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Abstract—Unmanned aerial vehicles (UAVs) equipped with air
quality sensors offer a powerful solution for increasing the spatial
and temporal resolution of air quality data, searching and detect-
ing emission sources, and monitoring emissions from fixed and
mobile sources. Despite the numerous advantages of using UAVs,
their use, however, presents several challenges that limit their
broader adoption. For example, UAVs require efficient algorithms
and components to minimize power consumption, the overall pay-
load used on UAVs needs to be small to ensure optimal portability
which poses limitations on the sensors that can be integrated
with UAVs, and there is a need for specialized algorithms, e.g.,
for identifying and locating air pollution sources. Currently, most
solutions for UAV-based air quality monitoring focus on specific
challenges or demonstrating the potential of using UAVs, and
there is a lack of comprehensive overview of the research field
and its open challenges. In this article, we contribute a system-
atic review of UAV-based air quality monitoring, highlighting,
and analyzing technical solutions and challenges, and identifying
open challenges with the aim of providing a research roadmap
for the path forward.

Index Terms—Air quality sensing, Internet of Things (IoT),
low-cost sensor, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

POOR air quality is linked to a wide range of diseases,
affecting millions of people worldwide and making air

pollution one of the grand health challenges of our time [1].
Air pollution-related problems are fueling deployments of
air quality monitoring technologies, which provide means
to assess the severity of the problems and measure the
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effectiveness of initiatives designed to tackle air pollution [2].
Traditionally, air quality has been measured by fixed ground-
based monitoring stations [3]. While accurate, such stations
are expensive to deploy and maintain, limiting the size of
deployments and reducing the density at which air qual-
ity information can be collected [3]. The World Health
Organization (WHO) recommends deploying one air quality
monitoring station per square kilometer and the EU clean air
directive similarly suggests (approximately) one station per
200 000 inhabitants [4]. Such a resolution is clearly insuffi-
cient for understanding issues stemming from poor air quality.
While there are some solutions to increase the resolution of
information, such as the use of low-cost sensors [5], [6], these
only partially alleviate the issue as deploying, operating, and
maintaining these solutions is equally laborious. Alternatively,
manned aircraft and satellites can, to an extent, be used to
supplement the resolution of information [7]. However, data
collection at high altitudes is limited by air currents and physi-
cal barriers which influence the regions that can be monitored.
Manned aircraft also provide a limited view of the altitude
at which the pollutants reside, which is essential for under-
standing the dispersion and other effects of pollutants [8]. The
limitations of current solutions, combined with the high cost
of deploying and operating fixed monitoring stations, call for
alternatives that can help increase the scale and resolution of
air quality information.

Unmanned aerial vehicles (UAVs) that carry low-cost air
quality sensors (observing, e.g., gaseous pollutants, such as
carbon monoxide (CO), CO2, SO2, O3, or particulate matter
density, such as PM2.5 and PM10) are emerging as a pow-
erful solution for increasing the scale and resolution of air
quality sensing as they can cover large areas rapidly [9], [10].
Beyond facilitating large-scale data collection, UAVs also offer
new opportunities for atmospheric studies that help increase
our collective understanding of pollutants [11]. For example,
UAVs can be used in environments with different air pollution
profiles to sample the vertical air column, allowing 3-D map-
ping and modeling of pollutants [8], [12], [13]. UAVs are also
used to identify so-called fugitive emissions and to localize
the source of emissions [14]. Fig. 1 illustrates the potential
of UAVs by highlighting their use in smart cities to monitor
areas with different air pollution profiles, including residen-
tial and construction, harbor, vehicle emission on roads, and
industrial areas.
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Fig. 1. Air Pollution monitoring using UAVs within a city with different air pollution profiles, such as residential, vehicles, harbor, and industrial areas.

TABLE I
EXISTING RELATED SURVEYS

We contribute a systematic review of UAV-based air quality
monitoring, analyzing technical solutions, highlighting differ-
ent application areas, and identifying open challenges. Existing
surveys (see Table I) have either focused on covering dif-
ferent application domains for UAV air pollution monitoring
or on techniques addressing specific UAV challenges with-
out providing a comprehensive overview of the field or the
existing research gaps. Indeed, despite the many benefits of
UAVs, their use currently is not widespread. This is due to
the many challenges in adopting UAVs for air quality mon-
itoring. For example, UAVs require efficient algorithms and
components that minimize energy consumption. At the same
time, the sensors that are integrated into the UAVs need to be
inexpensive and sufficiently small to minimize overall payload
size. This poses limitations on the quality of the sensors, and
the information they provide. UAVs also need to be integrated
with specialized algorithms, e.g., for controlling the sampling
of air quality information and locating pollution sources. We
critically review the research landscape to highlight challenges
and to identify research gaps with the aim of serving as a cat-
alyst for future research and establishing a roadmap for the
path forward.

II. SCOPE OF THE SURVEY AND USE CASES

A. Related Surveys

Table I summarizes existing surveys that partially overlap
with our work. Existing surveys on UAVs and air quality mon-
itoring have largely focused on covering different application

areas and uses for UAVs without examining the technical
challenges stemming from the integration of air quality mon-
itoring into UAVs [7], [15]. Beyond air quality monitoring,
there have also been surveys on the use of UAVs in different
remote sensing tasks [16], [17], [18] but these similarly mostly
focus on different application areas rather than on examining
the field as a whole and analyzing the technical challenges
associated with the use of UAVs. In the context of air qual-
ity monitoring, UAVs necessarily need to integrate low-cost
sensors to ensure the cost and size of the payload remain fea-
sible for long-term operations. Both the technical challenges of
using low-cost sensors [5] and the different application areas
have been covered by surveys [19] but these surveys do not
consider issues relating to the use of UAVs. Finally, there
are several surveys on UAVs and specific functionalities, such
as navigation, control, and path planning, but these focus on
UAVs more generally instead of discussing challenges stem-
ming from their use to support air quality monitoring [20],
[21], [22], [23]. Our work addresses the gap in existing sur-
veys by providing a comprehensive review of the technical
challenges, solutions, and research gaps emerging from the
integration of air quality monitoring onto UAVs.

B. Selection of Articles

Using UAVs for measuring air pollution is an interdisci-
plinary topic, combining computer science and atmospheric
sciences. We determined which articles to include (and
exclude) from our survey through a two-phase process. First,
an iterative search strategy was used to determine potentially
relevant articles to include in the survey. We identified an
initial set of articles using searches with a set of seed key-
words on Google Scholar, IEEE Xplore, ACM Digital Library,
and ScienceDirect. The following seed keywords were used:
UAVs, drones, drone swarm, low-cost sensors, sensor calibra-
tion, UAV communications, UAV networking, and UAV power
management. The initial set was then expanded by, including
prominent articles that were cited in the papers, or that cited
the papers. The papers were then briefly examined and labeled
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Fig. 2. Scope and structure of the survey. Arrows denote dependencies between the items.

as relevant or irrelevant depending on whether they relate to
the topic and scope of the survey. Finally, the papers labeled
as relevant were read by one or more of the researchers and
this article was integrated into the survey.

C. Common Use Cases and Their Requirements

UAVs are capable of gathering high-resolution air quality
data on particulate matter, carbon dioxide, volatile organic
compounds (VOCs), and other harmful gases over wide spatial
and temporal scales. In this section, we briefly present some
potential use cases and the requirements they set for UAVs
and their sensor systems.

Urban Air Quality Assessment: UAVs can be employed to
assess the air quality of urban areas, helping to identify poten-
tial pollutant sources and hotspots. They are particularly useful
in places where traditional monitoring stations cannot be eas-
ily installed due to urban infrastructure or spatial constraints
[7], [15].

