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Archaeological textiles can provide invaluable insight into the past. However, they are

often highly fragmented, and a puzzle has to be solved to re-assemble the object and re-

cover the original motifs. Unlike common jigsaw puzzles, the archaeological fragments are

highly damaged, and no correct solution to the puzzle is known. While automatic puzzle

solving has fascinated computer scientists for a long time, this work is one of the first at-

tempts to apply modern machine learning solutions to archaeological textile re-assembly.

First and foremost, it is important to know which fragments belong to the same object.

Therefore, features were extracted from digital images of the textile fragments using color

statistics, classical texture descriptors, as well as deep learning methods. These features

were used to conduct clustering and identify similar fragments. Four different case stud-

ies with increasing complexity are discussed in this article: from well-preserved textiles

with available ground truth to an actual open problem of Oseberg archaeological tapestry

with unknown solution. This work revealed significant knowledge gaps in current ma-

chine learning that helps us to outline a future avenue toward more specialized application-

specific models.
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I. INTRODUCTION

Archaeological artifacts tell interesting stories and provide invaluable insight into the past of

the humankind. However, they are often found in a fragmentary state. This is especially true for

archaeological textiles that are vulnerable to degradation and decomposition. A vivid example

is the Viking Age tapestry collection from the Oseberg burial, Norway1. The tapestries depict

the scenes that are hard to read and understand due to high degree of fragmentation. Therefore,

solving a puzzle is needed to put the adjacent pieces together, re-assemble the object, and recover

the motifs. Previously, this has been done manually by human experts, which is a time consuming

and tedious process2,3. Besides, the fragments are usually very fragile, and physical interaction

with them should be kept to a minimum for conservation considerations.

Re-assembly of the archaeological objects bears some similarities to jigsaw puzzle solving – a

popular pastime activity. However, while a reference image exists as a correct solution for common

jigsaw puzzles, no ground truth is usually available in real-world archaeological problems (see

Fig. 1). Furthermore, often it is not obvious whether the fragments belong to the same object or

not, which introduces an additional complexity.

The machine learning literature has addressed puzzle solving for artificially fragmented art-

work imagery4–6 or 3D archaeological artifacts7–10, such as pottery fragments. However, the

literature on a complex scenario of archaeological tapestry is very limited. The archaeological

textile fragments are highly degraded and irregularly shaped, and the number of different objects

before fragmentation is unknown. (cf. Fig. 1). While the state-of-the-art machine learning tech-

niques face substantial challenges in relatively simpler scenarios, where the fragments are not

degraded, have regular shapes, only small part of the fragments are missing, and all belong to the

same object2,4, we believe that fully automatic puzzle solving for archaeological textiles, where
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FIG. 1. Jigsaw puzzle solving is a popular pastime activity (left). They usually include regularly shaped

pieces with matching contours and a ground truth solution as a reference. Puzzle solving in actual ar-

chaeological applications (such as the Oseberg tapestry on the right) is a more challenging problem due to

irregular shape of the fragments, their degradation, and the lack of ground truth. Reproduced from12.

a machine automatically determines fragments’ spatial location is currently infeasible. Instead,

this work proposes a framework, where image processing and machine learning techniques are

utilized to extract features from fragments’ images and conduct clustering to identify fragments

that are similar and hence, highly likely to belong to the same object. Based on this information,

a human expert can finalize the puzzle solving on a digital canvas with substantially less effort. In

our previous communication11, the preliminary results of the clustering were reported. The work

attempted to identify which fragments belonged to the same object. This article follows up and

expands the previous communication by new results obtained in one of the authors’ recent work12.

II. RELATED WORKS

Automatization of puzzle solving has fascinated computer scientists for nearly six decades.

The seminal work by Freeman and Garder13 was a first one to propose such a solution. Their

puzzle was composed of 9 gray pieces, and the solution relied on contour matching information.

Substantial progress has been achieved since then, and the recent works also utilize color and

semantic regularities present in the pieces14–16. Different machine learning methods have proved
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efficient in solving puzzles of natural images17–19. For example, a Genetic Algorithm used by

Sholomon et al.19 can rely on pieces as small as 7×7 pixels and has been demonstrated to solve a

432-piece puzzle in 2 minutes. Another example is a Growing Consensus algorithm used by Son

et al.16. Authors’ objective was to solve puzzles with very high number of pieces, such as the one

with 22 834 pieces that was solved in approximately 13 hours. The authors claim that this is the

largest puzzle solved in a fully automatic fashion.

