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Preface

This master’s thesis completes a Master of Technology at the Norwegian University of Sci-

ence and Technology (NTNU) under the Department of Electrical Engineering in the autumn

of 2023. The project was proposed by Olympiatoppen (OLT) and was completed in collab-

oration with supervisors Ilangko Balasingham and Kimmo Kansanen at NTNU. The work

presented in this thesis continues the work done in the specialization project [1], which was

completed in the spring of 2023.

Parts of the second chapter are updated and extended versions of the work done in the spe-

cialization project [1]. The authors implement the software using Python libraries, including

numpy, pandas, scipy, pyhrv, hrvanalysis, and more. An anonymous rower recorded the data

set during the summer of 2023.

The code implemented can be shared by sending mail to olsen.stine@outlook.com or viewed

at the GitHub repository.

This thesis’s main contribution is exploring possibility on prediction subjective score of ath-

lete after workout using deep learning. Additionally, exploring prediction using transfer

learning from SWELL-KW datasetand training data provided by OLT.

I had little prior knowledge and experience about this topic, but I have learned a lot during

this project, particularly regarding various machine learning models and time series data

related to how the heart behaves and the signal it sends. This thesis hopefully reflects the

amount of knowledge gained over the past year.

Trondheim, February 2024

Stine Olsen
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https://github.com/stineolsen/Masteroppgave
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Abstract

Wearables, such as training watches, have become increasingly popular in recent years. These

devices can provide valuable information about our health and fitness by measuring param-

eters such as Heart Rate Variability (HRV).

The goal of this master’s thesis was to investigate methods and the possibility of predicting

an athlete’s subjective assessment after a workout session. The motivation behind this was

to prevent fatigue and ensure athletes the best possible performance in competitions. To

determine the subjective predictions, two athletes logged all their training sessions and pro-

vided their subjective scores for each session. With a dataset of 290 sessions, which contains

subjective scores and HRV, various machine learning models were trained.

Through the use of transfer learning, we show that predicting subjective scores is possible

given a more balanced and larger data set, but with the data provided in this thesis, it was

not feasible to achieve the desired accuracy.

As this thesis proves the feasibility of predicting subjective scores given a more balanced

dataset, Olympiatoppen can expand with more athletes and sessions to achieve a better

model that can be used in their work.
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Sammendrag

Wearables har blitt stadig mer populært de siste årene. Denne typen enherter, som for ek-

sempel treningsklokker kan gi verdifull informasjon om vår egen helse og treningsvaner ved

å måle parametere som hjertefrekvensvariabilitet (HRV).

Målet med denne masteroppgaven var å undersøke metoder og muligheten for å forutsi en

idrettsutøvers subjektive vurdering etter en treningsøkt. Motivasjonen bak dette var å forhin-

dre utmattelse og sikre utøverne best mulig prestasjoner i konkurranser. For å bestemme

de subjektive karakterene, loggførte to idrettsutøvere alle treningsøktene sine og ga deres

subjektive karakterer for hver økt. Med et datasett på 290 økter, som inneholder subjektive

karakterer og HRV, ble ulike maskinlæringsmodeller trent.

Gjennom bruk av «overføringslæring» viser vi at prediksjon av subjektive karakterer er mulig

gitt et mer balansert og større datasett. Med dataene gitt i denne oppgaven var det ikke mulig

å oppnå ønsket nøyaktighet.

Ettersom denne oppgaven beviser muligheten for å forutsi subjektive karakterer gitt et mer

balansert datasett, kan Olympiatoppen utvide med flere idrettsutøvere og økter for å oppnå

en bedre modell som kan brukes i deres arbeid.
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Chapter 1

Introduction

The number of articles relating to Heart Rate Variability has increased drastically during the

last few years and is a topic with increasing interest. And even though it has become more

popular in recent years, it is not a new concept. Chinese physician Wang Shu-He (180—270

AD) was the first to observe that highly variable heart rate was a sign of good health, and

stated that "‘If the heart beats as regularly as the knocking of a woodpecker or the falling of

rain drops from a roof then the patient will be dead within 4 days". This was before measure-

ment instruments used today were invented, and the physicians had to listen to the heart

without any instruments to help. Today, this process is easier with the help of instruments

such as stethoscopes or Electrocardiogram (ECG)s, in addition to the many types of wear-

ables that exist in today’s market. Wang Shu-He discovered [2] a great indicator of cardiac

health, which physicians are still investigating centuries after his discovery.

Smartwatches have become widely popular in recent years; in 2016, 102 million devices were

shipped worldwide, compared to 2022, where 173 million were shipped [3], [4]. The increase

in demand is connected to its convenience, as now you can easily connect the watch to your

smartphone and other smart devices. The wrist wearable includes various sensors to mea-

sure heart rate, temperature, and movements. Optical heart rate sensors and movement-

related sensors such as accelerometers, GPS, gyroscopes, and compasses are the most com-

mon sensors in smartwatches. Together, these can be used to learn more about health and

for fitness tracking [5], [6]. Smartwatches allowed users to monitor their physical activity,

track steps, and measure heart rate, in addition to functionalities such as communication,

notifications, mobile apps, and more [6].
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1.1 Motivation

This work aims to explore the possibility of predicting an athlete’s subjective feeling after

a workout based on Heart Rate Variability (HRV) data from a wearable. We want to look

further into parameters and features that could help prevent fatigue for an athlete and could

be used to help an athlete perform as well as possible at competitions. All this is connected

to the athlete’s readiness to train.

In sports science, athlete performance optimization, the ability to accurately gauge an ath-

lete’s readiness to train has emerged as a critical factor. Methods used until now have been

effective but are often limited in their precision. This work will also look into a parameter that

has become more and more common called Detrended Fluctuation Analysis (DFA) Alpha 1

and its potential to be used as a reliable indicator of an athlete’s readiness to train.

1.2 Problem Description

This work explores the parameter Detrended Fluctuation Analysis (DFA) Alpha 1 and its pos-

sibility of helping determine an athlete’s readiness to train. The second objective is to train

different Neural Networks using the provided data sets and compare their performance. We

wish to be able to predict the subjective feelings of an athlete after training. The performance

of the methods will be evaluated on the possibility of being used in a future application for

Olympiatoppen.

1.3 Approach

The approach involves calculating DFA Alpha 1 and analyzing its correlation to subjective

and objective parameters, focusing on the subjective parameters: feeling and Rate of Per-

ceived Extertion (RPE). Continued in this thesis the subjective feeling will be termed sub-

jective score. We also aim to predict the subjective score, using different machine learning

techniques. These techniques will be compared regarding their ability to predict the correct

subjective score. The performance of the neural networks and used data sets will be com-

pared to evaluate the effectiveness of each technique.

1.4 Outline

The introduction of the general problem and the objectives of the work is done in chapter 1.

