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a  b  s  t  r  a  c  t  
 

The general aim of multi-focus image fusion is to gather focused regions of different images to generate a unique all-in-focus fused image. Deep learning based methods become 

the mainstream of image fusion by virtue of its powerful feature representation ability. However, most of the existing deep learning struc- tures failed to balance fusion quality and 

end-to-end implementation convenience. End-to-end decoder design often leads to unrealistic result because of its non-linear mapping mechanism. On the other hand, generating an 

intermediate decision map achieves better quality for the fused image, but relies on the rectification with empirical post-processing parameter choices. In this work, to handle the 

requirements of both output image quality and comprehensive simplicity of structure implementation, we propose a cascade network to simultaneously generate decision map 

and fused result with an end-to-end training procedure. It avoids the dependence on empirical post-processing methods in the inference stage. To improve the fusion quality, 

we introduce a gradient aware loss function to preserve gradient information in output fused image. In addition, we design a decision calibration strategy to decrease the 

time con- sumption in the application of multiple images fusion. Extensive experiments are conducted to compare with 19 different state-of-the-art multi-focus image fusion 

structures with 6 assessment metrics. The results prove that our designed structure can generally ameliorate the output fused image quality, while implementation efficiency 

increases over 30% for multiple images fusion. 

© 2021 Elsevier B.V. All rights reserved. 

 
 

 

1. Introduction 

 

The multi-focus image fusion is an important topic in image processing. The limitation of optical 

lenses naturally presents that only objects within the depth-of-field (DOF) have a focused and clear 

appearance in a photograph, while other objects are likely to be blurred. Hence it is difficult for objects at 

varying distances to all be in focus in one camera shot [1]. Many algorithms have been designed to create 

an all-in-focus image by fusing multiple source images that capture the same scene with different focus 
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points. The fused image can be used for visualization and further processing, such as object recognition 

and segmentation. 

Deep learning based solutions [2] are accepted to be the prevail- ing choice for image fusion by virtue of 

its powerful feature repre- sentation ability. Yu Liu introduced a convolution neural network (CNN) to image 

fusion and proposed a CNN-Fuse fusion method to recognize which part of the image is in-focus with a 

supervised deep learning structure [3]. CNN-Fuse reached a better perfor- mance compared to 

traditional fusion algorithms based on the handcrafted features. Boyuan Ma moved further in applying 

an unsupervised training strategy to fuse images, termed as SESF- Fuse [4]. It avoided heavy 

labeling work for images to train the network. 

Although deep learning has reached relatively good perfor- mance in multi-focus image fusion, the 

new problems yielded with complex structure design remain unsolved. There are three ques- 
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tions that deserve higher priorities. 1) The balance between fusion quality and end-to-end implementation 

convenience [5]. Some structures tried to use a decoder to directly output the final fused result [6,7]. 

However, they did not preserve true pixel values in the source image and hardly achieve good performance in 

fusing eval- uation due to the nonlinear mapping mechanism in the decoder. Some other structures 

generated intermediate decision map (DM) to reconstruct fused result with high quality [3,8]. But they 

relied highly on post-processing method (or consistency verifica- tion) choices. These methods require 

empirical parameters to rec- tify the DM, resulting in limits the generalization of them to different 

scenes of image fusion. 2) The gradient feature contains rich beneficial information for multi-focus image 

fusion. However, it was overlooked in many designs. Some deep learning structures used the l2 and SSIM 

objective functions to optimize the network [9,10]. These made the gradient feature completely lost 

during training procedure. 3) The efficiency in multiple images fusion. Currently, most of the multi-

focus fusion structures focus on two images based fusion application. With multiple images fusion, the 

strategy is to go one by one in serial sequence [4]. However, the time consumption is scarcely acceptable for 

big volume image fusion. 

In order to counterpoise the requirements of fused image qual- ity and training simplicity, we design a 

gradient aware cascade structure, termed GACN.2 It simultaneously generates decision map and fused 

result with an end-to-end training procedure. The original pixel values in the source are retained to optimize 

output fused image bypassing empirical post-processing methods. Further- more, we modify a commonly 

used gradient based evaluation metric as the training loss function in order to preserve gradient informa- tion. 

For multiple images fusion, we simplify redundant calculations by proposing a calibration module to acquire the 

activity levels of all images. It helps to significantly decrease the time consumption. We highlight our 

contributions as follows: 

 

• We propose a network to simultaneously generate decision map and fused result with an end-to-end 
training procedure. 

• We introduce a gradient aware loss function to preserve gradi- ent information and improve output 
fusion quality. 

• We design a decision calibration strategy for multiple images fusion in order to increase 
implementation efficiency. 