Paumard et al.20 used deep learning to solve 3× 3 puzzles of painting images. They used

VGG-Net21 for feature extraction and left 48 pixel-wide gaps among the fragments to simulate

erosion. In their solution, ground truth information about the central fragment was known, which

was utilized for classification, whether or not the fragment belonged to the same painting, as

well as for determination of the position relative to the central piece. Many pieces, especially

the homogeneous ones, were often misplaced. The authors followed up with several works using

different deep learning implementations4–6 and incorporation of the semantic content15.

Puzzle solving has practical implications in many domains. A good example of this is re-

assembly of shredded documents, for which, different solutions have been offered that used in-

formation such as paper color, font style, line spacing, and semantic content22,23. Puzzle solving

plays an especially important role in cultural heritage, where re-assembly of fragmented heritage

objects is needed. Different machine learning solutions have been proposed for pottery7,24, mosaic

tile panels8,9,25, and frescoes26, utilizing both 2D24 as well as 3D7 information. The works that

use 3D information, usually rely on surface normal directions in addition to contour and color

consistency8,9,26.

Unlike rigid objects, such as pottery, textiles are flexible and prone to significant deformations,

which especially complicates the matching and re-assembly process27. Few works have addressed

virtual reconstruction of heritage textiles and are mostly limited to inpainting - reconstruction of
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damaged parts by utilizing the information in the preserved regions28–30. However, the extent of

degradation and fragmentation in archaeological textiles, such as the Oseberg tapestry, is often

so large that application of inpainting techniques may not be feasible due to the lack of enough

structural trends.

To the best of our knowledge, the first work that addressed puzzle solving specifically for ar-

chaeological textiles was our previous communication11. In that work, the fragments were split

into square patches, features were extracted using classical texture descriptors as well as deep

learning techniques and clustering was conducted to identify matching ones. The result was in-

conclusive. This was followed up by a recent work of Gulbrandsen12 (one of the co-authors of this

article), where different feature extraction and clustering techniques were explored. Furthermore,

Gulbrandsen12 developed a software for virtual puzzle solving on a virtual canvas. This article

extends our previous communication with this new knowledge and summarizes the recent efforts

toward solving a puzzle of fragmented archaeological textiles. A comprehensive literature review

on this topic can be found in the work by Gigilashvili et al.2.

III. METHODOLOGY

The contribution of this article is as follows:

• It investigates different feature extraction methods both from classical texture descriptors to

the cutting-edge deep learning techniques to create a feature vector for each fragment based

on its color image.

• Clustering is conducted using different clustering algorithms to identify potentially similar

fragments.

• A novel dataset of well-preserved household textiles is created. The textiles in this dataset
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were artificially fragmented by us to test the approach on it as a baseline study.

• The approach is also tested on well-preserved historical textile artifacts.

• Afterward, the approach is tested on highly degraded Oseberg tapestry imagery.

• Apart from that, a novel software with a digital canvas is introduced that can be used for

digital puzzle re-assembly.

• Finally, the limitations of the current computational techniques are discussed and the knowl-

edge gaps that need to be addressed in the future are outlined.

The work can be divided in four experiments with increasing degrees of complexity. For each

experiment, a general approach can be divided into the following steps:

1. Data collection – either by image acquisition, or downloading existing datasets.

2. Pre-processing – optimizing the images for analysis: such as downsampling high-resolution

images, sharpening and enhancement, segmentation to eliminate noisy regions, and dataset

augmentation (e.g. rotation).

3. Feature extraction – using different texture descriptors, color moments, or pre-trained Con-

volutional Neural Networks (CNNs) to create a feature vector associated with each frag-

ment.

4. Clustering – using different algorithms to group fragments based on the similarity of their

feature vectors.

5. Evaluation – evaluating the clustering results, either based on the ground truth (when known)

or the hypotheses of the human experts (when no ground truth is available).
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FIG. 2. Manually cut textile fragments were photographed under controlled D65 illumination on a neutral

gray background in a viewing booth, where the angle and the object-to-camera distance were fixed (to

approximately 60 cm), and the D65 illuminant of the booth was the only source of light in the scene.

Reproduced from12.

