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USING AROMAS TO SEARCH FOR PRESERVED MEASURES

AND INTEGRALS IN KAHAN’S METHOD

GEIR BOGFJELLMO, ELENA CELLEDONI, ROBERT I. MCLACHLAN,
BRYNJULF OWREN, AND G R W QUISPEL

Abstract. The numerical method of Kahan applied to quadratic differen-
tial equations is known to often generate integrable maps in low dimensions

and can in more general situations exhibit preserved measures and integrals.

Computerized methods based on discrete Darboux polynomials have recently
been used for finding these measures and integrals. However, if the differential

system contains many parameters, this approach can lead to highly complex

results that can be difficult to interpret and analyze. But this complexity can
in some cases be substantially reduced by using aromatic series. These are a

mathematical tool introduced independently by Chartier and Murua and by

Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive
some necessary conditions for the Kahan map to have preserved measures and

integrals expressible in terms of aromatic functions. An important reason for
the success of this method lies in the equivariance of the map from vector fields

to their aromatic functions. We demonstrate the algorithm on a number of

examples showing a great reduction in complexity compared to what had been
obtained by a fixed basis such as monomials.

Keywords: B-series methods, Integrability, Preservation of integrals and mea-
sures, Darboux polynomials, Trees, Aromatic Trees.

1. Introduction

In this paper we combine ideas from two apparently unrelated subfields of com-
putational mathematics in order to obtain a new compact and equivariant way of
characterizing certain preserved measures and integrals for the Kahan integration
method. In the study of preserved measures and integrals of birational maps, the
method of discrete Darboux polynomials has been employed recently in several
works, see e.g. [4, 3]. On the other hand, there has been a recent interest in gen-
eralising the notion of B-series to include a larger set called aromatic series going
back to [9, 12]. Whereas the aromatic series have so far been used mostly for classi-
fication purposes and no-go theorems, we believe the present work is the first time
these ideas have been used in a constructive manner to obtain specific objects such
as preserved measures and integrals.

Kahan’s method [14], also known as the Hirota–Kimura discretization [11, 16],
is a numerical scheme which has received considerable attention in recent years for
its remarkable numerical, geometric properties and for its ability to yield integrable
discretisations when applied to a large class of integrable ordinary differential equa-
tions [20, 22, 5]. For a quadratic system ẋ = f(x) on Rn, with ith component given
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as

ẋi = fi(x) =
∑
j,k

aijkxjxk +
∑
j

bijxj + ci, i = 1, . . . , n,

letting xi ≈ xi(tm) and x′
i ≈ xi(tm+1), where tm+1 − tm = h, the method takes the

form

(1.1)
x′
i − xi

h
=

∑
j,k

aijk
xjx

′
k + x′

jxk

2
+
∑
j

bij
xj + x′

j

2
+ ci, i = 1, . . . , n.

Kahan’s method is linearly implicit and it can be shown [7] that it has the form of
a birational map,

(1.2)
x′ − x

h
= (I − h

2
f ′(x))−1f(x),

thus it is well defined for sufficiently small values of the stepsize h. Petrera et al. [20]
applied the method of Kahan to a large number of integrable quadratic differential
equations, showing that in several examples this yields a discrete integrable map.
In the sequel we shall refer to the map of Rn, Φh : x 7→ x′ as the Kahan map.

Kahan’s method has remarkable geometric properties when applied to quadratic
vector fields, and its merits were discovered and analysed in several articles [15, 23,
20, 6]. A fundamental property is that it is self adjoint, meaning that Φ−1

h = Φ−h.
As we shall see later, this property also ensures that preserved measures are either
even or odd in h. In [7], general expressions for a preserved integral and measure
were found for the Kahan discretizations of systems with a cubic Hamiltonian and
a constant Poisson bracket. More precisely, for a system

(1.3) ẋ = J∇H(x) = f(x),

with H a cubic multivariate polynomial and J a constant skew-symmetric matrix,
the Kahan map has a preserved integral with the closed form expression

(1.4) H̃h(x) = H(x) +
h

3
∇HT (x)(I − h

2
f ′(x))−1f(x),

and a preserved measure

(1.5)
dx1 ∧ dx2 ∧ · · · ∧ dxn

det(I − h
2 f

′(x))
.

In this example, the vector field is divergence-free and exact flow preserves the
standard volume form. In other examples, this need not be the case. Several
examples of integrable maps obtained with Kahan’s method, including examples
where div f ̸= 0 can be found in [5, 21].

The Kahan map coincides with the Runge–Kutta method

(1.6)
x′ − x

h
= −1

2
f(x) + 2f

(
x + x′

2

)
− 1

2
f(x′)

restricted to quadratic vector fields in Rn, [7]. A powerful property of Runge–
Kutta methods in general is that they are equivariant with respect to any affine
transformation between two linear spaces, see [18] for a general discussion of affine
equivariance in B-series methods. The notion of aromas and aromatic series [12, 9]
is a generalisation of B-series, the aromatic series are indexed by graphs that may
also include loops and each graph is called an aroma. An aromatic function can
be assigned to a vector field f and an aroma, an example of such a function is the
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divergence, div(f). The map from vector fields to aromatic functions is equivariant
with respect to the affine group acting via pullbacks. In several examples, we
have noticed that preserved measures and integrals of the Kahan method can be
expressed in terms of aromatic functions. In this paper, we outline a method that
can be used to search for preserved measures and integrals in terms of aromatic
functions. At present we can in principle determine all preserved measures whose
density is of the form 1/P where P can be expressed in terms of aromatic functions
up to a prescribed order1. We provide several examples of its use where we show
that such preserved measures can actually be determined.

