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For any given sum of squares domain in Cn, we reduce the complexity in Catlin’s 
multitype techniques by giving a complete normalization of the geometry. Using 
this normalization result, we present a more elementary proof of the equality of 
the Catlin multitype and the commutator multitype for such domains when both 
invariants are finite. Finally, we reformulate algebraically Catlin’s machinery for 
the commutator multitype computation at the origin for any given sum of squares 
domain in Cn.
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1. Introduction

The multitype introduced by Catlin in [5] is one of the significant CR-invariants studied in most problems 
related to the boundary geometry of pseudoconvex domains and its applications. The definition of the 
multitype gives no hint how to compute it and so Catlin addresses this issue in [5] by introducing another 
CR-invariant known as the commutator multitype, which is computed by differentiating the Levi form along 
certain lists of vector fields generated from a geometric object known as a boundary system. He further 
established that the two boundary invariants are equal for any given pseudoconvex domain. The multitype 
is also related to the boundary invariant, which was initially studied by Kohn in [11] for hypersurfaces in 
C2 and later by Bloom and Graham [3] for hypersurfaces in Cn.

The goal of this paper is to give a simple and elementary proof of the equality of the Catlin multitype 
and the commutator multitype at a boundary point of any sum of squares domain in Cn given that both 
boundary invariants are finite. Our first main theorem is thus formulated below.

Theorem 1.1. Let 0 ∈ M be a smooth real hypersurface in Cn with defining function

r = Re z1 +
N∑
j=1

|fj(z2, . . . , zn)|2,
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where f1, . . . , fN are holomorphic functions near 0. Suppose that Bn(0) is a boundary system defined near 
the origin. Denote by C(0) and M(0), the commutator multitype and the multitype at the origin respectively 
and suppose that they are both finite.

Then

C(0) = M(0).

Even with the introduction of the commutator multitype, the multitype is still quite difficult to compute. 
Since the multitype has many interesting properties, we seek to obtain new ideas and methods that can 
reduce the complexities in its computation and also give a simpler geometric or algebraic characterization. 
For instance, obtaining an in-depth geometric or algebraic insight into the multitype techniques, polynomial 
models and the boundary systems developed by Catlin in [5] is relevant to the study of global regularity and 
subelliptic estimates of the ∂̄-Neumann problem on pseudoconvex domains established in [6,7]. Some works 
that can be directly or indirectly related to the problem of finding new techniques to reduce the difficulty 
in the computation of the multitype are given below.

McNeal [13] proved the equality of the order of contact of the boundary with complex analytic vari-
eties (the D’Angelo type, see [9]) and the order of contact with complex lines, for convex domains of finite 
type in Cn. Boaz and Straube [4] gave a direct geometric proof of the same equality for convex domains 
as proved by McNeal and extended their results to a wider class of domains. Yu [14] studied the mul-
titype for convex domains and obtained a simple geometric characterization of the multitype for convex 
domains in terms of the orders of contact of complex lines with the boundary of the domain. Kolář [12]
introduced a constructive algorithm for the computation of the multitype when all its entries are finite 
using weighted homogeneous polynomial transformations. Zaitsev in [15] introduced new invariant ideal 
sheaves containing functions arising in Catlin’s boundary systems and gave a more direct computation 
of the kernels of some newly introduced invariant tensors that simplify the iterative construction of such 
boundary systems. Basyrov, Nicoara, and Zaitsev [2] presented a technique that further reduced the com-
plexity of the multitype computation by establishing that the polynomial model of every pseudoconvex 
domain of finite Catlin multitype contains a simple sum of squares of monomials, the so-called balanced 
sum of squares. Recently, the author in [1] applied the Kolář algorithm for the multitype computation in-
troduced in [12] to a class of manifolds defined by sums of squares of holomorphic functions, also referred 
to as special domains by Kohn in [11] and proved two results. The first result proved that the model of a 
sum of squares domain is likewise a sum of squares and the second result established that the multitype is 
an invariant of the ideal of holomorphic functions defining the domain. Also, in the same paper, the author 
gave an algebraic reformulation of the Kolář algorithm for the multitype computation and further gave a 
method that explicitly constructed the weighted homogeneous polynomial transformations needed in the 
Kolář algorithm.

An interesting discovery in [2] is the obstruction to obtaining a complete normalization of any Catlin 
boundary system for a general pseudoconvex domain via any holomorphic change of coordinates. This failure 
to obtain a complete normalization is attributed to the occurrences of the so-called torsion in the boundary. 
Obviously, any strongly pseudoconvex domain will have no torsion in the boundary since there always 
exists a maximal Levi-nondegenerate subbundle that gives a nonsingular Levi matrix at the origin. Thus, a 
complete normalization of the associated boundary system can always be achieved for such domains. It is 
therefore of crucial interest to find out the classes of pseudoconvex domains for which there exists a complete 
normalization of the Catlin boundary systems. In this paper, we ask the following natural questions for any 
given sum of squares domain in Cn:

(i). Can torsion occur in the boundary?
(ii). Can the associated Catlin boundary system of such a domain be completely normalized?
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We will show that a negative answer to the first question answers the last question in the affirmative, which 
brings us to our second main theorem:

Theorem 1.2. Let 0 ∈ M be a smooth real hypersurface in Cn with defining function

r = Re z1 +
N∑
j=1

|fj(z2, . . . , zn)|2,

where f1, . . . , fN are holomorphic functions near 0. Let the Levi rank at 0 be q and of Catlin multitype at 0

Λ = (1, 2, . . . , 2︸ ︷︷ ︸
q

, λq+2, . . . , λn),

where 2 < λq+2 ≤ · · · ≤ λn < +∞. Then for any boundary system at 0,

Bn(0) = {r1, rq+2, . . . , rn; L2, . . . , Ln},

there exists a holomorphic change of coordinates at 0 that preserves the multitype such that Bn(0) becomes

B̃n(0) = {r̃1, r̃q+2, . . . , r̃n; L̃2, . . . , L̃n}

and satisfies the normalization

r̃k = Re zk + o(λ−1
k ), q + 2 ≤ k ≤ n

L̃k = ∂zk + o(λ−1
k ), 2 ≤ k ≤ n

(1.1)

where the partial derivatives are counted with weight −λ−1
k .

Results from Theorem 1.2 will be crucial in our proof of Theorem 1.1. This work also constitute a part of 
a broader research motivated by a question posed by J. P. D’Angelo, namely how does the stratification of 
the boundary of any sum of squares domain by the multitype level sets look like? As a contribution towards 
this research program, the author in [1] relies on the Kolář algorithm for the multitype computation in [12]
to give an ideal reformulation of the multitype computation when all its entries are finite. Hence, another 
motivation in this paper is to obtain an ideal reformulation of Catlin’s machinery for the commutator multi-
type computation. This transition allows one to compute the commutator multitype from the corresponding 
ideal of holomorphic functions defining the domain. The reformulation also has the advantage of reducing 
significantly the level of difficulty in computing the commutator multitype of any sum of squares domain 
in Cn.

The paper is organized as follows: Section 2 provides preliminary notions and definitions pertinent to the 
discussion in the subsequent sections. In section 3, a result which proves that the commutator multitype is 
crossterm invariant is given. This is an important result needed for restating Catlin’s machinery in terms of 
the ideals of holomorphic functions. Section 4 introduces the notion of derivatives of the ideal of holomorphic 
functions for a sum of squares domain under the assumption that its corresponding commutator multitype 
can be computed. Section 5 presents an important lemma that establishes the absence of torsion in the 
boundary of any sum of squares domain. The proofs of the main theorems are given at the end of this 
section. In Section 6, an ideal restatement of Catlin’s machinery for the commutator multitype computation 
is presented.
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2. Definitions and notation

We give some basic definitions related to the multitype introduced by Catlin in [5]. We shall also present 
some other related definitions as given in [1].

