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A B S T R A C T

Multimodal sentiment analysis aims to extract sentiment cues from various modalities, such as textual, acoustic,
and visual data, and manipulate them to determine the inherent sentiment polarity in the data. Despite
significant achievements in multimodal sentiment analysis, challenges persist in addressing noise features in
modal representations, eliminating substantial gaps in sentiment information among modal representations,
and exploring contextual information that expresses different sentiments between modalities. To tackle these
challenges, our paper proposes a new Multimodal Sentiment Analysis (MSA) framework. Firstly, we introduce
the Hierarchical Denoising Representation Disentanglement module (HDRD), which employs hierarchical disen-
tanglement techniques. This ensures the extraction of both common and private sentiment information while
eliminating interference noise from modal representations. Furthermore, to address the uneven distribution
of sentiment information among modalities, our Inter-Modal Representation Enhancement module (IMRE)
enhances non-textual representations by extracting sentiment information related to non-textual representations
from textual representations. Next, we introduce a new interaction mechanism, the Dual-Channel Cross-Modal
Context Interaction module (DCCMCI). This module not only mines correlated contextual sentiment information
within modalities but also explores positive and negative correlation contextual sentiment information between
modalities. We conducted extensive experiments on two benchmark datasets, MOSI and MOSEI, and the results
indicate that our proposed method offers state-of-the-art approaches.
1. Introduction

Originally, sentiment analysis involved using Natural Language Pro-
cessing (NLP) techniques to extract sentiment information, including
opinions and feelings, from subjective text (Zhang, Xu, & Zhao, 2020).
However, the rapid expansion of social media platforms like Twitter,
TikTok, and YouTube has led to explosive growth in video data con-
taining multimodal information—encompassing textual, acoustic, and
visual elements (Shi, Fan, Wang, & Zhang, 2022). Traditional text-
based sentiment analysis now struggles to handle the complexities
of this data, prompting a growing interest in multimodal sentiment
analysis, which extracts attitudes, opinions, and sentiment informa-
tion from various modalities (Su & Kuo, 2022). Simultaneously, the
widespread use of mobile devices not only facilitates the capture of
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diverse modal sentiment cues from users (Michalis, Vassilis, Nicholas, &
Petros, 2019) but also enables the application of multimodal sentiment
analysis across various economic and social sectors (Wang et al., 2022).
Consequently, an increasing number of researchers are delving into this
promising and evolving field.

In recent years, deep learning methods have dominated multimodal
sentiment analysis research, aiming to leverage complementary senti-
ment information between multimodal data to construct complex deep
learning models (Abdu, Yousef, & Salem, 2021; Zhao, Jia, Yang, Ding,
& Keutzer, 2021). While these methods have led to some improvements
in accuracy, challenges persist (Zhu, Zhu, Zhang, Xu, & Kong, 2023).
Effective representation disentanglement poses a key challenge, given
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the significant distribution gap between textual, acoustic, and visual
representations. Existing methods address this by introducing domain
separation into multimodal sentiment analysis, partitioning representa-
tions into modality-invariant and modality-specific subspaces to obtain
appropriate multimodal representations (Bousmalis, Trigeorgis, Silber-
man, Krishnan, & Erhan, 2016; Hazarika, Zimmermann, & Poria, 2020).
However, each modality representation not only contains information
expressing common and private sentiment but also includes a consid-
erable amount of irrelevant noise, which can significantly reduce the
accuracy of sentiment analysis tasks. Therefore, the challenge lies in
obtaining multimodal representations that balance common and private
sentiments while mitigating the impact of noise.

Another challenge in multimodal sentiment analysis is the signif-
icant gap in modality information quality, leading to uneven distri-
bution of sentiment information between modal representations. En-
hancing representation information often becomes necessary to address
this. Current approaches extract sentiment information related to the
text modality from non-text modalities to strengthen text representa-
tion (Wang et al., 2019). However, this approach does not fully address
sentiment information scarcity in non-textual representations. Lever-
aging sentiment information from textual representations to enhance
non-textual representations remains a puzzle.

Modal interaction poses another challenge, as sentiment informa-
tion in multimodal data is often complementary. Exploring these com-
plementary pieces of information through modal interaction to generate
effective multimodal representations is crucial. However, current meth-
ods tend to overlook negative correlation context information between
modalities, despite its potential importance in certain contexts such
as irony or delivering bad news (Vaswani et al., 2017). Effectively
focusing on both positive and negative correlation context sentiment
information between modalities remains a challenging task.

In response to the aforementioned challenges, we introduce a novel
framework for Multimodal Sentiment Analysis (MSA). Firstly, we em-
ploy a hierarchical disentanglement technique to project the represen-
tation of each modality into modality-common, -private, and -noisy
subspaces. These representations are then constrained to ensure their
appropriateness. Secondly, recognizing the significant gap in sentiment
information between modal representations, we aim to leverage the
rich emotional information in the textual modality to enhance the
acoustic and visual modalities. Additionally, we seek to mine contextual
information within each modality and between modalities to enrich the
sentiment semantics of multimodal representations.

Our study’s contributions can be summarized as follows: introducing
a novel Multimodal Sentiment Analysis (MSA) framework that tack-
les key challenges in multimodal sentiment analysis. By employing
hierarchical disentanglement, leveraging textual emotional informa-
tion, and mining contextual cues, our framework aims to enhance the
effectiveness and accuracy of multimodal sentiment analysis.

• We introduce a hierarchical denoising representation disentangle-
ment module, which decomposes modal representations through
representation constraints. This allows modal representations to
incorporate both commonality and individuality information
while eliminating noise that may negatively impact sentiment
analysis tasks.

• We have designed an inter-modal representation enhancement
module to bridge the gap between modalities. This module ex-
tracts emotional information related to acoustic and visual con-
tent from textual representations, thereby bridging the substantial
divide between textual and non-textual modalities.

• We introduce a dual-channel cross-modal context interaction
module, which utilizes multiple attention mechanisms to simul-
taneously emphasize complementary contextual emotional infor-
mation within and between modalities. This approach enables the
extraction of contextual clues with rich semantics.
2

The subsequent sections of this paper are organized as follows:
Section 2 conducts a review of pertinent literature in the realm of
multimodal sentiment analysis. Section 3 presents the framework of the
model and provides a detailed design of each module. Section 4 intro-
duces the datasets used and outlines the experimental configurations.
Section 5 demonstrates the efficacy of the proposed framework through
various experiments. Finally, Section 6 provides a summary of the
research outcomes, accompanied by directions for future exploration.

2. Related work

With the widespread adoption of social networks and the rapid
development of deep learning technology (Biswas & Tešić, 2022), mul-
timodal sentiment analysis has become a key focus of research within
the multimodal domain. This approach harnesses diverse data sources,
including textual, acoustic, and visual information, to comprehend
sentiments (Wu, Lin, Zhao, Qin, & Zhu, 2021). Multimodal sentiment
analysis based on deep learning aims to establish a reliable mapping
between multimodal data and emotional polarity, a task reliant on the
effective fusion of multimodal data. Existing work can be broadly cate-
gorized into attention-unrelated and attention-based methods based on
their fusion approaches.

