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Abstract—Closed-loop reservoir management (CLRM) is a
model-based optimal control procedure that aims at optimizing
oil and gas production strategies under both physical and opera-
tional constraints and large model uncertainties. Using stochastic
simulation in this decision-making process is imperative due
to the large uncertainties that impact the model predictions.
However, this often involves performing a large number of model
evaluations repeatedly to integrate an ensemble of realizations
that represent the input uncertainty. In CLRM, this requires
excessive computational effort due to the complexity of the
nonlinear and high-dimensional reservoir simulation models. In
this study, a surrogate modeling technique, namely, polynomial
chaos expansion (PCE), is leveraged for efficient and accurate
implementation of the stochastic reservoir simulation in CLRM.
A PCE for the reservoir dynamics is computed and employed
to propagate the uncertainty without the need for additional
expensive model evaluations. This can reduce the computational
burden in both the forward and inverse problems of the CLRM.
Results show that the PCE surrogate model can accurately
quantify the uncertainty and evaluate a large number of model
realizations at the cost of evaluating a polynomial, compared to
the full model evaluations using Monte Carlo simulations.

Index Terms—Closed-loop reservoir management (CLRM),
Uncertainty quantification (UQ), Polynomial chaos expansion
(PCE), Spectral methods, Stochastic simulation.

I. INTRODUCTION

Uncertainty quantification (UQ) concerns the propagation
of input uncertainties and the characterization of their impact
on the predictions of computer simulation models. The signif-
icance of UQ comes from the fact that, in simulating complex
systems, such as reservoir dynamics which are governed by
nonlinear partial differential equations (PDEs) with high input
uncertainties, it is imperative to take the uncertainties’ effect
into account from the beginning of the simulation [1]. This
is because its impact will accumulate over time to make
considerable changes that cannot be accounted for using other
techniques such as increasing the numerical resolution or
incorporating the uncertainty directly in the outputs. This is of

This research is a part of BRU21 – NTNU Research and Innovation
Program on Digital and Automation Solutions for the Oil and Gas Industry
(www.ntnu.edu/bru21) and supported by Equinor.

particular importance when the models are used in simulation-
based control, such as model predictive control (MPC) and
optimal control problems (OCPs) [2]. In such cases, stochastic
simulation techniques enable solving the optimization problem
based on the characterized probabilistic uncertainties instead
of the traditional approaches based on the worst-case analysis.
To that end, different methods have been applied. Mainly,
Monte Carlo (MC) simulations are exploited for the purpose of
the stochastic simulation of dynamical systems by using the
deterministic model to simulate a large ensemble of model
realizations that represents the uncertainty in the inputs.

Although MC simulation has been considered the main
stochastic simulation approach in a wide range of dynamical
systems, it exhibits a significant drawback that limits its
applicability in complex and high-dimensional systems. That
is, it requires a large number of realizations due to its slow
convergence; where it follows directly from the central limit
theorem (CLT) that, independently of the problem dimension-
ality, MC converges inversely proportional to the square root
of the number of realizations. In other words, it requires a large
number of full-model evaluations using the deterministic sim-
ulator, which can be intractable in high-dimensional systems
where each single simulation run takes considerable time. A
sub-optimal solution is to trade the performance accuracy for
the computational feasibility by reducing the number of model
realizations. However, this leads to systematic underestimation
in the propagated uncertainties both in the forward and the
inverse problems in the closed-loop reservoir management
(CLRM), leading eventually to substantial degradation in the
overall control performance.

Other non-sampling approaches for simulating stochastic
dynamics have been introduced and applied. For example,
the perturbation method [3] is used to represent the random
field using Taylor series expansion around the mean value.
However, representing the uncertainties as perturbation cannot
generally be a valid assumption when the system is charac-
terized by large uncertainties. Similar are other operator-based
methods, such as [4], which depend on the manipulation of the
stochastic operator in the system equations. Another approach



is to derive the moments of the solution directly from the
governing stochastic equation [1], which is only applicable in
a limited number of cases.