Definition 2.1. Let D ⊂ Cn be a smooth bounded domain with boundary-defining function r(z) defined by

r(z) = 2Re z1 +
N∑
j=1

|fj(z2, . . . , zn)|2, (2.1)

where fj(z2, . . . , zn) for all j, 1 ≤ j ≤ N are holomorphic functions vanishing at the origin in Cn. The 
domain D ⊂ Cn is called a sum of squares domain. It is also referred as a special domain (see [11]).

Denote by M ⊂ Cn the hypersurface defined by {z ∈ Cn | r(z) = 0}.

Definition 2.2. The model hypersurface associated to M at the origin is defined as

M0 = {z ∈ Cn : p(z, z̄) = 0}, (2.2)

the zero locus of the homogeneous polynomial p(z, ̄z) consisting of all monomials from the Taylor expansion 
of the defining function that have weight 1 with respect to the multitype weight. We call p(z, ̄z) the model 
polynomial.

Definition 2.3. A weight Λ = (λ1, . . . , λn) is an n-tuple of rational numbers with 1 ≤ λj ≤ +∞ satisfying:

i. λj ≤ λj+1 for 1 ≤ j ≤ n − 1;
ii. For each t, either λt = +∞ or there exists a sequence of nonnegative integers a1, . . . , at satisfying aj > 0

for all 1 ≤ j ≤ t and

t∑
j=1

aj
λj

= 1.

We shall denote by Γn the set of all weights Λ as defined above. We define a lexicographic ordering on 
Γn, i.e. for any given Λ1, Λ2 ∈ Γn such that Λ1 = (λ1, . . . , λn) and Λ2 = (λ′

1, . . . , λ
′
n), then Λ1 > Λ2 if for 

some t, λj = λ′
j for j < t and λt > λ′

t.

Definition 2.4. Let Ω ∈ Cn be a smooth domain with defining function r and let z0 be a point on the 
boundary bΩ. We say that the weight Λ = (λ1, . . . , λn) is distinguished at z0 if there exist holomorphic
coordinates (z1, . . . , zn) about z0 such that

i. z0 is mapped to the origin;
ii. If 

∑n
j=1

αj+β̄j

λj
< 1, then DαD̄β̄r(0) = 0, where Dα = ∂|α|

∂z
α1
1 ···∂zαn

n
and D̄β̄ = ∂

¯|β|

∂z̄
β̄1
1 ···∂z̄β̄n

n

.

Remark 2.5. The property (ii) of Definition 2.4 can be interpreted as follows: there exist holomorphic 
coordinates about z0 such that the boundary-defining function r in the new coordinates is of the form

r = Re z1 + p(z2, . . . , zn, z̄2, . . . , z̄n) + oΛ(1), (2.3)
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where p(z2, . . . , zn, ̄z2, . . . , ̄zn) is a Λ-homogeneous polynomial of weighted degree 1 without pluriharmonic 
terms and oΛ(1) denotes a smooth function whose derivatives of weighted order less than or equal to 1 
vanish at zero.

We shall denote the set of all distinguished weights at z0 by Γ̃(z0).

Definition 2.6. The multitype M(z0) at z0 is defined to be the smallest weight in lexicographic sense M(z0) =
(m1, . . . , mn) such that M(z0) ≥ Λ for every distinguished weight Λ ∈ Γ̃(z0).

We call the multitype M(z0) at z0 finite, if the last entry mn < +∞. We also recall that each mi of the 
multitype satisfies the inequality

mn−q+1 ≤ Δq(M, z0),

where Δq(M, z0) is the D’Angelo q-type as defined in [9,10]. Thus, the last entry mn is bounded above by 
the D’Angelo 1-type Δ1(M, z0).

Now, for every sum of squares domain D as defined in Definition 2.1, we associate the ideal of holomorphic 
functions 

〈
f̃
〉

= 〈z1, f1, . . . , fN 〉. Since the multitype gives a refined measure of the vanishing order of the 
boundary-defining function r, it is easy to see that the order of vanishing of r in the normal direction is 1. 
Hence, we assign the weight 1 to the first entry of the multitype, i.e. m1 = 1. We are most interested in 
the vanishing order of r in the direction of the complex tangential variables z2, . . . , zn. For the rest of the 
paper, unless stated otherwise, for any given sum of squares domain D we will rather associate the ideal of 
holomorphic functions 〈f〉 = 〈f1, . . . , fN 〉. Now, consider the following definitions as given in [1].

Definition 2.7. Let f ∈ C[z2, . . . , zn], be a polynomial in the variables z2, . . . , zn with coefficients in C. We 
define the gradient ideal of f as the ideal generated by the partial derivatives of f :

Igrad(f) = 〈∇f〉 =
〈

∂f

∂z2
, · · · , ∂f

∂zn

〉
. (2.4)

Definition 2.8. Given the ideal 〈f〉 = 〈f1, . . . , fN 〉 ⊂ C[z2, . . . , zn], we define the Jacobian module of f as

J〈f〉 =
[
∂f

∂z2
, · · · , ∂f

∂zn

]
, (2.5)

where each ∂f
∂zj

is a vector. J〈f〉 is a module over the polynomial ring C[z1, . . . , zn].

We associate the complex Jacobian matrix J(f) given by

J(f) =

⎛
⎜⎝

∂f2
∂z2

· · · ∂fN
∂z2

...
. . .

...
∂f2
∂zn

· · · ∂fN
∂zn

⎞
⎟⎠ (2.6)

to every Jacobian module J〈f〉. For each gradient ideal Igrad(fi) =
〈

∂fi
∂z2

, · · · , ∂fi
∂zn

〉
of the generator fi ∈

C[z1, . . . , zn] of 〈f〉, we associate the i-th column of J(f) for 1 ≤ i ≤ n.
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3. Crossterm invariance of Catlin’s commutator multitype

We refer the reader to [5] and [2] for a thorough and detailed description of Catlin’s machinery for 
the computation of the commutator multitype and the associated boundary systems. The commutator 
multitype, as defined in [5], is a list of n positive rational numbers, which are obtained via the commutator 
properties of a system of tangential holomorphic vector fields. We shall denote the commutator multitype 
by C(z) and let C(z) = (c1, . . . , cn).

We seek to reformulate Catlin’s machinery for the commutator multitype computation for a sum of 
squares domain in terms of the corresponding ideals of holomorphic functions defining the domain. This 
restatement in terms of ideals of holomorphic functions, however, can only hold if the commutator multitype 
at the origin is crossterm invariant. By crossterm invariance we mean that the value of the commutator 
multitype is unaltered with the inclusion or omission of crossterms from the expansion of the moduli squares 
of all generators of such domains. More particularly, we will show that each entry of the commutator 
multitype can always be realized by the modulus square of some monomial from the Taylor expansion of 
some generator of the sum of squares domain in Cn. For the purposes of the material discussed in this 
section, we shall recall some definitions and notation from [5].

Let Ω be a smoothly bounded domain and let z0 be a given point in the boundary bΩ = {r = 0}. Denote 
by r a smooth boundary-defining function and suppose that the Levi-form of bΩ at z0 has rank equal to q.

Definition 3.1. Let L = {L1, . . . , Ll} be a list of vector fields in T 1,0bΩ such that Lj is one of 
{Lc1 , L̄c1 . . . , Lct , L̄ct} for some cj ∈ Z>0. Let li denote the total number of times Li and L̄i appear in 
L . We say L is ordered (in the sense of Catlin) if

Lj = Lct or L̄ct when 1 ≤ j ≤ lct , and

Lj = Li or L̄i when 1 +
ct∑

k=i+1

lk ≤ j ≤
ct∑
k=i

lk.

