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Abstract

Actuation delay poses a challenge for robotic arms and
cranes. This is especially the case in dynamic environments
where the robot arm or the objects it is trying to manipulate
are moved by exogenous forces. In this paper, we consider the
task of using a robotic arm to compensate for relative motion
between two vessels at sea. We construct a hybrid controller
that combines an Inverse Kinematic (IK) solver with a Rein-
forcement Learning (RL) agent that issues small corrections
to the IK input. The solution is empirically evaluated in a sim-
ulated environment under several sea states and actuation de-
lays. We observe that more intense waves and larger actuation
delays have an adverse effect on the IK controller’s ability to
compensate for vessel motion. The RL agent is shown to be
effective at mitigating large parts of these errors, both in the
average case and in the worst case. Its modest requirement
for sensory information, combined with the inherent safety
in only making small adjustments, also makes it a promising
approach for real-world deployment.

Introduction
Automation is needed in the offshore industry to keep up
with demand. Shipboard robotic arms and cranes are likely
to be an integral part of autonomous marine operations in the
future. Potential applications include vessel-to-vessel load
handling (Tørdal and Hovland 2017), routine service on re-
mote aquaculture locations (Bjelland et al. 2015), and auto-
mooring for autonomous ships (Jha et al. 2020).

A challenge related to offshore robots is the highly dy-
namic environment they operate in. In contrast to their land-
fixed counterparts, shipboard manipulators are mounted to
the deck of a floating vessel, meaning that they act in non-
inertial coordinate frames (Cao and Li 2020). In settings
where the manipulation target is on another vessel or struc-
ture, the arm also has to compensate for the relative motion
between the two, leading to a complex control problem.

The difficulties of dynamic environments are further ex-
acerbated by actuation delays. Real-world robots have a la-
tency between the time an action is sent to the controller and
the time it is reflected in the robot’s configuration (Andersen
et al. 2015). This poses a problem for arms and cranes that
compensate for motion since a configuration that is correct
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at one point in time might be incorrect a moment later. In the
in-lab experiments presented by (Brandt et al. 2022), actua-
tion delays are identified as the dominating source of error
when compensating for vessel motion.

One way to deal with actuation delays is to plan ahead and
schedule commands so that they will manifest at the right
time in the future. This, of course, requires knowledge of
the future and a model that can be used for planning. Assum-
ing perfect knowledge of future vessel motion, (From et al.
2009) solves the problem of optimal motion planning ma-
nipulator arms mounted to the deck of a ship. A later work
relaxes this assumption by additionally constructing a pre-
dictive model of the vessel motion (From et al. 2011).

An alternative to classical planning techniques is Rein-
forcement Learning, which has seen many applications in
robotics and manipulation over the last decades (Kaelbling,
Littman, and Moore 1996; Kober, Bagnell, and Peters 2013;
Nguyen and La 2019). An advantage of RL, in particular
model-free RL which treats the control problem as a black
box, is that it can be applied end-to-end. Additionally, RL-
based controllers typically benefit from fast response times,
as the optimization cost of planning is amortized during the
training phase. However, the field still has open problems
that need to be resolved if it is to see large-scale application
for real-world robotics, such as sample efficiency and safe
exploration while training.

A promising sub-field of RL that addresses some of these
issues is residual policy learning (RPL) (Silver et al. 2018;
Johannink et al. 2019; Zhang et al. 2022). The key idea of
RPL is to train an RL agent to make small adjustments to
an otherwise conventional controller. RPL is well-suited for
complex control problems where good but sub-optimal con-
trollers are readily available. Since most of the work is han-
dled by the conventional controller, these methods are of-
ten less data hungry. Additionally, it typically restricts the
agency of the RL agent, which in turn can limit its hazard
potential.