On the other hand, a computationally effective way to
handle those different limitations in high-dimensional systems
characterized by large uncertainties is to combine sampling
with metamodelling. In metamodelling, computationally de-
manding models, such as finite element models (FEM), are
substituted by surrogate models that can be computed ef-
ficiently. For stochastic simulation purposes, the surrogate
model can approximate the original system either in a strong
sense where the response of the surrogate model converges
to the true system’s response in a proper norm, e.g., mean-
square convergence; or in a weak sense where it conver-
gences in the solution statistics, i.e., it only approximates the
probability distribution of the original system’s response. The
polynomial chaos expansion (PCE) [5] has been introduced
as a computationally-efficient metamodelling technique for
simulating nonlinear stochastic dynamical systems. It is a
high-order method that uses the spectral decomposition of
the system dynamics in the input random space to repre-
sent the stochastic solution. Therefore, it can be efficiently
used for UQ purposes in a wide range of complex ap-
plications. For Gaussian random variables and second-order
random processes, Hermite polynomials [7] have a universal
approximation property. For other probability distributions, the
generalized polynomial chaos (gPC) [6] generalizes the PCE
theory by introducing other polynomial functions.

On the application side, implementing model-based con-
trol and real-time optimization procedures is hindered by
the model’s complexity in the case of subsurface reservoir
systems. This complexity comes mainly in the form of high-
dimensional problem spaces that characterize the subsurface
flow dynamics (can be in the order of 106), resulting from dis-
cretizing a coupled system of PDEs. This high-dimensionality
attribute is threefold—it represents a high-dimensional state
space, a high-dimensional parameter space, and high input
uncertainties which require large numbers of model realiza-
tions. The uncertainty in the initial models, for instance, can
cause the actual production measurements to be exceedingly
distinct from predicted values during the initial production
phases before model updates based on production data. This
makes it essential to take the uncertainty into account from the
start of the process. On the other hand, pure data-driven control
approaches are not practical alternatives due to the scarcity of
field data. Recently, the technological advancements in com-
puter systems, field sensors, and industrial infrastructures, in
addition to the increased computational power, have led to the
ability to make real-time decisions based on predictive models
whose uncertainties are sequentially updated by assimilating
the real-time production data. This optimization framework,
known as CLRM, combines online model updating with real-
time optimal control to make the production decision-making
process a near-continuous controlled process based on the
continuously updated uncertainties [8]. It aims at maximizing
the revenue, usually represented in terms of the net present
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Fig. 1. Closed-loop reservoir management (CLRM).

value (NPV), from the oil recovery and meeting the increased
energy demands, while minimizing costs and satisfying dif-
ferent production and environmental constraints. As illustrated
in Figure 1, CLRM starts with highly uncertain prior models
that are refined using production data assimilation to produce
models with higher accuracy while being amenable to real-
time optimization.

Implementing the CLRM however requires propagating
high-dimensional uncertainties twice in each loop–once in an
inverse problem to update the models, and then in a forward
problem to predict future performance to solve a real-time
OCP. With multiple simulation runs that are required in each
problem to represent the different scenarios, implementing
CLRM in real-world problems is still challenging. For this
reason, PCE can be a practical alternative that quantifies the
uncertainty in both the inverse and the forward problems in
CLRM at a much lower computational cost. In addition to oil
and gas reservoirs, this efficient stochastic simulation of the
fluid flow dynamics through porous media is also of significant
importance in other subsurface application areas such as
CO2 sequestration, geothermal energy system, groundwater
remediation and aquifer management, and bioreactor landfills.

II. HIGH-DIMENSIONAL UNCERTAINTY QUANTIFICATION

Given a probability space defined by the triplet (Ω,F , P ),
where Ω is the sample space, F ⊂ 2Ω is the σ-field of Ω,
and P : F → [0, 1] is the probability measure. We define
the Hilbert measure space L2(Ω,F , P ) of all the random
variables on (Ω,F , P ) that have finite second moments; i.e.,
L2(Ω,F , P ) = {X : E[X2] < ∞}. A general system
of partial differential equations (PDEs) is defined in a time
domain [0, T ], such that T > 0, and a spatial domain D ⊂ Rl,
where l ∈ Z as follows

ut(x, t, ω) = G(u), D × (0, T ]× Ω,

B(u) = 0, ∂D × [0, T ]× Ω,

u = u0, D × {t = 0} × Ω,

(1)