Definition 3.2. An ordered list L = {L1, . . . , Ll} is said to be ν-admissible if lν > 0 and L satisfies the 
inequality

ν−1∑
k=q+2

lk
ck

< 1.

Let T 1,0
ν denote the subbundle of T 1,0bΩ defined by

T 1,0
ν = {L | L(rk) = 0, and ∂∂̄r(L, L̄j) = 0, j = 2, . . . , q + 1},

where k = 1, q + 2, . . . , ν − 1 and q + 2 ≤ ν − 1 < n. Let l ∈ Z with l ≥ 3 and denote by L a given list 
of vector fields, L = {L1, . . . , Ll} such that there exists a nonvanishing vector field Lν ∈ T 1,0

ν . Denote by 
L ∂r the function

L ∂r(z) = L1 · · ·Ll−2∂r([Ll−1, Ll])(z) (3.1)

for z ∈ bΩ. We know from Catlin’s construction [5] that for every finite entry of the commutator multitype 
C(z0) at z0 ∈ bΩ, there exists at least one ν-admissible ordered list L = {L1, . . . , Ll} of minimal length 
l ≥ 3 such that L ∂r(z0) 
= 0 and also satisfies the equation

ν−1∑ lk
ck

+ lν
c(L ) = 1. (3.2)
k=q+2
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Here, lk is the number of times that both Lk and L̄k appear in the list L and c(L ) denotes the solution 
(3.2). The chosen list L satisfying the above properties is denoted by Lν. Since Lν is ν-admissible, the 
solution c(L ) exists and c(L ) ∈ Q+. Finally, we define the ν-th commutator multitype entry as

cν = inf{c(L ) | L is ν-admissible, ordered and satisfies L ∂r(z0) 
= 0}. (3.3)

Now, we let z0 = 0. From (3.3), we see that every finite entry of the commutator multitype is the infimum of 
the set of numbers c(L ), where L is ν-admissible, ordered, and satisfies L ∂r(0) 
= 0. Thus, our goal here 
is to show that every number c(L1) associated to some crossterm is bounded from below by some number 
c(L2) associated to a square, where L1 and L2 are lists of vector fields each satisfying the condition given 
in (3.2) and (3.3). Now, if the condition L ∂r(0) 
= 0 holds, then it must hold for at least one monomial of 
the boundary defining function r and hence L ∂(m)(0) 
= 0, for some monomial m in r. Denote by X(m)
the number c(L ) associated to m such that L satisfies the needed conditions in (3.3) and L ∂(m)(0) 
= 0. 
We will say that the list L is associated to m, each time we need to make reference to the monomial m. 
We can also see that the number X(m) cannot be computed if every list L associated to m satisfies lν = 0
or 

∑ν−1
i=q+2 li/ci ≥ 1. Hence, we conclude that if L is not ν-admissible, then X(m) cannot be computed. We 

now state the following:

Lemma 3.3. Let 0 ∈ M be a smooth real hypersurface in Cn with defining function

r = Re z1 +
N∑
j=1

|fj(z2, . . . , zn)|2,

where f1, . . . , fN are holomorphic functions near 0 and let the Levi rank be q at the origin. Let f and g be 
monomials with nonzero coefficients from the Taylor expansion of the generator fj, 1 ≤ j ≤ N , from M . 
Assume that for some integer ν, q+2 ≤ ν−1 < n, the entries c1, . . . , cν−1 of C(0), the commutator multitype 
at 0, have been obtained together with the functions r1, rq+2, . . . , rν−1, and the vector fields L2, . . . , Lν−1 in 
B(0), the boundary system at 0.

(A). Suppose that the numbers X(|f |2), X(|g|2), and X(fḡ) can be computed.
(i). If X(|f |2) = X(|g|2), then X(fḡ) = X(|f |2) = X(|g|2).
(ii). If X(|f |2) < X(|g|2), then X(|f |2) < X(fḡ) < X(|g|2).

(B). Suppose that no ν-admissible ordered list L f satisfying L f∂(|f |2)(0) 
= 0 exists.
(i). No ν-admissible ordered list L exists such that the condition L ∂(fḡ)(0) 
= 0 holds if no ν-

admissible ordered list L g satisfying L g∂(|g|2)(0) 
= 0 exists.
(ii). If there exist a ν-admissible ordered list L g satisfying L g∂(|g|2)(0) 
= 0 and a ν-admissible 

ordered list L satisfying L ∂(fḡ)(0) 
= 0, then

X(|g|2) ≤ X(fḡ).

Proof. We will show that the next commutator multitype entry cν can always be realized by X(|m|2), 
the computed value of some square of a monomial m from the Taylor expansion of some generator of the 
sum of squares domain. Suppose that f and g are monomials in the Taylor expansion of the generator fj, 
1 ≤ j ≤ N , and let L be a list of vector fields associated to the crossterm fḡ.

Let L = L f
1 ∪ L ḡ

2 , where L f
1 is the list of all holomorphic vector fields in L associated to f and L ḡ

2
is the list of all antiholomorphic vector fields in L associated to ḡ. Denote by L f̄

1 and L g
2 the lists of 

all corresponding conjugate vector fields in L f
1 and L ḡ

2 respectively. Thus, for any list L of vector fields 
associated to a given crossterm fḡ, we can always generate lists L1 = L f

1 ∪L f̄
1 and L2 = L g

2 ∪L ḡ
2 , which 
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are associated to the square monomials |f |2 and |g|2 respectively. Next, denote by li and l̂i the number of 
times that the vector fields Li and L̄i appear in the list L . Similarly, denote respectively by lji and l̂ji the 
number of times that Li and L̄i appear in the list Lj . Then lji = l̂ji for all i = q + 2, . . . , ν and j = 1, 2. 
Using the expression in (3.2) together with this notation, the numbers X(|f |2), X(|g|2), and X(fḡ) can be 
expressed as

l1ν

1
2 −

ν−1∑
i=q+2

l1i
ci

,
l2ν

1
2 −

ν−1∑
i=q+2

l2i
ci

, and lν + l̂ν

1 −
ν−1∑

i=q+2

li + l̂i
ci

(3.4)

respectively. Also, lν = l1ν and l̂ν = l̂2ν in the last expression in (3.4).

(A). If the numbers X(|f |2), X(|g|2), and X(fḡ) can be computed, then we can always find ν-admissible 
ordered lists L , L1, and L2 satisfying the conditions L ∂(fḡ)(0) 
= 0, L1∂(|f |2)(0) 
= 0, and 
L2∂(|g|2)(0) 
= 0 respectively. From the preceding argument, it is easy to see that such lists always 
exist.

(i). Assume that X(|f |2) = X(|g|2). Then

X(fḡ) = l1ν + l̂2ν

1
2 −

ν−1∑
i=q+2

l1i
ci

+ 1
2 −

ν−1∑
i=q+2

l̂2i
ci

= X(|f |2)
(
l1ν + l̂2ν
l1ν + l2ν

)
from the hypothesis and (3.4)

= X(|f |2) = X(|g|2) since l2ν = l̂2ν .

(3.5)

(ii). Assume that X(|f |2) < X(|g|2). By this assumption and (3.4), the first line of (3.5) becomes

X(fḡ) > X(|f |2)
(
l1ν + l̂2ν
l1ν + l2ν

)
since 1

X(|f |2) >
1

X(|g|2)

= X(|f |2) since l2ν = l̂2ν and

X(fḡ) < X(|g|2) by a similar argument as in lines 1 and 2 of (3.6).

