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Abstract

Inference for correlation is central in statistics. From a Bayesian viewpoint,
the final most complete outcome of inference for the correlation is the pos-
terior distribution. An explicit formula for the posterior density for the cor-
relation for the binormal is derived. This posterior is an optimal confidence
distribution and corresponds to a standard objective prior. It coincides with
the fiducial introduced by R.A. Fisher in 1930 in his first paper on fiducial
inference. C.R. Rao derived an explicit elegant formula for this fiducial den-
sity, but the new formula using hypergeometric functions is better suited for
numerical calculations. Several examples on real data are presented for illus-
tration. A brief review of the connections between confidence distributions
and Bayesian and fiducial inference is given in an Appendix.

AMS (2000) subject classification. 62E15, 62F15, 62A01, 62H20, 62F25.
Keywords and phrases. Exact distribution, measures of association, Bayesian
posterior, Fiducial, Fisher z-transform, Marginalization paradox.

1 Introduction

Fisher (1930) introduced the concept of a fiducial distribution. Fisher’s
first example is the fiducial density π(ρ|r) for the correlation ρ of the binor-
mal distribution. It is given by

π(ρ|r) = −∂ρF (r|ρ), (1.1)

where F (r|ρ) is the cumulative distribution function for the empirical corre-
lation r of a random sample of size n from the binormal distribution.

Earlier, Fisher (1915) had derived an explicit formula for the probability
density f(r|ρ) = ∂rF (r|ρ) of the empirical correlation. Fisher’s formula is

f(r|ρ) = (1− ρ2)
ν
2 · (1− r2)

ν−3
2

π(ν − 2)!
∂ν−1
ρr

{
θ

sin θ

}
, (1.2)

where cos θ = −ρr, 0 < θ < π, and ν = n − 1 is the degrees of freedom.
In principle, formula (1.1) and formula (1.2) give a method for deriving a
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more explicit formula for π(ρ|r). This is, however, not straightforward since
a convenient closed form expression for F (r|ρ) is missing.

The problem of deriving a more explicit formula for π(ρ|r) was solved by
C. R. Rao. It is stated as the very last formula in the classical book Statistical
Methods and Scientific Inference by Fisher (1973, eq.(234)). Rao’s formula
is

π(ρ|r) = (1− r2)
ν−1
2 · (1− ρ2)

ν−2
2

π(ν − 2)!
∂ν−2
ρr

{
θ − 1

2 sin 2θ

sin3 θ

}
. (1.3)

Unfortunately, this elegant formula by Rao is less known than the corre-
sponding formula (1.2). The density π(ρ|r) is more important than the
density f(r|ρ) in applications since it represents directly the resulting state
of knowledge for the unknown correlation ρ based on the observed correla-
tion r.

The Rao formula (1.3) for the density π of ρ is similar in form to the
formula derived by Fisher (1915) for the density f of r defined in Eq. 1.2.
Historically, it took quite some time to arrive at an alternative formula
suitable for the numerical calculation of f(r|ρ). Hotelling (1953) arrived at
a formula using hypergeometric functions for calculation of f(r|ρ), and this
solution is now advocated by Stuart and Ord (1994, p.559–65) and Anderson
(2003, p.122–26). Theorem 2.1 proved in Section 2 gives a similar explicit
formula for π(ρ|r) using hypergeometric functions.

The concept of a confidence distribution is possibly unfamiliar to many
readers. A brief introduction is given in the next section. Then the main
result in Theorem 2.1 is stated and proved. This gives the exact confi-
dence density corresponding to the fiducial distribution defined by Fisher
(1930). The final section contains a brief discussion of some consequences
with some additional remarks on the relevance of the fiducial argument in
current statistics. An Appendix explains in more detail the connection of
the derived confidence distribution to the corresponding Bayesian posterior.

2 Theory

According to Cox (1958, p.363) a confidence distribution for a parameter
can be defined directly or introduced as the set of all confidence intervals at
different levels. A direct definition can be given starting with a random cu-
mulative distribution function C depending on the data Y . For completeness
the mathematical details are specified next.