A. Case study 1: A baseline study using household textiles

1. Acquisition and Pre-processing

Well-preserved household textiles were purchased and manually cut with scissors into 6 or 9

irregularly shaped fragments. Then high-resolution photographs under controlled D65 illumina-

tion in a viewing booth (see Fig. 2 and 3) were acquired. The images were downsampled and

segmented using MATLAB’s Image Segmenter app and saved in the PNG format where the back-

ground was transparent. The textiles are in a good condition, all fragments are present, they have
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FIG. 3. Examples of household textile fragments after segmentation. Reproduced from11.

simple structure, and the ground truth information is available, which enables reliable evaluation.

This helped us establish a baseline performance of the machine learning algorithms.

2. Feature Extraction

A broad range of features to capture color and texture information was used, as well as other

visual patterns and deep features, as follows:

• Color-based features:

– Color histograms

– Color moments (mean, standard deviation, skew)

– Color coherence vectors
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• Texture-based features:

– Local Binary Patterns (LBP)

– Opponent Color LBP

• Deep learning-based features:

– Pre-trained convolutional neural networks such as VGG, ResNet, and Inception

Color is a fundamental attribute of appearance, which is used by humans and machines alike31.

Color histograms can provide an interesting insight into the overall distribution of colors in each

fragment, and hence, help us identify similar fragments32.

Color moments, such as mean, standard deviation, and skewness provide additional information

about object’s color properties, and are calculated as33:

Ei =
N

∑
j=1

1
N

pi j (1)

where Ei is a mean of specific property (e.g. color), pi j is the value at a given pixel in the i-th row

and j-th column of the image, and N is the total number of pixels.

σi =

√√√√( 1
N

N

∑
j=1

(pi j −Ei)2

)
(2)

where σi is the deviation, Ei is the mean as in Eq. 1, pi j is the value at the i-th row and j-th column,

and N is the total number of pixels;

si =
3

√√√√( 1
N

N

∑
j=1

(pi j −Ei)3

)
(3)

where, si is skewness, which is a measure of the asymmetry. These calculations are done separately

for each of the RGB channels.
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Images with identical histogram may look substantially different, based on how the pixels are

distributed in space. Color coherence vectors (CCVs) take into account not only the number of

pixels with specific colors captured by spatially-blind histogram, but also their spatial coherence –

i.e. the degree to which pixels of that color are members of large similarly-colored regions34. For

instance, Fig. 4 illustrates the case, where histograms of two textures are identical, but they look

different, which can be captured with CCVs instead of histogram statistics. A Jupyter notebook

was used to add or remove different features to optimize the result.

Apart from color features, classical texture descriptors from computer vision, such as Local Bi-

nary Patterns (LBP) or Opponent Color Local Binary Patterns (OCLBP) were used. LBP captures

local textures by creating binary codes that capture whether the intensity of a neighboring pixel

is larger or smaller than that of a central pixel (see Fig. 5). It is applied to grayscale images and

have proved efficient in computer vision applications35,36. OCLBP extends LBP from grayscale

to color, and captures both color and texture information, by analyzing and then combining the

patterns in R, G, and B channels 37,38.

Finally, pre-trained deep learning models that have revolutionized image classification and

other computer vision problems were also used for feature extraction. Pre-trained models such

FIG. 4. The image on the right is a scrambled version of the image on the left. Their histograms are

identical. However, their textures look substantially different, which can be captured by CCVs.
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FIG. 5. The example of calculating an LBP. The value of the central pixel (beige cell) is compared with

all of its eight neighbors. If the pixel value of the neighbor is higher, 1 is assigned to the respective cell in

the matrix on the right; if it is lower, then 0. The binary code is generated by reading the binary values in

the matrix on the right either clockwise, or counterclockwise. If the code is read counterclockwise from the

lilac cell, the LBP code of the central cell will be 10001011. For convenience, the codes are converted to

decimal, which in this case is 139. LBP code value for a given cell is 139. The statistics of all LBP codes

can be then summarized with a histogram.

as VGG and ResNet have been used for feature extraction for classification purposes, since they

are trained on very large datasets, such as ImageNet, and capture broad range of visual features

from simple edges to more complex high-level attributes39. In this case, VGG16 and VGG19

deep convolutional neural networks were considered, where the number signifies the number of

convolutional layers. It is a popular architecture for image recognition tasks39.