(3.6)

(B)(i). Suppose that every list L1 associated to |f |2 satisfies l1ν = 0 or 
∑ν−1

i=q+2
l1i
ci

≥ 1
2 and similarly, every 

list L2 associated to |g|2 satisfies l2ν = 0 or 
∑ν−1

i=q+2
l2i
ci

≥ 1
2 . We break the remaining argument into 

4 cases. Suppose that L1 and L2 are such that:
CASE 1. l1ν = l2ν = 0. Clearly, the list L cannot be ν-admissible since l1ν + l̂2ν = 0.
CASE 2.

∑ν−1
i=q+2

l1i
ci

≥ 1
2 and 

∑ν−1
i=q+2

l2i
ci

≥ 1
2 . Then 

∑ν−1
i=q+2

l1i+l̂2i
ci

≥ 1 and so L is not ν-admissible.
CASE 3. l1ν = 0 and 

∑ν−1
i=q+2

l2i
ci

≥ 1
2 . Now, suppose that L is ν-admissible and satisfies L ∂(fḡ)(0) 
=

0. Clearly, the list L1 satisfies l1ν = l̂1ν = 0. By the assumption on L and the selection cri-
teria of its vector fields, L1 satisfies 

∑ν−1
i=q+2

l1i
ci

= 1
2 . Thus, 

∑ν−1
i=q+2

l1i+l̂2i
ci

≥ 1 contradicting 
the fact that L is ν-admissible.

CASE 4. l2ν = 0 and 
∑ν−1

i=q+2
l1i
ci

≥ 1
2 . The argument here follows similarly as in case 3 above.

(ii). Suppose that L is ν-admissible, ordered, and satisfies L ∂(fḡ)(0) 
= 0 and that there exists a ν-
admissible, ordered list L2 satisfying L2∂(|g|2)(0) 
= 0. If no ν-admissible, ordered list L1 exists 
such that the condition L1∂(|f |2)(0) 
= 0 holds, then we shall break the argument into 2 cases.
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CASE 1. Suppose that every list L1 satisfies 
∑ν−1

i=q+2
l1i
ci

≥ 1
2 . Then line 1 of (3.5) becomes

X(fḡ) ≥ l1ν + l̂2ν

1
2 −

ν−1∑
i=q+2

l̂2i
ci

since 1
2 −

ν−1∑
i=q+2

l̂1i
ci

≤ 0,

≥ X(|g|2) from (3.4) and the inequality l1ν + l̂2ν
l2ν

≥ 1.

(3.7)

CASE 2. Suppose that every list L1 satisfies l1ν = l̂1ν = 0. By the assumptions on L and L2 as well 
as the selection criteria of vector fields in L , the list L1 satisfies 

∑ν−1
i=q+2

l1i
ci

= 1
2 . Then 

from (3.4) and the equation 1
2 −

∑ν−1
i=q+2

l̂1i
ci

= 0, line 1 of (3.5) satisfies X(fḡ) = X(|g|2).

This completes the proof of the lemma. �
Remark 3.4. It is easy to see that X(fḡ) = X(f̄g). Also, as a consequence of Lemma 3.3, the omission of all 
the crossterms from the expansion of the moduli squares of the generators does not alter the value of the 
commutator multitype.

Lemma 3.3 enables us to compute the commutator multitype of a sum of squares domain from its 
associated ideal of holomorphic functions. As a result of this transition, we will give an ideal restatement 
of Catlin’s machinery for the commutator multitype computation in section 6.

4. Derivatives of the ideal of holomorphic functions

Let 〈f〉 = 〈f1, . . . , fN 〉 be the ideal of holomorphic functions associated to the sum of squares domain D
and denote by J(f)J∗(f) the Levi matrix of M , where J(f) and J∗(f) are the complex Jacobian matrix and its 
conjugate transpose respectively. We know that the commutator multitype at 0 is obtained via differentiation 
of the Levi form of M at 0 along certain selected directions. To each vector field Lk =

∑n
j=1 vkj

∂
∂zj

∈ T 1,0M , 
we associate a row vector vk = (vk1, . . . , vkn). We set r = r1, where r is the boundary-defining function 
associated to D. Since r1 defines the boundary of some manifold we associate the vector v1 = (1, 0, . . . , 0)
to the vector field L1 given that L1r1 = 1 is always satisfied. Denote by [∂r1] the 1 × n matrix

[∂r1] := (∂z1r1 ∂z2r1 · · · ∂znr1 ) , (4.1)

where ∂zi := ∂
∂zi

and define the kernel of [∂r1] as

ker [∂r1] = {v | [∂r1] vT = 0},

where vT is the transpose of v, the associated row vector to any vector field L ∈ T 1,0M . So the condition 
Li(r1) ≡ 0 for all i, 2 ≤ i ≤ n, given in [5] is equivalent to the condition that vi ∈ ker [∂r1], where vi is the 
row vector associated to Li ∈ T 1,0M . Now, for every fixed k, let Lk =

∑n
j=1 vkj

∂
∂zj

with vkj a holomorphic 

function for every j be a vector field in T 1,0M . We shall only consider such holomorphic vector fields to 
define the derivatives of the ideal of holomorphic functions. For the rest of the paper, unless otherwise 
specified, every holomorphic vector field Lk can be viewed as a 1 × (n − 1) matrix by associating with the 
row vector vk = (vk2, . . . , vkn) since the holomorphic functions f1, . . . , fN do not depend on the variable z1

and T 1,0M = span
{

∂ , . . . , ∂
}

.
∂z2 ∂zn
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Using the complex Jacobian matrix associated to the ideal of holomorphic functions 〈f〉, we will define the 
derivative of 〈f〉 along directions belonging to some ordered list of holomorphic vector fields in T 1,0M . Recall 
that we are interested in the derivatives of the Levi form along certain vector fields. Now, let L ∈ T 1,0M . 
In Catlin’s notation [5], the Levi form of M at a point 0 along the direction L is given by ∂∂̄r([L, L̄])(0). 
For any given sum of squares domain,

∂∂̄r([L, L̄])(z) ≡ vJ(f)J∗(f)v∗(z), (4.2)

where v is the row vector associated to L. A simple verification shows that (4.2) is likewise a sum of squares. 
Specifically, vJ(f)J∗(f)v∗(z) is a sum of squares with generators Lfj =

∑n
l=2 vl(∂fj/∂zl), j = 1, . . . , N

holomorphic near the origin. So the Levi form of a sum of squares domain in the direction L has an 
ideal representation, which we denote by 〈Lf〉 := 〈Lf1, . . . , LfN 〉. Now, Lt∂∂̄r([L, L̄])(z), the derivative of 
∂∂̄r([L, L̄])(z) along the direction Lt ∈ T 1,0M is equivalent to the form vtJ(Lf)J∗(f)v∗(z), where J(Lf) is 
the complex Jacobian matrix associated to the ideal 〈Lf〉. Similarly, the derivative of ∂∂̄r([L, L̄])(z) along 
the direction L̄t becomes vJ(f)J∗(Lf)v∗t (z) and the derivative of the sum 