It is assumed that (Ω, E ,P) is the underlying probability space following
Kolmogorov (1933). The data Y is given by a measurable function Y :
Ω → ΩY where ΩY is the sample space of the data. A statistical model
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is defined by assuming that P is unknown, and depending on an unknown
model parameter θ ∈ ΩΘ. A parameter γ = ψ(θ) is defined by a measurable
function ψ : ΩΘ → ΩΓ . Let U ∼ U(0, 1) mean P(U ≤ u) = u for all
0 < u < 1.

Definition 2.1. A statistic C is an exact confidence distribution for a
real parameter ρ if:

1. ρ �→ C(ρ; y) is a cumulative distribution function for all y in the sample
space of the data Y .

2. C(ρ;Y ) ∼ U(0, 1)

If the cumulative distribution function is differentiable with π(ρ; y) = ∂ρC
(ρ; y), then π is an exact confidence density for ρ.

It must be observed in Definition 2.1 that the both the law PY of the
data Y and the parameter ρ depend on the model. Definition 2.1 is as given
by Schweder and Hjort (2016, Definition 3.1, p.58). This is equivalent to
demanding that the Wp = C−1(p) fractile of C defines an exact confidence
interval (−∞,Wp] for ρ. The proof is given by

P(ρ ≤ Wp) = P(C(ρ) ≤ p) = p. (2.4)

Again, it is important to notice that both probabilities depend on the law
of the data Y , and ρ is a parameter of the law of the data.

In the particular case given by Eq. 1.1

C(ρ; y) = 1− F (r|ρ) (2.5)

where r is the empirical correlation of the random sample y = ((y1, y2)1, . . . ,
(y1, y2)n) from the binormal law with correlation ρ. The unknown model
is given by the model parameter θ = (μ1, μ2, σ1, σ2, ρ) corresponding to the
means μ1, μ2, the standard deviations σ1, σ2, and the correlation ρ.

For this case it follows then that π(ρ|r) = ∂ρC(ρ; y) is an exact confi-
dence density as explained originally by Fisher (1930, p.532–5). The proof
follows by observing that the law of the empirical correlation r only depends
on the correlation ρ, that ρ �→ 1−F (r|ρ) is a differentiable cumulative distri-
bution function, and generally that F (X) ∼ U(0, 1) for a continuous random
variable X with cumulative distribution function F .

An explicit formula for the density π(ρ|r) does not follow from the above
arguments, but is derived below using an alternative path.
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Theorem 2.1. Let r be the empirical correlation of a random sample of
size n from the binormal. The exact confidence density for the correlation ρ
is

π(ρ|r) = (1− r2)
ν−1
2 · (1− ρ2)

ν−2
2 · (1− rρ)

1−2ν
2

√
2B(ν + 1

2 ,
1
2)

· F
(
3

2
,−1

2
; ν +

1

2
;
1 + rρ

2

)

where B is the Beta function, F is the Gaussian hypergeometric function,
and ν = n − 1 > 1. The one-sided confidence intervals from π(ρ|r) are
uniformly most accurate invariant with respect to the location-scale groups
on the two coordinates.

Proof. The idea is to use the Elfving equation
√
u

ρ√
1− ρ2

−
√
v

r√
1− r2

= z. (2.6)

This relation was also obtained by Professor David Sprott as explained and
proved by Fraser (1964, p.853, eq.(5.1)). Here u ∼ χ2(ν), v ∼ χ2(ν − 1), z ∼
N(0, 1) are independent. Equation 2.6 gives the law of ρ when r is known.
The degrees of freedom ν equals n − 1 for sample size n. If the means are
known, then ν = n. Equation 2.6 is due to Elfving (1947) according to Lee
(1971, p.117).

Equation 2.6 gives the conditional density of ρ given u, v. The marginal
density of ρ follows then by integration over u, v. This integration is done
by a change of variables resulting in a gamma integral and results in the
density π(ρ|r). The details are as follows.