• To prove the feasibility and efficiency of the proposed GACN, we conduct extensive experiments to 

compare with 19 different state-of-the-art (SOTA) multi-focus image fusion structures with 6 

assessment metrics. We implement ablation studies 

additionally to test the impact of different loss function in our structure. The results prove that our 

designed structure can generally ameliorate the output fused image quality, and increase 

implementation efficiency over 30% for multiple images fusion. 

 

2. Related work 

 

The existing solutions for multi-focus image fusion can be gen- eralized into two orientations: handcrafted 

feature based and deep learning based algorithms. 

 

2.1. Handcrafted feature based fusion algorithms 

 

Handcrafted feature based fusion algorithms concentrate on the profound image analysis of transform or 

spatial domains. Trans- form domain based algorithms adopt decomposed coefficients from a 

selected transform domain to measure different activity 

 

2 The code and data are available at https://github.com/Keep-Passion/GACN. 

levels in the input source images, such as laplacian pyramid (LP) 

[11] and non-subsampled contourlet transform (NSCT) [12]. Spatial domain based algorithms measure 

activity levels with gradient features, such as spatial frequency [13], multi-scale weighted gra- dient 

(MWG) [14], and dense SIFT (DSIFT) [15]. 

 

 

 

2.2. Deep learning based fusion algorithms 

 

Deep learning based algorithms provide prevalent solutions to image fusion problems. CNN-Fuse [3] 

first used a convolutional network to automatically learn features in each patch of image and decided 

which patch is the clarity region, which achieved bet- ter performance compared to handcrafted feature 

based algo- rithms. Afterward, some researchers tried to modify the network to improve the fusion quality 

or efficiency. Han Tang proposed a pixel-wise fusion CNN to further improve the fusion quality [16]. 

Dense-Fuse [9], U2Fusion [17], and SESF-Fuse [4] fused images in the unsupervised training 

procedure. IFCNN [18] presented a gen- eral image fusion framework to handle different kinds of image 

fusion tasks. However, there are still other parts of deep learning based algorithm that need to refine. 

The output mode is an important module in network designing [5]. Some algorithms tried to use a 

decoder to directly output the fused result. Hao Zhang [7] used only one convolutional layer in decoder to 

fuse multi-scale features and generate fused result. To improve the reconstructive ability, Hyungjoo Jung 

[19] used resid- ual block to improve the efficiency of gradient propagation, and some works [6,20] used 

generative adversarial network to auto- matically ameliorate fusion quality. However, due to nonlinear 

mapping in the decoder, these structures cannot precisely recon- struct fused result. This leads to relatively 

unrealistic performance in fusion evaluation. Therefore, some structures resorted to gener- ate an intermediate 

DM, to decide which pixel should appear in fused result. Some works [3,21] used CNN to directly 

output DM. SESF-Fuse [4] used spatial frequency to calculate gradient in deep features and draw out 

DM. Han Xu [8] used a binary gradient rela- tion map to further ask decoder to preserve gradient 

information in DM. Despite the highly fusing quality of these structures, they need some post-processing 

methods (or consistency verification) with empirical parameters to rectify the DM, such as morphology oper- 

ations (opening and closing calculation) and small region removal strategy, which limits the generalization of 

the structure to differ- ent scenes of image fusion. 

The objective function is a key point in structure optimization. In the field of multi-focus image 

fusion, the gradient in source images is an important factor to decide which part of the image is clear. 

However, many deep learning structures only used the l2 norm and SSIM objective function to optimize 

the network [9,10], which did not ask the network to preserve the gradient information in fused 

image. Hyungjoo Jung [19] proposed structure tensor to preserve the overall contrast of images. Jinxing 

Li [21] used an edge-preserving loss function to preserve gradient infor- mation, but it only considered 

gradient intensity and not took ori- entation information into account. In this work, we try to modify the 

commonly used classical gradient based evaluation metric as the loss function to directly optimize the network 

to export clearly fused result. 

Most applications of multi-focus fusion are based on multiple images. However, almost multi-focus 

fusion structures concen- trated on two images scene and only used one by one serial fusion strategy for 

multiple images [3,17], which has in-acceptable time consumption. To the best of our knowledge, we are the 

first work to concentrate on the implementation efficiency in multiple images fusion scene. 

https://github.com/Keep-Passion/GACN
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3. Method 

 

In this section, we illustrate the details of the main contribu- tions of this work, such as the network 

structure, the loss function, and the decision calibration strategy. 