In this work, we use model-free RL to solve the problem
of vessel-to-vessel motion compensation while subject to ac-
tuation delays. Inspired by residual policy learning, we pro-
pose a hybrid solution where an RL agent learns to produce
small corrections to the input of an Inverse Kinematics (IK)
solver. The approach is evaluated in simulations of various
sea states and actuation delays. We show that the corrections



T I
B

TB
E

T I
G

G

I

B

E
TE

G

TB
GVb

Va

Figure 1: Overview of the most relevant coordinate frames
and the transforms between them. I is the inertial frame,B is
the base of the robot (on Va ), E is the TCP of the robotic
arm, andG is a reference pose on the deck of Vb . A perfectly
controlled arm would ensure that frames E and G coincide
at all times.

predicted by the RL agent reliably reduces the tracking er-
rors incurred by a pure IK controller, and discuss the path to
real-world application.

The remainder of the paper is structured as follows. Sec-
tion 2 formally defines the considered vessel-to-vessel mo-
tion compensation problem. Section 3 frames the problem
as a Markov Decision Process (MDP) and describes the pro-
posed RL solution. Section 4 documents the numerical sim-
ulation and presents the results. Section 5 discusses the find-
ings and Section 6 concludes the paper.

Problem Description
We consider a situation where a manipulator arm is mounted
on top of a floating vessel (Va ). The objective of the arm is to
keep the Tool Center Point (TCP) in a fixed pose relative to
the local coordinate system of another floating vessel (Vb ),
thus compensating for the relative motion between the two.

Overview and Notation
An overview of the problem setup is visualized with rele-
vant coordinate frames and transforms in Figure 1. We use
the notation TXY =

(
RXY pXY
0 1

)
∈ R4×4, composed of a rota-

tion matrix RXY ∈ R3×3 and a translation vector pXY ∈ R3,
to denote a rigid transformation between coordinate frames
X and Y . I.e., a (homogeneous) point pY = [x, y, z, 1] in
coordinate frame Y is related to a point pX = [x̂, ŷ, ẑ, 1]
in coordinate frame X through the equation pX = TXY pY .
Moreover, transformations can be chained together so that
TXY T

Y
Z = TXZ and are always invertible so that (TXY )−1 =

TYX .
The transforms T IB , TBE , T IG are not static over time.

T IB and T IG move with vessels Va and Vb respectively.

Meanwhile, TBE is given by the joint configuration q of the
robotic arm through forward kinematics. Control of the ves-
sels is considered beyond the scope of this paper. Instead,
we focus on motion compensation through optimization of
TBE (q).

Objective
The objective of the arm is to maintain a static reference pose
within the local coordinate frame of Vb . That is, the goal is
to ensure that T IE = T IG , or equivalently TBE = TBG , im-
plying that TEG = TEB TBG should be the identity transform.
Deviations from the reference pose is broken down into a
positional (∆p , length of the shortest correcting translation)
and orientational (∆α , angle of the smallest correcting ro-
tation) error, both calculated from TEG .

Position Error = ∆p =
∥∥pEG ∥∥2 (1a)

Orientation Error = ∆α = arccos

(
tr
(
REG

)
− 1

2

)
(1b)

Base Controller
It is assumed that the robotic arm already has a controller
that is capable of moving the end effector to any pose speci-
fied within the dexterous workspace of the robot. We use an
Inverse Kinematic solver (IK) plus Proportional Derivative
(PD) controller, hereby referred to as the IK controller.

The IK controller takes as input a desired transform T ∗,
relative to the base of the robot, and solves for a joint config-
uration q∗ that causes the end effector to satisfy TBE (q∗) =
T ∗. Because the objective is to ensure that frames E and
G coincide, we set T ∗ = TBG as the baseline reference
pose for the IK solver. The IK solver solves for suitable joint
configuration q∗ti at discrete time steps ti. The result is for-
warded to the PD controller which uses it to generate motor
signals for the joint actuators.

Actuation delays
In this study, we investigate the adverse effects actuation de-
lays have on robot arms in dynamic environments, and to
what degree we can mitigate them with RL. As mentioned
in the introduction, all robotic arms have a minimal actu-
ation delay, caused by factors such as low-pass filtering of
input and physical limitations. However, we also look at the
impact of larger delays. Towards this end, we consider two
filter functions that impose additional delays by transform-
ing qti into q̂ti .

