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Abstract—Value of Information (VoI) is a concept to assess
the usefulnessof information for a specific goal, and has in the
last decade experienced a growing interest also for Wireless
Sensor Network (WSN) applications and the Internet of Things
(IoT). By making the value of information explicit in the form of
VoI, WSN and IoT applications should be able to better assess
which information to spend their constrained resources on.
However, the definition of VoI is highly application-dependent,
which has led to a fragmented understanding of VoI, and
there is a lack of a comprehensive overview. In this structured
review, we first categorize application use cases and examine
what VoI is used for, and explore the different approaches to
defining VoI. We then provide a well-structured and compre-
hensive discussion of the specific approaches used in the
literature to determine VoI, together with examples of use
cases. We categorize the different approaches to calculating
VoI, describe their properties systematically and distinguish
between observed VoI and expected VoI. We also discuss
adaptive VoI approaches and point towards future directions
within the field.

Index Terms— Data collection, data reduction, Internet of Things, machine learning, scheduling algorithms, sensor
data, sensor networks, wireless sensor networks, value of information.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are at the core
of the Internet of Things (IoT), and the basis for

many sensing applications. In these systems, information is
measured and collected by sensor nodes, further processed,
and forwarded to an information sink. Here information is used
to monitor and document a phenomenon, and is often taken as
a basis to make informed decisions and take action. In most
cases, the WSN components are severely resource-constrained,
in terms of available energy, communication opportunities or
computational power [1].

There are various ways to address these constraints, for
instance by more energy-efficient computing platforms, more
suitable communication protocols, better energy supplies,
energy buffers or energy harvesting techniques [2]. In addition
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to such measures, proper resource management can improve
the efficiency further, by controlling how the system fulfills its
purpose. In most applications, just more information does not
imply a better utility of the system to the user. If the purpose
of the system is to monitor a slowly changing value, such
as an outdoor temperature, sampling with a high frequency
does not necessarily improve the value to the end user [3].
If a system involves mobile nodes, it may be more valuable to
visit places with unknown values than those already visited,
which means that a system should be able to prioritize among
different sensing options [4].

Intuitively, constrained systems should only spend their
resources on data items of high value, as opposed to those
that are redundant or of little utility. This is where Value of
Information (VoI) comes in. The concept was first described
by Howard [5] in 1966 as an information metric for data prior-
itization. The theory highlights the importance of probabilistic
and economic factors in the evaluation of information. In this
definition, VoI is the change in the expected utility obtained
by observing the information. The concept of VoI has since
been applied to various domains, among them WSNs and IoT,
and we observe a growing body of literature that applies VoI.

However, despite the simplicity of the principle, there exist
many different definitions of VoI in the domain of WSNs and
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many approaches to calculating or estimating it. One reason is
that assessing the value of an information item may be highly
dependent on the application, the subjective experience of an
end user, or a complex decision process. Another reason is that
VoI can be multi-objective in nature. For that reason, many
approaches only approximate the VoI using other information
metrics like Quality of Information (QoI) [6], or the timeliness
with which information items are delivered, also called Age
of Information (AoI) [7].

As a result, the literature on VoI in WSNs and IoT appears
fragmented and lacks a structure or foundation that goes
beyond the intuitive concept of VoI. This is unfortunate
since we expect that the concept of VoI has the potential to
address the ubiquitous problem of resource constraints in many
applications if it would be applied more systematically.

In this structured literature review, which is the first of
its kind, we hence provide a systematic overview of the
growing body of literature on VoI in WSNs and the IoT.
The foundation is a structured overview of use cases that
apply the VoI concept, with a focus on which role VoI
plays. We then provide an in-depth overview of the different
classes of approaches to define and implement VoI in WSNs,
and categorize their properties. This overview allows us to
structure our exposition of VoI definitions and approaches
categorically. This structure can be used as a taxonomy for the
field, as it covers analytical, statistical, information-theoretic
methods and also information value theory. We elaborate
on the important but often overlooked difference between
observed VoI and expected VoI. We identified two patterns
for adaptive VoI solutions, namely Human-in-the-Loop and
Model-in-the-Loop, and elaborated on the potential of machine
learning for the prediction and approximation of VoI. In our
discussion, we mention under-developed research areas and
point out research opportunities for the field.

The rest of this paper is organized as follows. After an
overview of the methodology used for this review in Section II,
Section III presents a discussion of use cases that apply VoI
in the domain of WSNs, and Section IV presents definitions
for VoI we found in the literature. Section V categorizes the
use cases, the decisions that informed by VoI, and presents
a categorization of the specific VoI assessment techniques.
Section VI discusses and explains the analytical assessment
methods for observed VoI, followed by Section VII which
explains how to assess the expected value of information.
Section VIII discusses how VoI assessment can be made
adaptive. Section IX is the discussion, Section X highlights
the lessons learned, and we finally conclude in Section XI.
Fig. 1 shows the complete layout of this article.

II. METHODOLOGY

We have used a systematic literature review method in this
review paper. This method was adapted from chapter 4 of the
book by Wohlin et al. [8], which provides general guidelines
for systematic review papers in software engineering. Below
is a comprehensive description of our methodology:

• We used the search keywords Value of information and
Wireless sensor networks.

Fig. 1. The layout of the article.

• We selected five databases; IEEE Xplore, ACM Digital
Library, Springer Link, Science Direct, and Scopus.

• We searched for articles published between
1996 and 2020.

We obtained 704 results for the keywords in the selected
databases and then applied the time limitation.
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Fig. 2. Publications on VoI in WSNs per year.

• Subsequently, inclusion and exclusion criteria were
applied by reading titles and keywords.

• Duplicate publications have been eliminated.

The main inclusion criterion is that articles must be in the
domain of WSNs; therefore, articles that apply VoI in other
domains were rejected. We ended up with 616 publications
after this step. Fig. 2 illustrates the yearly breakdown of these
publications. From Fig. 2, we can see that VoI has been around
for decades in WSNs, but with growing attention in the last
decade.

• We then applied the inclusion and exclusion criteria by
reading the abstracts.

• We added an additional exclusion criterion, to only
include publications that apply VoI within a defined
application context or introduce a new VoI definition.

• We applied the snowballing method using the references
in and the citations of the selected publications to find
other relevant publications.

• We then read the full papers.

We ended up with 50 core papers, some of which are
summarized in Tables I and II. We excluded papers that lack
any practical implementation.

III. VOI IN WSNS: USE CASES

VoI was first introduced to WSNs in 1996 by
Cook et al. [38] for use in tactical networks. They introduced
a sensing approach aiming to maximize the expected VoI of
the collected information without exposing the information
source to enemies. Collecting information requires the
information source to be moved to positions of interest,
but hiding from the enemies by maintaining stealth is a
conflicting requirement. VoI is used in this context to optimize
the tradeoff between collecting information and exposure to
the enemy.

Most WSN and IoT applications deal with constrained
resources, for example restricted communication, availability
of storage, computational resources or energy in general. All
use cases we found use VoI to make the most of these
limited resources by filtering or prioritizing information items

Fig. 3. VoI domains and application use cases.

or computational tasks. As a result, system resources are not
wasted in transmitting or processing low-value information.

Tables I and II summarize the reviewed cases [4], [9]–[37].
Fig. 3 shows the domains of the use cases along with the more
detailed application areas that we identified in the reviewed
literature. We distinguish between terrestrial WSNs, underwa-
ter WSNs (UWSNs), vehicular networking, and multimedia
WSNs. In addition comes fog computing as an architectural
paradigm in IoT.