where ω ∈ Ω is the random inputs, x ∈ D are spatial points, G
is a general (nonlinear) differential operator, B is the boundary
condition operator, and u0 is the initial condition. Simulating
the deterministic dynamics of system (1) (one realization of
ω) requires solving a high-dimensional system resulting from
the spatial discretization of the domain D. Considering the
intrinsic stochasticity in addition would require solving this
high-dimensional system multiple times at each time step.
Metamodeling using PCE offers a computationally efficient
solution where a small number of model simulations, NDoE ,
such that NDoE << NMC , where NDoE is the number of
nodes in the experimental design and NMC is the number of
MC simulations, is used to train a surrogate stochastic model
for the system (1), which can then be used to quantify the
uncertainty with much smaller sampling errors by arbitrarily
increasing the number of model evaluations at approximately
no additional cost (the computational cost of polynomial
substitution is negligible compared to integrating a system of
nonlinear PDEs).

A. Random Field Discertization

Although the infinite-dimensional probability space in (1)
will be reduced to a finite-dimensional space after discretizing
the PDE in simulation, it is still required to further reduce
the discretized probability space in order to be amenable
to computing since the PDE discretization schemes often
produce a high-dimensional finite space. In reservoir models,
the random quantities, such as the space-varying parameters,
are random fields that are functions of space. Following the
notation in [1], the space-varying parameters are modeled as
stochastic processes Xx defined on the continuous domain
D and the space Ω: (Xx(ω), x ∈ D, ω ∈ Ω). Therefore,
for a vector of standard random variables (called the germ)
Ξ = (ξ1, ξ2, ..., ξd), d ≥ 1, where ξi’s are finite and mutually
independent, a diffeomorphism T : Ξ → Xx is required such
that Xx = T (Ξ). In other words, the resulting distribution in
the standard random vector, Ξ, is equivalent to the original
distribution, Xx ∼ T (Ξ). The need for a random variable
with mutually independent components is desired for practical
purposes, as most of the numerical techniques require the
probability parameterization to be characterized by mutual in-
dependence in addition to being finite [1]. Different functions
can be used in practice to realize this transformation for a
given germ. In this study, Karhunen–Loève expansion (KLE)
is applied such that it implements the transformation from a
finite set of mutually independent random variables, Ξ, that
are required for the numerical implementation of the PCE, to
the original random fields used in the simulation, Xx. KLE,
also known as proper orthogonal decomposition (POD), is a
spectral method that uses the spectral decomposition of the
covariance function for a stochastic process to approximate
it using a finite set of uncorrelated random variables. It is an
optimal expansion in mean squares sense [5]. Given a bounded
symmetric positive definite covariance function C(x, s) for the

stochastic process Xx, the KLE is expressed as

Xx(ω) = X(x,ω) = ⟨X(x)⟩+X ′(x, ω)

= µX(x) +

∞∑
i=0

√
λiξi(ω)ψi(x),

(2)

where µX(x) = ⟨X(x)⟩ is the mean of the stochastic process
Xx, such that µX(x) = E[X(x, ω)] =

∫
Ω
X(x, ω)dP (ω),

and X ′(x, ω) is the fluctuation. The {ξi(ω)} is a sequence
of mutually uncorrelated zero-mean unit-variance Gaussian
random variables. That is, E[ξi] = 0 and E[ξiξj ] = δij . λi
and ψi are the eigenvalues and the corresponding orthog-
onal eigenfunctions of the covariance function C(x, s) =
⟨X ′(x, ω)X ′(s, ω)⟩, respectively, and are obtained by solving
the following Fredholm integral equation∫

D
C(x, s)ψi(s)ds = λiψi(x). (3)

KLE using the infinite series is exact for Gaussian random
fields. However, a finite expansion is required in practice to
discretize the random field, Xx. Therefore, the infinite series
is truncated at a specific term i = M that satisfies a certain
energy content in the expansion; i.e.,

M∑
i=1

λi/

∞∑
i=1

λi ≥ δe, (4)

where δe is a cutoff threshold value. For a certain threshold, the
truncation limit, M , is inversely proportional to the correlation
length of the random field.