DE(k) : q̂ti = qti−k (2a)

DB(N,fc) : q̂ti =

N∑
j=0

b
(N,fc)
j qti−j −

N∑
j=1

a
(N,fc)
j q̂ti−j (2b)

The first function (DE(k)) creates an explicit delay by
buffering the raw IK output for k timesteps, effectively im-
posing an artificial latency of length ti − ti−k. The second



function (DB(N,fc)) models a more realistic delay by impos-
ing a low-pass filter over the values of q. It implements an
online Nth order Butterworth filter with cutoff frequency fc,
which produces coefficients a and b. Similar to other low-
pass filters, DB(N,fc) imposes an implicit delay on the input
signal in addition to the smoothing (Manal and Rose 2007).

Methods
The proposed solution is a hybrid system where an RL agent
learns to predict adjustments for the IK controller’s input.
That is, instead of solving for robot configurations that sat-
isfies TBE (q) = TBG , the IK controller solves for a modified
pose TBH = TBG TGH , where TGH is a small correction pre-
dicted by the RL controller.

IK
RL

Figure 2: Proposed system. The RL policy predicts a small
correction that is used to create an adjusted IK target.

MDP Formulation
The RL problem is modeled as a Markov Decision Pro-
cess (MDP) (Sutton and Barto 2018). It consists of a tuple
(S,A,R, T , γ), where S is the set of states, A is the set of
actions,R : S → R is the reward function, T : S ×A → S
is the transition function, and γ ∈ (0, 1) is a discount factor.
The transition function represents the environment, which
maps a state and the action selected by the agent to a new
state at discrete time steps. Note that from the RL agent’s
point of view, the IK controller is part of the environment.
The reward function is a scalar function that summarizes
performance and is subject to maximization. The objective
(J) of the agent is to find a parameterized policy πθ : S → A
that maps states to actions in a way that maximizes the ex-
pected sum of future discounted reward from any given state.

J(θ) = Eπθ

[ ∞∑
i=0

γtrti

]
(3)

The state observations given to the agent is a relatively
simple set of values based on the transforms presented in
Figure 1. At each time step, the agent is presented with the
current measurements of TBG , TBE , and TEG . Each trans-
form is represented as a flattened R3×3 rotation matrix and
an R3 translation vector. We also include scalars with the
current distance (∆p ) and angular (∆α ) error norms, mean-
ing that the complete observation is an R38 vector.

The only sensor data needed to obtain these observations
are live tracking of vessel Vb relative to vessel Va and for-
ward kinematics through the robotic arm. To fully describe
the environment, one might also want information such as
the robot’s joint configuration and time derivatives. In this

sense, the problem could be considered partially observ-
able. However, in the interest of simplicity, we do not make
any attempts at explicitly measuring or modeling belief over
these variables. Instead, we rely on a recurrent policy archi-
tecture as explained later.

The action space of the RL policy consists of the set of
rigid transforms TGH , which we break up into a translational
(pGH ), and an orientational (RGH ) component. The transla-
tional component is directly predicted by the policy as an
R3 vector. The orientational component is represented as a
rotation vector where the direction gives the axis of rota-
tion and the magnitude gives the angle. That is, the network
predicts another R3 vector which is then converted into a ro-
tation matrix. This representation has a known problem with
discontinuities at ±π rotations (Zhou et al. 2019). However,
we do not consider that an issue here since the policy should
only issue small corrective rotations.

The reward chosen directly reflects the objectives pre-
sented in Equation 1. We sum the positional error ∆p and
the orientational error ∆α , and negate the result (Equation
4). This results in a dense reward that provides the agent
with feedback at every time step. It is possible to weight the
terms to trade off the two objectives, but we found a simple
sum to be sufficient since the errors (meters, radians) tended
to have roughly the same magnitude.

reward = −(∆p + ∆α ) (4)

Neural Network Architecture
The RL Agent consists of two recurrent neural networks, a
policy πθ that is used to sample actions and a value function
vφ that predicts the state value, i.e. Equation 3 conditioned
on the current state. Both networks have a similar architec-
ture (see Figure 3), but do not share any parameters. Nor-
malized observations are initially fed through a two-layer
Multilayer Perceptron (MLP) encoder with tanh activation
function. The RNN module takes the MLP output and feeds
it though a single LSTM layer (Hochreiter and Schmidhuber
1997). The output of the RNN is added back to the output of
the MLP with a skip connection which we found to help
with stability during training. Lastly, the sum is forwarded
to the head, which is implemented differently for the two
networks.