A. VoI in Terrestrial Wireless Sensor Networks (WSNs)
In the domain of terrestrial WSNs, sensor devices are used

for applications like structural health monitoring, environmen-
tal monitoring and general cyber-physical systems. Therefore
VoI has been implemented in this domain to aid the optimal
allocation of energy to the most important information (i.e.,
the information with the highest VoI). For instance, Patil and
Fiems [14] study a WSN that has static sensors which observe
the environment and a mobile sink which moves to collect
the sensed observations from the static sensor nodes. Sensors
can transmit their observations to the sink node when they
are within the transmission range and if they have enough
energy. The VoI is used to decide whether to transmit when
both requirements are satisfied. In [15] they point out how VoI
plays a more important role when the sensor is running out of
energy, in which case the sensors are more careful about what
to transmit. Similarly, Zhang et al. [12] use VoI to prioritize
processing data packets with high value.

Singh and Al-Turjman [11] incorporated VoI in the con-
text of cognitive, information-centric sensor networks. They
present a multi-hop scenario in which VoI is used to choose
the optimal delivery path to the sink, taking into account
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TABLE I
USE CASES IN REVIEWED PAPERS RELATED TO TERRESTRIAL AND UNDERWATER WSNs

Quality of Service (QoS) parameters like reliability, latency,
and throughput. Simulations showed that VoI assisted handling
of heterogeneous network flow, by optimally choosing the
number of transmitting nodes in a manner that improved the
monitored QoS parameters.

B. VoI in Underwater Wireless Sensor
Networks (UWSNs)

Underwater WSNs help to monitor and control operations in
offshore and underwater environments. Harsh conditions and

remote locations result in intermittent connectivity, generally
restricted communication and energy constraints. We observe
that VoI has been studied and applied quite extensively in
this domain. One of the methods to improve communica-
tion is topology control, in which communication nodes are
moved to new locations [39]. Here, Autonomous Underwater
Vehicles (AUVs) move alongside predefined trajectories. VoI
is used to find the best trajectory of an AUV in UWSNs.
Observations at each node are assigned a VoI to reflect the
importance of the observations for a targeted application, and
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TABLE II
USE CASES IN REVIEWED PAPERS RELATED TO VEHICULAR NETWORKS, MULTIMEDIA WSNs AND FOG COMPUTING

accordingly the importance of the nodes that made those
observations. Then, the AUV will plan its trajectory in a way
that maximizes the overall VoI delivered to the application.

AUVs are also used in applications that require timely data
collection, like the monitoring of oil spills. The task of the
AUV is to collect observation data from the sensor nodes and
offload it to a base station above sea level. Khan et al. [21]
propose a greedy path planning method for AUVs, based on a
time-sensitive VoI definition, in which the AUV visits nodes
that hold observations with high VoI first. This approach is
further extended to handle multiple vehicles [22]. The aim is
to maximize the overall VoI, and their algorithms plan which
nodes to visit next based on the priority, where the priority is
assigned according to the VoI. In [23], they propose a genetic
algorithm to find the optimal resurfacing time for the AUV
that maximizes the collected VoI. The results in [24] indicate
an improvement of the information quality collected by the
AUV when incorporating VoI in path planning algorithms.

Gjanci et al. [26] introduce an adaptive heuristic path find-
ing method for the AUV. Sensor nodes send summaries of
observed events that characterize the event type and impor-
tance to an AUV using a short communication link. The AUV
estimates the expected value of information and updates its
route accordingly, so it can collect data with high expected
VoI first. Also related to AUV path planning, Duan et al. [16]
propose a VoI definition that considers the timeliness and the

importance of an information item. A similar definition has
been introduced by Xia et al. [17] for information collection
based on VoI. The communication between the base station
and the AUV is modeled as a contract, where the AUV acts as
the seller and the base station as the buyer of the information.
The exchange unit between seller and buyer is energy, and
the AUV will get charged with energy equivalent to the VoI
contained in the information it offloads to the base station.

In marine applications, Zhao et al. [18] use VoI to deter-
mine the priority of data transmissions. They introduce VoI
levels that correspond to different thresholds, and data packets
are stored in different queues that correspond to their VoI
levels. Queues with the highest VoI are assigned the fastest
link, so that the most valuable data items can be transmitted
first.

Nodes in UWSNs can also move passively due to underwa-
ter currents, leading to a dynamic topology. Chang et al. [19]
consider VoI-based data forwarding in UWSNs with such
passive mobility. In this study, sensors will transmit packets
with high VoI (defined by timeliness) when the sink is within
the transmission range. Yan et al. [25] also consider passive
mobility, and propose a path planning algorithm for the AUV,
in which they optimize the total VoI, the AUV travel distance
and the traveling time. Han et al. [20] use VoI to decide the
transmission priority of a packet to the cluster head, in a
network composed of multiple clusters.
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C. VoI in Vehicular Networking Applications
Vehicular networks allow ad-hoc, vehicle-to-vehicle com-

munication. Since connections are transient, VoI can be useful
to prioritize transmissions. Giordani et al. [27] distinguish
between safety and traffic management applications. Safety
applications have the goal to avoid collisions and require low-
latency communication. In such a scenario, the VoI is high if
vehicles are physically close [27]. The application of traffic
management involves the creation of local, dynamic maps by
incorporating sensor data collected from vehicles. Compared
to safety applications, traffic management is more tolerant of
delays. VoI thus depends less on the distance between vehi-
cles [27], because sharing the information between vehicles
can be important for constructing local maps despite their
distance. These two cases show that even within the same
domain, VoI can be application-dependent. Higuchi et al. [28]
apply VoI to cooperative perception applications, in which
neighboring vehicles share sensor data to increase their overall
knowledge. Each sender node estimates the expected VoI for
the receiving node and only sends packets with VoI higher
than a certain threshold, which improves overall performance.

Tactical networks represent a particular type of vehicle
networks where VoI was implemented. Suri et al. [40] imple-
mented a middleware solution for tactical networks that uses
VoI to prioritize the transmission of high priority informa-
tion, and drop information objects with VoI below a certain
threshold.

D. VoI in Multimedia WSNs
A demanding type of networks are multimedia WSNs in

which multimedia is the main type of data that is sensed
and transmitted by the sensors. This requires a high-capacity
channel for communication to transfer high data volumes with
a low delay.

Multimedia WSNs are used in applications like habitat
monitoring, in which detecting the presence of an animal and
classifying its type are the main application goals. Cameras are
mounted to the sensor nodes, and data can be collected using a
mobile sink such as an unmanned aerial vehicle (UAV), that fly
from one sensor node to the next, following a predetermined
or adaptive trajectory. Xu et al. [30], [32] use VoI in the
path planning algorithm for the UAV to maximize the overall
collected VoI. In [30], VoI has been incorporated in the reward
function of the Markovian decision-based path planning algo-
rithm. In [32], VoI is used as a performance metric for the path
planning algorithm. The algorithm incorporates a prediction
model for the animal distribution from historical data, and
solves the path planning problem as a simplified traveling
salesman problem. Han et al. [29] incorporate VoI of the
collected data and the remaining UAV power in the reward
function of a deep reinforcement learning model that aims to
find the optimal path for the UAV and its recharging schedule.

Xu et al. [31] illustrate the use of mobile phones as data
collectors in the application of habitat monitoring. In this
scenario, mobile users only have a short time within the
transmission range of sensor nodes, and it is hence beneficial
to prioritize the collection of data with high value.

Szymanski et al. [41] presented a scenario in a parking
garage, where a sensor network is deployed with both micro-
phones and cameras. Compared to the microphones, the cam-
eras provide more accurate information about the events, but
with a high energy cost and the need for more maintenance.
VoI is used to determine the optimal time to switch between
the use of the microphone and the camera as information
sources.

E. VoI in Fog Computing and Middleware
Fog computing is an architectural paradigm in which com-

putation happens closer to endpoints, for instance directly in
the sensing nodes, in access points, base stations or gateways.
At this level, VoI is used to optimize the usage of system
resources at a network level and by ranking services provided
by the network.