 

3.1. Network structure 

 

The overall fusion network structure is shown in Fig. 1. It includes two paths of convolutional 

operations, feature extraction and decision. First, we use the feature extraction path to collect multi-scale deep 

features of each source image. Second, we take the spatial frequency (SF) module to calculate activity level of 

each scale. Third, in the decision path, we concate multi-scale activity levels and feed them into some 

convolutional operations to draw 

image recognition and segmentation [26]. It can effectively enhance spatial feature encoding by 

adaptive recalibrating channel-wise or spatial-feature responses. Same with [4], we use channel SE 

module (CSE) [27] in feature extraction path. CSE uses a global average pooling layer to embed the global 

spatial informa- tion in a vector, which passes through two fully connected layers to acquire a new vector. This 

encodes the channel-wise dependencies, which can be used to recalibrate the original feature map in the 

channel direction. 

After feature extraction, we calculate multi-scale activity levels using the SF module [4]. Consider two 

input images A and B, and a fused image F. Let DF be the deep features drawn from the convo- 

lutional layer of each scale. DFA is one feature vector of pixel i in source image A with ðm; nÞ 

coordinates. We calculate its SF by: 

out the initial DM, which records the probability of each pixel should be in-focused in each source 

image. Then we apply guided filter [22] to smooth the boundary of DM and acquire final DM. Finally, 

we cascade the fusion module in our structure and gener- 
ate the fusion result. 
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3.1.1. Feature extraction path 

As shown in Fig. 1, the feature extraction path is a siamese architecture [23], which uses the same 

architectures with the same weights. It consists of a cascade of four convolutional layers to extract multi-

scale deep features from each source image, and uses densely connection architecture to connect the output of 

each layer to the other layers, which strengthens feature propagation 
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and reduces the number of parameters [24,25]. To precisely local- ize the details of the image, there are 

no pooling layers in our network. 

In addition, we use the squeeze and excitation (SE) module after each convolutional layer, which 

showed good performance at 

where RF and CF are respectively the row and column vector fre- quencies. r is the kernel radius and r ¼ 

5 in our work. The original spatial frequency is block-based, while it is pixel-based in our method. We 

apply the same padding strategy at the borders of fea- ture maps. 

 

 
 

Fig. 1. The network structure of the proposed algorithm. 
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We subtract SFB from SFA to obtain activity level maps for each scale. Then we concate multi-scale 

activity level maps and feed them into the decision path. 

 

3.1.2. Decision path 
In the decision path, we first use four convolutional layers to 

where k is a weight to balance the importance between two losses, and k ¼ 1 in this work. 

LDice is a classical loss function in semantic segmentation [28], 

which is defined in Eq. 7. 

2
P

NP pigi þ 1 

generate the initial DM, which records the probability (pi ) that 
LDice ¼ 1 -  i  

P p2 þ P g2 þ 1 
(7)

source image B. Because the output of lastest SSE module is non- binarized, so we add a sigmoid 

projection as Eq. 4 to project the non-binarized pixel value into range (0,1) after the lastest SSE 

module to generate the nearly binarized initial decision map. 

1 

where the sums run over the NP pixels, of the predicted binary seg- mentation map pi 2 DM and the 

ground truth map gi 2 G. Adding 1 is to mitigate the gradient vanishing issue. 

In addition, we propose to use LQ
g 

to optimize the network to export the final clear fused result. In the 

field of multi-focus image 

y ¼ 
1 þ e-kx :  ð4Þ fusion, it is commonly speculated that only objects within the DOF have a sharp appearance in a photograph, 

while others are likely to 

where k controls the steepness of the curve and closeness to the original Heaviside function, larger k means 

closer approximation (k ¼ 1000 in our work). The initial DM is optimized by loss function with ground 

truth DM, as shown in the next section. 

In addition, we also use the SE module in the decision path. Specifically, we use spatial squeeze 

and channel excitation (SSE) [27], to enhance the robustness and representatives of deep fea- tures. SSE 

uses a convolutional layer with one ks x ks kernel to 

acquire a projection tensor (ks ¼ 7 in our work). Each unit of the 

projection refers to the combined representation for all channels C at a spatial location and is used to spatially 

recalibrate the orig- inal feature map. 

be blurred [3]. However, lots of previous works did not consider preserving gradient information in 

network training. In this work, we focus on a classical gradient based fusion evaluation metric, Qg 

or QAB [29], and make it differentiable as loss function in an end-to- end training procedure. By using 

this optimization, we lead the network to preserve gradient information in the final fused result. Qg is an 

evaluation metric that measures the amount of edge information transferred from input images to the 

fused image 

[29]. Consider two input images A and B, and a fused image F. A  

sobel edge operator is applied to yield the edge strength gi and ori- entation ai of each pixel i. Thus, for an 
input image A: 

To smooth the boundary of the fused result, we first use gaus- 
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sian filter to filter the initial DM, then utilize threshold operation i 

to obtain the boundary region. We found that thinner boundary 
i Þ þð  i 

regions make the boundary area of fusion result not smooth enough while thicker boundary regions 

make the boundary area of fusion result loss detail information. In this work, after multiple aA ¼ tan-1 

Ay 2 

i 
 

ðsAx 2 

(9)

tests, we choose the pixels which value between ½0:1; 0:8] as the where sAx and sAy are the respective convoluted results with the hor- 
boundary region in order to make the boundary width within an 

i i

 

acceptable range subjectively, and all images adopt a fixed thresh- old range. And then we use guided filter [22] 

to obtain the smooth DM. Finally, we use the boundary region as threshold region to 

izontal and vertical sobel templates. 