+ HEADRNNMLP

t + 1

Figure 3: Network architecture for the policy πθ. Except for
S and A all arrows represent R128 vectors. The value func-
tion has equivalent architecture except for the head.

The head of the policy network performs a linear map-
ping from the model dimension and down to the number of
actions (Rd → R3+3). The result is used as a mean, along
with trainable standard deviations, to parameterize a Gaus-
sian distribution (πθ (a|o) = N (µθ(o), σθ)). Meanwhile,



the head of the value network linearly maps its input down
to a single scalar (Rd → R) that represents the value esti-
mate.

Optimization
The policy network is trained on-policy using the surro-
gate clipped likelihood ratio objective from PPO (Schulman
et al. 2017) and Generalized Advantage Estimation (GAE)
(Schulman et al. 2015). Additionally, an entropy regular-
izer is applied to the Gaussian distributions at the network’s
head to encourage exploratory behavior. The value network
is trained to predict the realized discounted Monte Carlo re-
turn through a Huber loss (Huber 1964). Both networks are
optimized with the Adam optimizer (Kingma and Ba 2014).

The networks are trained in epochs that consist of data
collection and on-policy training. Each epoch starts by
rolling out the current policy and collecting a batch of trajec-
tories. Predictions from the current value function are then
combined with the empirical rewards to calculate advan-
tage estimates with GAE. The policy and value functions
are then trained for a fixed maximum number of gradient
steps, with early stopping for the policy if the action dis-
tribution changes too much (as given by an estimate of KL
divergence).

Results
The proposed method is numerically evaluated in simula-
tion. We describe the simulator, show results for just the
IK controller, and finally, investigate how the RL agent im-
proves on it. Supplementary video clips can be found on
YouTube1 and the code is shared on Github2.

Setup
We build a simulation environment on top of the Deep
Mind Control Suite (DMCS) (Tunyasuvunakool et al. 2020)
and the MuJoCo physics engine (Todorov, Erez, and Tassa
2012). The physics model consists of the two vessels and
a manipulator arm as shown in Figure 1. We use a real-
istic model of the UR10e3 arm, a 1.3-meter long arm that
is suitable for future in-lab experiments. The IK controller
runs at 50Hz and uses a numerical solver implementation of
(Wampler 1986), provided by the DMCS framework. The
PD controller is integrated with MuJoCo and runs, along
with the physics simulation time step, at 500 Hz.

The vessels are constrained to follow trajectories given by
data pre-generated by a high-fidelity simulator for marine
operations (SIMO4). The trajectories are generated by sim-
ulating a large (25.5 meters long) aquaculture service vessel
under various sea conditions, equivalently to the data used in
(Brandt et al. 2022). The different sea statesW are modeled
with the Jonswap Spectrum (Hasselmann et al. 1973), vary-
ing the significant wave height Hs and typical wave period
Tp (see Table 1).

1https://youtu.be/wj1YKecxQ7I
2https://github.com/sherilan/exposed-mcx
3https://www.universal-robots.com/products/ur10-robot/
4https://www.sima.sintef.no/simo/index.html

Sea State Wa Wb Wc Wd

Hs [m] 1.0 1.5 2.0 2.5
Tp [s] 6.0 8.0 9.0 10.0

Table 1: Jonswap spectrum parameters for the four (increas-
ingly extreme) sea states used in the experiments.

Similarly to (Brandt et al. 2022), we scale down the ves-
sel trajectories to match the size of the arm in a manner that
preserves linear accelerations. This entails that if the trajec-
tory positions are scaled down by a factor λ the sample rate
of the trajectory is sped up by a factor of

√
λ. However, we

use λ = 10 instead of the λ = 4.84 used in (Brandt et al.
2022), as it allows a theoretical full-scale version of the arm
to comfortably reach up to 10 meters, an ideal range accord-
ing to the referenced work. Note that this makes the problem
slightly harder, as it leads to a relative 44% vessel motion
speedup.