Tortonesi et al. [42] demonstrate the use of VoI within
fog services for prioritization of information for processing
and dissemination tasks. They present a processing model
(called SPF for Sieve, Process, and Forward) that disseminates
information based on its VoI [36]. In [37] they apply SPF
in a smart city context, to overcome the problem of the
demanding processing tasks for massive data, with scarce
processing, computation and communication resources. SPF
optimizes these tasks by filtering data with low VoI. The model
is implemented using Software Defined Networking (SDN) so
it can be deployed into the network infrastructure.

Bharti et al. [34] propose a VoI-based sensor ranking mech-
anism running on gateways. When a user requests a sensor
service, the ranking mechanism chooses the service with the
highest VoI. The authors demonstrate how this VoI-based
ranking can outperform other methods as it takes the residual
energy as well as the QoS required by the users into account.
Similarly, Mocnej et al. [43] demonstrate the use of VoI in
the gateway service layer for selecting data, in which the VoI
corresponds to the significance level of the data to a specific
application.

Al-Turjman [35] proposes a VoI-based cache replacement
strategy for fog computing applications. With this strategy,
data with high VoI will stay longer in the cache than data
with lower VoI. The advantage of this caching method is that
the replacement of data in the cache will follow the user
requirements. For instance, in a city traffic application, a user
requirement may be to obtain only data about the traffic within
the last hour. Data outside this time frame is discarded.

Poltronieri et al. [33] proposed a user-specific VoI model
by adding a user-specific utility component, which takes each
individual user receiving messages into account. This work
uses a simulation-based approach [44] for calculating the
VoI in fog services. When created, an initial VoI attribute is
assigned to the raw data, which is sampled from a random VoI
distribution model associated with its source. The simulator
allows each message to have a temporal decay and spatial
decay, which follow a linear, exponential or no-decay profile.
In Section VI-B we discuss the temporal decay with more
details.

Another middleware solution that takes subjective users
into account is FireDex [45]. It is a cross-layer middleware
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that estimates end-to-end response time for emergency events,
specifically for fire detection in smart buildings. FireDex
defines a utility function to capture VoI for each user depend-
ing on their use case. The VoI is then used to prioritize network
resources, and only information with high VoI is allowed to
use high bandwidth.

IV. VOI DEFINITIONS

There exists a wide range of definitions and terminology for
VoI within the area of WSNs. They range from a simple metric
that is attached to an information object, such as in Fernandez-
Bes et al. [46] who simply refer to VoI as the importance of a
message, to more elaborate definitions that take the subsequent
decision processes into account. Before we look at how VoI
can be calculated in Sections VI, VII, and VIII, we present
below an overview of VoI definitions organized by their focus.

a) Focus on internal system costs: VoI can be defined based
solely on internal system costs, such as energy consumption
for measurement, processing or transmission, or networking
resources used. Mahajan [47] defines VoI for a data point
as the communication cost at which the sensor is indiffer-
ent between transmitting or not transmitting the information.
Soleymani et al. [48] define VoI as the maximum value an
observer would be willing to pay for the transmission of a
measurement.

b) Focus on probabilistic factors: Howard [5] introduced the
value of information theory, which considers the probabilis-
tic and economic factors that affect decision-making. This
goes beyond information theory, which only focuses on the
probabilistic factors regarding obtaining information. Instead,
the information value theory also takes the importance or
relevance of the information to the user into account. Given a
clairvoyant that can tell us the information before we actually
spend effort on its collection, the VoI will be equivalent to the
difference between the expected profit we gain from informa-
tion collection and the expected profit from not collecting the
information in the first place. In this sense, VoI can also be
understood as the difference between the maximum prior and
posterior expected benefits [9]. The probabilistic nature of this
definition stems from the use of expectations, and its economic
side from the use of cost-benefit methods to quantify the profit
of information acquisition.

c) Focus on decision-making: VoI can be defined based on
the decision the IoT system is trying to support. In this context,
VoI aims at reducing uncertainty in the decision situation
by gaining valuable observations before making the decision.
VoI can hence be defined as the increase in the expected
value stemming from making the optimal decision when
having the information versus making the decision without
the information [49]. Tortonesi et al. [42] define VoI as the
quantified degree of benefit an information object provides to
the decision maker. Similarly, Eidsvik et al. [50] define VoI as
the price at which the decision maker is indifferent between
having the information or not. VoI is a way of representing
the expected utility of collecting additional observations rather
than making a decision without information, while taking
into account the cost of collecting the information [51]. The
decision maker must choose an alternative from a given set,

with each option having a utility that captures the resulting
gain for each alternative. If this gain is higher than the cost of
observing the information, the decision maker may continue to
collect it [52]. The collection of new information is dependent
upon the anticipated cost and usefulness of the additional
information.

d) Focus on system utility: Utility is a measure of how
beneficial something is within a specific context and a defined
domain. The utility of a system evaluates its usefulness to
the end user, including the actions and decisions taken by
the system. Many applications in WSNs capture application
requirements via utility functions [53], which compute the
value or efficacy of an action taken by an agent in a specific
context [54]. The information utility measures how useful
sensed information is and how scarce the sensing resources are
for the information gathering task [55]. VoI assesses the utility
of information in a certain context [34], [56], [57]. Hence,
VoI is a subjective measure of the information utility for the
consumer in a decision-making situation [40]. Therefore, one
can understand VoI also as a system utility assessment [34].
In that sense, VoI can be defined as the estimated utility of
information provided for the information consumers based on
their context [36]. Cook et al. [38] define VoI as the difference
between the expected value of an action taken based on the
information, and the action taken without it.

e) Focus on information consumers: A more pragmatic def-
inition of VoI is based on the application goals and the
utility that information will bring to the information customers.
Bölöni et al. [58] define VoI as the sum of values resulting
from all the customer’s actions within a strategy that is
based on the information extracted from the data. Further,
they introduce a conditional VoI definition as the value of
receiving a data chunk given all the data received before,
so the assessment of the conditional value does not only
depend on the current data but the transmission history as
well. Turgut and Bölöni [59] assume that the value of any
information goes to zero if the customer cannot take any action
in response. They argue that value judgments are much easier
when considering the application domain model compared to
models that are independent of applications.

f) Focus on external system costs: Information economics
are concerned with pricing information and consider it an
intangible good that can be sold in markets [60]. In this
context, VoI might refer to the monetary value from using the
information, based on an economic comparison of the decision
results with information and without it [61]. Similarly, in a
business context, VoI can be defined as the avoided loss from
taking a decision, for example to not invest in accordance with
the information [62]. Turgut and Bölöni [63] discuss the value
of information in the context of privacy of customers. From
a customer’s viewpoint, the perceived value of a service must
cover the cost of privacy as well as other service payments.
The information the service provider receives is important for
its ability to provide the service. Risk of Information (RoI)
represents the risk that information providers are exposed to
when sharing their information. VoI represents the gain the
service provider gets from obtaining the information. Thus,
RoI and VoI may be compromised to strike a balance between
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the utility acquired by the consumer and the risk experienced
by the provider [64]. Similarly, Mayle et al. [65] propose a
model where VoI is expressed in terms of cost of privacy. This
cost corresponds to the amount of money the service customer
gets from the service provider when sharing information.

V. USE CASES AND VOI ASSESSMENT PROPERTIES

In this section, we present a categorization of system proper-
ties for the use cases we studied in Tables I and II, followed by
a description of the decisions ultimately influenced by the VoI
assessment in the use cases. We then examine the properties
which characterize the VoI assessment.