The relative strength GAF and orientation value DAF between input image A and fused image F 

are defined as: 

combine the smooth DM and the initial DM to form the final DM. That is the boundary of the final DM is 

the smooth DM and the cen- ter of the final DM is the initial DM. Note that we only use a thresh- old operation 

to generate boundary region and do not hinder the 

 

 

 

GAF ¼ 

F 

i if gA > F 
i 

 

>: i ;  if gA 6 gF 

 

     (10)

be trained by an end-to-end training procedure. In addition, we 
AF jaA - aF j 

do not use non-differentiable post-processing methods with empirical parameters, such as 

morphology operation and small 
Di ¼ 1 - 

i i 

p=2 
 (11) 

region removal strategy. Then, we cascade a fusion module using the final DM and source images to 

generate the fused result. As shown in Eq. 5, each pixel of fused image (Fi) can be obtained by: 

Unfortunately, the Heaviside function in Eq. 10 and absolute func- tion in Eq. 11 are not differentiable and 

thus cannot be included in training stage. Therefore, we propose to use the sigmoid function 

 
 

as a smooth approximation to the Heaviside function which is 

i  defined as: 

where the probability (pi ) in DM also means the fusion ratio of each pixel in the source images. 

Finally, we use gradient aware loss function to optimize the net- work to preserve gradient information 

in fusion result. 

In general, the network can simultaneously generate DM and fusion result with end-to-end training 

procedure. 

f ðx; yÞ¼   
1   

:  (12) 

1 þ e-kðx-yÞ 

where k controls the steepness of the curve and closeness to the original Heaviside function, larger k means 

closer approximation (k ¼ 1000 in our work). Then, Eq. 10 can be rewritten as Eq. 13. 

AF F  A 
gA 

F  A 
gF

 

3.2. Loss function Gi � f ðgi ; gi Þx   i  þ ð1 - f ðgi ; gi ÞÞ x  i   (13) 
F A 

i i 

We define a gradient aware loss function to optimize the net- 

work to simultaneously output DM and clear fusion result. The final loss function is defined in Eq. 6. 

And Eq. 11 can be rewritten as Eq. 14. 
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Di � 1 - i 
i i i 

p=2 
(14) 

backpropagation of network, which means that our structure can 
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each pixel (i) of the source image A is more clear than that of the 
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where j belong to {1,…, NI}, is the index of the source image and pj is the 
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Note that in pytorch implementation [30], the gradient of abso- lute function is 0 when input of that 

equals 0, which is differen- tiable. Thus it can use Eq. 11 rather than Eq. 14 in pytorch. The detailed 

analysis can be found in the experiment section. 

The edge strength and orientation preservation values, respec- tively, can be derived as: 

fusion strategy for multiple images fusion. As shown at the top of Fig. 3, one-by-one serial strategy needs 
to run 2 x ðNI - 1Þ times feature extraction paths and NI - 1 times decision paths, where NI is the 
number of the source images. In this work, we propose 

a decision calibration strategy, which shown at the bottom of Fig. 3. It only needs to run NI times 

feature extraction paths and 

 

QAF ¼ 
i 

 Cg  

1 þ ekg ðGAF -rg Þ (15) 

NI - 1 times decision paths by using the calibration module, which can generally decrease time consumption. 

In the decision calibration strategy, the first image is used as baseline, and feeds it to the structure 

with other images. Thus, 

QAF ¼ 
 Ca  (16) we can save the parameters of the first image in the feature extrac- 

a
i 

1 þ e 
ka ðDAF -ra Þ tion path and avoid repeating computation. Then it uses final DMs 

where the constants Cg; kg; rg and Ca; ka; ra determine the shapes of the respective sigmoid functions (same 

with Eq. 12) used to form the edge strength and orientation preservation value. Normally, Cg ¼ Ca ¼ 1; 

kg ¼ -10; ka ¼ -20; rg ¼ 0:5; ra ¼ 0:75. The edge information preservation value is then 

defined as: 

drawn from each decision path to calculate the decision volume (DV), which records the activity levels of 

all the source images. The calculation process is acting as normalization to draw out rel- ative clarity of each 

source images, which is shown below: 

QAF ¼ QAF x QAF (17) 
8

> p
2; if j ¼ 1 

 
i 

p2xð1-pjÞ 

: ; 
the edge information preservation values: i i 

P
NP ðQAF wA þ QBF wBÞ 

Qg g P
NP ðwA þ wB Þ 

i 

 

1. 