KLE is one of the most used techniques for random field
discretization, as it preserves the variability of the original dis-
tribution while using a small number of independent random
variables [9]. Hence, it handles both requirements of dimen-
sionality reduction and random space reparameterization at the
same time. Therefore, KLE will represent the transformation
T such that Xx(ω) = T (Ξ) ≡ KLE(Ξ).

B. Polynomial Chaos Expansion (PCE)

On the other hand, the distribution of the system’s response
represented by the numerical simulator Y = f(Xx(ω)) cannot
be decomposed using KLE since its covariance function cannot
be determined due to its dependence on uncertain random
fields, Xx(ω). Therefore, PCE is leveraged to approximate
the numerical simulator Y in terms of the finite independent
random variables, Ξ, by expanding the function f in a poly-
nomial series with polynomial basis Φ, that constitutes a set
of orthogonal functions with respect to the distribution of the
germ, Ξ.

Y (x, t, ω) = f(Xx(ω)) = f(X(x, ω))

= f(T (Ξ)) =
∑

J∈NM
0

αJ(x, t)ΦJ(Ξ), (5)

where J = (j1, j2, ..., jM ) ∈ NM
0 is a multi-index with

|J | = j1 + j2 + ... + jM . The mode strength αJ(x, t) are



the polynomial coefficients, which are deterministic functions
of space and time such that

αJ =
⟨f,ΦJ⟩
⟨ΦJ ,ΦJ⟩

, (6)

and the mode function ΦJ(Ξ), where Ξ is a vector, are
multivariate polynomials that constitute the tensor product of
the polynomial bases for each ξi. That is, the N -th degree
polynomial in an M -variate random vector Ξ is given by

ΦJ(Ξ) =

M∏
i=1

ϕji(ξi), 0 ≤ |J | ≤ N, (7)

and the orthogonality is defined by the inner product

⟨ϕn, ϕm⟩ :=
∫
ξ∈Ξ

ϕn(ξ)ϕm(ξ)dPΞ(ξ) = γnδnm

where γn = E[ϕ2n(ξ)] are the normalization factors, and δnm
is the Kronecker delta function. Since orthogonality is defined
in terms of the probability function of the germ, dPΞ(ξ), there
exists a relation between the type of the orthogonal polynomial
basis and the distribution of the germ. The orthogonality in the
case of standard Gaussian distributed random variables defines
a Hermite polynomial {HJ(Ξ)} as defined in (7), such that

ϕji(ξi) = hji(ξi) = (−1)jiexp

(
1

2
ξ2i

)
dji

dξjii
exp

(
−1

2
ξ2i

)
.

(8)
Hermite-type PCE can approximate any functional in L2

and converges in the L2 sense with a convergence rate that
depends on the smoothness of the original function [10].

In practice, a finite series is used by truncating (5) to the
N -th degree approximation

Y N (x, t, ω) =
∑

J∈AM

αJ(x)ΦJ(Ξ). (9)

where A ⊂ NM is a subset of multi-indices selected according
to a truncation scheme such that

AM = {J ∈ NM : |J | ≤ N}, and cardAM ≡ C =
(
M+N

N

)
,

which indicates an exponential growth in the expansion terms
with increasing the polynomial degree, N .

C. Non-intrusive Projection

Determining the germ, Ξ, directly determines the type of
the polynomial, Φ(Ξ). The remaining is to compute the coeffi-
cients αJ(x) to completely construct the PCE surrogate model.
The coefficients are computed such that they minimize the dis-
tance (error) between the expansion and the original function.
This can be done using projection as shown in (6) to exploit
the orthogonality property of the basis functions. However,
calculating the numerator in (6) usually requires solving the
integration problem of the inner product numerically, which
is nontrivial; particularly, in the reservoir simulation case
when the function f requires solving another high-dimensional
numerical integration problem. This makes computing the
PCE coefficients using intrusive approaches such as stochastic