A. System Properties of Studied Use Cases
We categorize the use cases by their mobility, topology and

communication patterns.
1) Mobility: WSNs can have various forms of mobility,

as shown in column 4 in Tables I and II. Sensors can move to
take measurements at different places, move with the water
(i.e., passively) as in UWSNs, or be attached to vehicles.
There are also cases where both the sensor nodes and the
sink nodes are mobile. We observed that all methods of
analytical evaluation (column 11, Table I and Table II) were
used regardless of the mobility style. However, what differs
is the reason why to consider VoI: When the sensors are
mobile, the question of where to make measurements need
to be answered before the sensing task. Ballari et al. [4], for
example, decide on the appropriate locations to sample the
data and the mobile sensor to move to take the measurements.
When the sink is mobile, the main task is to plan the sink path
by selecting the next node to visit. In multimedia WSNs, the
UAVs fly to collect sensing data from the sensor nodes. AUVs
also travel underwater to collect sensing data in UWSNs. This
type of mobility is structured mobility, as a consequence of
path planning algorithms, and VoI is used in this context to
optimize path planning. Conversely, mobile device users move
in a free pattern and collect sensing data from sensors in their
vicinity. They exhibit unstructured mobility like in [31], VoI in
this case used for content selection. Mobile sensor decisions
differ from those associated with static sensor networks; for
instance, VoI helps determine the next node to visit in [11],
[16], [17], [21], [26], [29], [30].

2) Topology: Column 5 indicates the system topology and
VoI evaluation placement. The VoI can be calculated in dif-
ferent system tiers. In the cases studied, three VoI evaluation
locations for VoI can be identified:

• Distributed: VoI can be computed in a distributed way,
within each sensor node individually.

• Centralized: VoI can be centrally calculated in a sink
node or fusion center, which receives data from all sensor
nodes of the network.

• Decentralized: In a variation of the central topology,
VoI can also be computed in a decentralized way. This
corresponds to a system with multiple clusters and sink
nodes that aggregate data from the sensor nodes.

3) Communication Pattern: Column 6 lists the methods of
communication used between the sensors and the sink nodes.
Three variations were identified:

• Periodic: Sensor nodes send information to the sink nodes
at periodic intervals.

• Event-driven: The sensors take the initiative to send
information based on the detection of an event.

• On-demand: The sink node initiates the requests for
information from the sensor node.

B. Decisions Informed by VoI
In this part of the table, we categorize what the VoI

assessment is used for, that means, why the VoI is calculated.
We were able to identify the specific decisions that were
based on the VoI assessment, shown in column 7 in Tables I
and II. The decision can be external or internal to the WSNs
system, as indicated by column 8. External decisions directly
relate to an external user of the system, or an intermediary
information user, like an application service. In structural
health monitoring, where buildings and other infrastructure
are monitored by networks of sensors, such a decision may
be whether the construction work should be postponed [10].
Internal decisions, on the other hand, relate to operational
issues within the system. These decisions often relate to the
constrained resources of systems and consider the value or
utility of information in relation to their cost. Our study of
use cases reveals that most VoI applications in WSNs are
linked to such internal decisions. Some approaches optimize
the operation of their network by deciding whether to trans-
mit information or not, or more generally, which subset of
measurements to transmit. This leads to VoI-based content
selection [13]–[15], [25], [28], [35], VoI-based transmission
priorities [18]–[20], [36], [37] and the decision of which data
to process [12].

With regard to internal decisions, sensor nodes generally
perform one of three operations: sensing, processing, or trans-
mission. Column 9, Sense indicates if the decision is whether
a sensor node should take a measurement or not. Column 10,
Transmit indicates if the decision is whether data should be
transmitted or not. Interestingly, the processing of data was
not a major concern in the use cases, which is why it is not a
separate column.

C. VoI Assessment Properties
We identified the following properties that characterize VoI

assessment in our review.
1) Unit of VoI: All use cases model VoI as a positive amount

because new observations will only enhance knowledge. The
unit can be linked to the one for the utility function. It may
be a concrete unit like energy [12], communication channel
fees [47], or money [10]. When VoI is valued in monetary
terms, it is commonly known as the economic VoI as described
in section IV. In most use cases we studied, VoI is not given
an explicit unit.

2) Stochasticity: The stochasticity (column 12 in
Tables I and II) describes whether the VoI is calculated
using probabilistic or deterministic methods. Zöller et al. [66]
discuss how the two types of models differ. The deterministic
model can be valued and monetized. In contrast, the
probabilistic model cannot be directly determined because it
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Fig. 4. Overview of value of information assessment methods in WSNs.

depends on many factors or is merely subject to uncertainties.
Probabilistic methods seek to model uncertainties around the
system and information. In addition, assessing the estimated
information that was not previously collected will result in
greater uncertainty than the information that has already been
collected.

3) Observed Vs. Expected VoI: A major distinction in
assessment methods regards when the VoI is calculated. The
observed VoI applies to an information item that is already
measured, where the information item itself can be input to
the VoI assessment process. On the other hand, the expected
VoI estimates the VoI of an information item that we have yet
to obtain. Fig. 4 shows an overview of the different VoI types
and assessment methods, where the first distinction is based
on this criterion. In the following, we will refer to the latter
always as expected VoI, whereas observed VoI is referred to
as simply VoI. We will further elaborate on expected VoI in
Section VII.

4) User Influence: VoI assessment methods can be objective
or subjective, as indicated in column 13. Objective approaches
concentrate on the intrinsic attributes of the information object
and can usually be calculated without additional context or
user-specific information. In contrast, subjective approaches
take the utility for individual users into consideration. In most
cases we investigated, VoI was evaluated on attributes that
concern the internal organization of systems, and are hence
objective. We identified only two use cases that take explicit
account of the user’s perspective.

5) Assessment Time Horizon: With regard to the time hori-
zon for the VoI assessment, we can distinguish two types of
approaches for VoI: Myopic methods assess the information
sequence one step at a time [67], whereas non-myopic methods
evaluate information sequentially [68] or make sequential deci-
sions [69]. We did not identify any non-myopic approaches
in the studied use cases. Frazier et al. [70] discuss the
non-myopic VoI that can be used in sequential information
gathering to perform adaptive sampling. However, they argue
that non-myopic methods often lead to non-feasible solutions
and can be hard to evaluate.

6) VoI Assessment Method: Finally, column 11 in Tables I
and II describes the specific methods used to calculate VoI.
Giordani et al. [71] categorize VoI valuation methods into
four categories: Heuristic approaches [72] that apply greedy
methods and exhaustive searches; Adaptive approaches [59]
which exploit feedback from users to refine the VoI

assessment; The use of machine learning [13] to predict
the VoI; and Analytical approaches which apply well-defined
mathematical models to assign the VoI. Our study shows that
most of the approaches used in WSNs fall under the analytical
category. Approaches marked with f (QoI) derive the VoI
from quality attributes of the data, discussed in Section VI-A.
Approaches marked with AoI base the VoI on the time-
liness of the data, discussed in Section VI-B. Approaches
marked with AHP use the Analytical Hierarchy Process to
systematically combine VoI from QoI properties, discussed in
Section VI-C. Approaches marked with KL use information
metrics such as the KL-divergence for VoI calculation, dis-
cussed in Section VI-D. Approaches marked with �Utility use
information value theory, discussed in Section VII-B.

VI. OBSERVED VALUE OF INFORMATION

The analytical methods described in the following have in
common that they assess an existing information item, i.e.,
they assess the observed VoI.

A. Quality Attributes of Information
Some recent studies in the literature, such as [73],

do not differentiate between VoI and Quality of Information
(QoI), which is defined by Sachidananda et al. [6] as “the
user’s perceived quality towards the information.” However,
Geyik et al. [74] distinguish between VoI and QoI, and
Bisdikian et al. [56] introduce a taxonomy for both QoI and
VoI attributes. Both consider QoI as an objective measure
of the information utility which can be determined from the
information object only. In contrast, they consider VoI as a
more subjective measure that conducts an assessment of the
information utility in relation to an end user. Accordingly,
we find a number of approaches that base their VoI assessment
on QoI attributes.