∑N
j=1 |fj |2 in the direction L̄t is 

given by

(f1 · · · fN ) J∗(f)v∗t (z), (4.3)

where (f1 · · · fN ) is the matrix associated to the ideal of holomorphic functions 〈f〉. The form given 
in (4.3) will be useful in the model domain case of the ideal reformulation of the commutator multitype in 
section 6. From Lemma 3.3, we know that every finite entry of the commutator multitype at 0 can always be 
realized by the modulus square of a monomial in some generator of the ideal of holomorphic functions. Thus 
each entry of the commutator multitype can be realized by some list L = {L1, . . . , Ll} of vector fields where 
l is even. Most importantly, there exists a list L = {L1, . . . , Ll} such that for every t, the vector fields Lt and 
L̄t in L must appear an equal number of times. Using this fact together with the fact that vJ(f)J∗(f)v∗(z)
is a sum of squares, we shall define the derivative of an ideal of holomorphic functions. We first note that 
〈Lf〉 := 〈Lf1, . . . , LfN 〉, the ideal representation of the Levi form of M is precisely the first order derivative 
of the ideal 〈f〉 along the direction L. We associate the 1 × N matrix vJ(f) = (Lf1 · · · LfN ) to the 
ideal 〈Lf〉. Before we define the higher order derivatives of the ideal 〈f〉 we consider the definition below:

Definition 4.1. Let L = {L1, . . . , Ll} be a list of vector fields in T 1,0M such that Lj is one of 
{Lc, L̄c . . . , Lc+t, L̄c+t} for some c, t ∈ Z>0 and Li, i = c, . . . , c + t, is a holomorphic vector field in T 1,0M . 
Suppose that Li and L̄i appear an equal number of times in L and so each li is even for i = c, . . . , c + t. 
Then L is said to be equally-ordered if

L2j−1 = Lc+t and L2j = L̄c+t when 1 ≤ j ≤ 1
2(lc+t), and (4.4)

L2j−1 = Li and L2j = L̄i when 1
2

(
2 +

c+t∑
k=i+1

lk

)
≤ j ≤ 1

2

(
c+t∑
k=i

lk

)
. (4.5)

Remark 4.2. Let L = {L1, . . . , Ll} be an equally-ordered list of vector fields in T 1,0M as in Definition 4.1. 
Then we will denote by Lh = {L1, . . . , Ls} for s = l

2 , the ordered list (in the sense of Catlin) of holomorphic 
vector fields in the list L in Definition 4.1.

Now, it is easy to see by a similar argument as in the case of the Levi form, that by differentiating 
vJ(f)J∗(f)v∗(z) along the vector fields in an equally-ordered list L = {L1, . . . , Ll} an even number of 
times, we still obtain a function that is a sum of squares. More specifically, let j, d ∈ Z>0 be such that 
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1 ≤ j ≤ d and d = 1
2
∑c+t

k=c lk. Then after differentiating 2j times vJ(f)J∗(f)v∗(z) along vector fields in L
we obtain the function

vmJ(F j)J∗(F j)(vm)∗(z), (4.6)

where m = 2(d − j + 1) − 1, F j =
j∏

i=2
L2(d−j+i)−1(Lf), and vm is the row vector associated to the vector 

field Lm ∈ L . It is easy to see that (4.6) is likewise a sum of squares. Let F̃ j =
j∏

i=1
L2(d−j+i)−1(Lf). Then 

to the ideal of holomorphic functions 
〈
F̃ j

〉
, we associate the 1 ×N matrix

vmJ
(
F j

)
=

[
F̃ j

1 F̃ j
2 · · · F̃ j

N

]
, (4.7)

where F̃ j
k is the derivative of the function F̃ j with respect to the variable zk. This allows us to define the 

higher-order derivatives of the ideal 〈f〉 along vector fields in the list of holomorphic vector fields Lh. We 
will use exponents with parentheses to indicate the order of the derivative of any vector field in order to 
distinguish them from the usual indexing of vector fields.

Definition 4.3. Let Lj =
∑n

i=2 vji
∂
∂zi

be a holomorphic vector field in T 1,0M and let 〈f〉 = 〈f1, . . . , fN 〉 be 
an ideal of holomorphic functions.

(i). Let Lh = {L1, . . . , Lk} be an ordered list of holomorphic vector fields in T 1,0M . Then the kth order 
derivative of the ideal 〈f〉 in the k directions in Lh is given by

〈
(L1 · · ·Lk)f

〉
:=

〈
(L1 · · ·Lk)f1, . . . , (L1 · · ·Lk)fN

〉
.

(ii). If the vector fields Lj = L in (i) for some L ∈ T 1,0M , then we define the kth order derivative of the 
ideal 〈f〉 in the direction of L by

〈
L(k)f

〉
:=

〈
L(k)f1, . . . , L

(k)fN

〉
.

By a slight abuse of notation, we will denote 
〈
(L1 · · ·Lk)f

〉
by 〈Lhf〉 and its corresponding complex Jacobian 

matrix by J(Lhf). In this notation, the order of the derivative of 〈f〉 is given by #Lh, the cardinality of 
Lh.

Remark 4.4. Let L ′
h := {L2, . . . , Lk}, L ′′

h := {L3, . . . , Lk} and note the following:

(i). 〈Lhf〉 =
〈
L1 · · ·Lkf

〉
is the ideal representation of the function

v1J(L ′
hf)J∗(L ′

hf)(v1)∗(z).

(ii). Suppose that L ′
h = ∅. By convention, we set J(L ′

hf) = J(L(0)f) = J(f) and vJ(L ′′
h f) =

(f1 · · · fN ).
(iii). We simply let L(1)f = Lf when no confusion arises.
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5. Normalizing the boundary systems

We give the proofs of the main theorems in this section. The proof of Theorem 1.1 relies on the normaliza-
tion results in Theorem 1.2. The proof of Theorem 1.2 uses results from Corollary 1.2 in [2] and Lemma 5.2
below. For easy reference, we state without proof Corollary 1.2 as given in [2] as Corollary 5.1 below:

Corollary 5.1 ([2], pg. 3). Let M be a pseudoconvex smooth real hypersurface in Cn with 0 ∈ M and of the 
Catlin multitype

Λ = (1, λ2, . . . , λn), λn < ∞

at 0.
Then there exists a holomorphic change of coordinates at 0 preserving the multitype so that the defining 

function for M in the new coordinates is given by

r = 2Re z1 + p(z2, . . . , zn, z̄1, . . . , z̄n) + oΛ−1(1),

where p is a polynomial consisting of all terms of weight 1 with respect to the Catlin multitype at 0 and also 
contains the balanced sum of squares

|z2|2k22 + |z2|2k32 |z3|2k33 + · · · + |z2|2kn2 · · · |zn|2knn ,

with kjj > 0 for all j and the degree of p in each (zj , ̄zj) is not greater than 2kjj.

Before we give the proof of the complete normalization of the boundary system for a sum of squares 
domain, we give an answer to question (i) in the introduction -namely, can torsion occur in the boundary 
of any sum of squares domain in Cn? The ensuing lemma gives a negative answer to this question by 
establishing that no torsion can occur in the boundary. Recall that by Theorem 1.1 in [1], the model 
polynomial of a sum of squares domain is likewise a sum of squares. Hence, we state the following:

Lemma 5.2. Let M0 ⊂ Cn n ≥ 2 be a model hypersurface of a model sum of squares domain D0 defined by 
{r0 < 0}, where

r0 = 2Re z1 +
N∑
l=1

|hl(z2, . . . , zn)|2,

and hl is a polynomial consisting of all terms from the Taylor expansion of fl of weight 1/2 with respect to 
the Catlin multitype at 0,

Λ = (1, λ2, λ3, . . . , λn) , λn < +∞.

For any monomial f with nonzero coefficients from the Taylor series expansion of the generator hl of r0, 
for 1 ≤ l ≤ N , the function

F (z, z̄) = Dαf
0 D̄αf

r0, (5.1)

is holomorphic. Here, αf = (αf
i1
, . . . , αf

ik
) for some k ≤ n, is the multiindex corresponding to the monomial 

f and αf
0 = (αf

i − 1, αf
i . . . , αf

i ).