3. Clustering

K-means and hierarchical clustering algorithms were used to group the fragments. K-means

separates the data in a pre-defined number of clusters40,41. It randomly selects initial cluster cen-
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troids and iteratively refines them by minimizing intra-cluster differences until convergence or for

a predefined number of iterations. It is efficient, but depends on the number of clusters as well as

the initialization of the centroids. Hierarchical clustering, on the other hand, does not need speci-

fying the number of clusters in advance42. It builds a tree-like structure by successively merging or

splitting the branches based on a distance measure43. It may deploy either agglomerative (bottom

up) or divisive (top down) approach.

4. Evaluation

The results were compared against the ground truth. Besides, the results were evaluated using

the Silhouette score, which is a measure of how similar an object is to its cluster compared to other

clusters44. The silhouette score ranges from -1 to 1 with higher values indicating that the object

matches well with its cluster.

B. Case study 2: A study on well-preserved heritage textiles

Unlike household textiles that usually have simple patterns, our approach was tested on the

images of the heritage textiles. It is important to highlight that they are not archaeological textiles

and are hence, well-preserved despite their age. The photographs of the Tingelstad, Överhogdal,

and the Gudbrandsdalen cloth were used. They were virtually split into rectangular grids (see

Fig. 6). The gaps were deliberately left to simulate degradation as it was done by Paumard14.

Unlike Case study 1, they had a regular shape, which in part simplifies the problem. Ground truth,

as in case of Case Study 1, was also available.

Feature extraction and clustering algorithms were the same as for Case Study 1. The results

were compared against the ground truth. Besides, the results were evaluated using the Silhouette
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FIG. 6. Well-preserved Tingelstad heritage textile was digitally cut into 3×3. The gaps were left deliber-

ately to simulate degradation. Reproduced from12.

score.

C. Case study 3: Archaeological textiles – part A: classical texture descriptors and

AlexNet

This case study was reported in the previous communication11. In this case, highly fragmented

and degraded Oseberg tapestry1 imagery was used, which was obtained from the Museum of

Cultural History. This is an open in-the-wild problem, and no ground truth is available for this

dataset. The overall workflow is illustrated in Fig. 7.
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FIG. 7. The workflow in Case Study 3. Reproduced from11.

FIG. 8. Examples of the patches used in Case Study 3. Reproduced from11.

1. Acquisition and Pre-Processing

First of all, the ultra-high-resolution color photographs obtained from the Museum of Cultural

History were downsampled due to memory limitations and computational efficiency. Afterward,

the fragments were segmented, and each fragment was split into smaller 200×200 pixel patches,

shown in Fig. 8. This had two objectives: first, to increase the number of images, since there are

few fragments in the Oseberg dataset; second, to create a ground truth for evaluation purposes

(it is known which patches come from the same fragment). The fragments with high degree of

noise were discarded. For smaller fragments with less than 60 patches, the dataset was augmented

by rotation to 90°, 180°, and 270°. If the patches were blurry, image sharpening was used. In

total, 6650 200× 200 px patches corresponding to 77 original Oseberg tapestry fragments were

generated.
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FIG. 9. Co-occurrence Matrices indicate how often pixels with given values at a given spatial distance and

direction (different offsets) occur. For the part of the image with pixel values shown on the left, a Co-

occurrence Matrix for the [0, 1] offset is given on the right. For instance, 2 at the 1st row and 8th column

(right matrix) means that there are two instances where 1 and 8 are horizontally adjacent and 1 is on the left.

5 and 3 are horizontally adjacent three times, and so on. Similar matrices can be constructed for different

offsets – different directions (vertical adjacency, diagonal adjacency) and distances.

2. Feature Extraction

Three different methods for feature extraction were used: classical feature descriptors, such

as OCLBP37 and Co-occurrence Matrices (CoM)45. CoM captures the relative positions of the

pixels and represents them as a matrix of probabilities of co-occurrence of certain pixels within

a certain distance (see Fig. 9). As proposed in46, OCLBP features were combined with CoM

features. Apart from this, features using pre-trained AlexNet convolutional neural networks (using

ImageNet weights)47 were extracted. This feature vector has 507 elements.
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3. Clustering

After extracting the features, they were fed into clustering algorithms to group the patches with

similar textures together. K-means40, Mean-Shift48, and Agglomerative Hierarchical clustering42

were used. Similarly to K-means, Mean-Shift is also a centroid-based method, but it determines

the optimal number of clusters without the user input. The user, however, defines the radius (the

"bandwidth") parameter. For each data point, a local mean is found within this pre-defined radius.