In total, we modify a gradient based classical fusion evaluation metric (Qg) as a loss function to 

optimize the network to export clearly fused result. 
We further show an experiment to visualize the comparison of 

value of pixel i in final DM when fuses the source image 1 and the source image j. 

Then, we choose the index of maximum in DVj for each pixel i as the index of the most clarity pixel i in 

the source images. According to the above indices, we can obtain the entire resulting fusion 

 

LDice þ LQ
g
 and LQ

g
 , as shown in Fig. 2. It is shown that the fusion 

image. 

It is important to notice that the decision calibration strategy 

model trained with LQg 
have less noise in the decision map com- pared to the model without it, which 

means LQ
g 

can act as a post-processing method to improve the fusion quality because it can preserve 

gradient information in the image. 

 

3.3. Decision calibration for multiple images fusion 

 

Most applications of multi-focus fusion are based on multiple images. However, currently almost 

multi-focus fusion structures concentrated on two images scene and only used one by one serial 

can only applied to the DM based network structure without the empirical post-processing methods. 

Because those empirical post-processing methods, such as morphology operation and small region removal 

strategy, which used in CNN-Fuse [3] and SESF- Fuse [4], firstly require to convert the initial DM 

to the binary DM, which loss the relative clarity information and can not be used in the process of decision 

volume calculation. Our method, GACN, can draw out the decision map without the empirical post- 

processing methods, which is more suited to the decision calibra- tion strategy in the application of multiple 

images fusion. 

 

 

 
 

Fig. 2. Visualization of decision maps of the model trained with or without Qg . 

The final assessment is obtained from the weighted average of (19) 

L ¼ 1 
- 

(18) 
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4. Experiment 

 

4.1. Dataset 

 

4.1.1. Training set 

In this paper, we generate multi-focus image data based on MS COCO dataset [31]. The MS COCO 

dataset contains annotations for instance segmentation, and our method uses the original image and its 

segmentation annotation to generate multi-focus image data. That is, we use annotation as threshold 

region to decide which part of the image should be filtered by gaussian blurring. As shown in Fig. 4, 

the original image ’truck’ and its annotation are obtained by MS COCO. We use gaussian filter to blur 

the back- ground to form near-focused image and blur the foreground form far-focused image. And we use 

the defocused spread effect model proposed in [32] to further improve the realness of the generated data. 

Thus we have two inputs of multi-focus images, one ground truth fused result (original image) and one 

decision map (label) for network training. Because some data in MS COCO dataset con- tains multiple 

instances that are not at the same depth-of-field (DOF), so we only select images that contain one instance. 

Besides, we regard the multi-focus image fusion problem as an image seg- mentation problem. The 

imbalance of the foreground and back- ground category often affects the segmentation results, so we 

further select the image with the foreground size between 20,000 and 170,000 pixels as the training 

data. Finally, we obtain 5786 images and divide these into training set and validation set according 

to the ratio of 7:3. 

4.1.2. Testing set 

We use 26 image pairs of publicly available multi-focus images from [33,34] as the testing set for 

evaluation. 

 

4.2. Training procedure 

 

During training, all images were transformed to gray-scale and resized to 256 x 256, then random 

cropped to 156 x 156. Note that images were gray-scale in the training phase, while images for testing 

can be gray-scale or color images with RGB channels. For color images that needed to be fused, we 

transformed the images to gray-scale and calculated a decision map to fuse them. In addi- tion, we used 

random crop, random blur, random offset, and gaus- 

sian noise as data augmentation methods [35,36]. The initial 

learning rate was 1 x 10-4, and this was decreased by a factor of 

0.8 at every two epochs [37,38]. We optimized the objective func- tion by Adam [39]. The batch size 

and number of epochs were 16 and 50, respectively [40]. Our implementation was derived from the 

publicly available Pytorch framework [30]. The network’s training and testing were performed on a 

station using an NVIDIA Tesla V100 GPU with 32 GB memory. 

 

4.3. Evaluation metrics 

 

We use six classical fusion metrics: Qg [29], Qy [41], Qncie [42], Qcb [43], FMI EDGE 

and FMI DCT [44] to evaluate the quality of fused result. Qg evaluates the amount of edge 

information trans- ferred from input images to the fused image. Qy calculates the sim- 

 

 
 

Fig. 3. The flowchart of the traditional one-by-one serial fusion strategy (Top) and the proposed decision calibration strategy (Bottom). 