Chapter 2 provides relevant background information on the heart and how it behaves during

4



exercise, ways of measuring the heart’s activity, and different data processing techniques.

Lastly, the chapter describes various principles and algorithms regarding machine learning

and artificial intelligence.

Chapter 3 presents a description of the implementations used in this work and a descrip-

tion of the datasets used. Additionally, the chapter 3 describes the features used in transfer

learning and a brief overview of the evaluation criteria for the models.

Following this, the results of each model are presented in chapter 4. These results are dis-

cussed in chapter 5 and recommendations for future work.
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Chapter 2

Background

The objective of this chapter is to present the necessary background information about the

heart and how it is affected by exercise. Parameters used for measuring an athlete’s fitness

and exercise will be presented, in addition to a brief introduction to Detrended Fluctuation

Analysis (DFA) and time series data. Finally, this chapter will present principles for prepos-

sessing data and explain different types of machine learning, which will be discussed later in

the thesis.

2.1 Anatomy of the heart

The heart is an organ in the human body that is responsible for pumping blood throughout

the body. The heart is located in the front of the chest, slightly left of the center, behind the

breastbone. It consists of four chambers, two on the top and two on the bottom. The two

chambers on top are called the left and right atrium. The right atrium receives deoxygenated

blood from the systemic veins, and the left receives oxygenated blood from the pulmonary

veins. The two lower chambers are the left and right ventricles. These are thick-walled as

they pump blood out of the heart forcefully. The heart chambers and flow are illustrated in

Figure 2.1 [7].

The heart can be divided into two pumps, the left and the right, each consisting of one atrium

and one ventricle. Both pumps need to work in rhythm [7].

Blood flows from the right atrium to the right ventricle and is then pumped to the lungs

to receive oxygen. From the lungs, the blood flows to the left atrium and then to the left

ventricle. From there, it is pumped into the systemic circulation [8], [9].

7



Figure 2.1: Diagram of the heart, visualizing the heart chambers. Figure retrieved from Wiki-
media user Wapcaplet, used under the CC BY-SA 3.0 license

The heart cycle consists of two phases: diastole and systole. Systole is the heart’s contraction,

and diastole is the relaxation of the heart. The heart cycle has three main phases [10].

In the first phase, both atria and ventricles are in diastole; the chambers are relaxed and filled

with blood. In the second phase, the atria are in systole. The atria contracts, and blood is

pushed into the ventricles. Finally, in the last phase, the ventricle is in systole. The ventricles

contract, the right ventricle pushes blood out of the heart through the pulmonary artery, and

the left ventricle pushes oxygenated blood to the body through the aorta [10].

2.2 The Nervous system

The nervous system is divided into two large systems, the Central Nervous System (CNS)

and the Autonomic Nervous System (ANS). CNS is made up of the brain and spinal cord.

The ANS is made up of the nerves that branch off the spinal cord and go through all parts of

your body.

The ANS is divided into two parts: the parasympathetic and sympathetic nervous systems.

The parasympathetic nervous system is responsible for restoring the body to normal by re-

pairing, resting, and adjusting the body. This is done by slowing down heart rate, decreasing

blood pressure, and dilating blood vessels [11].

8
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The other system, the sympathetic nervous system, is responsible for the opposite of the

parasympathetic. The sympathetic system is responsible for increasing heart rate and blood

pressure, diverting blood flow to muscles. Additionally, the sympathetic system releases

sugar into the bloodstream to fuel the muscles efficiently paharia_what_2010 , [12].

We can say that the sympathetic nervous system is responsible for the body’s "fight or flight"

response, and the parasympathetic nervous system is responsible for resting and repair-

ing.

Both systems must work together to maintain the internal balance, especially regarding phys-

ical, psychological, and environmental stress. The parasympathetic system has the largest

effect on HRV, as it helps us recover from exertion, for example, exercise [12].

Nervous System

Central Nervous System Periphial Nervous System

Brain Spinal Cord Motor Nerouns Sensory Nervous

Somatic Nervous System Automatic Nervous system

Sympathetic Division Parasympathetic Division

2.3 Electrochardiography

An electrocardiogram (ECG) is a method of recording the electrical signals in the heart. It’s

a non-invasive test used to quickly monitor heart health and detect problems relating to

the heart. While commonly used in a medical sense, more personal devices, such as smart-

watches, have begun to provide ECG measurements.

ECG measurements give waveforms that can describe the workings of the heart. The ECG

waveform is typically divided into the P wave, the QRS complex, and the T wave [13]. The P

wave is the first wave that appears on the ECG, and it represents the electrical activity that
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occurs as the atria contract to pump blood into the ventricles. QRS complex is the largest and

most prominent wave on the ECG, and it represents the electrical activity that occurs as the

ventricles contract to pump blood out of the heart. The QRS complex is typically composed

of three waves: the Q wave, the R wave, and the S wave [14]. T wave is the final wave on the

ECG, and it represents the electrical activity that occurs as the ventricles relax and prepare

to fill with blood again [15].

Figure 2.2: with peaks P, Q, R, S, T, U. Retrived from [16], used with CC BY-SA 4.0 license .

2.3.1 Single-Lead ECG

A single-lead ECG (1-L ECG) uses two electrodes, which can, for instance, be placed on the

chest or arm to detect ECG signals [17]. One advantage of 1-L ECGs is their low cost and

increased user comfort. Compared to a 12-lead system, a 1-L ECG requires fewer hard-

ware components, and the patient experiences more comfort and mobility because there

are fewer attachments to the body. In addition, with a wireless patch in a 1-L ECG system,

patients can move and function normally without the hassle of wires.

However, a significant disadvantage of 1-L ECGs is the need for more comprehensive in-

formation in diagnosing heart diseases. Some heart conditions cannot be detected with a

1-L and require information from multiple angles of the heart, provided by a 12-lead sys-

tem. Nevertheless, research indicates that advancements in microelectronics, biosensors,

and optimized software algorithms can make single-lead systems medically relevant [17],

[18].
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2.3.2 Three-Lead ECG

A monitoring system with a simple three-electrode setup uses two electrodes for active mon-

itoring and a third as a ground electrode. These electrodes can be configured in various ways

to capture lead I, II, or III individually, with the signal acquisition being bipolar between the

selected pair for the specific lead. The electrodes are placed in such a way as to minimize

movement artifacts during continuous monitoring [19].

For a three-lead ECG, the three electrodes are placed as follows: one below the right collar-

bone, the other below the chest, and the last one below the left collarbone.

Figure 2.3: Lead placement for three-lead ECG

2.3.3 HRV

HRV is the subtle variation in a series of beat-to-beat measures of the heart.

HRV refers to the subtle variations in the intervals between consecutive heartbeats. It in-

volves the variation in the RR interval, which is the distance between the peaks of the R wave

in the QRS complex observed on an ECG, as seen in Fig. 2.2. This interval signifies the time

between successive contractions of the ventricles [20].