Industrial Emission Monitoring: A key benefit of UAVs is
that they can monitor emissions from difficult-to-reach areas,
including factory and ship smokestacks, offering the possibil-
ity of real-time pollutant detection and quantification. UAVs
can also be used for monitoring remote and hard-to-access
sites, such as offshore oil and gas platforms [24].

Forest Fire Tracking: UAVs can provide real-time data
on smoke plume characteristics during forest fires. This
information can assist in managing fire response strategies
and predicting the impact on air quality in neighboring
regions [25].

Volcano Emission Monitoring: UAVs equipped with gas
sensors can monitor volcanic emissions, including sulfur diox-
ide and other volcanic gases, which can be hazardous to human
health and aviation safety [7].

The above use cases are examples that demonstrate
the potential of adopting UAVs for air quality monitor-
ing. Realizing these applications, however, also sets specific
requirements for UAVs and their sensors. First, sensors need
to be lightweight, energy efficient, and cheap considering the
limited payload and power capabilities of most UAVs. Second,
they need to have high sensitivity and selectivity to detect
target pollutants at low concentrations or amidst a complex
mixture of gases [3], [26]. Third, sensors must offer fast

response times to ensure real-time monitoring and data acqui-
sition. Some applications, such as tracking pollutant dispersion
or identifying emission hotspots, require swift detection, and
response to dynamic environmental conditions [15].

In addition to the sensors, the communication systems in
UAVs must be robust and reliable to ensure timely data trans-
mission, particularly during long-range missions or in complex
terrains. Furthermore, these systems should provide a secure
data transmission channel to protect the integrity and confi-
dentiality of the collected data [27]. Finally, UAVs and their
sensors should be resistant to harsh environmental conditions,
such as high temperatures, high altitudes, or corrosive atmo-
spheres, which can be encountered in applications like forest
fire smoke tracking or volcano emission monitoring. Thus,
the selection of suitable materials and protective casings is
of paramount importance [28], [29].

D. Survey Structure

UAV-based air pollution monitoring is a real-world example
of Internet of Things (IoT) applications, and thus we structure
the survey following a typical IoT architecture. Specifically,
based on the common use cases and their requirements dis-
cussed in Section II-C and as depicted in Fig. 2, we begin
the survey in Section III by covering hardware and software
aspects, separating between the UAVs and air pollution sen-
sors. Based on the hardware and software layer of the UAVs,
the following section then covers the communication, com-
putation and coordination layer, focusing on networking and
edge computing as well multi-UAV operation and trajectory
planning (Section IV). Here, the communication and compu-
tation aspects provide a solid ground for further discussion on
edge computing, which are both prerequisites for the topics
on coordination.

Respectively, the hardware and software layer of portable
air quality sensors leads to a treatment on the sensing and local
data processing layer (Section V), covering subjects, such as
sensor accuracy (which is affected by edge computing) and
subsequent source detection.

In the UAV operations Section VI, we further discuss
UAV power management, data collection and management,
as well as regulatory aspects, followed up in Section VII with
open challenges, opportunities, and research directions for the
future. Section VIII finally concludes this article.
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III. HARDWARE AND SOFTWARE

A. Unmanned Aerial Vehicles

UAVs can be classified as civilian or military based on their
capabilities, such as weight, size, and payload [30]. For exam-
ple, while UAV weight can vary from less than 1 kg to up
to two metric tons, those with less than 5 kg of mass are
considered civilian UAVs [31], [32]. Due to their design and
capability for mounting additional devices of up to a few kilo-
grams, civilian UAVs are the best candidates for air pollution
monitoring, as the weight of sensor devices and batteries does
not often exceed the limit for civilian use [33], [34], [35].
Moreover, civilian UAV software is often open source, which
allows improving their operational performance.

Quadrocopters combine stability and good maneuverabil-
ity with a simple configuration. They can hover as well
as take off and land vertically [36]. In addition, their size,
weight, navigation system, energy storage, and communication
and control systems allow using them in hazardous environ-
ments [37]. Depending on the number of batteries and the
type of UAV application (sensing, communication, and pro-
cessing), the flight time of UAVs may vary between 20 min
to 2 h [38], [39]. As the energy requirements of air pollu-
tion sensing are not excessive (e.g., in comparison to other
resource-demanding applications such as surveillance), their
flight times can be long.

Advances in the UAVs’ software enable the operators to
plan reliable trajectories with minimal risk of collisions and
to optimize paths for minimizing power consumption [40].
The latest drones also integrate self-healing mechanisms that
ensure the UAVs can land safely in case failures or disrup-
tions occur. The software can also provide limited autonomous
flight capability for UAVs without the need for a pilot in local
proximity, and even without satellite positioning. This also
offers the drones a capability to safely return to their original
locations even when network connectivity is lost [41].

B. Portable Sensor Devices

Air quality sensors are typically attached as a separate pay-
load which must be sufficiently lightweight for the UAV to
carry. Portable and lightweight air quality sensor designs are
thus preferred, with a small form factor for easier mount-
ing. Such sensors typically cost between $100 and $10.000, a
low cost compared to professional grade air quality monitor-
ing stations which typically cost a million or more [3], [26].
Low-cost sensors can offer high-density deployments, increas-
ing the spatiotemporal resolution of air quality data [2], [42].
They have been used, for example, with urban infrastruc-
ture (e.g., light poles and public transportation vehicles) to
capture air pollutants sourced from traffic and vehicle emis-
sions [43], [44], or by maritime authorities to detect ships that
violate international standards limiting the maximum sulfur
content in marine fuel [45]. Moreover, due to their low weight,
mobile sensors can also be carried by citizens for detecting air
pollution hotspots in cities [3], [46].

Generally, low-cost air pollution sensors can measure gas
pollutants and particulate matter, as well as meteorologi-
cal variables, such as temperature, humidity, pressure, and

wind [47], [48]. Gas pollutants include gaseous compounds,
such as ammonia (NH3), carbon dioxide (CO2), CO, dimethyl
sulfide (CH3), hydrogen sulfide (H2S), methane CH4, methyl
mercaptan (CH4S), nitrogen dioxide (NO2), nitric oxide (NO),
ozone (O3), sulfur dioxide (SO2), and VOCs with all units
in ppm; and particulate matters PM1, PM2.5, and PM10 with
all units in µg/m3 [9]. The sensors may also include pro-
cessing units, local data storage, networking interfaces, and
power sources [49]. The sensors can typically operate between
the temperatures −20 ◦C and +45 ◦C, allowing their use
in many climates. While the weight of each sensor device
is usually less than a few hundred grams, they can be pow-
ered by additional portable batteries with each battery offering,
for example, 3.6 V/3400 mAh. Depending on their operations,
measurement frequency, and sensor configurations, the sensors
can typically operate from 2 to 8 h on battery support [48].
While portable sensor devices are laboratory calibrated when
manufactured, they often have low accuracy and high drift
variation in field measurements [42]. Therefore, these sensors
require periodic calibration to ensure they remain accurate and
consistent [50], [51].

Cameras can potentially be also harnessed for air pollution
monitoring. For example, the HD camera onboard a drone
has been used to monitor haze from 360◦ aerial panoramic
images [52]. By taking these pictures from multiple directions
(six in the case of the study in question), it is possible to esti-
mate the overall air quality index at a location. As another
example, the study in [53] addresses the potential of enabling
devices with cameras to act as air quality sensors. This study
utilizes a large data set containing 1000 photos to train a deep
neural network that is used to estimate air quality, and shows
87% and 75% accuracies for day-time and night-time opera-
tions, respectively. Hyperspectral cameras also can be mounted
on UAVs for air quality monitoring [54]. The hyperspectral
images can be analyzed with machine learning and deep learn-
ing techniques [55] and enable detecting air pollutants, such
as aerosols, e.g., PM2.5 and gas, e.g., O3 [56].