Given point is shifted to this local mean, and then the new mean is found toward which the points

should be shifted. The process continues iteratively, and the points shifted toward the same final

centroid are concluded to be in the same cluster.

4. Evaluation

The accuracy of the clustering result was measured as follows: the number of clusters k was

varied from 2 to 77 for patches that come from 77 fragment images, which are considered the

pseudo-classes. Because this is an unsupervised problem, all 6650 patches were used to fit the

clusters. At each class j, the number of patches that are assigned to each cluster (denoted as c) is

calculated, which is represented by pc, j. The accuracy for each class j is then calculated as:

acc j =
max(pc, j)

Ni
(4)

where c ∈ [1;k], and Nj is the number of patches in a given class (from the same fragment).

Finally, mean accuracy among all 77 classes and its standard deviation were calculated. It is worth

highlighting that this method captures false negatives (patches that are known to be from the same

fragment and end up in different clusters), and it does not capture false positives (patches from

different fragments end up in the same cluster). This decision is intentional, because our objective

is not clustering patches to 77 original classes. Any false positive may, in fact, indicate that the
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fragments that those patches come from belonged to the same original.

The results were also evaluated by the archaeologists who work with the Oseberg Tapestry. Al-

though the ground truth is not known, the professionals hypothesize which fragments may belong

together based on the motif and weaving technique analysis.

D. Case study 4: Archaeological textiles – part B: Color Moments and VGG features

The same ultra-high-resolution Oseberg Tapestry imagery was used as in Case study 3. The

original images were as large as 15000×12000 pixels. Therefore, they were cropped into 1200×

1200 pixel regions that contained informative parts with less noise and degradation. Afterward,

the image was split into four patches (2× 2) to create the ground truth. The process is shown in

Fig. 10. Feature extraction and clustering algorithms were the same as for Case Study 1.

IV. RESULTS

This section presents the clustering results. Each subsection presents the results for each case

study with visual illustrations and numerical evaluations. Overall observations are discussed in

the subsequent section.

FIG. 10. Pre-processing example of the Oseberg tapestry images in Case study 4. Reproduced from12.
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A. Case study 1: A baseline study using household textiles

One textile was split into 6 fragments, while the other two into 9 pieces each – totaling to

24 pieces in total. Two textiles were lighter in color, while the third one was relatively dark.

Clustering was first run on these 24 fragments. Afterward, each fragment was split into 4 sub-

fragments, increasing the dataset to 96 fragments. For both cases, color moments, color histogram,

and LBP essentially separated them into light and dark, placing many fragments from two lighter

textiles in the same cluster (see Fig. 11). On the other hand, VGG19 provided perfect (without

mistake) performance for 24 fragments with hierarchical clustering (see Fig. 12), and making just

1 mistake with k-means clustering. However, when the number of the fragments was increased,

the performance deteriorated, and it placed all lighter fragments in one cluster, while wrongly

distributing the darker ones into two clusters (see Fig. 13).

The Silhouette scores are summarized in Table I. The scores show no difference between the

clustering methods. However, the difference is apparent among the features that were used for

clustering. The best results were produced by LBP and color moments. The scores are lower for

histograms, and they drop substantially when VGG19 is used as a feature extractor, both alone, as

well as in combination with other descriptors. This is consistent with the results shown in Fig. 13.

B. Case study 2: A study on well-preserved heritage textiles

When using color histogram and LBP features for K-means clustering, the results were perfect,

without mistake, as illustrated in Fig. 14. Interestingly, when VGG19 features were used instead,

several false positives were detected. For example, one Tingelstad cloth was grouped with the

Överhogdal images (Fig. 15). The Silhouette scores are given in Table II. The table shows that
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FIG. 11. Clustering results using 96 fragments. Features were extracted using color moments, color his-

togram, and LBP. Lighter fragments are mixed up and grouped together. Reproduced from12.
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FIG. 12. Clustering results for 24 fragments using the VGG19 model as a feature extractor and hierarchical

clustering, where the clustering was 100% accurate. K-means performs similarly with only 1 mistake.

unlike Case Study 1 (cf. Table I), the clustering method slightly affects the Silhouette scores.