Understanding the intricacies of the heart’s electrical system is crucial. Nodes within the

heart generate electrical impulses, prompting the ventricles to contract and propel blood

throughout the body. Each contraction, represented by an R wave on the ECG, corresponds

to a heartbeat. An individual’s heart rate over time is not uniform, which means the intervals

between beats show variability [21].
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2.3.4 Interbeat Intervals (IBI)

HRV is a physiological measure of variations between consecutive heartbeats and can be

measured from the Interbeat Interval (IBI). IBI can be derived from an ECG signal in differ-

ent ways, most often from the beginning of the QRS complex of an ECG wave, and can be

called QQ intervals, but IBI can also be derived from the peaks in the QRS complex and is

then called RR intervals. In many cases, it can be difficult to locate the QQ intervals, so RR

intervals are often used because of easily detectable reference points [22].

Another common type of IBI is the NN-intervals, which are the intervals between sinus beats,

in other words, normal heartbeats. These NN-intervals are also detected using R-peaks of an

ECG signal [22].

2.3.5 Relation between HRV and training

HRV is an efficient, inexpensive, and non-invasive tool to determine recovery status and an

athlete’s adaption to stress, both in exercise and other stresses in life.

In general, a higher HRV is considered positive, as it indicates a responsive nervous system

and a lower HRV indicates that it reduces responsiveness. Similarly, a lower Resting Heart

Rate (RHR) is considered a positive response to training, and a higher RHR is considered

a sign of fatigue. A straightforward positive scenario involves an increased HRV and a de-

creased RHR, indicating effective coping with training and life stress [21].

When one of the metrics is considered normal and one is indicating a problem, additional

context information is needed. An elevated HRV coupled with an increased RHR generally

suggests fatigue or potential illness unless observed at the outset of a brief training phase.

A reduced HRV and an elevated RHR often point to accumulated physical and mental fa-

tigue unless an athlete is tapering, in which case it might signal improved readiness to per-

form. Tapering is a strategy to reduce training volume leading up to an event or competition

[23].

A decrease in HRV and a decrease in RHR is generally a sign of prolonged low-intensity, high-

volume training or large changes in life stress. It can be a sign of overtraining if it is not

reversed with rest [23].
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2.4 Detrended Fluctuation Analysis

Detrended Fluctuation Analysis Alpha 1 (DFA) Alpha 1 is non-linear analysis metric that

quantifies the shorrt- and long-term correlation properties of heart rate variability. [24],

[25].

DFA is calculated by dividing a data sequence X t into consecutive time windows, where each

window contains n samples. DFA is then estimated for each window using Eq. (2.1), where

X t is the cumulative sum of the signal and Yt representing the piecewise strait line. Then,

the RMS deviation from the trend (fluctuation) is computed.

f (n) =
√√√√ 1

N

N∑
t=1

(X t −Yt )2 (2.1)

A higher DFA Alpha 1 value indicates better health as it has stronger long-term correlations

in the HRV signal. A lower DFA Alpha 1 value indicates weaker long-term correlations. A

lower value is therefore associated with higher intensity training and higher heart rate. With

increased exercise and stress, the heartbeats will become more chaotic. Additionally, a lower

DFA Alpha 1 value can be observed in people with heart disease, hypertension, diabetes, and

depression [1], [25].

2.5 Time Series Data

Time series data is a set of numeric observations recorded over time. It can be found in a

variety of domains, such as finance, weather, and health. Time series data is often analyzed

due to its uncertainty; we want to understand and predict its future behavior. Time series

data is represented with an x-axis of time, anything from seconds to years [26].

When discussing time series data, we often look at its trends, which can be explained as the

long-term changes in the mean.

HRV data is an example of time series data.

2.6 Classification and Machine Learning

Machine Learning (ML) is a field where algorithms that can predict by using data and finding

hidden patterns. A ML model is trained and tested by dividing the dataset used for the model
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into three parts: the training set, the validation set, and the test set. These three parts of

dataset are utilized at different stages of the classification process.

For each ML model constructed, there are parameters that determine the significance of

each feature in the prediction. These parameters are known as weights and are optimized

using the training set, creating the best model for the given configuration. The process of

generating these models is determined by the algorithm’s hyperparameters and is fine-tuned

using the validation set [27].

2.6.1 Support Vector Machines (SVM)

Support Vector Machine (SVM) are one of the most influential approaches to supervised

learning. SVM works by finding the most optimal hyperplane to classify the data into var-

ious classes [28].

SVM is driven by the linear function w T x +b. The function gives out a positive or negative

class based on its location to the hyperplane [28].

Figure 2.4: Support Vector Machine

SVM is often used in classification as the goal of the SVM is to find a hyperplane in N-

dimensional space and use the hyperplane to classify data points. The size of N, which is

the dimension we have in the hyperplane, depends on the number of features we have [28],

[29].

14



Figure 2.5: Hyperplane of N=2 and N=3

Hyperplanes serve as decision boundaries for classifying data points, separating them into

distinct classes based on their placement relative to the hyperplane. The dimension of the

hyperplane is dependent on the number of features involved. If we have a case of two fea-

tures, the hyperplane will exist in 2-dimensional space and take the form of a line. With

three input features, it exists in the three-dimensional space, and the hyperplane will be

two-dimensional. as illustrated in Figure 2.5. Visualizing hyperplanes becomes increasingly

challenging as the number of features surpasses three [30].

SVM can be divided into two parts: linear and non-linear. These can further be divided into

the different kernels typically used, for instance, linear, polynomial, gaussian, and Radial

Basis Function (RBF) [29].

Support vectors are the data points closest to the hyperplane and are used to determine

the hyperplane characteristics, such as the position and orientation [30]. A larger margin is

optimal, as the classes have greater boundaries.

2.6.2 Neural Networks

Neural Network (NN) is a category of ML algorithms inspired by the human brain. It consist

of interconnected processing units, also called neurons. These neurons work together to

learn from data [28].

Each neuron receives input from others, processes it by assigning weights, and generates an

output transmitted to other neurons. Fig. 2.7 illustrates the process of a single neuron. NN

have proven effective inn various tasks, including classification [31].

The learning process of NN employs backpropagation, where the error between predicted
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Figure 2.6: Illustration of a single neuron for ML. Illustration by Wikimedia user Chrislb, used
under the CC BY-SA 3.0 license .

and actual outputs is propagated back through the network. Then it is used to adjust the

neurons’ weights [32]. Because of this, neural networks can learn complex relationships be-

tween input and output data and find applications across domains [33], [34].

Figure 2.7: Illustration of a NN. Illustration by Wikimedia user Chrislb, used under the CC
BY-SA 3.0 license .

Deep learning is a sub-field of ML characterized by using deep NN, which involves hidden

layers. These hidden layers are capable of learning hierarchical representations of data. They

can learn complex features directly from raw data without needing manual feature engineer-

ing or preprocessing, so they have proven to be particularly adept in signal classification

tasks.