IV. COMMUNICATION, COMPUTATION,
AND COORDINATION

A. UAV Communications and Networking

Emerging 5G (and beyond) networking technologies are
essential for UAV communications, offering ubiquitous con-
nectivity, ultrareliable and low-latency connections, and big
data stream processing capabilities [57], [58]. The ubiqui-
tous connectivity of these networks supports massive-scale
deployments [59]. The networks are also expected to feature
high data rates (even exceeding 10 Gb/s) and low latency.
While common low-cost air quality sensors have moderately
low data rates, pollution monitoring is increasingly harnessing
more advanced sensors that demand high network bandwidth.
Hyperspectral cameras are one such example as they can pro-
duce gigabytes of data per second [54]. Low latency, in turn, is
a prerequisite for coordinating UAV deployments and ensuring
sampling can cover the most relevant areas [12].

Communication networks for UAVs face several challenges
due to the constrained resources of UAVs, the overall network
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architecture needed to support large-scale operations, and
fast-changing mobility [20]. UAV networks are prone to
changing fast and unpredictably, as the number of UAVs that
join or leave the network varies over time and is highly
dependent on the application scenario and the deployment
environment. As such, the fluid topology of UAV deployments
dictates special design criteria for the network architecture.
Particularly, routing protocols need to reflect the continuous
changes in the UAV backbone, where the network is prone
to partitioning [20]. Partitioning, in turn, leads to another
challenge, namely, transferring communication sessions from
out-of-service (e.g., UAV leaves the network) to active UAVs.
In doing so, special attention needs to be paid to the energy
conservation of UAVs that remain in the network.

Energy expenditure in UAV systems relates directly to their
weight, size, and their path trajectory (e.g., time of flight and
hovering in the air). Joint UAV path planning is thus crucial for
maximizing coverage and minimizing downtime in massive-
scale deployments. Joint planning requires suitable network
architectures. The simplest example is a centralized architec-
ture where UAVs communicate among themselves and a UAV
leader node. Such a leader node may serve the role of an
orchestrator, disseminating the path trajectory to the rest of
the nodes in the network, and communicating directly with a
5G station on the ground [60]. While vulnerable to failures,
this approach helps to limit the energy expenditure of non-
leader nodes as they do not need to switch on a power-hungry
long-range radio interface (e.g., 5G) to communicate with the
ground. Alternatively, the UAV system may employ a layered
architecture where the swarm self-organizes into layers based
on their capabilities [61]. Specifically, UAVs of higher com-
munication and battery capabilities could monitor an area of
interest from a high altitude, and thus identify areas where
there is a need for UAV drone presence, whereas nodes of
lower capabilities are delegated with sensing tasks in such
areas.

UAV-based networks have gained traction, especially within
the 5G context [62], either accessing the existing communi-
cation infrastructure or complementing it in case of disaster
scenarios. Any UAV-based communication network should be
flexible enough to support multiple applications and diverse
requirements [57]. The energy expenditure of the network can
be optimized using realistic 2-D and 3-D mobility to mini-
mize their flying and hovering time, and thus to save energy.
UAVs achieve their highest throughput when they hover (i.e.,
are stationary) above the ground terminal (GT) as this allows
maintaining stable channel conditions. However, hovering is
highly inefficient for rotary-wing UAVs and impossible for
fixed-wing ones. Instead, a circular trajectory, centered at the
GT, can optimize both energy expenditure and communication
throughput [63]. Dynamicity of the network, i.e., the sup-
port for UAVs joining or leaving the network, in turn, can
be implemented by considering a layered topology where a
mesh or ad-hoc network topology connects the UAVs with
each other, and a separate star topology connects the individ-
ual mesh/ad-hoc components with a leader that communicates
with a control station. In cases where centralized control is
unavailable, such as disaster scenarios or remote areas, UAVs
can be deployed in a multi-UAV scheme to provide ad-hoc

aerial base stations at which users on the ground can connect
to [64], [65], [66].

Beyond the network architecture, communication security
remains a big issue for UAV communications [67]. For
instance, blockchain and AI can be used to secure UAV com-
munications from possible cyber-attacks without the need for
centralized infrastructure. While these solutions promise good
security and privacy features, they incur high transaction stor-
age costs, and on-board power and computational resources,
which UAVs lack. As such, both AI and blockchain-based
solutions need to be tailored to consider the resource con-
straints of UAV-based networks [68], and further research is
needed to tailor these solutions for the needs and limitations
of UAVs.

B. Edge Computing

Edge computing is anticipated to play a pivotal role in
delivering efficient computing services across a wide vari-
ety of applications within smart cities. As a major paradigm
shift, edge computing is projected to be integrated within
cities, working alongside the emerging 5G and 6G networks.
This integration is aimed at ensuring ubiquitous connectiv-
ity, facilitating massive IoT connections, providing low-latency
communications, guaranteeing high bandwidth, and managing
data alongside real-time analytics [69], [70], [71], [72].

In the context of UAVs, these functionalities support an
array of UAV-based applications, such as air pollution sam-
pling, varying in frequencies, data rates, and from different
locations and altitudes. Crucially, in UAV operations, trans-
mitting data to edge nodes is essential due to the constrained
energy budget and limited memory and storage resources of
the UAVs. This limitation prevents the execution of compu-
tations onboard the UAVs and necessitates the offloading of
computational and storage tasks to edge computers. Consider,
for instance, the use of low-cost air quality sensors with UAVs,
where a higher sampling rate would be desirable. Conversely,
when employing hyperspectral cameras onboard UAVs (specif-
ically to capture detailed hyperspectral air images), a higher
bandwidth and data transmission rate becomes imperative. In
the former scenario, the needs are primarily for data storage
and real-time analytics, while the latter demands significant
processing power. In both cases, the capabilities of edge
computing are well-suited to fulfill these requirements [54].

Currently, numerous studies exist within academic litera-
ture that emphasize the importance of edge computing for
UAV operations. For instance, a UAV-assisted target tracking
system can capture high-resolution images for the optimization
of the UAV’s flight path [73]. These images are then offloaded
to edge nodes for processing. The research further defines a
cost minimization problem for the optimization and suggests
an algorithm to distribute the UAV’s tasks. The primary goal
is to jointly optimize the UAV’s operational time and energy
consumption. This is achieved by carefully selecting edge
nodes and assigning tasks based on each node’s computational
capabilities.

Several other studies envisage UAVs as aerial mobile edge
computing platforms, capable of performing processing tasks
for IoT devices located on the ground [74]. This framework
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proves most effective when the requirement involves delivering
communication and computing services in remote locations
or for temporary deployments, in, for example, disaster man-
agement scenarios. For example, drone-mounted base stations
(DBS) may facilitate edge computing on the UAV itself to pro-
vide services [75]. This research frames a joint problem of user
association bandwidth and computation resource optimization,
aiming to maximize the DBS service time and task completion
rates. Subsequently, the study illustrates the successful execu-
tion of such DBS communication and computation services.

Another approach in UAV-based edge computing involves
creating an aerial edge computing network, where UAVs
establish a network and share processing tasks amongst them-
selves [76]. In more detail, there are four network architectures
in which UAVs cooperate to execute processing tasks [77].
A software-defined network architecture comprised of three
layers, namely, data, edge, and relay, enhances the UAV
network’s scalability and controllability using smart function
tables.

Due to the energy limitations of UAVs, several studies
propose offloading computational tasks to ground-based edge
computing nodes. To this end, UAVs may utilize 5G networks
and employ vision-based navigation (that is, use camera
images for navigation) [78]. The UAV may then evaluate
whether to process the images onboard the UAV, fully offload
them, or partially offload the image processing tasks to the
edge nodes. The optimal decision is influenced by the network
quality, such as the available uplink bandwidth and the com-
putational capabilities of the edge server. Similarly, UAV
applications may require video analytics, such as surveillance.
A hybrid approach involving both ground-based edge com-
puting and onboard UAV computing can conserve bandwidth
without adversely affecting accuracy or latency [79].