2.1. Attention-unrelated methods

These early approaches include the TFN proposed by Zadeh, Chen,
Cambria, Poria, and Morency (2017), utilizing the Cartesian product to
fuse modal representations. Responding to the complex computation
of TFN, Liu et al. (2018) proposed LMF to simplify the computational
complexity using low-rank tensors. With the development of feature
fusion technology (Yu, Yu, Fan, & Tao, 2017), researchers try to de-
compose and re-fuse representations, aiming to learn more distinctive
representations through factorization (Chen, Shen, Ding, Deng, & Li,
2024). For example, Wang, Yan, Lee, and Livescu (2016) reanalyzed
the LVMS using deep variational CCA, obtaining modality variables
that include private and shared variables. The MV-LSTM network pro-
posed by Rajagopalan, Morency, Baltruaitis, and Goecke (2016) models
consistent and complementary information among multiple modalities
using multi-view LSTM blocks. The MFM model designed by Tsai,
Liang, Zadeh, Morency, and Salakhutdinov (2018) decomposes the joint
representation of multimodal data into intra-modal and inter-modal
correlations. Hazarika et al. (2020) proposed the MISA framework,
which uses different encoders to learn modal representations from the
perspectives of modality-invariant and modality-specific. While these
methods have indeed improved sentiment prediction accuracy to some
extent, the presence of irrelevant noise significantly impacts model
performance. This is because noise lacking emotional information often
interferes with sentiment analysis. Furthermore, there has been insuf-
ficient attention paid to contextual interaction information within and
between modalities.

2.2. Attention-based methods

These methods use various attention mechanisms (Li, Cai, Dong,
Lai, & Xie, 2023) to achieve inter-modal and intra-modal informa-
tion interaction for more effective multi-modal representations (Xiao
et al., 2021). In the MARN model, Zadeh, Liang, Poria et al. (2018)
employ multiple attention blocks to obtain diverse cross-modal emo-
tional contexts, storing them in a mixed memory block. Ou, Chen,
and Wu (2021) proposed a multimodal local–global attention network
in the MMLGAN model to fuse representations from different modal-
ities. The Transformer (Vaswani et al., 2017), initially developed for
machine translation, has gained attention for its unique advantage
in modeling context for sequential data. Researchers have explored
its utilization in various domains. Tsai et al. (2019) employed the
MulT for the interaction and fusion of multimodal sequences with
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different time steps. Chen, Hong, Guo, and Song (2023) proposed the
TCDN framework, utilizing a three-modal collaborative network to
acquire intra- and inter-modal contextual sentiment information while
eliminating irrelevant features between modalities. Wang, Guo et al.
(2023) proposed the TETFN, obtaining consistent interaction infor-
mation between modalities through text-guided cross-modal mapping.
Tang, Liu et al. (2023) proposed the BAFN network, using dynamic
enhancement blocks and bidirectional attention blocks to explore intra-
modality emotional context and more advanced emotional context
inter-modally. Wang, Tian et al. (2023) proposed the TEDT frame-
work, which, through a Transformer-based modality-enhancing mod-
ule, translates non-linguistic modalities into linguistic modalities while
filtering out erroneous information between modalities. However, in
the process of acquiring cross-modal interaction information, the afore-
mentioned studies tend to focus on obtaining contextual information
expressing similar sentiments between modalities while overlooking
contextual information expressing differential sentiments. Additionally,
the imbalance between modalities poses a significant challenge to the
quality of cross-modal contextual interaction.

2.3. Issues of acquiring cross-modal interaction information

Some researchers are attempting to address the issue of poor con-
textual interaction caused by emotional gaps between modalities. The
RAVEN model proposed by Wang et al. (2019) utilizes cross-modal
attention to integrate relevant non-verbal information with language
representations. The MAG model by Rahman et al. (2020) uses acous-
tic and visual representations as auxiliary features, fine-tuning the
position of the text representation in the sentiment space. However,
the aforementioned studies often leverage non-textual modalities to
enrich textual representations with emotional information. Yet, the in-
fluence of emotion-poor non-textual modalities on cross-modal context
interaction has been overlooked.

To address these issues, we propose a novel approach to multimodal
sentiment analysis. We utilize hierarchical disentanglement techniques
to decompose modality representations into common, private, and
noisy representations through two rounds of factorization. Different
loss functions constrain these representations, enabling the learning
of modality representations that encompass aspects of commonality,
individuality, and noise. Subsequently, we enhance acoustic and visual
representations by extracting related sentiment information from tex-
tual representations through an emotion correlation mining network.
Furthermore, using the dual-channel concept, after completing the ex-
ploration of intra-modality contextual information, we simultaneously
explore inter-modality positive and negative correlation contextual
information within two channels.

3. Methodology

In this section, a comprehensive exploration of the various struc-
tures of the proposed model will be presented. The overall structure of
the model is depicted in Fig. 1 and mainly comprises five parts: Feature
Extraction module, HDRD module, IMRE module, DCCMCI module,
and Sentiment Prediction module. The multimodal raw data is divided
into textual, acoustic and visual modal data, which is then fed into
the Feature Extraction module to obtain three modal representations
containing both temporal and feature information.

In the HDRD module, the representation of each modality undergoes
hierarchical representation disentanglement technology, enabling the
learning of both common and private sentiments in the representa-
tion while eliminating sentiment-unrelated noise. Moving to the IMRE
module, the denoised textual representation is utilized to enhance non-
textual representations, thereby enriching the sentiment information
embedded in these non-textual representations.

Within the DCCMCI module, the process begins by employing multi-
head self-attention to extract contextual sentiment information for each
3

t

modality. Subsequently, a dual-channel mechanism is used to sepa-
rately extract contextually positive and negative correlation sentiment
information between modalities. Finally, the various mined sentiment
information and the modal representations are fused. This involves
concatenating the modality representations, each fused with various
sentiment information, to obtain a complete multimodal representation
with rich multimodal semantic interactions. This resulting representa-
tion is then passed to the Sentiment Prediction module, yielding the
ultimate multimodal sentiment prediction outcome.

3.1. Task setup

In the benchmark dataset, each video segment containing a col-
lection of video frames has been assigned an overall emotional label.
Consequently, we construct a model that utilizes textual, acoustic,
and visual signals within video segments to detect emotional informa-
tion. Features from different modalities are extracted from each video
segment to serve as model inputs.

Let the text representation be denoted as 𝑋𝑡 ∈ R𝑇 𝑡×𝑑𝑡, the au-
dio representation as 𝑋𝑎 ∈ R𝑇 𝑎×𝑑𝑎, and the video representation
s 𝑋𝑣 ∈ R𝑇 𝑣×𝑑𝑣, where 𝑇𝑚∈{𝑡,𝑎,𝑣} represents the sequence length of
he corresponding modality, and 𝑑𝑚∈{𝑡,𝑎,𝑣} represents the dimension.
orrespondingly, the model produces a result 𝑦̂ ∈ R representing
he sentiment intensity of a video clip. Specifically, 𝑦̂ < 0 signifies
hat the video expresses negative sentiments, 𝑦̂ = 0 signifies that the
ideo expresses neutral sentiments, and 𝑦̂ > 0 signifies that the video
xpresses positive sentiments.

.2. Feature extraction module

In this section, we will provide a detailed explanation of the feature
xtraction module, wherein the raw data of each modality undergoes
rocessing to extract both featural and temporal information for the
espective modality.
Featural information: Traditional methods for textual feature rep-

esentation often struggle to leverage contextual information for distin-
uishing polysemy. To overcome this challenge, we adopt a recently
uccessful pre-trained language model, specifically utilizing a BERT
odel comprising 12 Transformers to extract textual features from the

ranscripts of video segments. Each layer incorporates a multi-head
ttention mechanism with 12 heads and a feedforward neural network.
his model is proficient in capturing bidirectional contextual informa-
ion, generating sentence representations imbued with rich sentiment
nformation. Drawing from past experiences, we select the initial word
ector from the final layer as the textual representation.

