
Explicit Backstepping Kernel Solutions for Leak Detection in Pipe Flow
Networks Containing Loops

Nils Christian A. Wilhelmsen and Ole Morten Aamo

Abstract— A recursive procedure to obtain explicit expres-
sions to a set of observer backstepping kernel equations for
an interconnection (cascade) of N + 1 systems of 2× 2 linear
hyperbolic PDEs, N > 0 an integer, for use in leak detection in
pipe flow networks containing loops is developed. The kernel
equations, consisting of two sets each of N+1 pairs of Goursat
PDEs defined over a triangular domain, and N(N+1)

2 pairs of
Goursat PDEs defined over a square domain, interconnected to
each other in an overarching triangular structure, is separated
into 2(N + 1) systems consisting of k + 1 pairs of PDEs over
a triangular domain interconnected with (N− k

2)(k+ 1) pairs
of PDEs over a square domain, k ∈ {0,1, . . . ,N}. Under the
assumption that the mean friction factor of the network may
be used in place of individual friction factors for each pipe,
it is shown that the solution to each of the simplified kernel
equation systems is expressed explicitly in terms of modified
Bessel functions of the first kind, and may be constructed
recursively. A numerical example is provided to illustrate the
results.

I. INTRODUCTION

A. Background

Leakage from networks of pipes transporting fluids is
a common problem both in industrial [1] and municipal
infrastructure [2] settings. A range of methods have been
developed over the years to address this critical problem,
ranging from hardware-based methods relying on accurate
but expensive infrastructure, fibre-optic cables [3] being a
notable example, to be installed along the pipes, to software-
based methods relying on processing limited data, obtained
from cheap, non-invasive sensors, via sophisticated signal
processing techniques.

One class of software-based techniques for automatically
detecting and locating leaks is that of observer-based leak
detection, where the leak detection algorithm is based on a
state observer designed for a mathematical model of the pipe
network one is performing leak detection for. Some early
contributions that considered leak detection within such a
setting include [4], [5], [6]. A common characteristic of much
of the early work in this area is the use of a so-called early
lumping approach, where the mathematical model describing
the transient behaviour of the fluid in the pipelines, being
distributed in nature, is discretized (lumped) before algorithm
design is performed.

More recently, late-lumping approaches for designing
observer-based leak detection systems have been considered.

The authors are with the Department of Engineering Cybernetics, Nor-
wegian University of Science and Technology (NTNU), 7491 Trondheim,
Norway.

E-mail: nils.c.wilhelmsen@ntnu.no (N.C.A. Wilhelmsen),
aamo@ntnu.no (O.M. Aamo)

A notable example is [7], where an adaptive observer-based
leak detection method for a single pipe is designed via the
infinite-dimensional backstepping approach, initially devel-
oped for application to 2× 2 systems of linear hyperbolic
PDEs in [8]. This leak detection method was extended to
the case of leak detection in pipes interconnected via a single
branching point in [9], and to pipes connected to each other
via a loop-shaped network in [10]. To implement the leak
detection systems designed in [7], [9], [10], observer gains
need to be calculated by solving a system of hyperbolic
PDEs known as the kernel equations. In general the kernel
equations obtained from backstepping designs need to be
approximated numerically, but in certain cases closed-form
solutions may be found. The observer gains used in the
leak detection system from [7] are expressed explicitly
by applying results from [11], while in [12] closed-form
solutions to the kernel equations from [9] are found.

The aim of this paper is to complement these results
by proposing a recursive procedure to construct explicit
solutions for kernel equations for use in calculating observer
gains for the leak detection system from [10]. We define next
the precise problem statement.

B. Problem statement

We consider here the leak detection problem from [10],
namely that of automatically detecting, estimating the size of,
and locating leaks in a pipe flow network of N+1 pipes inter-
connected in a ring topology. The dynamics of the pressure
pi and volumetric flow qi within each pipe i∈{0,1, . . . ,N} of
length li and cross-sectional area Ai is assumed, for zi ∈ (0, li)
and t > 0, to be governed by (dropping the index i in zi for
brevity)

∂t pi(z, t)+
β

Ai
∂zqi(z, t) =−

β

Ai
di(z)χi (1a)

∂tqi(z, t)+
Ai

ρ
∂z pi(z, t) =−

Fi

ρ
qi(z, t)−Aigsin(φi(z))

− ηi

Ai
di(z)χi (1b)

where β is the fluid bulk modulus, Ai is the pipe cross-
sectional area of pipe i, ρ is the fluid density, Fi is the
friction factor of pipe i, φi is the inclination angle of pipe i
at position zi, and g is the acceleration of gravity. Possible
leaks are modelled by the total amount χi leaking from
each pipe i together with the normalized leak distribution
di along the pipeline. The factor ηi is proportional to the
mean volumetric flow rate qi,0 in pipe i, with the constant of
proportionality determined by the shape, size and direction
of the leak (see [13]). To model the interconnections between

Fig. 1: Loop-shaped water distribution network for N = 2.
(From [10])

the N +1 pipes, the boundary conditions
pi(li, t) = pµN(i)(0, t) = pout

µN(i)
(t) (2a)

qi(li, t) = qµN(i)(0, t)+qout
µN(i)

(t) (2b)
for i ∈ {0,1, . . . ,n}, where

µN(i) := i+1(mod N +1), (3)
are imposed. The signals pout

i ,qout
i represent respectively the

pressure and net outflow from the junction situated by the
outlet of pipe i. Assume pout

i ,qout
i together with the auxiliary

flow sensor signal
q0,0(t) := q0(0, t) (4)

are measured (see Figure 1). It is then shown in Lemma 3.2
of [10] that the ring-shaped pipe network system (1)–(2)
is via an invertible change of coordinates mapped into an
interconnection (cascade) of 2× 2 linear hyperbolic PDE
systems in (ui,vi) coordinates, defined over x ∈ (0,1) and
t > 0. Given the boundary output signal

y(t) := v0(0, t), (5)
which is constructed from a linear combination of q0,0 and
pout

0 , an adaptive observer for the plant in (ui,vi) coordinates
is designed in [10] to produce estimates ûi, v̂i, κ̂ of the un-
known states ui,vi and unknown parameter κ characterising
leaks in the network. The observer reads

∂t ûi(x, t) =−λi∂xûi(x, t)+ ci1(x)v̂i(x, t)

+P+
i (x)(y(t)− v̂0(0, t)) (6a)

∂t v̂i(x, t) = λi∂xv̂i(x, t)+ ci2(x)ûi(x, t)