The conditional density of s = ρ/
√
1− ρ2 given u, v is normal by Eq. 2.6

with (s|u, v) ∼ N(
√

v
u t, 1/u) where t = r/

√
1− r2. Using this, the law of

u, v, and ds = (1− ρ2)−3/2dρ give the joint density of ρ, u, v as

(1− ρ2)−3/2 · u
ν
2
−1e−

u
2

2
ν
2Γ (ν2 )

· v
ν−1
2

−1e−
v
2

2
ν−1
2 Γ (ν−1

2 )
·
√

u

2π
e−

u
2
(s−

√
v
u
t)2 . (2.7)

The terms in the exponential are

−1

2

[
u

1− ρ2
− 2

√
uvρr√

(1− ρ2)(1− r2)
+

v

1− r2

]
= −ν(s21 − 2s1s2rρ+ s22)

2(1− r2)

(2.8)
using new coordinates (s1, s2) defined by νs21 = u(1 − r2)/(1 − ρ2) and
νs22 = v. Let s1 =

√
α exp(−β/2) and s2 =

√
α exp(β/2). The density for

ρ, α, β from Eq. 2.7 is

21−ννν√
πΓ (ν2 )Γ (ν−1

2 )
(1− r2)−

ν+1
2 (1− ρ2)

ν−2
2 e−βαν−1e

−να(cosh(β)−ρr)

1−r2 . (2.9)
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Integration over α gives π(ρ|r) using the identity π(ν− 2)! =
√
π2ν−2Γ (ν2 )Γ

(ν−1
2 ) and adjusting an integral representation of F (Olver et al. 2010,

14.3.9,14.12.4). The normalization factor from this is [ν(ν−1)Γ (ν−1)]/[
√
2π

Γ (ν + 1
2)] which simplifies into the stated 1/[

√
2B(ν + 1

2 ,
1
2)]. This ends the

proof of the formula. The optimality claim is a consequence of Problem 6.68
presented by Lehmann and Romano (2005, p.273).

The formula for π(ρ|r) can be reformulated using Legendre functions sim-
ilarly to the formula for f(r|ρ) obtained by Fisher (1915, p.511). Interesting
recursion relations can also be established. The details of this are not given
here since Theorem 2.1 is of a form more suitable for numerical calculations.

The method of proof is also of independent interest since it gives an
alternative and simpler derivation of the known exact formulas for f(r|ρ)
derived by Fisher (1915, p.507–11), Hotelling (1953, p.197–200), Stuart and
Ord (1994, p.559–65), Anderson (2003, p.122–6). It gives also a possible
path for derivation of exact confidence distributions for partial correlation
functions.

The formula for π(ρ|r) seems difficult to derive directly from the formula
for f(r|ρ) and Eq. 1.1. This is possibly the reason why an alternative explicit
formula for π(ρ|r) has been absent for so long. Another reason is given by
the good approximation given by the Fisher (1921) z-transformation:

1

2
ln

(
1 + ρ

1− ρ

)
− 1

2
ln

(
1 + r

1− r

)
≈ z/

√
ν − 2. (2.10)

Replacing Eq. 2.6 with Eq. 2.10 and solving with respect to ρ gives the
z-transform confidence density

π̃(ρ|r) =
√

ν − 2

2π
(1− ρ2)−1e

2−ν
8

[
ln
(

(1+ρ)(1−r)
(1−ρ)(1+r)

)]2
(2.11)

for ν = n − 1 > 2. The density π̃ is a good approximation to π for large
sample size n, and is surprisingly accurate also for moderate sample size.

3 Examples

The result of an experiment is given by four points with (x, y) coordinates
(773, 727), (777, 735), (284, 286), and (519, 573). There are reasons a priori
for assuming a linear relationship. This is further supported by Fig. 1,
and a high value for the coefficient of determination R2 = 97.00%. The
R2 equals the square of the empirical correlation r = 98.49%. This is an
example of linear regression used extensively in applied sciences. A natural
question is then: What about uncertainty? The focus in the following is the
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Figure 1: A sample of size 4 with a regression line corresponding to an
example by Fisher (1930)

correlation, but other parameters are of course of possible interest depending
on the concrete application.

An approximate 95% one sided confidence interval for the correlation ρ
based on the Fisher (1921) z-transformation is [66.08, 100]%. Linear interpo-
lation in the table presented by Fisher (1930) gives an exact 95% confidence
interval [67.42, 100]%.1 Our Theorem 2.1, without linear interpolation, gives
the true exact 95% confidence interval [67.39, 100]%. This demonstrates that
the z-transformation can be quite good also for small sample size.