For the acoustic modality, we sample and frame the audio data
orresponding to each video segment and extract pitch and spectrum
eatures, such as zero-crossing rate, Mel-Frequency Cepstral Coeffi-
ients (MFCCs), and Constant-Q Transform (CQT), from each audio
rame. Extensive evidence suggests that this acoustic representation
losely relates to the speakers’ emotions. Regarding the visual modal-
ty, facial information, including expressions, head movements, and
ye directions, contains rich emotional cues. Therefore, we utilize
penFace 2.0 to identify facial cues in each video frame and reduce
ata volume through average pooling-based frame downsampling. This
pproach allows us to obtain an ordered set of audio and visual features
orresponding to each video segment containing a collection of video
rames. These features will then be fed into the LSTM network to
apture temporal information.
Temporal information: The textual representation extracted by

he BERT model inherently includes temporal information, obviating
he need for additional operations. However, the extracted acoustic
nd visual representations lack temporal information. Consequently, we
rocess these representations through the Bi-LSTM network to obtain

emporal information. The operations outlined in Formula (1) result
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Fig. 1. Overall structure diagram of the proposed model.
in a 768-dimensional textual representation, a 16-dimensional acoustic
representation, and a 32-dimensional visual representation.

𝐹𝑡 = 𝐵𝐸𝑅𝑇 (𝑋𝑡; 𝜃𝐵𝐸𝑅𝑇
𝑡 )

𝐹𝑎 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑋𝑎; 𝜃𝐵𝑖𝐿𝑆𝑇𝑀𝑎 )

𝐹𝜈 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑋𝜈 ; 𝜃𝐵𝑖𝐿𝑆𝑇𝑀𝜈 )

(1)

where 𝑋𝑛 represents the original features of each modality, while
𝜃𝐵𝐸𝑅𝑇
𝑡 , 𝜃𝐵𝑖𝐿𝑆𝑇𝑀𝑎 and 𝜃𝐵𝑖𝐿𝑆𝑇𝑀𝜈 represent the network parameters used

for feature extraction in each model, 𝑛 ∈ {𝑡, 𝑎, 𝑣}.

3.3. Hierarchical denoising representation disentanglement module

Following feature extraction, we employed the HDRD module to
obtain modal representations that encompass both common and private
sentiment information while excluding noise. The HDRD module, as
depicted in Fig. 2, primarily consists of two layers of structure. The
first layer is the common sentiment learning layer, comprising a com-
mon encoder designed to learn a representation capable of expressing
common sentiments among modalities. The second layer is the private
sentiment learning layer, featuring a private encoder tasked with ad-
dressing the issue of noise in modalities by learning a representation
capable of expressing private sentiments among modalities.
4

Our objective is to refine these representations, ensuring that the
common representation is homogenized, the private representation is
diversified, and the noisy representation is minimized. This process
aims to retain diverse sentiment information while reducing noise. Fi-
nally, we merge the common representation and private representation
into a new modal representation.

Common sentiment learning layer: In the common sentiment
learning layer, the central component is the common encoder, as
illustrated in Formula (2). The common encoder allows us to derive
the common representation for each modality.

𝐶𝑛 = 𝐿𝑐
𝑛(𝐹𝑛; 𝜃𝑐 ) (2)

where 𝐿𝑐
𝑛 represents the common encoder composed of fully connected

layers, which utilizes the same set of parameters 𝜃𝑐 to extract common
representations for each modality, 𝑛 ∈ {𝑡, 𝑎, 𝑣}.

Next, as demonstrated in Formula (3), we will introduce the specific
process of the common sentiment learning layer. We decompose the
modal representation 𝐹𝑛 into common and non-common representa-
tions, facilitating the separation of the non-common representation
from the modal representation 𝐹𝑛.

𝐹𝑛 = 𝐶𝑛 + 𝐹 𝑢𝑛𝑐
𝑛

𝑢𝑛𝑐 (3)

𝐹𝑛 = 𝐹𝑛 − 𝐶𝑛
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Fig. 2. Hierarchical denoising representation disentanglement framework.
where the common representation 𝐶𝑛 contains information expressing
common sentiments among various modalities. However, the non-
common representation 𝐹 unc

𝑛 is not entirely useless for sentiment anal-
ysis; it includes information that reflects private sentiments among
modalities. This information is particularly helpful in predicting ironic
sentiments in contexts such as satire, 𝑛 ∈ {𝑡, 𝑎, 𝑣}.

private sentiment learning layer: In the private sentiment learn-
ing layer, the primary component is the private encoder, as illustrated
in Formula (4). Leveraging the private encoder enables us to obtain the
private representation for each modality.

𝑃𝑛 = 𝐿𝑝
𝑛(𝐹

𝑢𝑛𝑐
𝑛 ; 𝜃𝑝𝑛) (4)

where 𝐿𝑝
𝑛 represents the private encoder composed of fully connected

layers, and a unique set of parameters 𝜃𝑝𝑛 is assigned when extracting
the private representation for each modality, 𝑛 ∈ {𝑡, 𝑎, 𝑣}.

The detailed process of the private sentiment learning layer is
presented in Formula (5), where the non-common representation 𝐹 𝑢𝑛𝑐

𝑛
includes information about private sentiments among modalities that
positively contributes to sentiment analysis. Therefore, we decompose
the non-common representation 𝐹 𝑢𝑛𝑐

𝑛 into private and noisy represen-
tations. Subsequently, we separate the noisy representation from the
non-common representation 𝐹 𝑢𝑛𝑐

𝑛 .

𝐹 𝑢𝑛𝑐
𝑛 = 𝑃𝑛 +𝑁𝑛

𝑁𝑛 = 𝐹 𝑢𝑛𝑐
𝑛 − 𝑃𝑛

(5)

where the private representation 𝑃𝑛 contains information expressing
private sentiments among various modalities. On the other hand, the
noisy representation 𝑁𝑛 does not contain any sentiment information,
such as chaotic backgrounds and changing noise. We believe that such
information has no positive impact on sentiment analysis, 𝑛 ∈ {𝑡, 𝑎, 𝜈}.

Finally, as shown in Formula (6), merge the common representation
𝐶𝑛 and private representation 𝑃𝑛 into a new modal representation 𝐹 ℎ

𝑛 .

𝐹 ℎ
𝑛 = 𝐶𝑛 + 𝑃𝑛 (6)

Constraint condition: We have defined several constraints to en-
sure the effectiveness of the learned common, private, and noisy repre-
sentations.

The common loss 𝛾𝑐𝑙 represents the difference between common
representations among various modalities. The smaller the value, the
5

more representative the learned common representations are. There-
fore, in our work, we use Euclidean Distance (ED) to assess the dif-
ference between two representations. It measures the straight-line dis-
tance between two vectors in Euclidean space, representing the length
of the line connecting these two vectors. As shown in Formula (7),
we calculate the sum of the Euclidean distances between common
representations of any two modalities as the common loss.

𝛾𝑐𝑙 = 𝐸𝐷(𝐶𝑡, 𝐶𝑎) + 𝐸𝐷(𝐶𝑡, 𝐶𝜈 ) + 𝐸𝐷(𝐶𝑎, 𝐶𝜈 ) (7)

The private loss 𝛾𝑝𝑙 is used to measure the redundancy among pri-
vate representations of various modalities. This loss can assess whether
the model has learned private representations that can capture the
private emotions of modalities. We use an orthogonality constraint to
compute this loss. Suppose A and B are two representation matrices
whose rows are private representation vectors. The orthogonality con-
straint can be expressed as 𝑂𝐶(𝐴,𝐵) = ‖𝐴𝑇𝐵‖2𝐹 , where ‖ ∗ ‖

2
𝐹 is

the squared Frobenius norm. The smaller the value of OC, the more
orthogonal the two representations of A and B are, indicating a greater
difference between A and B. As shown in Formula (8), we calculate the
sum of soft orthogonality constraints between private representations
of any two modalities as the private loss.

𝛾
𝑝𝑙
= 𝑂𝐶(𝑃𝑡, 𝑃𝑎) + 𝑂𝐶(𝑃𝑡, 𝑃𝜈 ) + 𝑂𝐶(𝑃𝑎, 𝑃𝜈 ) (8)

The noise loss 𝛾𝑛𝑙 is used to assess the magnitude of noisy repre-
sentations, and the smaller the value, the less noisy is present in noisy
representations. We use the squared L2 norm (‖ ∗ ‖

2
2). As shown in

Formula (9), we calculate the sum of the squared L2 norms for noisy
representations of each modality as the noise loss. The specific hierar-
chical denoising representation disentanglement strategy is illustrated
in Algorithm 1.