+P−i (x)(y(t)− v̂0(0, t)) (6b)
û0(0, t) = ϕ0y(t)+σ0(t) (6c)

v̂i−1(1, t) = ϑi−1ûi−1(1, t)+ τi,i−1v̂i(0, t)+σi,i−1(t) (6d)
ûi(0, t) = ϕiv̂i(0, t)+ τi−1,iûi−1(1, t)+σi−1,i(t) (6e)

v̂N(1, t) = ϑN ûN(1, t)+σN(t)+ κ̂(t) (6f)
˙̂κ(t) = L(y(t)− v̂0(0, t)) (6g)

where (6a)–(6b) are valid for i ∈ {0,1, . . . ,N}, while (6d)–
(6e) are valid for i∈ {1, . . . ,N}. The other system parameters
used in (6) are defined as

ci,1(x) :=−λiγie2γix, ci,2(x) :=−λiγie−2γix (7a)

λi :=
1
li

√
β

ρ
, γi :=

liFi

2
√

βρ
(7b)

ϕ0 := 1, ϕi :=
Ai−1−Ai

Ai +Ai−1
(7c)

ϑi−1 := e−2γi−1
Ai−Ai−1

Ai +Ai−1
, ϑn :=−e−2γn (7d)

τi,i−1 := 2e−γi−1
Ai−1

Ai +Ai−1
, τi−1,i := 2e−γi−1

Ai

Ai +Ai−1
(7e)

while the boundary input signals σi,i−1,σi−1,i,σN are known
signals of time computed from the junction pressure and
flow measurements (see [10] for their respective definitions).
In (6), P+

i ,P−i : [0,1] 7→R, L∈R are output injection gains, or
observer gains, that need to be carefully selected to provide
convergent estimates.

To find suitable expressions for these gains, the problem
is reformulated as finding P+

i ,P−i such that the dynamics of
the estimation errors ũi := ui− ûi, ṽi := vi− v̂i, κ̃ := κ − κ̂

converge to the origin in some sense. In [10] this is done
via the backstepping methodology, where a suitable target
system in (α̃i, β̃i, κ̃) is designed and which by Lemma 4.4
from [10] has a globally exponentially stable origin. The
expressions for P+

i , P−i are then uniquely found to be those
for which the diffeomorphism

κ̃(t) = κ̃(t) (8a)

ũi(x, t) = α̃i(x, t)−
∫ x

0

(
Kαα

i,i (x,ξ)α̃i(ξ , t)

+Kαβ

i,i (x,ξ)β̃i(ξ , t)
)

dξ −
i−1

∑
j=0

∫ 1

0

(
Kαα

j,i (x,ξ)α̃ j(ξ , t)

+Kαβ

j,i (x,ξ)β̃ j(ξ , t)
)

dξ (8b)

ṽi(x, t) = β̃i(x, t)−
∫ x

0

(
Kβα

i,i (x,ξ)α̃i(ξ , t)

+Kββ

i,i (x,ξ)β̃i(ξ , t)
)

dξ −
i−1

∑
j=0

∫ 1

0

(
Kβα

j,i (x,ξ)α̃ j(ξ , t)

+Kββ

j,i (x,ξ)β̃ j(ξ , t)
)

dξ (8c)

exists between the dynamics of (ũi, ṽi, κ̃) and (α̃i, β̃i, κ̃), and
are given by

P+
i (x) =−λ0Kαβ

0,i (x,0)−Lgα
i

(
−1+

∫ x

0
Kαα

i,i (x,ξ)dξ

)
−Lgβ

i

∫ x

0
Kαβ

i,i (x,ξ)dξ −
i−1

∑
j=0

Lgα
j

∫ 1

0
Kαα

j,i (x,ξ)dξ

−
i−1

∑
j=0

Lgβ

j

∫ 1

0
Kαβ

j,i (x,ξ)dξ (9a)

P−i (x) =−λ0Kββ

0,i (x,0)−Lgα
i

∫ x

0
Kβα

i,i (x,ξ)dξ

−Lgβ

i

(
−1+

∫ x

0
Kββ

i,i (x,ξ)dξ

)
−

i−1

∑
j=0

(
Lgα

j

∫ 1

0
Kβα

j,i (x,ξ)dξ +Lgβ

j

∫ 1

0
Kββ

j,i (x,ξ)dξ

)
,

(9b)
where L is chosen so that gβ

0 L > 0 (see Lemma 4.4 from [10]
for the definition of gβ

0).

Furthermore, the integral kernels Kαα
j,i , Kαβ

j,i , Kβα

j,i , Kββ

j,i ,

for i ∈ {0,1, . . . ,N}, j ∈ {0,1, . . . , i}, defining the backstep-
ping transformation (8) are found to satisfy

−λi∂ξ Kαβ

i,i (x,ξ) =−λi∂xKαβ

i,i (x,ξ)+ ci,1(x)K
ββ

i,i (x,ξ)

(10a)

−λi∂ξ Kββ

i,i (x,ξ) = λi∂xKββ

i,i (x,ξ)+ ci,2(x)K
αβ

i,i (x,ξ) (10b)

Kαβ

i,i (x,x) =
−ci,1(x)

2λi
(10c)

Kββ

i,i (1,ξ) = ϑiK
αβ

i,i (1,ξ)+ τi+1,iK
ββ

i,i+1(0,ξ) (10d)
and

λi∂ξ Kαα
i,i (x,ξ) =−λi∂xKαα

i,i (x,ξ)+ ci,1(x)K
βα

i,i (x,ξ) (11a)

λi∂ξ Kβα

i,i (x,ξ) = λi∂xKβα

i,i (x,ξ)+ ci,2(x)Kαα
i,i (x,ξ) (11b)

Kβα

i,i (x,x) =
ci,2(x)

2λi
(11c)

Kαα
i,i (1,ξ) =

ϕi+1

ϕi+1ϑi− τi,i+1τi+1,i
Kβα

i,i (1,ξ)

−
τi+1,i

ϕi+1ϑi− τi,i+1τi+1,i
Kαα

i,i+1(0,ξ) (11d)

for j = i (where for i = N we have τN+1,N = 0) and coupled
over the triangular domain T := {(x,ξ) | 0 ≤ ξ ≤ x ≤ 1}.
For 0≤ j < i they are given by
−λ j∂ξ Kαβ

j,i (x,ξ) =−λi∂xKαβ

j,i (x,ξ)+ ci,1(x)K
ββ

j,i (x,ξ)

(12a)

−λ j∂ξ Kββ

j,i (x,ξ) = λi∂xKββ

j,i (x,ξ)+ ci,2(x)K
αβ

j,i (x,ξ) (12b)

Kαβ

j,i (x,1) =
λ j+1

λ jτ j+1, j
(Kαβ

j+1,i(x,0)−ϕ j+1Kαα
j+1,i(x,0))