We also present a machinery for analysing this problem by adapting combina-
torial methods treated in a general setting in [12, 1, 19] to the case of Kahan’s
method. Finally, we present some necessary conditions on vector fields for Kahan’s
method to possess preserved measures and first integrals in the desired form of
aromatic functions.

To get an idea of this approach, consider first the preserved measure with (recip-
rocal) density function det(I − h

2 f
′(x)) given by (1.5). By applying the Newton–

Girard formula for symmetric polynomials, we find

det(I − h

2
f ′(x)) = P (r1, . . . , rd) where ri = Tr(hif ′(x)i),

and where P is some multivariate polynomial. Each term of this polynomial is an
aromatic function.

Writing density functions in terms of aromatic functions has some attractive
properties. The density function of a preserved measure under the Kahan map is
itself invariant under affine transformations of the underlying vector field. By using
aromatic functions, the resulting expression is automatically affine equivariant. As
a consequence, density functions of preserved measures take a much simpler form
than would be the case if for instance a monomial basis had been used.

Furthermore, expressing the preserved measures and first integrals in terms of
aromas highlights an interesting property: The preserved measures and first inte-
grals thus obtained are related to functional dependencies between the derivatives
of the vector field f . Specifically, if kerFf = kerFf̃ (see (3.3)) for two vector fields f

and f̃ , then Kahan’s method applied to the two vector fields has the same preserved
measures and first integrals.

Although our findings show that not every preserved measure can be written in
terms of aromatic functions, many important ones can. Naturally, the algorithm
we propose can discover only measures that belong to the linear span of aromatic
functions. But when successful this approach typically provides much simpler ex-
pressions for the measures with a transparent connection to the underlying ODE
vector field, as opposed to what can be obtained using for instance a monomial
basis.

Just to illustrate the power of the aromatic functions, we mention the inhomoge-
nous Nambu system which we will discuss in detail in section 4. By parametrizing
this problem by means of a monomial basis our algorithm yields a density function
with no fewer than 15806 terms. However, by using aromatic functions we can
express this same function with only 7 terms.

1All calculations are subject to complexity limitations of the computer algebra system used.
Our present implementation uses aromas up to order 6, but this is not a limitation of the algorithm.
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2. The method of Darboux polynomials

Let Φ : Rn → Rn be any map and suppose that there exist a function C and a
polynomial P such that

(2.1) P ◦ Φ = C · P,

we then call P a (discrete) Darboux polynomial, and C is a corresponding cofactor.
If there are two such Darboux polynomials, P1 and P2 with the same cofactor C,
then clearly by (2.1)

P1

P2
◦ Φ =

P1 ◦ Φ

P2 ◦ Φ
=

P1

P2
,

so P1

P2
is a first integral of the map Φ. Denote by DΦ the Jacobian of Φ. If it so

happens that P is a Darboux polynomial with cofactor C = detDΦ, then P is in
fact the (reciprocal) density of a preserved measure,

dx1 ∧ dx2 ∧ · · · ∧ dxn

P
.

Differentiating the Runge-Kutta representation of the Kahan map (1.6), we easily
obtain that detDΦh is a rational function of the form

(2.2) detDΦh(x) =
det(I + h

2 f
′(Φh(x)))

det(I − h
2 f

′(x))
.

In [4] a systematic approach for determining Darboux polynomials was proposed.
The idea is to first factor detDΦh (over Q)

detDΦh(x) =

∏
i Ni(x)ri∏
i Di(x)si

,

and then use these factors to form candidate cofactors

C(x) =

∏
i Ni(x)r

′
i∏

i Di(x)s
′
i

, r′i, s
′
i ≥ 0.

For a fixed choice of cofactor C(x), we let P ∈ Rp(x) be a multivariate polynomial
of degree p in the variables x with real coefficients, which can be expressed in the
basis {ek}Nk=0,

(2.3) P (x) =

N∑
k=0

Pkek,

where N ≤ (n+p)!
n!p! . The basis elements ek can for example be chosen to be mono-

mials of the form xi1
1 · · ·xin

n for non-negative integers i1, . . . , in. With this setup,
equation (2.1) is turned into a linear system of equations for the coefficients Pk that
can (in principle) always be solved by a finite algorithm.

In this paper, we shall always apply this method with C = detDΦh, but rather
than a monomial basis, we shall search for preserved measures in the linear span of
certain functions called aromas introduced in the next section.
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3. Aromas and aromatic series

Before describing aromas and aromatic series, we recall the related concept of
B-series [2, 10].

Every Runge–Kutta method, and many other numerical methods for ODEs can
be expanded in a series involving the vector field f and its derivatives.

For example, the formulation of Kahan’s method in Equation (1.2) can be ex-
panded as a geometric series

(3.1) Φh(x) = x +

∞∑
k=0

hk

2k
(f ′(x))kf(x).

In general B-series are indexed by the set of rooted trees, and take the form

Φh(x) = x +
∑
τ∈T

h|τ |b(τ)

σ(τ)
F (τ)(x),

where T is the set of rooted trees, |τ | is the number of vertices in τ , σ(τ) is the
symmetry coefficient of τ , equal to the cardinality of the symmetry group of τ ,
and F (τ) is a vector field depending on f and its derivatives. b(τ) are coefficients
depending on the integrator.