 

 

Fig. 4. Visualization of a training example generated by MS COCO dataset. 



 

 

 

Table 1 

Comparison with traditional methods in testing set. The bold value denotes best performance in each metric. 
 

Methods Qg Qy Qncie Qcb FMI EDGE FMI DCT Time (s) 

GACN 0.7169 0.97769 0.8411 0.7948 0.897806 0.4058 0.16 

MFF-GAN (2021) 0.5623 0.88652 0.8210 0.6437 0.884512 0.3699 0.33 

MFF-SSIM (2020) 0.7020 0.96712 0.8331 0.7678 0.895163 0.4009 36.19 

DRPL (2020) 0.6919 0.96535 0.8333 0.7771 0.895190 0.3640 0.16 

FusionDN (2020) 0.5216 0.82352 0.8209 0.6106 0.878785 0.3050 0.49 

U2Fusion (2020) 0.5590 0.86993 0.8210 0.6388 0.882694 0.3118 0.75 

IFCNN (2020) 0.6486 0.93751 0.8265 0.7158 0.891569 0.3757 0.06 

PMGI (2020) 0.4803 0.80668 0.8209 0.5805 0.880374 0.3527 0.21 

SESF-Fuse (2019) 0.7150 0.97761 0.8397 0.7965 0.897133 0.3953 0.30 

Dense-Fuse (2019) 0.5329 0.83965 0.8239 0.6109 0.886998 0.4046 0.38 

CNN-Fuse (2017) 0.7153 0.97706 0.8396 0.7676 0.897800 0.4079 188.16 

DSIFT (2015) 0.5419 0.84643 0.8255 0.6306 0.889215 0.3900 49.28 

MWG (2014) 0.7041 0.97720 0.8376 0.7878 0.898504 0.3965 24.99 

Focus-Stack (2013) 0.5098 0.78907 0.8276 0.6628 0.868776 0.2332 0.19 

SR (2010) 0.6792 0.95132 0.8326 0.7523 0.896763 0.3924 698.44 

NSCT (2009) 0.6721 0.94886 0.8272 0.7326 0.896647 0.4037 19.99 

CVT (2007) 0.6373 0.93765 0.8252 0.7111 0.895890 0.4055 14.76 

DTCWT (2007) 0.6688 0.95190 0.8267 0.7304 0.896893 0.4031 12.21 

SF (2001) 0.5202 0.82904 0.8239 0.6173 0.889395 0.4145 2.25 

DWT (1995) 0.6444 0.91346 0.8326 0.6997 0.890219 0.3293 11.51 

RP (1989) 0.6652 0.94001 0.8280 0.7330 0.892010 0.3574 11.34 

LP (1983) 0.6834 0.95369 0.8286 0.7509 0.897242 0.3911 11.58 

 

ilarity between fused image and the sources[41]. Qncie measures the nonlinear correlation information 

entropy between the input images and the fused image [42]. Qcb is a perceptual quality mea- sure for 

image fusion, which employs the major features in a human visual system model [43]. FMI 

EDGE and FMI DCT calcu- lates the mutual information of the edge features and discrete cosine 

transform feature between the input images and the fused image [44]. A larger value of any of the above six 

metrics indicates better fusion performance. For fair comparison, we use appropriate default parameters for 

these metrics, and all codes are derived from their public resources [45,46]. 

 

4.4. Comparison 

 

To demonstrate the performance of our method, we compare it with recent SOTA fusion methods in 

objective and subjective assessments. 

 

4.4.1. Objective assessment 

The comparison of our method with existing multi-focus fusion methods are listed in Table 1, such 

as MFF-GAN [20], FusionDN [25], U2Fusion [17], IFCNN [18], PMGI [7], DRPL 

[21], MFF-SSIM 

[47], SESF-Fuse [4], Dense-Fuse [9], CNN-Fuse [3], dense SIFT (DSIFT) [15], multi-

scale weighted gradient (MWG) [14], Focus- Stack [48], sparse representation (SR) [49], non-

subsampled con- tourlet transform (NSCT) [12], curvelet transform (CVT) [50], dual-tree 

complex wavelet transform (DTCWT) [51], spatial fre- quency (SF) [13], discrete wavelet 

transform (DWT) [52], ratio of low-pass pyramid (RP) [53], and Laplacian pyramid 

(LP) [11]. Specifically, we further show detailed comparison of each image pair with nine SOTA 

deep learning based methods in Fig. 5. With two of them are DM based methods (CNN-Fuse and 

SESF-Fuse), and six of them are decoder based methods (MFF-GAN, FusionDN, U2Fusion, 