(12c)

Kββ

j,i (x,1) =
λ j+1

λ jτ j+1, j
(Kββ

j+1,i(x,0)−ϕ j+1Kβα

j+1,i(x,0))

(12d)

Kαβ

j,i (0,ξ) = ϕiK
ββ

j,i (0,ξ)+ τi−1,iK
αβ

j,i−1(1,ξ) (12e)

Kββ

j,i (1,ξ) = ϑiK
αβ

j,i (1,ξ)+ τi+1,iK
ββ

j,i+1(0,ξ) (12f)
and

λ j∂ξ Kαα
j,i (x,ξ) =−λi∂xKαα

j,i (x,ξ)+ ci,1(x)K
βα

j,i (x,ξ) (13a)

λ j∂ξ Kβα

j,i (x,ξ) = λi∂xKβα

j,i (x,ξ)+ ci,2(x)Kαα
j,i (x,ξ) (13b)

Kαα
j,i (x,1) =

λ j+1

λ jτ j+1, j
(ϑ jK

αβ

j+1,i(x,0)

+(τ j, j+1τ j+1, j−ϑ jϕ j+1)Kαα
j+1,i(x,0))

(13c)

Kβα

j,i (x,1) =
λ j+1

λ jτ j+1, j
(ϑ jK

ββ

j+1,i(x,0)

+(τ j, j+1τ j+1, j−ϑ jϕ j+1)K
βα

j+1,i(x,0))
(13d)

Kβα

j,i (0,ξ) =
ϑi−1

ϕiϑi−1− τi−1,iτi,i−1
Kαα

j,i (0,ξ)

−
τi−1,i

ϕiϑi−1− τi−1,iτi,i−1
Kβα

j,i−1(1,ξ) (13e)

Kαα
j,i (1,ξ) =

ϕi+1

ϕi+1ϑi− τi,i+1τi+1,i
Kβα

j,i (1,ξ)

−
τi+1,i

ϕi+1ϑi− τi,i+1τi+1,i
Kαα

j,i+1(0,ξ), (13f)

coupled over the square domain S := {(x,ξ) | 0≤ x,ξ ≤ 1}.
The contribution of this paper is to make progress towards

providing explicit expressions for the observer gains in (6),
which were only implicitly defined in [10] by the kernel
equations. We show that after fixing

Fi ≡ F (14)
in (7b) for all i, explicit solutions for (10)–(13) may be
obtained, which also, of course, implies well-posedness
of (10)–(13) under this assumption.

Remark 1.1: Assumption (14) holds when the cross-
sectional area of the pipes and the mean flow through the
pipes are equal, which admittedly is quite restrictive in a
practical setting. For cases when the cross-sectional areas of
the pipes are different, we propose using the mean friction
factor F̄ for the network as the constant friction factor F in
the explicit kernel expressions developed here.

Next in Section II the kernel equations (10)–(13) are
decomposed into 2(N+1) independent systems of equations,
before they are solved explicitly in Section III under the
assumption (14). The results are subsequently demonstrated
on a numerical example in Section IV, before concluding
remarks are offered in Section V.

II. SIMPLIFICATION OF KERNEL EQUATIONS

A. Separating kernels into independent systems

To solve (10)–(13) we propose a structure for the kernels
as a linear combination of multiple “sub-kernels” satisfying
structurally simpler PDE systems. Consider that the expres-
sions for K··j,i are recursively constructed from

Kαβ

j,i (x,ξ) =
γi

2
K̄αβ

j,i, j(x,ξ)+π
1
j

Kαα
j+1,i(x,

λ j+1
λ j

(1−ξ))

Kαβ

j+1,i(x,
λ j+1

λ j
(ξ −1))


(15a)

Kββ

j,i (x,ξ) =−
γi

2
K̄ββ

j,i, j(x,ξ)+π
1
j

Kβα

j+1,i(x,
λ j+1

λ j
(1−ξ))

Kββ

j+1,i(x,
λ j+1

λ j
(ξ −1))


(15b)

Kαα
j,i (x,ξ) =−

γi

2
K̄αα

j,i, j(x,ξ)+π
0
j

Kαα
j+1,i(x,

λ j+1
λ j

(ξ −1))

Kαβ

j+1,i(x,
λ j+1

λ j
(1−ξ))


(15c)

Kβα

j,i (x,ξ) =−
γi

2
K̄βα

j,i, j(x,ξ)+π
0
j

Kβα

j+1,i(x,
λ j+1

λ j
(ξ −1)

Kββ

j+1,i(x,
λ j+1

λ j
(1−ξ))


(15d)

starting from K··N+1,N ≡ 0, in terms of closed-form expres-
sions K̄··j,i,k and π0

j ,π
1
j constant row vectors, all to be found.

For j = i, 0≤ i≤ k ≤ N, consider that K̄αβ

i,i,k, K̄ββ

i,i,k satisfy

(−∂ξ +∂x)K̄
αβ

i,i,k(x,ξ) = γie2γixK̄ββ

i,i,k(x,ξ) (16a)

(−∂ξ −∂x)K̄
ββ

i,i,k(x,ξ) = γie−2γixK̄αβ

i,i,k(x,ξ) (16b)

K̄αβ

i,i,k(x,x) = δi,ke2γix (16c)

K̄ββ

i,i,k(1,ξ) =−ϑiK̄
αβ

i,i,k(1,ξ)

+ τ̄i+1,iK̄
ββ

i,i+1,k(0,ξ) (16d)

and K̄αα
i,i,k, K̄βα

i,i,k satisfy

(−∂ξ −∂x)K̄αα
i,i,k(x,ξ) = γie2γixK̄βα

i,i,k(x,ξ) (17a)

(−∂ξ +∂x)K̄
βα

i,i,k(x,ξ) = γie−2γixK̄αα
i,i,k(x,ξ) (17b)

K̄βα

i,i,k(x,x) = δi,ke−2γix (17c)

K̄αα
i,i,k(1,ξ) =

1
Di+1

(ϕi+1K̄βα

i,i,k(1,ξ)

− τ̄i+1,iK̄αα
i,i+1,k(0,ξ)), (17d)

over T , where we have defined

δ j,k :=

{
1 if j = k,
0 if j ̸= k

, (18)

τ̄ j,i :=
γ j

γi
τ j,i, (19)

Di := detΘi, Θi :=
[

ϕi τi−1,i
τi,i−1 ϑi−1

]
. (20)

