simple

strategy to reduce the multi-stage MPC problem size has been proposed,

both by de la Peña et al. [72] for linear systems, and Lucia et al. [6] for

the nonlinear case. They suggest limiting the branching of the tree only

up to a certain stage to stop the rapid growth of the scenario tree. The

stage at which the branching of the scenario tree stops is called the robust

horizon. This simplification stems from the fact that MPC proceeds in a

receding horizon fashion, thus modeling the uncertainties in the far future

is not very critical because the control inputs will be recomputed at the

next MPC iteration anyway. In addition, a recent study by Shin et al. [73]

supports this claim by showing that the effect of a perturbation of the un-

certain parameter on the current optimal input decays exponentially to its

distance away from the root node.

Again, assume that the number of discrete parameter realizations selected

is ND = 3. Fig. 3.2 shows a scenario tree with a robust horizon NR = 2

and a total of nine scenarios, where branching stops at time tk+NR
and the

uncertain parameter realizations are kept constant until tk+N . Generally,

the total number of scenarios is given by card(C) = (ND)
NR , where C is the

scenario index set and ND is the number of discrete parameter realizations

selected. The problem size is significantly reduced when NR << N . For

example, if N = 6, and there are three uncertainties nd = 3, each selected

at three levels nlevels = 3, such that ND = 33 = 27, then choosing a robust

horizon NR = 2 reduces the number of scenarios from 387, 420, 489 to 729.
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Figure 3.2: A scenario tree with nine scenarios, prediction horizon N , and robust
horizon NR = 2, provided that number of selected uncertain parameter realizations
is ND = 3. Generally, the number of scenarios is (ND)NR . The dashed lines
represent all the nodes in between tk+2 and tk+N .

3.4 Multi-stage MPC formulation

Given the current state xk at time tk, multi-stage MPC with a robust horizon

NR requires solving the following problem:

V ms
N (xk,d

c) = min
zci ,ν

c
i

∑
c∈C

ωc

(
ψ(zcN , d

c
N−1) +

N−1∑
i=0

ℓ(zci , ν
c
i , d

c
i )
)

(3.3a)

s.t. zci+1 = f(zci , ν
c
i , d

c
i ), i = 0, . . . , N − 1 (3.3b)

zc0 = xk, (3.3c)

νci = νc
′
i , {(c, c′) | zci = zc

′
i } (3.3d)

dci−1 = dci , i ≥ NR (3.3e)

zci ∈ X, νci ∈ U, dci ∈ D, (3.3f)

zcN ∈ Xcf , (3.3g)

∀ c, c′ ∈ C
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3.4. Multi-stage MPC formulation

where zci , ν
c
i , and d

c
i represent the state, input, and disturbance vectors at

stage i and scenario c. The set C is the scenario index set, and the nominal

scenario has a zero index. The objective function (3.3a) is the weighted sum

of the stage and terminal costs across all the scenarios with ωc being the

probability for each scenario.

Non-anticipativity constraints (NACs) ensuring that inputs from a common

parent node in the scenario tree (Fig. 3.2) must be equal are given by (3.3d).

This is because it is only possible to make a single control action uk = ν⋆0
on the plant. (3.3e) is included to show that parameter realizations are

constant after the robust horizon. The problem formulation for a fully

branched scenario tree is recovered by setting NR = N . The state and

control inputs inequality constraints across all scenarios are given in (3.3f)

and D is the set of the discrete parameter realizations.

Problem (3.3) is a parametric optimization problem, with the parameters

being xk and dc. The parameter dc denotes d
c=1,...,card(C)
i=0,...,N−1 which is the

concatenated vector of all the parameter realizations in the scenario tree

(across all scenarios and across all time steps in the prediction horizon).

The robust horizon assumption makes solving the multi-stage MPC problem

practically feasible. However, this can still be expensive, especially for non-

linear problems, leading to a significant computational delay. To reduce the

computational costs and computational delay of the multi-stage NMPC even

further, Thombre et al. [20] proposed the sensitivity-assisted multi-stage

NMPC (SAMNMPC). This approximation framework has an algorithm to

prune irrelevant scenarios from the scenario tree using NLP sensitivities

and speed up computations. The sensitivity-assisted multi-stage NMPC is

discussed in detail in Chapter 4.
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4 | Sensitivity-Assisted

Multi-stage NMPC

“Scientists investigate that which already is;

Engineers create that which has never been.”

Albert Einstein (1879-1955)

In this chapter, the sensitivity-assisted multi-stage NMPC [20] is briefly

presented. It is a sensitivity-based approach to improve the computational

efficiency of the multi-stage NMPC. In Part II of this thesis, this compu-

tationally efficient scenario selection approach is extended by combining it

with multivariate statistical analysis of process data to reduce its degree of

conservativeness.
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4.1 Background

It is now evident that multi-stage MPC faces a computational challenge due

to its problem size growing rapidly with the scenario tree. The number of

variables in the multi-stage MPC formulation increases exponentially with

respect to the following:

• the number of uncertain parameters,

• the number of discrete realizations in each realization parameter, and

• the prediction horizon length.

The large-sized NLP is too computationally expensive to solve, resulting

in a computational delay that is problematic for its real-time implementa-

tion. To improve the computational efficiency, it is necessary to consider

approximate solutions for the multi-stage NMPC.

The heuristic for multi-stage NMPC is to pick the {max, nominal, min}
parameter values as the realizations represented in the scenario tree branches.

Out of these realizations, the worst-case realization is the one that is most

likely to cause constraint violations [19]. Critical scenarios for each inequal-

ity constraint are assembled from a combination of these worst-case real-

izations at each time step. The critical scenarios are those with predicted

trajectories that are most likely to violate constraints. They are determined

by using sensitivities of the constraints with respect to the uncertain para-

meters. Apart from the nominal scenario, the remaining scenarios are the

non-critical scenarios.

The algorithm for the sensitivity-assisted multi-stage NMPC (SAMNMPC)

is based on efficiently categorizing scenarios into two:

• a small number of critical scenarios, and

• a larger number of noncritical scenarios.

Then, a smaller optimization problem is assembled using variables and con-

straints that correspond only to the nominal scenario and critical scenarios.

An approximate contribution of the noncritical scenarios based on their

sensitivities is added to the cost function to account for the effect of the
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4.2. Problem formulation

noncritical scenarios.

In real-time implementation, these parameter values may result from es-

timation and measurements. The nominal is the mean estimate, and the

maximum and minimum values are identified based on the uncertainty in

the estimator or measurement. Measurement and estimation delays must

be carefully considered in deciding a suitable sampling rate. Therefore, at a

certain sampling time, these identified parameter realization values are used

to formulate the subsequent multi-stage MPC problem. A standard MPC

is solved with the nominal parameters and then sensitivities with respect

to the model parameters are obtained. These are then used to determine

the critical scenarios based on whether constraint violations will occur in

their predicted trajectories. Then finally the multi-stage MPC problem is

formulated with only the critical scenario constraints and variables which

will be fewer, achieving reduced computational effort.

4.2 Problem formulation

The SAMNMPC problem at time tk from the current state xk, is written

as follows:

V sam
N (xk,d

c) = min
zci ,ν

c
i

c∈Ĉ∪{0}

∑
c∈Ĉ∪{0}

ωc

(
ψ(zcN , d

c
N−1) +

N−1∑
i=0

ℓ(zci , ν
c
i , d

c
i )
)
+

∑
c∈C̄

ωc

(
ψ(z0N +∆zcN , d

c
N−1) +

N−1∑
i=0

ℓ(z0i +∆zci , ν
0
i +∆νci , d

c
i )
)

(4.1a)

s.t. zci+1 = f(zci , ν
c
i , d

c
i ), i = 0, . . . , N − 1 (4.1b)

zc0 = xk, (4.1c)

νci = νc
′
i , {(c, c′) | zci = zc

′
i } (4.1d)

dci−1 = dci , i ≥ NR (4.1e)

zci ∈ X, νci ∈ U, zcN ∈ Xf , dci ∈ D, (4.1f)

∀ c, c′ ∈ Ĉ ∪ {0}
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where the sets Ĉ and C̄ are the critical and noncritical scenario index sets,

respectively, and {0} represents the nominal scenario. The set D ∈ Rnd

is the uncertain parameter set containing a finite number of realizations,

X ∈ Rnx , U ∈ Rnu are the feasible sets for states and inputs, respectively,

and Xf represents the terminal region. N is the prediction horizon length

and NR is the robust horizon. zci and ν
c
i are the predicted state and control

variable vectors for scenario c at time tk+i, respectively. The stage cost

function is given by ℓ, the terminal cost is denoted by ψ, and ωc represents

the weights on scenario c to the objective function. As shown in (4.1a),

the noncritical scenarios are approximated with their NLP sensitivity steps

∆zci and ∆νci . The variables and constraints in problem (4.1) are only those

associated with critical scenarios, thus making the problem smaller than

that of the multi-stage NMPC with a robust horizon.

4.3 Critical scenario selection

This section presents how critical scenarios are determined in a multi-stage

nonlinear MPC problem. The critical scenario set includes the worst-case

parameter realizations that are most likely to violate the inequalities (usu-

ally state bounds).

Let g(zi, νi, di) ≤ 0 represent the inequality constraints in the problem (4.1)

at time tk such that g : Rnx×nu×nd 7→ Rng . Considering each inequality is

indexed as gj( · , · , · ) ≤ 0, the critical scenarios are found by solving the

following optimization problem at time tk with a fixed control sequence νi

for all i = 1, . . . , N and i′ = 0, . . . , i− 1:

max
di′

gj(zi, νi, di) (4.2a)

s.t. zi+1 = f(zi, νi, di), i = i′, . . . , i− 1 (4.2b)

z0 = xk (4.2c)

Problem (4.2) is solved around a reference trajectory (zi, vi)|ref , i = 1, . . . , N
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4.3. Critical scenario selection

and has the following implicit relationship:

gj(zi, νi, di) = gj(zi(di′), νi, di)

= gj(di′ , di) ≤ 0, i′ + 1 ≤ i = 1, . . . , N
(4.3)

where the reference trajectory can be any feasible sequence of states and

control inputs. In SAMNMPC, the reference trajectory is the standard

(nominal) MPC solution.

Assuming that gj is strictly monotonic with respect to di, the solution of

(4.2) can be found by linearization of the system model f , and the inequal-

ities g, around the reference (nominal) trajectory. Now concatenate the

uncertain parameters and states, and define d⊤ = [d⊤0 , d
⊤
1 , . . . , d

⊤
NR

] and

z⊤ = [z⊤0 , z
⊤
1 , . . . , z

⊤
N ]. To obtain the sensitivities dg

dd ∈ Rng×nd ·NR around

the reference trajectory we can then write:

dg

dd

⊤
= ∇zg

⊤
(
dz

dd

)⊤

+∇dg
⊤ (4.4)

Note that if the inequality constraints represent the state bounds zi ∈ X,
then ∇dg = 0, and ∇zg = ±1, depending on whether it is an upper or lower

bound.

To compute the sensitivity dz
dd , let h(zi, di) = 0 represent the equality con-

straints in (4.2), with a fixed νi. Differentiating the equality constraints

using IFT gives:

∇zh
⊤ · dz+∇dh

⊤ · dd = 0

dz

dd

⊤
= −(∇zh

−⊤)∇dh
⊤ (4.5)

Substituting (4.5) in (4.4) leads to:

dg

dd

⊤
= −∇zg

⊤(∇zh
−⊤)∇dh

⊤ +∇dg
⊤ (4.6)

In this approach, the solution of the standard MPC problem at time tk is

selected as the reference trajectory. By doing this, the terms ∇zh and ∇dh
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are obtained from the Jacobian matrix at the optimal solution derived from

solving the standard MPC problem. This enables efficient computation

of the critical scenarios, even for longer robust horizons, as ∇dh can be

easily obtained by parameterizing the standard MPC problem based on the

uncertain parameters (di)i=1,...,NR
.

Additionally, the assumption that the worst-case realization for the un-

certain parameter (dm)m=1,...,nd
lies at either its maximum value dmax

m or

its minimum value dmin
m is made. By combining this assumption with

strict monotonicity of g, the analytical solution for (4.2) for i ∈ NR and

m = 1, . . . , nd can be explicitly stated as:

dwci,m = argmax
di∈D

dg

dd

⊤
d

=

dmin
i,m , if

d(gj)
d(di,m) |(zi,νi)|ref ≤ 0

dmax
i,m , otherwise

(4.7)

Only in the particular case of strictly monotonic systems guarantees that the

worst-case realizations lie on the extremes of the parameters. Therefore the

critical scenarios are easily obtained from (4.7). Moreover, a critical scenario

can be ignored if an element | d(gj)d(di,m) | ≤ ϵ implying that the constraint is

insensitive to a change in the uncertain parameter dl,m. This means that

the number of active inequality constraints is always an upper bound for

the number of critical scenarios, which is usually much smaller than the full

scenario tree.

4.4 SAMNMPC algorithm

The overall strategy of SAMNMPC proposed by Thombre et al. [20] is out-

lined in Algorithm 1. This method incorporates the same type of feedback

information and its influence on the controller as the multi-stage NMPC.

This is achieved by including the predicted state and control trajectories

for the critical scenarios, which represent the worst-case uncertainty realiz-

1Notation from [20]. Kc represents the KKT matrix for a scenario c ∈ C where K0 is
for the nominal scenario.
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4.4. SAMNMPC algorithm

Algorithm 1 Sensitivity-assisted multi-stage NMPC [20]

Given: {max, nominal, min} of all uncertain parameters;
for k = 1→∞ do

Get the current state of the plant xk;

Solve the standard NMPC problem (2.3) for the nominal uncer-
tainty.; d0k, and get the KKT matrix K0

1 at the optimal solution;

For the critical scenarios: Extract ∇zh and ∇dh from K0, and solve
(4.6) to form the critical scenario set Ĉ;
For noncritical scenarios: Solve the linear system (29) in [20] (derived
from (2.17)), with the approximation Kc = K0 ∀c ∈ C, and get the
sensitivity steps for the noncritical scenarios c ∈ C̄;
Solve the SAMNMPC formulation (4.1), where the constraints are
imposed for critical scenarios and the noncritical scenarios are ap-
proximated with their sensitivity steps in the objective function;

Set uk = νc0, c ∈ Ĉ ∪ {0} and inject into the plant.

end for

ations. Additionally, sensitivity approximations for the predicted state and

control trajectories are included for all other scenarios. Consequently, all

scenarios considered in multi-stage NMPC are also considered in SAMN-

MPC. The solution obtained from SAMNMPC differs from the multi-stage

MPC solution by a term of O(|∆d|), and the closed-loop stability and re-

cursive feasibility properties have been established in [20].
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Part I

Adaptive Horizon Multi-stage

MPC
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5 | Adaptive Horizon

Multi-stage MPC

“Intelligence is the ability to adapt to change.”

Stephen Hawking (1942-2018)

This chapter presents how a fast online horizon update algorithm can be

implemented for multi-stage MPC to improve its computational efficiency.

The proposed control algorithm that includes horizon adaptation is imple-

mented on two numerical examples to demonstrate its control performance.

The results in this chapter are based on and adapted from the following

research papers.

• A peer-reviewed conference article: “Adaptive horizon multi-stage

nonlinear model predictive control” [21], and

• A part of the subsequent journal article: “Stability properties of the

adaptive horizon multi-stage MPC” [22].
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5.1 Motivation

In the introductory Section 1.4, it is established that there is a growing in-

terest in nonlinear MPC but its implementation is hindered by the numerical

complexity of solving a nonlinear program (NLP), and the associated large

computational delay [74]. The delay is further increased when uncertainty

is explicitly considered, in robust MPC approaches, such as in multi-stage

MPC formulations. For multi-stage MPC, where multiple scenarios are con-

sidered, the problem of computational delay becomes more severe because

the problem size increases exponentially with an increase in the prediction

horizon. This implies that the computational time, and hence the computa-

tional delay, both increase exponentially with increasing size of the scenario

tree. We have presented the robust horizon [6, 72] as a means to decrease

the number of variables. However, an additional reduction may be required

when there is a substantial number of parameter realizations.

One approach proposed to speed up MPC from the literature is the adapt-

ive horizon MPC. The method aims to provide an online horizon update

for subsequent MPC iterations. It shortens the prediction horizon as the

controlled system approaches a stabilizing region. The MPC problem size is

reduced, leading to shorter solution times while preserving the MPC stabil-

ity properties. Krener [75, 76] proposed using Lyapunov function properties

to detect stabilization before shortening the horizon. This method requires

the determination of a good Lyapunov function, which can be difficult for

nonlinear systems. Griffith et al. [77] employs linearization around the op-

erating point to establish a stabilizing region where the horizon can be

truncated.