Galerkin projection intractable in the reservoir case. Non-
intrusive approaches, on the other hand, are generally based
on collocation methods and interpolation, where the residue of
the governing stochastic equations is brought to zero at some
discrete points in the random input domain (the collocation
nodes). This can be implemented exactly by solving the
integration in (6) using a quadrature rule, or approximately
using regression analysis. Although the quadrature methods
are more accurate as they have an exact solution at some points
in the random domain, their applicability is also limited to low
random dimensions due to the curse of dimensionality problem
in the case of multivariate random variables, as they are
applied through the tensor-product of one-dimensional nodes.
For example, applying a multivariate Gaussian quadrature
rule is done through the tensor-product of the univariate
integration rules (tensor product collocation), which makes the
number of collocation nodes (i.e., the required full-scale model
evaluations) increase drastically with the number of random
variables. Although some high-order stochastic collocation
methods have been developed [11] based on sparse grids
collocation techniques such as Smolyak sparse grids [12],
they are still implemented using tensor-product construction–
on a subset of the full tensor grids in this case–and their
computational cost still cannot be arbitrarily reduced due to
the restrictions in the experimental design. That is, the number
(and weights) of the collocation nodes are uniquely determined
from the applied quadrature rule (deterministic sampling).
Therefore, sparse regression analysis using regularized least-
squares is used in this study as it gives more freedom in the
experimental design and the selection of the model evaluation
points.

With a proper ordering of the multi-index, J , to represent
it by a single index, e.g., the graded lexicographic order, the
truncated PCE (9) can be represented as a regression model

Y (i)(x, t, ω) = f(T (Ξ(i))) =

C−1∑
j=0

αj(x, t)Φj(Ξ
(i)) + ϵC

= αTΦ(Ξ(i)) + ϵC
(10)

where Ξ(i) are the design points (collocation nodes), such
that i = {0, 1, ..., Q}. C is the cardinality of AM , ϵC
is the truncation error, αT (x, t) = {α0, α1, ..., αC−1}, and
Φ(Ξ) = {Φ0(Ξ),Φ1(Ξ), ..,ΦC−1(Ξ)}. The sparse least angle
regression (LARS) algorithm [13] is applied in this work to
solve the regression problem (10) and compute the PCE coef-
ficient. The LARS algorithm is implemented by regularizing
the least-squares minimizer for (10) as follows

α̂ = argmin
α∈R|A|

E
[(
αTΦ(Ξ)− f(T (Ξ))

)2]
+ λ||α||1 (11)

where the regularization term ||α||1 =
∑

J∈A |αJ | penalizes
high-rank solutions, resulting in a sparse regression technique
which is suitable for high-dimensional problems.

The computed PCE can then be used as a surrogate model
in UQ and stochastic simulation. In addition, the statistical



properties of the stochastic response of the system can be
inferred directly from the properties of orthogonal polynomials
with no more computations. For example, the first two statis-
tical moments–which fully characterize the uncertainty in the
Gaussian case–are found in closed form as follows

µY (x, t) = E
[
Y (x, t, ω)

]
= αj0(x, t), (12)

ΣY (x, t) = E
[
(Y (x, t, ω)− µY (x, t))2

]
=

∑
0≤|J|≤N

[
γJα

2
J(x, t)

] (13)

III. CLOSED-LOOP RESERVOIR MANAGEMENT

CLRM consists of two main components, data assimilation
and decision-making; and both depend on uncertainty propa-
gation. In the data assimilation part, the model uncertainties
are propagated forward in time to be updated when new
information is available from the field measurements. In the
decision-making step, the updated uncertain models are used
to predict future production in order to implement optimal
production strategies. PCE is an efficient tool to propagate
uncertainty in both steps.

A. Flow Dynamics

The dynamics of the subsurface flow through porous media
are considered for an isothermal, heterogeneous, two-phase
(oil and water), black-oil reservoir model. In the isothermal
case, the governing equations are modeled by combining a
mass-balance equation (conservation of mass), for each phase,
and the extension of Darcy’s law to multiple phases together
with the equations of state that describe the fluid properties
as a function of pressure. The following system of nonlinear
PDEs models the reservoir dynamics, where the gravity forces,
inertial effects, and capillary pressure are neglected

∂

∂t
(ϕρwsw) = ∇ ·

(
−→
K
krw
µw

ρw∇p
)
+ qw, (14)

∂

∂t
(ϕρo(1− sw)) = ∇ ·

(
−→
K
kro
µo

ρo∇p
)
+ qo, (15)

where ϕ is the porosity, ρ is the fluid density, and si is the
i-th phase saturation, where the subscript i ∈ {w, o} indicates
water or oil, respectively. p represents the fluid pressure, which
is equivalent for the water phase and the oil phase given that
the capillary pressure is neglected.