Expanding (I − hf ′(x))−1 in a power series and substituting in (1.2), it is easily
seen that in the B-series (3.1) of Kahan’s method b(τ) is non-zero only on the tall
trees:

, , , . . . ,

In fact these represent the vector fields

F ( ) = f, F ( ) = f ′f, F ( ) = f ′f ′f, . . . .

For the tall trees, σ(τ) = 1 and we can see from (3.1) that Kahan’s method has
coefficients

b(τ) =

{
21−|τ | if τ is a tall tree,

0 otherwise.

For the purpose of simplifying certain combinatorial formulas, it is useful to
extend the definition of b to multisets of rooted trees (called rooted forests) by
multiplication, i.e.

b(τ1τ2 · · · τm) : = b(τ1)b(τ2) · · · b(τm).

In B-series, vector fields depending on f and its derivatives are represented by
rooted trees. The measure we aim to preserve has an associated scalar valued
density function which we assume depends on the vector field f as well as its
derivatives. We aim to describe such scalar functions by means of aromas (or loopy
trees) and aromatic series.

Aromas and aromatic series were originally introduced by Iserles, Quispel and
Tse [12] and by Chartier and Murua [9] and their structure was investigated by
Munthe-Kaas and Verdier [19] by Bogfjellmo [1], and by Laurent et al. [17]

An aroma is a connected directed graph where each vertex has exactly one out-
going edge. It can be shown that an aroma has to contain exactly one cycle.

The smallest aromas are

, , , , , , . . . .
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To simplify graphics, directions of edges are not shown unless they are necessary
to distinguish between aromas. The edges are oriented so that the ring is a cycle
and other edges are oriented towards the ring.

We will refer to the set of aromas as A′ and the set of multisets (products) of
aromas as A. The empty multiset will be denoted by 1.

Given a vector field f , an aroma λ represents a scalar function F (λ) according
to the following procedure:

(1) Label each node i, j, . . . .

(2) For each node with label j, form the factor f j
i1i2···im , where i1, i2, . . . , im

are the labels of the nodes pointing towards node j. The upper index on f
corresponds to vector components, and the lower to partial derivatives with
respect to coordinate directions, i.e. f j

i1i2···im = ∂mf j/∂xi1∂xi2 · · · ∂xim .
(3) Finally, take the product of the factors and sum all terms using Einstein’s

summation convention.

The definition of F extends without modification to multisets of aromas, viewed
as disjoint unions of connected graphs.

Example 3.1. Some examples of F .

F (1) = 1

F
(

i

)
=

∑
i

f i
i = div(f)

F
(

i j k

)
=

∑
ijk

f i
jf

j
ikf

k

The simplest aromas are the cyclic aromas,

, , , , . . .

whose images under F are traces of powers of f ′.
An aromatic series is a series indexed by A. We will normalize these series as

B(γ) : =
∑
α∈A

h|α|γ(α)

σ(α)
F (α),

where |α| is the number of vertices in α and σ(α) is the cardinality of the symmetry
group of the graph α.

Example 3.2. Some examples of σ are

σ(1) = 1,

σ
( )

= 1,

σ
( )

= 3,

σ
( )

= 8.

In several cases, Darboux polynomials for the discretization of a vector field with
Kahan’s method are expressible as finite aromatic series.
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Example 3.3 (Hamiltonian vector fields). Assume that Kahan’s method is used to
discretize a Hamiltonian vector field with a cubic Hamiltonian. It follows from the
results of [7] that P (x) = det

(
I − h

2 f
′(x)

)
is a Darboux polynomial with cofactor

detDΦ.
For any fixed dimension, P can be expressed as a polynomial of traces. For

example, when A is a 2 × 2-matrix, we have the identity

det(I −A) = 1 − tr(A) +
1

2

(
tr(A)2 − tr(A2)

)
.

Thus, when d = 2,

P = det

(
I − h

2
f ′
)

= 1 − h

2
tr(f ′) +

h2

8

(
tr(f ′)2 − tr((f ′)2)

)
= F (1) − h

2
F
( )

+
h2

8

(
F
( )

− F
( ))

.

We refer to Section 4 for a detailed study of examples of the use of this approach.

3.1. Equivariance. One strength of the aromatic approach is that the resulting
preserved measures are obtained through an affine equivariant map on the space of
quadratic vector fields.

The evolution of a differential equation ẋ = f(x) on Rn does not depend on the
coordinates we use on Rn. If we limit coordinate changes to affine mappings, neither
does Kahan’s method. Consequently, if Kahan’s method applied to a differential
equation ẋ = f(x) has a preserved measure, then an affine change of coordinates
x 7→ Ax + b will result in a new differential equation and, when Kahan’s method
is applied, a new discrete dynamical system that also has a preserved measure. In
coordinates, this measure will be different from the original, but it’s expression in
terms of aromas stays the same.

We formulate this independence of coordinates as equivariance. Equivariance
can be defined2 in the category of G-sets, the collection of sets on which a common
Lie group G is acting. Let X1 and X2 be two G-sets. A map Φ : X1 → X2, is
said to be equivariant if it is a G-set morphism, i.e. for any g ∈ G and x ∈ X1,
Φ(g · x) = g · Φ(x).