Despite their successful implementation in standard MPC, the adaptive ho-

rizon techniques have not yet been employed in multi-stage MPC. Multi-

stage MPC has significantly larger solution times than standard MPC be-

cause of the explicit consideration of multiple scenarios in its optimization

problem. Hence, the adaptive horizon strategy is even more beneficial for

multi-stage MPC, particularly for nonlinear systems.
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This chapter presents the work done by Mdoe et al. [21], extending the

adaptive horizon scheme by Griffith et al. [77] for multi-stage MPC. The

approach requires performing one-step-ahead predictions, terminal region

calculations, and selection of the sufficient (stabilizing) prediction horizon

length. Although this was studied for standard MPC by [77], the extension

of these ideas to multi-stage MPC where we have multiple scenarios is not

trivial, because:

• The determination of terminal ingredients depends on the nature of

the scenario tree, and

• The horizon update using parametric NLP sensitivity needs to ensure

that the one-step-ahead approximate solution for each scenario reaches

its stabilizing terminal region.

This chapter also provides a proof of concept of the proposed algorithm using

two numerical case studies with nonlinear complexity. Later in Chapter 6, a

study that is based on the subsequent article [22] is presented to extend these

results by providing a robust stability analysis of the resulting controller

based on Input-to-State practical Stability (ISpS).

5.2 Adaptive horizon multi-stage MPC

Adaptive horizon algorithms provide an update for the prediction horizon

length of the MPC problem. The prediction horizon is not an optimization

variable in these approaches, resulting in faster horizon updates compared

to solving a mixed-integer NLP (MINLP) in variable horizon MPC [78]. The

adaptive horizon MPC has been implemented by [77] for reference tracking,

and then extended for economic MPC by [79]. This chapter aims to extend

the algorithm by [77] to multi-stage MPC with a reference tracking object-

ive. The algorithm is expected to have the capability to achieve a high level

of robustness by considering multiple scenarios in the optimization problem

while maintaining fast computation times.
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5.2.1 Transformation of variables

Setpoint tracking under uncertainty implies tracking different implicit ref-

erences for each scenario. Therefore, the solution to the multi-stage MPC

problem (3.3) has states and control inputs tracking different implicit ref-

erences for each parameter realization. It is possible to enforce a common

zero by reformulating (3.3) with transformed variables. But before that, let

us define the following properties:

Definition 19. (Mapping scenarios to parameter realizations) There exists

a function r : C 7→ Q mapping any scenario c to its parameter realization

index at its leaf node, where Q is the set of parameter realization indices.

Definition 20. (Stable and optimal equilibrium pairs for each parameter

realization) For any given parameter realization dr ∈ D, a state-input pair

(xr, ur) ∈ X×U is a stable equilibrium pair for system (2.1) if xr = f(xr, ur,

dr) holds. Further, if it yields the lowest stage cost among all equilibrium

points, then it is the optimal equilibrium pair (xrf , u
r
f ).

Then let us make the following assumption to ensure that there exists a

solution to the steady state optimization problem of (2.1) for each parameter

realization dr ∈ D.

Assumption 1. There exists an optimal equilibrium pair (xrf , u
r
f ) for each

parameter realization dr ∈ D. The optimal equilibrium pairs for each para-

meter realization are the implicit references for the corresponding scenarios.

To enforce a common zero to all the scenarios, reformulate (3.3) using the

following:

zci = zci − xrf , νci = νci − urf (5.1)

for all c ∈ C, and for all r ∈ Q. The transformed system model becomes:

zci+1 = f(zci , ν
c
i , d

c
i ) = f(zci + xrf , ν

c
i + urf , d

c
i )− xrf (5.2)

such that zci ∈ X, νci ∈ U, where X and U are the corresponding new

feasible sets of the transformed system. Equations (5.1) and (5.2) imply
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when (zci , ν
c
i ) = (0, 0) we have xrf = f(xrf , u

r
f , d

c
i ) for all c ∈ C, and for all

r ∈ Q. We define transformed stage costs as:

ℓ(zci , ν
c
i , d

c
i ) = ℓ(zci + xrf , ν

c
i + urf , d

c
i )− ℓ(xrf , urf , dci ) (5.3)

and transformed terminal costs as:

ψ(zcN , d
c
N−1) = ψ(zcN + xrf , d

c
N−1)− ψ(xrf , dcN−1) (5.4)

such that ψ(0, dcN−1) = ℓ(0, 0, dci ) = 0 for all c ∈ C.

The problem (3.3) is transformed using Eqs. (5.1) to (5.4) to obtain a com-

mon terminal region containing zero. This is a necessary property for the

closed-loop stability analysis which is presented in Chapter 6.

To keep the notation simple, we will continue using the original notation.

However, from here on, all variables and functions in equation (3.3) are

assumed to be transformed.

Now that the desired system properties have been defined, the next sub-

section discusses the methodology to compute the terminal ingredients for

each parameter realization in the multi-stage MPC.

5.2.2 Terminal ingredients for the adaptive horizon multi-stage MPC

The adaptive horizon multi-stage MPC requires the following:

• a terminal cost function ψ, and

• a positive invariant terminal region Xf .

The terminal cost is the weighted average of the terminal costs across all

parameter realizations. For each parameter realization, a terminal cost func-

tion is computed beforehand, based on a linearized system about its optimal

equilibrium pair [80].

The terminal region is assumed to be the region where a terminal control law

on the nonlinear system has a negligible error. However, the determination

of the terminal control law depends on whether the scenario tree is fully
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branched or has a robust horizon.

Terminal ingredients for multi-stage MPC with a robust horizon

First, consider when the scenario tree has a robust horizon i.e. NR < N .

The scenario tree has no NACs at the leaf nodes leading to decoupled ter-

minal control input variables across all the scenarios, νcN−1. Different sta-

bilizing control laws may exist inside the terminal region for each parameter

realization. Then the terminal regions for each parameter realization are ap-

proximated independently. We use an infinite horizon LQR for the control

law in the terminal region and the terminal cost.

Assumption 2. Given a parameter realization dr ∈ D for all r ∈ Q, there

exists a stabilizing LQR with a local control law hrf (x) := urf − Krx such

that f(x, hrf (x), d
r) ∈ Xrf for all x ∈ Xrf .

Assumption 2 considers that different LQR controllers may exist in the

terminal region across the different scenarios.

For a given parameter realization dr, linearize (2.1) about (xrf , u
r
f ) and write

the resulting system as a sum of the linear and nonlinear terms as follows:

xk+1 = AKrxk + ϕ(xk, h
r
f (xk), d

r) (5.5)

where AKr = Ar − BrKr, Ar = ∇⊤
x f(0, 0, d

r) and Br = ∇⊤
u f(0, 0, d

r) and

(Ar, Br) is stabilizable, ϕ : X × U × D 7→ X is the nonlinear part of the

dynamics. The infinite horizon LQR for the linearized system with the

parameter realization dr is:

ψ(xk, d
r) = x⊤k Prxk = min

νi

∞∑
l=0

(z⊤i Qzi + ν⊤i Rνi)

s.t. z0 = xk, zi+1 = Arzi +Brνi, ∀ i = 0, . . . , ∞
(5.6)

where Q ≻ 0, R ≻ 0 are tuning matrices. Pr ≻ 0 is the Ricatti matrix for

dr.

To determine the terminal region for the LQR on the nonlinear system,
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there must exist an upper bound on the nonlinear effects for any parameter

realization given by Lemma 2.

Lemma 2. For any parameter realization dr ∈ D, there exists Mr, qr ∈ R+

such that |ϕ(x, dr)| ≤Mr|x|qr , ∀x ∈ X where ϕ(x, dr) := ϕ(x, hrf (x), d
r).

Proof. Consider a single dr and then follow the proof of Theorem 14 in

[77].

Analytical determination of the linearization error and its bound is tedious

or impossible. The bounds are determined offline by one-step simulations

instead. One-step simulations from random initial states are used to obtain

the linearization error numerically by evaluating for each dr, the difference

ϕ(x, dr) = f(x, hrf (x), d
r)−AKrx, ∀x ∈ X.

Assumption 3. For a given dr, there exists a terminal region of attraction

Xrf around (xrf , u
r
f ) such that Xrf := {z | |z − xrf | ≤ crf} where crf is the

terminal radius corresponding to dr.

Assumption 3 means that the terminal region set for each parameter realiz-

ation is approximated by the interior of an n-sphere with radius crf . After

fitting Mr and qr for all parameter realizations according to Lemma 2, and

Assumption 3 holds, the terminal region radii are computed using Lemma 3.

Lemma 3. Suppose Assumption 3 holds, the terminal radii crf for all dr ∈ D
depend on their corresponding linearization error bounds which are given by:

crf :=

(
−σ̄rΛr +

√
(σ̄rΛr)2 + (λWr

− ϵLQ)Λr)
ΛrMr

) 1
qr−1

(5.7)

where σ̄r is the maximum singular value of AKr , λ̄Wr and λWr
are the

maximum and minimum eigenvalues of Wr := Q+Kr
⊤RKr, Λr :=

λ̄Wr
(1−σ̄r)2 ,

and ϵLQ > 0 is a small constant: an allowable tolerance for the terminal

cost ψ(x, dr).

Proof. As in Lemma 2, consider a single dr and use the proof from [77].
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Terminal ingredients for multi-stage MPC with a fully branched scenario

tree

Let us consider the case when the scenario tree is fully branched i.e. NR =

N . The stabilizing control law for each parameter realization inside the

terminal region cannot be determined independently due to the NACs at

the leaf node. Therefore, a common terminal control law must exist (i.e.

hrf (x) = κf (x), for all r).

After linearizing (2.1) as outlined in the previous subsection, the following

steps are used to determine the terminal ingredients for the adaptive horizon

multi-stage MPC with a fully branched scenario tree:

1. Select matrices Q, and R, for the LQR and choose a K such that

the common terminal control law κf (x) = −Kx is stabilizing for all

parameter realizations r, and −Kx ∈ U, ∀x ∈ X,
2. Solve for Pr in the discrete Lyapunov equation A⊤

r PrAr + Q = P⊤
r ,

for each parameter realization r,

3. Use Q, R, AKr to obtain the terminal radii for each parameter real-

ization r by evaluating (5.7) in Lemma 3 where AKr = Ar − BrK.

Then pick the smallest as the common terminal region’s radius,

4. Obtain the terminal cost function as the weighted sum ψ(x) =
∑

r x
r⊤

Prx
r.

Steps 3 and 4 above are similar procedures to those in the previous subsec-

tion, only that K is common for all realizations r.

5.2.3 Problem formulation

Now that the terminal ingredients for each parameter realization have been

defined, we present the formulation for the adaptive horizon multi-stage

MPC problem. The formulation is obtained by replacing the fixed horizon

N in (3.3) with a variable horizon Nk as follows:

V ahm
Nk

(xk,d
c) =min

zci ,ν
c
i

∑
c∈C

ωc

(
ψ(zcNk

, dcNk−1) +

Nk−1∑
i=0

ℓ(zci , ν
c
i , d

c
i )
)

(5.8a)
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Figure 5.1: Sensitivity prediction (solid lines) of (5.8) for three scenarios at tk+1,
and the terminal regions (below dashed lines). Nk+1 will be reduced from N to at
least N3

T .

s.t. zci+1 = f(zci , ν
c
i , d

c
i ), i = 0, . . . , Nk − 1 (5.8b)

zc0 = xk, (5.8c)

νci = νc
′
i , {(c, c′) | zci = zc

′
i } (5.8d)

dci−1 = dci , i ≥ NR (5.8e)

zci ∈ X, νci ∈ U, dci ∈ D, (5.8f)

zcN ∈ Xcf , (5.8g)

∀ c, c′ ∈ C

where V ahm
Nk

is the optimal cost function, and Nk is the prediction horizon

of the current MPC iteration given by a horizon update algorithm. The

horizon update algorithm requires one-step-ahead predictions obtained from

parametric NLP sensitivities that are discussed in the next subsection.

5.2.4 Horizon update algorithm

The algorithm begins by selecting Nmax, a safety factor Nmin > NR, and

computing the terminal ingredients offline. The value Nmax is chosen as a

sufficiently long horizon that guarantees the feasibility of (5.8) and is used

as an initialization for N . In each MPC iteration, the algorithm determ-

ines a horizon update such that all scenarios reach their terminal regions

irrespective of the initial state in the subsequent MPC iteration. Fig. 5.1
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is a simple illustration of how a new horizon length is determined for three

scenarios. The one-step-ahead prediction of the solution to (5.8) from a

sensitivity update is in solid lines and the terminal regions for each scenario

are below the dashed lines. Each scenario reaches its respective terminal

region at stage N c
T . To ensure that each scenario reaches its terminal region

at tk+1, the new prediction horizon must be at least equal to the largest

N c
T . Therefore in Fig. 5.1 Nk+1 must be greater than N3

T .

Algorithm 2 presents the horizon update algorithm for multi-stage MPC.

Algorithm 2 Horizon update for multi-stage MPC

1: Define Nmax, Nmin > NR

2: Determine Xrf , Pr for all dr ∈ D
3: Initialize: k ← 0, N0 ← Nmax

4: w⋆(xk)← Solve (5.8) with Nk and initial state xk
5: Xk+1 ← {xrk+1 | xrk+1 = f(xk, uk, d

r) ∀dr ∈ D}
6: ∇xkw⋆ ← Evaluate (2.17) to obtain NLP sensitivities at xk
7: W⋆

k+1 ← {get w⋆(xrk+1) using (2.19) ∀xrk+1 ∈ Xk+1}
8: for all w⋆(xrk+1) ∈W ⋆

k+1 do
9: if zcNk|k+1 ∈ Xrf ∀c ∈ C then1

10: N c
T ← step at which Xrf is reached

11: NT (x
r
k+1)← maxc∈CN c

T

12: else
13: NT (x

r
k+1)← Nmax

14: end if
15: end for
16: NT ← maxxrk+1∈Xk+1

NT (x
r
k+1)

17: Nk+1 ← min(Nmax, NT +Nmin)
18: k ← k + 1
19: Go to Step 4

The flowchart in Fig. 5.2 summarizes Algorithm 2 which is a mapping of the

current state and prediction horizon to the subsequent prediction horizon.

The mapping is defined as a function in Definition 21 as follows:

Definition 21. (Horizon update function) Let N be the universal set of ad-

missible horizon lengths such that N = {N |Nmin ≤ N ≤ Nmax, N ∈ Z+}.
1zcNk|k+1 is extracted from the perturbed solution vector w⋆(xr

k+1)
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Figure 5.2: Horizon update algorithm for multi-stage MPC that gives admissible
prediction horizons for subsequent MPC iterations.

Further, there exists a subset of horizon lengthsNk ⊂ N that define the feas-

ible problems (5.8) at time tk. We define a function H : Rnx×N ×Rnx 7→ N
that determines the horizon lengths for the adaptive horizon multi-stage al-

gorithm such that Nk+1 = H(xk, Nk, z
c
k+1|k) ∈ Nk+1.

5.3 Numerical experiments

Two numerical examples presented here consider a robust horizon (i.e. no

full branching). The aim is to compare the performances of the adaptive

horizon multi-stage MPC (varying horizon lengths) with fixed horizon multi-

stage MPC and to demonstrate the computational cost savings as a result

of the adaptive horizon algorithm.

5.3.1 Example 1 — Cooled CSTR

Consider the control of a CSTR with a cooling jacket example from [81].

The dynamics of the cooled CSTR are given by,

˙cA = F (cA,0 − cA)− k1cA − k3c2A
˙cB = −FcB + k1cA − k2cB
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ṪR = F (Tin − TR) +
kWAR
ρcpVR

(TJ − TR)

− k1cA∆HAB + k2cB∆HBC + k3c
2
A∆HAD

ρcp

ṪJ =
1

mJcp,J
(Q̇J + kWAR(TR − TJ))

where reaction rates ki follow the Arrhenius law, ki = Ai exp
(

−Ei
RTR

)
.

The state variable vector x = [cA, cB, TR, TJ ]
⊤ consists of the concentra-

tions of A and B, reactor and coolant temperatures, respectively. The

control inputs u, are inlet flow per reactor volume F = Vin/VR, and cooling

rate Q̇J .