C. Multi-UAV Operation

Localizing emission sources is a key task for large-scale
environmental monitoring. Indeed, air pollution monitoring
requires the identification of gas leaks and other sources of
pollutants, which might occur over a vast area [80], [81]. The
task of localizing and monitoring pollutant emissions typi-
cally leverages a fleet of drones, i.e., a swarm formation that
requires the creation of flying ad hoc networks (FANETs) and
formulation of a stable network structure [82]. Indeed, the suc-
cessful operation of drone swarms relies heavily on effective
communication, collaboration, and collective decision making.
As such, most research [83], [84] focuses on algorithms that
optimize the paths of drones in a swarm to ensure continu-
ous communication among drones, and thus synchronize their
sensing efforts into a cohesive target plan. These works are
usually evaluated in constrained testbeds or simulations and
adapting them to challenging real-world environments is far
from straightforward. Most of the algorithms assume unhin-
dered search space where the drones can move freely and
assume a central coordinator is responsible for optimizing the
movements of the different drones. For example, the survey
in [82] presents different distributed gateway-selection algo-
rithms (where a drone is selected as a gateway) as well as

cloud-based stability-control methods to efficiently perform
multi-UAV operation tasks.

In practice, obstacles, weather conditions, and other fac-
tors mean that drone swarms need to coordinate movements
among themselves and adapt to changes in the environment.
Most drones are also heavily energy constrained, which lim-
its the resources they have available for making decisions.
Overcoming these challenges requires systems and algorithms
that account for these challenges.

Drone base stations (DBSs) are often considered a viable
and dependable approach to complement or replace existing
communication infrastructure. Operation of drone swarms—
and other types of multi-UAV systems—builds on top of
swarm intelligence which focuses on optimizing the locations
of drones in a 3-D space [85]. Designing path trajectories and
UAV placement algorithms calls attention to system resilience
and self-regulation of the underlying network coordinating the
swarm. For example, a leader UAV can be remotely con-
trolled by a pilot on the ground, and the remaining drones
can then regulate their location to stay within communication
range with the leader by using signal strength measurements
to assess the distance from the leader drones [86]. Similarly,
a controller may organize the drones to fly in circles at differ-
ent heights while ensuring communication among them [87].
This works best on smaller drones, such as tri-rotor drones,
which are highly flexible and able to maneuver in small areas.
The latter is critical for many air pollution sensing scenarios
as it enables drones to reach closed areas, such as build-
ings, tunnels, or pipes. Drone swarms are often heterogeneous
which means the drones can support different communica-
tion ranges. Maintaining communication distance between the
drones requires careful consideration of their organization,
e.g., by using clusters to coordinate specific sets of drones to
reduce the risk of drones disappearing from the network [88].
One example of the use of drone swarms is gas sensing in
industrial environments [89].

Air pollution sensing within an FANET is challenging as
the swarm network must be resilient and able to update the
path of drones or the overall formation on-the-fly in case of
unexpected disruptions, e.g., hitting obstacles or a drone bat-
tery depletes [90]. Indeed, network creation in an FANET has
a significant impact on the efficiency of multi-UAV systems.
Therefore, to obtain an effective multi-UAV operation, an
FANET needs to be incorporated into the software frame-
work that is responsible for planning and coordinating the
drone operations as well as the load balancing between UAVs.
A potential solution is to use software-defined networking
(SDN) within an FANET. Indeed, while SDN enables obtain-
ing information about the state of UAVs, it allows collecting
information on the architecture and topology of FANET. For
example, the study in [91] proposes an SDN architecture
for load balancing in an FANET. Thus, the proposed SDN
enables collecting the topology and link-state information
among UAVs using the SDN controller, and it allows collect-
ing battery information from the UAV controller. Using the
collected information, then the proposed SDN solution bal-
anced the load by directing the load to UAVs with a higher
amount of battery.



HOSSEIN MOTLAGH et al.: UNMANNED AERIAL VEHICLES FOR AIR POLLUTION MONITORING: A SURVEY 21693

Another option is to incorporate separate planners for the
overall mission (global mission planner or GMP) and the
individual drones (agent mission planner or AMP) [92]. The
former assigns and monitors missions, which consist of dif-
ferent individual tasks. The latter, in turn, manages the tasks
assigned to individual UAVs. This type of architecture enables
flexible and dynamic planning of missions in domains where
human intervention is not possible. Examples include auto-
matic target detection and identification, and search and rescue
operations [66]. Drone swarms deployed in critical situations,
such as disaster scenarios, also pose specific requirements
in terms of latency and communication stability. Mobile
networks, and especially LTE, are generally considered the
most reliable network interface for drones to communicate
in such an environment [93]. While LTE delivers the high-
est communication range and data rates, it suffers from high
energy expenditure. In scenarios where energy is the main pri-
ority, LoRA tends to be the best option. When possible, data
should be offloaded to a third party for further analysis, e.g.,
edge or cloud server, as this mitigates the energy expenditure.

Optimal path planning is another factor for helping to con-
tain energy drone expenditure [65], [94], especially crucial
during disaster scenarios. Drones should be able to follow their
intended path even if communication with the controller (or
operator) is lost regardless of whether the drones operate indi-
vidually or as part of a swarm [95]. For instance, drones in
a multi-UAV platform may complete their mission with the
use of predownloaded maps, in the event Internet connection
is lost [96]. Moreover, in hostile environments, such areas are
highly polluted with recent contamination, and multiple oper-
ators may direct their drone swarms to the location, requiring
a strategy to detect and localize their own drones among the
many operating ones [97]. Such a strategy may help in tracking
drones and guiding them into carrying out their mission.

D. UAV Trajectory Planning

Planning the path or flight trajectory of UAVs requires
considering multiple objectives simultaneously. For example,
ensuring sufficient coverage may require simultaneously col-
lecting sensor measurements from many locations whereas
ensuring long-term operation requires minimizes the amount
of data that is being transmitted per drone. Sensor readings
may also have deadlines, e.g., gas measurements may dis-
perse over time or pose an instant health risk making it critical
to collect and analyze them sufficiently fast. The appropri-
ate techniques also depend on the deployment environment,
e.g., in a smart city the UAVs may combine their own mea-
surements with readings from static sensors that are deployed
into the environment. In this case, the trajectory of the UAVs
needs to be designed to account for the other available read-
ings, especially if there are deadlines regarding the usefulness
of the information [98]. Path planning also needs to consider
potential obstacles and application-specific criteria. For exam-
ple, the speed of convergence and overall efficiency are critical
for pollution source localization [99]. The techniques that are
used for optimizing the path typically build on multiobjective
optimization approaches, either formulating an optimization

function [98], [100] or using learning the optimal function
over time, e.g., using reinforcement learning [101] or heuristic
optimization strategies [102].

The main objective of optimizing the UAV’s trajectory is to
achieve improved performance with optimal UAV trajectory,
for example, to generate optimized flight trajectories to
increase object detection performance and optimize energy
consumption. The overall interest is also to maximize the num-
ber of tasks to be completed by the UAV or the number of
services to offer to the users (either IoT nodes on the ground
or other mobile objects). To formulate the optimization func-
tions, generally, there is a need for a system model which
includes the UAV’s travel distance, the UAV’s speed, and the
distance between the UAV and the location of the users. The
system model also considers the data transmission power of
the UAVs which requires channel a model depending on the
environment, e.g., urban areas where the UAV flies. This is
to consider the probability of outage that is caused by path
loss and shadowing in the environment [39]. For example,
the research in [98] aims to jointly optimize the trajectory
of a UAV while allocating radio resources to maximize the
number of served IoT devices. To find an optimal trajectory,
thus, this research considers a city environment and applies the
Rician fading channel to model the communications channel.
To find the optimal UAV trajectory, for example, linear inte-
ger optimization, or algorithmic approaches, e.g., ant colony
optimization [100] is formulated and a set of constraints, such
as the amount of energy to be consumed and the minimum
number of IoT devices to be served is considered.