−→
K is the absolute (intrinsic)

permeability tensor, kr is the relative permeability, µ is the
dynamic viscosity, and q is the flow rate (source term).

Using the definition of the i-th phase compressibility, ci,
and rock compressibility, cr,

ci =
1

ρi

∂ρi
∂p

, cr =
1

ϕ

∂ϕ

∂p
, (16)

(14) and (15) can be written as follows

ϕρw

(
sw(cw + cr)

∂p

∂t
+
∂sw
∂t

)
= ∇ ·

(
−→
K
krw
µw

ρw∇p
)
+ qw,

(17)

ϕρo

(
(1− sw)(co + cr)

∂p

∂t
− ∂sw

∂t

)
= ∇ ·

(
−→
K
kro
µo

ρo∇p
)
+ qo.

(18)

In addition, a Peaceman nonlinear model [14] that describes
the well dynamics is used to specify the pressure in at least
one grid block to define the boundary conditions.

B. Deterministic and Stochastic Simulation

The system is deterministically simulated using a fully-
implicit approach that combines a finite difference (FD) dis-
cretization scheme with a Newton-based iterative algorithm to
solve the nonlinear system of PDEs. This results in the follow-
ing state and output finite difference equations, respectively,

gk(u(i), uk, rk, θ) = ek, (19)
yk(uk, rk, θ) = 0. (20)

where u is the state vector, r is the input vector, θ is the
parameter vector, the subscript □k is for the time steps in the
FD scheme, while □(i) is for the iterative solver that solves
for the state at the next time step, uk+1, and e is a vector of
residuals that is being minimized over the iterations.

Although the reservoir models are subject to various sources
of uncertainty, both in time- and space-varying variables, it
is typically the uncertainty in the space-varying parameters
that dominates other sources. Uncertainty in the time-varying
variables (system states) comes primarily from discretization
errors and unmodeled physics. However, characterizing the
space-varying physical properties (parameter fields) is highly
uncertain due to the spatial heterogeneity of the subsurface and
the scarcity of information sources. Therefore, the parameters
θ will represent the random inputs, ω, in (1).

IV. NUMERICAL STUDY

In this study, a heterogeneous 2D two-phase synthetic
reservoir in a waterflooding production process is used to
demonstrate the PCE implementation for CLRM purposes.
Four production wells in the four corners of the spatial domain
and one injection well in the middle are used to recover the
subsurface oil. The boundary conditions are set by specifying
the control inputs as the water injection rate in the injectors and
the production bottom hole pressure (BHP) in the producers,
and no-flow boundaries otherwise. The observed outputs are
specified as the flux out of the producers and the BHP in
the injector. The coordinate system is assumed to be aligned
with the geological layers of the reservoir, and therefore, the
permeability tensor is a diagonal matrix; i.e.,

−→
K =

[ kx 0
0 ky

]
.

The porosity field is assumed to be uniform over the whole
domain. Each spatial dimension is discretized to 21 grid



TABLE I
RESERVOIR MODEL PARAMETERS

Variable Symbol Value SI Unit
Lx, Ly Reservoir dimensions 1000 m
nx × ny Number of grid-blocks 21× 21 –
h Grid-block height 10 m
µw Water viscosity 4.0× 10−4 Pa.s
µo Oil viscosity 9.0× 10−4 Pa.s
sw,0 Initial water saturation 0.2 –
po,0 Initial reservoir pressure 3.5× 107 Pa
rw Wellbore radius 0.1 m
qinj Water injection rate 1.7× 10−3 sm3/s
BHPprod Production bottom-hole 3× 107 Pa

pressure

blocks, resulting in a total of 441 grid blocks in the space
domain. In general, each grid block is characterized by four
states, namely the phase saturations and pressures, and two
highly uncertain parameters representing the permeability in
both directions. In our model, the permeability field is assumed
to be isotropic; therefore, kx = ky in each grid block; and
since capillary pressure is set to zero there is only one pressure
variable. A simulation time domain of 30 years is discretized
using a 6−month discretization timestep, and observations
are collected at the wells every 30-th month (5 simulation
timesteps). Table I summarizes the main properties of the
reservoir and the waterflooding experiment used in this study.
The MATLAB Reservoir Simulation Toolbox (MRST) [15]
and the UQLab [16] are used to implement the experiments.