QoI attributes belong primarily to the objective category,
since they can often be calculated from the attributes of the
information object alone. We observe that many approaches
base their VoI assessment mainly on QoI parameters regardless
of individual users. However, the value of an information
object to a user is indirectly taken into account by selecting the
relevant quality attributes and combining them together. This
means that despite the objectivity of the metrics employed,
their selection may be subjective or based on empirical
considerations.
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Many attributes of information quality have been studied
in the literature, for example, in Rogova and Bosse [75]
with an emphasis on attributes of information quality from the
perspective of the information sink. Tortonesi et al. [42] assess
the information objects for each user request according to four
attributes: application priority, number of requests, timeliness
and proximity.

Below we provide examples of use cases where QoI
attributes were used to estimate the value of the information
object. The following attributes describe the information based
on its content:

• Relevance judges the information based on the context
provided in the initial request for information. For exam-
ple, Han et al. [20] define relevance as the correlation
between the signal requested by the application and
the signal measured by the sensor. Relevance includes
spatiotemporal correlation as well as the completeness of
the information.

• Proximity has been used in many applications [27], [33],
[34], [37]. In fog computing applications, the proximity
of the request is one attribute for information valuing.
Also in habitat monitoring applications, the proximity of
the event source to the sensor is an important factor in
assessing the information.

• Timeliness describes the freshness of information. Sinha
and Roy [76] view it as an attempt to reduce staleness.
This aspect of information is of such significance that
it is also referred to as Age of Information (AoI), and
treated separately in Section VI-B. AoI indicates the
extent to which data are available in a timely manner [77].
Timeliness is often used combined with other informa-
tion attributes. Duan et al. [16], for instance, evaluate
information based on timeliness and energy load balanc-
ing. Xia et al. [17] assess information by timeliness and
importance.

The following are attributes that describe the information
with regard to the application in which the information will
be used.

• Importance describes the importance of the information
for the purposes of the application [17], [18], [20], [25],
[29], [31]. In many use cases in the literature, importance
has been used in combination with timeliness attributes.
Cheng and Li [78] define the importance level of the
data as the difference from the mean. They assumed a
normal distribution, and then the data position in the nor-
mal distribution defines its significance. This definition
assumes that the uniqueness of the data correlates with
its importance.

• Concentration describes the amount of information
duplication received by the same sink node or cluster
head [20]. In some cases, receiving the same information
from multiple sources may indicate its significance, but it
may also decrease its value due to duplication, depending
on the application.

• Popularity measures the number of received requests
for the information from different users [35]. The more
popular the information object, the more valuable it is.

In an application context with n information quality
attributes IQ, the VoI can then be calculated as a linear
combination of the individual attributes:

VoI{QoI} = α1 IQ1 + α2 IQ2 + . . . + αn IQn. (1)

Al-Turjman [35], for instance, determines VoI by combining
the total delay (IQ1), time-to-live (IQ2) and the popularity of
the information packet (IQ3).

Yan et al. [25] combine AoI with the importance of an
information object. They explore the tradeoff between the
importance (IQ1) and timeliness of information (IQ2) by
introducing a tradeoff factor β for an event k,

VoIk
{QoI∗} = βkIQk

1 + (1 − βk) IQk
2, (2)

where βk is the trade-off factor associated with the event’s
importance Ik . This allows measurements about an important
event k to keep a high value even if they are collected by
the sink at a late time. A formula similar to (2) is used
in [16], [18], [25]. A modified formula is used in [20], where
IQ2 represents the information concentration along with the
timeliness.

B. Age of Information
Age of information (AoI) refers to a category of techniques

that emphasize time as a factor for the value of an information
item [16], [19], [27], [29], [33], [79]–[81], implying that
the value of an information item decreases with time. Most
approaches in this category combine a base value Vmax with a
decay function f (t, t0), where an information object generated
at time t0 has value Vmax which then decays over time. Most
commonly used are exponential decay functions [19], [24],
[32]. At time t , the VoI can for instance be expressed as

VoI{AoIexp} = Vmax e−γ (t−t0) t > t0. (3)

The factor γ affects how fast the value decays. Some
approaches like Chang et al. [19] or Zou et al. [80] addition-
ally set the value to zero after some deadline or maximum
time-to-live tmax. However, in complex systems with complex
dynamics, it is difficult to set a deadline for information
decay [27]. There are also approaches that define no decay
(corresponding to γ = 0). Instead the value stays constant for
some time, but drops to zero after a deadline [82]:

VoI{AoInD} =
{

Vmax, t < tmax,

0, t ≥ tmax.
(4)

Further, Gjanci et al. [26] explore two types of decay to
plan paths for underwater vehicles: exponential decay and
no-decay. When the event is first observed, the sensor node
adds information about the decay type and the urgency of
the event to the data packet of the event. Additionally, they
used two types of models: uniform and heterogeneous. In the
uniform model, all information items decay with the same
decay pattern, either exponentially or with no decay. In the
heterogenous model, half of the information items decay with
exponential decay and the other half have no decay. To ensure
a high total delivered VoI to the base station at the surface, the
AUV visits first nodes with exponential decay, then nodes with
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no-decay. Zou et al. [80] define a linear AoI decay function
for packets in a status update system with various initial values
for Vmax,

VoI{AoIL } = Vmax − Vmax

tmax
t . (5)

Some authors like Chang et al. [19] select a constant base
value Vmax. This implies that the value of each information
object is initially the same and then depends on the age
of the information object. Such methods assess acquisition
time only, and are hence limited to one dimension of the
information classes while they fail to assess the others.

In contrast to this objective form of AoI, other approaches
choose values for Vmax depending on the information object
and the application. In these approaches, AoI is combined
with other techniques to determine or assign an informa-
tion value. Depending on how Vmax is determined, AoI can
hence also take subjective characteristics into consideration.
Xu et al. [30] compute Vmax for event detection in an animal
monitoring network based on domain-specific attributes like
animal type (I Q1), detection credibility (I Q2), duration of the
detected event (I Q3), and the distance to the animal (I Q4),

Vmax = IQ1 × IQ2 × IQ3 × IQ4. (6)

A similar formula for VoI is used in [37] in the context of
fog computing. In addition to AoI, the information attributes
used are a service-dependent parameter (IQ1), the priority of
the fog service (IQ2), number of requests for the fog service
(IQ3), and the proximity relevance (IQ4).

Khan et al. [21] optimize the routes of underwater vehicles
to collect data from sensor nodes. The Vmax considered in their
work is of a categorical nature. Moreover, a different Vmax is
assigned depending on whether a sensor is located within a
hotspot or not.

Vmax =
{

A1, for normal,

A2, for hotspot,
where A1 < A2. (7)

Giordani et al. [27] use AoI in vehicular networks in com-
bination with other elements like proximity and expected
camera image quality. They combine these elements using
AHP (described in Section VI-C).

In update systems, VoI consists of two factors, according to
Hribar et al. [83]. The first is the age of information update
(AoIU), which is the time from the last received information
update for the same status. The second factor is the correlation
between the information sources.

The value of an information item at the moment it is
acquired is always higher than the value after being transmitted
as a data digest due to two factors: urgency and summa-
rizability. Urgency is another way to refer to AoI whereas
summarizability indicates how replacing the initial data by
a digest affects its value and mainly depends on the data
structure [58].

Singh et al. [84] concluded their work by stating that min-
imizing the AoI does not necessarily maximize the perfor-
mance. Indeed, methods that use AoI as a representation of the
VoI have a valid point. However, it is an incomplete point of
view, because it does not take into account the various quality

attributes of the information. In time-insensitive information
systems, AoI is an impractical measure of the value of the
information.