1 2 k
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Proof. The normalization argument in Lemma 6.2 of [2] amounts to showing that taking one fewer holomor-
phic differentiation on the model polynomial than necessary to obtain a non-zero quantity in the computation 
of the commutator multitype yields a holomorphic function. Showing that F (z, ̄z) is holomorphic accom-
plishes the same for a sum of squares domain in this lemma.

Let f and g be distinct monomials with nonzero coefficients from the Taylor series expansion of some 
generator hl of r0 for l fixed with 1 ≤ l ≤ N . If there are variables in f not present in g, then immediately 
D̄αf

ḡ = 0, so we only need to consider monomials g such that

f = Cfz
αf

i1
i1

· · · zα
f
ik

ik
and g = Cgz

αg
i1

i1
· · · zα

g
ik

ik
z
αg

ik+1
ik+1

· · · zα
g
ic

ic
(5.2)

for some c, k satisfying k ≤ c ≤ n where αg = (αg
i1
, . . . , αg

ic
) is the multiindices corresponding to g and 

Cf , Cg ∈ C. Also, let |αf | = αf
i1

+ · · · + αf
ik

, |αg| = αg
i1

+ · · · + αg
ik

, and |αf
0 | = αf

i1
+ αf

i2
+ · · · + αf

ik
− 1. 

From the expansion of |hl|2 we obtain the terms |f |2, |g|2, and 2Re(fḡ) in r0 satisfying

k∑
j=1

αf
ij

λij

= 1
2 ,

c∑
j=1

αg
ij

λij

= 1
2 and

k∑
j=1

αf
ij

λij

+
c∑

j=1

αg
ij

λij

= 1 (5.3)

respectively. To show that the function F (z, ̄z) in (5.1) is holomorphic, it suffices to show that D̄αf

ḡ ≡ 0
and D̄αf

ū ≡ 0, where u is any distinct monomial from the Taylor series expansion of a generator different 
from hl in r0. Now, if for some j, 1 ≤ j ≤ k, the inequality αf

ij
> αg

ij
holds, then it is easy to see that 

D̄αf

ḡ ≡ 0. Thus, we only need to examine monomials f and g as given in (5.2) such that for every j, 
1 ≤ j ≤ k, αf

ij
≤ αg

ij
. We shall now break the argument into two cases:

CASE 1. Suppose that k = c in the definitions given in (5.2). Then due to the weight restrictions in (5.3), 
αf
ij

= αg
ij

for all j = 1, 2, . . . , k or αf
ij


= αg
ij

for some j, 1 ≤ j ≤ k. Note that we cannot have 

αf
ij

< αg
ij

for all j, 1 ≤ j ≤ k, since this will violate the fact that both |f |2 and |g|2 are in the 
model. Now, we consider the following:
i. First, suppose that for all j = 1, 2, . . . , k, αf

ij
= αg

ij
. Then f = g contradicting the assumption 

that f and g are distinct.
ii. Next, if αf

ij
< αg

ij
for some j, then αf

ij′
> αg

ij′
for some other j′ because otherwise f and g

cannot both have weight 1
2 as seen in (5.3). Therefore, D̄αf

ḡ ≡ 0.
CASE 2. Suppose that k < c in the definitions given in (5.2). Then αg

ij

= 0 for j = k+1, . . . , c so αg

ij
< αf

ij

for at least one j, 1 ≤ j ≤ k since f and g have equal weight 1
2 as seen in (5.3). Hence, D̄αf

ḡ ≡ 0.

Now, let u be any distinct monomial from the Taylor series expansion of a generator different from hl in 
r0 and suppose that u and f are distinct. Then since f and g are also distinct monomials, it follows that 
by arguing in the same manner with u replacing g, we can conclude that D̄αf

ū ≡ 0. Consequently, for any 
given pair of distinct monomials f and g from r0, the corresponding square |g|2 and crossterm fḡ vanish 
identically after applying the operator Dαf

0 D̄αf to r0. Therefore, applying the operator Dαf
0 D̄αf to |f |2 and 

f̄g gives Azi1 and Cg̃ respectively, where A, C ∈ C and g̃ = Dαf
0 g is holomorphic. Finally,

F (z, z̄) = Dαf
0 D̄αf

r0 = Kzi1 + Ψi1 , (5.4)

where Ψi1 =
∑m

l=1 KlD
αf

0ψl, m ∈ Z>0, K, Kl ∈ C, l = 1, . . . , m, and ψl is a holomorphic monomial from 
some generator of 

∑N
l=1 |hl|2 such that ψl and f are distinct. Due to the weight restrictions given in (5.3), 

if ψl 
≡ 0, then ψl has weight 1/2. F (z, ̄z) is holomorphic as required. �

nichoai
Sticky Note
Even though Lemma 5.2 is interesting, it cannot be applied in its current form to obtain the desired normalization. The reason is because the set of possible choices of multiindices to obtain 5.4 is very large. What set of multiindices gives the desired normalization? This is where the result on the balanced sum of squares comes into the picture. Using that result, we generate a finite set of multiindices  (cardinality = n) that give the required normalization.
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Remark 5.3. The term Ψi1 in (5.4) is independent of the variable zi1 due to weight restrictions.

As hinted in the introduction of this section, the proof of our second main theorem heavily relies on 
Corollary 5.1 and Lemma 5.2 above. Armed with these tools we now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let M be a sum of squares hypersurface in Cn with defining function

r = 2Re z1 +
N∑
l=1

|fl(z2, . . . , zn)|2,

where fl(z2, . . . , zn) is a holomorphic function near the origin and assume that the rank of the Levi form 
of M at 0 is q. From Corollary 5.1 there exists a holomorphic change of coordinates at 0 preserving the 
multitype so that the defining function r in the new coordinates is given by

r = 2Re z1 + p(z2, . . . , zn, z̄1, . . . , z̄n) + oΛ−1(1),

where p is a polynomial consisting of all terms of weight 1 with respect to the Catlin multitype at 0 and 
also contains the balanced sum of squares

|z2|2k22 + |z2|2k32 |z3|2k33 + · · · + |z2|2kn2 · · · |zn|2knn , (5.5)

with kjj > 0 for all j and the degree of p in each (zj , ̄zj) is not greater than 2kjj . Note that since M is a 
sum of squares domain, all holomorphic changes of coordinates will take squares to squares. The proof here 
reduces to proving that at the level of the model hypersurface r0 = 0, where

r0 = 2Re z1 + p(z2, . . . , zn, z̄1, . . . , z̄n),

for q + 2 ≤ j ≤ n, the real-valued function rj in the boundary system Bn(0) can be transformed into the 
form Re zj via a holomorphic polynomial change of coordinates. Via a Chern-Moser type argument [8], we 
assume that the Levi rank at the origin is q = 0. Also, from [1] we know that p is a sum of squares and 
so let p =

∑N
l=1 |hl(z2, . . . , zn)|2, where hl is a holomorphic function of weighted degree 1/2. We proceed 

further by rewriting the balanced sum of squares in (5.5) as

|zk22
2 |2 + |zk32

2 zk33
3 |2 + · · · + |zkn2

2 zkn3
3 · · · zknn

n |2 (5.6)

and applying Lemma 5.2 to the defining function r0 as follows: Denote by f(j) the monomial given by

f(j) = z
kj2
2 z

kj3
3 · · · zkjj

j , for all 2 ≤ j ≤ n,

and let αf(j)
0 = (kj2, kj3, . . . , kjj − 1) and αf(j) = (kj2, kj3, . . . , kjj). Note here that the definition of the 

multiindices αf(j)
0 still holds since kjj > 0. From Lemma 5.2,

Dα
f(j)
0 D̄αf(j)

r0 = Cjzj + Ψj , for all 2 ≤ j ≤ n, (5.7)

where Ψj is a holomorphic function. From Remark 5.3, Ψj is independent of zj for each j, 2 ≤ j ≤ n, and 
so we can make a suitable holomorphic change of coordinates. Hence, for each fixed j, 2 ≤ j ≤ n, we obtain 
an equally ordered list L given by

Lj := ∂zj + pzj∂z1 , L = {Lj , L̄j , . . . , Lj , L̄j︸ ︷︷ ︸, . . . , L2, L̄2, . . . , L2, L̄2︸ ︷︷ ︸
2k

},

2kjj 22
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and

L ′ = {L̄j , . . . , Lj , L̄j︸ ︷︷ ︸
2kjj−1

, . . . , L2, L̄2, . . . , L2, L̄2︸ ︷︷ ︸
2k22

}.

