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Abstract
Most cameras use a single-sensor arrangement with a color

filter array. Color interpolation techniques performed during im-
age demosaicing can be the reason behind visual artifacts gener-
ated in a captured image. While the severity of the artifacts de-
pends on the demosaicing methods used, the artifacts themselves
are mainly zipper artifacts (block artifacts across the edges) and
false-color distortions. In this study and to evaluate the per-
formance of demosaicing methods, a subjective pair-comparison
method with 15 observers was performed on six different meth-
ods (namely Nearest Neighbours, Bilinear interpolation, Lapla-
cian, Adaptive Laplacian, Smooth hue transition, and Gradient-
Based image interpolation) and nine different scenes. The sub-
jective scores and scene images are then collected as a dataset
and used to evaluate a set of no-reference image quality metrics.
Assessment of the performance of these image quality metrics in
terms of correlation with the subjective scores shows that most of
the evaluated no-reference metrics cannot predict perceived im-
age quality.

Introduction
A single matrix Charge-Coupled Device (CCD) or Comple-

mentary Metal Oxide Semiconductor (CMOS) is employed in
most cameras to measure color at each pixel. To capture colors,
a Color Filter Array (CFA) covers the plane of a CCD or CMOS
sensor that is integrated into modern digital cameras. The sensor’s
photodetectors assess the intensity of light, while CFAs separate
the light wavelength into red, green, and blue color components.
The demosaicing technique produces a full-color image from a
raw sensor Bayer image captured using a single sensor array cov-
ered with a color filter array. When transforming from a Bayer
image to an RGB image, demosaicing algorithms are designed to
fill in the empty pixels. Demosaicing techniques employ differ-
ent methods to estimate the missing data; nevertheless, because
the data is approximated, artifacts may appear in the final image,
raising the need for evaluating image quality.

In this study, we first aim to conduct a subjective analysis on
simulated images from the ISETCam toolbox [1] to investigate
the quality of the images generated using different demosaicing
approaches. Then, using the subjective data collected, we aim to
evaluate the performance of different no-reference image quality
metrics.

The content of this article is organized in the following way:
first we give a summary of related research conducted in image
quality assessment of demosaiced images. Then we introduce the
methodology, before we present the results, and in the final sec-
tion we conclude and present possible future directions.

Related Works
Lu et al. [2] provide two additions to CFA demosaicing.

That is, a more effective image demosaicing technique for pro-
ducing images with improved quality and an advanced method
to assess the performance of a demosaicing technique. The pro-
posed demosaicing technique involves two phases: an approxi-
mation phase that uses spatial and spectral associations within
surrounding pixels to approximate empty pixel information and
a post-processing step that employs median filtering to decrease
obvious demosaicing distortions. ∆E∗

ab and PSNR is used to eval-
uate fidelity, and a new measure is proposed to quantify zipper
artifacts. They conclude that these measures are useful for evalu-
tating demosaicing algorithms.

Lamb et al. [3] subjectively evaluated four different de-
mosacing algorithms on 31 reference images. The algorithms
used were Bilinear Interpolation, Freeman, Alternating Projection
(AP), and High-quality linear interpolation. The analysis of the
results indicates that blur and color halos are the most important
quality aspects.

Sergej et al. [4] conducted subjective experiments in which
observers manually marked visible artifacts on demosaiced im-
ages. These subjective markings were further compared to the
results from image quality metrics, namely SSIM, HDR-VDP2,
S-CIELAB, and MSE. HDR-VDP2 was best correlated with sub-
jective markings.

Gasparini et al. [5] investigated how distortions introduced
after demosaicing impact image quality and suggested a new no-
reference metric to evaluate them. A subjective experiment found
blur and the zipper pattern to be important, and this was incorpo-
rated into their no-reference metric. The metric was evaluated by
9 observers on 10 images reproduced by 9 algorithms. The metric
was shown to produce a good correlation with subjective ratings.

Methodology
Simulation of a camera imaging pipeline

ISETCam [1] is a Matlab toolbox that experts can use to
evaluate image quality and simulate imaging systems. We use
this toolbox to simulate a camera imaging pipeline. Six com-
mon and exemplary demosaicing approaches are considered for
this research, each with a different level of complexity and work-
ing mechanism. nearest-neighbour, bilinear interpolation, smooth
hue transition, gradient-based color interpolation, Laplacian, and
adaptive Laplacian are the image demosaicing techniques taken
into account in this work.