C. Analytic Hierarchy Process (AHP)
We have seen above that various criteria can be used to

assess the value of an information object. To make this process
more systematic, Bisdikian et al. [56] propose the use of the
Analytic Hierarchy Process (AHP) within WSNs to derive VoI
from QoI attributes. AHP was introduced by Saaty [85] as
a general framework for decision-making in the presence of
multiple criteria. Using this technique, a user first rates the
importance of criteria in pairs. These pairwise comparisons
are then arranged in a matrix, from which a total weighting
of the criteria can be calculated. The approach also assigns
a consistency score to the matrix that shows if pairwise
importances are consistent or if they contradict each other.
Using a sensitivity analysis, the impact of the weights on the
decision can be studied.

Within WSNs, AHP is used, for instance,
by Giordani et al. [27] in the context of vehicular networks
to combine different QoI attributes for an overall VoI,

VoI{AHP} =
∑
∀a

(wa × va), (8)

where wa is the attribute weight for each conditional VoI va

corresponding to the attribute a. Similarly, AHP is used to
structure the decisions related to the routing of information
objects along a path in the context of fog computing [35]
and environmental monitoring [11]. Here, AHP is used to
find what the authors call an effective QoI based on latency,
reliability and throughput. It is evaluated at each network node
to determine the next hop.

AHP can take any attribute as input, and can therefore
account for both subjective and objective criteria [56]. How-
ever, AHP still requires subjective judgments from experts and
engineers to set the relative weights. So, albeit the method adds
transparency and consistency to the process, it still implies a
certain degree of arbitrariness, as Giordani et al. [27] point
out.

D. Information Metrics
Information metrics evaluate the VoI by measuring the

amount of information contained in the observations. Infor-
mation metrics provide the probabilistic representation of VoI
to quantify the reduction of uncertainty in the actions taken
and for modeling the environment. Following a Bayesian
approach, new observations update the prior belief about the
probability distribution of the environmental model. Therefore,
the difference between the prior and posterior probabilities can
be used to represent the information gain [55]. We found three
information metrics that quantify the amount of information
based on this intuitive principle.

1) Kullback-Leibler Divergence: This metric, also known as
relative entropy or just KL-divergence, was first introduced
by Kullback and Leibler [86]. KL-divergence is a measure
of how one density function is different from another. For a
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random variable x , if an information object xi changes our
prior knowledge fprior(x) to the posterior knowledge fpost(x),
the KL divergence-based VoI from xi can be written as

VoIKL( fpost(x)|| fprior(x)) =
∫ ∞

−∞
fpost(x) log

fpost(x)

fprior(x)
dx .

(9)

In the domain of vehicular networking, Higuchi et al. [28]
use the information relative entropy as a way to value the
information. The sending vehicle uses the KL-divergence to
anticipate the difference in the knowledge of the receiving
vehicle after receiving the information. In this use case,
fprior(x) is the knowledge of the receiving vehicle, and the
fpost(x) is the estimated posterior knowledge of the receiving
vehicle, from the sending vehicle’s vantage point.

Padhy et al. [55] used the KL-divergence to assess the value
of an observation compared to the prediction of the next
observation in a linear Bayesian regression model. In this
use case, fprior(x) is the prior distribution for estimating the
next observation, and the fpost(x) represents the posterior
distribution for the next observation. Only data observations
with a KL-divergence above a certain threshold are collected
to improve the prediction model. Although Zhang et al. [12]
did not elaborate on their prior and posterior functions, they
used the KL divergence-based VoI for content selection.

2) Fisher Information: Fisher [87] uses the variance of the
score as an information measure. In statistics, the score (also
known as the informant) is the gradient of the logarithmic
likelihood function [88]. Fisher information is the curvature
of the KL divergence [89]. Therefore, measuring one of the
two information metrics will be sufficient to obtain the other.

Assuming that the random variable x is carrying information
about an unknown parameter θ , and that fpost(x) is parame-
terized over θ1 and fprior(x) over θ2, we can write the Fisher
information-based VoI as the following:

VoIFI = ∂2

∂θ1∂θ2
VoIKL. (10)

Kho et al. [54] quantify the uncertainty in the distribution
of an environmental variable using the mean Fisher informa-
tion on the posterior predictive distribution of that variable.
They follow what we call a model-in-the-loop approach,
further explained in Section VII-C.

3) Mutual Information: Mutual information measures the
amount of shared information between two variables. For two
random variables x and y, their mutual information is the
KL-divergence between their joint distribution P(x, y) and the
product of their marginal distributions P(x) and P(y) [90]:

VoIMI = VoIKL(P(x, y)||P(x)P(y)). (11)

It measures the uncertainty reduction in one of the variables
if the other is known. Kadambe and Daniell [91] used mutual
information as a metric for the fusion of sensor data by
comparing the mutual information from two sensors, and
conditioning on the prior knowledge of the sink. Then sensors
with observations with high VoIMI are chosen.

E. Other Statistical Techniques
Mostafa and Gadallah [92] introduced statistical prior-

ity (SP) methods in the scenarios of machine-to-machine
communications. SP is a quantification of VoI used to pri-
oritize important information characterized by high VoI, and
similar to other VoI methods, it is application-dependent. They
presented SP-based VoI in three use cases: environmental
monitoring, video data, and alarm data. In environmental
monitoring, where sensors monitor, for instance temperature,
humidity, or luminosity, the methods used are threshold, data
similarity, and trend similarity.

a) Threshold: Environmental data can be of higher value
if it exceeds a threshold compared to data inside the threshold
boundaries. Therefore, SP-based VoI is an offset from a case-
specific threshold.

b) Data similarity and trend similarity: Statistically different
data from previously measured data are considered to have
great value. Data similarity methods examine the temporal
relationship of observations, then reward the uniqueness of
value and punish duplications. Here SP-based VoI for a data
point is its difference from the previous data point. Further,
a constant trend with an increase or a decrease can be more
valuable than oscillating values with small changes around an
average value. In trend similarity, SP-based VoI is the degree
of the trend matching.

c) 2-D frame correlation: Video sensing data can be col-
lected from multimedia WSNs. Camera nodes are used in
numerous applications, such as animal surveillance. Such
data require high data rates and low delays. 2-D frame
correlation is used as an SP-based VoI method for video
data.

Video sensing data are assessed frame by frame. A frame
can be of high value if it is significantly different from the
ones before it. A surveillance camera deployed for animal
monitoring will carry useful information when the frames
are different, which might indicate the detection of a moving
animal. Statistical similarity measures such as correlation can
be used. A 2-D time autocorrelation can be used between the
video frame at the current time, and the video frame from the
previous sensing cycle.

d) Alarm data: Alarm data are used to push information
about the event occurrence or an abnormal condition detection.
An example is a fire detection application. Alarm data are
time-sensitive by nature, hence they should be prioritized
over other types of data during a resource allocation task.
In the SP model by Mostafa and Gadallah [92] all alarm
data are assigned the highest priority in the system. A simple
alarm system can be seen as a two-event detection system:
activate alarm or deactivate alarm. Assuming the simple
case, they assigned the highest VoI to the active alarm and
lowest otherwise. Bhuiyan et al. [3] presented e-sampling,
an autonomous adaptive sampling algorithm based on event
detection. Each sensor node switches between high and
low sampling intervals, the default is low sampling inter-
vals. When an event is detected, the sensor nodes tem-
porarily switch to a high sensing rate. The sending interval
will be marked as important and its data are described as
interesting data.
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VII. EXPECTED VALUE OF INFORMATION

Most of the techniques above have in common that they
perform VoI assessment on observed information. Since con-
siderable resources may be involved in obtaining the informa-
tion items, it would be beneficial to assess their value before
spending the energy to obtain them in the first place. This
family of approaches is called Expected Value of Information
(EVoI) [38]. EVoI is similar to the prediction-model-based data
reduction methods [93], but with the difference that it does
not try to predict the measurement value, just how valuable
knowing this value is.