Likewise, consider that for 0≤ j < i≤ N, j ≤ k ≤ N, K̄αβ

j,i,k,

K̄ββ

j,i,k satisfy(
−

λ j

λi
∂ξ +∂x

)
K̄αβ

j,i,k(x,ξ) = γie2γixK̄ββ

j,i,k(x,ξ) (21a)(
−

λ j

λi
∂ξ −∂x

)
K̄ββ

j,i,k(x,ξ) = γie−2γixK̄αβ

j,i,k(x,ξ) (21b)

K̄αβ

j,i,k(x,1) = (1−δ j,k)K̄
αβ

j+1,i,k(x,0) (21c)

K̄ββ

j,i,k(x,1) = (1−δ j,k)K̄
ββ

j+1,i,k(x,0) (21d)

K̄αβ

j,i,k(0,ξ) =−ϕiK̄
ββ

j,i,k(0,ξ)

+ τ̄i−1,iK̄
αβ

j,i−1,k(1,ξ) (21e)

K̄ββ

j,i,k(1,ξ) =−ϑiK̄
αβ

j,i,k(1,ξ)

+ τ̄i+1,iK̄
ββ

j,i+1,k(0,ξ) (21f)

and K̄αα
j,i,k, K̄βα

j,i,k satisfy(
−

λ j

λi
∂ξ −∂x

)
K̄αα

j,i,k(x,ξ) = γie2γixK̄βα

j,i,k(x,ξ) (22a)(
−

λ j

λi
∂ξ +∂x

)
K̄βα

j,i,k(x,ξ) = γie−2γixK̄αα
j,i,k(x,ξ) (22b)

K̄αα
j,i,k(x,1) = (1−δ j,k)K̄αα

j+1,i,k(x,0) (22c)

K̄βα

j,i,k(x,1) = (1−δ j,k)K̄
βα

j+1,i,k(x,0) (22d)

K̄βα

j,i,k(0,ξ) =
1
Di

(ϑi−1K̄αα
j,i,k(0,ξ)

− τ̄i−1,iK̄
βα

j,i−1,k(1,ξ)) (22e)

K̄αα
j,i,k(1,ξ) =

1
Di+1

(ϕi+1K̄βα

j,i,k(1,ξ)

− τ̄i+1,iK̄αα
j,i+1,k(0,ξ)), (22f)

over S . We have the following result.
Lemma 2.1: Denote by π0

j , π1
j the row vectors of the 2×2

matrix Π j = [(π0
j)
⊤ (π1

j)
⊤]⊤ defined as

Π j :=
λ j+1

λ jτ j+1, j

[
−D j+1 ϑl
−ϕ j+1 1

]
. (23)

Then the system of kernel equations (10)–(13) is related

x̂

ξ̂

0 L1,1 L2,1 L3,1 L4,1

L1,1

L2,1

Fig. 2: Example of trapezoidal domain T̂k for k = 1, N = 3.

to (16)–(22) via (15).
Proof: Noting that (12e)–(12f) and (13e)–(13f) can

respectively be written in matrix form as[
Kαβ

j,i (0,ξ)

Kββ

j,i−1(1,ξ)

]
= Θi

[
Kββ

j,i (0,ξ)

Kαβ

j,i−1(1,ξ)

]
[

Kβα

j,i (0,ξ)
Kαα

j,i−1(1,ξ)

]
= Θ

−1
i

[
Kαα

j,i (0,ξ)
Kβα

j,i−1(1,ξ)

]
,

and using the definition (23) of Π j, the result is verified
by using (15) to substitute the dynamics and boundary
conditions of (16)–(22) into (10)–(13).

B. Global scaled coordinates

We consider in the following (16), (21), only, due to
considerations of conciseness and space restrictions. The
solutions to (17), (22) may be found in an equivalent manner.

For every k ∈ {0,1, . . . ,N}, define the trapezoidal domain
T̂k := {(x̂, ξ̂) | 0≤ ξ̂ ≤ x̂≤ LN+1,k, ξ̂ ≤ Lk+1,k}, where

Li,k := λkγk

i−1

∑
l=0

1
λl
. (24)

An example of such a domain is shown in Figure 2. Since
the coupled system of equations (16), (21) form an inde-
pendent system for each k ∈ {0,1, . . . ,N}, we would like to
rewrite (16), (21), for each k, as a single system over T̂k.

Introduce therefore ˆ̄K··k over T̂k, where for Li,k < x̂< Li+1,k,
L j,k < ξ̂ < L j+1,k it is defined in terms of K̄··j,i,k, over (x,ξ)∈
T when j = i and (x,ξ) ∈S when j < i, as

ˆ̄Kαβ

k

(
Li,k +

λkγk

λi
x,L j,k +

λkγk

λ j
ξ

)
:= K̄αβ

j,i,k(x,ξ) (25a)

ˆ̄Kββ

k

(
Li,k +

λkγk

λi
x,L j,k +

λkγk

λ j
ξ

)
:= K̄ββ

j,i,k(x,ξ). (25b)

Furthermore, introducing K̂··k as

K̂αβ

k (x,ξ) := e
− γiλi

γkλk
(x−Li,k)−

γ jλ j
γkλk

(ξ−Lk,k) ˆ̄Kαβ

k (x,ξ) (26a)

K̂ββ

k (x,ξ) := e
γiλi
γkλk

(x−Li,k)−
γ jλ j
γkλk

(ξ−Lk,k) ˆ̄Kββ

k (x,ξ) (26b)
we find by combining (16), (21) with (25)–(26)
that K̂αβ

k , K̂ββ

k satisfy
(−∂ξ +∂x)K̂

αβ

k (x,ξ) = µk(x,ξ)K̂
αβ

k (x,ξ)

+νk(x,ξ)K̂
ββ

k (x,ξ) (27a)

(−∂ξ −∂x)K̂
ββ

k (x,ξ) = µk(x,ξ)K̂
ββ

k (x,ξ)

+νk(x,ξ)K̂
αβ

k (x,ξ) (27b)

K̂αβ

k (x,x) =

{
0 if 0 < x < Lk,k

1 if Lk,k < x < Lk+1,k
(27c)

K̂αβ

k (x,Lk+1,k) = 0 if Lk+1,k < x < LN+1,k (27d)

K̂ββ

k (x,Lk+1,k) = 0 if Lk+1,k < x < LN+1,k (27e)

K̂αβ

k (L+
i,k,ξ) =−ϕiK̂

ββ

k (L+
i,k,ξ)

+ eγi−1 τ̄i−1,iK̂
αβ

k (L−i,k,ξ) (27f)

K̂ββ

k (L−i,k,ξ) =−e2γi−1ϑi−1K̂αβ

k (L−i,k,ξ)