Additionally, these models can efficiently manage large datasets and high-dimensional in-

puts through shared weights and local connections. They undergo end-to-end training using

gradient descent algorithms with backpropagation, which allows them to optimize model

parameters to minimize classification errors [31].
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2.6.3 Convolutional Neural Network

Convolutional Neural Network (CNN)s are a type of NNs commonly used for classification

tasks. Usually, they are made using three layers, with the convolutional layer being the most

crucial—hence its name.

The convolutional layer consists of a filter or a feature detector that is moved across the data

while checking if that specific feature is present. The output is a series of values that depict

where the feature is present in the data, also known as a feature map. The process can be

done multiple times using filters with different properties, allowing for more complex fea-

tures to be found as the sum of its parts [35].

Following the convolutional layer are the pooling layer and the fully connected layer. The

pooling layer reduces the possibility for overly complex models by reducing the number of

parameters, and makes the algorithms more robust. Finally, the full-connected layer pro-

duces the output, translating from the similarity of features to an estimated match of the

category [35], [36].

2.6.4 Recurrent Neural Network

Recurent Neural Network (RNN) are a type of NN that uses knowledge from previous outputs

to improve the following results [37].

Figure 2.8: Illustration of an RNN by Wikimedia user Chrislb, used under the CC BY-SA 3.0
license .

RNNs is reliant on the previous nodes within the sequence, as visualized in Fig. 2.8. In a feed-

forward network or multi-layer perceptron, each neuron executes its function with inputs
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and passes the result to the subsequent node [37], [38].

In recurrent neural networks, a recurrent connection allows the output to loop back to the

RNN neuron rather than solely progressing to the next node. Each node in the RNN model

serves as a memory cell, sustaining the calculation and operation implementation [38].

Figure 2.9: Standard architecture of RNN and LSTM models [39]. Used under Creative Com-
mons Attribution (CC BY) license

In the event of an inaccurate forecast, the RNN self-learns with backpropagation, adjust-

ing to achieve a more accurate prediction. As RNNs can recall past inputs, it’s particularly

effective in time series prediction, a concept known as Long Short-Term Memory (LSTM)

[37].

2.6.5 Long Short Term Memory

Long-Short-Term Memory (LSTM) is a type of RNN designed to achieve more efficient out-

comes by remembering information from previous nodes for an extended duration [37].

LSTM networks remove some of the challenges with traditional RNNs, such as vanishing

gradients and long-term dependence issues. Gradient vanishing occurs when information is

lost as connections recur over an extended period. LSTM solves this problem by disregarding

unnecessary data in the network [37].

LSTM uses three gates as illustrated in Fig. 2.9. The LSTM has a forget, input, and output

gate to regulate and update cell states. The forget gate decides which information in the cell

state should be ignored, helping the LSTM remember essential inputs and produce accurate

results, even with many inputs [40].
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2.6.6 Transfer Learning

Transfer learning is a technique in machine learning that is used to train a task using a model

trained on another task. This method is popular in deep learning. Transfer learning is es-

pecially popular in problems relating to image recognition and natural language process-

ing. Given the vast computational and temporal resources needed to construct neural net-

work models for these challenges, transfer learning offers significant advantages by using the

knowledge gained from related problems [41]

A base network is initially trained on a base dataset and task in transfer learning. The ac-

quired features are then repurposed or transferred to a second target network, which is

trained on a different target dataset and task. This process is effective when the features

are general to both the base and target tasks and will then improve the learning efficiency for

the target task [42].

Figure 2.10: Traditional machine learning and transfer learning

Transfer learning in deep learning, specifically inductive transfer, benefits by narrowing the

model bias by applying a model trained on a different yet related task. This approach proves

valuable in optimizing the performance of models for new tasks or accelerating progress

[43].

There are two common methods of applying transfer learning. The first method is to develop

a model using a base dataset and then transfer the model to the target task. The reused model

can employ all or some of the original model’s parts [42].

The second method is to choose a pre-trained model from a set of available models trained
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on large datasets. Then, reuse the model as a starting point for the target task. In the same

way as the other method, parts or the whole model can be used. Lastly, you can adapt or

fine-tune the model and redefine it based on the input and/or the target [42].

The decision to use transfer learning depends on factors like data availability, relatedness,

and constraints. Transfer learning has several potential benefits, such as a higher initial ac-

curacy, a better improvement rate during training, and a better convergence[42].
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Chapter 3

Materials and Methods

This chapter will present all the steps and methods used. The steps are represented in Fig. 3.1,

and will be presented in the same order. The first phase of the workflow involves collection

of raw data, followed by the preprocessing of the raw signals to the desired format. Then, the

feature extraction will be presented for the dataset provided by Olympiatoppen in addition

to the Swell Knowledge Work (Swell-KW) dataset, which is used in transfer learning. Section

3.4.1 will present an in-depth presentation of the Swell-KW dataset before presenting the

machine learning and classification used.

Figure 3.1: Overall workflow

3.1 Software Tools

The implementation of this project relied on Python and various packages. The interpolation

and signal processing was implemented using the Signal library from SciPy [44]. Numpy

[45] was mainly used for mathematical purposes. Feature extraction was computed using

pyhrv[46] and hrvanalysis[47], both open-sourced toolboxes for HRV analysis. To present

graphical data Matplotlib[48] was used.
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3.2 Dataset

The dataset consists of two well-trained athlehes, recorded using a Forerunner 495 watch

from Garmin.

The recordings took place in 2023, with Athlete 1 recording from May 15 to November 1st

and Athlete 2 recording from January 25th to November 2nd. In all, there are 655 sessions,

whereas 217 are without subjective logging.

After removing sessions without HRV data and subjective logging, we are left with 290 ses-

sions. These sessions consist of various activities and intensities, as shown in Table 3.1.

Table 3.1: Overview of sessions recorded, number of sessions per activity, and average sub-
jective measurements.

Count of sessions Average of RPE Average of subjective score (1-5)
Candidate 1 121 4.289 3.678
Rowing 109 4.358 3.716
Run 6 3.500 3.500
Strength 6 3.833 3.167
Candidate 2 169 4.130 3.379
Bike 149 4.114 3.416
Run 19 4.211 3.105
Strength 1 5.000 3.000
Grand Total 290 4.197 3.503

The lengths of sessions also vary. Candidate 1’s shortest session was 7 minutes, and the

longest was 149 minutes. As for candidate 2, the shortest session was 2.5 minutes, and the

longest was 269 minutes.

3.2.1 Protocol

The protocol consisted of two candidates, one at the Olympic level and one at a slightly lower

level but still significantly better than the average person.