The other efficient approach for planning UAV’s trajectory
is applying reinforcement learning [101]. In practice, UAVs are
highly mobile platforms and can fly in dynamic and uncertain
environments with changing communication properties, such
as shadowing in air-to-ground channels, path loss, and sig-
nal attenuation [103]. This feature of UAVs requires ensuring
a sufficient quality of service and improved communications
with either the ground control stations or with the other UAVs
and communication nodes. Reinforcement learning enables the
UAVs to optimize the real-time trajectory planning given out-
dated knowledge of the network states [104]. Reinforcement
learning uses the principles of the Markov decision process
such that at each time step, the environment is at a certain
state, and each UAV chooses a certain action using its policy.
When the environment transits into a new state, a reward is
produced for each UAV to improve its policies [105].

In UAV trajectory planning, when utilizing heuristic
optimization strategies, the UAV flight space is discretized and
a search space is constructed. In UAVs path planning, each
transition between the discretized locations has a unique cost,
and the optimal path from an origin location to a destination
location is the minimal cost across all possible paths [102].

When multiple UAVs are planned in tandem, the problem
can be modeled with coalitional game theory and an opti-
mum that is simultaneously the best for multiple UAVs can
be found [106]. Applying the coalitional game when planning
multiple UAVs in tandem first improves the UAV network
stability and reliability as the coalitional game is a classic
cooperative game theory that encourages individual UAVs to
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operate as an entity [107]. Second, using the coalitional game
enables the UAVs to improve data offloading efficiency by
aggregating the data [108], [109], [110].

Path planning forms the basis for determining UAV trajec-
tories but in practice, there are further challenges that need
to be considered. For example, UAVs flying over populated
areas may pose a safety risk of malfunction and they may
also be disturbing unless they are operated at sufficient alti-
tude. Operating UAVs also generates noise which is a source
of irritation to people. These issues may place additional con-
straints on path planning, e.g., the permissible regions are
likely to be governed by geo-fences and other regulations.
Maintaining operations within the designated areas also poses
hardware and sensor requirements, requiring sensors that can
efficiently monitor UAV position and tamper-resilient modules
that prevent overriding the geo-fencing information.

V. SENSING AND LOCAL PROCESSING

A. Sensing Accuracy

Lightweight sensors, especially those mounted onboard
UAVs, tend to suffer from sensor drift and poor measure-
ment accuracy [26], [42]. The poor accuracy is caused by
meteorological factors, such as high temperature, humidity,
and wind speed, as well as anthropogenic factors, such as
intensive pollutant emissions, e.g., from ships or industrial
sites [111], [112]. Maintaining sufficiently high and consis-
tent accuracy requires calibrating the sensors, which can be
accomplished using machine learning [5]. Examples of popu-
lar calibration methods include simple linear regression (LR),
multivariate LR (MLR), linear mixed-effects models (LMMs),
support vector machine (SVM), decision trees (DTs), random
forests (RFs), k-nearest neighbors (KNNs), extreme gradient
boosting (XGB), and artificial neural networks (ANNs) [113],
[114], [115], [116]. Several studies have evaluated and com-
pared ML-based calibration methods. Generally, the results
have varied depending on the data sets but usually ANNs and
methods combining multiple models, such as RFs and XGB,
have achieved the best results [117], [118], [119]. Recently,
there have been many approaches that build on deep neural
networks. These range from models that comprise ensembles
of regression models [120] to autoencoder models [121]. These
approaches have shown promising results, but as with the other
techniques, the performance depends on the characteristics of
the data sets that are used for training and testing the cal-
ibration models. The performance not only depends on the
characteristics of the data set but also on the pollutant that is
being calibrated and the similarity between the data sets that
are used for training and evaluating the calibration model [51].

Air quality sensors attached to UAVs are typically used in
highly dynamic settings where wind speed, pollutant concen-
trations, humidity, and other environmental factors vary. In
these situations, the best performance is typically obtained
using in-field calibration that tailors the calibration model to
the environment where it is being used. In-field calibration is
currently a highly active research domain and a wide range of
models have been investigated. For instance, Gaussian process
regression (GPR) based in-field calibration of airborne particle

sensors has been shown to yield considerable improvements
in sensing accuracy [122]. Other studies have shown ANNs
and other nonlinear techniques to generally yield the best
performance whereas regression methods (LR and MLR) tend
to be vulnerable to inconsistent behavior [42], [123].

Sensor calibration requires having a reference sensor that
provides information on the magnitude of the sensor errors.
Traditionally this is achieved by co-locating the sensors under-
going calibration next to a professional-grade station for a
period. This approach naturally scales poorly to large deploy-
ments and requires access to a reference station [124]. Node-
to-node (N2N) calibration and sensor network calibration are
alternatives that seek to reduce the effort in calibrating the
sensors by propagating the information from one or more low-
cost sensors that are in proximity of reference stations to other
sensors that have no access to a reference instrument. This
approach has achieved highly promising results [50], [125] and
is best suited for UAV-based sensors. The performance of these
approaches can be further enhanced using so-called calibration
transfer which adapts the calibration model by considering the
similarity of the environments where reference information has
been obtained and the target environment where the sensor is
used [126], [127].

The most common way to perform sensor calibration is to
learn a separate calibration model for each pollutant that needs
calibration. An alternative is to take advantage of multisensor
data fusion which allows capturing more complex dependen-
cies between the sensors. As an example, multiple regression
models that capture the cross-sensitivities of O3 sensors
have been shown to outperform a baseline approach [128].
Similarly, a nonlinear estimating model fusing multiple sensor
data reduces calibration errors [129]. In addition, a sensor-
fusion calibration technique recovers high-fidelity ambient
pollution, including O3 and indoor CO2 concentration lev-
els from human interference [130]. Multisensor data fusion
thus not only improves sensing accuracy but can also help to
maintain high accuracy when the sensors are adopted in new
environments.

B. Air Pollution Source Detection

UAVs not only can help to monitor emissions but also iden-
tify and traverse to emission sources. This requires the UAVs
to integrate algorithms that can localize the pollution source,
which can be a fixed (i.e., a certain geographical location)
or a mobile source (e.g., a ship). Pollution source localiza-
tion traditionally takes advantage of optimization techniques
with the most popular approaches being swarm optimization,
engineering-based optimization, and bio-inspired optimization.

Swarm optimization relies on a coordinated swarm of UAVs
that employ a coverage algorithm that plans the UAV trajecto-
ries to maximize the likelihood of finding an emission source,
such as a gas pollution leakage in an industrial area [89].
Coordinating the movements of the UAVs participating in
the swarm is crucial for maximizing coverage and making
the detection of pollution sources faster. These techniques
are not restricted to outdoor use but can equally well be
applied in indoor settings. For example, multirobot search
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methods have been used to localize the source of odor in
an indoor environment [131]. The optimization may also
require external information, e.g., the odor detection exam-
ple relies on airflow information within the environment, and
most optimization techniques have some information about the
layout of the area that is being monitored (e.g., in the form
of a geofence). Cooperating swarm methods typically build
on common optimization techniques, such as particle swarm
optimization [132], genetic algorithms [133], or ant colony
optimization [134]. Testing swarm cooperation in real-world
situations is highly challenging and the use of simulations has
been the most common way to evaluate different solutions.