For each sea state we generate a dataset of approximately
one hour of simulated vessel motion. The first two-thirds of
each set is used for training and the last third is reserved for
testing. Since the data is a time series with the position and
orientation of a single vessel, two random temporal windows
are sliced out for each episode to provide motion trajecto-
ries for vessels Va and Vb . This is not entirely realistic, as
the motion of two vessels in the same waves will typically
be correlated up to a phase shift. However, we argue that it
is still a reasonable way to evaluate the proposed method,
since breaking this correlation should only make it harder
for the RL policy to predict relative motion. In addition, we
randomize the target frames G at the start of each episode
by sampling a random pose uniformly from a 20x20x20 cm
working area on vessel Vb .

We run five different configurations for the artificial de-
lays, two explicit delaysDE(k), two Butterworth-based low-
pass delays DB(N,fc ), and one where there is no added de-
lay. The two explicit delays use k = 1 and k = 2, leading to
a delay of 20 and 40 milliseconds for the 50 Hz controller.
The two low-pass delays use fourth-order Butterworth co-
efficients (N = 4) with differing cut-off frequencies fc .
The cut-off frequencies fc are set according to the formulas
derived by (Manal and Rose 2007) so that the resulting de-
lay will approximately match their explicit counterparts. The
no-added-delay configuration is implemented as an explicit
delay with k = 0.

Type DE(0) DB(4,21) DE(1) DB(4,4) DE(2)

Delay 0 ms ∼ 20 ms 20 ms ∼ 40 ms 40 ms

Table 2: Artificial delays considered in the experiments.

Baseline
We begin by testing just the IK controller (no RL adjust-
ments) and observe how it performs under different sea
states and actuation delays. This is implemented by swap-
ping out the RL module for a dummy agent that returns the



Figure 4: Distribution of positional (∆p ) and orientational
(∆α ) errors for the baseline (IK + PD) controller under var-
ious sea states and actuation delays.

identity transform for TGH . For each considered sea stateW
and actuation delay D, we sample 50 test trajectories, each
1000 samples long (20 simulated seconds). We look at the
positional and orientational error at each time step, except
for the first 50 steps (1 sec) to give the controller and simu-
lator time to stabilize.

Figure 4 visualizes the distribution of errors for the pure
IK controller under various sea states and actuation delays.
Consistently with (Brandt et al. 2022), we observe that more
intense sea states result in larger tracking errors. Moreover,
we see that larger waves’ impact on tracking errors is in-
tensified as we increase the delay. The errors are generally
a bit lower for the Butterworth-based delays than their ex-
plicit counterparts, despite being calibrated to have the same
theoretical delay. We conjecture that this could be because
the smooth output of the filter is more suited as input for the
underlying PD controller.

RL Corrections
Next, we train our RL agent and compare its performance
to the pure IK controller. Each training episode consists
of 1000 steps and sample data from one of the four wave
datasets (chosen randomly). We train for a total of 2500
epochs, each consisting of 8 episode trajectories, resulting in
a total of 20 million environment interactions (∼ 111 hours).

An independent RL agent is trained for each of the 5 delay
configurations, the motivation for this being that we assume
the delay to be a constant property of the arm. The proce-
dure is repeated for 5 different random seeds, while keeping
all other hyperparameters equal, resulting in a total of 25
agents. In general, we found the algorithm to converge ro-
bustly for all considered delays and random seeds, as long

as we were careful not to train on a handful of episodes
where the randomized waves put the target pose outside of
the arm’s dexterous workspace.

Each trained RL agent is evaluated under the same con-
ditions as the baseline presented above. We also make sure
to match the random seed used in the environment, mean-
ing that they are subjected to the exact same vessel motions
and sampled positions for G . The results are summarized in
Table 3.