More complete information is given by the confidence densities shown in
Fig. 2. The exact confidence density in Fig. 2 illustrates the correspond-
ing uncertainty corresponding to all possible confidence intervals with all
possible confidence levels. The density is also the Bayesian posterior from
a standard prior. It represents hence all information available for the cor-
relation based on the observations. Figure 2 also shows the approximate
confidence density π̃ from the z-transform. It is similar, but clearly π̃ is
different from π.

Figure 3 shows the cd4 counts for 20 HIV-positive subjects (Efron 1998,
p.101). The x-axis gives the baseline count and the y-axis gives the count

166.4037 + (71.6298 − 66.4037)*(98.4893 − 98.4298)/(98.7371−98.4298) = 67.4156
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Figure 2: The confidence density and the z-transform density for the Fisher
(1930, p.434) example

after one year of treatment with an experimental antiviral drug. The empir-
ical correlation is r = 0.7232, and the equitail z-transform 90% approximate
confidence interval is [47.41, 86.51]%.

Figure 3: The HIV data of DiCiccio and Efron (1996, Table 1)
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Figure 4 shows the closeness of the confidence density π and the z-
transform density π̃. The exact equitail 90% confidence interval from The-
orem 2.1 is [46.54, 85.74]%. It is shifted to the left as also can be inferred
from Fig. 4. Efron (1998, p.101) discuss this example in more detail using
bootstrap techniques.

As a final example, consider certain pairs of measurements with r = 0.534
taken on n = 8 children at age 24 months in connection with a study at a
university hospital in Hong Kong. Figure 5 shows again the closeness of the
confidence density and the z-transform density. Schweder and Hjort (2016,
p.227, Figure 7.8) discusses this example in much more detail including dif-
ferent bootstrap approaches. Using the method of Fisher (1930) they arrive
at the same plot of the confidence density using the exact distribution for
the empirical correlation. This provides additional verification of the exact
result in Theorem 2.1.

An alternative method for all examples is density estimation based on
Markov Chain Monte Carlo methods from the standard prior for the binor-
mal with five unknown parameters, but the explicit formula is preferable.
The explicit formula can be used as a benchmark test case for a general
MCMC posterior implementation.

Figure 4: The confidence density and the z-transform density for HIV data
DiCiccio and Efron (1996, Table 1)
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Figure 5: The confidence density and the z-transform density for data from
8 children Schweder and Hjort (2016, p.227, Figure 7.8)

4 Discussion

The fiducial density π(ρ|r) coincides with the Bayesian posterior from the
standard prior for the five unknown parameters in the binormal and gives
optimal inference. It is an exact confidence density. This is explained by
Taraldsen and Lindqvist (2013). The explicit formulas for f(r|ρ) and π(ρ|r)
prove that the fiducial is not obtainable from a prior π(ρ). This marginal-
ization paradox is known, but the previously known proof is complicated
Berger and Sun (2008, p.966-7).

In current mathematical statistics the problem of choice of a prior is
central , and the current revival of the fiducial argument presents an alter-
native solution to this problem. In a non-parametric problem the choice of a
Bayesian prior can be justified by establishing good asymptotic frequentist
coverage properties (Castillo and Nickl, 2013; Ghosal and van der Vaart,
2017). Cui and Hannig (2019) demonstrate that this can also be done by a
fiducial argument for a non-parametric problem without a Bayesian prior.

Schweder and Hjort (2016) present recent developments in the theory of
confidence distributions and advocates this as an alternative to the calcu-
lation of Bayesian posteriors. Taraldsen and Lindqvist (2019) explain that
the problem of choosing a prior, including non-parametric problems, can be
solved by not choosing a prior, but rather using the information contained
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in a data generating equation. Xie and Singh (2013) explain how the con-
cept of a confidence distribution can be seen as the frequentist distribution
estimator of a parameter.