Olympiatoppen (OLT) has provided an intensity scale for their workouts. The intensity zones

are correlated to the RPE CR10 scale (or RPE Borg, which will not used in this instance).
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Table 3.2: Intensity zones defined by Olympiatoppen

Zone RPE CR10 Description % of max HR Breathing

I-1 1-2 Very easy ∼55% - 72% Can talk effortlessly

I-2 2-3 Quite easy ∼72% - 82% Can say longer sentences

relatively effortlessly

I-3 4-5 Pleasantly exhaust-

ing

∼82% - 87% Can say short sentences

I-4 6-7 Exhausting ∼87% - 92% Can say words or very short

sentences

I-5 8-10 Very exhausting ∼92% - 100% Can only say one or two

words while breathing

heavily

I-6 9-10 Very very exhausting Can only say short words

while gasping for breath

I-7 10 Very very exhausting Not applicable for control-

ling intensity

I-8 - Maximal mobiliza-

tion

Not applicable for control-

ling intensity

The candidates logged their subjective score after each session using TrainingPeaks, a train-

ing app from Peaksware, LLC. The app is created for endurance athletes. It is compatible

with over 100 apps and devices, such as Apple Watch, Garmin, Polar, and Zwift. The app is a

training diary and can be used to log all training, both subjective, but also adds the data for

the sessions [49].

subjective score is indicated with a smiley face on how well you feel towards the question-

naire. These smiley faces are converted into values ranging between 1 and 9, where 1 is

strong, and 9 is weak. These values were then converted into another scale for a more un-

derstandable range. The new scale goes from 1-5, where 1 is weak and 5 is strong. The

subjective parameters were later exported to an Excel file (.xlsx).
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Figure 3.2: Display of subjective logging in TrainingPeaks application

On some days in the recording period, multiple sessions are recorded a day, some at different

times and others because of a change in activity.

All data from the sessions was transferred using ANT+ technology. The files are in a format

called .FIT, and can retrieved in Python using fitparse[50] library in Python.

3.2.2 Data Selection

The final data selection consists of 290 sessions, where 121 are from candidate 1 and 169

from candidate 2. The final data selection can be seen in Table 3.1 with the final number of

sessions per activity, and its average subjective values.

The distribution of the number of sessions with each subjective score on the 1-5 scale is

represented in Fig. 3.3. As we can see, most sessions are rated in the middle as a 3 or 4, where

3 is average, and 4 is a somewhat strong subjective score.
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(a) Candidate 1

(b) Candidate 2

Figure 3.3: Histogram of how many files contain each subjective score

3.3 Preprocessing

3.3.1 Interpolation filtering

A simple interpolation filter was added to remove artifacts caused by using ANT+ transfer.

As data is transferred using ANT+, we get artifacts in the data, which will look like spikes,

as we can see in Fig. 3.4. These artifacts are the product of data packages that are missing

in transfer, and the filter detects where the data has artifacts and if it is the result of one

or two packages missing. Then, the filter interpolates based on the number of packages

missing.

If one package is missing, the HRV data will spike double the value of the nearest values, and

if two packages are missing, it will be three times more than the nearest values.
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Figure 3.4 shows the difference between the original data and the final interpolated data.

As seen in the original data, packages are missing, and therefore, we get spikes in the data.

These spikes are then interpolated, giving us the data used further in this thesis.

(a) Original

(b) Zoomed

Figure 3.4: Plot of interpolated data and original data.

3.4 Transfer learning with SWELL-KW

3.4.1 Swell Knowledge Work Dataset

Swell-KW is a dataset collected to research stress in workplace environments. Swell-KW is

part of the SWELL project, SWELL being an acronym of Smart Reasoning Systems for Well-

being at Work and at Home. [51]

The dataset was collected using 25 people who were performing tasks such as writing re-

ports, making presentations, emailing, and information searching. Of the 25 participants, 8

26



were female and 17 male, with an average age of 25 (standard deviation 3.25). They were ex-

posed to stress factors such as email interruptions and time pressure when performing these

tasks. It collected data from various sensors and recorded computer logging, facial expres-

sions, body postures, heart rate, and skin conductance. From this, we will only be using the

heart rate data, in which we have looked at the entire process from raw data to preprocessed

data, then finally to feature extraction. [52]

The participants in the experiment went through working conditions such as no stress, time

pressure, and interruption. During no stress the participants are allowed to work on the tasks

as long as they needed for a maximum of 45 minutes, they are not aware of the maximum

duration of their tasks. In time pressure the time to finish a task was reduced drastically. The

time was reduced to 2/3 of the time they used with no stress. Finally, in the interruption

condition they received eight emails during their assigned tasks, some emails were relevant

as they gave requested actions for the tasks, while other was irrelevant to their tasks. The

results from this exercise will be used to estimate perceived stress. [52]

The dataset is available at: DANS: The SWELL Knowledge Work Dataset for Stress and User

Modeling Research

The raw data is an ECG, which was recorded using a Mobi device with a recording frequency

of 2048 Hz. The electrodes were placed with self-adhesive electrodes, one below the right

collarbone, the other below the chest, and one below the left collarbone, as illustrated in

Figure 3.5.

The ECG data was then preprocessed using the recording software Portilab2. Both raw and

preprocessed ECG data were provided. Some preprocessing was programmed into the record-

ing software Portilab2, giving a filtered signal with clear peaks in the QRS complex.

Then the heart rate and heart rate variability were calculated. To calculate this they used

a peak detection algorithm for the filtered signal in Matlab and calculated the distance be-

tween R-R peaks. Heart rate variability was determined using RMSSD.

For the feature extraction, the features were calculated from the inter-beat intervals, in this

case, RR-intervals, that were gathered from the ECG signal. The HRV indexes are computed

on 5 minutes of RR data, using a sliding window. In other words, a new sample is added to

the data, and the oldest is removed and then HRV is calculated again. This is done until the

end of the entire signal.
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Figure 3.5: Lead placement for three-lead ECG

Table 3.3: Features in SWELL-KW

Feature Short Description Source

MEAN_RR Mean of all RR intervals

MEDIAN_RR Median of all RR intervals

SDRR Standard deviation of all RR intervals [53]

RMSSD Square root of the mean of the sum of the squares of the

difference between adjacent RR intervals

[53]

SDSD Standard deviation of all interval of differences between

adjacent RR intervals

SDRR_RMSSD Ratio of SDRR over RMSSD

HR Heart Rate (beats per minute)

pNN25 % of adjacent RR intervals differing by more than 25 ms

pNN50 % of adjacent RR intervals differing by more than 50 ms

SD1 Poincaré plot descriptor of the short-term HRV

SD2 Poincaré plot descriptor of the long-term HRV

KURT Kurtosis of all RR intervals

SKEW Skewness of all RR intervals

MEAN REL RR Mean of all relative RR intervals [53]

Continued on next page
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Table 3.3 – continued from previous page

Feature Short Description Source

MEDIAN_REL_RR Median of all relative RR intervals [53]