+ eγi−1 τ̄i,i−1K̂ββ

k (L+
i,k,ξ), (27g)

over T̂k and L−i,k and L+
i,k are given by

L−i,k := Li,k− ε, L+
i,k := Li,k + ε (28)

for ε > 0 an infinitesimally small real number1, while νk, µk
are piecewise constant functions defined for Li,k < x < Li+1,k
as

νk(x) :=
λkγk

λiγi
, µk(x,ξ) :=

λ jγ j−λiγi

λkγk
. (29)

III. SOLVING THE KERNELS

A. Initial part of solution

We solve in this section (27) under the assumption of (14).
Using the definitions of λi,γi from (7b) we then have that

νk(x)≡ 1, µk(x,ξ)≡ 0,
for all (x,ξ) ∈ T̂k, and the set of equations (27) may be
written as

(−∂ξ +∂x)K̂
αβ

k (x,ξ) = K̂ββ

k (x,ξ) (30a)

(−∂ξ −∂x)K̂
ββ

k (x,ξ) = K̂αβ

k (x,ξ) (30b)

K̂αβ

k (x,x) =

{
0 if 0 < x < Lk,k

1 if Lk,k < x < Lk+1,k
(30c)

K̂αβ

k (x,Lk+1,k) = 0 if Lk+1,k < x < LN+1,k (30d)

K̂ββ

k (x,Lk+1,k) = 0 if Lk+1,k < x < LN+1,k (30e)

K̂αβ

k (L+
i,k,ξ) =−ϕiK̂

ββ

k (L+
i,k,ξ)

+ eγi−1 τ̄i−1,iK̂
αβ

k (L−i,k,ξ) (30f)

K̂ββ

k (L−i,k,ξ) =−e2γi−1ϑi−1K̂αβ

k (L−i,k,ξ)

+ eγi−1 τ̄i,i−1K̂ββ

k (L+
i,k,ξ). (30g)

The equations (30) represent a scalar Goursat problem that
may be solved explicitly. Differently from the previous case
of a single scalar 2× 2 linear hyperbolic Goursat problem
from [11], we have in the problem (30) discontinuous bound-
ary information along the diagonal boundary condition (30c),
as well as vertical interfaces of reflection and transmission
coefficients (30f)–(30g). Overcoming these challenges is the
main contribution of this section.

Firstly, due to the horizontal boundary conditions (30d)–
(30e), together with the direction of the characteristics due
to (30a)–(30b), we have that

K̂αβ

k (x,ξ)≡ K̂ββ

k (x,ξ)≡ 0

1The terms L−i,k , L+
i,k represent a number immediately smaller than

or larger than Li,k , respectively, so that ˆ̄K··k (L
−
i,k, ξ̂) ≡ K̄··j,i−1,k(1,ξ) and

ˆ̄K··k (L
+
i,k, ξ̂)≡ K̄··j,i,k(0,ξ).

for ξ ≥ 2Lk+1,k− x, Lk+1,k < x < LN+1,k. (31)
Hence, the boundary conditions (30d)–(30e) may be re-

placed by the boundary condition
K̂ββ

k (x,2Lk+1,k− x) = 0 for Lk+1,k < x < LN+1,k, ξ > 0.
(32)

To solve for (30) over the remaining part of the domain,
we consider first the region immediately below the point
(x,ξ) = (Lk+1,k,Lk+1,k). Letting

Di,k := min{Li,k−Li−1,k,Li+1,k−Li,k}, (33)
we consider the sub-problem of solving (30) for (x,ξ) ∈
Tk+1,k := {Lk+1,k −Dk+1,k ≤ ξ ≤ x ≤ Lk+1,k} ∪ {Lk+1,k ≤
2Lk+1,k−ξ ≤ x≤ Lk+1,k +Dk+1,k}. Define the constants

Ri, j :=

{A j−Ai
A j+Ai

, if i < N +1

1 for i = N +1
, Ti, j := 2

γ j

γi

Ai

A j +Ai
(34)

and the functions
F0,k(x,ξ) := I0(

√
(2Lk+1,k− x−ξ)(x−ξ)) (35a)

F1,k(x,ξ) :=

√
x−ξ

2Lk+1,k− x−ξ

×I1(
√

(2Lk+1,k− x−ξ)(x−ξ)) (35b)

F−1,k(x,ξ) :=

√
2Lk+1,k− x−ξ

x−ξ

×I1(
√

(2Lk+1,k− x−ξ)(x−ξ)), (35c)
where Im denotes the mth order modified Bessel function of
the first kind. We have the following result.

Lemma 3.1: The solution to (30) over Tk+1,k may be
written explicitly as

K̂αβ

k (x,ξ) =


F0,k(x,ξ)+Rk+1,kF1,k(x,ξ)

if Lk+1,k−Dk+1,k < x < Lk+1,k,

Tk+1,kF0,k(x,ξ)
if Lk+1,k < x < Lk+1,k +Dk+1,k,

(36a)

K̂ββ

k (x,ξ) =


F−1,k(x,ξ)+Rk+1,kF0,k(x,ξ)

if Lk+1,k−Dk+1,k < x < Lk+1,k,

Tk+1,kF−1,k(x,ξ)
if Lk+1,k < x < Lk+1,k +Dk+1,k.

(36b)

Proof: Let k < N. The proof for the case of k = N is
almost identical and hence omitted. Mirroring K̂αβ

k , K̂ββ

k for
Lk+1,k < x < Lk+1,k +Dk+1,k across the line x = Lk+1,k by
defining

Ǩαα
k (x,ξ) := K̂αα

k (Lk+1,k− x,ξ),

Ǩβα

k (x,ξ) := K̂βα

k (Lk+1,k− x,ξ),
the scalar Goursat problem (30) over Tk+1,k may be rewrit-
ten as a 2× 2 matrix Goursat problem for [Ǩαβ

k K̂ββ

k]⊤,
[Ǩββ

k K̂αβ

k]⊤ over (x,ξ)∈{Lk+1,k−Dk+1,k≤ ξ ≤ x≤ Lk+1,k}.
Performing similar steps to [12], the solution to [Ǩαβ

k K̂ββ

k]⊤

is found to satisfy[
Ǩαβ

k (x,ξ)
K̂ββ

k (x,ξ)

]
=

(
I

∞

∑
n=0

(
2Lk+1,k−x−ξ

2)n+1(x−ξ

2)n

n!(n+1)!

+ Θ̂k+1

∞

∑
n=0

(
2Lk+1,k−x−ξ

2)n(x−ξ

2)n

n!n!