In our setting, the group is the affine group, consisting of pairs g = (Ag, bg) where
Ag ∈ GL(n,R) and bg ∈ Rn. This group acts on Rn through g ·x = Agx+bg. It also
acts on X (Rn) and F(Rn), the vector fields and functions on Rn respectively. The
(right) action is by pullback, or more precisely, we have for f ∈ X (Rn), φ ∈ F(Rn)
respectively

g · f(x) = A−1
g f(Agx + bg), g · φ(x) = φ(Agx + b).

Lemma 3.4. Let F : X (Rn)×A → F(Rn) be the map that assigns to a vector field
f and an aroma a the aromatic function F (f, a). Then, for any a ∈ A, the map
F (·, a) : X (Rn) → F(Rn) is equivariant with respect to the affine group.

The proof is omitted, and is based on similar results in [19].

2A slightly different and stronger definition of equivariance was used in [18]
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Lemma 3.5. Let Pf be the (reciprocal) density of a preserved measure for the
Kahan map. Then Pg·f will be the (reciprocal) density of a preserved measure for
Kahan’s method applied to the vector field g · f for any affine transformation g.

Proof: Follows from (2.1) and (2.2).

3.2. Algebraic treatment. We now return to Darboux polynomials, given by
the equation (2.1). We restrict our attention to Φ being the Kahan map (1.1),
C = detDΦ and P an aromatic series.

For the Kahan map, we have that

det(DΦh(x)) =
det(I + h

2 f
′(Φh(x)))

det(I − h
2 f

′(x))
=

Nh
2
◦ Φh(x)

N−h
2
(x)

,

with Nh
2
(x) = det(I + h

2 f
′(x)). Consequently, the Darboux equation (2.1) for a

Darboux polynomial P , can be written as

(3.2) N−h
2
(x) · P

(
Φh(x)

)
− P (x) ·Nh

2

(
Φh(x)

)
= 0.

Our goal is to express this equation in terms of aromatic series. We are therefore
interested in:

(1) expressing functions of the form g0(x)g1(x), where both factors are aromatic
series (multiplication),

(2) expressing functions of the form g(Φ(x)) where g is an aromatic series and
Φ(x) is a B-series update map, specifically the Kahan map (composition),
and

(3) expressing Nuh(x) = det(I + uhf ′) as an aromatic series.

3.2.1. Multiplication and composition. The necessary combinatorial formulas can
be deduced from the results in [1].

For expressing the formulas, it is convenient to define the free vector spaces
generated by A and F over the field of reals, R⟨A⟩ and R⟨F⟩, their duals R⟨A⟩∗,
R⟨F⟩∗ and tensor products thereof.

Furthermore, we introduce the notation ⟨·, ·⟩ for pairing elements in dual and
primal spaces, especially in the case of tensor products: Let U and V be vector
spaces, a ∈ U∗, b ∈ V ∗ and w ∈ U ⊗ V where w has the decomposition w =∑n

i=1 ui ⊗ vi, then

⟨a⊗ b, w⟩ =

n∑
i=1

a(ui)b(vi).

The product of two aromatic series is simply a product of formal power series in
the variables α ∈ A′ with a normalization factor3.

Lemma 3.6 (Multiplication). Let gi(x) =
∑

α∈A
h|α|γi(α)

σ(α) F (α)(x), for i = 0, 1.

Then

g0(x)g1(x) =
∑
α∈A

h|α|γ0 · γ1(α)

σ(α)
F (α)(x)

3To be precise, exponential power series in { α
σ(α)

: α ∈ A′}.
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where γ0 ·γ1(α) = ⟨γ0⊗γ1,∆⊔(α)⟩, and ∆⊔ : R⟨A⟩ → R⟨A⟩⊗R⟨A⟩ is the binomial
coproduct [13, Section V.2],

∆⊔(α) =
∑
β⊆α

β ⊗ (α \ β),

where the sum is over all submultisets of the multiset α, counting multiplicities.

Example 3.7.

∆⊔
( )

=1⊗ + 2 ⊗

+ ⊗ + ⊗

+ 2 ⊗ + ⊗ 1.

The composition is given by [1, Theorem 5.1], with appropriate restrictions, as
we are only interested in composing a B-series and an aromatic series.

Lemma 3.8 (Composition). Let g(x) =
∑

α∈A
h|α|γ(α)

σ(α) F (α)(x) and Φ(x) = x +∑
τ∈T

h|τ|b(τ)
σ(τ) F (τ)(x).

Then

g(Φ(x)) =
∑
α∈A

h|α|(b⊙ γ)(α)

σ(α)
F (α)(x)

where (b⊙γ)(α) = ⟨b⊗γ,∆A(α)⟩ and ∆A : R⟨A⟩ → R⟨F⟩⊗R⟨A⟩ is a left comodule
map defined as follows: For a graph α, cut edges that are not included in the cycles
to obtain connected components, some of which are trees and some that are aromas,
then sum over all possible choices of edges to cut.

Example 3.9.

∆A
( )

= 1⊗ + ⊗

3.2.2. The kernel of F . For a given vector field f , F will send some aromas or
linear combinations of aromas to zero. We call this the kernel of F .

(3.3) kerF =

{
k ∈ R⟨A⟩∗ such that

∑
α∈A

h|α|k(α)

σ(α)
F (α) = 0

}
kerF is a description of functional dependencies between the derivatives of f .