The color information of the nearest neighbor is used to fill
the blank pixels in nearest-neighbor interpolation. This type of in-
terpolation produces unappealing blocky effects and is rarely uti-
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lized unless a fast execution is required. An empty pixel is filled
via bilinear interpolation which is the average of its non/empty
neighboring pixel [6]. There are obvious chroma artifacts in
places containing detail in bilinear interpolation where color in-
formation has been interpolated and the detail is somewhat dis-
placed across color channels. We can decrease chrominance arti-
facts by interpolating hue values instead of just the chrominance
values if hues are characterized as the proportions of chrominance
and luminance assuming that we have previously approximated
the luminance. The green channel is used to estimate luminance,
while the red and blue channels are used to estimate chrominance
in the smooth hue transition method [7]. This is sufficient since
50 percent of the pixels collected are green as the human visual
system is more sensitive to the green wavelength in the visual
spectrum. The hue approximation uses the green channel, which
is bilinearly interpolated by

G = Ĝ∗

0 1 0
1 4 1
0 1 0

 . (1)

The relative intensity of red is determined with respect to the
green channel using

R = Gpt.wise ×

(R̂pt.wise ÷G)∗ 1
4

1 2 1
2 4 2
1 2 1

 (2)

which is also used for blue channel estimation. In EQ. (2), R̂, B̂,
Ĝ refers to the Red, Blue, and Green layes of the Bayer image and
R, G, B correspond to the constructed RGB image channels after
interpolation.

A common problem among the different techniques dis-
cussed so far is that they approximate color information over
edges, resulting in less sharp borders in the output images and
distortions across the edges. With the adaptive approximation of
the green pixels based on local horizontal and vertical gradients,
the gradient-based interpolation approach tries to prevent inter-
polating over edges. The horizontal and vertical gradient can be
determined by calculating the second derivative in both directions.
In doing so, the artifacts along the edges are minimized. Using

Hx,y = |
Sx,y−2 +Sx,y+2

2
−Sx,y|, (3)

and

Vx,y = |
Sx−2,y +Sx+2,y

2
−Sx,y|, (4)

the second derivatives in the horizontal (H) and vertical (V) direc-
tion can be calculated. It should be noted that all S values for any
conceivable x and y result from the same pixel. The green pixels
can be approximated using

Gx,y =


Ĝx,y, if Sx,yis green
Ĝx,y−1+Ĝx,y+1

2 , if Hx,y <Vx,y
Ĝx−1,y+Ĝx+1,y

2 , if Hx,y >Vx,y
Ĝx,y−1+Ĝx,y+Ĝx−1,y+Ĝx+1,y

4 , if Hx,y =Vx,y

. (5)

After applying edge-aware interpolation on the green channel,
gradient-based algorithm approximates only the red and green

Figure 1. Reference images used for ISETCam demosaicing simulation.

Figure 2. Cropped versions of six demosaiced images simulated us-

ing six distinct image demosaicing algorithms (a) Bilinear Interpolation (BI)

(b) Smooth Hue Transition (c) Adaptive Laplacian (d) Laplacian (e) Nearest

Neighbours and (f) Gradient-Based color interpolation

chrominance by eliminating the luminance component G. Then
red and blue chrominance interpolation can be applied with no
gradient consideration due to unnoticeable edge approximation.
Finally, both the red and blue channels are reconstructed by
adding the green channel.

Dataset Collection and Preprocessing
For conducting our subjective experiment, the Colourlab Im-

age Database: Image Quality (CID:IQ) [8] was used. CID:IQ con-
tains 23 reference images spanning a wide variety of aspects, such
as spatial information and colorfulness. However, the reference
images for our work were selected with a couple of parameters in
mind. First, the duration of the subjective experiment as observers
would attend the experiment and it should not be tedious for them.
Seven images from the original dataset wass selected for the final
experiment (1). Second, generally, the artifacts of the demosaiced
images are observed mostly on the edge of the images, and so
the images taken into account for the experiment have a compara-
tively higher number of vertical or horizontal edges. In addition to
the CID:IQ dataset, a single image was collected from the LIVE
[9] dataset and another was captured by the authors (Fig. 3). How-
ever, portions of the images were cropped at the size of a 400x400
pixel window to allow observers to focus on a specific region with
more edge information. Then six demosaicing algorithms were
applied to those cropped images (Fig. 2).

After applying the demosaicing algorithms during imaging
system simulation, two types of image artifacts were induced.
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Figure 3. The false-color distortion is introduced with a variety of levels in

the demosaiced images. The demosaicing methods are (a) Adaptive Lapla-

cian (b) Bilinear Interpolation (BI) (c) Laplacian (d) Nearest Neighbours (e)

Smooth Hue Transition (f) Gradient-Based color interpolation

The zipper artifacts (Fig. 2) where the zipper distortions along
the edges are generated at different levels by the demosaicing al-
gorithms. The false-color distortion where in the case of one of
our reference images we can notice the false-color artifacts along
the vertical edges with also level variation after applying the same
color interpolation methods (Fig. 3).

Psychophysical Experiment
The subjective experiment is conducted in a controlled en-

vironment where all observers are provided with an identical en-
vironment or experimental setup during the experiment. A cali-
brated display with 80 cd/m2 and D65 white point is used for the
experiment. To control the viewing distance a chin rest is also
placed at a distance of 60cm from the calibrated display (Fig. 4).