𝛾𝑛𝑙 = ‖𝑁𝑡‖
2
2 + ‖𝑁𝑎‖

2
2 + ‖𝑁𝜈‖

2
2 (9)

3.4. Inter-modal representation enhancement module

In multimodal data, the textual modality contains richer sentiment
information compared to acoustic and visual modalities. Therefore, in
the IMRE module, we use the textual representation obtained from
the HDRD module to enhance acoustic and visual representations,
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Algorithm 1: Hierarchical Denoising Representation Disentanglement Module (HDRDM)
Input: Modality representations 𝐹𝑛
Output: Denoised modality representations 𝐹 ℎ

𝑛
1 for 𝑘 ∈ [1, 𝐸𝑛𝑑] do
2 for batch in dataLoader do
3 for 𝑛 ∈ [𝑡, 𝑎, 𝑣] do
4 Compute common representation 𝐶𝑛 using Equation (2)
5 Compute non-common representation 𝐹 𝑢𝑛𝑐

𝑛 using Equation (3)
6 Compute private representation 𝑃𝑛 using Equation (4)
7 Compute noisy representation 𝑁𝑛 using Equation (5)
8 Compute denoised modality representation 𝐹 ℎ

𝑛 using Equation (6)
9 end
10 Compute common loss 𝛾𝑐𝑙 using Equation (7)
11 Compute private loss 𝛾𝑝𝑙 using Equation (8)
12 Compute noise loss 𝛾𝑛𝑙 using Equation (9)
13 end
14 end
Fig. 3. Inter-modal representation enhancement framework.

addressing the lack of sentiment information in acoustic and visual rep-
resentations. Fig. 3 illustrates the specific structure of the IMRE module,
mainly comprising TEA and TEV components. TEA receives textual and
acoustic representations as input, while TEV receives textual and visual
representations as input. As outlined in Formula (10), we initiate the
process by concatenating the textual representation with acoustic and
visual representations to obtain

[

𝐹 ℎ
𝑡 ;𝐹

ℎ
𝑎
]

and
[

𝐹 ℎ
𝑡 ;𝐹

ℎ
𝑣
]

. Then, we use
them to generate two enhancement factors 𝜔𝑡𝑎 and 𝜔𝑡𝑣.

𝜔𝑡𝑚 = 𝑅𝐸𝐿𝑈 (𝐿(
[

𝐹 ℎ
𝑡 ;𝐹

ℎ
𝑚
]

); 𝜃𝑡𝑚) (10)

where 𝑚 ∈ {𝑎, 𝑣}, 𝜃𝑡𝑚 are network parameters, RELU is a non-linear
activation function, and L is a fully connected layer network. These
enhancement factors extract sentiment information from the textual
representation to strengthen the acoustic and visual representations.

Then, as shown in Formula (11), we blend 𝐹 ℎ
𝑡 with their respective

enhancement factors to obtain emotional vectors 𝐹𝑡𝑎 and 𝐹𝑡𝑣, which are
designed to enhance the enhancing acoustic and visual features.

𝐹𝑡𝑚 = 𝜔𝑡𝑚 ∗ 𝐿(𝐹 ℎ
𝑡 ; 𝜃𝑚) (11)

where 𝑚 ∈ {𝑎, 𝑣}, 𝜃𝑚 are network parameters, and L is a fully connected
layer network.

Finally, as outlined in Formula (12), we concatenate and fuse acous-
tic and visual representations with emotional vectors to obtain new
acoustic and visual representations 𝐹 𝑖

𝑎 and 𝐹 𝑖
𝑣. To ensure that the

emotional vector remains within an ideal range, we use a scaling factor
6

𝜑 for constraint.

𝜑𝑚 = 𝑚𝑖𝑛
(

‖𝐹 ℎ
𝑚‖2

‖𝐹𝑡𝑚‖2
𝜇, 1

)

𝐹 𝑖
𝑚 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡

(

𝐿𝑁([𝐹 ℎ
𝑚 ;𝜑𝑚𝐹𝑡𝑚])

)
(12)

where 𝑚 ∈ {𝑎, 𝑣}, 𝜇 is a hyperparameter selected through cross-
validation, ‖ ∗ ‖2 is the L2 norm, and Dropout and LN are the dropout
layer and normalization layer, respectively.

3.5. Dual channel cross-modal-context interaction module

The DCCMCI module is designed to explore contextual sentiment
information from three perspectives: intra-modal, cross-modal positive
correlation, and cross-modal negative correlation, with the goal of
obtaining comprehensive multimodal representations. As depicted in
Fig. 4, first, we use a multi-head self-attention mechanism to explore
context information within each modality. Then, for cross-modal con-
text interaction, it is divided into two channels. In the first channel, we
apply a positive correlation multi-head attention mechanism to facili-
tate interaction between contexts that express similar sentiments across
different modalities. In another channel, our specially designed nega-
tive correlation multi-head attention mechanism is employed to explore
context information that expresses differing sentiments between modal-
ities. Our aim is to extract context information expressing intra-modal,
cross-modal similarities, and cross-modal differences through context
interaction, thereby obtaining a multimodal representation with com-
plete sentiment semantics. Taking the acoustic modality as an example,
the operations of the DCCMCI module include the following steps.

Intra-modal context interaction: As shown in Formula (13), we
transform the acoustic representation 𝐹 𝑖

𝑎 into query 𝑄𝑎, key 𝐾𝑎, and
value 𝑉𝑎 through a fully connected layer. We calculate the similarity
weight matrix using vectors 𝑄𝑎 and 𝐾𝑎, then sum the weighted vector
𝑉𝑎 to obtain a new representation vector. Each computation is treated
as a separate head, and the outputs of multiple heads are concatenated
to obtain intra-modal sentiment representation 𝐹 𝑠

𝑎 .

𝑄𝑎, 𝐾𝑎, 𝑉𝑎 = 𝐹 𝑖
𝑎𝑊𝑄, 𝐹

𝑖
𝑎𝑊𝐾 , 𝐹

𝑖
𝑎𝑊𝑄

ℎ𝑒𝑎𝑑𝑗 (𝑄𝑎, 𝐾𝑎, 𝑉𝑎) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑄𝑎(𝐾𝑎)T
√

𝑑

)

𝑉𝑎

𝐹 𝑠
𝑎 = 𝑀𝐻𝑆𝐴(𝑄𝑎, 𝐾𝑎, 𝑉𝑎)

= 𝐿𝑁
(

𝐷𝑟𝑜𝑝𝑜𝑢𝑡
(

𝐹 𝑖
𝑎 + 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊0

))

(13)

where 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ,𝑊0 represents the corresponding weights, d de-
notes the dimension, and h is the number of heads.
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Fig. 4. Dual channel cross-modal-context interaction framework.

Inter-modal context interaction: In the first channel, as shown in
Formula (14), we use the acoustic representation 𝐹 𝑠

𝑎 and the concate-
nated visual and textual representations [𝐹 𝑖

𝑣;𝐹
𝑖
𝑡 ] to obtain query 𝑄𝑝𝑐

𝑎 ,
key 𝐾𝑝𝑐

𝑎 , and value 𝑉 𝑝𝑐
𝑎 . Then, we perform calculations to obtain the

cross-modal similar sentiment representation, denoted as 𝐹 𝑝𝑐
𝑎 .