DenseFuse, IFCNN and PMGI). In addition, for CNN-Fuse and SESF-Fuse, we also compare 

different versions of whether to use post-processing (pp) methods (or consistency verification) with 

empirical parameters. According to experiment, DM based algorithms generate an intermediate decision 

map to decide which pixel should appear in the fused result, which can precisely pre- serve true pixel 

values of the source image. And decoder based algorithms directly use a decoder to draw out the fused 

result and cannot preserve true pixel values because of the nonlinear 

mapping mechanism in the decoder. Therefore, DM based algo- rithms achieve high performance in 

objective assessments, while decoder based algorithms show unrealistic performance. In addi- tion, DM 

based algorithms rely on post-processing methods to rec- tify DM, so the performance will degrade if we 

remove it. Our algorithm, GACN can simultaneously generate decision map and fused result with end-

to-end training procedure, and gradient information can be preserved by the gradient loss function. Our 

method, achieves robust promising performance compared to above traditional methods. 

In addition, the run times of different fusion methods per image pair on the test set are listed in Table 1. 

Such methods as GACN, MFF-GAN, MFF-SSIM, DRPL, FusionDN, U2Fusion, 

IFCNN, PMGI, 

SESF-Fuse, CNN-Fuse, and DenseFuse are tested on a GTX 1080Ti GPU, and others on an E5-

2620 CPU. GACN achieves an average running time of 0.16 s, which is faster than most of the 

methods and can be applied to actual application. Although the IFCNN is fas- ter than GACN, it achieves 

lower fusion quality compared to GACN. 

 

4.4.2. Subjective assessment 

We show some visualization results of GACN and other SOTA methods, DM based and decoder 

based methods, respectively. Firstly, we present the decision maps of GACN with some classical DM 

based methods (CNN-Fuse and SESF-Fuse) in Fig. 6. The influ- ence of post processing method is 

shown in detail. According to the experiment, the SESF-Fuse and CNN-Fuse require post-processing 

methods with empirical parameters, such as morphology opera- tion and small size removal strategy, to 

eliminate noise. If we remove these post processing methods, there will be some artifacts that appear on the 

results, such as blob noisy in the decision map. Besides, the threshold of kernel size in morphology operation 

and region removal strategy are empirical parameters which hard to adjust. While our method GACN 

can draw out good decision map without post-processing methods. 

Secondly, we demonstrate the fusion results and difference images of GACN with some classical 

decoder based methods (Dense-Fuse, PMGI, FusionDN, U2Fusion and MFF-GAN) in Fig. 7. 

The red rectangles and their magnified regions (shown in upper right of the figure) denote the detailed 

fusion results of different methods. It is shown that there is artifact area at the border of near-focused and 

far-focused regions for the classical decoder based methods. While GACN shows clear result. The 

difference 



 

 

 

 
 

Fig. 5. Objective Assessments of our GACN with other SOTA algorithms. Means of metrics for different algorithms are shown in the legends, and evaluation for each image pair is shown in the plot. Optimal values are shown in red and sub-optimal values in blue. ’pp’ means post 

processing methods. 

 

 

 

Fig. 6. Visualization of decision map of DM based methods (SESF-Fuse and CNN-Fuse) and GACN. pp means post processing methods. 



 

 

 

 
 

Fig. 7. Visualization of fusion result and difference images of decoder based methods (Dense-Fuse, PMGI, FusionDN, U2Fusion, and MFF-GAN) and GACN. For each example, the top image is fusion result and the bottom image is difference image, which is obtained by subtracting 

the near-focused image from the fusion result. 

 

 

 

 
 

Fig. 8. Variation of different metrics. 

image is obtained by subtracting the near-focused image from the fusion result, which is normalized to the 

range of 0 to 1 for visual- ization. If the near-focused region is completely detected, the dif- ference image 

will not show any of its information. Decoder based methods cannot precisely recover the true pixel 

values in fusion result due to the nonlinear mapping mechanism in the decoder. Therefore most of them 

have clear contour information in the near-focused region on the difference images. Besides, there is some 

color distortion in the fusion result of PMGI. And the fusion result of DenseFuse is more blurred than other 

methods. Fortu- nately, our method, GACN, achieves robust promising fusing per- formance on all 

examples. 

 

4.5. Ablation study 

 

We evaluate our method with different settings to verify the contribution of each module. 

 

4.5.1. Loss function study 

We first conducted an experiment to figure out which metric is more suitable for evaluation of quality of 

multi-focus image fusion. We introduce Gaussian blurring with different standard deviations 



 

 

 

 
 

Fig. 9. Loss function analysis. 

 

 

Table 2 

Differentiation Comparison. ‘Abs’ means absolute function, and ’Smooth’ denotes smooth approximation. 