Engineering-based approaches, in contrast, use physical or
data-driven methods to estimate a pollution source distribu-
tion and to predict the most likely source locations. These
approaches typically require a lot of hardware and energy
resources from the UAV and are best suited for situations
where the UAVs collaborate with other platforms that can
provide the necessary resources (e.g., ground drones or a
separate control unit). As an example of an engineering-
based approach, a probabilistic plume tracing method has been
shown to be effective at allowing a mobile sensor network
to effectively detect pollution sources in a time-varying air-
flow environment [135]. Engineering-based approaches require
coordinating and planning the data collection to ensure they
can estimate the overall distribution accurately. As an example,
locations at different distances from the origin can be selected
and measurements are then autonomously carried out at those
locations to estimate the overall distribution and to trace
pollutant sources [136], [137]. As these methods output a prob-
ability distribution over the target space, the output of these
methods can also be visualized to support the identification of
leaks and pollutants [138].

Finally, bio-inspired algorithms mimic the search strategies
employed by living things (e.g., ants) to detect sources of pol-
lution. Typically, a robot, such as a UAV measures pollution
concentrations at two spatially separated locations estimates
the concentration gradient and adjusts the search direction
angle accordingly [139]. Alternatively, the UAV can use a
discrimination index, an estimator, and a behavioral model
to trace the pollution [140] or collect pollution data along
a path with a given shape (e.g., a spiral) to calculate to
assess the proximity of a pollution source [141]. In prac-
tice, such bio-inspired algorithms consider minimum input
from the environment, such as wind flow, meteorology, and
area mapping, which makes them incomplete and leaves open
research questions when executing them for real-life air pol-
lution source detection. For instance, meteorological variables
are affected by the UAV’s airflow [142]. Hence, UAV path
planning should consider weather conditions when perform-
ing air pollution sensing. Indeed, air pollution concentrations
are highly variable due to the mixing caused by weather
conditions, such as wind speed and direction, or interac-
tions between pollutants. Therefore, to perform accurate air
pollution measurements, the UAVs require efficient search
algorithms so they can continuously predict the emission
source and autonomously plan new waypoints for flying.

VI. UAV OPERATIONS

A. Power Management and Energy Tradeoffs
Power management of UAV-based systems can be tack-

led from different perspectives. Generally, the breakdown
of energy consumption in UAVs identifies three main
contributors.

1) The energy fed to UAV’s motor(s) and propeller(s)
which enable UAVs to fly and maneuver.

2) The energy fed to on-board sensing devices (e.g., air
pollution sensors and cameras).

3) The energy spent for communication among UAVs or
between UAVs and a data collection entity (such as
a GT).

The energy expenditure of a UAV is highly dependent on
its size and weight, the number of propellers (in multirotor
UAVs), the size and weight of on-board sensing devices, the
type of mission (i.e., UAV’s trajectory, sensing tasks, and dura-
tion of the task), the size of the on-board collected data that
needs to be communicated to a GT, and parameters affect-
ing maneuverability, such as maneuvering speed, weather, and
wind [143], [144]. These factors account for nonlinear patterns
in the energy consumption of UAVs, making the consumption
challenging to model.

As UAVs enable a wide range of services [145], their func-
tions, capabilities, and resources may vary drastically. UAVs
deployed for air pollution or other sensing tasks often have
multiple rotors. These multirotor drones (e.g., quadcopter,
hexacopter, and octocopter) rely on propellers to transform
rotary motion into thrust, which enables the UAV to fly and
maneuver. Optimal rotor configuration in UAVs can lead to
better aerodynamic performance, and thus decrease energy
expenditure during propulsion and maneuvering [146], [147].
Indeed, a big tip distance (between rotors), a certain rotor
height, and zero tilt yield the best aerodynamic performance.
Minimizing rotor–rotor airflow interactions often means hav-
ing fewer rotors with larger blades instead of a mixture of
small and big blade rotors that might destructively interfere
with each other [147]. The advantages of minimizing rotor–
rotor interaction show also in terms of a higher quality of the
data sensed by onboard sensors [148]. Specifically, a more
compact and controlled air vortex resulting from rotor-to-rotor
interaction is desirable to minimize the disruption of sensors.
In the same vein, the installation of a short wing (lifting-
wing) in multirotor UAVs can help lift UAVs, together with
the rotors, at a smaller energy expenditure [149]. Tilting the
lifting wing at a specific angle decreases resistance to the wind
and increases yaw stability, which ultimately translates into a
smaller energy budget for these operations.

Besides the design of the drone itself, the operations per-
formed by the UAV can be optimized to mitigate energy
expenditure. In air quality sensing, there is an intrinsic tradeoff
between power drain and pollution sensing as better and more
detailed information requires more effort from the UAVs [11],
[150]. Once a UAV reaches a source of emission, contin-
uous sensing, and measurement until the transmission of a
reliable air quality data set is needed. However, increasing
the duration of data transmission as well as the sampling rate
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negatively impacts the power requirement of the UAV. Hence,
it is important to find an optimal duration for data sampling
and transmission rates to keep the power consumption rea-
sonable while ensuring a given level of data accuracy. The
search for pollution emission sources often relies on visiting
frequent waypoints, which increases the distance that a UAV
travels and, as a result, its energy consumption. Therefore,
it is necessary to intelligently detect optimal waypoints for
UAV’s flight considering the energy budget of the UAV and
power requirements of other functions, such as sensing, UAV
localization (GPS), communications, and processing.

Smart trajectory planning of UAVs is another factor that
allows reducing energy consumption. Air pollution sensing
with UAVs requires UAVs to scan an area of interest and hover
over certain locations to acquire data via onboard sensors.
This operation results in changing UAV’s speed, direction,
and propulsion energy to accommodate its trajectory [151].
Moreover, UAV fleets might experience UAV heterogeneity in
terms of payload, operational time limit, and energy budget.
As such, allocating tasks (e.g., sensing tasks) to UAVs with
sufficient resources and appropriate technical specifications is
paramount to ensure successful task completion. For instance,
energy and delay-aware task assignment to UAVs—subject
to their energy status, location, and onboard equipment—can
improve system performance [38], [39].

Energy conservation operations might not be sufficient for
critical operations that require a long operational time of UAVs
(e.g., natural disaster scenarios [65]). Autonomous and wire-
less charging techniques for UAVs are at the center of many
research works [152], [153]. UAVs must be able to update
and optimize in real time their trajectory to include recharg-
ing points—UAVs must be able to reach such points before
their onboard power budget runs out [152]. Alternatively, con-
centrated beams of light can be pointed at photovoltaic (PV)
cells installed in UAVs to charge them [153]. The drawback to
this solution is the fact that UAVs must be close to the source
of light, which in turn could be dangerous for people’s health.
Another option is leveraging the high electromagnetic (EM)
fields of high voltage power lines to wirelessly transfer power
(WTP) to UAVs [154]. To this end, an optimal design of UAV
coils for fast WTP is crucial. For instance, a wireless charg-
ing platform can achieve stable output power under dynamic
coupling effects of the EM fields in the coils [155].

B. Data Collection and Management

Trajectory planning and scheduling are crucial for UAV
data collection and optimally they are co-designed to ensure
maximal efficiency. Instead of modeling the exact trajectory,
a common approach is to approximate the path using a dis-
crete set of waypoints and to associate the operations around
the waypoints [156]. The energy expenditure of data col-
lection can be further decreased by reducing the sampling
frequency and using data reconstruction techniques, such as
compressive sensing, to improve the quality, and coverage of
measurements [157]. Data reconstruction techniques typically
work best for data that exhibit spatial or temporal correlations,
which is the case in air pollution measurements [51]. Further

optimizations can be achieved by optimizing the communica-
tions protocol that is used for transmissions, e.g., by mitigating
retransmissions caused by conflicts [109].