𝑄𝑝𝑐
𝑎 , 𝐾𝑝𝑐

𝑎 , 𝑉 𝑝𝑐
𝑎 = 𝐹 𝑠

𝑎𝑊
𝑝𝑐
𝑄 , [𝐹 𝑖

𝑣;𝐹
𝑖
𝑡 ]𝑊

𝑝𝑐
𝐾 , [𝐹 𝑖

𝑣;𝐹
𝑖
𝑡 ]𝑊

𝑝𝑐
𝑉

ℎ𝑒𝑎𝑑𝑗 (𝑄𝑝𝑐
𝑎 , 𝐾𝑝𝑐

𝑎 , 𝑉 𝑝𝑐
𝑎 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝑝𝑐
𝑎 (𝐾𝑝𝑐

𝑎 )T
√

𝑑

)

𝑉 𝑝𝑐
𝑎

𝐹 𝑝𝑐
𝑎 = 𝑃𝐶 −𝑀𝐻𝐴(𝑄𝑝𝑐

𝑎 , 𝐾𝑝𝑐
𝑎 , 𝑉 𝑝𝑐

𝑎 )

= 𝐿𝑁
(

𝐷𝑟𝑜𝑝𝑜𝑢𝑡
(

𝐹 𝑠
𝑎 + 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊

𝑝𝑐
0

))

(14)

where 𝑊 𝑝𝑐
𝑄 ,𝑊 𝑝𝑐

𝐾 ,𝑊 𝑝𝑐
𝑉 ,𝑊 𝑝𝑐

0 represents the corresponding weights.
In the other channel, as depicted in Formula (15), we use the

acoustic representation 𝐹 𝑠
𝑎 and the concatenated visual and textual

representations [𝐹 𝑖
𝑣;𝐹

𝑖
𝑡 ] to obtain query 𝑄𝑛𝑐

𝑎 , key 𝐾𝑛𝑐
𝑎 , and value 𝑉 𝑛𝑐

𝑎 .
However, after obtaining the similarity weight matrix, we perform the
inverse operation to focus on cross-modal different sentiment informa-
tion when calculating the weighted sum. Subsequently, we compute the
cross-modal differential sentiment representation, which is represented
7

by 𝐹 𝑛𝑐
𝑎 .

𝑄𝑛𝑐
𝑎 , 𝐾𝑛𝑐

𝑎 , 𝑉 𝑛𝑐
𝑎 = 𝐹 𝑠

𝑎𝑊
𝑛𝑐
𝑄 , [𝐹 𝑖

𝑣;𝐹
𝑖
𝑡 ]𝑊

𝑛𝑐
𝐾 , [𝐹 𝑖

𝑣;𝐹
𝑖
𝑡 ]𝑊

𝑛𝑐
𝑉

ℎ𝑒𝑎𝑑𝑗 (𝑄𝑛𝑐
𝑎 , 𝐾𝑛𝑐

𝑎 , 𝑉 𝑛𝑐
𝑎 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

( 𝑛𝑒𝑔𝑎𝑡𝑒(𝑄𝑛𝑐
𝑎 (𝐾𝑛𝑐

𝑎 )T)
√

𝑑

)

𝑉 𝑛𝑐
𝑎

𝐹 𝑛𝑐
𝑎 = 𝑁𝐶 −𝑀𝐻𝐴(𝑄𝑛𝑐

𝑎 , 𝐾𝑛𝑐
𝑎 , 𝑉 𝑛𝑐

𝑎 )

= 𝐿𝑁
(

𝐷𝑟𝑜𝑝𝑜𝑢𝑡
(

𝐹 𝑖
𝑎 + 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑛𝑐

0
))

(15)

where 𝑊 𝑛𝑐
𝑄 ,𝑊 𝑛𝑐

𝐾 ,𝑊 𝑛𝑐
𝑉 ,𝑊 𝑛𝑐

0 represents the corresponding weights, and
𝑛𝑒𝑔𝑎𝑡𝑒() denotes the inverse operation.

Finally, after fusing the obtained cross-modal similar and different
sentiment representations 𝐹 𝑝𝑐

𝑎 and 𝐹 𝑛𝑐
𝑎 , they are passed through the FFN

layer. Additionally, as shown in Formula (16), the output of each layer
undergoes residual transformation and normalization.

𝐹 𝑑
𝑎 = 𝐿𝑁

(

𝐷𝑟𝑜𝑝𝑜𝑢𝑡
(

𝐹 𝑖
𝑎 + 𝐹𝐹𝑁(𝐹 𝑝𝑐

𝑎 + 𝐹 𝑛𝑐
𝑎 )

))

(16)

where FFN represents the feedforward neural network layer.

3.6. Sentiment prediction module

As illustrated in Formula (17), we concatenate the representations
of the three modalities and input them into a Multilayer Perceptron
(MLP) module for sentiment classification. The MLP module consists
of a three-layer network. The first two layers are feed-forward layers
utilizing the Rectified Linear Unit (ReLU) activation function. The
last layer of the MLP serves as the output layer, directly providing a
continuous value representing emotional intensity without employing
an activation function.

𝑦̂ = 𝑀𝐿𝑃
(

𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐹 𝑑
𝑡 , 𝐹

𝑑
𝑎 , 𝐹

𝑑
𝜈
))

(17)

where 𝑦̂ is a continuous value representing the sentiment intensity.
The entire model finally finds the best fitting parameters during

training by minimizing the overall loss shown in Formula (18).

𝐿𝑎𝑙𝑙 = 𝑥𝑠𝛾𝑠𝑙 + 𝑥𝑐𝛾𝑐𝑙 + 𝑥𝑝𝛾𝑝𝑙 + 𝑥𝑛𝛾𝑛𝑙 (18)

where 𝛾𝑠𝑙 represents the sentiment prediction task loss, 𝛾𝑐𝑙 represents
the common loss, 𝛾𝑝𝑙 represents the private loss, 𝛾𝑛𝑙 represents the noise
loss, and 𝑥𝑠, 𝑥𝑐 , 𝑥𝑝 and 𝑥𝑛 represent the weight of each loss. We employ
the mean square error as the loss function for the sentiment prediction
task. Additionally, the common loss is calculated as the sum of Eu-
clidean distances between common representations, while the private
loss is computed as the sum of soft orthogonal constraints between
private representations. Furthermore, the noise loss is determined as
the sum of L2 norms of each noise representation.

4. Experiment settings

In this section, we will provide a detailed introduction to the
datasets, baselines, and basic settings used in our work.

4.1. Datasets

In this study, we assess the performance of the proposed model
through experiments conducted on two widely-used benchmark
datasets, CMU-MOSI and CMU-MOSEI, both within the domain of
multimodal sentiment analysis. The CMU-MOSI dataset stands as the
pioneering corpus for online video sentiment analysis, encompassing
2199 short video clips extracted from 93 movie review videos (Zadeh,
Zellers, Pincus, & Morency, 2016). On the other hand, the CMU-MOSEI
dataset consists of a larger collection of video samples, comprising
over 20,000 video clips extracted from speeches delivered by 1000
different speakers (Zadeh, Liang, Vanbriesen et al., 2018). Additionally,
sentiment annotations for the video samples in both CMU-MOSI and
CMU-MOSEI datasets are provided within the range of [−3,3]. For
further details regarding the statistical breakdown of the training,

validation, and testing sets for these datasets, refer to Table 1.
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Table 1
Statistics for CMU-MOSI and CMU-MOSEI dataset.

Dataset Train Valid Test All

CMU-MOSI 1284 299 686 2199
CMU-MOSEI 16 326 1871 4659 22 856

4.2. Baselines

To validate the efficacy of the proposed model, we conduct com-
parisons with baselines and state-of-the-art models within the realm of
multimodal sentiment analysis.

MulT (Tsai et al., 2019) The Multimodal Transformer leverages
paired cross-modal Transformer mechanisms to explore context infor-
mation between modalities without the need for data alignment.