The control objective is to regulate cB at a desired setpoint. The system

operates at two setpoints: csetB = 0.5mol/ℓ, and csetB = 0.7mol/ℓ. The

activation energy E3 = 8560R ± 2.5% K is the only uncertain parameter

in the system. Table A.2 summarizes the system bounds and its initial

conditions. The stage cost is a setpoint tracking squared error of cB plus

control movement penalization terms ∆Fi = Fi − Fi−1 and ∆Q̇Jk = Q̇J i −
Q̇J i−1 given by ℓk = (cBi− csetB )2 + r∆1∆F

2
i + r∆2∆Q̇J

2
i . where the control

penalties are r∆1 = 10−5 and r∆2 = 10−7. Regularization terms are added

to impose implicit references on the remaining states and strong convexity

[82].

The initial prediction horizon is N0 = 40. Terminal constraints are included

for all the scenarios. The simulations are performed for NR = 1, 2. Three

parameter realizations are sampled (selected), such that when NR = 2 there

are 9 scenarios as in Fig. 3.2.

Offline approximation of terminal conditions

To design a stabilizing LQR for each parametric realization, we use Q = I4,

and R = diag([10−3 10−4]). As outlined before, 105 one-step simulations are

performed offline from random initial states to compute linearization error

for each parametric realization and each operating point. Fig. 5.3 shows the

plots of the linearization error against |∆x| for each parametric realization
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and each setpoint. All the plots show an upper bound on the linearization

Figure 5.3: CSTR — plots of linearization error against |∆x| for 10000 simulations
for each parametric realization of E3, at each setpoint csetB = 0.5 mol/ℓ and 0.7
mol/ℓ showing their bounds (red lines).

error (red solid lines in Fig. 5.3) from which Mr and qr values are fitted.

The terminal region radii for each parametric realization are obtained by

evaluating (5.7) as shown in Table 5.1.

Table 5.1: CSTR — linearization error bounds and terminal radii

E3 (K)
csetB = 0.5 mol/l csetB = 0.7 mol/l
Mr qr crf Mr qr crf

8774 0.62 2.0 0.1429 0.50 2.0 0.1718
8560 0.75 2.0 0.1159 0.62 2.0 0.1337
8346 1.12 2.0 0.0747 0.90 2.0 0.0846

Simulation results

The simulations are done using JuMP v.0.21.10 [83] as the NLP modeler in

a Julia [84] environment. The NLP solver used is IPOPT 3.13.4 [85], and

the linear solver is HSL-MA57 by the STFC Rutherford Appleton Laboratory,

on a 2.6 GHz Intel Core-i7 with 16 GB memory.
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A sample time of 18 s is used, and the process is simulated for 0.6 h. At

the beginning csetB = 0.5mol/ℓ and it changes to csetB = 0.7mol/ℓ at tk =

0.3 h. The uncertain parameter E3 is a random sequence of the sampled

realizations, where the value of E3 changes at every time step. The control

performance of the adaptive horizon multi-stage MPC is compared with the

fixed horizon multi-stage MPC in this system. The value of Nmin = 5 in

the adaptive horizon multi-stage algorithm. Figs. 5.4 and 5.5 show closed-

loop simulation results when NR = 1, 2, respectively. The optimal input

0.5

0.6

0.7

c B
(m

o
l/
`)

NR = 1

Set-point

128

132

136

T
R

(K
)

Adaptive horizon

Fixed horizon

0

10

20

30

F
(h
−

1
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

time (h)

−8

−4

Q̇
J

(M
J
/
h

)

Figure 5.4: CSTR — Simulation results comparing the adaptive horizon multi-
stage MPC with the fixed horizon multi-stage MPC when robust horizon NR = 1.

sequences and state trajectories for both controllers are nearly identical.

The two controllers show similar performance in tracking setpoint changes

csetB . This implies that the adaptive horizon algorithm does not affect the

tracking performance of the multi-stage MPC.

The prediction horizon and total computation times per iteration for the two

controllers when NR = 1, 2 are plotted in Figs. 5.6 and 5.7, respectively. It

is evident in Figs. 5.6 and 5.7 that the prediction horizon increases slightly
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Figure 5.5: CSTR — Simulation results comparing the adaptive horizon multi-
stage MPC with the fixed horizon multi-stage MPC when robust horizon NR = 2.
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Figure 5.6: CSTR — Simulation results comparing prediction horizons and com-
putation times per iteration when robust horizon NR = 1.
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Figure 5.7: CSTR — Simulation results comparing prediction horizons and com-
putation times per iteration when robust horizon NR = 2.

to adapt to the setpoint change at 0.3 hours. This shows that the adaptive

horizon algorithm can flexibly handle setpoint changes in operation and

automatically schedule prediction horizon lengths.

The adaptive horizon multi-stage MPC reduces the prediction horizon signi-

ficantly, thus saving the computation time needed in each multi-stage MPC

iteration. There is an 86% savings in CPU time on average from fixed hori-

zon multi-stage MPC withNR = 1 by using the adaptive horizon multi-stage

MPC. When NR = 2, there is also a 92% savings in CPU time on average.

The regulatory performances of the two controllers are nearly identical but

the prediction horizon and computation time are reduced significantly for

the adaptive horizon multi-stage MPC.

5.3.2 Example 2 — Quad-tank system

The second example is from [87], on the control of a quad-tank system with

four tanks whose configuration is illustrated in Fig. 5.8. The liquid levels in

the four tanks are described by the following set of differential equations:

ẋ1 = −
a1
A1

√
2gx1 +

a3
A1

√
2gx3 +

γ1
A1
u1

ẋ2 = −
a2
A2

√
2gx2 +

a4
A2

√
2gx4 +

γ2
A2
u2

ẋ3 = −
a3
A3

√
2gx3 +

1− γ2
A3

u2
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Figure 5.8: Quad-tank system diagram

ẋ4 = −
a4
A4

√
2gx4 +

1− γ1
A4

u1

where xi represents the liquid level in tank i, ui is the flow rate of pump i.

The system has four states: x = [x1, x2, x3, x4]
⊤ and two control inputs:

u = [u1, u2]
⊤. Ai and ai are the cross sectional areas of the tank i and

its outlet, respectively. The valve coefficients γ1 and γ2 are the uncertain

parameters of this system. The values of γ1, γ2 = 0.4± 0.05 and the system

bounds are shown in Table A.4.

The controller has a reference tracking objective, regulating the two levels in

the lower tanks (tanks 1 and 2). The setpoints are xset1 = xset2 = 14 cm. We

introduce predefined pulse changes in the state values at specific iterations

to reset reference tracking as shown in Table A.5.

The closed-loop multi-stage MPC simulations are run for 150 iterations

with a sample time of 10 s. The stage cost function is given by: ℓk =

(x1i − xset1 )2 + (x2i − xset2 )2 + r∆(∆u1
2
i +∆u2

2
i ), where ∆u1i = u1i − u1i−1

and ∆u2i = u2i− u2i−1 are the control movement terms for the pump flow-
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rates that are penalized in the objective function with the penalty parameter

r∆ = 0.01.

Offline approximation of terminal conditions

LQR controller tuning Q = 1.5I4 and R = I2 are selected for the stabilizing

controller for each parameter realization of γ1 and γ2. As done previously,

105 one-step offline simulations from randomly sampled initial state values

are performed for each parameter realization to compute the linearization

error. The set D is obtained via grid-based sampling including the nominal

and extreme parameter values only. A total of 9 parameter realizations

are considered for the two uncertain parameters. Fig. 5.9 is a matrix of

Figure 5.9: Quad-tank — matrix of plots of linearization error against |∆x| of
10, 000 simulations for every uncertain parameter realization.

linearization error plots from the one-step simulations with estimated upper

bounds (red lines) for each uncertain parameter realization. The terminal

radii for each parameter realization are computed using (5.7). The estimated

linearization error bounds and terminal radii for each parameter realization

are shown in Table 5.2.
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Table 5.2: Quad-tank — linearization error bounds and terminal radii

γ1 γ2 Mr qr crf
0.45 0.45 0.0058 2.0 30.43
0.40 0.45 0.0088 2.0 19.99
0.35 0.45 0.0142 2.0 12.12
0.45 0.40 0.0065 2.0 27.04
0.40 0.40 0.0056 2.0 31.77
0.35 0.40 0.0057 2.0 31.57
0.45 0.35 0.0074 2.0 23.69
0.40 0.35 0.0068 2.0 26.63
0.35 0.35 0.0059 2.0 30.97

Simulation results

The simulations are done using JuMP v.0.21.10 [83] as the NLP modeler in

a Julia [84] environment. The NLP solver used is IPOPT 3.13.4 [85], and

the linear solver is HSL-MA57 by the STFC Rutherford Appleton Laboratory,

on a 2.6 GHz Intel Core-i7 with 16 GB memory.

The parameters γ1 and γ2 have an uncertainty range of ±0.05 about their

nominal value. Similar to Example 2, the simulations are performed with

a parameter sequence randomly sampled from {max, nom, min} values.

Again, two simulation sets compare the control performances of the adapt-

ive horizon and fixed horizon multi-stage MPC when NR = 1, 2. Simulation

results of the quad-tank system for the two controllers when NR = 1, 2 are

plotted in Figs. 5.10 and 5.11, respectively. It is seen from the levels x1, x2

that the setpoint tracking performance of the two controllers for both cases

of NR = 1, 2 are again nearly identical. There are also no significant con-

straint violations in the bounds of x3 and x4 for both controllers. Therefore,

there are no performance losses in both reference tracking and robustness

of the multi-stage MPC by including the horizon update algorithm. This

result, however, must not mislead the reader to think that the choice of

robust horizons does not affect performance. In this example, increasing

the robust horizon from 1 to 2 led to increased conservativeness for each

controller. This is evident with increased accumulated cost as summarized
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Figure 5.10: Quad-tank — Simulation results comparing fixed horizon multi-stage
and adaptive horizon multi-stage MPC with NR = 1.
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Figure 5.11: Quad-tank — Simulation results comparing fixed horizon multi-stage
and adaptive horizon multi-stage MPC with NR = 2.
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in Table 5.3.

Table 5.3: Quad-tank — Comparing accumulated costs for each robust horizon
length and controller

MSMPC scheme
Robust horizon
NR = 1 NR = 2

Adaptive horizon 2161.34 2175.86
Fixed horizon 2161.82 2180.60

The prediction horizon and computation time per iteration for both con-

trollers when NR = 1, 2 are plotted in Figs. 5.12 and 5.13, respectively.
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Figure 5.12: Quad-tank — plot comparing prediction horizons and computation
times at each iteration for ideal multi-stage and adaptive horizon multi-stage MPC
with NR = 1.

There is a reduction in the prediction horizon as the process approaches its

setpoint. The horizon update algorithm is unaffected by the pulse changes

in the tank levels. This is probably because the terminal radii values (see

Table 5.2) are of the same order as the tank levels. Therefore the pulse

changes do not displace the system far enough from the terminal region to

cause a significant horizon increase. The average CPU time of the fixed

horizon multi-stage MPC was significantly reduced by 74% with an adapt-

ive horizon when NR = 1. Similarly, the CPU time reduction is 33% when

NR = 2.
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Figure 5.13: Quad-tank — plot comparing prediction horizons and computation
times at each iteration for ideal multi-stage and adaptive horizon multi-stage MPC
with NR = 2.

5.4 Conclusion

This chapter adapts the existing adaptive horizon algorithm in [77] and

extends it for multi-stage MPC to improve much-needed computational ef-

ficiency. First, the terminal costs and regions are computed independently

for each uncertain parameter realization about their optimal steady states.

The existence of a common terminal region is assumed for all uncertain

parameter realizations, and the prediction horizon is updated such that it

is always reached.

The adaptive horizon multi-stage MPC formulation is found to be both

computationally efficient and robust. Simulation experiments show that the

control performance of the adaptive horizon multi-stage MPC framework

is similar to that of the fixed horizon multi-stage NMPC. However, the

adaptive horizon framework has faster solve times than the fixed horizon

multi-stage MPC. The adaptive horizon update is beneficial for multi-stage

MPC to reduce NLP size and computational delay. This method can be

applied to control a nonlinear system provided that it is attracted to a

terminal region.
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6 | Stability Properties of the

Adaptive Horizon

Multi-stage MPC

“Design is not just what it looks like and feels

like. Design is how it works.”

Steve Jobs (1955-2011)

This chapter presents and discusses the recursive feasibility and stability

properties of multi-stage MPC and standard MPC with variable horizon

lengths. A theoretical analysis is presented to show the effects of the ro-

bust horizon assumption on the recursive feasibility and robust constraint

satisfaction for adaptive horizon multi-stage MPC.

The results in this chapter are adopted from the article “Stability properties

of the adaptive horizon multi-stage MPC” [22].
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6.1 Motivation

In the previous chapter, an adaptive horizon approach has been proposed to

address the issue of computational burden in multi-stage MPC. The horizon

update algorithm, however, has to guarantee that the resulting optimiza-

tion problem is always feasible. The algorithm allows expansion of the

prediction horizon to ensure closed-loop stability when look-ahead predic-

tions do not meet terminal conditions. Therefore, it is vital to perform a

theoretical analysis to investigate the conditions and margins for recursive

feasibility and stability properties of the adaptive horizon multi-stage MPC.

The recursive feasibility analysis is done for both the fully branched scen-

ario tree and robust horizon formulations to understand their limitations.

A stability analysis under reasonable assumptions shows that the adapt-

ive horizon multi-stage MPC is Input-to-State practically Stable (ISpS) for

both shrinking and expanding horizon lengths. Finally, a numerical example

demonstrates the control performance of the proposed controller when all

conditions of recursive feasibility and ISpS are satisfied.

6.2 Preliminaries

Applying the optimal control input computed by the MPC controller to

system (2.1) results in a closed-loop uncertain system whose dynamics are

denoted by xk+1 = F (xk, dk). Stability analysis is performed for the closed-

loop uncertain system. Input-to-state practical stability (ISpS) is the suit-

able framework to analyze the stability properties of such a system.

A standard MPC equivalent with an adaptive horizon can be obtained from

(5.8) by setting dci = d0i for all c ∈ C as follows:

V ahm
Nk

(xk,d
0) =min

zci ,ν
c
i

∑
c∈C

ωc

(
ψ(zcNk

, d0Nk−1) +

Nk−1∑
i=0

ℓ(zci , ν
c
i , d

0
i )
)

(6.1a)

s.t. zci+1 = f(zci , ν
c
i , d

0
i ), i = 0, . . . , Nk − 1 (6.1b)

zc0 = xk, (6.1c)

νci = νc
′
i , {(c, c′) | zci = zc

′
i } (6.1d)
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d0i−1 = d0i , i = NR, . . . , Nk − 1 (6.1e)

zci ∈ X, νci ∈ U, d0i ∈ D, (6.1f)

zcNk
∈ Xcf , (6.1g)

∀ c, c′ ∈ C,

where (6.1) effectively consists of c identical copies of the standard MPC

with an adaptive horizon.

It follows from Theorem 1 that the difference between the primal solu-

tions (zi, νi) of (5.8) and (6.1) is |w⋆(dc) − w⋆(d0)| ≤ Ls|∆d|, where w⋆ =
[z⋆⊤, ν⋆⊤]⊤, Ls > 0 is the Lipschitz constant, and |∆d| is defined as:

|∆d| := max
dr,dr′∈D

|dr − dr′ | (6.2)

that is the maximum difference in the disturbance vector between any two

parameter realizations. Since the evolution of (2.1) in closed-loop depends

on the true disturbance dk, then xk+1 = f(xk, κ(xk), dk), and xk+1 ≤ f(xk,
κ(xk), d

0
k)+O(|∆d|). This result facilitates the recursive feasibility and ISpS

stability analysis for the adaptive horizon multi-stage MPC that follows.

But first, let us define the following basic assumptions:

Assumption 4. (Basic assumptions for adaptive horizon multi-stage MPC)

The adaptive horizon multi-stage MPC has the following properties:

A. Lipschitz continuity: The functions f , ℓ, and ψ are Lipschitz continu-

ous with respect to x, u and d in the compact set X×U×convhull(D).
B. Constraint set: The constraint sets X and U are compact, and contain

the origin in their interiors.

C. The solution to (5.8) satisfies LICQ and SSOSC such that Theorem 1

applies.

The equality constraints in (5.8) are always feasible and their gradients have

full rank because, for any fixed admissible input νci and initial condition xk,

there exists a unique solution. Therefore, the equality constraints in (5.8) are

linearly independent. In addition, LICQ is ensured at the solution of (5.8) by
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including the inequalities of only one of the control input variables subjected

to NACs. SSOSC holds at the solution of (5.8) when regularization terms for

all variables are added to the objective.With these properties, the Lipschitz

continuity holds w.r.t. xk and dc for the optimal solution and the optimal

cost V ahm
Nk

.1

Assumption 5. (Property of the stage cost) Given a common control law

κ : X 7→ U then for any parameter realization dr ∈ D, the stage cost ℓ is

bounded as follows: αp(|x|) ≤ ℓ(x, κ(x), dr) ≤ αq(|x|) + σq(|dr − d0|) where
αp( · ), αq( · ) ∈ K∞, and σq( · ) ∈ K.