(Lk,k,Lk,k)

(Lk+1,k,Lk+1,k)

(Lk+2,k,2Lk+1,k−Lk+2,k)

(Lk,k +Lk+2,k−Lk+1,k,
Lk,k +Lk+2,k−Lk+2,k)

Fig. 3: Diagonally oriented rectangle for which (36) holds,
highlighted by shaded region. Shown for case of Lk+2,k −
Lk+1,k > Lk+1,k−Lk,k.

+
∞

∑
m=0

Θ̂
m+2
k+1

∞

∑
n=0

(
2Lk+1,k−x−ξ

2)n(x−ξ

2)n+m+1

n!(n+m+1)!

−
∞

∑
m=0

Θ̂
m
k+1

∞

∑
n=0

(
2Lk+1,k−x−ξ

2)n(x−ξ

2)n+m+1

n!(n+m+1)!

)[
0
1

]
, (37)

where we have defined
Θ̂k+1 :=

[
−ϕk+1 eγk τ̄k,k+1

eγk τ̄k+1,k −e2γk ϑk

]
(38)

and I denotes the 2 × 2 identity matrix. Applying the
definitions of the reflection and transmission coefficients
from (7c)–(7e) for k < N in (38), we see that Θ̂k+1 is
involutary, so the last two double sums in (37) cancel. Using
then the identity ([14])

∞

∑
n=0

an+mbn

(n+m)!n!
=

√
am

bm Im(2
√

ab),

we may write[
Ǩαβ

k (x,ξ)
K̂ββ

k (x,ξ)

]
=

(√
2Lk+1,k− x−ξ

x−ξ

×I1(
√
(2Lk+1,k− x−ξ)(x−ξ))

+ Θ̂k+1I0(
√
(2Lk+1,k− x−ξ)(x−ξ))

)[
0
1

]
. (39)

Writing (39) out component-wise and mirroring Ǩαβ

k back
across the line x = Lk+1,k, we obtain (36a) for Lk+1,k < x <
Lk+1,k +Dk+1,k and (36b) for Lk+1,k−Dk+1,k < x < Lk+1,k.
Performing similar steps for [Ǩββ

k K̂αβ

k]⊤ yields (36a) for
Lk+1,k −Dk+1,k < x < Lk+1,k and (36b) for Lk+1,k < x <
Lk+1,k +Dk+1,k.

B. Recursive construction of complete solution

To propagate the solutions to (30) beyond that given
within Tk+1,k by (36), firstly by continuity the solutions stay
as (36) within the diagonally oriented rectangle with cor-
ners in (x,ξ) = (Lk,k,Lk,k),(Lk+1,k,Lk+1,k),(Lk,k + Lk+2,k −
Lk+1,k,Lk,k + Lk+1,k − Lk+2,k),(Lk+2,k,2Lk+1,k − Lk+2,k) (see
Figure 3). Below the point (Lk,k,Lk,k), we have the ver-
tical boundary conditions (30f)–(30g) for i = k, and for
x < Lk,k we have that K̂αβ

k (x,x) = 0. Likewise, below the
point (Lk+2,k,2Lk+1,k−Lk+2,k) we have the vertical boundary
conditions (30f)–(30g) for i = k+2.

To deal with these discontinuities, consider that the solu-
tions (36) consist of two components for Lk+1,k−Dk+1,k <
x < Lk+1,k, namely one originating from the boundary data
K̂αβ (x,x) = 1, and the other originating from a reflection

along the vertical interface due to (30f)–(30g). On the other
hand, for Lk+1,k < x < Lk+1,k +Dk+1,k the solutions are seen
to consist of a single component, namely a transmission of
the term that originated in the boundary data K̂αβ (x,x) = 1
through (30f)–(30g).

We suggest therefore that the solution to (30) for (x,ξ) ∈
Tk+2,k := {Lk+2,k −Dk+2,k ≤ ξ − 2(Lk+1,k − Lk+2,k) ≤ x ≤
Lk+2,k}∪{Lk+2,k ≤ 2Lk+2,k−ξ ≤ x≤ Lk+2,k +Dk+2,k} to be
given by

K̂αβ

k (x,ξ) =



Tk+1,k

(
F0,k(x,ξ)

+Rk+2,k+1F1,k(x−2(Lk+2,k−Lk+1,k),ξ)
)

if Lk+2,k−Dk+2,k < x < Lk+2,k

Tk+1,kTk+2,k+1F0,k(x,ξ)
if Lk+2,k < x < Lk+2,k +Dk+2,k,

(40a)

K̂ββ

k (x,ξ) =



Tk+1,k

(
F−1,k(x,ξ)

+Rk+2,k+1F0,k(x−2(Lk+2,k−Lk+1,k),ξ)
)

if Lk+2,k−Dk+2,k < x < Lk+2,k

Tk+1,kTk+2,k+1F−1,k(x,ξ)
if Lk+2,k < x < Lk+2,k +Dk+2,k.

(40b)
It is straightforward to verify by substitution that (40)

satisfy the kernel equations (30) within Tk+2,k. Similar
expressions may be developed for (x,ξ) ∈ Tk,k := {Lk,k −
Dk,k ≤ ξ ≤ x ≤ Lk,k}∪{Lk,k ≤ 2Lk,k− ξ ≤ x ≤ Lk,k +Dk,k}.
The structure of the solutions (36), (40) suggests that the
solution to (30) over the entire trapezoidal domain T̂k may
be constructed recursively via reflections and transmissions
of the initial, unreflected solution component from (36), for
x < Lk+1,k, throughout the solution domain. To do this, we
suggest the routine given by Algorithm 1.

Algorithm 1 Recursive construction of K̂αβ

k , K̂ββ

k

▷ Initialize solution domain
for (x,ξ) ∈ T̂k do

if Lk,k < x < Lk+1,k & 2Lk,k− x < ξ < x then
K̂αβ

k (x,ξ)← F0,k(x,ξ), K̂ββ

k (x,ξ)← F−1,k(x,ξ)
else

K̂αβ

k (x,ξ)← 0, K̂ββ

k (x,ξ)← 0
end if

end for

▷ Solve for K̂αβ

k
Iξ ← (max(0,Lk+1,k−2Dk+1,k), Lk+1,k)
if k < N then

TRANSMITRIGHT(K̂αβ

k , F0,k , k+1, Iξ , 0)
end if
REFLECTLEFT(K̂αβ

k , F0,k , k+1, Iξ , 0)

▷ Solve for K̂ββ

k
if k < N then

TRANSMITRIGHT(K̂ββ

k , F−1,k , k+1, Iξ ,0)
end if
REFLECTLEFT(K̂ββ

k , F−1,k , k+1, Iξ , 0)

The procedures TRANSMITRIGHT, REFLECTLEFT (along
with TRANSMITLEFT, REFLECTRIGHT that are called recur-
sively) used by Algorithm 1 are documented in the Appendix.
We have the following result.