SDRR_REL_RR Standard deviation of all relative RR interval [53]

RMSSD_REL_RR Square root of the mean of the sum of the squares of the

difference between adjacent relative RR intervals

[53]

SDSD_REL_RR Standard deviation of all interval of differences between

adjacent relative RR intervals

[53]

SDRR_RMSSD_REL Ratio of SDRR_REL over RMSSD_REL [53]

KURT_REL_RR Kurtosis of all relative RR intervals [53]

SKEW_REL_RR Skewness of all relative RR intervals [53]

VLF Very low (0.003Hz - 0.04Hz) frequency band of the HRV

power spectrum

[54]

VLF_PCT Percentage of VLF to total

LF Low (0.04Hz - 0.15Hz) frequency band of the HRV power

spectrum

[54]

LF_PCT Percentage of LF to total

LF_NU LF in normalized unit

HF High (0.15Hz - 0.4Hz) frequency band of the HRV power

spectrum

[54]

HF_PCT Percentage of HF to total

HF_NU HF in normalized unit

TP Total HRV power spectrum [54]

LF/HF Ratio of LF to HF [54]

HF/LF Ratio of HF to LF [54]

sampen Sample entropy of the RR signal

higuci Higuchi Fractal Dimension

3.4.2 Classification using Swell-KW

A model was trained using the Swell-KW dataset. The general model was provided by a

repository on GitHub [55] and then fine-tuned locally. A pre-trained CNN model was trained

using the Swell-KW datasets and the provided tree classes (interrupted, stress, and no stress)

with an accuracy of 0.99.

In order to understand the model trained a bit more, we can look deeper into the importance
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of each feature. The feature importance can be used to make feature reduction. We could

cut the least important features and keep the features that improve the model. From the

scikit-learn (scklearn) library in Python, we can use the predefined function SelectBest ,

which is a function that select features according to the highest scores.

Figure 3.6: Feature importance Swell-KW dataset

The results of the feature importance for the Swell-KW are illustrated in Fig. 3.6. As we can

see, features such as HR, Mean RR, and Median RR are important to classify the correct

classes. Most of the features consisting of relative values are not as important as the cor-

responding features that use the entire data window.

3.4.3 Data Processing for transfer learning

To do transfer learning with our dataset and the Swell-KW dataset, all features needed to be

calculated the same way they were for the Swell-KW dataset.
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Given a file with HRV data that has been preprocessed with the interpolation, we will do the

feature calculation. This will be done to all the HRV files to create a train and test dataset,

which we can use for transfer learning. How the features are calculated are given by formulas

in Table 3.3, and using the same method as described in Section 3.4.1.

Training, Validation, and Test Data

In ML, we divide the data into three sections: training, validation, and test data. Most of

the data will be training data, and then 20% will be test data. Validation data is 10% of the

training data.

The data is divided in the Python code. Firstly, the train and test data is divided using the

train_test_split from the scikit-learn (scklearn) library in Python. The training data is

then split into training and validation during the fit function, also from the scikit-learn

library. This function is used to train the models, given the datasets and the labels for train-

ing.

Figure 3.7: Distribution of test, train, and validation data

3.5 Metrics for Evaluation

This section will discuss the metrics that will be used to evaluate the methodology’s effective-

ness and performance. The evaluation of a ML model will use some generic metrics, such as

accuracy, f-number, and confusion matrix.

3.5.1 Evaluation of Classification

A confusion matrix will be employed to evaluate the classification models generated. In a

two-class classification, the matrix will be a 2×2 matrix, on the form shown in Table 3.4,

where the diagonal presents the number of correctly classified samples, while the other ele-

ments are the number of incorrect classifications.
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Predicted

Positive Negative

A
ct

u
al Positive True Positive False Negative

Negative False Positive True Negative

Table 3.4: Illustration of a 2-class confusion matrix

Additionally, the models will be evaluated using general performance metrics, such as accu-

racy. Accuracy is given by Eq. (3.1).

Accur ac y = T P +T N

T P +T N +F P +F N
(3.1)

where T P is the number of true positives, T N is the number of true negatives, F P is the

number of false positives, and F N is the number of false negatives.

Just using accuracy is not enough, as a model can give out great accuracy while just predict-

ing one class. Therefore, we also use another metric called F-number. The F-number pro-

vides a single score that balances precision and recall in one number and is given by Eq. (3.2)

or Eq. (3.3).

F − scor e = 1
1

Pr eci si on + 1
Recal l

= 2∗Pr eci si on ∗Recal l

Pr eci si on +Recal l
(3.2)

F − scor e = T P

T P + 1
2 (F P +F N )

(3.3)

As we can see, Eq. (3.2) used both recall and precision in its equation. Recall (Eq. (3.4)) is how

many positive cases the classifier correctly predicted over all the positive cases in the data.

In other words, how many are predicted as positive out of all the positive examples?

Recal l = T P

T P +F N
(3.4)
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Precision (Eq. (3.5)) is how many positive predictions are correct. So, out of all the predicted

examples as positive, how many are actually positive?

Pr eci si on = T P

T P +F P
(3.5)

The optimal value is 1, meaning all predictions were correct. If the dataset was unbalanced,

other metrics might highlight the classification results.
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Chapter 4

Results

4.1 Correlation between subjective parameters and HRV

A correlation matrix is a tool used to quantify the strength and direction of linear relation-

ships between variables. The matrix is symmetric, with variables listed in rows and columns,

and each cell contains the correlation coefficient representing the relationship between the

corresponding pair of variables.

The correlation coefficient ranges from -1 to 1. A positive value indicates a positive cor-

relation, meaning that as one variable increases, the other also tends to increase. A neg-

ative value signifies a negative correlation, suggesting that as one variable increases, the

other tends to decrease. A correlation of 0 implies no linear relationship between the vari-

ables.

When interpreting a correlation matrix, it’s crucial to remember that correlation does not

imply causation. Even if two variables are strongly correlated, it does not necessarily mean

that one variable causes the other to change. Additionally, outliers can strongly influence

correlation coefficients, so examining the data for potential anomalies is essential.

As we can see in the figure 4.1, the subjective parameter subjective score does not correlate

with any of the other parameters in the matrix.
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Figure 4.1: Correlation Matrix with various parameters, both subjective and objective

Given the equation to calculate DFA Alpha 1, DFA Alpha 1 strongly correlates with HRV and

mean RR values, as expected. RPE is strongly correlated to max hr and HRV, and as RPE

is dependent on the session’s intensity, it makes sense that they are correlated. RPE is also

somewhat inversely correlated to DFA Alpha 1; given that DFA is correlated to HRV, this is

expected.

We could add more features to the correlation matrix, but this work did not consider it nec-

essary.
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4.2 Prediction of subjective parameter subjective score using

LSTM

Using a LSTM model, it was attempted to perform a binary classification. Attempting to

predict and differentiate between subjective score weak and strong, where subjective score

1 and 2 were together as class bad, and subjective score 3, 4 and 5 were combined to class

good. This distribution of the various scores are visualized in Table 4.1.