From the results, it is clear that the RL-based corrections
have a positive impact on the arm’s ability to compensate
for vessel motion. The first column group in Table 3 shows
the average errors of the proposed method along with their
standard deviations. We see a similar trend as in the base-
line experiments (Figure 4), but with smaller magnitudes.
Positional errors lies in a range starting at 0.39 millimeter
(DE(2),Wa ) and ending at 1.81 (DE(2),Wd ). The orienta-
tional errors follow a similar pattern, starting at 0.5 millira-
dians (DB(4,21),Wa ) and maxing out at 1.8 (DE(2),Wd ).
The second column group shows the relative improvement
over the baseline. Even for the least challenging wave con-
figuration (DE(0),Wa ), the RL method reduce average error
by 43%. From there, longer delays appear to provide the RL
agent with more opportunities to add value. A very encour-
aging result is that of DB(4,4), where we observe an almost
90% reduction in average ∆p for the three most challenging
sea states.

Good average motion compensation is of limited utility if
the edge cases are bad, as that is where accidents are likely
to happen. Therefore, we investigate whether we have been
effective at reducing the worst-case errors. The third and
fourth column group in Table 3 calculates the same ratio as
the second, except only across the datapoints with the top
5 and 1 percent errors. We observe that the RL-agent still
robustly provides utility and that the improvements are not
restricted to just the average case, particularly for the posi-
tional error. The last column group shows the same ratio, ex-
cept calculated with only the maximum error. The improve-
ments for ∆p still hold up fairly well here, but ∆α a bit less
so. ForDE(0) andDB(4,21) in sea stateWd , the largest mea-
surement of ∆αwas about 20% higher for the RL agent than
for the pure IK controller.

Discussion and Future Work
The results paint a promising picture of what is possible to
achieve with RL for vessel-to-vessel motion compensation.
Even though the problem considered here was restricted to
keeping the TCP stationary, a stable platform localized to
vessel Vb can be useful in several ways. One can, for in-
stance, imagine a situation where an attached gripper must
be held still while closing its grasp around an object. Nev-
ertheless, future work may want to extend the problem to
following trajectories localized to the deck of vessel Vb .

In this work, we considered a small-scale arm simulation,
in part because we had an accurate model of the UR10e arm,
but also because it sets the stage for future in-lab experi-
ments similar to that of (Brandt et al. 2022). More research
is needed before the method is ready for real-world deploy-
ment.



Error (µ± σ) Imp (all) Imp (top 5%) Imp (top 1%) Imp (max)
∆p [mm] ∆α [mrad] ∆p ∆α ∆p ∆α ∆p ∆α ∆p ∆α

DE(0) Wa 0.39 ± 0.19 0.50 ± 0.25 0.58 0.65 0.59 0.67 0.60 0.64 0.54 0.50
Wb 0.42 ± 0.22 0.57 ± 0.32 0.70 0.64 0.71 0.62 0.71 0.57 0.63 0.22
Wc 0.51 ± 0.28 0.70 ± 0.43 0.72 0.61 0.70 0.58 0.69 0.55 0.55 0.33
Wd 0.61 ± 0.34 0.81 ± 0.52 0.72 0.59 0.70 0.53 0.67 0.47 0.36 -0.18

DB(4,21) Wa 0.39 ± 0.19 0.51 ± 0.26 0.72 0.74 0.72 0.74 0.72 0.73 0.52 0.57
Wb 0.44 ± 0.23 0.59 ± 0.35 0.80 0.72 0.79 0.69 0.77 0.65 0.64 0.35
Wc 0.58 ± 0.34 0.75 ± 0.48 0.80 0.69 0.76 0.65 0.72 0.62 0.50 0.38
Wd 0.72 ± 0.45 0.88 ± 0.58 0.79 0.66 0.74 0.61 0.69 0.56 0.52 -0.21

DE(1) Wa 0.62 ± 0.30 0.71 ± 0.36 0.73 0.76 0.73 0.77 0.73 0.76 0.60 0.67
Wb 0.70 ± 0.35 0.81 ± 0.45 0.81 0.75 0.81 0.74 0.79 0.71 0.67 0.58
Wc 0.91 ± 0.51 1.03 ± 0.62 0.81 0.71 0.78 0.69 0.76 0.67 0.57 0.42
Wd 1.12 ± 0.66 1.22 ± 0.77 0.80 0.69 0.77 0.65 0.73 0.60 0.55 0.13