ICCN (Sun, Sarma, Sethares, & Liang, 2020) The Interaction Canoni-
al Correlation Network leveraged Deep Canonical Correlation Analysis
o explore correlations among three modalities.
MISA (Hazarika et al., 2020) The Modality-Invariant and Specific

Representations projects modal representations through spatial map-
ping into modality-invariant and modality-specific subspaces, thereby
learning modal representations containing shared and private charac-
teristics.

Self-MM (Yu, Xu, Yuan, & Wu, 2021) The Self-Supervised Multi-
Task Learning jointly trains multimodal and unimodal tasks using
multimodal labels and generated unimodal labels, enabling the learning
of similarities and differences between modalities.

MMIM (Han, Chen, & Poria, 2021) The Multimodal InfoMax frame-
work maximizes mutual information between unimodal representations
and multimodal fusion representations in a layered manner, aiming to
include as much task-related information as possible in the multimodal
fusion representation.

TMPSA (Yang et al., 2022) The Two-Phase Multi-Task Sentiment
Analysis framework leverages staged training and multi-task learning
strategies to fully exploit the powerful capabilities of pre-trained mod-
els while preserving the sentiment information of each representation.

MMCL (Lin & Hu, 2022) The Multimodal Contrastive Learning
framework uses unimodal contrastive coding and a pseudo-siamese
network to filter out noise from non-text modalitiy and capture the
interaction information among modalities.

SenBERT (Fang, Liu, & Zhang, 2022) This Sense-aware BERT net-
work utilizes cross-modal multi-head attention to explore interactions
between multimodal data and uses multimodal representations to fine-
tune the BERT model.

SIMR (Wang, Wang, Lin, Xu and Guo, 2023) The Speaker-
Independent Multimodal Representation Framework decomposes non-
verbal representations into personal style coding and sentiment rep-
resentation to mitigate the influence of individual styles, and uses
an enhanced cross-modal Transformer to explore context interaction
between modalities.

MUTA-Net (Tang, Xiao et al., 2023) The Modal-Utterance-Temporal
Attention Network applies utterance-level representations to interac-
tions between different modalities, minimizing intra-class distance and
maximizing inter-class distance to enhance the discriminative power of
the representations.

TETFN (Tang, Liu et al., 2023) The Text-Enhanced Transformer
Fusion Network obtains effective unified multimodal representations
through learning text-based pairwise cross-modal mappings and focuses
on inter-modal differences through unimodal labels.

AOBERT (Kim & Park, 2023) The All-modalities-inOne BERT net-
work leverages a single-stream Transformer to integrate three types
of modal representations and utilizes multimodal representations for
training MMLM and AP tasks.
8

4.3. Basic settings

Experiment details: In the audio feature extraction module, the
sampling rate of audio frames and the hop length between frames
are 22.05 kHz and 512 respectively. In the visual feature extraction
module, the pooling size of video frames is 5. Our model is trained
using the Adam optimizer. Taking into account computing resources
and training efficiency, we set the fine-tune range of the batch size to
{16, 32}. Considering the convergence speed and stability of the model,
we set the initial learning rate of the pre-trained model BERT to 1e−5,
and the fine-tune range of other parameters’ learning rate to {1e−5,
5e−6, 1e−6}. The weights for commonality, individuality, and noise
constraints are selected from the range {0.1, 0.3, 0.5, 0.8}. In order to
strike a balance between the generalization ability of the model and
the risk of overfitting, we set the Dropout value range in the TEA and
TEV components to {0.0, 0.1, 0.3, 0.5}. Experiments are conducted
on a TESLA-V100 GPU, utilizing grid search to identify the optimal
hyperparameters within the specified ranges.

The total number of parameters in our model is 163.483 mil-
lion, with approximately 110 million parameters attributed to the
pre-trained BERT model used for textual representation extraction. The
remaining parameters, excluding BERT, amount to about 53 million.
Furthermore, the computational complexity of the model is measured
at 6.074 GFLOPs.

Assessment Metrics: We evaluate the model’s performance in both
regression and classification tasks. In regression tasks, Mean Absolute
Error (MAE) and Pearson correlation coefficient (Corr) are employed
as assessment metrics. For classification tasks, we derive discrete labels
(positive and negative) representing the sentiment polarity of samples
from the continuous label values within the [−3, 3] interval. We
calculate binary classification accuracy (Acc-2) and F1 score in both
negative/non-negative and negative/positive manners as assessment
metrics. A smaller MAE and larger values for the other metrics indicate
better model performance.

5. Results and analysis

5.1. Quantitative analysis

We comprehensively compare our model with previous works us-
ing the respective evaluation metrics of classification and regression
tasks. For the assessment metrics of classification tasks, the right
side of ‘‘/’’ represents ‘‘negative/positive’’ and the left side represents
‘‘negative/non-negative’’. The optimal metric values are emphasized in
bold.

Table 2 presents the experimental result on the CMU-MOSI dataset.
This suggests a notable enhancement in the performance of our model
in classification tasks. When assessing the method as ‘negative/
positive,’ our model exhibits improvements of 1.89% and 1.87% in
Acc-2 and F1 scores, respectively, compared to the suboptimal model
(TMPSA). In comparison to the worst-performing model (MulT), these
scores have increased by 7.79% and 7.87%, respectively. When as-
sessing the method as ‘negative/non-negative,’ our model shows en-
hancements of 1.26% and 1.12% in Acc-2 and F1 scores, respectively,
compared to the suboptimal model (AOBERT). These improvements
rise to 4.66% and 4.82%, respectively, when compared to the worst-
performing model (MISA). In the regression task, our model reduces
the Mean Absolute Error (MAE) by 0.017 and 0.205, respectively, com-
pared to the suboptimal model (MMIM) and the worst model (MulT).
Additionally, compared to the suboptimal model (Sen-BERT) and the
worst model (MulT), our model improves the Pearson correlation
coefficient (Corr) by 0.01 and 0.129, respectively.

In addition, we also conducted relevant experiments on the CMU-
MOSEI dataset. Table 3 presents the experimental results on the CMU-
MOSEI dataset. In the ‘negative/positive’ assessment method, our
model demonstrates improvements of 0.31% in both Acc-2 and F1
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Table 2
Result on the CMU-MOSI dataset.

Model MAE↓ Corr↑ Acc-2↑ F1-Score↑

MulT (Tsai et al., 2019) 0.889 0.686 –/81.10 –/81.00
ICCN (Sun et al., 2020) 0.862 0.714 –/83.07 –/83.02
MISA (Hazarika et al., 2020) 0.783 0.761 81.80/83.40 81.70/83.60
Self-MM (Yu et al., 2021) 0.713 0.798 84.00/85.98 84.42/85.95
MMIM (Han et al., 2021) 0.701 0.801 84.14/86.06 84.00/85.98
TMPSA (Yang et al., 2022) 0.704 0.799 –/87.00 –/87.00
MMCL (Lin & Hu, 2022) 0.705 0.797 84.00/86.30 83.80/86.20
SenBERT (Fang et al., 2022) 0.702 0.805 83.67/85.37 83.66/85.40
SIMR (Wang, Wang et al., 2023) 0.706 0.798 84.20/86.10 84.00/86.10
MUTA-Net (Tang, Xiao et al., 2023) 0.708 0.798 83.00/84.90 82.90/84.90
TETFN (Tang, Liu et al., 2023) 0.717 0.800 84.05/86.10 83.83/86.07
AOBERT (Kim & Park, 2023) 0.856 0.700 85.20/85.60 85.40/86.40
Our model 0.684 0.815 86.46/88.89 86.52/88.87
Table 3
Result on the CMU-MOSEI dataset.