In large-scale deployments, UAVs are expected to work
together with fixed sensor infrastructure deployed in build-
ings, vehicles, and other urban infrastructure. In these types
of applications, it is difficult to plan data collection such that
the location and status of all sensors are simultaneously con-
sidered. For example, the data collection of sensors should
be coordinated to minimize redundancy and decrease power
consumption. This may require decoupling different opera-
tions and having different schedules for different components.
For example, sampling points can be determined along flight
paths whereas the network interface can be woken up only
when data is transferred from fixed sensors to the UAV [158].
Alternatively, the UAVs may focus on data transfer while
flying, offloading data from the sensor network [159] or
onboard sensors [160] to a cloud-based storage system for
further analysis. Important concerns include power efficiency,
the capability to compress data (particularly for high-volume
modalities, such as video or hyperspectral images), and the
delivery of important information about the drone [159].
Similarly, offloading data from the sensor network or onboard
sensors to an edge node for future analysis may reduce power
consumption on the drone itself [161]. While opportunities
to harness edge infrastructure are currently limited, they are
expected to increase in the near future as edge computing
infrastructure is best suited for scaling up computing support
for cities and other large-scale domains [71].

Data can also be stored on the drone until it returns to
base where the data can then be analyzed. Note that this
does not necessarily mean landing the drone as navigating it
into the communication range of a ground station suffices. In
some applications, the UAVs can even function as additional
communication infrastructure. For example, during crowded
events, air quality—and other IoT devices—may suffer from
poor connectivity due to the base stations being congested. In
these situations, the UAVs can link further base stations into
the network and improve network connectivity [162].

Data management also encompasses the confidentiality,
security, and integrity of the collected data. In the worst case,
the consequences can even be fatal. For example, compromised
air quality data could lead to a situation where the data falsely
indicates that it is safe to travel while the air is poisonous.
Another example occurs in pollution accounting where com-
promised data could underestimate the amount of pollution
that is being generated and result in unsafe operations. Beyond
standard security operations, such as authentication and tamper
resilient components, the operations may need support from
distributed storage and distributed ledgers, particularly when
the interactions involve multiple stakeholders [163].

C. Regulation

Civilian applications of UAVs have drastically increased in
recent years, leading to an increased number of UAV oper-
ations. For instance, already in 2018, there were more than
a million UAVs registered in the U.S. alone. Approximately
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83% of UAVs operate at altitudes of 120 m or below [164].
The increasing number of UAVs operating at low altitudes
may cause damage to terrestrial and urban infrastructure,
cause security threats, and may disrupt people’s safety and
privacy [34]. For instance, UAVs may be used for criminal
activities, to breach privacy, to plan and execute cyber-attacks,
and even to smuggle drugs. Uncontrolled usage of UAVs
can also cause mid-air collisions with civil aircraft as tra-
ditional radars, which are used to capture medium to high
altitude air traffic, are unable to locate UAVs flying at such
low altitudes [164]. Such collisions can lead to loss of life
and property, whereas collisions with terrestrial property can
damage transport and other urban infrastructure [165], [166].
UAVs could potentially also be used against military or other
safety-critical operations, causing serious security breaches.
For instance, GPS spoofing can manipulate UAV GPS coordi-
nates and divert it to areas that are geo-fenced, thus enabling
malicious tasks [167]. Besides, a technical glitch in a UAV
could lead to its collapse, along with the machinery that it
carries.

To overcome risks from unsafe or malicious uses of UAVs,
many countries have started to draft rules and regulations for
UAV operations to limit or avoid their misuse (e.g., operating
drones over government or military spaces, nuclear and other
strategic spaces) [34]. Current traffic management regulations
state that a UAV must fly within the airspace and time slot
allotted to it. The allotted airspace and time slot should not be
in conflict, and there should be measures that prevent UAVs
from crossing geofencing defined by governments [168],
[169]. UAVs deployed for air pollution monitoring should fol-
low the most recent regulations [170] which also means that
the control software needs to be regularly updated to account
for potential changes. Beyond regulation, training, and certi-
fication are seen as important tools for improving the safety
of UAV operations [171]. For example, in the U.S. different
licenses and certifications are being introduced in the U.S.
to provide training on secure and safe operations for UAV
operators [172].

The rules and regulations defined for UAVs mainly focus
on keeping air traffic safe for the public [23]. In the future,
separate provisions that cover uses that are beneficial to soci-
ety, such as air quality monitoring, are needed. Alternatively,
air quality monitoring could operate as part of other special
provisions, e.g., by leveraging package delivery drones. In
the U.S., the regulations governing the operations of UAVs
are based on the regulatory recommendations of the federal
aviation administration (FAA), which state that:

1) small UAVs must be operated in line of sight;
2) UAVs should not be operated directly over an individual

or any moving vehicle;
3) the speed of operation should not exceed 100 mph [173];
4) any UAV which lies within the 0.55 to 55 lbs weight

category should be registered;
5) UAVs must fly below 400 feet;
6) not operate any UAVs within 5 miles of any

airstrip [167].
In Europe, in turn, the regulations are set by the EU avia-
tion safety agency (EASA), and they fall within the single
European sky (SES) initiative which aims for a high level

Fig. 3. Challenges and opportunities related to UAV-based air pollution
sensing.

of safety in the civil aviation sky [174]. The regulations are
planned to take effect during 2023 and address security, safety,
and privacy concerns involving, for example, UAV registra-
tion and UAV radio communication. The drafted regulations
are mostly based on a risk-factor approach, market integra-
tion expectations, and the involvement of UAV sector agencies
and organizations. The regulations allow member states to
lay down national regulations in addition to the overall EU-
wide foundation which needs to be implemented regarding
border safety or national security [175], [176]. While these
restrictions are in place to protect people and safety-critical
operations, they may also restrict and cause difficulties for
UAV operations. For example, path planning needs to avoid
sensitive areas and operate within the regulations, and data col-
lection schedules need to be designed with these constraints
in mind. In the near future it may be possible that some parts
of the airspace are designated for applications that are ben-
eficial, e.g., low-altitude air corridors have been evaluated in
China [164].

Current regulatory frameworks focus on the operations of
the UAVs but at the same time it is important to note that
air pollution monitoring integrates data collection and pro-
cessing as part of the UAV operations, and these tasks are
typically governed by separate regulations. Ensuring these
regulations are also satisfied is critical as otherwise UAVs
may unintentionally—or even maliciously—breach the privacy
of individuals and businesses. This means that any personal
data collected by UAVs, such as photographs and locations,
must be protected [165] and that the storage and process-
ing of data should abide by the appropriate privacy laws and
guidelines [172], such as the GDPR in the EU.

VII. CHALLENGES AND OPPORTUNITIES

In this survey, we have provided a comprehensive survey
of different UAV techniques that are needed for enabling the
large-scale use of UAVs for air quality monitoring. We next
reflect on our survey and highlight research directions for
future work. We discuss these from three perspectives: 1) UAV
technology; 2) sensing and data processing; and 3) regulatory
and societal implications. The challenges are summarized and
contextualized in Fig. 3.

A. UAV Technologies

Obstacle Detection and Avoidance: Air pollution sensing is
expected to operate in different environments, such as built
environments, along roads, harbors, and green areas. These
environments have distinct characteristics, yet each integrates
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obstacles (buildings, trees, cranes, etc.) that must be avoided
and considered as part of path planning. At the same time, the
environments and the obstacles may affect the onboard sensors
of UAVs and hamper the use of specific sensors, e.g., mislead
or cause blackouts in GPS signals. Further research is needed
on path planning and obstacle detection approaches that can
operate in diverse environments, and there is also a need for
testbeds and experiments on the performance of sensors and
algorithms in real-life target environments.