A. Model Reparameterization

Since the independent uncertain variable is assumed to
be the directional permeability, which is spatially correlated
along the domain, the model is first reparameterized to be
represented in terms of independent low-dimensional random
variables. In this case, a large ensemble matrix of 1000
realizations is used to represent the parameter’s variability to
obtain the KLE using the sample covariance matrix instead of
the covariance function which is not available in closed form.
The sample covariance matrix, P̂ , is computed as follows

P̂ =
1

Ne − 1

Ne∑
i=1

(ei − ē)(ei − ē)T , (21)

where Ne is the number of ensemble members, ei, and ē
is the ensemble mean. The KLE for the distribution of the
permeability field is obtained using the first 16 principal
components that represent the variability in the ensemble.
Figure 2 shows those modes in which the distribution of the
field is represented. It was found that 16 principal components
retain more than 75% of the variance energy as shown in
Figure 3. That is, δe = 0.75 in (4) results in M = 16.

B. Design of Experiments (DoE)

The PCE coefficients are computed using LARS sparse
regression algorithm. The design of experiments (DoE) step
concerns finding a set of samples from the random input space

and the corresponding model evaluations so that they are em-
ployed to solve the regression problem in (10). NDoE = 200
model realizations are sampled from the input random space
using Latin hypercube sampling (LHS) and the corresponding
model responses are evaluated for this purpose. This consti-
tutes the total cost of computing PCE, since the full-scale
simulator has to be run NDoE times to solve the regression
problem. Hermite polynomials of order N = 6 are selected
to form the polynomial basis, and (11) is solved to compute
the coefficients for five PCEs that approximate the five system
outputs over the simulation period. It was found that N = 6
preserves a proper balance between the computational cost and
the approximation accuracy for the surrogate model. That is,
increasing the order over 6 introduces a significant increase
in the computational time of learning the surrogate model,
while offering negligible improvements in the approximation
accuracy.

C. Results and Validation

After computing the different PCE surrogate models, they
are used as predictors to forecast the response of new points
outside the experimental design. Figures 4 - 8 compare the
responses of the actual simulator and the PCE models in a
cross-validation experiment using 30 MC samples. With no
loss of generalization, only 30 samples are used in validation
in order to clarify the convergence and to enable implementing
this number of MC simulations using the actual simulator for
the sake of comparison. However, the results generalize to any
number of samples. The responses illustrate that the obtained
PCE can accurately approximate the stochastic simulation of
the actual system. Nevertheless, while the traditional MC
simulation requires running the full-scale simulator NMC

multiple times, the computational cost of the PCE model is
only equivalent to computing a polynomial NMC multiple
times. This constitutes a reduction in the computational time
from 0.9913 second in the full simulation case to 3.0669e−04
second in the PCE case, for the single reservoir realization
(averaged over 1000 realizations). The most expensive step
in the PCE, however, is in computing its coefficients, which
requires NDoE = 200 simulation runs. That means, at the
cost of 200 model evaluations in this example, a PCE model
is tuned and it can then be used to evaluate an arbitrarily
large number of model evaluations at almost no additional
computational cost. This makes it most adequate for problems
that require large numbers of repetitive simulations, which is
typically the case in CLRM.

The figures show some rigidity (low resolution) in the
response of the PCE that does not resemble the smooth
response of the actual system around the changes around water
breakthrough (between 100 and 150 months). This can mainly
be attributed to the polynomial degree, N = 6, and can be
smoothed out by increasing the order of the polynomial basis.

Although the results can be conveniently improved using
different modifications, analyzing the statistical performance
shows that the current approximation is sufficiently adequate
for purposes of uncertainty quantification in CLRM. Nonethe-
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Fig. 2. Principal components used in the KLE of the permeability field distribution.
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Fig. 3. Energy associated with the eigenvalues of the sample covariance.

less, the approximation accuracy can be improved at the cost
of increasing the computational cost by increasing the order
of the polynomial, N , increasing the energy represented in the
KLE, M , and/or increasing the number of samples used in the
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Fig. 4. Response of the actual and PCE models for the injector’s pressure.