Assumption 5 requires that the stage cost is positive, with lower and upper

bounds proportional to the state at the nominal disturbance. When the

disturbance realization is not nominal, the upper bound increases by a term

proportional to the distance of the disturbance realization from the nominal.

Assumption 6. (Assumptions on terminal conditions of the adaptive horizon

multi-stage MPC). Let Assumption 4 hold for all parameter realizations

dr ∈ D then:

A. There exists a common terminal region Xf =
⋂
r∈Q

Xrf , that is robust

control invariant.

B. Xf ⊆ X is compact and contains the origin in its interior.

C. The terminal cost is bounded as follows: αp,ψ(|x|) ≤ ψ(x, dr) ≤
αq,ψ(|x|) + σq,ψ(|dr − d0|) where αp,ψ, αq,ψ ∈ K∞, and σq,ψ ∈ K.

D. The terminal cost is a local control Lyapunov function ψ(f(x, κf (x),

dr), dr)− ψ(x, dr) ≤ −ℓ(x, κf (x), dr) for all x ∈ Xf .

Assumption 6 is needed because a common terminal region must exist for

a possible reduction of the prediction horizon. The selection of a prediction

horizon where all scenarios reach their respective terminal regions in Step

11 of Algorithm 2 implies that the common terminal region is reached. This

region may be a null set when |∆d| is sufficiently large. Further, this can

be determined beforehand when computing the terminal ingredients.

1The LICQ condition may be relaxed to MFCQ or CRCQ, and SSOSC relaxed to
GSSOSC. In that case, a similar Lipschitz argument can be made [82].
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scenario tree

6.3 Recursive feasibility of the adaptive horizon multi-

stage MPC with a fully branched scenario tree

Before stability analysis, recursive feasibility must be guaranteed by ensur-

ing robust constraint satisfaction. Given the assumptions above, we first

present the following result for a fully branched scenario tree i.e. NR = Nk:

Theorem 4. (Recursive feasibility of the adaptive horizon multi-stage MPC).

Suppose Assumption 4, 5 and 6 hold, then problem (5.8) from a fully branched

scenario tree NR = Nk is recursively feasible.

Proof. Let Assumption 4 and 6 hold and consider the fully branched multi-

stage MPC with NR = Nk. Proposition 4 in [88] and Theorem 6 in [89]

show that if a robust control invariant terminal region exists then the fully

branched multi-stage MPC with a fixed horizon NR = Nk is recursively

feasible. Since the adaptive horizon multi-stage MPC withNR = Nk ensures

that the horizon is updated such that the common terminal region is always

reached, it is also recursively feasible for any horizon update Nk+1 given by

Algorithm 2.

6.4 Recursive feasibility of the adaptive horizon multi-

stage MPC with a robust horizon

Recursive feasibility cannot be guaranteed by using the same arguments in

Theorem 4 when the scenario tree is not fully branched. But the infeasib-

ility of problem (5.8) when NR < Nk may be avoided by relaxing the state

inequalities using soft constraints [20]. However, robust constraint satisfac-

tion is not guaranteed because the state trajectories may cross the feasible

set X. Therefore, before proceeding to the stability analysis the following

assumption must be made:

Assumption 7. Problem (5.8) is feasible at time tk when Nk = Nmax. Fur-

thermore, if problem (5.8) at time tk with xk and Nk is feasible, then so is

problem (5.8) solved at time tk+1 with xk+1 and Nk+1 = H(xk, Nk, xk+1) ∈
Nk+1 for all xk, xk+1 ∈ X, Nk ∈ Nk+1.

75



Stability Properties of the Adaptive Horizon Multi-stage MPC

Assumption 7 ensures that H (see Definition 21) produces feasible horizon

lengths for any robust horizon NR ≤ Nk, essentially implying recursive

feasibility. This allows us to present results on the ISpS property of the

adaptive horizon multi-stage MPC.

6.5 ISpS for adaptive horizon multi-stage MPC

First, the relationships between the linear and nonlinear systems are needed

because the nonlinear system (2.1) is controlled by a stabilizing linear con-

troller inside the common terminal region Xf . Consider the nominal prob-

lem (6.1) inside the terminal region evaluated using a stabilizing terminal

control law κ0f :

V lqr
N (xk,d

0) :=
∑
c∈C

ωc

(
ψ(z0N , d

0
N−1) +

N−1∑
i=0

ℓ(z0i , κ
0
f (z

0
i ), d

0
i )
)

(6.3)

where z0i+1 = A0z
0
i + B0ν

0
i + ψ(z0i , d

0), ∀i = 0, . . . , N − 1, and V lqr
N (xk,d

0)

is the nominal LQR cost. The relationships between the optimal costs of

the nominal equivalents of the LQR and adaptive horizon multi-stage MPC

in the terminal region are given in Lemma 5.

Lemma 5. (Effect of linearization on costs inside the terminal region) There

exists αn ∈ K∞ such that |V lqr
N (x,d0) − ψ(x, d0)| ≤ αn(|x|) and αv ∈ K∞

such that |ψ(x, d0) − V ahm
N (x,d0)| ≤ αv(|x|) for all x ∈ Xf and for all

N ∈ N .

Proof. Because this is a nominal problem, the result holds because of Lem-

mas 18 and 19 in [77].

Assumption 8. The solution to (6.1) with a prediction horizon Nk ≥ Nmin

satisfies:

αn(|z0Nk|k|)− αp(|xk|) ≤ −α3(|xk|) if Nk+1 ≥ Nk (6.4a)

αv(|z0Nk+1+1|k|)− αp(|xk|) ≤ −α3(|xk|) if Nk+1 < Nk (6.4b)
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for some α3 ∈ K∞, where Nk+1 = H(xk, Nk, z
0
k+1|k) ∈ Nk+1, αp satisfy

Assumption 5, and αn, αv satisfy Lemma 5.

This assumption implies that the approximation error from using the sta-

bilizing linear control law inside the terminal region must be negligible.

Assumption 8 can be satisfied by finding a suitably large Nmin that is de-

termined through simulations as explained in [77].

Theorem 6. (ISpS stability of adaptive horizon multi-stage MPC) Suppose

Assumption 5 and 6 hold for (5.8), the optimal value function V ahm is an

ISpS Lyapunov function and the resulting closed-loop system is ISpS stable.

Proof. To show the ISpS property of the adaptive horizon multi-stage MPC,

a Lyapunov function must exist that satisfies the three conditions in (2.6).

Lower bound: Suppose Assumption 5 holds then there exists a lower bound

(2.6a) on the optimal value function.

V ahm
N (xk,d

c) ≥ ℓ(xk, κN (xk), d00) ≥ αp(|xk|) ∀xk ∈ X (6.5)

Upper bound : The existence of an upper bound (2.6b) is shown as follows:

V ahm
N (xk,d

c) ≤ V ahm
N (xk,d

0) + Lv|∆d| (6.6a)

≤ ψ(xk, d0) + Lv|∆d| (6.6b)

≤ αq,ψ(|xk|) + c1 (6.6c)

for all xk ∈ Xf , where c1 = Lv|∆d| is a constant. It also applies to all xk ∈ X
by induction because Xf ⊆ X, and V ahm

N (xk,d
0) is continuous at the origin.

Equation (6.6a) follows from Lipschitz continuity property in Assumption 4.

Since V ahm
N (xk,d

0) is the equivalent of the standard MPC cost function then

(6.6b) follows from the monotonicity property [90]. Finally, (6.6c) follows

from the boundedness of the terminal cost in Assumption 6.

Function descent: The descent property (2.6c), which is the main part of

stability analysis, is shown for two possible cases of horizon update:
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1. A decreasing prediction horizon NR ≤ Nk+1 < Nk: An approximate

solution for (6.1) at time tk+1 is found by shifting the optimal solution at

time tk as follows:

ν̂0i|k+1 = ν0i+1|k, i = 0, . . . , Nk+1 − 1, (6.7)

and the corresponding initialization for state variables:

ẑ00|k+1 = z01|k, (6.8a)

ẑ0i+1|k+1 = f(ẑ0i|k, ν̂
0
i|k, d

0
i ) (6.8b)

leads to a suboptimal cost such that the descent inequality becomes:

V ahm
Nk+1

(f(xk, κ(xk), d
0
0),d

0)− V ahm
Nk

(xk,d
0)

≤
∑
c∈C

ωc

(
ψ(ẑ0Nk+1|k+1, d

0
Nk+1−1) +

Nk+1−1∑
i=0

ℓ(ẑ0i|k+1, ν̂
0
i|k+1, d

0
i )
)

−
∑
c∈C

ωc

(
ψ(ν0Nk|k, d

0
Nk−1)−

Nk−1∑
i=0

ℓ(z0i|k, ν
0
i|k, d

0
i )
) (6.9a)

= −ℓ(xk, κ(xk), d00) + ψ(ẑ0Nk+1|k+1, d
0
Nk+1−1)

+

Nk+1−1∑
i=0

(
ℓ(ẑ0i|k+1, ν̂

0
i|k+1, d

0
i )− ℓ(z0i+1|k, ν

0
i+1|k, d

0
i )
)

− ψ(z0Nk|k, d
0
Nk−1)−

Nk−1∑
i=Nk+1+1

ℓ(ẑ0i|k, ν̂
0
i|k, d

0
i )

(6.9b)

= −ℓ(xk, κ(xk), d00) + ψ(ẑ0Nk+1|k+1, d
0
Nk+1−1)

− ψ(z0Nk|k, d
0
Nk−1)−

Nk−1∑
i=Nk+1+1

ℓ(ẑ0i|k, ν̂
0
i|k, d

0
i )

(6.9c)

= −ℓ(xk, κ(xk), d00)
+ ψ(ẑ0Nk+1|k+1, d

0
Nk+1−1)− V ahm

Nk−Nk+1−1(z
0
Nk+1+1|k,d

0)
(6.9d)

In the presence of true uncertainty, the successor state is xk+1 = f(xk, κ(xk), dk)
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where dk is the true parameter realization, such that:

V ahm
Nk+1

(xk+1,d
0)− V ahm

Nk
(xk,d

0) ≤ −ℓ(xk, κ(xk), d00)
+ ψ(ẑ0Nk+1|k+1, d

0
Nk+1−1)− V ahm

Nk−Nk+1−1(z
0
Nk+1+1|k,d

0)

+ Lk|dk − d0i |

(6.9e)

Then from Eqs. (5.8) and (6.1) we have:

V ahm
Nk

(xk,d
c) = V ahm

Nk
(xk,d

0) +O(|∆d|), and (6.10a)

V ahm
Nk+1

(xk+1,d
c) = V ahm

Nk+1
(xk+1,d

0) +O(|∆d|) (6.10b)

that can be combined with (6.9e) to form:

V ahm
Nk+1

(xk+1,d
c)− V ahm

Nk
(xk,d

c) ≤ −ℓ(xk, κ(xk), d00)
+ ψ(ẑ0Nk+1|k+1, d

0
Nk+1−1)− V ahm

Nk−Nk+1−1(z
0
Nk+1+1|k,d

0)

+ Lk|dk − d0i |+
(
V ahm
Nk+1

(xk+1,d
c)− V ahm

Nk+1
(xk+1,d

0)
)

+
(
V ahm
Nk

(xk,d
c)− V ahm

Nk
(xk,d

0)
)

(6.11a)

≤ −ℓ(xk, κ(xk), d00) + ψ(ẑ0Nk+1|k+1, d
0
Nk+1−1)

− V ahm
Nk−Nk+1−1(z

0
Nk+1+1|k,d

0) + Lk|dk − d0i |+ 2Lv|∆d|
(6.11b)

≤ −αp(|xk|) + αv(|z0Nk+1+1|k|) + Lk|dk − d0i |+ 2Lv|∆d| (6.11c)

≤ −α3(|xk|) + σ(|dk − d0i |) + c2 (6.11d)

where c2 = 2Lv|∆d| ≥ 0 and (6.11c) follows from Lemma 5 and (6.11d)

follows from (6.4b).

2. An increasing prediction horizon Nk+1 ≥ Nk: Similar to the first case

approximate the solution of (6.1) at tk+1 by shifting:

ν̂0i|k+1 =

ν0i+1|k ∀ i = 0, . . . , Nk − 2

−K0z
0
i ∀ i = Nk − 1, . . . , Nk+1 − 1

(6.12)

The initialization of the states is the same as in (6.8). Then the descent
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inequality becomes:

V ahm
Nk+1

(f(xk, κ(xk), d
0
0),d

0)− V ahm
Nk

(xk,d
0) (6.13a)

≤
∑
c∈C

ωc

(
ψ(ẑ0Nk+1|k+1, d

0
Nk+1−1) +

Nk+1−1∑
i=0

ℓ(ẑ0i|k+1, ν̂
0
i|k+1, d

0
l )
)

−
∑
c∈C

ωc

(
ψ(z0Nk|k, d

0
Nk−1)−

Nk−1∑
i=0

ℓ(z0i|k, ν
0
i|k, d

0
i )
) (6.13b)

= −ℓ(xk, κ(xk), d00)

+

Nk−2∑
i=0

(
ℓ(ẑ0i|k+1, ν̂

0
i|k+1, d

0
i )− ℓ(z0i+1|k, ν

0
i+1|k, d

0
i )
)

+ ψ(ẑ0Nk+1|k+1, d
0
Nk+1−1) +

Nk+1−1∑
i=Nk−1

ℓ(ẑ0i|k, ν̂
0
i|k, d

0
i )

− ψ(z0Nk|k, d
0
Nk−1)

(6.13c)

= −ℓ(xk, κ(xk), d00) + ψ(ẑ0Nk+1|k+1, d
0
Nk+1−1)

+

Nk+1−1∑
i=Nk−1

ℓ(ẑ0i|k+1, ν̂
0
i|k+1, d

0
i )− ψ(z0Nk|k, d

0
Nk−1)

(6.13d)

= −ℓ(xk, κ(xk), d00) + VNk−Nk+1+1(z
0
Nk|k,d

0)

− ψ(z0Nk|k, d
0
Nk−1)

(6.13e)

In the presence of true parameter realization dk then:

V ahm
Nk+1

(xk+1,d
0)− V ahm

Nk
(xk,d

0) ≤ −ℓ(xk, κ(xk), d00)
+ V lqr

Nk+1−Nk+1(z
0
Nk|k,d

0)− ψ(z0Nk|k, d
0
Nk−1)

+ Lk|dk − d0i |

(6.13f)

Substituting (6.10a) and (6.10b) on (6.13f) we have:

V ahm
Nk+1

(xk+1,d
c)− V ahm

Nk
(xk,d

c) ≤ −ℓ(xk, κ(xk), d00)
+ V lqr

Nk+1−Nk+1(z
0
Nk|k,d

0)− ψ(z0Nk|k, d
0
Nk−1)

+ Lk|dk − d0i |+ 2Lv|∆d|

(6.14a)
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≤ −ℓ(xk, κ(xk), d00) + V lqr
Nk+1−Nk+1(z

0
Nk|k,d

0)

− ψ(z0Nk|k, d
0
Nk−1) + Lk|dk − d0i |+ 2Lv|∆d|

(6.14b)

≤ −αp(|xk|) + αn(|z0Nk|k |) + Lk|dk − d0i |+ 2Lv|∆d| (6.14c)

≤ −α3(|xk|) + σ(|dk − d0i |) + c2 (6.14d)

where c2 = 2Lv|∆d| ≥ 0, and (6.14c) follows from Lemma 5 and (6.14d)

follows from (6.4a).

Thus V ahm
Nk

satisfies the descent property (2.6c) for all the possible horizon

length updates. Hence the adaptive horizon multi-stage MPC is ISpS stable.

6.6 Numerical example

This numerical example aims to show the performance of the proposed con-

troller when all the conditions for recursive feasibility and ISpS stability

presented in this chapter are satisfied.

This is a simple example adapted from [91] used to demonstrate the per-

formance of an adaptive horizon multi-stage MPC with a fully branched

scenario tree, and therefore suitable terminal conditions that guarantee re-

cursive feasibility and ISpS stability (see Section 6.3). The system model is

written as:

ẋ1 = x2

ẋ2 = −
k0
m

e−x1x1 −
hd
m
x2 +

u

m

where the state variable vector x = [x1, x2]
⊤ includes the displacement

and the velocity of the mass m = 1 kg, respectively. k = k0e
−x1 is the

elastic constant of the spring and k0 = 0.33 N/m. The damping factor hd is

uncertain and can have three different possible values hrd = {1.0, 2.0, 4.0}
Ns/m with equal probabilities. The damping factor is assumed to vary

unpredictably between sampling intervals of ∆t = 0.4 s.
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Figure 6.1: Spring-damper-mass — plots of linearization error against |∆x| for
10000 simulations showing the bound (red line).