The subjective experiment is carried out in a paired compar-
ison format [10]. In this pairwise comparison, two images, gen-
erated by two distinct demosaicing techniques, are placed side by
side. The experiment consisted of 135 pair comparisons. A to-
tal of 15 observers participated in this experiment following the
recommendation by CIE [11]. Observers were instructed to select
the image which has the perceptually better quality. The sequence
of pair comparison is random for all observers. A neutral gray
background is placed behind each of the image pairs. The whole
experiment is hosted on the QuickEval [12] platform. The ratings
from the observers were converted into z-scores [13] (Fig. 5).

Figure 4. Subjective experiment set-up consisting of calibrated display and

a chin wrist to hold observers’ viewing direction stability
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Figure 5. Z-scores from subjective experiment for all images.

Result and Discussion
Subjective results

From the z-scores calculated, we can see that the gradient
based interpolation produces the most preferred images by the
observers while the nearest neighbourhood interpolation produces
the least preferred images. Investigation of the individual images
show that there are differences between the images based on con-
tent. In general, observers have been able to differentiate between
the interpolation methods.

Almost all the demosaiced algorithms produce chromatic
distortion in the image that has some kind of repetitive patterns.
This kind of artifact can be addressed as false color distortion.
Bilinear, Laplacian, nearest-neighbor, and smooth hue transition
introduce this pattern of distortion in the image, which is sig-
nificantly reduced with adaptive Laplacian (Fig. 3). However,
Gradient-based color interpolation is able to avoid this kind of
chromatic artifact.

Image Quality Metrics
We have selected 35 state of the art no-reference IQMs.

These are ARISMC [14], ARISML [14], BIQAA [15], BIQI [16],
BIQME [17], BLIINDS2 [18], BlurMetric [19], BQMS [20],
BRISQUE [21], CPBDM [22], ContrastNoReference [23],
EBCM [24], ENIQA [25], FRIQUEE [26], GIF [27], HOSA [28],
IEDD [29], ILNIQUE [30], JNBM [31], JNDDCT [32],
JPEG2000 [33], JPEGF [34], JPEGQS [35], JPEGS [35],
LPCGray [36], NFERM [37], NIQMC [17], NJQA [38], NR-
JPEG2000 [39], PSI [40], QCCE [41], SF [42], SISBLIM [43],
SPARISH [44], and niqe [45]. Linear Pearson (Fig. 6) and Spear-
man (Fig. 7) correlation was calculated for each of the IQMs and
the subjective scores collected for the dataset.

From the results (Fig. 6) we can see that JNBM has the high-
est Pearson correlation coefficient and that many IQMs in general
perform poorly. This indicates that the dataset is difficult for most
IQMs. The analysis of the Spearman correlation (Fig. 7) shows
a similar trend, with JNBM having a slightly lower coefficient.
Further analysis indicated that JNBM predicts images with the
lowest subjective scores more correctly, which gives a correlation
between a cluster of images with the lowest subjective scores and
the rest, but that the rank order within these is lower. Overall, the
dataset is a challenging task for the IQMs.

We also calculated the linear Pearson correlation per image,
where the correlation between the IQMs and the subjective scores
for each of the six demoasaiced versions of each image has been
calculated (Fig. 8). We can see that JNBM provides higher corre-
lation coefficients for each image. There are also IQMs that have
higher correlation coefficients for some images, such as QCCE
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Linear Pearson correlation values with a 95% confidence interval.
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Figure 6. Linear Pearson correlation between the subjective scores (z-scores) and IQM values. Higher value indicate better performance.

Linear Spearman correlation values with a 95% confidence interval.
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Figure 7. Linear Spearman correlation between the subjective scores (z-scores) and IQM values. Higher value indicate better performance.
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Linear Pearson correlation per image
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Figure 8. Linear Pearson correlation for each image in the dataset for each

IQM. For each value there are six datapoints. Higher value indicate better

performance.

and SISBLIM. QCCE has a lower overall Pearson correlation
(Fig. 6) which indicates scale differences between images, which
has been reported for other IQMs in the previous works [46].

Conclusion
The objective of this research includes formulating a psycho-

metric experiment in a controlled environment for investigating
several demosaicing algorithms. The images, used in the subjec-
tive experiment, are generated using a camera imaging pipeline
with ISETCam. Demosaicing algorithms are incorporated while
transforming sensor images to RGB images. In most cases,
the gradient-based demosaicing technique provides visually more
pleasant images while nearest neighbour interpolation produces
the comparatively low-perceptual quality images. However, the
content of an image also plays a significant role, which can be
explored more in the future. The dataset containing images and
subjective scores has also been used to evaluate no-reference im-
age quality metrics to see if metrics can predict perceived image
quality. The results indicate that many metrics are not capable of
predicting perceived image quality. Some metrics have a higher
correlation with perceived quality. The dataset can be downloaded
from www.colourlab.no.
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