DB(4,4) Wa 0.51 ± 0.26 0.52 ± 0.29 0.84 0.87 0.84 0.87 0.83 0.86 0.75 0.79
Wb 0.58 ± 0.30 0.62 ± 0.38 0.89 0.86 0.88 0.84 0.87 0.82 0.78 0.69
Wc 0.77 ± 0.43 0.81 ± 0.53 0.89 0.84 0.87 0.81 0.85 0.79 0.75 0.66
Wd 0.97 ± 0.57 0.97 ± 0.67 0.88 0.82 0.86 0.79 0.83 0.75 0.71 0.19

DE(2) Wa 0.95 ± 0.47 1.10 ± 0.53 0.74 0.76 0.74 0.79 0.73 0.79 0.62 0.72
Wb 1.10 ± 0.57 1.19 ± 0.60 0.82 0.76 0.81 0.77 0.80 0.75 0.58 0.60
Wc 1.46 ± 0.84 1.52 ± 0.87 0.82 0.73 0.78 0.72 0.75 0.70 0.44 0.43
Wd 1.81 ± 1.07 1.80 ± 1.08 0.81 0.71 0.77 0.68 0.73 0.64 0.36 0.30

Table 3: Summary of positional (∆p ) and orientational errors (∆α ) for the RL-based controller under all considered sea states
and actuation delays. The first column group gives the average errors with standard deviation. The second shows the decrease
in average error compared to the IK controller (0.8 means 80% reduction). The third and forth groups also show the decrease
in error, but calculated across the top 5 and 1 percent of errors respectively. The last shows reduction of maximum error.

Autonomous marine operations require a system that can
accurately sense its surroundings. Specifying a complete set
of sensor requirements is beyond the scope of this work.
However, we note that the solution presented here is rela-
tively lightweight, as it only requires tracking the relative
pose of vessel Vb, information that is typically available in
these settings (see e.g. Tørdal and Hovland (2017)). Delays
caused by measurement processing and filtering could po-
tentially also be absorbed by learned delay compensation.

Full-scale arms differ in dynamics from the UR10e arm
used here. As noted by (Brandt et al. 2022), longer links are
likely to make vibrations a more prominent concern. High-
fidelity simulations or real-world experiments with a full-
scale arm are needed to explore how this affects the control
problem. It would also be interesting to investigate whether
residual policy learning can mitigate the impact of vibra-
tions. Since the motion from vibrations is relatively small,
small corrections might be sufficient to counteract them.

Unless a very high-fidelity simulator of the full-scale arm
and vessel dynamics is created, there is likely going to be a
so-called sim-to-real gap that must be bridged. Alternatively,
the system can be trained or fine-tuned online. In this case,
sample complexity becomes a very relevant concern. Prelim-
inary experiments suggest that it is possible to cut training
time down substantially with simple measures such as using
a more aggressive learning rate or swapping out the LSTM
core with GRU (Cho et al. 2014). It could also be worth-
while to experiment with more data-efficient off-policy RL
algorithms.

Conclusion
In this paper, we study the impact actuation delays has on
vessel-to-vessel motion compensation with a robotic arm
and try to mitigate the resulting errors. We design a hybrid
solution where an RL agent learns to issue small corrections
to an underlying IK controller. A clear advantage of this ap-
proach, as opposed to e.g. giving full control to the RL agent,
is that it limits the hazard potential of the black-box NN pol-
icy. The RL agent only requires modest sensory input and
is agnostic to the underlying controller, making it a flexible
add-on that can be included in diverse setups.

Numerical experiments in simulation showed that increas-
ing actuation delays and more intense sea states has a com-
pounding effect on the tracking errors, especially for the po-
sitional component of the error. The corrections predicted by
the RL agent lead to a substantial decrease in errors (∼50-
80%), with the largest reductions being observed while un-
der the influence of larger actuation delays. Potential future
work includes motion compensation while following trajec-
tories that are localized on another vessel, running simula-
tions of full-scale arms, addressing the issue of sample com-
plexity, and in-lab experiments.
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