Tables I and II mark use cases that utilize EVoI in col-
umn 11. Given that the analytical methods from above require
data at hand, it is natural that most use cases employing
EVoI utilize probabilistic methods (col. 12), especially the
information value theory. Before we explore these methods,
we will first provide an overview of EVoI use cases.

A. Application Use Cases for Expected VoI
In structural health monitoring, EVoI is used as an optimal-

ity criterion. Particularly, VoI is used to deal with a tradeoff
between the amount of data collected for the monitoring
task and the cost of deployments for the monitoring sensors.
Cantero-Chinchilla et al. [9] used this optimality criterion
to determine the number of ultrasonic sensors to deploy for
detecting the places with the highest risk of damage in a
construction place. This decision happens at design time when
there are not yet any experimental data available. Conse-
quently, VoI expectations are used and different sources of
uncertainty are considered.

In the domain of vehicular networks, Higuchi et al. [28]
propose a value anticipation networking model, in which each
vehicle anticipates VoI for the data packet from the perspective
of the receiving vehicle. They used VoI{KL} as in (9). Despite
the fact that the actual VoI will only be known by the receiving
vehicle, the estimate of the sending vehicle is quite accurate.
The value anticipation is based on a value model specific to
the application, the vehicles’ prior knowledge of the road,
the network and connected vehicles. Data packets with high
EVoI will be prioritized over those with low EVoI when there
is network congestion. This model leads to a better packet
reception ratio because it reduces the insignificant data load of
the network. Similarly, Giordani et al. [27] used VoI{AHP} as
in (8) in a vehicle-to-vehicle transmission scheduler to select
data with high EVoI.

We discussed path planning for mobile sinks in Section III.
Most of these use cases work with EVoI. Mobile sensor
networks require two important decisions regarding sensor
mobility: a) where to sample, that means, finding the best
location to sample; b) which sensor to move to collect the
measurements. Ballari et al. [4] addressed these two decisions
using EVoI and mobility constraints. EVoI was used to inform
the first decision, where to sample, in a way that maximizes the
utility of the system. The EVoI is used to assess the relevance
of the observations for improving the phenomenon model
before obtaining the observations. The EVoI in this use case is
given as the expected reduction in the cost of making wrong

predictions about the phenomena. Mobility constraints helped
in informing the second decision, that means which sensor
to move. Similarly, in Gjanci et al. [26], a UAV receives a
signal from a sensor when an event happens, upon which it
will estimate its EVoI. Based on this expected value, it can then
update its priorities of nodes to visit and accordingly update
its path.

In a coal production application, Yüksel et al. [94] use
VoI to understand the utility gain from adding online sensor
readings to a model that predicts the ash percentage. VoI is
defined in terms of the costs of deviating from the application
targeted quality, and calculated as the ash percentage. For an
intruder tracking system, Turgut and Bölöni [95] proposed
the Information Value-Energy tradeoff (IVE) protocol. Sensor
nodes assess their sensed information based on the expected
contribution to enhancing the model of the environment.
The protocol restricts the transmission by sensor nodes to
observations with a higher EVoI than a defined threshold.

B. Information Value Theory
Howard [5] defines VoI as the profit obtained by hiring

a clairvoyant that can give perfect information cx about a
variable of interest x . Hence the VoI for a perfect information
cx from a clairvoyant is the difference between the expected
profit v obtained with and without the clairvoyance cx ,

VoI{�Profit} = E(v|cx ξ) − E(v|ξ), (12)

where ξ signifies the knowledge the system already has.
Moskowitz et al. [96] conclude that information about two
variables gives higher VoI compared to the sum of the VoI
given information about each of the variables separately.

Applying Howard’s VoI definition to WSNs translates to
the difference in the system utility achieved through observing
additional information. This means the difference between the
expectation of the posterior utility function E( fpost) and prior
utility function E( fprior)

VoI{�Utility} = E( fpost) − E( fprior). (13)

In the following paragraphs, we give examples of such
utility-based VoI calculations VoI{�utility}.

Ballari et al. [4] propose the implementation of EVoI as
the difference in the cost of wrong predictions between the
prior and posterior predictions. A smaller number of wrong
predictions for unobserved locations indicate a reduced cost
of wrong predictions due to observing more information at
that location.

Malings and Pozzi [10], [97] define VoI in the task of sensor
placement as the difference between the prior and posterior
expected losses under different information gathering schemes.
Hence, VoI helps choosing the optimal set of measurement
locations and schedule that provide the lowest expected loss.
The loss function in this use case is a general loss function
which includes among many other aspects operational cost and
reduction of performance. Cantero-Chinchilla et al. [9] define
VoI in terms of the maximum benefit gain from adopting a
sensor placement configuration, as such fpost is the maximum
benefit gained with the information and fprior is the maximum
benefit gained without the information.
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In the economics of the Internet of Things Niyato et al. [60]
define VoI as the difference between the payoff of the decision
before ( fprior) and after ( fpost) having the information.

Since the calculations of utility-based VoI can be computa-
tionally demanding, approximation techniques may be needed.
For instance, Eidsvik et al. [98] explore simulation-regression
approximation in the context of geophysical data.

C. Expected VoI Prediction Using Machine Learning
Since the expected value is an estimation that can be

based on experience with historically observed values, the
assessment of expected VoI can be data-driven, and there exist
a few approaches that utilize machine learning techniques for
its prediction.

Lore et al. [13] developed a deep learning model that esti-
mates VoI in the context of indoor mobile agents. The model
uses measurement from sensors and observations from humans
who provide information in response to queries. They trained
a neural network model that predicts the VoI given the state
and action map of the moving agent. They defined VoI based
on the utility of receiving observations as a result of querying
sensor nodes, to be the difference between the expected utility
before ( fprior) and after ( fpost) obtaining the observations.

To prevent scheduling problems, Lore et al. [7] highlight
the possibility of using machine learning models to predict
AoI, so that data with lower age can be prioritized.

In addition, Giordani et al. [99] suggest the use of gen-
erative deep neural networks to learn value scores based
on a mutual information metric, but they do not provide
implementation details.

VIII. ADAPTIVE VOI ASSESSMENT METHODS

Many of the studied use cases involve some form of
adaptation, so that either VoI calculation or its interpretation
also depend on another, dynamic context and not only the
information item itself. In the following we discuss different
techniques, we found to realize adaptive VoI assessment.

The analytical assessment methods in Section VI can be
combined with a variable VoI threshold to provide some form
of adaptation. Here decisions made in the system depend on
VoI threshold levels. For instance, Zhang et al. [12] contin-
uously update the VoI threshold that controls the remaining
energy budget for a sensor node.

Whereas such approaches only adapt the necessary VoI
threshold to perform an action, hence how the VoI is inter-
preted, other methods also adapt how the VoI is calculated,
that means, have a direct effect on the VoI value. AHP models
(Section VI-C), can also be used in an adaptive form. For
instance, the work of [100] adapts the weights used in the
AHP calculation, so that it calculates a single QoI metric from
dynamic weights.

In adaptive systems, there is often a feedback loop which
updates system parameters at runtime. In this respect, we iden-
tified two kinds of loops for adaptive VoI assessment, namely
human-in-the-loop and model-in-the-loop, explained in the
following.

A. Human-in-the-Loop
Users can be directly part of the VoI assessment process

and hence adapt its calculation. In [59] user decisions update
the VoI assessment results in the domain of intruder tracking.
In this system, the user or a decision agent can look at the type
of the detected intruder. As a result, the user can increase the
threat level of the intruder leading to an increase in the value
of the information received about it.

Although outside the realm of WSNs, Kamar and
Horvitz [51] present another example where users are directly
involved in the VoI assessment. They propose a method that is
used for learning the name of a galaxy from a set of images.
The data is manually labeled by a group of voters, where the
majority vote decides the right answer. Then the prediction
model is tested against the voters. However, instead of using
all the voters’ data, VoI helps to select the best set of images.