DoE or using a quadrature rule instead.

V. CONCLUSIONS

In this study, PCE surrogate model for the reservoir system
has been developed for the purpose of uncertainty propa-
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Fig. 5. Response of the actual and PCE models for the first producer’s rate.
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Fig. 6. Response of the actual and PCE models for the second producer’s
rate.

gation and quantification in CLRM. KLE has been used to
reparameterize the input random fields. The numerical results
show that system responses can be approximated to acceptable
accuracy at a moderate computational cost. That, on the
other hand, enables enhancing the propagation accuracy and
reducing the sampling error by increasing the number of model
realizations that can be evaluated using the PCE compared to
MC simulation methods.

REFERENCES

[1] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral
Method Approach. Princeton University Press, 2010.

[2] E. Bradford, and L. Imsland, “Output feedback stochastic nonlinear
model predictive control for batch processes,” Comput. Chem. Eng. 126,
2019.

[3] M. Kleiber and D. H. Tran, The Stochastic Finite Element Method: Basic
Perturbation Technique and Computer Implementation. Wiley, 1993.

[4] F. Yamazaki, M. Shinozuka, and G. Dasgupta, “Neumann expansion for
stochastic finite element analysis,” J ENG MECH-ASCE, 1988, 114.

[5] R. Ghanem, and P. Spanos, Stochastic Finite Element: a Spectral
Approach. Springer, New York, 2003.

[6] D. Xiu and G. Karniadakis, “The Wiener–Askey polynomial chaos for
stochastic differential equations,” SIAM J. Sci. Comput., 2002, 24.

50 100 150 200 250 300 350

-6

-5

-4

-3

-2

10
-4

50 100 150 200 250 300 350

-4

-3

-2

-1
10

-4

Fig. 7. Response of the actual and PCE models for the third producer’s rate.

50 100 150 200 250 300 350
-10

-8

-6

-4
10

-4

50 100 150 200 250 300 350
-10

-9

-8

-7

-6

-5
10

-4

Fig. 8. Response of the actual and PCE models for the fourth producer’s rate.

[7] N. Wiener, The Homogeneous Chaos. American Journal of Mathematics,
60(4), 1938, 897–936.

[8] T. Diaa-Eldeen, C. F. Berg, and M. Hovd, “System-theoretic ensemble
generation in ensemble-based history matching. ECMOR 2022, 2022(1).

[9] Y. M. Marzouk and H. N. Najm, “Dimensionality reduction and poly-
nomial chaos acceleration of Bayesian inference in inverse problems,”
Journal of Computational Physics, v. 228(6), 2009, pp. 1862-1902.

[10] K. -K. K. Kim, D. E. Shen, Z. K. Nagy and R. D. Braatz, “Wiener’s
Polynomial Chaos for the Analysis and Control of Nonlinear Dynamical
Systems with Probabilistic Uncertainties [Historical Perspectives],” in
IEEE Control Systems Magazine, vol. 33, no. 5, pp. 58-67, Oct. 2013.

[11] D. Xiu and J. S. Hesthaven, “High-order collocation methods for
differential equations with random inputs,” SIAM J. Sci. Comput., 2005,
27(3), 1118-1139.

[12] S. A. Smolyak, “Quadrature and interpolation formulas for tensor
products of certain classes of functions,” Soviet Mth. Dokl., 1963, 4:240.

[13] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Ann. Statist. 32(2), 407-499, (April 2004).

[14] D. W. Peaceman, “Interpretation of well-block pressures in numerical
reservoir simulation,” SPE J. 18 (1978): 183–194.

[15] K. Lie, An Introduction to Reservoir Simulation Using MATLAB/GNU
Octave: User Guide for the MATLAB Reservoir Simulation Toolbox
(MRST). Cambridge: Cambridge University Press, 2019.

[16] S. Marelli, and B. Sudret, UQLab: A Framework for Uncertainty
Quantification in Matlab, 2014.