Hierarchical clustering led to higher Silhouette scores when LBP and VGG19 features were used,

while it was outperformed by K-means for other features. The best results were produced for color

histograms and LBP. It is worth mentioning that the Silhouette score is below 0.6 even when the

clustering result was 100% accurate. Generally, color statistics and classical texture classifiers

produced higher Silhouette scores (above 0.5) that dropped to near 0 when CNNs, such as VGG19

and AlexNet were used. Interestingly, using all features at the same time does not improve the

results.
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FIG. 13. Clustering results using 96 fragments. Features were extracted using VGG19. Lighter fragments

are grouped together, while the dark ones are distributed in two clusters. Reproduced from12.
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TABLE I. The resulting Silhouette scores for the household textiles.

Features Clustering Silhouette Score

LBP K-means 0.689

LBP Hierarchical 0.689

Color moments K-means 0.686

Color moments Hierarchical 0.686

Histogram K-means 0.529

Histogram Hierarchical 0.529

LBP, Histogram, Moments, VGG19 K-means 0.106

VGG19 K-means 0.106

VGG19 Hierarchical 0.106

FIG. 14. When using color histogram and LBP, Gudbrandsdalen (left), Tingelstad (middle), and Överhogdal

(right) textile were clustered correctly. Reproduced from12.
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FIG. 15. One Tingelstad fragment was incorrectly clustered with Överhogdal textile fragments for VGG19.

Reproduced from12.

C. Case study 3: Archaeological textiles – part A: classical texture descriptors and

AlexNet

The results for OCLBP and its combination with CoM are illustrated in Fig. 16. All clustering

algorithms demonstrated similar accuracy, as well as high correlation among their cluster compo-

sitions. Mean-Shift and Hierarchical clustering determined the optimal number of clusters to be

two. K-means clustering with 2 to 77 clusters was tested, and the accuracy was the highest when it

was 2. However, considering that the accuracy criterion does not penalize for false positives, this

result need to be taken with great care. With this method, it is possible to evaluate whether patches

from the same fragment end up in the same cluster, but it is unclear whether placing the patches

from different fragments in a same cluster is necessarily wrong – the two fragments could actually

be part of the same object. Therefore, if all patches are put in the same cluster, the accuracy will
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TABLE II. The resulting Silhouette scores for well-preserved historical textiles.

Features Clustering Method Silhouette Score

Histogram K-means 0.597

LBP Hierarchical 0.597

Moments K-means 0.509

LBP, Histogram, Moments K-means 0.509

LBP K-means 0.507

Moments Hierarchical 0.504

LBP, Histogram, Moments Hierarchical 0.504

Histogram Hierarchical 0.503

All Hierarchical 0.101

VGG19 Hierarchical 0.101

AlexNet K-means 0.099

AlexNet Hierarchical 0.093

All K-means 0.047

VGG19 K-means 0.016

be 100% (all patches from the same fragment will be together).

Fig. 17 illustrates that the fragments in one cluster seem to have thicker threads and lower

spatial frequency texture, while in the second cluster, the patches with smaller thread size and

higher spatial frequency variation are grouped. This could be an indication that thread thickness

is an useful cue to fragment similarity, but as the small patches do not capture global motifs,

it can also be misleading if two different artworks were weaved with a similar technique. This

result was evaluated by the archaeologists, who pointed out many potential false positives, as they
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FIG. 16. The accuracy as a function of number of clusters in K-means. The blue curve corresponds to

OCLBP features, and the orange curve corresponds to a combination of OCLBP+CoM. Reproduced from11.

FIG. 17. The left and right pair of images were grouped in different clusters, respectively; while the left two

patches have thicker threads and relatively low spatial frequency texture, the opposite is true for the right

ones. Reproduced from11.

hypothesize that the number of clusters should be larger.

AlexNet feature vectors were 507-dimensional. Due to a low number of samples, K-means

failed due to the curse of dimensionality. Hierarchical clustering detected two clusters, where one
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was substantially larger than the other. First cluster contained most of the patches (6450), while the

second one had just 200 extremely degraded homogeneous patches with barely visible variation.