Poltronieri et al. [33] proposed a user-specific VoI model.
They added a utility component that assesses the utility for
the exchanged sensing message for each user. This custom
definition of user-by-user utility has made their evaluation
more subjective. Similarly, Al-Turjman [35] proposed a VoI
assessment model in software-defined networks, which can be
customized based on user request and traffic type. It should
be noted that the distinction between objective and subjective
can be subtle; we can argue that some of the objective
approaches involve subjective considerations when determin-
ing the weights of parameters for their specific assessment
methods.

B. Model-in-the-Loop
In many WSN and IoT applications, sensor data is used to

create machine-learning models that represent certain environ-
mental phenomena, often with the intention to predict future
values or interpolate for missing measurements. Models are
built based on training data that originates from the sensors,
and hence there is a tradeoff between the amount of training
data versus the operational cost of the system to obtain it.

Since the environmental phenomena are typically stochastic
in nature, not all training samples are equally relevant for the
quality of the model. This motivates approaches that base their
policies of when to collect training data on the uncertainty
of the model. The VoI of an information item can hence be
defined based on how useful it is for the quality of a specific
machine learning model. As these models learn over time, the
value of information items adapt based on the knowledge of
the machine learning model under construction. We call this
pattern model-in-the-loop.

Kho et al. [54] use Fisher information (see Section VI-D.2)
as a way to determine when a sensor should take measure-
ments. The goal of the application is to provide training data
for a Gaussian process for locally fine-grained tidal height
prediction in coastal areas. The Gaussian process provides
a probabilistic prediction of the phenomenon. The sensors
place their measurements so that the Fisher information over
the prediction of the Gaussian process model is maximized.
Therefore, the system estimates at which sampling points the
training data potentially has the highest value, i.e., the system
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indirectly estimates the expected VoI. The system hence places
measurements where the prediction model for the phenomenon
is most uncertain.

Whereas Kho et al. [54] use a heuristic to determine the
optimal sampling points, Murad et al. [101] use reinforcement
learning (RL) to determine the best times when a sensor should
sample. As usual in RL, a reward function is used to train an
agent. Here, Fisher information is used to reward the agent
to sample at points when an environmental model (again a
Gaussian process) exposes high uncertainty. Indirectly this
means that agents learn when the expected VoI is high and
place the limited number of possible measurements into these
intervals.

Reinforcement learning is also used in other approaches,
such as [19], [20], [29], which use VoI as part of their reward
function, alongside other components such as AUV power or
residual energy in the sensor node. In [29] the task is to plan
the optimal path of the AUV, which makes it possible to collect
data with a high VoI using a low energy consumption.

IX. DISCUSSION

From the papers surveyed, we observe that most approaches
apply VoI to optimize the internal operation of systems. This
focus is expected, since limited resources are a major design
constraint in WSNs and IoT. VoI is hence used to filter
redundant data that would not contribute to the utility of the
system. In the case of the expected VoI, the systems are even
more frugal and try to avoid spending the effort to acquire
data through measurements or retrieval in the first place.

Apart from filtering or prioritization, VoI is used in WSNs
as a metric used in tradeoffs to plan the allocation of sys-
tem resources. Examples of such tradeoffs are cost versus
timeliness [81], processing speed versus accuracy [37], cost
versus amount of information [9], or QoS requirements versus
energy consumption [34], all of which are effectively tradeoffs
between system utility and internal or external system costs.

Quantifying the effect of VoI on a general level is difficult as
cases vary and comparison baselines are not obvious. However,
we believe that taking VoI into account is a significant step
towards better resource utilization, especially compared to
solutions that just sense without any awareness of the utility
of the collected data. For instance, Zhang et al. [12] experi-
mented with reducing the sampling rate for an environmental
variable, luminous intensity in their case. Their results show
that using only 8 % of the total energy was sufficient to obtain
95 % of the original VoI.

As shown in Section III, VoI has been applied in many
domains. We observe that it depends largely on the spe-
cific use case and application to determine what signifies
valuable observations that are worth measuring, processing
and forwarding. This is challenging for the design of such
applications, as a specific solution must be developed for each
use case. Here, VoI can serve, similarly to the concept of QoS,
as a more generic concept applied across several domains.
However, a single definition for VoI that fits all use cases is not
available. There are significantly different approaches towards
VoI (observed vs. expected, deterministic vs. probabilistic,
adaptive vs. static), and the utility of an application is difficult

to capture formally in the first place. Instead, many approaches
define VoI based on proxy metrics, such as QoI parameters or
statistical measures, as explained in Section VI. Once this step
is taken, there is a wide range of generic assessment methods
that we described and that can be parameterized or adapted to
a wider range of use cases.

One of the challenges in existing and future IoT systems
is their heterogeneity, that means, the diversity of devices,
operation environments and usage requirements that are dif-
ferent to each device instance. Optimizing operations require
handling this heterogeneity. Due to their scale, this implies
autonomous adaptation, as a manual adaptation of IoT devices
would be unfeasible. To avoid over-provisioning and inefficient
operation on the one side, but also failure due to insufficient
resources on the other side, autonomy of these systems implies
that they are aware of their resources and their provided utility.
Being able to make tradeoffs can avoid or mitigate failure
situations and optimize operation, which ultimately affects the
cost and sustainability of these systems.

In the future, we expect an increasing significance and
more opportunities for the application of VoI. There is a
rapid development of energy-efficient machine learning also
for constrained devices, which also become computationally
more and more powerful. This may increase the number of use
cases in which it is economical to spend more computational
effort to decide if a certain measurement should be taken in the
first place. This is why we see the application of expected VoI
in resource-constrained networks as especially intriguing. Here
we expect that machine-learning-based approaches to estimate
VoI as outlined in Section VII-C are an interesting area for
further development.

X. LESSONS LEARNED: VOI IN WSN APPLICATIONS

In this section, we present a summary of the lessons learned
from the review of VoI in IoT applications with respect to the
design and implementation of autonomous adaptive sensing
systems. The first step in implementing VoI-based sensing
systems is to clearly define the system’s utility and its available
resources. Systems where resources are limited often require
a trade-off between goals and resources.

In addition, one must choose between the observed or
the expected value of information. The observed VoI may
contribute to a reduction in transmission costs, whereas EVoI
makes it possible to reduce both the sensing and the trans-
mission costs. Moreover, using the observed VoI, machine
learning models can be trained to predict the expected VoI
for measurements which are not yet observed.

Secondly, a choice of VoI approach for prioritizing infor-
mation in the sensing system must be chosen. Each of the
analytical methods reviewed in Section VI presents its own
advantages and disadvantages, depending on the context of the
application. For example, AoI can focus on the timeliness of
information, but fails in non-real-time scenarios. AHP is suited
for multi-objective sensing systems. In addition, information
metrics are purely objective methods without any user require-
ments being highlighted. However, the information value the-
ory offers a more subjective alternative to implementing VoI.
A high-level implementation choice is to integrate users into
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the design loop by implementing a VoI-based sensing metric
to measure the quality of the sensing system.

XI. CONCLUSION

In this literature review, we studied the application of the
concept of the Value of Information (VoI) within WSN and
IoT applications. We presented the various applications, defi-
nitions and techniques employed in a wide range of domains.
We observed that the approach towards VoI and its utilization
varies with each use case and the concept is applied in
an application-specific manner. Yet we managed to identify
different VoI methods and describe common approaches used
for its calculation, which is useful as a guideline for how to
integrate VoI into new applications.

There are various approaches to make WSN and IoT sys-
tems more efficient in their operation, and by that cheaper
and more sustainable, or feasible at all. Whereas all of these
approaches can and should be followed, limited resources will
remain one of the main design constraints in these systems.
In this context, VoI is the concept that generalizes the idea of
not spending effort on collecting, processing and forwarding
data of little value, and hence is at the center of the overall
optimization problem inherent to IoT and WSN.
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