Model MAE↓ Corr↑ Acc-2↑ F1-Score↑

MulT (Tsai et al., 2019) 0.591 0.694 –/81.60 –/81.60
ICCN (Sun et al., 2020) 0.565 0.713 –/84.18 –/84.15
MISA (Hazarika et al., 2020) 0.555 0.756 83.60/85.50 83.80/85.30
Self-MM (Yu et al., 2021) 0.530 0.765 82.81/85.17 82.53/85.30
MMIM (Han et al., 2021) 0.526 0.772 82.24/85.97 82.66/85.94
TMPSA (Yang et al., 2022) 0.542 0.770 –/85.60 –/85.60
MMCL (Lin & Hu, 2022) 0.537 0.765 84.80/85.90 84.80/85.70
SenBERT (Fang et al., 2022) 0.534 0.768 84.57/85.39 84.59/85.15
SIMR (Wang, Wang et al., 2023) 0.580 0.696 82.50/82.90 81.90/82.90
MUTA-Net (Tang, Xiao et al., 2023) 0.537 0.764 81.90/85.20 82.30/85.20
TETFN (Tang, Liu et al., 2023) 0.551 0.748 84.25/85.18 84.18/85.27
AOBERT (Kim & Park, 2023) 0.515 0.763 84.90/86.20 85.00/85.90
Our model 0.514 0.761 85.46/86.51 85.47/86.23
scores compared to the suboptimal model (AOBERT). When compared
to the worst-performing model (SIMR), these scores increase by 3.61%
and 3.33%, respectively. When evaluating the ‘negative/non-negative’
method, our model exhibits enhancements of 0.56% and 0.47% in
Acc-2 and F1 scores, respectively, compared to the suboptimal model
(AOBERT). These improvements rise to 3.35% and 3.17%, respectively,
when compared to the worst-performing model (MUTA-Net). In regres-
sion tasks, the Mean Absolute Error (MAE) of our model decreases
by 0.001 and 0.066, respectively, compared to the suboptimal model
(AOBERT) and the worst model (SIMR). Additionally, compared to the
worst model (MulT), the Pearson correlation coefficient (Corr) of our
model improves by 0.065.

We attribute the enhanced performance of our model to several
key factors: The hierarchical denoising representation disentanglement
network effectively reduces irrelevant noise in modal representations,
preserving detailed sentiment features such as individuality and com-
monality. Additionally, the cross-modal representation enhancement
network significantly augments sentiment information in acoustic and
visual representations. Moreover, the dual-channel cross-modal con-
textual interaction network can simultaneously explore inter-modal
positive and negative correlation sentiment information, enhancing the
sentiment semantics of multimodal representations.

To validate the predictive performance of the model, we selected
five video segments from the CMU-MOSI dataset for case studies. Fig. 5
illustrates the sentiment prediction results for each example. On the
left side are the textual, acoustic, and visual data from video segments,
while on the right side are the label values and model prediction values.
Red indicates negative sentiment, green indicates positive sentiment,
and white indicates neutral sentiment. This figure demonstrates that
the predicted values are generally consistent with the corresponding
label values, providing an intuitive showcase of the effectiveness of the
proposed model.

5.2. Ablation study

The proposed model comprises three main components: HDRD,
9

IMRE, and DCCMCI. To delve into the internal mechanisms of these
components and understand their contributions to the model, com-
prehensive ablation experiments were conducted using the CMU-MOSI
dataset.

In these experiments, we first verified the efficacy of each internal
component by selectively excluding them while maintaining the overall
model structure. In the absence of HDRD, we mapped the extracted
modal representations to the same feature space and eliminated the
three representation constraint losses in the overall loss function. In
the absence of IMRE, we used non-textual representations to enhance
themselves instead of utilizing textual representation. In the absence
of DCCMCI, we no longer performed inter-modal and intra-modal con-
textual interactions on modal representations, but simply concatenated
them and fed them into the sentiment prediction network.

The experimental results in Table 4 indicate that when any internal
component is eliminated, the model’s performance decreases to varying
degrees. This confirms that each component is essential for enhanc-
ing the model’s performance. Specifically, when IMRE is removed,
the Acc-2 and F1-Score of this model decrease by 1.74%/2.32% and
1.79%/2.35%, respectively. Removing HDRD results in a more signif-
icant drop, with the Acc-2 and F1-Score decreasing by 5.67%/5.09%
and 5.6%/5.06%, respectively. Similarly, removing DCCMCI leads to
a considerable decrease, with the Acc-2 and F1-Score dropping by
6.11%/5.56% and 6.03%/5.51%, respectively. These findings indicate
a significant degradation in model performance when these compo-
nents are removed. This suggests that there is a considerable amount of
interference noise in multimodal data, reducing the predictive accuracy
of the model. It also highlights that both cross-modal positive and
negative correlation contextual interactions between multimodal data
contribute to improving the accuracy of emotion prediction.

In the HDRD component, effective modal representations are ob-
tained by applying different representation constraints to the separated
representations. To further evaluate the efficacy of the HDRD compo-
nent, we designed an ablation study to verify the effects of various
representation constraints. In each round of model training, one of the

three representation constraint losses was removed sequentially.
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Fig. 5. Case study.
Table 4
Ablation experiment results for each component.

Model MAE↓ Corr↑ Acc-2↑ F1-Score↑

w/o HDRD 0.709 0.803 80.79/83.80 80.92/83.81
w/o IMRE 0.699 0.809 84.72/86.57 84.73/86.52
w/o DCCMCI 0.709 0.799 80.35/83.33 80.49/83.36
Our model 0.684 0.815 86.46/88.89 86.52/88.87

The experimental results in Table 5 show that when we discard
any one of the representation constraint losses, the model’s perfor-
mance declines to varying degrees. When the private loss is removed,
the Acc-2 and F1-Score of the model decrease by 1.74%/1.39% and
1.71%/1.36%, respectively. Removing the common loss results in a
more significant drop, with the Acc-2 and F1-Score decreasing by
3.49%/3.24% and 3.46%/3.23%, respectively. Similarly, removing the
noise loss leads to a noticeable decrease, with the Acc-2 and F1-
Score dropping by 2.62%/2.78% and 2.57%/2.74%, respectively. These
findings highlight the importance of each loss component, as the per-
formance degradation is noticeable when any of them is removed. This
indicates that the model relies more on the constraints of common and
noise loss than on the private loss. When all representation constraints
are in effect, the model’s predictive performance is optimal. This proves
that representation learning results can be more effective through con-
straints of common, private, and noisy, thereby improving the model’s
performance.

Additionally, the weight values of representation constraints play
a crucial role in the model. To investigate the impact of different
weight values of representation constraints on model performance, this
10
Table 5
Ablation experiment results for each constraint.

Model MAE↓ Corr↑ Acc-2↑ F1-Score↑

w/o 𝛾𝑐𝑙 0.717 0.800 82.97/85.65 83.06/85.64
w/o 𝛾𝑝𝑙 0.694 0.809 84.72/87.50 84.81/87.51
w/o 𝛾𝑛𝑙 0.695 0.809 83.84/86.11 83.95/86.13
Our model 0.684 0.815 86.46/88.89 86.52/88.87

study conducted ablation experiments under various weight values for
each representation constraint. The experimental results are shown
in Fig. 6. Regarding the weight 𝑥𝑐 of the common constraint, when
𝑥𝑐 is set to 0, it signifies that the model does not utilize common
constraints for representation learning, resulting in a significant amount
of redundant information in the modal representation. In this case,
the Acc-2 of the model dropped by 3.24%, while the Mean Absolute
Error (MAE) increased by 0.033. Overall, the model’s performance
was not satisfactory. However, when 𝑥𝑐 is not equal to 0, the model’s
performance improves. Specifically, when 𝑥𝑐 = 0.1, the model achieves
optimal performance.