Part of kerF is induced by the dimension d of the surrounding space. For
example, when d = 1, F (α) only depends on the number of vertices in α with
indegree 0, 1, 2, . . . , and is independent of the exact arrangement of edges. As an
example in one dimension

F
( )

= F
(

) = (f ′)2.

In this article, we only consider quadratic vector fields. These vector fields have
all third derivatives equal to zero. As a consequence, F (α) = 0 for all aromas
containing a node with indegree larger than or equal to 3.

Finally, specific classes of vector fields can have a larger kernel. For example, if
f is a divergence-free vector field, then F (α) = 0 is zero for all aromas that contain

as a subgraph. Or if f is an Hamiltonian vector field, then F (α) = 0 when α
is a cyclic aroma with an odd number of vertices.
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The kernel of F turns out to be crucial for the existence of solutions to (2.1) in
the vector space spanned by aromas.

3.2.3. Girard–Newton formula. Recall that for the Kahan map,

detDΦh(x) =
det(I + h

2 f
′(x′))

det(I − h
2 f

′(x))
,

holds.
The expression Nuh(x) = det(I+uhf ′(x)) can be written as an aromatic series by

means of combinatorial formulas for symmetric polynomials, related to the Girard–
Newton formula [24, Chapter 7].

Theorem 3.10. The expression Nuh(x) = det(I + uhf ′) can be written as an
aromatic series

(3.4)

det(I + uhf ′) =
∑
α∈A

h|α|ηu(α)

σ(α)
F (α)

= 1 + uhF ( ) +
u2h2

2

(
F ( ) − F ( )

)
+ · · ·

In the above expression, ηu is only non-zero if α is a product of cyclic aromas,
in which case ηu(α) = sgn(πα)u|α|, where πα is the permutation on |α| elements
defined by the graph α.

Furthermore, for a fixed dimension d, the terms of the aromatic series (3.4) with
|α| > d sum to zero.

Proof. Write det(I + uhf ′) =
∏d

i=1(1 + uhλi), where λi are eigenvalues of f ′. The
first claim follows from writing out

det(I + uhf ′) = 1 + uh
∑
i

λi + u2h2
∑
i<j

λiλj + · · · + udhd
∏
i

λi,

and applying [24, Proposition 7.7.6] to each term. The second claim follows from

the fact that
∏d

i=1(1 + uhλi) is a polynomial in uh of degree d. □

3.3. Darboux polynomials and aromatic series. We make the ansatz that P
can be written as an aromatic series P = B(γ).

By combining Lemma 3.6, Lemma 3.8 and Theorem 3.10, the left hand side of
(3.2) can then also be written as an aromatic series.

If P (x) = B(γ) =
∑

α∈A
h|α|γ(α)

σ(α) F (α), then

(3.5) N−h
2
(x) · P

(
Φh(x)

)
− P (x) ·Nh

2

(
Φh(x)

)
=

∑
α∈A

h|α|⟨Q(γ), α⟩
σ(α)

F (α)

where

(3.6) ⟨Q(γ), α⟩ =
〈
η− 1

2
⊗ ϕ⊗ γ − γ ⊗ ϕ⊗ η 1

2
, (I ⊗ ∆A) ◦ ∆⊔(α)

〉
If ⟨Q(γ), α⟩ were 0 for all α, then B(γ) would be a Darboux polynomial for all f .

This requirement is very strict and only satisfied when B is zero for all non-empty
aromas, i.e. B(γ) is a constant function.

We are looking for Darboux polynomials for a given f , in which case, the re-
quirement is

(3.7) Q(γ) ∈ kerF
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where kerF is as in (3.3).
This means the set of aromatic series Darboux polynomials is a function of kerF ,

that is the linear dependencies between the aromas of f .
In the following, we will develop necessary conditions on kerF such that (3.7)

has nontrivial solutions.

Example 3.11. To illustrate the calculations of Q(γ), we here display a detailed

calculation of ⟨Q(γ), ⟩.
Step one:

∆⊔( ) = 1⊗ + ⊗ 1.

Step two:

∆A(1) = 1⊗ 1 and ∆A
( )

= 1⊗ + ⊗ .

Therefore

(I ⊗ ∆A) ◦ ∆⊔( ) = 1⊗ ∆A
( )

+ ⊗ ∆A(1)

= 1⊗ 1⊗ + 1⊗ ⊗ + ⊗ 1⊗ 1.

Step three:

⟨η− 1
2
⊗ ϕ⊗ γ − γ ⊗ ϕ⊗ η 1

2
, (I ⊗ ∆A) ◦ ∆⊔(α)⟩

=
〈
η− 1

2
⊗ ϕ⊗ γ − γ ⊗ ϕ⊗ η 1

2
,1⊗ 1⊗ + 1⊗ ⊗ + ⊗ 1⊗ 1

〉
=η− 1

2
(1)ϕ(1)γ( ) − γ(1)ϕ(1)η 1

2
( ) + η− 1

2
(1)ϕ( )γ( )

− γ(1)ϕ( )η 1
2
( ) + η− 1

2
( )ϕ(1)γ(1) − γ( )ϕ(1)η 1

2
(1)

=1 · 1 · γ( ) − γ(1) · 1 · 0 + 1 · 1 · γ( ) − γ(1) · 1 · (−1

4
) + 0 · 1 · γ(1)

− γ( ) · 1 · 1

=γ( ) +
1

4
γ(1).