Theorem 3.2: Algorithm 1 halts after a finite number of
steps and produces the explicit solutions to (30) over T̂k.

0 0.2 0.4 0.6 0.8 1

-0.01

-0.005

0

0 0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

0 0.2 0.4 0.6 0.8 1

-0.04

-0.02

0

0 0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

Fig. 4: Observer gains computed for a range of mean friction factors.

Proof: We prove first that the algorithm halts after a
finite number of steps. It can be seen that the upper and lower
bounds of the open intervals Iξ (Li+1,k), Iξ (Li−1,k) passed
in the recursive calls are decreasing with each call while
remaining greater than or equal to zero. Hence, after a finite
number of steps we have that Iξ (Li+1,k), Iξ (Li−1,k)= /0, where
/0 denotes the empty set, and the recursion returns.

Next we prove that the explicit solutions to (30) are
returned after Algorithm 1 halts. Using the definitions (35) of
respectively F0,k,F−1,k, it is verified that the initial solution
produced by Algorithm 1 for Lk,k < x < Lk+1,k, 2Lk,k− x <
ξ < x satisfies (30a)–(30b). Seeing that REFLECTLEFT is
inevitably the first reflection function to be called for both
K̂αβ , K̂ββ , the solution to K̂αβ consists of F0,k,F1,k functions,
only, while K̂ββ only consists of F−1,k,F0,k functions. Since
the recursive calls are made in the same order for both
K̂αβ , K̂ββ , the equations (30a)–(30b) are satisfied throughout
all of T̂k.

For the boundary conditions, because F0,k(x,x) = 1, (30c)
is satisfied for Lk,k < x < Lk+1,k. Due to REFLECTLEFT

we see that K̂αβ (x,x) ∝ F1,k(x,x) = 0 for x < Lk,k and
hence the remainder of (30c) is satisfied. Along the line
(x,Lk+1,k) for x > Lk+1,k, K̂αβ , K̂ββ are both initialized to
0, and since this region is not altered by the recursive
calls, the boundary conditions (30d)–(30e) are satisfied.
Lastly, considering that the variable ∆ that is passed through
successive recursive calls made by the subroutines of Algo-
rithm 1 (see the Appendix) tracks the relative distance in the
x-direction from Lk+1,k, using (35) it is seen that the terms
produced by the recursive calls to the transmit and reflect
functions together with the term produced by the previous
function calling these, for both K̂αβ and K̂ββ , satisfy the
boundary conditions (30f)–(30g) at x = Li+1,k for the case
of TRANSMITRIGHT, REFLECTRIGHT, and x = Li−1,k for
TRANSMITLEFT, REFLECTLEFT.

Having produced explicit solutions to (30) with Algorithm 1,
the explicit solutions K̄αβ

i, j,k, K̄
ββ

i, j,k to (16)–(21) may be ob-
tained by reversing the variable changes done via (25),
(26). Repeating equivalent steps as done in Sections II-
B, III for (17)–(22), explicit solutions K̂αα

k , K̂βα

k from which
explicit solutions K̄αα

i, j,k, K̄
βα

i, j,k may be found. Substituting
these then into (15) yields explicit solutions for the kernel
equations (10)–(13), from which observer gains (9) may be

computed.

IV. NUMERICAL EXAMPLE

We consider here a numerical example of observer
gains (9) computed from the closed-form kernel solutions
developed in Sections II–III. We use the same system pa-
rameters as used in Section VI of [10], apart from the
friction factors, for which a mean value throughout the
network is used for each operating point. In [10] a ring-
shaped water distribution network such as the one shown
in Figure 1 with N = 2 pipes is considered. Hence, a total
of 6 observer gains, namely P+

0 ,P−0 ,P+
1 ,P−1 ,P+

2 ,P−2 need to
be computed from (9) for each operating point. The average
water consumption level considered in [10] results in a mean
friction factor of F̄ ≈ 20 [kg/m3s] throughout the network.

To emphasize the use of the observer gains in a gain-
scheduling setting, we consider the observer gains com-
puted for a range of mean friction factors, representing
variations in the mean water consumption in the network,
a quantity that in practice slowly varies throughout the
day and year [15] based on cyclical variations in water
demand patterns. Specifically, we compute here the observer
gains (9), with i ∈ {0,1,2}, for the mean friction factors
given by F̄ = {5,10,15,20,25,30} [kg/m3s]. Using the mean
friction factors throughout the network for each operating
point, the resultant observer gains calculated from the explicit
solutions for Kαα

j,i ,K
βα

j,i ,K
αβ

j,i ,K
ββ

j,i are plotted in Figure 4.
It is seen from Figure 4 that the observer gains vary in

magnitude as the mean friction in the network changes. In
general it is seen that for lower mean friction factor F̄ ,
the constant offset terms Lgα

i ,Lgβ

i for respectively P+
i ,P−i

dominate the gains, with the gains gradually shifting away
from these values as the mean friction factor increases.
Additionally, for P±1 , P±2 there is a clear discontinuity within
the domain of each of the respective gains. For P±1 , the
location of the discontinuity is, for the parameters used here,
calculated to be at x = λ1

λ0
= 0.833, being the point where

the characteristic line originating from the point (L1,k,L1,k)
intersects the x̂-axis between x̂ = L1k and x̂ = L2k (x̂ being in
the global coordinates from Section II-B). Likewise, for P±2
the location of the discontinuity is seen, for the particular
parameters used here, to be at x = 2−λ2(

1
λ0

+ 1
λ1
) = 0.533,

which corresponds to the point where the characteristic line
originating from (L2,k,L2,k) intersects the x̂-axis between x̂ =

L2,k and x̂ = L3,k, after reflecting from the vertical boundary
located along (L3,2, ξ̂).

V. CONCLUSION

A method for finding the explicit solutions to the kernel
equations (10)–(13), under the assumption (14), for the
computation of observer gains (9) has been developed. The
explicit solution is found from the recursive procedure given
in Algorithm 1 together with coordinate changes (15)–(25),
(26), and is expressed in terms of modified Bessel functions
of the first kind. The main practical value of having explicit
expressions for the kernel equation solutions is in a gain-
scheduling setting, where the observer gains need to be
updated by recomputing the kernel equations as underlying
parameters change. Since Algorithm 1 only needs to be run
once for each value of k for a given network configuration to
obtain the explicit kernel solutions, the kernel equations can
in this case be updated as the mean network friction changes
by simply varying the mean network friction parameter in the
closed-form expressions for the solution, and sampling the
solution at the desired grid points.