Hence we compute rj as

rj = L ′∂r ∼ ReDα
f(j)
0 D̄αf(j)

r0 ∼ Re(Cjzj + Ψj). (5.8)

Finally, we make a holomorphic change of coordinates that preserves Λ: zl → z̃l for 1 ≤ l ≤ n, where 
z̃l = Clzl +Ψl for l = j, and z̃l = zl for l 
= j. Thus, in the new coordinates (after normalizing the constants 
to 1), the real-valued function rj in (5.8) becomes

rj = Re zj , (5.9)

for all 2 ≤ j ≤ n. �
We shall prove Theorem 1.1 by establishing the two inequalities M(0) ≤ C(0) and M(0) ≥ C(0). The 

proof of the first inequality is easy and is also given in [5] Theorem 3.7, for a general pseudoconvex domain 
in Cn. We are therefore interested in showing that M(0) ≥ C(0) for any sum of squares domain. The proof 
of the second inequality for a general pseudoconvex domain is also given by Catlin in [5] via a simultaneous 
inductive argument, but the details of the proof are very difficult to read. Hence, for any given domain of 
sum of squares of holomorphic functions, we shall present a very simple proof of the second inequality using 
results from Theorem 1.2.

Proof of Theorem 1.1. Let 0 ∈ M be a smooth real hypersurface in Cn with defining function

r = Re z1 +
N∑
j=1

|fj(z2, . . . , zn)|2,

where f1, . . . , fN are holomorphic functions near 0 and suppose that Bn(0) is the boundary system defined 
near the origin. Let C(0) be the commutator multitype at 0 associated to Bn(0) and suppose that both 
C(0) and M(0), the multitype at 0, are finite.

We will show that M(0) ≥ C(0). By definition, the multitype is the infimum of all distinguished weights 
and so M ≥ Λ, where Λ ∈ Γ̃, the set of all distinguished weights. Therefore, it suffices to show that 
C(0) is a distinguished weight. From Corollary 5.1 applied in the proof of Theorem 1.2, there exists a 
holomorphic change of coordinates that transforms the defining function r into the form given in (2.3) in 
Remark 2.5. The complete normalization result from Theorem 1.2 ensures that there exists a holomorphic 
change of coordinates, which maps (z1, . . . , zn) to the origin and also transforms r into the form in (2.3). 
Hence, the weight C(0) at 0, generated from Bn(0) is a distinguished weight. This completes the proof of 
Theorem 1.1. �
6. Ideal restatement of the commutator multitype machinery

We reformulate Catlin’s technique for the commutator multitype computation in terms of the ideal 
of holomorphic functions associated to the sum of squares domain D. Recall that for any given ideal of 
holomorphic functions 〈f〉 = 〈f1, . . . , fN 〉 associated to D, J(f)J∗(f) is the Levi matrix of M , where J(f)
and J∗(f) are the complex Jacobian matrix and its conjugate transpose respectively. Also, recall that for 
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every vector field Lj ∈ T 1,0M we associate the row vector vj , 1 ≤ j ≤ n, where v1 = (1, 0, . . . , 0). The reader 
should note that if any vector field is denoted by Lj, then its corresponding row vector will also be denoted 
by vj . From (4.1), the 1 × n matrix [∂r1] is given by [∂r1] := (∂z1r1 ∂z2r1 · · · ∂znr1 ). In general, we 
will denote by [∂rk] the matrix

[∂rk] := (∂z1rk ∂z2rk · · · ∂znrk ) ,

for some k ∈ Z+, rk is some real-valued function and ∂zi := ∂
∂zi

.

6.1. The commutator multitype machinery: ideal version

Let D be a sum of squares domain and let z0 be a point in M . We assume here that the entries of both 
the multitype and the commutator multitype are not necessarily finite. Let r be a smooth boundary-defining 
function and suppose that the rank of the Levi form of M at z0 equals q. Let 〈f〉 = 〈f1, . . . , fN 〉 be an 
ideal of holomorphic functions associated to D and let C(z) = (c1, . . . , cn) be the commutator multitype. 
Set r = r1.

The number c1 is defined by c1 = 1, which corresponds to the weight in the z1-direction. Here, c1 is 
obtained from the condition [∂r1] vT1 , where v1 = (1, 0, . . . , 0) is the vector associated to the vector field 
L1 = ∂

∂z1
∈ T 1,0M . Since the rank of the Levi form of M at z0 is q we get c2 = · · · = cq+1 = 2. Hence, we 

choose holomorphic vector fields L2, . . . , Lq+1 such that vj ∈ ker [∂r1] and such that the q × q matrix

V J(f)J∗(f)V ∗(z0) (6.1)

is non-singular, where V = [vkj ], 2 ≤ k ≤ q + 1, 2 ≤ j ≤ n, is a q × (n − 1) matrix whose lth row is 
vl = (vl2 · · · vln). We denote by Lhmax the set of the vector fields L2, . . . , Lq+1, which is a maximal collection 
satisfying the condition in (6.1). The construction is done if q+1 = n; otherwise, we continue the procedure 
in the following two steps:

STEP 1: Let T 1,0
q+2 denote the subbundle of T 1,0M defined by

T 1,0
q+2 = {L | v ∈ ker [∂r1] and vJ(f)J∗(f)v∗j = 0, j = 2, . . . , q + 1},

where v is the row vector associated to L ∈ T 1,0M . At this point, we recall Definition 4.1 and 
Remark 4.2 given in section 4. Let s denote an integer with s ≥ 2, L = {L1, . . . , Ll} an equally-
ordered list, and Lh = {L1, . . . , Ls} its associated holomorphic list. Let lk be the number of times 
both vector fields Lk and L̄k appear in L and let sk be the number of times that Lk appear in 
Lh. Then lk = 2sk.
Now, suppose that Lh = {L1, . . . , Ls} is a list of holomorphic vector fields such that there exists 
a nonvanishing vector field L ∈ T 1,0

q+2 such that Lj = L for every j, 1 ≤ j ≤ s and let L ′
h =

{L2, . . . , Ls}. Denote by F(z) the function

F(z) = vJ(L ′
hf)J∗(L ′

hf)v∗(z)

for z ∈ M , where J∗(L ′
hf) and v∗ are the conjugate transposes of J(L ′

hf) and v respectively. If 
F(z0) = 0 for all such lists, then we set ci = ∞ for i = q + 2, . . . , n. Let Lh = {L1, . . . , Ls} be a 
list of holomorphic vector fields that satisfies the condition that F(z0) 
= 0 and denote by hτ (z)
the function

hτ (z) = v2J(L ′′
h f)J∗(L ′

hf)(v1)∗(z), (6.2)
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where vj is the row vector associated to the vector field Lj ∈ Lh(τ). If F(z0) 
= 0 for some list 
Lh, then choose one denoted by Lh(q + 2) for which s is the smallest and set cq+2 = 2s, where 
Lh(q+2) = {L1, . . . , Ls}. Let L ′

h(q+2) = {L2, . . . , Ls} and set rq+2 = Re hq+2 or rq+2 = Im hq+2. 
We also denote by Lq+2 the particular vector field L used to obtain Lh(q + 2). This ensures that 
the condition Lq+2rq+2 
= 0 holds.
Next, if q + 2 = n, then the construction terminates; otherwise, we find the subsequent entries of 
the commutator multitype by following a slightly modified version of the first step.