In his initial work on the fiducial argument Fisher (1930, p.532–5) used
a frequency interpretation for its justification. In later works, Fisher (1973,
p.54–5) insisted on a more general interpretation: When there is no prior in-
formation, then the interpretation of the fiducial is exactly as for a Bayesian
posterior. It is the state of knowledge of the parameter given the observa-
tions. The modern view is that the knowledge given by a prior is replaced by
the knowledge inherent in a particular data generating equation. Taraldsen
and Lindqvist (2013, p.331) demonstrate that this can give optimal infer-
ence in a non-parametric Hilbert space problem, and Cui and Hannig (2019)
demonstrate superiority of a fiducial distribution in a non-parametric prob-
lem for survival functions under censoring.

Neyman (1937, eq.20) is usually credited for the invention of the the-
ory of confidence intervals. Cox (1958, p.363–6) can likewise be credited for
suggesting the use of confidence distributions in statistical inference. Ac-
tually, Fisher (1930, p.532–5) defines both concepts precisely, and uses the
correlation coefficient and Eq. 1.1 as a concrete example with numerical cal-
culations. Combining his initial results gives an algorithm for numerical
calculation of exact confidence intervals for the correlation. Fisher (1930,
Table, p.533) computed a table with exact 5% and 95% percentiles for sam-
ple size n = 4. His table, up to numerical rounding, is consistent with a more
direct approach based on Theorem 2.1. This gives an independent check of
the claim in Theorem 2.1, and also of the table calculated by Fisher.

Inference for correlation is, even if of a seemingly elementary kind, of cen-
tral importance in applied statistics. It is almost impossible to find a linear
regression plot without the accompanying R2. The exact solution by Fisher
(1930) is rarely used. Standard software gives an approximate solution using
the Fisher (1921) z-transform. An example using the z-transform is given
by Efron (1998, p.101). The density in Theorem 2.1 gives the uncertainty
associated with the estimated correlation, and hence also of the correlation
squared. Approximate inference using the Fisher (1921) z-transform can,
and should, be replaced by exact inference.

The fiducial density π(ρ|r) corresponds to the very first example used
by Fisher (1930) when he introduced his fiducial argument. Fisher justified
this fiducial distribution by proving that the corresponding quantiles give
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exact confidence intervals. This was a starting point for Neyman (1937)
when formulating a general theory of confidence intervals. It can safely be
concluded that the seminal paper by Fisher (1930) has been pivotal in the
historical development of mathematical statistics, and it still is.
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Appendix A: Confidence in Fiducial and Bayesian Inference?

The adjective “fiducial” comes from the Latin fiducia for faith and means
something taken as standard of reference or something founded on faith or
trust. The term “fiducial” is used in the following also as a noun instead of
the longer “fiducial distribution”. Similarly, “posterior” is used as a noun
instead of “posterior distribution”. The purpose of this Appendix is to
briefly summarize mathematical theorems providing links between fiducial
inference, Bayesian inference, and confidence distributions as needed for the
correlation coefficient problem.

As noted by a reviewer, the procedures reinforced on the concept of fidu-
cial probability are not always viewed undoubtedly. Fiducial inference has
not been widely accepted. Different versions are presented in textbooks and
reference works, and most often with critical remarks. Casella and Berger
(2002, p.291), Kendall and Stuart (1961, p.134–), and Stuart et al. (1999,
p.440–) present versions based directly on the likelihood, but Cox and Hink-
ley (1974, p.246), Sprott (2000, p.77), and Barnard (1995) present versions
based on pivotal quantities. The version presented below is a generalization
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of the version based on pivotal quantities. It is in particular not restricted
to models defined by a likelihood. It is based on a data generating equation.

A more complete review of fiducial inference is beyond the scope of this
Appendix, but Seidenfeld (1979), Dawid and Wang (1993), Lehmann and
Romano (2005, p.175), Veronese and Melilli (2015), Hannig et al. (2016),
Taraldsen and Lindqvist (2018), and Dawid (2020) can be consulted for
discussion and further references. Pedersen (1978, p.147) concluded that the
fiducial argument has had very limited success and that it was essentially
dead. There was then hence little confidence in fiducial inference among
most statisticians, and this is also true today.