Table 1 shows ⟨Q(γ), α⟩ for all aromas with |α| ≤ 3. Using the expressions in
Table 1, we can express the series B(Q(γ)) in terms of γ and F .

For B(γ) to be a Darboux polynomial, B(Q(γ)) has to be equal to zero, and
specifically, each homogenous (in h) part has to equal zero.

In the following discussion, we assume that B(γ) is a Darboux polynomial and
determine which consequences this has for γ and F .

The Kahan map is self-adjoint. As a consequence, linearly independent Darboux
polynomials have to be symmetric in h (up to a sign change.) We can therefore
simplify our analysis by considering two disjoint classes of γ:

(1) γ that are non-zero only on α with an even number of vertices;
(2) γ that are non-zero only on α with an odd number of vertices.

Case 1: γ non-zero for even |α|. We start with γ that are non-zero only on α with
even number of vertices.

The O(h) term in B(Q(γ)) is〈
Q(γ),

〉
F ( ) = −γ(1)F

( )
.
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α ⟨Q(γ), α⟩
1 0

−γ(1)

γ( ) − 1
2γ(1)

0

−2γ( )

γ( ) + 1
4γ(1)

γ( ) + 1
2γ( ) − 1

4γ(1)

− 1
4γ(1)

γ( ) − γ( ) − γ( ) − 1
4γ(1)

−γ( ) + 1
4γ(1)

−3γ( ) − 1
4γ(1)

Table 1. Calculations of ⟨Q(γ), α⟩ for |α| ≤ 3, see (3.5) and (3.6).

By our ansatz, this is equal to zero, and therefore γ(1) = 0 or F ( ) = div f =

0.
This condition is an obvious consequence of the fact that the leading term of

the Darboux polynomial defines a preserved quantity for the continuous system.
Specifically, there can only be Darboux polynomial with leading term γ(1) ̸= 0, if
div f = 0, which is equivalent to dx1 ∧ dx2 ∧ · · · ∧ dxn being a preserved quantity
for the exact system.

For the O(h2) term, we have〈
Q(γ),

〉
F ( ) +

1

2

〈
Q(γ),

〉
F ( )

+
1

2

〈
Q(γ),

〉
F ( )

=

(
γ( ) − 1

2

)
F ( ) + 0 +

1

2

(
−2γ( )

)
F ( )

= − 1

2
γ(1)F ( ),

where the final equality is due to our assumption that γ(α) is zero when |α| is odd.
By our ansatz, this expression has to be equal to zero, which indicates that either

γ(1) = 0 or F ( ) = D(div f) · f = 0.

If div f = 0, then its derivatives are also zero, so this condition is already con-

tained in the condition γ(1)F ( ) = 0.

For the O(h3) term, we consider the two subcases separately.
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Subcase 1a: γ non-zero for even |α|, div f = 0. First, assume F ( ) = 0, and

(without loss of generality) that γ(1) = 1.

All aromas containing as a subgraph are in kerF , so we can disregard all
these terms.

With this simplification, the third order term in B(Q(γ) is

(3.8)

〈
Q(γ),

〉
F ( ) +

1

3

〈
Q(γ),

〉
F ( )

=

(
γ
( )

+
1

4

)
F
( )

− 1

12
F
( )

This can only be zero if there is a linear dependence between F
( )

and

F
( )

, specifically F
( )

= αF
( )

for some α ∈ R.
We sum up the observation in a theorem.

Theorem 3.12. If div f = 0 and there exists a Darboux polynomial in aromas
B(γ) with γ(1) = 1, then

F
( )

= αF
( )

.

for some constant α ∈ R. Furthermore, either both F
( )

and F
( )

are

equal to zero, or

γ
( )

=
α− 3

12
.

Subcase 1b: γ non-zero for even |α|, γ(1) = 0. We now consider the case where
γ(1) = 0. By the expressions in Table 1, the third order term is

(3.9)

γ
( ) (

F
( )

− F
( ))

+ γ
( )(

F
( )

− 1

2
F
( ))

+ γ
( )(

F
( )

− 1

2
F
( ))

.

The expression is equal to D(p) · f − p div f , where

p = γ
( )

F
( )

+
γ
( )

2
F
( )

+
γ
( )

2
F
( )

.

And we see that (3.9) is equal to zero if and only if dx1∧dx2∧···∧dxn

p is a preserved

measure for the continuous system ẋ = f(x).
This holds in general: If B(γ) is a solution to (2.1), then the leading term of

B(γ) defines a preserved measure of the continuous system.

Case 2: Case 1: γ non-zero for odd |α|. We now consider the case where γ is
nonzero only for α with odd number of vertices.

In this case the O(h) term is automatically zero. For the O(h2) term, we get

(3.10) γ( )
(
F ( ) − F ( )

)
= 0.
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This implies that either γ( ) = 0 or

(3.11) F ( ) = F ( ).

Equation (3.11) is equivalent to div f2 = D(div f) · f which again is equivalent to
the measure dx1∧dx2∧···∧dxn

div f being a preserved measure for the continuous system

ẋ = f(x)

For the O(h3) term, assuming either γ( ) = 0 or F ( ) = F ( )

makes the term simplify to zero.