The objective is to control the mass to its equilibrium position x1 = 0 using

an external force u. The stage cost is given by ℓ = x⊤Qx + u⊤Ru and hd

varies randomly at each time step with the previously defined probabilities.

6.6.1 Approximation of terminal conditions

The LQR method explained in Section 5.2.2 is applied to find suitable ψ

and Xf . The tuning matrices used are Q = diag([30, 20]) and R = 1. The

terminal control law must be common for all scenarios due to full branching

(see Section 5.2.2). Therefore, K = [1.7409 2.0959] is chosen with κf (x) =

−Kx for all x ∈ Xf . Different values of Pr are computed using the Lyapunov

equation to obtain the respective terminal costs for each realization. The

terminal radii are determined by performing 105 one-step simulations of

the closed-loop system and estimating the linearization error bound. The

linearization error of this system is independent of hd, so the simulations

were performed for only one of the disturbance realizations. After obtaining

bound parameters Mr = 0.3235 and qr = 2.2176, the terminal radii were

found to be crf ≈ {0.8032, 0.8922, 0.6690}.

6.6.2 Simulation results

The simulations are done using JuMP v.0.21.10 [83] as the NLP modeler in

a Julia [84] environment. The NLP solver used is IPOPT 3.13.4 [85], and
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Figure 6.2: Spring-damper-mass — simulation results from two initial conditions
x0 = [−4, 4] (blue lines) and x0 = [5.3, 2]⊤ (black lines) showing the control
performance of a fully branched adaptive horizon multi-stage MPC.

the linear solver is HSL-MA57 by the STFC Rutherford Appleton Laboratory,

on a 2.6 GHz Intel Core-i7 with 16 GB memory.

An initial prediction horizon of N0 = 8 is chosen with Nmin = 2. The

scenario tree is fully branched at each MPC iteration making a total of

6561 scenarios at the first iteration. Fig. 6.2 shows two sets of closed-loop

simulations of the adaptive horizon multi-stage MPC that are done with

initial conditions x0 = [−4, 4]⊤ m (blue line) and [5.3, 2]⊤ m (black line).

The state bounds are x1 ∈ [−10, 10] m and x2 ∈ [−4, 10] m/s and the control

input bounds are u ≤ |6.0N |. The system is controlled to its setpoint and

the horizon length Nk is reduced as the setpoint is approached. Eventually,

the Nk is reduced to 3 from 8 cutting the number of scenarios from 6561

to 27. This results in a speedup of computation times by a factor of 10 to

40 as illustrated in Fig. 6.3. Therefore, this example also demonstrates the

advantage of the adaptive horizon method for computational cost savings

in multi-stage MPC with a fully branched scenario tree.
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Figure 6.3: Spring-damper-mass — computation times (in logarithmic scale) from
two initial conditions x0 = [−4, 4] (blue lines) and x0 = [5.3, 2]⊤ (black lines)
showing the computational efficiency of a fully branched adaptive horizon multi-
stage MPC.

6.7 Conclusion

This chapter shows under reasonable assumptions that the adaptive hori-

zon multi-stage MPC framework is recursively feasible when the scenario

tree is fully branched. Implementation of soft constraints avoids problem

infeasibility in practice when the scenario tree is not fully branched, but

robust constraint satisfaction is not guaranteed. ISpS of the fixed horizon

multi-stage MPC is retained by assuming a negligible linear control error

inside the common terminal region.

Simulation results demonstrate an effective reduction in the prediction hori-

zon and computational delay, provided the system progressively approaches

its setpoint, and that it is not significantly disturbed away from it. Future

avenues of this include handling economic costs, and the use of parametric

sensitivities for both horizon and critical scenario updates to further reduce

computation time.
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Part II

Scenario Selection for

Multi-stage MPC
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7 | Scenario Selection from

Data and NLP Sensitivity

Analysis

“The world is continuous, but the mind is

discrete.”

David Mumford (1937-present)

In this chapter, different scenario selection approaches for multi-stage MPC

are presented. It is preferred that scenarios be selected such that the optim-

ization problem shrinks in size, thus computationally efficient, and without

an overly conservative solution. The effectiveness of the conventional box

over-approximation, sensitivity-assisted, and data-driven scenario selection

approaches are compared with the aid of a simple optimization problem.

Results demonstrate that performing a combination of data and sensitivity

analyses results in a smaller-sized optimization problem with a less conser-

vative solution.

The results presented in this chapter are based on the article: “Sensitivity-

based scenario selection for multi-stage MPC along principal components:

Applied to robust thermal energy storage operation.” [31]
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7.1 Motivation

This chapter aims to examine the effect of scenario selection on the conser-

vativeness of multi-stage MPC formulations and identify the best strategy.

The conventional scenario selection approach implemented in multi-stage

MPC is the box over-approximation that is likely to result in highly conser-

vative solutions. To reduce conservativeness, the parameter realizations in

the scenario tree must be closer to the actual process. This can be achieved

through the extraction of scenarios from large process data sets. To improve

scenario selection for multi-stage MPC, simple multivariate data analysis

techniques have been applied. Data-driven approaches have been imple-

mented in [92] to calibrate approximate uncertainty sets for a scenario-based

stochastic MPC using support vector clustering, and in [93] for scenario se-

lection in multi-stage MPC using principal component analysis (PCA).

The PCA-based scenario selection for multi-stage MPC performs an off-

line analysis of historical process data to select uncertainty representations

“a-priori”, by exploiting existing correlations in data. Further work in [94]

presents how time-varying uncertainty can be handled by performing on-

line PCA calculations to update scenarios whenever new data is acquired.

Thus, the selected scenarios in multi-stage MPC can be dynamically adjus-

ted based on data to achieve a less conservative performance. This method

has been applied in [13] for robust operation of thermal energy storage in

an industrial cluster with district heating using actual process data.

These methods select finite parameter realizations along the dominant prin-

cipal component (PC), or along the axes in a reduced space of the PCs

that capture most of the process variance. As a result, a less conservative

solution (i.e. more economic benefits) is achieved while maintaining robust-

ness. Also, the number of scenarios and size of the optimization problem

scale exponentially with the number of PCs. Therefore, if a smaller number

of PCs are used to approximate the uncertainty space then computational

efficiency can also be achieved. However, problem infeasibility may occur

because of the ignored non-dominant PCs that may have a significant effect

on the constraints.
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To ensure that the assembled scenarios avoid constraint violations, the para-

meter realizations must correspond the the worst-case performance [19].

Provided that a nonlinear system is monotone in its feasible domain, [20]

shows that it is trivial to find the worst-case parameter realization using

NLP sensitivity analysis. The sensitivities filter out parameters that do not

affect inequality constraints and select the worst-case realization along the

axes of each of the critical parameters to assemble the “critical” scenarios.

As a result, the size of the sensitivity-assisted multi-stage NMPC (SAMN-

MPC) problem becomes significantly smaller because it scales linearly with

the number of critical scenarios and not exponentially with the number of

parameter realizations. In this case, the SAMNMPC is computationally

efficient but highly conservative because the realizations are selected using

the conventional box over-approximation.

To address conservativeness and computational burden in multi-stage MPC,

a scenario selection approach that combines both PCA and NLP sensitivities

is proposed. This chapter illustrates the motivation and demonstrates how

the proposed scenario selection approach mitigates the issues in multi-stage

MPC with the aid of a simple example.

7.2 An illustrative example

Consider a linear-quadratic optimization problem presented below, that

aims to find an optimal decision u = [u1, u2]
⊤ for all the possible realiz-

ations of an uncertain parameter d = [d1, d2]
⊤:

J⋆(u⋆, d) = min
0≤u≤2

(u1 − 2)2 + (u2 − 1)2 (7.1a)

s.t. g1 : (1− d1)u1 + d2(u2 + 1) ≤ 3 (7.1b)

g2 : (d2 − 1)u1 + d1u2 ≤ 1 (7.1c)

∀d ∈ Dc, and Dc =

{
d |
[
−1.0
0.0

]
≤ d ≤

[
0.0

1.0

]}
(7.1d)

where g1 and g2 are the constraint sets defined for each element in the infinite

parameter set Dc. When performing optimization under uncertainty, the

89



Scenario Selection from Data and NLP Sensitivity Analysis

−1.0 −0.5 0.0

d1

0.0

0.5

1.0

d
2

Dbox

0.0

0.6

1.2

1.8

J
(u

⋆
,d

)

Figure 7.1: Contour plot showing the optimal cost of problem (7.1) for each d ∈ D.

goal is to minimize the worst-case cost in the uncertainty region Dc. The set
Dc is infinite, and so we determine the worst-case realization by first creating

a dense sample grid to discretize Dc, and then solve problem (7.1) for each

of the sampled realizations. The optimal cost for each sample is obtained

and illustrated as a contour plot across the uncertainty set in Fig. 7.1. In

this case, the worst-case corresponds to the realization dwc = (−1, 1)⊤ with

an optimal cost J⋆wc = 1.8. Then the robust optimization problem (7.1) with

d = dwc becomes:

min
0≤u≤2

(u1 − 2)2 + (u2 − 1)2

s.t. 2u1 + u2 ≤ 2
(7.2)

The feasible region corresponding to problem (7.1) with the worst-case para-

meter realization is illustrated by Fig. 7.2.

The dense sampling technique is computationally inefficient especially when

the number of variables, number of constraints, and degree of nonlinearity

increase, as is the case for multi-stage MPC problems. Therefore, a more

efficient technique that selects the fewest possible samples that most prob-

ably correspond to the worst-case realization is needed. Notice that the

constraints in (7.1) are monotonic with respect to the uncertain parameters
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Figure 7.2: Robust feasible region for problem (7.1)

resulting in a monotonic optimal cost function as seen in Fig. 7.1. This

implies that the worst case will always occur at one of the vertices of the

uncertain region. Therefore, selecting the box’s vertices to approximate

problem (7.1) is a good approach because the worst-case will occur at one

of these points. It is common to also include the nominal or expected para-

meter value, especially in nonlinear optimization. This technique is known

as box over-approximation of the optimization with uncertainty problem.

7.3 Box over-approximation

The box over-approximation method has been commonly applied in several

multi-stage MPC implementations such as to semi-batch polymerization [5–

8], a batch bioreactor [9], hydrodesulfurization [10], gas lifted wells in oil and

gas production [11], multi-product distillation [12], and penicillin fermenta-

tion [95]. These are nonlinear MPC applications where the combinations of

the {max, nominal, min} values of each uncertain parameter were selected

as the realizations assembled in the scenario tree.

Returning to the example (7.1) and applying the box over-approximation,

a finite set of parameter realizations is obtained:

Dbox = {(−0.5, 0.5)⊤, (−1, 0)⊤, (−1, 1)⊤, (0, 1)⊤, (0, 0)⊤}.
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The set of inequalities from Dbox describes the same feasible region as the

worst-case problem that is in Fig. 7.2. The solution is u⋆box = (0.8, 0.4)⊤,

with an optimal cost J⋆box = 1.8 identical to the solution from the dense

sampling.

Although this approach is simple, it can be further improved, especially

when the dimensionality of the uncertain parameters and degree of non-

linearity increases. In this simple example, 5 realizations are selected but

only one of them is “critical”, leading to an extra 8 inequality constraints.

The number of extra constraints and variables (if recourse is allowed) scales

rapidly with dimensionality in the uncertain parameter, which is undesir-

ably inefficient due to the increased computational complexity, especially

for nonlinear optimization.

7.4 Sensitivity-assisted scenario selection

We want to improve computational efficiency by defining the robust feas-

ible region for problem (7.1) using the least possible number of parameter

realizations. Let us determine the realizations of d that maximize the con-

straints g1 and g2 for any feasible u. Minimizing problem (7.1) is equivalent

to solving the following bilevel program:

min
0≤u≤2

(u1 − 2)2 + (u2 − 1)2 (7.3a)

s.t. max
d∈D

(1− d1)u1 + d2(u2 + 1) ≤ 3 (7.3b)

max
d∈D

(d2 − 1)u1 + d1u2 ≤ 1 (7.3c)

where the finite realization set, Dsens
c is found by solving the inner optimiz-

ation problems (7.3b) and (7.3c), such that:

Dsens
c = {d | argmax

d∈D
g1(u, d) ∪ argmax

d∈D
g2(u, d)} (7.4)

To solve (7.4), determine the constraint gradients with respect to d:

∇dg1 =
[
−u1 +u2

]
⇒ dwc[1] = (−1, 1)⊤ (7.5a)
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∇dg2 =
[
+u1 +u2

]
⇒ dwc[2] = (0, 1)⊤ (7.5b)

Since u ≥ 0 then ∇dg1 and ∇dg2 do not change sign, meaning g1 and g2

are monotones in d for any admissible u [96]. Consequently, the solution to

(7.4) is trivial, with the finite realization set for (7.1) being:

Dsens
c = {(−1, 1), (0, 1)}.

The set Dsens results in inequalities that describe the same feasible region

as for the worst-case problem (see Fig. 7.2). Hence, selecting the paramet-

ers using sensitivities will lead to fewer constraints that define the same

robust feasible region, when compared to box over-approximation. This is

efficient for the optimizer due to a smaller problem size resulting in compu-

tational cost savings, especially for large-scale robust optimization problems

(e.g. multi-stage MPC) provided that the sensitivities are cheap to obtain.

Under the monotonicity assumption of the constraints in d, the worst-case

realizations can be easily obtained even for nonlinear systems. This strategy

is used by Thombre et al. [20] in the sensitivity-assisted multi-stage NMPC

(SAMNMPC) algorithm to reduce the computational delay in multi-stage

NMPC which is described in Chapter 4.

7.5 Nominal assumption and conservativeness

If the parameters are assumed to be nominal i.e. d0 = (−0.5, 0.5)⊤ , the

solution to (7.1) is u⋆nom = (1.4, 0.8)⊤, with an optimal cost J⋆nom = 0.4. The

optimal cost of the robust problem (7.1) is worse than that of the nominal

problem (J⋆box > J⋆nom). This implies that optimization with uncertainty is

conservative, and the loss in performance is a cost incurred for the robust-

ness.

Nevertheless, as depicted in Fig. 7.2, it is evident that the nominal solution

lies outside the region of robust feasibility. This implies that the nom-

inal solution can be deemed feasible only under the assumption of perfect

knowledge. Since achieving perfect knowledge is impractical in reality, it is

advisable to account for an uncertain region surrounding the nominal (es-
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timated) parameters. The degree of conservativeness can then be reduced

by tightening the uncertainty region using historical process data. This

implies that the selected parameter realizations must be determined from

historical data, and whenever possible dynamically updated whenever new

information is obtained. Considering that the worst-case realization value

was chosen from one of the vertices, finding the worst-case parameter value

closer to the actual process behavior will significantly reduce the degree of

conservativeness in robust optimization.

7.6 Data-driven scenario selection

Data-driven techniques have been employed to reduce the conservativeness

in optimization under uncertainty [97–99]. Moreover, multivariate analysis

on process data has been applied specifically to robust MPC in prior works

[93, 94, 100]. The aim is to improve uncertainty representation by reveal-

ing correlations among model parameters. Among the various techniques,

principal component analysis (PCA) stands out as the most widely utilized

method in the literature. It has been frequently employed for designing ro-

bust MPC controllers, and it is the selected approach in the present study.

PCA is favored due to its simplicity and its potential to reduce the dimen-

sionality of the uncertainty space.

Typically, uncertain parameters tend to exhibit correlations, leading to the

formation of elliptical uncertainty sets that can be derived from the pro-

cess data. For instance, the red dots in Fig. 7.3 represent data samples

for a dataset corresponding to the parameters of problem (7.1). Particu-

larly when considering the non-dominant axis of the ellipsoid, selecting the

box vertices as the parameter realizations is overly cautious. In such situ-

ations, it is advisable to select the worst-case parameter realization along

the ellipsoid axes. Moreover, if the method of sensitivities is applied, the un-

certain parameters must be projected into a new coordinate that lies along

the ellipsoid axes. This is done by a simple linear transformation which is

determined from principal component analysis (PCA).
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Figure 7.3: Ellipsoidal process data cloud with corresponding optimal cost values
as a contour plot

7.6.1 Principal component analysis

Principal component analysis (PCA) is an orthogonal linear transformation

that projects a dataset into a new coordinate system whose axes are called

the principal components (PCs). The PCs are the unit directions that ex-

plain the total variation in the data [101]. PCA reveals hidden patterns in

data by evaluating the variability in the dataset. As a result, PCA fits a hy-

perellipsoid to the dataset with the PCs corresponding to the ellipsoid axes.