In contrast, in the context of objective Bayesian inference, Efron (1998,
p.107) suggests that maybe Fisher’s biggest blunder will become a big hit in
the 21st century. I agree. I have much confidence in fiducial inference. One
reason for my optimism is given by the version of fiducial inference which is
based on a data generating model. This is perfectly adapted to the available
computational power in the 21st century. Fiducial inference is, by definition
here in this Appendix, understood as inference based on a data generating
model.

Definition A.2. A data generating model for a statistic r is given by a
function r = r(ρ,m) where ρ is a parameter and m has a known probability
distribution. The model is simple if it can be uniquely solved to give a
parameter generating function ρ = ρ(r,m). The model is pivotal if it can be
uniquely solved to give a pivotal m = m(r, ρ). For a simple data generating
model the fiducial is defined to be the distribution of ρ(r,m) for fixed r.

In Definition A.2, and in the following, the term function is used as a
synonym with measurable function. This means that all sets involved are
assumed to be measurable spaces. The fundamental assumptions are hence
as explained before Definition 2.1. A statistic is by definition a (measurable!)
function of the data.

There are many different data generating models for a given statisti-
cal model. In general, as will be demonstrated, the corresponding fiducial
depends on the data generating model. For the case of a real statistic, ex-
emplified by r in Theorem 2.1, the fiducial is, however, uniquely determined
by the statistical model under mild assumptions.

Theorem A.2 (Uniqueness of the fiducial). The fiducial distribution
from of a real valued, strictly monotonic, and simple data generating model
is uniquely determined by the sampling distribution of the statistic. If, ad-
ditionally, the sampling distribution of the statistic is continuous, then the
fiducial distribution is an exact confidence distribution.
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Proof. This is Theorem 1 proved by Taraldsen and Lindqvist (2018,
p.143). The idea is that inversion of the cumulative distribution function
gives a data generating model which is both simple and pivotal and a calcu-
lation shows that the fiducial from this coincides with the initial model.

In the case of the correlation coefficient, the Elfving equation (2.6) can be
solved to give a data generating model r = rE(ρ,m) with m = (u, v, z). This
is not a pivotal model, but Theorem A.2 gives that the fiducial is an exact
confidence distribution as claimed in Theorem 2.1. It gives, furthermore,
that the fiducial coincides with the fiducial from the data generating model
r = rF (ρ,m) = F−1(m, ρ) with m ∼ U(0, 1) corresponding to Eq. 1.1.

The fiducial in Theorem 2.1 also coincides with a Bayesian posterior from
a random sample from the binormal as claimed in the Abstract.

Theorem A.3. The confidence density π(ρ|r) in Theorem 2.1 is the pos-
terior density from the prior density

π(μ1, μ2, σ1, σ2, ρ) =
1

σ2
2(1− ρ2)

(A.12)

and also from the prior density

π(μ1, μ2, σ1, σ2, ρ) =
1

σ2
1(1− ρ2)

. (A.13)

Proof. The Elfving equation (2.6) can be solved to give a parameter
generating function ρ = ρ(r, u, v, z). This parameter generating function
equals the constructive posterior provided by Berger and Sun (2008, Table
1, p.66) for the posterior in Eq. A.13. It follows then from Theorem 2.1 that
the confidence density π(ρ|r) coincides with the posterior density as claimed
in the abstract. Interchange of the coordinates shows that this also holds
for the prior in Eq. A.12.

The details in the above proof requires several pages of computations.
The connection of the derived confidence distribution to the corresponding
Bayesian posterior is not straightforward. A direct proof by integrating out
μ1, μ2, σ1, σ2 using the joint posterior density of μ1, μ2, σ1, σ2, ρ is also not
a simple task. The explicit formula in Theorem 2.1 is hence important also
from a Bayesian perspective.

Geisser and Cornfield (1963) consider a prior which is symmetric in the
coordinates, and derive an explicit formula for the posterior density of the
correlation by direct integration. It is of the same form as the density of
the empirical correlation, but with r and ρ interchanged. They prove that
it differs from the fiducial π(ρ|r) using a difficult analytic argument. This
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difference can be more easily seen now by direct comparison of the two
explicit formulas. The posterior π(ρ|r) is optimal as stated in Theorem 2.1,
and is in this sense preferable compared to the posterior found by Geisser
and Cornfield (1963, eq. 3.10).