Swarming: The use of UAV swarms for monitoring can
provide several benefits, such as higher coverage, improved
sensing accuracy, and faster data collection. UAV swarms can
work together to cover a larger area and can provide a more
comprehensive view of air pollution levels. In addition, UAV
swarms can cooperate to perform specific tasks such as emis-
sion source detection. The coordination and control of UAV
swarms are highly challenging and require advanced algo-
rithms and communication protocols. Mechanisms for UAV
swarm coordination have long been an active research area
but further research is needed to extend these works to operate
in heterogeneous environments, e.g., where the UAVs coordi-
nate with sensors that have a fixed deployment or where UAVs
with highly different capabilities—or even different air quality
sensing capabilities—cooperate.

Energy Consumption: Air pollution sensors differ in their
sensing capabilities and thus differ in the technologies and
energy requirements that they need to consume. The power
limitations and allowed weight of a UAV can affect the energy
consumption of the sensors and need to be considered in
the design of UAV-based air pollution monitoring systems.
Air quality sensors also pose requirements on the integra-
tion with the UAV, e.g., air should be sampled outside of the
drone downwash and the sensors should not be placed close
to any components that heat up as the performance of the
sensors often depends on temperature, wind speed, and other
environmental factors.

Communications and Networking: UAVs operate in 3-D
space which is an important application domain for opti-
mizing communication infrastructure and testing network
performance. Air pollution measurements using UAVs require
flying the UAVs in environments that require sufficiently long-
range, particularly if the UAVs operate autonomously instead
of line-of-sight by an operator. Emerging technologies, such
as 5G networks provide a starting point for communica-
tions, targeting ultrafast, ultralow latency, and high-capacity
communication links that enable reliable communication for
UAVs in cities. However, the reliability and suitability of these
networks for large-scale UAV deployments need further vali-
dation, and the energy efficiency of the communications must
be optimized to ensure maximal operational time.

B. Sensing and Data Processing

Sensor Diversity: Air pollution sensors come in different
types and sensing capabilities and typically can measure mete-
orological variables, different gases, and aerosol pollutants [5].
The exact form of sensors depends on the application sce-
nario with gas leakage scenarios focusing on VOCs and air

quality monitoring focusing on pollutants that are part of air
quality indexes. In practice, integrating all sensors on each
UAV may be challenging due to cost, payload weight, or
other design restrictions. Examples of other design restrictions
include the difficulty of providing unobstructed airflow and
cross-sensor interactions that can decrease sensor performance.
Ensuring sufficient coverage and accuracy of information
requires designing sampling schedules that consider restric-
tions in sensor availability. Alternatively, it may also be
possible to use algorithmic techniques to overcome such vari-
ations in sensor availability. One example is the use of data
reconstruction techniques, and another possibility is to har-
ness virtual sensing which uses machine learning to predict
the values of missing sensors using other variables [177].

Sensor Accuracy: The accuracy of air pollutant measure-
ments is an important design consideration. In practice, the
cost and payload restrictions mean that UAVs are more likely
to carry low-cost sensors rather than professional-grade sen-
sors. Low-cost sensors are prone to errors and thus there is
a need to calibrate the sensors periodically [5]. Optimally the
calibration would be conducted opportunistically [2], e.g., by
periodically co-locating some UAVs close to a reference sta-
tion and using machine learning to capture a compensation
model that can mitigate errors. Achieving this at a large-
scale requires further research, e.g., in path planning to enable
paths that ensure the UAVs are co-located with professional
sensors, and in sensor calibration techniques to facilitate trans-
ferring the model from one UAV to other UAVs that are
located in areas with different weather and other environmental
conditions.

Data Processing: While there are many applications that
do not require real-time access to pollutants, e.g., air quality
maps usually consider hourly or even daily information, there
also are many applications where (near) real-time information
is critical. For example, in case of hazardous gas leaks, the
residents should be warned immediately, and emergency man-
agement procedures should also be launched with minimal
delay. Enabling real-time access should optimally be resilient
to communication failures and thus be able to operate without
using a central hub to coordinate all data flows. Edge com-
puting capabilities are critical for enabling decentralized data
processing and they can also provide processing support for
analyzing the measurements and to identify potentially danger-
ous situations. Further research is needed to design, evaluate
and deploy UAV-edge solutions that can provide the desired
access to information.

Massive Sensing: Deploying large amounts of UAVs can
offer a comprehensive view of the air pollution levels within a
city and help to identify potential issues rapidly. The larger the
city, the larger the number of UAVs that need to be deployed
with detailed coverage of a metropolitan scale city requiring
hundreds or even thousands of UAVs to ensure detailed cov-
erage. Naturally, such coverage would be difficult to provide
solely using UAVs, and in practice, the UAVs would comple-
ment other sensors deployed in the environment. Nevertheless,
even then, this would require fleets with hundreds of UAVs
which pose significant logistical challenges for charging, main-
taining, and operating them. The maintenance also requires
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taking a long-term view as components suffer from wear and
tear. For example, batteries suffer from capacity loss [178],
which means that simply scheduling charging periods is not
sufficient but also the health of the battery needs to be moni-
tored over time. Long-term deployments of UAV solutions are
needed for a better understanding of factors affecting long-
term maintenance and developing mechanisms that can support
these operations.

Emission Source Detection: Detecting the source of emis-
sions is a key task for UAV-based pollution monitoring.
Current solutions are relatively efficient at optimizing drone
flight paths and accounting for meteorological factors, but
further research is needed to also integrate interactions with
sensors as part of the search process. For example, the accu-
racy of low-cost sensors is affected by wind, humidity, and
temperature and these effects should be considered when deter-
mining the area where to direct the search next. The more
inputs are integrated into the models, the heavier the process-
ing needs also become and thus there is also a need for further
research on developing suitable data processing solutions and
architectures that can support emission source detection.

C. Regulatory and Societal Implications

Public Safety, Privacy, and Regulations: As we have dis-
cussed, the use of UAVs for air pollution monitoring can
raise concerns about public safety and privacy and hence
there is a need to regulate the use of UAVs. Current regula-
tions tend to separate the UAV operations and data processing
requirements, and it is important to have unified regulatory
frameworks that consider both aspects together. Current reg-
ulations also are predominantly aimed at aviation safety and
securing safety critical infrastructure and separate regulations
are needed for the use of UAVs for pollution monitoring—or
other uses that are beneficial to society. At the same time, these
regulations need to consider potentially dangerous uses of
UAVs, including dual-use (i.e., military purposes) and criminal
activities.

VIII. CONCLUSION

UAVs and low-cost air quality sensors that can be inte-
grated with the UAVs are increasingly affordable and available,
opening opportunities to harness these technologies to support
air quality monitoring. Among others, UAVs can increase the
spatial and temporal resolution of air quality data, especially
by providing insights into the vertical distribution of pollu-
tants, facilitating searching and detecting sources of emissions,
and monitoring and auditing pollution distributions around
fixed sites, such as harbors or industrial plants. In this arti-
cle we have presented a comprehensive survey of the current
state-of-the-art in UAV-based air quality monitoring, covering
technological challenges in operating, managing, and main-
taining drones and the interactions between air quality sensors
and UAVs. Based on our survey, we identified research chal-
lenges for the future, dividing them into three categories
depending on whether they relate to UAV algorithms and tech-
niques, sensor processing pipelines and architectures, or the
broader impact and frameworks governing the use of UAVs.

While UAVs are already being used in specific air quality
monitoring tasks, there is still a long way to go before the
full potential of UAV-based monitoring is realized. Our survey
takes the first step at setting out this path.
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