The first PC corresponds to the direction exhibiting the greatest variance

within the dataset, whereas the subsequent components capture the remain-

ing variance in descending order of explained variability. For example, in

the example dataset shown in Fig. 7.3, the major axis of the ellipsoid is the

first PC, and the minor axis is the second PC.

Assume a dataset with ns samples for each uncertain parameter is repres-

ented by the matrix X ∈ Rns×nd . Before conducting the PCA procedure, it

is necessary to center X around its mean as follows:

X0 = X− 1 ·µ⊤ (7.6)

where X0 ∈ Rns×nd denotes the pre-treated dataset for PCA, µ ∈ Rnd is a
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vector of the means of each column in X, and 1 ∈ Rns is a vector of ones.

Throughout this paper, we set the nominal parameters as the mean of X,

i.e. µ = d0.

PCA is extremely sensitive to variations in scale within the dataset. Con-

sequently, if the elements within each column exhibit dissimilar scales, it

becomes essential to both standardize and mean-center the dataset X. A

technique for achieving this involves standardizing the samples to units of

standard deviation, as depicted below:

X0 = (X− 1 ·µ⊤)Σ−1 (7.7)

where the matrixΣ ∈ Rnd×nd is a diagonal matrix of the standard deviations

of each column in X i.e. Σ := diag([σ1, . . . , σnd
]).

PCA applied to X0 yields a linearly transformed matrix denoted as Y =

X0C, where C ∈ Rnd×np represents the projection matrix with np ≤ nd.

The matrix Y ∈ Rns×np comprises PC scores corresponding to each sample.

These scores denote the projections of standardized samples onto the np

principal components. Each column of the projection matrix C embodies

weights assigned to the original samples, referred to as loadings. These

loadings are essential for deriving the component scores. Moreover, the

projection matrix C can be utilized to reconstruct the initial dataset X

from the scores matrix Y through a linear transformation.

We represent the linear transformation aimed at reconstructing the uncer-

tain parameter d from the PCA scores using a function denoted as ΦPCA :

Rnp 7→ Rnd such that:

d = ΦPCA(d) (7.8)

where d ∈ Rnp represents a PC score. The function ΦPCA is also influenced

by how the original dataset X is treated before undergoing PCA.
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Figure 7.4: Transformed ellipsoid data cloud with the corresponding optimal cost
values as a contour plot

Mean-centered samples. If the original dataset X is only mean-centered

before the PCA procedure, the reconstruction function becomes:

ΦPCA(d) = Cd+ d0 (7.9)

Standardized samples. Moreover, if the X is standardized by standard

deviations before PCA is performed, then the projection matrix is scaled

by the corresponding standard deviations, and the reconstruction function

becomes:

ΦPCA(d) = ΣCd+ d0 (7.10)

Now refer back to the dataset for the simple problem (7.1) in Fig. 7.3. PCA

on the dataset gives the sample mean d0 = (−0.5209, 0.4914)⊤ and the PCA

projection matrix:

C =

[
0.7813 0.6241

−0.6241 0.7813

]
with explained variances for PC-1 and PC-2 being 84.1% and 15.9%, re-

spectively. The data is transformed by scaling and rotation into the scores

using (7.9). Fig. 7.4 also shows the sample scores (transformed data) and

the contour plot of the optimal cost values at the transformed parameters.
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7.7 PCA based scenario selection

PCA on data helps to select the discrete realizations of the uncertain para-

meters from a dataset based on explained variability. This method picks

the data points corresponding to the maximum and minimum scores along

the directions of the different PCs that explain the variability with sufficient

component variance. The maximum and minimum scores of the example

dataset are shown in Figure 7.4 as the red dots circled with blue margins.

These are then transformed into the original parameter space using (7.9)

and they correspond to the red dots with blue circles in Figure 7.3. The

discrete realization set from PCA becomes:

Dpca ={(−0.9811, 0.1644)⊤, (−0.0336, 0.8465)⊤, (−0.2303, 0.4141)⊤,
(−0.6948, 0.6436)⊤, (−0.5209, 0.4914)⊤}.

To further reduce the number of scenarios Krishnamoorthy et al. [93] suggest

selecting the discrete realizations from a subset of the PCs that sufficiently

explain the total variance in the dataset. Therefore in the example dataset,

the discrete realization set will consist of the points corresponding to the

maximum and minimum scores along the dominant PC only.

Dpca = {(−0.9811, 0.1644), (−0.0336, 0.8465), (−0.5209, 0.4914)}.

However, the worst case is not necessarily included in this case, which will

lead to more constraint violations even though the performance will be less

conservative. Deciding on the discrete realization set purely on the explained

variance in the parameters is generally a bad idea as far as robustness is

concerned. It is important to understand how these parameters affect the

inequality constraints. Therefore, we suggest using sensitivities in conjunc-

tion with PCA to select the discrete realizations from the PCs.
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7.8 Scenario selection using both PCA and sensitivities

This is where we motivate the main idea for this chapter. We propose to pick

the discrete realizations along the PCs that are likely to cause constraint

violations. Let us explain the method with the aid of the simple example

above. To determine the effect of the PCs on the constraints check the

constraint gradient sensitivities with respect to the transformed parameter

d. The inequality gradients are listed as follows:

∇dg⊤1 = C
[
−u1 +u2

]⊤
∇dg⊤2 = C

[
+u1 +u2

]⊤
It is difficult to tell by inspection which realizations to pick, so evaluate the

sensitivities above at the nominal as follows:

∇dg1 =
[
−0.5945 1.4988

]
⇒ d

wc
[1] = {d

min
1 , d

max
2 }

∇dg2 =
[
1.5931 −0.2480

]
⇒ d

wc
[2] = {d

max
1 , d

min
2 }

We end up with the same number of realizations as the box over-approximation

for this example. Still, a reduction in scenarios is guaranteed when there are

more variables and constraints considered as is the case in multi-stage MPC.

This will be demonstrated in the numerical examples and case study in the

following sections. Before describing the application of both PCA and sens-

itivities for multi-stage MPC, let us briefly describe the sensitivity-assisted

multi-stage NMPC.

7.9 Conclusion

This chapter presents simple strategies that are used to select parameter

realization values for multi-stage MPC scenario trees. With the aid of a

simple example that can be analyzed easily by hand, the chapter compares

the conservativeness of the different solutions and the number of realizations

selected in each of the approaches. The greater number of realizations or

scenarios selected by an approach indicates a greater computational bur-
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den when solving the final optimization problem. Therefore, these results

demonstrate that the commonly used box over-approximation method is

the simplest but computationally inefficient and results in highly conservat-

ive performances. A method combining both principal component analysis

and NLP sensitivity analysis is proposed to reduce conservativeness and

maintain a small computational delay. PCA extracts the correlations in the

uncertain parameter space and the sensitivities of the inequality constraints

with respect to new unit directions of maximum variance are computed.

The analysis of the proposed method shows low conservativeness and a

smaller-sized optimization problem that is efficient to solve.
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8 | Combining

Sensitivity-Assisted

Multi-stage NMPC with

PCA

“In God we trust; all others must bring data.”

William Edwards Deming (1900-1993)

This chapter extends the ideas presented in the previous chapter. The

previous chapter recommends analyzing historical process data to select

parameter realizations for the scenarios and improve the performance of

multi-stage MPC. This chapter aims to combine statistical learning of pro-

cess data using principal component analysis (PCA) with sensitivity-assisted

multi-stage NMPC (SAMNMPC) to achieve a less conservative controller

performance.

The chapter is adapted from the following articles.

• A peer-reviewed conference article “Data-driven online scenario selec-

tion for multi-stage NMPC” [32], and

• A part of the subsequent journal article: “Sensitivity-based scenario

selection for multi-stage MPC along principal components: Applied

to robust thermal energy storage operation” [31]
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8.1 Motivation

Multi-stage MPC is robust against constraint violations but it is rather

conservative, and computationally inefficient resulting in performance loss.

Chapter 7 shows that the conservativeness of the solution, and computa-

tional efficiency are dependent on how the uncertainty set is represented.

So far, its implementation has mainly been done using a hyperbox over-

approximation of the uncertainty set. The over-approximation is often very

poor if the true uncertainty set is ellipsoidal (i.e. strong correlations exist).

A scenario selection approach aimed at improving computational efficiency

in multi-stage MPC is the sensitivity-assisted multi-stage NMPC (SAMN-

MPC) [20]. Although SAMNMPC is computationally efficient, it overap-

proximates the uncertainty set leading to a conservative control perform-

ance. However, Chapter 7 demonstrated that by combining sensitivity ana-

lysis with multivariate data analysis for uncertainty identification, the de-

gree of conservativeness can be significantly reduced. This chapter applies

this to multi-stage MPC by performing sensitivity analysis along the PCs

for SAMNMPC. An improved prediction of the uncertainty in the overall

dynamics of the actual process is expected. Moreover, this chapter aims to

demonstrate that the performance of the proposed approach is better than

the PCA-based (without sensitivities) approach that assumes the worst-case

realization lies on the dominant PC or the first few PCs.

The main contribution of this chapter is to demonstrate how principal com-

ponent analysis (PCA) can be combined with the sensitivity-assisted multi-

stage NMPC (SAMNMPC) framework to reduce conservativeness and re-

tain its computational efficiency. Other specific contributions in this chapter

include:

• Improving the existing SAMNMPC algorithm by selecting the para-

meter realizations for the critical scenarios from PCA.

• Demonstrating with the aid of two numerical examples that the pro-

posed framework is computationally efficient and non-conservative.

• A 12% decrease in peak heating costs when the proposed framework is
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implemented for the robust control of thermal energy storage set in a

real industrial cluster with district heating operated by Mo Fjernvarme

AS, Norway.

• Improving robust constraint satisfaction by reducing the frequency of

infeasible problem occurrences.

8.2 SAMNMPC with PCA

This section presents the main idea of this chapter. An integration of SAM-

NMPC with PCA denoted as PCA-SAMNMPC, is proposed for improved

scenario selection. This is to reduce the conservativeness of SAMNMPC and

multi-stage MPC in general, by incorporating information from process data

in the predetermination of critical scenarios. The aim is to achieve both low

computational effort and a low degree of conservativeness in multi-stage

MPC for nonlinear systems. The problem formulation is similar to that

of the SAMNMPC problem (4.1), but with linearly transformed uncertain

parameters. The transformation is based on the function ΦPCA( · ) that

reconstructs the original variables from the PC scores. After obtaining

ΦPCA( · ), the optimization problem at time tk becomes:

V ps
N (xk,d

c
) = V sam

N (xk,Φ
PCA(d

c
)) (8.1a)

s.t. zci+1 = f(zci , ν
c
i ,Φ

PCA
i (d

c
i )), i = 0, . . . , N − 1 (8.1b)

Equations (4.1c) and (4.1d) (8.1c)

ΦPCA
i (d

c
i−1) = ΦPCA

i (d
c
i ), i ≥ NR (8.1d)

zci ∈ X, νci ∈ U, ΦPCA
i (d

c
i ) ∈ Dpca

i , (8.1e)

∀ c, c′ ∈ Ĉ ∪ {0}

where V ps
N is the optimal cost for the SAMNMPC with PCA problem.

8.2.1 PCA-SAMNMPC algorithm

This algorithm requires a dataset X that contains sampled uncertain para-

meters. The samples in the dataset can be obtained by measurement, if

the parameters are directly measurable, or can be calculated through estim-

ation. This algorithm then applies PCA on the dataset to determine the
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maximum and minimum scores along the PCs that are to be selected by the

SAMNMPC algorithm. To do this, first transform the uncertain paramet-

ers in the optimization problem using ΦPCA( · ) (see (7.9) and (7.10)). The

steps for the algorithm are outlined in Algorithm 3 as follows:

Algorithm 3 PCA-SAMNMPC

1: Given: Dataset Xk
1, and k = 1, . . . , N ;

2: Standardize the data set Xk to obtain Xk,0;
3: Perform PCA on Xk,0 to determine the PC scores Λk and matrix Ck;
4: Transform the discrete realizations dci into the new orthogonal space

using C, such that, dci = ΦPCA
i (d

c
i );

5: Substitute the transformation from Step 4 in (4.1) to obtain (8.1) in
terms of the transformed parameters;

6: At tk, determine critical Ĉ and non-critical scenarios C̄ using NLP sensit-
ivities with respect to the transformed parameters, as in the SAMNMPC
algorithm;

7: Generate a pruned scenario tree with only the critical and nominal scen-
arios and then solve (4.1).

Algorithm 3 is applied to two numerical examples and a case study for the

robust operation of a thermal energy storage (TES) situated in an indus-

trial cluster with district heating demand. The simulation examples are

presented and results are discussed in the following sections.

8.3 Numerical examples

This section presents two benchmark numerical case studies to demonstrate

the effectiveness of Algorithm 3 in controlling a nonlinear process robustly

and with an improved cost.

8.3.1 Example 1 — Van der Pol oscillator

This is a 2-D nonlinear system chosen to show that SAMNMPC with PCA

(PCA-SAMNMPC) has small computation times and is not over-conservative.

The Van der Pol oscillator system is adapted from [102, 103], and the con-

1The dataset can be obtained through direct measurements or estimation. It may be
time-dependent such that the dataset must correspond to the MPC time step. If the data
is static then Xk = X for all k.
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Figure 8.1: Van der Pol — PCA on process data. The left shows the original data,
the right shows the PCA scores.

tinuous model is given by the following differential equations:

ẋ1 = µ(1− x22)x1 − x2 + u

ẋ2 = x1 + γ

where x = [x1, x2]
⊤ is the vector of states and u is the control input. The

uncertain parameters are µ and γ. A forward Euler method with a sample

time ∆t = 1s is used to transcribe the model into discrete time. The con-

troller has the following control objective: ℓ = x21 + x22 + u2.

Data analysis

Uncertain parameters are randomly generated from an arbitrary multivari-

ate probability distribution of the process to obtain a dataset for controller

design. This is done to mimic data acquisition through measurements and

estimation from the real system. In this case, the data is historical and

is usually pretreated, for example, by removing outliers and filling missing

values.

The left plot of Figure 8.1 shows the synthetic process data cloud of the

samples. PCA on the dataset gives the following projection matrix:
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C =

[
−0.7356 0.6775

−0.6775 −0.7356

]

Simulation results.

The simulations are performed in Julia [84] environment and using JuMP

v.1.12.0 [83] as the NLP modeler. The NLP solver is IPOPT 3.14.4 [85],

and the linear solver is HSL-MA97 [86] on a 2.6 GHz Intel Core-i7 with 16 GB

memory. At each iteration, a random uncertain parameter is drawn from

the probability distribution of the process. The same random uncertain

parameter sequence is used in the simulation of each controller for perform-

ance comparison. Simulations were performed for both standard NMPC,

multi-stage NMPC, SAMNMPC, and PCA-SAMNMPC. Fig. 8.2 is a sim-

ulation plot for a robust horizon, NR = 2. The accumulated costs for each

robust MPC scheme are summarized in Table 8.1. The accumulated cost

Table 8.1: Van der Pol — Accumulated costs

NMPC scheme Accumulated cost

Multi-stage 11.4154
SAM 11.4154

PCA-SAM 7.24489

of standard NMPC is not compared with the other controllers because it

violates constraints. The table presented in Table 8.1 indicates that among

all the robust MPC schemes, PCA-SAMNMPC exhibits the lowest accu-

mulated cost. Fig. 8.2 shows that PCA-SAMNMPC tracks closer to the

setpoint hence it is less conservative than both SAMNMPC and multi-stage

NMPC. Therefore, the transformation of the uncertain parameter realiza-

tions in PCA-SAMNMPC improves the tracking performance of multi-stage

MPC. The number of scenarios in the multi-stage MPC with a robust hori-

zon of 2 is 81 while Fig. 8.2 shows that SAMNMPC and PCA-SAMNMPC

select fewer scenarios, i.e. less than 10. This also implies that SAMNMPC

and PCA-SAMNMPC are equally fast and more computationally efficient

than the multi-stage MPC.
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Figure 8.2: Van der Pol oscillator — Comparing the control performances of the
PCA-SAMNMPC with standard NMPC, multi-stage NMPC, and SAMNMPC with
a NR = 2.
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Figure 8.3: Quadtank — PCA on process synthetic dataset; left: original dataset,
right: corresponding PC scores.