4. Examples

In this section we shall demonstrate the suggested approach on a number of
well-known examples. All experiments are performed with the computer algebra
system Maple. The algorithm takes any quadratic vector field as input and the
Kahan map and its Jacobian determinant are computed. Then the set of all aroma
functions up to a specified order is calculated, where each aroma function is now a
multivariate polynomial. Next, a maximal linearly independent subset is selected,
say {ek}Nk=0. Now, the sought Darboux polynomial is expressed as in the ansatz
(2.3), and the condition (2.1) yields a system of linear equations for the coefficients
{Pk}Nk=0 of (2.3). One may find d ≥ 0 solutions and thus d linearly independent
Darboux polynomials which are density functions of measures preserved by the
Kahan method for the given quadratic vector field.

4.1. Homogeneous Nambu system. Consider the following system in R3, x =
[x, y, z]T analysed in [5],

ẋ = ∇H1(x) ×∇H2(x),

where H1 and H2 are quadratic homogeneous polynomials in (x, y, z), i.e. for
symmetric 3 × 3-matrices A and B, one has H1(x) = xTAx and H2(x) = xTBx.
H1 and H2 are first integrals of the system. It was found in [5] that with

C = A · adj(B) ·A, H3(x) = xTCx,

the corresponding Kahan map has a preserved measure with reciprocal density
function

ḡ1 = (1 + 4h2H3)2

and two modified first integrals

H̃1 =
H1

1 + 4h2H3
, H̃2 =

H2

1 + 4h2H3
.

Another reciprocal density function independent of h is obtained as

ḡ2 = ḡ1H̃1H̃2 = H1H2

and a h-independent first integral is obtained as H1/H2.
Using our method of Darboux polynomials and aromas, we find that two linearly

independent density functions are

g1 = 1 − h2

12
F ( ) +

h4

96
F ( ),

g2 = F ( ) − 3F ( ),
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so their ratio is a first integral. It can be convenient to replace g1 by g̃1 = g1 +
1

288h
4g2, i.e.

g̃1 = 1 − h2

12
F ( ) +

h4

288
F ( ).

For any divergence free vector field in R3 it holds that

F ( ) =
1

2

(
F ( )

)2

so that in fact we have

g̃1 =

(
1 − h2

24
F ( )

)2

.

It is possible to prove that F ( ) = 32xTCx where C is given as

C = adj(adj(A)+adj(B))−adj(adj(A))−adj(adj(B))−B ·adj(A) ·B−A ·adj(B) ·A.

Note that adj(adj(A)) = det(A) · A. In any case, we see here that C is symmetric
in the arguments A and B, an issue discussed in [5].

Regarding the second measure g2, it is a homogeneous, quartic, h-independent
polynomial. Recalling above the h-independent quartic density function ḡ2 = H1H2

and the rational first integral H̃ := H1/H2, it seems plausible that our g2 is of the
form

g2 = ḡ2 · P (H̃), P (z) = αz + β +
γ

z
.

A calculation in Maple shows that there is a unique solution for α, β, γ, but their
expressions are rather complicated.

4.2. A generalised Lotka–Volterra system and the dressing chain. Con-
sider the problem

(4.1)

ẋ = x(βz − γy),

ẏ = y(−αz + γx),

ż = z(αy − βx).

Clearly I0 = x + y + z is a first integral of the continuous system for any choice of
α, β, γ. Since I0 is linear, it is preserved by any RK method, in particular by the
Kahan method.

4.2.1. Divergence free case α = β = γ = 1. In this case, the ODE has a second
preserved integral I1 = xyz . Using the standard approach, we find the densities

g1 =1 − h2

8
F ( ),

g2 =4F ( ) − 4F ( ) + F ( ) + h2

(
F ( )

− F ( ) + F ( ) − 1

4
F ( )

)
,

so this allows for one first integral. However, augmenting the basis of aroma func-
tions with e.g. I0F (t) for |t| ≤ 6, we can get two extra density functions

g3 = I0g1, g4 = I0g2,

and we actually recover the general integral I3 = I0 = g3
g1

yielding integrability.
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The dressing chain system reads

ẋ = −y2 + z2 − b + c,

ẏ = x2 − z2 + a− c,

ż = −x2 + y2 − a + b,

where a, b and c are free parameters. Invariants of this system are

J1 = x + y + z,

J2 = (x + y)(y + z)(z + x) − ax− by − cz.

We can do the same basis augmentation as before, adding functions of the form
J1F (t), and we obtain preserved measures with densities

g1 =1 − h2

8
F ( ),

g2 =4F ( ) − 4F ( ) + F ( ) + h2

(
F ( )

− F ( ) + F ( ) − 1

4
F ( )

)
,

g3 =J1g1,

g4 =J1g2.

It is interesting to note that the aroma expressions are exactly the same as in the
Lotka-Volterra divergence free example. The reason is that these two systems are
linked via a linear transformation, see Lemma 3.5.

With α = β = γ = 1 in (4.1), we have the transformation

x = x̃ + z̃
y = x̃ + ỹ
z = ỹ + z̃

⇒
˙̃x = −ỹ2 + z̃2

˙̃y = x̃2 − z̃2

˙̃z = −x̃2 + ỹ2.

4.2.2. The case α = β = 1, γ = −1. This is the following particular case of (4.1)

(4.2)

ẋ = x(y + z),

ẏ = −y(x + z),

ż = z(y − x).
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which is also investigated in [4]. We get

g1 = − 2F ( ) + F ( ),

g2 =4F ( ) − 2F ( ) − 2F ( ) + F ( ),

g3 =2F ( ) − 2F ( ) + F ( ),

g4 = − 8F ( ) + 8F ( ) − 2F ( ) + 4F ( )

− 4F ( ) + F ( ),

g5 =2F ( ) − 4F ( ) + 4F ( ) − 2F ( )

+ F ( ) − 2F ( ).