Table 4.1: Distribution of subjective score for binary classification

Class bad Class good

1 2 3 4 5

Weak Strong

This LSTM model could not predict the correct subjective score as the model only predicted a

stong subjective score for all cases. This is visualized in the confusion matrix in Fig. 4.2.

Figure 4.2: Confusion matrix for LSTM model

As explained in ??, recall is how many of the cases in the class the classifier correctly predicted

over all the cases in the data. The precision is how many of the predictions of the class are

correct.

With that in mind, we can take a look at the classification report (Table 4.2). Here we can see
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that the recall for class 0, which is a good subjective score, is equal to 1. The F-score, however,

is low. This is caused by bad precision. For class 1, which is the bad subjective score, we have

precision and recall as 0, meaning there are no predictions for that class.

Table 4.2: Classification Report of LSTM model

precision recall f1-score support

0 0.38 1.00 0.55 224602

1 0.00 0.00 0.00 362232

accuracy 0.80 1839 0.38 586834

macro avg 0.19 0.50 0.28 586834

weighted avg 0.15 0.38 0.21 586834

4.3 Prediction of subjective score using transfer learning

4.3.1 Binary Transfer Learning Model

The first attempt at transfer learning was to do a binary classification where subjective scores

1 and 2 were combined, and subjective scores 3, 4, and 5 were combined.

Table 4.3: Distribution of subjective score for binary classification using transfer learning

Class 0 Class 1

1 2 3 4 5

Weak Strong

As seen in Fig. 4.3, subjective scores 1 and 2, otherwise known as weak subjective scores, were

not able to be predicted once. All predictions were classified as strong subjective score. The

dataset is imbalanced as most of the sessions given is scored as a 3 (average) and 4 (slightly

above average) for both athletes. This makes the train and test dataset imbalanced as it will

be a large percentage of the data in these classes and very few in the 1 and 5 classes. This

can make it harder for the model to determine what differentiates the classes. As the dataset

is imbalanced, the model found it difficult to differentiate between classes as they are quite

similar in values for the features.
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Figure 4.3: Confusion matrix for binary classification using transfer learning

4.3.2 Outer points classification using transfer learning

In the second model, we tested just the outer points of the subjective subjective scores, so

very strong vs very weak, to see if it could detect each side of the scale.

Table 4.4: Distribution of subjective score for binary classification, outer points

Class 0 Class 1

1 2 3 4 5

Weak Strong

So, using transfer learning, just comparing 1 and 5, then we got an accuracy of 0.8004. Fig. 4.4

shows the confusion matrix of the model, and as we can see, it mostly classifies correctly.
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Figure 4.4: Confusion matrix of ends of scale, 1 vs 5.

In Fig. 4.5, the learning curve is displayed. The accuracy of both the train and test sets in-

creases drastically in the beginning before stabilizing.

Figure 4.5: Accuracy of train and test set, 1 vs 5.
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Table 4.5: Classification Report of 1 vs 5

precision recall f1-score support

0 0.76 0.93 0.84 1028

1 0.88 0.64 0.74 811

accuracy 0.80 1839

macro avg 0.82 0.78 0.79 1839

weighted avg 0.81 0.80 0.79 1839

4.3.3 Three class classification using transfer learning using all of data

set

After trying to differentiate the classes 1 and 5, it was attempted to differentiate the 5 classes

into three classes, then 1 with 2, 3 alone, and 4 with 5.

Table 4.6: Distribution of subjective score for three class classification, all scores

Class 0 Class 1 Class 2

1 2 3 4 5

Weak Average Strong

This worsened the accuracy drastically, and then got an accuracy at 0.364. As we can see in

Fig. 4.6, the model only predicts the worst subjective score and gives us a bad f1-score for all

three classes.
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Table 4.7: Classification report, three classes 1,2 vs 3 vs 4,5.

precision recall f1-score support

0 0.36 1.00 0.53 2858

1 nan 0.00 nan 2350

2 nan 0.00 nan 2639

accuracy 0.36 7847 0.79 1839

macro avg 0.36 0.33 0.53 7847

weighted avg 0.36 0.36 0.53 7847

Figure 4.6: Confusion matrix, three classes, 1,2 vs 3 vs 4,5.

4.3.4 Three class classification using transfer learning using part of dataset

As the accuracy decreased from the end of the scale to three classes, it was attempted to do

the same with just the end of the scale and the middle class. So we tried to classify class 1, 3

and 5.
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Table 4.8: Distribution of subjective score for three class classification, selected scores

Class 0 Class 1 Class 2

1 2 3 4 5

Weak Average Strong

This resulted in an accuracy of 0.33, with only predicting class 1, which, as seen in Table 4.8,

is equal to an average feeling, and the score is 3.

Figure 4.7: Confusion matrix, three classes, 1 vs 3 vs 5.

4.3.5 Balancing dataset

In an attempt to balance out the datasets, we randomly selected a number of files of each

subjective score. The strong subjective score consists of subjective scores 3, 4, and 5, while

the weak score consists of subjective scores 1 and 2.

Table 4.9: Distribution of subjective score for binary classification, balanced dataset

Class 0 Class 1

1 2 3 4 5

Weak Strong
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With a more balanced train set the model predicted with an accuracy at 0.84. As we can see

in Fig. 4.8 we have predictions for both classes.

Figure 4.8: Confusion Matrix for balanced dataset

The precision and recall for both classes is better than in previous models. As we can see

from Table 4.10, we have a lower recall value for class 0. This indicates that the model is not

able to predict this class quite correctly. The precision for both classes is better than before,

giving us an acceptable F1-score. Improvements still need to be made, but these results give

hope for future work.

Table 4.10: Classification report, three classes 1,2 vs 3 vs 4,5.

precision recall f1-score support

0 0.88 0.62 0.73 2639

1 0.83 0.96 0.89 5208

accuracy 0.84 7847

macro avg 0.86 0.79 0.81 7847

weighted avg 0.85 0.84 0.84 7847
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4.3.6 Comparison of Classification Results

As we can see from the results in the previous mentioned models, we get a bad accuracy for

all instances using the original dataset. It is possible to differentiate and classify the outer

subjective scores, but when we include the average subjective score the model is not able to

predict the correct class. For all models except second model where just outer points were

used, the model using transfer learning was not able to predict more than one class.

As the models are not able to predict more than one class, they will predict the class which is

most frequent in the training set. This is for all cases the class containing the average subjec-

tive score 3. For instances where three classes were attempted, the models differ which class

all predictions are made to.