Regarding the weight 𝑥𝑝 of the private constraint, when 𝑥𝑝 is set
to 0, it signifies that the private constraint in the model is inactive,
leading to ineffective discrimination of unique attributes in the modal
representation. In this situation, the Acc-2 of this model has dropped
to 87.50%, while the Mean Absolute Error (MAE) has increased to
0.694. Overall, the model’s performance is average. However, when 𝑥𝑝
is not equal to 0, the model’s performance increases slightly, reaching
its highest accuracy when 𝑥𝑝 = 0.8.

For the weight 𝑥𝑛 of the noisy constraint, when 𝑥𝑛 is 0, it in-
dicates that the model does not address interference noise in the
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Table 6
Experimental results of ablation studies for each channel.

Model MAE↓ Corr↑ Acc-2↑ F1-Score↑

w/o PC-MHA 0.691 0.810 83.41/85.65 83.43/85.59
w/o NC-MHA 0.694 0.814 84.15/87.50 85.24/87.51
Our model 0.684 0.815 86.46/88.89 86.52/88.87

representation, resulting in a significant presence of noise features
in the modal representation. In this circumstance, the Acc-2 of the
model has dropped to 86.11%, the Mean Absolute Error (MAE) has
increased to 0.695. Thus, the overall performance of the model de-
grades significantly. However, when 𝑥𝑛 is not 0, the noisy constraint
reduces noise in the representation, improving the model’s perfor-
mance. The model achieves optimal performance when 𝑥𝑛 = 0.1. For
different representation constraints, the performance of models with
non-zero weight values are consistently superior to that of models with
weight values equal to zero. This demonstrates the positive impact
of common, private, and noisy constraints on representation learning.
Moreover, appropriate constraint weight values further enhance the
model’s performance.

In the DCCMCI component, a dual-channel approach is employed,
utilizing the PC-MHA and NC-MHA mechanisms to explore contextual
interactions, both positive and negative correlation, between modali-
ties. To further validate the effectiveness of the DCCMCI component,
we conducted ablation experiments by exploring modal contextual
interactions solely through either the PC-MHA or NC-MHA mechanism,
employing them as single-channel exploration modes.

The experimental results in Table 6 show that when using a sin-
gle channel to explore contextual interactions between modalities,
models using only the NC-MHA mechanism for information mining
exhibit a more pronounced performance decline compared to models
using only the PC-MHA mechanism. When only PC-MHA is used, the
Acc-2 and F1-Score of the model have decreased by 2.31%/1.39%
and 1.28%/1.36% respectively. When only using NC-MHA, the Acc-
2 and F1-Score of the model have dropped by 3.05%/3.24% and
3.09%/3.28% respectively. This indicates that the contribution of con-
textually positive correlation interactions between modalities in senti-
ment analysis remains unique. Additionally, negative correlation con-
textual interactions between modalities also have a positive impact on
model performance improvement. The model achieves optimal perfor-
mance when both NC-MHA and PC-MHA mechanisms are simultane-
ously employed. This finding demonstrates that exploring both posi-
tive and negative correlation contextual interactions between modali-
ties enriches the modal representation with more effective sentiment
information, thereby enhancing model performance.

The exploration of contextual interactions between modalities
through the PC-MHA and NC-MHA mechanisms in this study is an
adaptive iterative process. To further explore the impact of different
numbers of iterations on model performance, we set the number of
iterations to range from 1 to 5 and retrained the model on the MOSI
dataset. According to the data presented in Fig. 7, the model achieves
its optimal performance when the iteration number is configured to
4. However, for other values of the number of iterations, the model’s
performance is adversely affected to varying degrees. When the number
of iterations is 3, the Acc-2 and F1-Score of the model have dropped
by 4.63% and 4.63% respectively, the Mean Absolute Error (MAE) has
increased to 0.720, and the F1-Score has dropped to 0.798.

In fact, our goal is to obtain more distinctive modal representations
by appropriately stacking iteratively and dynamically updating the
mined cross-modal contextual interaction information. Therefore, the
above experimental results indicate that too few iterations may not
effectively unearth more distinctive emotional context. Conversely,
excessive iterations may lead to the extraction of incorrect cross-modal
emotional context due to sentiment bias between modalities.
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Table 7
Experimental results of ablation studies for modality contribution.

Model MAE↓ Corr↑ Acc-2↑ F1-Score↑

w/o text 0.731 0.795 81.66/84.72 81.78/84.73
w/o audio 0.717 0.794 81.66/84.26 81.78/84.28
w/o video 0.708 0.802 85.15/87.50 85.22/87.49
Our model 0.684 0.815 86.46/88.89 86.52/88.87

To explore the contribution of different modalities to the proposed
model, we conducted ablation experiments by sequentially removing
one of the three modalities and adjusting the network structure accord-
ingly. Specifically, when the textual modality is retained, we maintain
the IMRE module in the model. However, if the textual modality is
removed, we exclude the IMRE module. Regardless of which modality
is removed, we only consider the remaining two modalities when
calculating the representation constraints.

The experimental results in Table 7 show that deleting any modality
will lead to varying degrees of degradation in model performance.
When the visual modality is deleted, the Acc-2 and F1-Score of the
model have decreased by 1.31%/1.39% and 1.3%/1.38% respectively.
When the textual modality is deleted, the Acc-2 and F1-Score of the
model have dropped by 4.8%/4.17% and 4.74%/4.14% respectively.
When the audio modality is deleted, the Acc-2 and F1-Score of the
model have dropped by 4.8%/4.63% and 4.74%/4.59% respectively.
These findings indicate a significant loss in model performance in
all cases. It suggests that each modality contributes to the model’s
performance, but the textual and audio modalities contribute more
significantly than the visual modality.

To demonstrate the excellent performance of our model in sentiment
prediction tasks, we utilize the t-SNE method to visualize the fused rep-
resentations learned by the model. The visualization results are shown
in Fig. 8. We map predicted sentiment labels within the range [−3,3] to
0,1], where [0,0.5] represents positive sentiment representation, and
0.5,1] represents negative sentiment representation.

The four subplots in Fig. 8 represent the distribution of fused
epresentations during the training process when the epoch is 1, 15,
0, and final, respectively. Through observation, it is evident that at
poch = 1, the fused representations representing different sentiment
olarities exhibit a mixed distribution, indicating poor distinctiveness
n the representations learned by the untrained model. When epoch

15, fused representations representing the same sentiment polarity
egin to cluster, indicating that the trained model can learn associative
nformation among similar samples. When epoch = 30, the distribution
f fused representations becomes more compact and separable, suggest-
ng that the model, after further training, can accurately recognize more
etailed information among different samples. When epoch = final,
ositive and negative fused representations form two independent dis-
ribution clusters, indicating that the model, after training completion,
ossesses good emotion classification capability. This also indirectly
eflects the effectiveness of the proposed model in sentiment prediction.

. Conclusion and future work

In this paper, we present a multi-modal sentiment analysis model.
tilizing hierarchical disentanglement techniques and employing com-
onality and individuality encoders, we learn modal representations

hat encompass common sentiments, private sentiments, and inter-
erence noise simultaneously. Moreover, to tackle the challenge of
isparate sentiment information distribution between modalities aris-
ng from varying data quality, we enrich the sentiment semantics of
coustic and visual representations by extracting relevant sentiment
nformation from textual representations. Additionally, we incorporate

dual-channel mechanism and utilize distinct multi-head attentions
o explore contextual sentiment information between modalities, both
ositive and negative correlation. This addresses the issue of inadequate
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Fig. 6. Experimental results of ablation studies for different values of 𝑥𝑐 , 𝑥𝑝 and 𝑥𝑛.
Fig. 7. Experimental results of ablation studies for different numbers of iterations.
attention to diverse contextual information between modalities. The
combination of experimental results suggests that our proposed model
achieves competitive performance on both benchmark datasets. For
future work, our main objective is to enhance the model’s accuracy by
integrating a multi-task learning framework. Furthermore, we aim to
optimize the model for a more lightweight design while preserving its
accuracy.
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