8.3.2 Example 2 — Quad-tank system

This is the same example as in Section 5.3.2. It is a more complex nonlinear

example chosen to demonstrate that PCA-SAMNMPC has fast solution

times and is not over-conservative. The quad-tank system is illustrated by

Fig. 5.8.

As in the previous part, the system states xi are the water tank levels, the

inputs ui are pump flow rates, and the uncertain parameters are the valve

coefficients γ1 and γ2. The water levels in the four tanks are described by a

set of differential equations presented in Section 5.3.2. The controller tracks

setpoint levels x1 and x2 with minimum input usage such that the objective

is ℓ = (x1−x∗1)2+(x2−x∗2)2+r1u21+r2u22. The levels x3 and x4 are bounded
as shown in Table A.4, and the system experiences predefined pulses in x1

as presented by Table A.5.

Data analysis

To obtain a dataset for controller design, the parameters γ1 and γ2 are ran-

dom values sampled from an arbitrary multivariate probability distribution

of the process. The uncertain parameter samples have a process data cloud

shown in the left plot of Fig. 8.3. PCA on the dataset gives the scores plot
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on the right of Fig. 8.3, where:

C =

[
0.6571 −0.7538
0.7538 0.6571

]

The dashed lines on the right plot of Fig. 8.3 are the principal component

axes where the red line represents the dominant PC (PC-1) and the green

line is the second PC (PC-2). The red and green “×” points are the data

points corresponding to the extreme scores along each PC.

Simulation results

A software lineup similar to that in the previous example is used except

HSL-MA57 was deployed as the linear solver. The continuous-time differ-

ential equations are transcribed into discrete-time using third-order direct

collocation with ∆t = 10s. Again, at each iteration, a random uncertain

parameter is drawn from the probability distribution of the process. The

same random uncertain parameter sequence is used in the simulation of each

controller for performance comparison. Simulations are performed for both

standard NMPC, multi-stage NMPC, SAMNMPC, and PCA-SAMNMPC.

There are done for 150 MPC iterations for robust horizons NR = 1, 2,

and 3, and the results are shown in Figs. 8.4 to 8.6, respectively. When

the robust horizon is one, in Fig. 8.4 the controllers exhibit similar track-

ing performances of the level setpoints in tanks 1 and 2 with SAMNMPC

slightly deviating from the rest. Inspecting the levels in tanks 3 and 4, it is

evident that all the robust controllers back off from the constraint and avoid

constraint violations. The standard MPC shows, as expected, 28 instances

of constraint violations i.e. ≈ 19% of the operation time.

Figs. 8.5 and 8.6 show that the tracking performance of SAMNMPC de-

grades when the robust horizon is increased. PCA-SAMNMPC tracks closer

to the setpoint, making it less conservative than both SAMNMPC and

multi-stage NMPC. Data-driven transformation improves the tracking per-

formance of the SAMNMPC while maintaining robustness against con-

straint violations of the bounds of x3 and x4. This is because the controller

selects critical scenarios with parameter realizations that are obtained from
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Figure 8.4: Quad-tank — Comparing the control performance of the PCA-
SAMNMPC with standard NMPC, multi-stage, and SAMNMPC with NR = 1.
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Figure 8.5: Quad-tank — Comparing the control performance of the PCA-
SAMNMPC with standard NMPC, multi-stage, and SAMNMPC with NR = 2.
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Figure 8.6: Quad-tank — Comparing the control performance of the PCA-
SAMNMPC with standard NMPC, multi-stage, and SAMNMPC with NR = 3.
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data avoiding over-conservativeness. The SAMNMPC tracking performance

is the worst, especially for robust horizons greater than one. This is prob-

ably due to the noncritical scenario cost approximation error being larger

when the selected realizations lie further away from the nominal parameter.

Further, the approximation error is increased when scenarios branch further

forward because of a stronger nonlinear cost function with respect to the

current control input. In an actual industrial process, this approximation

error could be reduced by identifying the uncertain parameters more ac-

curately from historical process data. It can be achieved in this context

since data treatment and analysis for identification are all performed off-

line. Therefore more time could be dedicated to obtaining suitable model

parameters with good accuracy.

The number of scenarios in the multi-stage MPC with robust horizons 1,2,

and 3 is 9, 81, and 729, respectively while Fig. 8.2 shows that SAMNMPC

and PCA-SAMNMPC select fewer scenarios, i.e. less than 5,8, and 13 for

robust horizons 1,2 and 3, respectively. Again, this implies that SAMNMPC

and PCA-SAMNMPC are equally fast and more computationally efficient

than the multi-stage MPC. Fig. 8.7 presents a bar chart that compares

mean computation times among the NMPC schemes in the simulations.

It shows that PCA-SAMNMPC and the original SAMNMPC have similar

solve times that are much lower than multi-stage MPC solve times. For

instance when NR = 3, the solve time is above 100 seconds which is imprac-

tical. This is because by the time the solution is obtained the tanks will

have overflown. On the other hand, SAMNMPC and PCA-SAMNMPC have

solution times below 10 seconds that are in the same order as ∆t making

it practically feasible. Therefore, PCA-SAMNMPC reduces conservative-

ness and improves the robust performance of SAMNMPC without adding

computational complexity.

113



Combining Sensitivity-Assisted Multi-stage NMPC with PCA

MS SAM PCA-SAM

NMPC Scheme

10−1

100

101

102

se
co

n
d
s

Standard

NR = 1

NR = 2

NR = 3
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8.4 Industrial case study

8.4.1 Introduction

This case study examines the advantage of integrating a thermal energy

storage (TES) tank as a short-term heat storage, managed by a data-driven

multi-stage MPC. The TES tank operated robustly, will be linked to an

established district heating network that includes an industrial cluster. The

district heating network, situated in Mo Industry Park, generates an an-

nual output of 85–90 GWh, primarily utilizing waste heat extracted from

the off-gas produced at the Elkem Rana ferrosilicon plant. While approx-

imately 90% of its yearly heat generation stems from reclaimed waste heat,

the intermittent nature of waste heat availability is managed through peak

heating boilers. These boilers come into play when the available waste heat

falls short of achieving the desired water supply temperature demanded by

the city. The peak heating boilers are versatile, operating on either CO-gas

or electricity, with the choice determined by the availability of CO-gas and

prevailing electricity prices. The flowsheet in Fig. 8.8 illustrates the district

heating plant process and the proposed connection of the TES tank to the

network. It also shows how water and energy flows are modeled for the

system.
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Figure 8.8: Industrial case study — Thermal network flowsheet and model illus-
tration.

The TES stores intermittent industrial waste heat and ensures a consist-

ent temperature of the hot water supplied to the city, accommodating a

fluctuating demand profile. This study aims to showcase the benefits of

employing PCA-SAMNMPC, utilizing both sensitivities and PCA on his-

torical process data for scenario selection, instead of solely relying on PCA

in the PCA-based approaches. In contrast to the two examples presented

in the preceding section, the computational time is not investigated. This

is due to a 1h time interval between samples providing ample time to find

a solution for both multi-stage MPC schemes.

First, PCA-SAMNMPC is implemented to ensure that the TES is operated

within bounds under supply and demand uncertainty. Then the control per-

formance is compared to existing PCA with multi-stage MPC heuristic [13]

that selects the parameter realizations predominantly from the dominant

PC, except during peak heating hours.

8.4.2 System model

TES must be operated to minimize peak heating by making hourly decisions

on how much supplied heat must be dumped, and how much peak heating is

needed to meet consumer heating and the industrial effluent stream cooling

requirements. These control decisions are heavily influenced by uncertainty

in heat supply Qsupply
S and demand Qdemand

C . The system model is derived

from mass and energy balances. For a thorough explanation of the process
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modeling, refer to §2.1 in [13]. The final set of model equations and the

model parameter values are presented in Appendix A.3.

The hot and cold sides of the heat exchangers are modeled by nhex = 5 cell

discretizations. Therefore, the dynamic model consists of 25 states. All the

states are temperatures and can be categorized into three.

• Supplier-side temperatures:

TS = [T process
S , T return

S , T hex,hot
S,j , T hex,cold

S,j ]⊤,

• Consumer-side temperatures:

TC = [T hex,hot
C,j , T hex,cold

C,j , T process
C , T return

C ]⊤, and

• Thermal storage temperature: TTES

where j = {1, . . . , nhex}. The control inputs vector u has three variables

u = [qhotC , Qdump
S , Qpeak

C ]⊤ which are the consumer-side volumetric flow rates

of the storage fluid, the heat dump rate for supplier, and the peak heating

rate for consumer, respectively.

The system must be operated within process bounds, for example, to avoid

boiling of storage liquid. Furthermore, there are return stream requirements

from the industrial processes and district heating on either side of the heat

network. Constraints are also enforced on the volumetric flows to avoid low

flows that risk fouling in heat exchangers. There exist bounds on the heat

dumping and peak heating rates due to heat transfer limitations.

The problem has an economic objective to minimize peak heat usage in the

industrial cluster. Regularization terms are added to the stage cost at tk+i

and the stage cost is written as:

ℓi = r1Q
peak
C,i + r2

(
Qdump
S,i

)2
+ r3

(
qhotC,i

)2
(8.2)

where r1 = 1.0, and r2 = 0.01 and r3 = 10−5 are the coefficients of the

regularization terms.
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Let us define the process constraints that are included in the optimiza-

tion problem. All the storage fluid flows qC,i are supposed to be between

0.001 m3/s and 0.3 m3/s. The supply side is assumed to generate heat

through a batch cooling process, and it is essential to ensure that the return

temperature T return
S ≤ 85 ◦C, to maintain optimal product quality in the

batches. Moreover, the district heating network requires the return tem-

perature T return
C ≥ 60 ◦C. Violation of the temperature constraints may

result in economic penalties for the supplier or consumer involved. For an

exhaustive list of the process constraints, refer to Table A.7.

8.4.3 Data analysis

The system model assumes that there is one source and one sink that ex-

change heat through the TES unit. There is also one peak heating source.

Therefore, total waste heat, total peak heating, and total heat demand are

computed for each hour to obtain the raw dataset.

Data description. The hourly heat supply and demand datasets from the

years 2017 and 2018 are provided by the district heating company, Mo

Fjernvarme AS. Data from 2017 is used as the training set, and the test set

is data from 2018. The model does not focus on the individual units but on

the total heat demand and supply to demonstrate the performance of our

proposed control strategy. Further, we only consider data from the winter

months (i.e. December, January, February, and March) when having a TES

is relevant. The winter months have the highest heat demand profiles and

the heat supply is not always higher than demand creating a need for peak

heating. Hence, a need for peak heat savings using optimal TES operation.

PCA on data. The training set consists of hourly demand and supply for

121 days. Before performing PCA, the training set is visualized and outliers

are detected and cleaned. The scatter plots for each hour from the training

set are plotted in Fig. 8.9. There is a general trend in the hourly data that

a strong correlation exists between demand and supply except during the

peak heating hours (scatter plots in red). During peak heating hours, the

demand is usually higher than the supply from waste heat and there is no
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Figure 8.9: Industrial case study — Scatter plots of scaled supply and demand
data for January 2017 to illustrate data directionality. Notice that there is no clear
directionality during the peak heating hours (scatter plots in red).
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clear correlation in the data. Outlier detection is performed on the raw

dataset and the outliers are removed to obtain a clean training set. Further

detail on the outlier detection is explained in Appendix C of [13].

The clean training set is standardized as shown in (7.7). Then PCA is

performed on each X0,k by singular-value decomposition (SVD), where k =

0, . . . , N −1, and N = 24. The columns of X0,k are the supply and demand

values, in that specific order. Each row of X0,k represents a day in the

winter months with normal operation (i.e. a non-outlier).

The PCA projection matrices at the k-th hour, Ck, are determined for each

k ∈ {0, . . . , N − 1}. If the matrices Σk = diag([σS , σC ]) are the diagonal

matrices of the standard deviations for each row in Xk, then the original

model parameters can be reconstructed from the PC scores as follows:

dk = ΣkCkdk + d0k (8.3)

for all k ∈ {0, . . . , N − 1}, where dk are the transformed model parameters.

8.4.4 Simulation results

The prediction horizon is N = 24 with a ∆t = 1h sample time. Simulation

results for the PCA-SAMNMPC and PCA with multi-stage MPC applied to

the TES system are compared. Since there is ample time between samples,

there is no concern about the computational speed. The main goal is to

achieve constraint satisfaction with reduced conservativeness (i.e. less peak

heating).

At each MPC iteration, the scenario tree of the multi-stage MPC is designed

based on the parameters identified from the PCA corresponding to that

hour in Fig. 8.9. When the 24th hour ends, the hour count is reset, and

the scenario tree of the subsequent MPC problem is assembled using data

from 00:00 again. For the case of real-time continuous implementation, this

cycle is repeated every new day i.e. every 24 hours. In this section, the

simulations are run for one day and are all assumed to start from a common

initial condition. Outlining initial conditions, the process temperatures,
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Figure 8.10: Industrial case study — The return and tank temperature profiles in
the PCA with SAMNMPC (PCA-SAM) and PCA with multistage MPC (PCA-
MS) formulations, for January 6, 2018.

T process
S and T process

C , start at 91.28 ◦C and 50 ◦C, respectively. The initial

temperature within the tank, TTES is 70.63 ◦C. These initial values result

from a steady-state optimization of the system with mean heat supply and

demand profiles.

The supply and demand profiles on January 6th, 2018 were used to compare

the control performances of the PCA-SAMNMPC and PCA with multi-stage

MPC. The scenarios were selected based on the training dataset. Fig. 8.10

illustrates the trajectories of the temperatures of the supplier return T return
S ,

consumer return T return
C and storage TTES for the two multistage MPC

schemes given the constraints on the return temperatures. Both the PCA-

SAMNMPC and PCA with multi-stage NMPC show no constraint violations

in the return temperature profiles, and both have identical tank temperature

profiles. The return temperature profiles for PCA-SAMNMPC are slightly

lower than in PCA with multi-stage MPC, especially during the peak heat-
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ing hours. Moreover, PCA-SAMNMPC has lower operation costs than PCA

with multi-stage MPC because it has lower peak heat usage Qpeak
C as it can

be seen in Fig. 8.11. While PCA with multi-stage MPC uses a total peak

heating of 124.68 MWh, PCA-SAMNMPC results in 112.65 MWh peak

heating during the day. Therefore, the conservativeness of the PCA with

multi-stage MPC is further reduced by including sensitivity analysis for

scenario selection. The value of qhotC is always at the maximum bound i.e.

0.3 m3/s, throughout all the simulations. This is because the system re-

quires the transfer of large available amounts of heat as quickly as possible

to the demand side through the TES. Since qhotC is always constant and with

an active constraint, it is therefore not discussed further in the results.

Further simulations for each day in January 2018 were done, employing their

respective supply and demand profiles. The results reveal consistent suc-

cess in maintaining the system within the predefined limits for both schemes.

Fig. 8.12 illustrates the return temperature profiles of the supplier and con-

sumer throughout all days in January 2018, showcasing the effectiveness of

the two multi-stage MPC schemes in keeping the uncertain process within

bounds. Notably, the simulations demonstrate the applicability of the two

multi-stage MPC schemes, even when the initial heat supply is lower than

the heat demand, as observed on multiple days in January 2018.

The average daily use of peak heating across all days in January 2018 with

PCA multi-stage NMPC was found to be 108.38 MWh, whereas, for PCA-

SAMNMPC, it was 96.78 MWh. This is a 12% reduction on the monthly

average peak heating cost. Considering this as a monthly average, it signi-

ficantly reinforces the conclusion drawn from the daily simulation, indicat-

ing that PCA-SAMNMPC is less conservative than PCA with multi-stage

MPC. Moreover, the simulations resulted in infeasible problems for PCA-

SAMNMPC on 2 days in January 2018 (9th and 12th) while PCA with

multi-stage NMPC exhibited that on 4 days in January 2018 (9th, 11th,

12th, and 14th). Therefore the expected frequency of constraint violations

is greater for PCA multistage than for PCA-SAMNMPC. This is because

PCA-SAMNMPC picks the scenarios along the PC that affect the con-
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straints.

8.5 Conclusion

This chapter integrates PCA and NLP sensitivity analysis to propose the

PCA-SAMNMPC algorithm that improves the performance of SAMNMPC

[20]. First, PCA on historical process data extracts correlations in the uncer-

tain model parameter space and then computes sensitivities of the inequal-

ity constraints with respect to the principal components. The parameter

realizations that lie in these new unit directions that will cause constraint

violations are identified and used to construct the scenario tree for multi-

stage MPC. The proposed strategy is applied to two numerical case studies

and shows fast solution times with the smallest tracking error.