In an attempt to balance the dataset, and then use the same model as before we get signif-

icantly better results. This can tell us that given a more balanced dataset it is possible to

classify correctly. More about this will be discussed in Chapter 5.
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Chapter 5

Discussion

The deployment of any machine learning model will need to go through an analysis and dis-

cussion of its results. In this chapter, we will discuss the results presented in Chapter 4 and

then evaluate the model. We will discuss the effect of data limitations, the model’s accu-

racy, and other critical points that shape the overall performance of the machine learning

model.

Let’s review the aim of this work before proceeding to the discussion. This work aimed to

investigate methods for predicting subjective score for an athlete after a session and evaluate

the effectiveness and feasibility of the prediction. Classification using LSTM and transfer

learning with CNN were then used as models.

The objective is motivated by the wish to predict how the athlete’s subjective score so that

Olympiatoppen can use the results to determine the same athlete’s readiness-to-train.

5.0.1 Lack of sufficient data in dataset

A high-quality dataset is crucial for data analysis when it comes to ensuring the accuracy and

reliability of the findings. The dataset used in this project was gathered throughout the year

2023 by two athletes and contains 290 sessions of various lengths. The data consists of HRV

for each training session, which then has gone through a feature extraction, resulting in 34

features used.

In general, machine learning and deep learning often want as much data as possible. One

of the primary challenges in this project was the limited dataset, both in number of sessions
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and number of athletes. Another challenge in the training was the uneven distribution of

each class in the model. 80% of the sessions were classified as a score of 3 and 4 by the

athlete, whereas the remaining 20% of the sessions were either 1,2 or 5.

The success of many machine learning algorithms is often dependent upon the size and

distribution of classes in the training data. In our case, the limitation of relevant data led to

challenges in capturing the underlying patterns. This lack of diversity may have affected the

model’s ability to generalize and predict.

To address this limitation, transfer learning was attempted as a technique. It’s important

to acknowledge that these methods come with their own set of assumptions and potential

biases. As the SWELL-KW model was trained while resting or working, it has a significantly

lower heart rate than the training sessions of OLT dataset.

As briefly mentioned in Section 4.3.5, using a more balanced training set will give better

results. As most sessions had an average score it would be difficult for the model to find

patterns for the less frequent scores. Generating a larger and more balanced dataset will

help the possibility of predicting correctly.

5.0.2 Model Accuracy and Performance

The accuracy of our machine learning model is an essential metric in evaluating its effec-

tiveness. During the evaluation phase, the model demonstrated terrible accuracy on the test

dataset, where the model was predicting the same score for all sessions. Later on, when

just using sessions on each side of the scale, then score 1 vs score 5, the model achieved

results that aligned well with our expectations. However, it’s crucial to recognize that these

results are not desirable as they do not use or predict the scores in the middle, even though

it can give hope that the prediction is possible if the model has more data to train and find

patterns. Accuracy alone might not provide a comprehensive picture of the model’s perfor-

mance.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work aimed to investigate methods for predicting athlete’s subjective feelings and eval-

uate their effectiveness for potential use in a future system.

The experiments conducted in this study focused on using transfer learning from an existing

dataset to the provided dataset from OLT. Multiple attempts were made using both binary

and three-class classifications. The CNN transfer learning model provided less than desir-

able results. It was discovered that using a more balanced and bigger dataset would most

probably be able to correctly predict classes.

While improvements and optimizations are still needed, the findings support the feasibility

of correctly predicting athletes’ feelings. The results have also highlighted the importance

of investigating different types of machine learning, as some methods will work better than

others. The results showcase the importance of transfer learning for smaller datasets.

6.2 Future Work

The end goal of this thesis is to evaluate methods for predicting athletes’ subjective feelings

after a workout session.

Possible future work will be to add additional features to the model and transfer learning,

such as DFA Alpha 1. However, adding this feature would require more time or computa-

tional processing, as the calculation of this feature can take a while for each session. Other
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features could also be added if they can help the model predict more accurate results.

For future work, the dataset could expand and add more athletes. A larger dataset is not

only desirable but adding more athletes can give the model more insight into the feature

importance of how people determine their subjective feeling.

For future work, it would also be beneficial to investigate other methods to predict subjective

feelings rather than just transfer learning or other machine learning methods. One possibil-

ity is to investigate Fourier Bessel, a method in the frequency domain that can provide better

approximations to HRV analysis.
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Appendix

Appendix

A Declaration about usage of artificial intelligence

 
 

Deklarasjon om KI-hjelpemidler 
Har det i utarbeidingen av denne rapporten blitt anvendt KI-baserte hjelpemidler? 

 
 
 
 

Hvis ja: spesifiser type av verktøy og bruksområde under. 
 

Tekst 

 
    Hvis ja til anvendelse av et tekstverktøy - spesifiser bruken her: 
  

 

Kode og algoritmer 

 
     
   Hvis ja til anvendelse av et programmeringsverktøy - spesifiser bruken her: 

 
 

Bilder og figurer 

 
     Hvis ja til anvendelse av et bildeverktøy - spesifiser bruken her: 
 

 

 

 
   

 

Jeg er kjent med NTNUs regelverk: Det er ikke tillatt å generere besvarelse ved hjelp av kunstig intelli- 
gens og levere den helt eller delvis som egen besvarelse. Jeg har derfor redegjort for all anvendelse av 
kunstig intelligens enten i) direkte i rapporten eller ii) i dette skjemaet. 

 
 
 
 

Underskrift/Dato/Sted 

 Nei 
  

 Ja 

 Stavekontroll. Er deler av teksten kontrollert av: 
Grammarly, Ginger, Grammarbot, LanguageTool, ProWritingAid, Sapling, Trinka.ai eller lignende verktøy? 

  

 Tekstgenerering.  Er deler av teksten generert av: 
ChatGPT, GrammarlyGO, Copy.AI, WordAi, WriteSonic, Jasper, Simplified, Rytr eller lignende verktøy? 

  

 Skriveassistanse. Er en eller flere av ideene eller fremgangsmåtene i oppgaven foreslått av: 
ChatGPT, Google Bard, Bing chat, YouChat eller lignende verktøy? 

Programmeringsassistanse.  Er deler av koden/algoritmene som i) fremtrer direkte i rapporten eller 
ii) har blitt anvendt for produksjon av resultater slik som figurer, tabeller eller tallverdier blitt generert 
av: GitHub Copilot, CodeGPT, Google Codey/Studio Bot, Replit Ghostwriter, Amazon CodeWhisperer, GPT 
Engineer, ChatGPT, Google Bard eller lignende verktøy? 

Bildegenerering.  Er ett eller flere av bildene/figurene i rapporten blitt generert av: 
Midjourney, Jasper, WriteSonic, Stability AI, Dall-E eller lignende verktøy? 

Andre KI verktøy.  har andre typer av verktøy blitt anvendt? Hvis ja spesifiser bruken her: 

 
 

 

 
 
 

 

 
 

 

 
 

 

Tekst kontrollert av Grammarly
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