In this case one may form first integrals e.g. by

Ii =
gi+1

g1
, i = 1, 2, 3, 4,

but only two of them, e.g. I1, I2, are functionally independent. One checks that
I1 = (x + y + z)2 = I20 (the square of the general invariant given above). All the
measures are independent of the step size h. We write out the list of densities and
invariants:

g1 = −4z2,

g2 = g1I1,

g3 = 16xy(x + z)(y + z),

g4 = g1I
2
1 ,

g5 = g3I1,

I2 = −4xy(x + z)(y + z)

z2
,

I3 = I21 ,

I4 = I1I2.

4.3. The generalised Ishi problem. We find in [5] the problem

ẋ = −c2x + b2y + b3z,

ẏ = c1x + c2y + c3z,

ż = a11x
2 + a12xy + a22y

2.

The Kahan method preserves volume exactly if the parameters satisfy two condi-
tions, see [5]. Alternatively, one may express the parameters aij as

(4.3) a11 = kA2c3, a12 = −k(A1c3 + A2b3), a22 = kA1b3,

where k is an arbitrary parameter. Here

A1 = b2c3 − b3c2, A2 = c2c3 + b3c1, A3 = −(b2c1 + c22).
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The continuous system thus obtained has the invariants

H1 = z +
k

2
(c3 x− b3 y)2,(4.4)

H2 =
k

3
(c3x− b3y)

3
+

c1
2
x2 + c2 xy + c3 xz −

b2
2
y2 − b3 yz.(4.5)

Preserved invariants of the Kahan map have been shown to be

H̃1 = z +
k

2
(c3 x− b3 y)2 − kh2

8

(
A2 x−A1 y

)2
,

H̃2 = H2 +
h2

24

(
A3(−c1x

2 − 2c2xy − 2c3xz + 2b3yz + b2y
2) + (A1c3 −A2b3)z2

+ k(−2c3A
2
2x

3 + 2A2(b3A2 + 2c3A1)x2y − 2A1(c3A1 + 2b3A2)xy2 + 2b3A
2
1y

3)

)
,

see [5]. Using the aroma approach, we find the parameter independent measures

g1 =1,

g2 =F ( ) − 4F ( ) − h2

2
F ( ).

This shows that the volume is exactly preserved by Kahan’s method and there
is another measure with density g2 also preserved, and g2 is therefore also a first

integral. It turns out that g2 only depends on H̃1, we have in fact

g2 = 2A2
3 + 4k(A1c3 −A2b3)2H̃1

4.4. The inhomogeneous Nambu system. We consider two quadratic functions

H(x) = xTHx + hTx,

K(x) = xTKx + kTx,

where H and K are arbitrary symmetric 3× 3 matrices and h and k are vectors in
R3. The ODE we consider is

(4.6) ẋ = ∇H(x) ×∇K(x).

A preserved measure of the corresponding Kahan map can be found with density
function

g = 1 − 1

12
h2F ( )

+ h4

(
1

36
F ( ) − 1

72
F ( ) − 1

96
F ( )

)

+
1

384
h6

F ( ) − 2F ( )

 .

The general expression for the density function has 15806 terms. Since the aro-
matic functions are not generally linearly independent, one has several equivalent
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representations, in the sixth order term we have for instance

F ( ) − 2F ( ) =
2

5

F ( ) − 3F ( )


=

1

3

F ( ) − 4F ( )

 .

Similarly, the fourth order term could be replaced by

h4

(
1

12
F ( ) − 1

24
F ( ) − 1

96
F ( )

)
.

Note that the Kahan map of some special cases of the inhomogeneous Nambu
system (4.4) for which the density factorises, were treated in [8, 3].

4.5. Homogeneous quadratic divergence free systems in R3. Finally, we
consider the general case of quadratic homogeneous divergence free vector fields in
3 dimensions. They can be written in the form

(4.7) ẋ =

 xTAx
xTBx
xTCx


for symmetric matrices A,B and C, where x = (x, y, z)T .

It can be shown that (4.7) is divergence free if and only if

{a1,1 + b1,2 + c1,3 = 0, a2,1 + b2,2 + c2,3 = 0, a3,1 + b3,2 + c3,3 = 0} .

Based on multiple experiments with randomized A,B and C, we pose the fol-
lowing conjecture:

Conjecture 4.1. Let f be a quadratic, homogeneous, divergence free vector field

in R3. Assume that F ( ) ̸= 0 and that

(4.8) F ( ) = αF ( )

holds for some α ∈ R. Then there is a preserved measure with density

(4.9) g = 1 − 3 − α

24
h2F ( ) +

α2

24(3 + α)
h4F ( ).

Remark 4.2. It might seem like a reasonable idea to try to prove the conjecture
simply by brute force using a CAS such as Maple. However, the calculations become
intractable using the algorithm described in Section 1 when all the matrix elements
are treated as free parameters. One can prove that under the hypotheses of the
conjecture

F ( ) =
α

3

(
F ( ) + F ( )

)
.

Several test examples indicate that also the following relation holds

F ( ) = 2F ( ).

These two relations are central in deriving the formula (4.9).
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