Moreover, this chapter investigates the performance of this strategy on the

robust control of a hot water thermal energy storage unit in a district heat-

ing network. The proposed method is compared to the PCA-based approach

in [13] that does not use sensitivities. The simulation results show that the

proposed method improves the average economic performance. There is a

12% reduction in peak heating requirement and a 50 % reduction in the

frequency of infeasible problems. Hence, in addition, an improved robust-

ness compared to the data-driven heuristic in [13]. This is because the NLP

sensitivities assist in updating parameter realizations of the critical scen-

arios, especially during peak heating hours when the demand and supply

correlation is the weakest.
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9 | Conclusions & Future

Work

“In nature’s infinite book of secrecy

A little I can read.”

William Shakespeare (1564-1616)

This chapter summarizes the content of this thesis and presents key findings,

limitations of the study, and suggestions for future work.

9.1 Summary of findings

This thesis examines the robust multi-stage MPC framework and presents

new ideas to improve it for a swifter practical application in nonlinear sys-

tems control. The novel approaches aim to mitigate the limitations of the

multi-stage MPC formulation while maintaining its good qualities, espe-

cially robust constraint satisfaction. The addressed limitations include com-

putational efficiency and scenario selection strategy. Hence, this thesis is

divided into two major parts.

In both parts of the thesis, nonlinear optimization theory and sensitivity

analysis are employed to improve computational efficiency. The first part

shows that the use of nonlinear optimization theory and sensitivity ana-

lysis can be used together with nonlinear systems stability theory to con-

tinuously adapt the length of the prediction horizon. Consequently, the
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framework progressively reduces the prediction horizon as the controlled

system approaches the optimal steady state, and the scenario tree shrinks

in size resulting in a computationally fast and robustly stable performance.

The second part demonstrates that the use of multivariate data analysis

is prudent for assigning the parameter realizations assembled in the scen-

ario tree. This part also demonstrates that the combination of multivariate

data analysis and sensitivity analysis to assemble the scenario tree results

in further improvement in robustness and fast computational performance

of multi-stage MPC.

The following is an outline of the findings from each chapter in the main

parts of the thesis. Part I begins with Chapter 5 that motivates the need

for multi-stage MPC approximation to improve its computational efficiency

and facilitate online implementation.

The major contributions of this chapter are listed as follows:

• Proposed an adaptive horizon multi-stage MPC framework to achieve

fast computation times.

• Proposed the algorithm for an online update of the prediction horizon

for multi-stage MPC with a reference tracking objective.

• Proposed workflows to determine the terminal ingredients (terminal

region and cost) of multi-stage MPC with robust horizon and with a

fully branched scenario tree.

• Demonstrated an improved computational efficiency using simulations

on two numerical examples.

In Chapter 6, the stability properties of the previously proposed adaptive

horizon multi-stage MPC are presented and discussed. The conditions for

recursive feasibility are outlined based on achieving robust constraint satis-

faction of the closed-loop system. Further, conditions for robust stability of

the proposed framework are established by proving regional input-to-state

practical stability (ISpS).

The following are the main contributions of this chapter:

• Proved recursive feasibility of the adaptive horizon multi-stage MPC
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with a fully branched scenario tree.

• Showed that the adaptive horizon multi-stage MPC with a robust

horizon is not recursively feasible but using the relaxed formulation

avoids problem infeasibility.

• Proved ISpS of the adaptive horizon multi-stage MPC.

• Demonstrated the control performance of the adaptive horizon multi-

stage MPC with a fully branched scenario tree that is guaranteed

ISpS with the aid of a numerical example and showed robustness and

a significant reduction in computational time.

Chapter 7 introduces Part II by motivating the importance of scenario se-

lection techniques to improve the robust control performance of multi-stage

MPC. This chapter elucidates the advantages of data-driven scenario se-

lection because it gives a better representation of uncertainty. extracted.

The uncertainty representation is extracted from large correlated data sets

using PCA that uncovers directions of maximum variability. Parameter

realizations that may result in constraint violations are expected to lie on

the extremes of these directions known as principal components. PCA can

result into a dimensionality reduction leading to fewer selected realizations,

and consequently a reduced scenario tree size. Furthermore, with the aid of

a simple optimization problem, this chapter shows that the actual propag-

ated effect of these parameter realizations on the constraints is obtained via

nonlinear programming sensitivity analysis. A further reduction in the size

of the optimization problem size is shown with assistance from NLP sensit-

ivity analysis. Hence, a combination of PCA and NLP sensitivity analysis

results in robustness with reduced conservativeness and computational time.

The main contributions of Chapter 7 include:

• Proposed a scenario selection strategy that is based on combining PCA

and NLP sensitivity analysis.

• Compared the conservativeness and problem size of the conventional

box over-approximation scenario selection approach with PCA-based

scenario selection with the aid of a simple nonlinear problem.

• Compared the conservativeness and problem sizes of the PCA only,
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and the PCA with NLP sensitivity analysis scenario selection ap-

proaches with the aid of the same numerical example.

• Demonstrated that evaluation of sensitivities along principal compon-

ents from data results in the selection of less conservative parameter

realizations.

Chapter 8 demonstrates and compares the practical implementation of the

proposed scenario selection approaches from Chapter 7 for robust control

using multi-stage MPC. A brief background of the computationally efficient

sensitivity-assisted multi-stage NMPC (SAMNMPC) is given with its draw-

back of over-conservativeness that is a result of poor scenario selection. This

chapter assumes that model parameters are usually strongly correlated, and

can be sampled or estimated, even at a later time, to generate process data.

The process data is analyzed using PCA to compute the principal com-

ponents of the uncertainty space. Then the SAMNMPC formulation is ex-

pressed in terms of the principal components, a linear transformation of the

original parameters. This approach is tested by simulations on two bench-

mark numerical examples with a synthetic process data set. In both cases,

it is computationally fast and the controlled system is maintained within

process limits but there is a significant reduction in conservativeness.

In addition, the proposed framework was implemented on a detailed case

study with actual process data to control thermal energy storage for a dis-

trict heating network under supply and demand uncertainty. The approach

reduced the required average peak heating when compared to the scenario

selection approach based on PCA only. In this case, the approach cuts the

frequency of infeasible problems by half. Hence, the integration of PCA

and NLP sensitivity analysis for scenario selection in multi-stage MPC im-

proves robustness and reduces conservativeness and computational delay.

The major contributions in this chapter are outlined below:

• Proposed the PCA-SAMNMPC framework that combines PCA and

NLP sensitivities for scenario selection in multi-stage MPC.

• Compared the performances of the PCA-SAMNMPC approach with

SAMNMPC, multi-stage MPC, and standard MPC on two numerical
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examples to demonstrate robust constraint handling, computational

speed, and low conservativeness.

• Demonstrated the practical advantage of implementing the less con-

servative PCA-SAMNMPC using a realistic case study where an eco-

nomic benefit is realized by a reduced peak heating requirement.

9.2 Limitations of this study

A general limitation of this thesis stems from the fact that all the proposed

approaches are model-based. This is a strong limitation because the key

to a satisfactory control performance is model accuracy. It is challenging

to obtain good models, and they are seldom relevant for the full process

domain. Therefore, the methods will require strong expertise to ensure

good models are obtained for all the operating points or domains.

The thesis focuses on handling parametric uncertainty only, and that as-

sumes a correct model structure. No guarantees can be made if the model

structure is different and naturally, this may occur in practice. Since this is

a theoretical study, the methods assume that full-state information is always

available, and acquired without any delay. This must be accounted for, if

the proposed methods are to be applied to a real plant. The following are

specific limitations to each of the proposed algorithms.

Adaptive horizon multi-stage MPC. This approach aims to reduce the

scenario tree size by shrinking the prediction horizon using an adaptive ho-

rizon update. This should be done while also maintaining the robustness of

multi-stage MPC and closed-loop stability. The proposed framework causes

a reduction in problem size only when the controlled system is approaching a

stable optimal equilibrium. If the controlled system is continually disturbed

such that it is steered away from its equilibrium, then no computational be-

nefit will be realized. Moreover, there is always a significant computational

delay at the first iteration where the problem must be solved with a long

prediction horizon.
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PCA-SAMNMPC framework. This approach relies on the availability of

a large data set with uncertain parameter samples. It requires that the

system has model parameters that are measurable or can be estimated ac-

curately from other measurements. This can be the case if these parameters

are process disturbances for example source and sink temperatures. If the

model parameters cannot be measured, and are to be estimated based on

the model, for example using the moving horizon estimator, then there is

an increased dependency on the correctness of the model structure. This

may lead to an unexpected loss of performance of the proposed approach.

Moreover, the method selects scenarios based on sensitivity analysis by as-

suming monotonic constraints with respect to uncertain parameters. The

robustness of the controller might break if the constraints do not satisfy this

property.

9.3 Recommendations for future work

In this section, several directions for future work on the topics of this thesis

are presented. The recommendations include direct extensions of this work

and suggestions driven by certain limitations of the proposed methodologies.

Horizon update in multi-stage MPC with economic costs. In Part I of

the thesis a horizon update scheme for the multi-stage MPC with reference

tracking objective was presented. A direct extension of that is to examine

the performance of the proposed adaptive horizon multi-stage MPC with

economic costs. Then a theoretical analysis similar to [79] may be done

to investigate the conditions for recursive feasibility and robust stability

properties.

Advanced step strategy at the first iteration. The adaptive horizon multi-

stage MPC framework does not reduce computational delay at the initial

MPC interval. This is due to the need to solve the problem with a long

horizon at the start and obtain sensitivity-assisted predictions that decide to

shrink the horizons of subsequent iterations. To circumvent this problem, an

advanced step MPC strategy such as in [18, 104] may be integrated to shift

the computational burden away from the first interval. Another possibility
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is to perform an advanced step with a horizon update to obtain solutions in

real time.

Inverse optimal control to shrink horizons. To solve the issue of significant

computational delay at the beginning of adaptive horizon multi-stage MPC

implementation, an inverse optimal control approach similar to that in [105]

may be applied to provide a computationally efficient approximation. The

method finds a suitable objective function that makes a shorter prediction

horizon problem approximately equal to a complex problem with a long

prediction horizon. The approach first involves collecting closed-loop state-

input pairs and then fitting a small-sized problem that gives the same control

policy with approximate optimality.

Synergizing scenario selection and horizon update using sensitivity analysis.

Another direct extension is to use sensitivity analysis to simultaneously se-

lect scenarios and reduce the prediction horizon. This might require per-

forming an uneven reduction of the prediction horizon. That is, some scen-

arios will end up becoming longer or shorter than others, causing a software

implementation challenge. In this case, one must rethink to find a more

efficient methodology for the algorithm. This is because directly integrating

the two algorithms implies solving both nominal and multi-stage MPC with

long horizons in one interval, increasing the computational burden.

Scenario selection using other data analysis techniques. The thesis has

extensively examined the PCA-based approach to obtain parameter realiz-

ation for the multi-stage MPC scenario tree. Further investigation could be

made on the feasibility and robust performances of other multivariate data

analysis techniques to identify scenarios from large data sets.

Validation with practical implementation. All the proposed methods in

this thesis are tested using simulation experiments. The next step may be

to implement the strategies on a laboratory-scale plant process. This will

help discover and uncover the limitations and advantages of these methods

for real-time MPC implementation. Hence, further contributing to bridging
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the gap between theory and practice.
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A.1. Cooled CSTR

A.1 Cooled CSTR

The following Table A.1 shows the parameters for the cooled CSTR example

used in this thesis. The following Table A.2 presents the limits on the state

Table A.1: CSTR — System parameters

Parameter Value Units

A1,2 9.043× 1012 /h
A3 9.043× 109 /h
E1,2/R 9758.3 K
E3/R 8560.0 K
∆HAB 4.2 kJ/mol
∆HBC −11.0 kJ/mol
∆HAD −41.85 kJ/mol
cp 3.01 kJ/kgK
cp,J 2.0 kJ/kgK
ρ 0.9342 kg/m3

AR 0.215 m2

VR 10.01 m3

Tin 130.0 ◦C
kw 4032 kJ/hm2K
mJ 5 kg
R 8.314× 10−3 kJ/Kmol

and control input variables for the cooled CSTR example.

Table A.2: CSTR — Bounds on states and inputs

Variable Initial condition Minimum Maximum Unit

cA 0.8 0.1 5.0 mol/l
cB 0.5 0.1 5.9 mol/l
TR 134.14 50 140 ◦C
TJ 134.0 50 180 ◦C
F 18.83 0.0 35 /h

Q̇J −4495.7 −8500 0 kJ/h
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A.2 Quad-tank system

The following Table A.3 summarizes the model parameters for the quadtank

example used in this thesis. The following Table A.4 presents the limits

Table A.3: Quad-tank — Model parameters

Parameter Value Unit Parameter Value Unit

A1 50.27 cm2 a1 0.233 cm2

A2 50.27 cm2 a2 0.242 cm2

A3 28.27 cm2 a3 0.127 cm2

A4 28.27 cm2 a4 0.127 cm2

γ1 0.4± 0.05 – γ2 0.4± 0.05 –

on the state and control input variables for the quadtank example. The

Table A.4: Quad-tank — Bounds on states and inputs

Variable Minimum Maximum Unit

x1 7.5 28.0 cm
x2 7.5 28.0 cm
x3 14.2 28.0 cm
x4 4.5 21.3 cm
u1 0.0 60.0 ml/s
u2 0.0 60.0 ml/s

following Table A.5 presents the pulse changes introduced on the tank levels

for the quad-tank example.

Table A.5: Quad-tank — Pulse changes to state variables

k x1 x2 x3 x4
0 28 cm 28 cm 14.2 cm 21.3 cm
50 28 cm 14 cm 28 cm 21.3 cm
100 28 cm 14 cm 14.2 cm 21.3 cm
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A.3 Optimal Control Problem for the TES System

The complete formulation of the dynamic optimization problem for the in-

dustrial park system with a TES tank is as follows:

Energy cost

min

∫ tf

t0

(
nC∑
j=1

Qpeak
Cj

(t)

)
dt

s.t.

Supply side balances

ṪSi(t) = fSi

(
TSi(t),qSi(t), Q

supply
Si

(t), Qdump
Si

(t), QTES,in
Si

(t)
)

QTES,in
Si

(t) =

nhex∑
k=1

(UA)hex(T hex,hot
Si,k

(t)− T hex,cold
Si,k

(t))

Consumer side balances

ṪCj (t) = fCj

(
TCj (t),qCj (t), Q

demand
Cj

(t), Qpeak
Cj

(t), QTES,out
Cj

(t)
)

QTES,out
Cj

(t) =

nhex∑
k=1

(UA)hex(T hex,hot
Cj ,k

(t)− T hex,cold
Cj ,k

(t))

Tank balance

ρcpV
tankṪTES(t) =

nS∑
i=1

QTES,in
Si

(t) +

nC∑
j=1

QTES,out
Cj

(t)−QTES,loss(t)

QTES,loss(t) = (UA)tank
(
TTES(t)− T amb(t)

)
Initial state constraints

TSi(0) = Tinit
Si

TCj (0) = Tinit
Cj

TTES(0) = TTES,init

Operating constraints - states

TSi,min ≤ TSi(t) ≤ TSi,max

TCj ,min ≤ TCj (t) ≤ TCj ,max

TTES
min ≤ T TES(t) ≤ TTES

max

141



APPENDIX A

Operating constraints - inputs

qCj ,min ≤ qCj (t) ≤ qCj ,max

Qdump
Si,min ≤ Q

dump
Si

(t) ≤ Qdump
Si,max

Qpeak
Cj ,min ≤ Q

peak
Cj

(t) ≤ Qpeak
Cj ,max

Indices

∀i ∈ {1, . . . , nS},∀j ∈ {1, . . . , nC},∀k ∈ {1, . . . , nhex}

where the parameters and their values are presented in the following Table A.6.

The following Table A.7 presents the bounds on the state and control input

Table A.6: TES — System parameters

Symbol Value Unit

V tank 1000 m3

(UA)tank 0.1 kW/K
V hex 1 m3

Ahex 2500 m2

Uhex 1.2 kW/m2K
nhex 5 -
T amb -5 ◦C
ρ 1000 kg/m3

cp 4.18 kJ/kgK
qhotS ,qcoldS 0.3 m3/s

variables for the industrial thermal energy storage case study.

Table A.7: TES — Bounds on states and inputs

Variable Minimum Maximum Unit

T process
S , T process

C 50 100 ◦C
T return
S 50 85 ◦C
T return
C 60 100 ◦C
TTES 50 100 ◦C
qhotC , qcoldC 0.001 0.3 m3/s

Qdump
Si

, Qpeak
Cj

0.0 10 MW
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