One direction for future work building on the contribution
of this paper is to study how well using the mean friction fac-
tor of the entire network in computing the observer gains via
the explicit expressions found here compares to numerically
approximating the kernels with different friction factors for
each pipe in the network. Also, future work should address
whether explicit solutions to the kernel equations (10)–(13)
may be found without the restriction (14), and additionally
whether the kernel solution method developed here extends
itself to finding explicit kernel equation solutions associated
to more complex topologies than a single branching point as
considered in [12] or a loop-shaped network as considered
here.

REFERENCES

[1] M. A. Adegboye, W.-K. Fung, and A. Karnik, “Recent advances in
pipeline monitoring and oil leakage detection technologies: Principles
and approaches,” Sensors, vol. 19, no. 11, p. 2548, 2019.

[2] S. El-Zahab and T. Zayed, “Leak detection in water distribution
networks: an introductory overview,” Smart Water, vol. 4, no. 1, pp.
1–23, 2019.

[3] F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline
protection,” Journal of Natural Gas Science and Engineering, vol. 1,
no. 4-5, pp. 134–143, 2009.

[4] L. Billmann and R. Isermann, “Leak detection methods for pipelines,”
Automatica, vol. 23, no. 3, pp. 381–385, 1987.

[5] C. Verde, “Minimal order nonlinear observer for leak detection,” J.
Dyn. Sys., Meas., Control, vol. 126, no. 3, pp. 467–472, 2004.

[6] G. Besançon, D. Georges, O. Begovich, C. Verde, and C. Aldana,
“Direct observer design for leak detection and estimation in pipelines,”
in 2007 European Control Conference (ECC). IEEE, 2007, pp. 5666–
5670.

[7] O. M. Aamo, “Leak detection, size estimation and localization in pipe
flows,” IEEE Transactions on Automatic Control, vol. 61, no. 1, pp.
246–251, 2015.

[8] R. Vazquez, M. Krstic, and J.-M. Coron, “Backstepping boundary
stabilization and state estimation of a 2× 2 linear hyperbolic system,”
in 2011 50th IEEE conference on decision and control and european
control conference. IEEE, 2011, pp. 4937–4942.

[9] H. Anfinsen and O. M. Aamo, “Leak detection, size estimation and
localization in branched pipe flows,” Automatica, p. 110213, 2022.

[10] N. C. A. Wilhelmsen and O. M. Aamo, “Leak detection, size estima-
tion and localization in water distribution networks containing loops,”
in 61st IEEE Conference on Decision and Control (CDC), 2022, pp.
5429–5436.

[11] R. Vazquez and M. Krstic, “Marcum q-functions and explicit kernels
for stabilization of 2× 2 linear hyperbolic systems with constant
coefficients,” Systems & Control Letters, vol. 68, pp. 33–42, 2014.

[12] N. C. A. Wilhelmsen and O. M. Aamo, “Explicit backstepping kernel
solutions for leak detection in branched pipe flows,” IEEE Control
Systems Letters, vol. 7, pp. 913–918, 2022.

[13] R. A. Bajura, “A model for flow distribution in manifolds,” Journal
of Engineering for Power, vol. 93, no. 1, pp. 7–12, 1971.

[14] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions
with formulas, graphs, and mathematical tables. US Government
printing office, 1964, vol. 55.

[15] D. R. Maidment and S.-P. Miaou, “Daily water use in nine cities,”
Water Resources Research, vol. 22, no. 6, pp. 845–851, 1986.

APPENDIX

The subroutines used in Algorithm 1 are documented
here. The symbol /0 denotes the empty set.

procedure TRANSMITRIGHT(K, dK, i, (ξl , ξu), ∆)
Ix ← (Li,k , Li+1,k)
Iξ (x)← (max(0,ξl − x+Li,k), max(0,ξu− x+Li,k))
for x ∈ Ix, ξ ∈ Iξ (x) do

K(x,ξ)← K(x,ξ)+Ti,i−1dK(x,ξ)
end for
if Iξ (Li+1,k) ̸= /0 then

∆← ∆−2(Li+1,k−Li,k)
if i < N then

TRANSMITRIGHT(K, Ti,i−1dK, i+1, Iξ (Li+1,k), ∆)
end if
REFLECTLEFT(K, Ti,i−1dK, i+1, Iξ (Li+1,k), ∆)

end if
end procedure

procedure TRANSMITLEFT(K, dK, i, (ξl , ξu), ∆)
Ix ← (Li−1,k , Li,k)
Iξ (x)← (max(0,ξl + x−Li,k), max(0,ξu + x−Li,k))
for x ∈ Ix, ξ ∈ Iξ (x) do

K(x,ξ)← K(x,ξ)+Ti−1,idK(x,ξ)
end for
if Iξ (Li−1,k) ̸= /0 then

∆← ∆+2(Li,k−Li−1,k)
TRANSMITLEFT(K, Ti−1,idK, i−1, Iξ (Li−1,k), ∆)
REFLECTRIGHT(K, Ti−1,idK, i−1, Iξ (Li−1,k), ∆)

end if
end procedure

procedure REFLECTRIGHT(K, dK, i, (ξl , ξu), ∆)
Ix ← (Li,k , Li+1,k)
Iξ (x)← (max(0,ξl − x+Li,k), max(0,ξu− x+Li,k))
for x ∈ Ix, ξ ∈ Iξ (x) do

dM(x,ξ)← (−∂ξ +∂x)dK(x+∆,ξ)
K(x,ξ)← K(x,ξ)+Ri−1,idM(x,ξ)

end for
if Iξ (Li+1,k) ̸= /0 then

∆← ∆−2(Li+1,k−Li,k)
if i < N then

TRANSMITRIGHT(K, Ri−1,idM, i+1, Iξ (Li+1,k), ∆)
end if
REFLECTLEFT(K, Ri−1,idM, i+1, Iξ (Li+1,k), ∆)

end if
end procedure

procedure REFLECTLEFT(K, dK, i, (ξl , ξu), ∆)
Ix ← (Li−1,k , Li,k)
Iξ (x)← (max(0,ξl + x−Li,k), max(0,ξu + x−Li,k))
for x ∈ Ix, ξ ∈ Iξ (x) do

dM(x,ξ)← (−∂ξ −∂x)dK(x+∆,ξ)
K(x,ξ)← K(x,ξ)+Ri,i−1dM(x,ξ)

end for
if Iξ (Li−1,k) ̸= /0 then

∆← ∆+2(Li,k−Li−1,k)
TRANSMITLEFT(K, Ri,i−1dM, i−1, Iξ (Li−1,k), ∆)
REFLECTRIGHT(K, Ri,i−1dM, i−1, Iξ (Li−1,k), ∆)

end if
end procedure