D. Case study 4: Archaeological textiles – part B: Color Moments and VGG features

Since no ground truth is available, it was first decided to compare the clustering results based on

archaeologists’ hypotheses. Fragments from 5 hypothesized clusters were selected that archaeol-

ogists considered similar based on their motifs and weaving techniques. The distribution of these

fragments using different feature extraction techniques is shown in Tables III and IV. The name

of each fragment starts with a letter (A-E) signifying hypothesized cluster, while the numbers are

their unique identifiers. In other words, if the clustering results are perfectly aligned with the hy-

potheses, all fragments whose name starts with "A" should be clustered together; those with "B"

– together, and so on, respectively. Tables III and IV demonstrate that there is a substantial mis-

alignment between the clustering result and hypothesized clusters. Full fragment images contain

a lot of noise. Therefore, the same procedure was repeated with 1200× 1200 px close-ups, as

well as four smaller patches produced from each of them (2×2, as shown in Fig. 10). The results

do not improve substantially, and in some cases, the patches from the same fragment end up in

different clusters. A closer look at the clustering results using these fine-scale patches (see Fig. 18)

illustrates that the grouping is primarily based on a color shade.

V. DISCUSSION

This article reported the first step toward puzzle solving of highly degraded and fragmented

archaeological textiles. This work reveals the significant knowledge gaps in the state-of-the-art

machine learning. Color statistics, classical texture descriptors, as well as the recent deep learning
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FIG. 18. The results from the clustering of 2× 2 ROI-focused Oseberg textiles using color and texture

features and hierarchical clustering. Reproduced from12.
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TABLE III. The initial clustering results when using color and texture feature extractors with hierarchical

clustering. The result was the same for K-means.

Cluster Fragments

0 A_008, B_010, B_090, D_067, D_071

1 B_066, B_082, B_086, B_088, D_072, E_102, E_103, E_104

2 A_008-1, B_012, B_056, C_001, C_029, C_057

3 B_083, B_087

4 B_016, B_053, B_055-1, B_131, D_068

TABLE IV. The clustering results using the VGG19 model with k-means clustering.

Cluster Images

0 A_008, B_010, B_012, B_016, B_053, B_055-1, B_066, C_057

1 B_082, B_083, B_086, B_087, B_088, B_131, D_067, D_068, D_071, D_072, E_102, E_103,

E_104

2 A_008-1

3 B_090, C_001, C_029

4 B_056

techniques manage to correctly cluster the textile artifacts when they are in good conditions and

substantially differ from one another; however, the performance deteriorates when the textiles are

similar in shade or are highly degraded. The state-of-the-art techniques show that the results are

not perfect even when 3× 3 puzzle of high quality photographs need to be solved if a small gap

mimics an erosion5,20. The actual complexity that the researchers face in real-world archaeological
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problems is substantially higher, as the fragments are highly degraded, come in irregular shapes,

many fragments are missing, and the number of objects they belong to is unclear.

Color statistics are not informative enough to differentiate the fragments, as many of them may

have similar color distributions after long degradation and decomposition process. The sophis-

ticated deep learning models are, on the other hand, trained on natural images for classification

tasks, to learn, for example, how to distinguish cats from dogs. However, they cannot capture the

subtle differences among archaeological textiles, which may require specialized training on the

application-specific dataset, which itself is a fundamental problem, since no big enough dataset

of archaeological textiles exists, to the best of our knowledge. For instance, refer to Fig. 19. The

pairs of fragments shown in Fig. 19 (a) and (b) are believed to belong together after manual inspec-

tion and analysis. The fragments in (a) have similar motifs: processions with visible horses and

men with spears. Such motifs are more challenging to be detected by a machine, and specialized

training with a labeled dataset, where such fragments could be labeled as horse could benefit the

model, which is trained on natural images of horses. The similarities in (b) that were detected by

the experts are difficult not only for machines but for non-expert humans as well. These fragments

are also grouped together because they have been part of the same "textile cake" that was later

split up. Such information is not only useful for manual analysis, but it can also be a valuable

metadata supplemented to the images that can be utilized by computational algorithms. One of

the cues that the human experts rely on are similar patterns, such as the rhombi shown in Fig. 19

(c). Even though the two fragments where these patches are extracted from are believed to bear

similarities with one another, the deep learning model failed to capture this, and the clustering

algorithm placed the fragments into different clusters. Specialized training on close-up images of

popular patterns could teach the model detecting such significant cues. Furthermore, human ex-

perts rely on specific technical features (such as the number threads per centimeter, fiber thickness)
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as well as high-level semantics and metadata (such as the local grave context where each fragment

was found)1,3,28. For example, Fig. 19 (d) illustrates the case, where two patches were mistakenly

clustered together despite apparent difference in the size of the threads as well as the number of

threads per centimeter. This is expected, since the threads play a negligible role in the datasets

that the neural networks are trained on. Training the networks on close-up images of textiles can

facilitate classification by the fiber diameter, thread count per cm, and twisting direction (S or Z).