STEP 2: Assume that for ν − 1 ∈ Z, q + 2 ≤ ν − 1 < n, the positive rational numbers c1, . . . , cν , vector 
fields L2, . . . , Lν , and functions rj , j = 1, q + 2, . . . , ν, have been constructed. Now, we define a 
ν-admissible list as follows:

Definition 6.1. Let Lh = {L1, . . . , Ls} be an ordered list of holomorphic vector fields. We say that 
Lh is ν-admissible if lν > 0 and Lh satisfies the inequality

ν−1∑
k=q+2

sk
ck

<
1
2 .

We proceed with the argument by affirming that the following properties also hold from the 
inductive hypothesis: For every j, q + 2 ≤ j ≤ ν − 1
(i). The list Lh(j) = {L1, . . . , Ls} is ordered and j-admissible.
(ii). If Lh(j) = {L1, . . . , Ls} is an ordered list, sjk equals the number of times Lk occur in Lh(j), 

and 
j−1∑

k=q+2

sjk
ck

<
1
2 , then F(z0) = 0. Hence, Lh(j) is of minimal length.

(iii). Lh(j)(z0) 
= 0
(iv). If Lh(j) = {L1, . . . , Ls}, then the condition Ljrj 
= 0 holds where L ′

h(j) = {L2, . . . , Ls} and 
rj = Re hj or rj = Im hj (we are using the notation in (6.2)).

(v). Ljrk = 0 if q + 2 ≤ k < j ≤ ν.
(vi). If sjk equals the number of times Lk occur in Lh(j), then sjk = 0 whenever k > j and 

j−1∑
k=q+2

sjk
ck

= 1
2.

Next, denote by T 1,0
ν the subbundle of T 1,0bΩ defined by

T 1,0
ν = {L | v ∈ ker [∂rk] and vJ(f)J∗(f)v∗j = 0, j = 2, . . . , q + 1},

for k = 1, q + 2, . . . , ν − 1. We compute the positive rational number cν by considering j =
ν in properties (i) and (iii)-(v) above. We consider all ordered ν-admissible list Lh for every 
holomorphic vector field Lν ∈ T 1,0

ν . If F(z0) = 0 for all such lists Lh, then we set cν = · · · =
cn = ∞. If F(z0) 
= 0, then we choose one with minimal length and denote it by Lh(ν), where 
Lh(ν) = {L1, . . . , Ls}. Let sk be the number of times that Lk appear in the list Lh(ν) and let 
c(L ) denote the solution to

ν−1∑
q+2

sk
ck

+ sν
c(L ) = 1

2 . (6.3)

Since Lh(j) is ν-admissible, the solution c(L ) ∈ Q+. Let L ′
h(ν) = {L2, . . . , Ls}. Set cν =

c(Lh(ν)) and rν = Re hν or rν = Im hν so that Lνrν 
= 0 is satisfied. Also, the list Lν satisfies 
properties (i)-(vi). The process terminates after the last entry is obtained. Thus, this procedure 
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generates C(z0) = (c1, . . . , cn) the commutator multitype at z0. Let ν ≤ n be the largest index 
such that cν < ∞. We call the collection

Bν(z0) = {r1, rq+2, . . . , rν ; L2, . . . , Lν}

of real-valued functions and vector fields a boundary system of rank q and codimension n − ν.

6.2. The model domain case

We shall consider Catlin’s machinery for the case where the domain in question is D0, the model of a 
sum of squares domain D. Assume that all the entries of both the multitype and the commutator multitype 
are finite. Let M0 ⊂ Cn n ≥ 2 be a model hypersurface of a model sum of squares domain D0 defined by 
{r0 < 0}, where

r0 = 2Re z1 +
N∑
l=1

|wl(z2, . . . , zn)|2,

and wl is a polynomial of weight 1/2 with respect to the Catlin multitype at 0. Assume that the rank of 
the Levi form of M0 is q and let z0 be a point in M0. Here, we will adopt a slightly different approach 
to obtaining the holomorphic vector fields in the maximal collection Lhmax . We will derive holomorphic 
functions h2, . . . , hq+1 whose mode of construction will be consistent with methods used to obtain the 
functions hk for k = q + 2, . . . , n in ideal reformulation of the Catlin commutator multitype machinery 
in subsection 6.1 above. Let 〈w〉 = 〈w1, . . . , wN 〉 be the ideal of holomorphic functions associated to the 
domain D0. The holomorphic functions h2, . . . , hq+1 are constructed as follows: We denote by Wt(z) the 
function

Wt(z) = vtJ(w)J∗(w)v∗t (z),

where vt is the row vector associated to the (1,0) vector field Lt, for some t ∈ Z>0, and J∗(w) is the 
conjugate transpose of J(w). Since the rank of the Levi form is q, we can always find (1,0) vector fields 
Lj ∈ Lhmax , j = 2, . . . , q + 1, such that the function hj(z) given by

hj(z) = (w1 · · · wN ) J∗(w)v∗j (z),

where vj is the row vector associated to the vector field Lj, is holomorphic. Also, each Lj satisfies the 
conditions that Wj(z0) 
= 0 and Lj ∈ ker [∂r1]. The condition Wj(z0) 
= 0 can be interpreted for each vector 
field Lj ∈ Lhmax , 2 ≤ j ≤ q + 1, as vjJ(hj)(z0) 
= 0. It is also easy to see that we can always choose the 
vector fields Lj and Lk for 2 ≤ j < k ≤ q + 1, so that the condition vkJ(hj)(z0) = 0 holds. Denote by W (z)
the function

W (z) = vJ(L ′
hw)J∗(L ′

hw)v∗(z)

for z ∈ M , where J∗(L ′
hw) and v∗ are the conjugate transposes of J(L ′

hw) and v respectively. By applying 
Corollary 5.1 and Lemma 5.2 to r0, we can always find a list Lh(τ) = {L1, . . . , Ls}, q + 2 ≤ τ ≤ n, of 
holomorphic vector fields such that W (z0) 
= 0 holds and such that the function

hτ (z) = v2J(L ′′
h w)J∗(L ′

hw)(v1)∗(z)
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is holomorphic. Here vj is the row vector associated to the vector field Lj ∈ Lh(τ). Continuing in a 
similar manner as in the construction given in section 6.1, we obtain the following: For every minimal list 
Lh(τ) = {L1, . . . , Ls}, q + 2 ≤ τ ≤ n, such that W (z0) 
= 0 holds, we get

cτ = c(Lh(τ)) and rτ = Re hτ or rτ = Im hτ

so that Lτrτ 
= 0 is satisfied. Since hτ (z) is holomorphic, the condition that Lτrτ 
= 0 is equivalent to the 
condition

vτJ(hτ )(z0) 
= 0, (6.4)

where J(hτ ) is the complex Jacobian matrix of hτ and vτ is the row vector associated to the vector field 
Lτ . Also, vjJ(hτ )(z0) = 0, if j > τ . Finally, we shall consider an ideal generated by all the constructed 
holomorphic functions. Now, let ν ≤ n be the highest index such that cν < ∞. Then for any boundary 
system Bν , we denote by IBν

the ideal

h = 〈h2, . . . , hν〉

generated by the holomorphic functions hj, j = 2, . . . , ν. We shall call IBν
the boundary-system ideal.
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