An alternative proof of Theorem A.3 follows from arguments given origi-
nally by Fraser (1964, p.846). The argument starts with the data generating
model

y1j = μ1 + σ1m1j , y2j = μ2 + σ2(ρm1j +
√
1− ρ2m2j) (A.14)

corresponding to Cholesky decomposition of the covariance matrix and inde-
pendent mij ∼ N(0, 1). This is a group model. The fiducial can be computed
by conditioning on a maximal invariant statistic, or alternatively by reduc-
tion to the minimal sufficient statistic as explained by Fraser (1968, 1979)
and Taraldsen and Lindqvist (2013).

Fraser (1979, p.184) notes in particular that for an application the par-
ticular order for the coordinates is part of the specification of the system
being investigated. It is assumed that the observed data have been gen-
erated by Eq. A.14. This corresponds to first drawing a random sample of
x-coordinates, and then drawing a sample of y-coordinates as in linear regres-
sion. The choice of a particular Bayesian prior corresponds to the choice of a
particular data generating model. This explains in this case the asymmetry
and difference between the two priors in Theorem A.3. The asymmetry is
part of the model assumptions both in the Bayesian analysis and the fiducial
analysis.

A data generating equation r = r(ρ, u, v, z) corresponding to the Elfving
equation (2.6) can be computed directly from the data generating Eq. A.14
and the definition of r. Theorem A.2 ensures that the choice of the particular
data generating Eq. A.14 is irrelevant for the resulting fiducial for ρ, but it
is convenient for proving Theorem 2.1.

As explained by Taraldsen and Lindqvist (2013, p.329) it is known that
the fiducial coincides with the posterior from a right Haar prior for a group
model. A more general result was proven by Taraldsen and Lindqvist (2015,
p.3756, Thm 2.1).

Theorem A.4. The fiducial from a simple data generating model t =
t(θ,m) is the Bayes posterior from a σ-finite prior PΘ if the distribution of
t(θ,m) does not depend on m when θ ∼ PΘ.

Proof. The idea of the proof by Taraldsen and Lindqvist (2015, p.3765)
is given by establishing a joint density for (t(Θ,M),M) using the Fubini
theorem together with the general change-of-variables theorem from measure
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theory. This is different from the more common change-of-variables theorem
which requires differentiability. It should also be noted that there is no
assumption of existence of a dominating measure. The proof holds in the
generality as stated. It follows also that the posterior is proper.

The assumption of Theorem A.4 is fulfilled when t = t(θ,m) = θm is
given by group multiplication and PΘ is chosen as the right Haar prior.
This gives in particular equality of the the joint posterior density of θ =
(μ1, μ2, σ1, σ2, ρ) and the joint fiducial. The priors in Theorem A.3 corre-
spond to the right Haar priors corresponding to the choice of a Cholesky
decomposition in lower- or upper-triangular matrices. Explicit expressions
for right Haar priors are derived and discussed by Eaton (1989) in the more
general context of group invariance in statistics.

The reader is possibly not completely happy with the asymmetry between
the coordinates in the Haar priors in Theorem A.3. The conclusion for the
correlation, however, holds equally well for the prior obtained by replacing
σ2 by σ1. It is the joint posterior that changes into the fiducial obtained from
using upper triangular instead of lower triangular matrices in the Cholesky
decomposition for the data generating equation. In both cases the posterior
density for the correlation equals the fiducial in Theorem 2.1.

Fraser (1968, p.192-) gives a fiducial argument for the binormal based on
a model which is symmetric in the coordinates. The resulting fiducial for ρ is
as in Theorem 2.1, but it is unknown if the joint fiducial for μ1, μ2, σ1, σ2, ρ
is a Bayes posterior. The problem of the binormal, and its natural gener-
alizations, remains a very interesting problem from Bayesian, fiducial, and
frequentist points of view. It can shed light on the more general problem
of when a posterior or a fiducial is a confidence distribution. Eaton and
Sudderth (2012) give more examples of Bayesian posteriors that are exact
confidence distributions in the sense of giving exact confidence regions.
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