For instance, Fig. 19 (e) illustrates two different twists – S and Z, which is a significant cue for hu-

man experts when analyzing the textiles3. Training on labeled datasets of S and Z twists can easily

automatize twist detection, which is apparently overlooked in existing pre-trained deep learning

models. Future works should attempt to mimic the humans, automatize the technical analysis, and

also consider the user-provided metadata. For example, automatic solutions have been proposed

for canvas thread counting for art forensics applications49. A similar approach may be used to

characterize the thread count of the archaeological tapestries. The challenges arise at the different

stages of the pipeline. At the acquisition stage, large amount of dimensionality reduction takes

place when the reflected spectrum is decreased to R, G, and B channels of the color image. Future

works should try more sophisticated imaging techniques, such as hyperspectral imaging (HSI) and

reflectance transformation imaging (RTI). The former may reveal more information about fiber’s

state and chemical composition, while the latter can shed more light on structural patterns. Artifi-

cial aging to learn the inversion of the degradations, as well as inpainting in specific cases, can be

used to improve the quality of the dataset.

While no substantial difference was observed among clustering techniques, feature extraction

seems to be the crucial step in the puzzle solving problem. Machine learning models need to be

trained on specialized datasets. In addition to CNNs, alternative deep learning architectures, such

as vision transformers50 and diffusion models51, have demonstrated promising performance for
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FIG. 19. The motifs provide invaluable information for puzzle solving. The horses and warriors with spears

in (a) indicate that the two fragments may belong to the same item. The fragments in (b) originally belonged

to the same "textile cake" that was later split up. Their motifs are, however, difficult to be detected by the

machine. (c) illustrates the rhombus pattern, which is also an additional indication on similarity and which

the machine also failed to capture. Close-up textile images, such as those in (d) can help the neural networks

to learn classifying textiles by their technical characteristics, such as thread count. Additional criterion that

is widely used by humans and can be automatically detected if proper dataset exists for training is the twist

direction, S or Z, as shown in (e). Photographs (a)-(d) by George Alexis Pantos.

puzzle solving that may merit the interest in the future.

Nevertheless, considering the limitations of the state-of-the-art as well as the complexity of the
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FIG. 20. The physical textile (left) need to be digitized and segmented. Afterward, its fragments can be

loaded into the Artifact Assembly software (middle), where they can be assembled freely without a fear of

damage to the physical object (left). Reproduced from12.

problem, we believe that no fully automatized solution will be achieved in a foreseeable future.

The computational techniques should be, hence, considered supplementary to human expertise

and not its substitute.

VI. ARTIFACT ASSEMBLY

Manual solutions to archaeological textile puzzles are also limited due to the fragility of the

artifacts. Therefore, Gulbrandsen12 developed a software Artifact Assembly that enables users to

virtually assemble puzzles on a digital canvas. The software lets the users scale the fragments,

move them freely around the canvas, zoom in and zoom out. This will facilitate manual puzzle

solving as it removes the stress and care associated with handling the physical fragments. An

example of such assembly is illustrated in Fig. 20. Besides, the visibility of the motifs can be

enhanced by color enhancement filters that enable hue rotation, as well as saturation and contrast

manipulation for better visibility, as illustrated in Fig. 21. If robust similarity metrics are found in

the future, they will be incorporated into the software, so that the software could suggest potential

solutions to a human user.
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FIG. 21. Color enhancement may facilitate manual puzzle solving. Reproduced from12.

VII. CONCLUSION

This work is one of the first steps toward automatic re-assembly of highly fragmented archaeo-

logical textiles. Different color statistics, texture descriptors, and pre-trained convolutional neural

networks were used to extract features from the textile images that were subsequently fed to clus-

tering algorithms to identify similar fragments. Four case studies were illustrated: from simpler

scenarios, where the textiles were in a good condition and ground truth solution was known, to

a highly complex in-the-wild problem of the actual archaeological tapestry with high degree of

degradation and unknown solution. The work revealed a significant knowledge gap in the state-of-

the-art and highlighted the need for more specialized computational techniques for archaeological

textile classification and re-assembly.
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