 

Table 3 

Time consumption per image for multiple ‘chip’ images fusion with multi-focus points. The bold value denotes the best performance in 

each method. CNN-Fuse is 
 

Settings Qg Qy Qnice 

running on CPU mode according to its public code. 

        

Abs 0.7169 0.9776 0.8411 
 Runtime(s) One by one serial Decision calibration 

Smooth 0.7162 0.9773 0.8410  
CNN-Fuse 886.6872 687.5352 

Settings Qcb FMI EDGE FMI DCT 
 

SESF-Fuse 1.1880 0.5293 

Abs 0.7948 

 

0.8978 

 

0.4058 
GACN 0.7138 0.4905 

Smooth 0.7952 0.8977 0.4048    



 

 

 

 
 

Fig. 10. Visualization of multiple images fusion. 

 

to the fusion result of the testing set. As shown in Fig. 8, with the increase of standard deviation of Gaussian 

kernel, the metric Qg degenerates most obviously compared to other metrics. It is shown that the metric Qg 

can better reflect the clarity of the fusion result, which means that metric Qg is beneficial to be the loss function 

for model training. 

In addition, we compared the performance of the different com- binations of mask-based and gradient-

based loss functions to ver- ify the contribution of proposed loss functions, shown in Fig. 9. The mask based 

loss functions include LDice [28], LFocal [54], and LBCE [55]. While gradient-based loss functions 

include LQ
g 
; LEG [21], and LST [19]. LBCE denotes balanced cross entropy which is a classical loss 

function in image segmentation [55], which can eliminate the impact of imbalance pixels in the 

foreground and background. LFocal denotes focal loss [54], which leads the network to focus on and 

correctly detect hard examples. Where EG refers to edge- preserving loss and ST means structure 

tensor loss. For the last two losses, we conducted an experiment and pick the best perfor- 

mance with k ¼ 0:0001 to balance the importance with LDice. According to the experiment, we 
noted that the performance of 

the combination of LDice and LQg 
outperforms other loss settings in most the metrics, which means that the 

above two losses will both lead the network to export promising fusing result. Besides, we find that LDice 

is better than LBCE, and LFocal, which means that LDice can precisely recognize the decision map. And 

LQ
g 

is better than LEP, and LST , which means that LQg 
can better lead the structure to preserve gradient 

information in the fused result. 

 

 

4.5.2. Differentiation study 

We compared the performance of the absolute function and the smooth approximation for angle 

calculation (Eq. 11) in LQ
g 

in Table 2. We found that directly using the absolute function is a lit- tle better 

than the smooth approximation by using pytorch frame- work, which might be the reason for the gradient 

vanish in the sigmoid calculation. 

 

 

4.6. Multiple images fusion with multi-focus 

 

The example of multiple images fusion is shown in Table 3 and Fig. 10. The microscopic image 

‘chip’ (with the size of 2700 x 1800) was obtained by a microscope that took pictures with lots of differ- 

ent focus points. Decision calibration for ’chip’ images fusion can actually increase execution efficiency 

by about 30.65% compared to one-by-one serial strategy (0.7138’s to 0.4905’s for each image 

by using GACN), which is more feasible for industrial application. And the same increase of 

efficiency can also be found in CNN- Fuse and SESF-Fuse, which means that the decision 

calibration can be applied to other networks. Note that for decision calibra- 

tion, we deleted the post-processing operations of DM in CNN- Fuse and SESF-Fuse for fair 

comparison. 

The visualization of fusion result of GACN is more clear than that of CNN-Fuse and SESF-Fuse 

whether in decision calibration or serial strategy. The decision calibration strategy can reduce nearly half 

of time cost during the image feature extraction process of the decision-map-based image fusion methods. But 

it requires the feature extraction module to have strong and effective feature expression ability, otherwise it will 

bring error propagation in the multi images fusion result. Although the SOTA decision-map-based image 

fusion methods are well trained, the error propagation prob- lem can also influence the objective assessment of 

the fusion result to a certain extent. In the future work, we try to overcome the error propagation problem as well 

as eliminate the impact of defocused spread effect for multi-focus image fusion. 

 

5. Conclusion 

 

In this work, we propose a network to simultaneously generate decision map and fused result with an 

end-to-end training proce- dure. It avoids utilizing empirical post-processing methods in the inference 

stage. Besides we introduce a gradient aware loss func- tion to lead the network to preserve gradient 

information. Also we design a decision calibration strategy to fuse multiple images, which can increase 

implementation efficiency. Extensive experi- ments are conducted to compare with existing SOTA multi-

focus image fusion structures, which shows that our designed structure can generally ameliorate the output 

fused image quality for multi-focus images, and increase implementation efficiency over 30% for 

multiple images fusion. We will further improve the fusion performance of multiple images fusion in future 

work. 
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