
Abstract—This paper considers adjusting a fully parametrized
model predictive control (MPC) scheme to approximate the
optimal policy for a system as accurately as possible. By adopting
MPC as a function approximator in reinforcement learning (RL),
the MPC parameters can be adjusted using Q-learning or policy
gradient methods. However, each method has its own specific
shortcomings when used alone. Indeed, Q-learning does not
exploit information about the policy gradient and therefore may
fail to capture the optimal policy, while policy gradient methods
miss any cost function corrections not affecting the policy directly.
The former is a general problem, whereas the latter is an issue
when dealing with economic problems specifically. Moreover, it is
notoriously difficult to perform second-order steps in the context
of policy gradient methods while it is straightforward in the
context of Q-learning. This calls for an organic combination of
these learning algorithms, in order to fully exploit the MPC
parameterization as well as speed up convergence in learning.

Index Terms—Model predictive control, Deterministic policy
gradient method, Q-learning, Reinforcement learning

I. INTRODUCTION

Reinforcement learning (RL) is a powerful tool for tackling
Markov decision processes (MDPs). Rather than relying on
a model of the state transition probabilities, sampled state
transitions and observed costs can be used to improve the
performance of a control policy. RL has drawn increasing
attention due to its accomplishments for robotics and games,
see e.g. [1] and [2]. However, as deep neural networks (DNNs)
are typically used as function approximators to capture the
policy, it is hard to provide guarantees regarding the resulting
closed-loop behavior.

Model predictive control (MPC) has established itself as
the primary control method for the systematic handling of
system constraints. The MPC scheme relies on a sufficiently
accurate model of the system, to optimize the system per-
formance with respect to a given objective while respecting
constraints. Different combinations of MPC and learning have
been proposed, mainly to deal with systems that are difficult
to model. Because these learning-based controllers inherit the
closed-loop behaviors of MPC, these are easier to analyze,
see e.g. [3], [4] and [5]. In [6], the authors suggest using
parameterized model predictive control (MPC) schemes as a
function approximator of the policy and value function in RL.
Parameterizing the MPC problem allows RL to improve the
policy as data is acquired while maintaining an MPC structure,
which offers rich tools to analyze the resulting closed-loop
behavior.

Updating the parameters of MPC schemes to improve the
closed-loop performance has successfully been tested using

Q-learning, see e.g. [7], and deterministic policy gradient al-
gorithms (DPG), see e.g. [8]. While simple to use, Q-learning
methods do not come with formal guarantees regarding the
closed-loop optimality of the resulting policy [9]. Whereas
policy gradient methods come with such (local) guarantees
but do not fully exploit the MPC parameterization in learning
the policy. Exploiting the parametrization fully is crucial
when using RL to verify dissipativity for economic problems.
Dissipativity is verified by the existence of an appropriate
storage function, which is generally difficult to find, but that
can be learned using Q-learning as proposed in [10]. In this
paper, we detail how to combine these RL algorithms for MPC,
such that their respective drawbacks are tackled.

To the best of the authors’ knowledge, Q-learning and policy
gradient methods have to a small extent been combined to
formulate parameter updates. In [11], Q-learning and DPG
parameter updates were combined in the context of RL-based
MPC using a null space projection to alleviate the difficulties
experienced when using the methods independently. An issue
with this combination is the potential inaccuracies in the null
space computation related to small, but non-zero, eigenval-
ues. In [12], the authors propose to combine the parameter
update for a regularized policy gradient technique with that
of Q-learning. The authors provide empirical evidence of the
combined update scheme resulting in improved data efficiency
and stability. The idea of combining parameter updates from
different RL methods is the same as in this paper but the
resulting combined parameter update is different. Also, the
authors in [12] use a DNN as a function approximator,
and propose an augmentation to the standard architecture, to
facilitate learning of both the policy as well as the action-
value function. When using MPC as a function approximator,
both the policy, as well as the action-value function, can be
approximated, by adding just one additional constraint.

Classical Q-learning and policy gradient methods typically
use first-order methods to update the policy and value function
parameters. Second-order methods tend to yield a much faster
convergence. The natural policy gradient method is based
on the Fisher information matrix to provide a policy Hes-
sian approximation, and approximate second-order steps [13].
However, the convergence rate is affected by the quality of that
Hessian approximation. For Q-learning on the other hand, the
Hessian is straightforward to obtain. Therefore, we propose to
use the Q-learning Hessian to improve the second-order step
of policy gradient methods.

In this paper, the first contribution is a combination of
RL methods using a multi-objective approach. Secondly, we
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propose a second-order method based on the multi-objective
approach, to speed up convergence in learning. We demon-
strate the performance of the combination of RL methods in
simulation and compare the convergence rate with the natural
policy gradient and a second-order Q-learning method.

The paper is organized into five sections. Section 2 gives a
brief introduction to MDPs and the use of MPC as a function
approximator in RL, as well as methods that can be used to
learn the parameters. Section 3 presents a multi-objective ap-
proach to combining RL algorithms. Two simulated examples
are included in Section 4, and finally, Section 5 concludes the
paper.

II. BACKGROUND

We consider real systems that can be described as discrete-
time systems with continuous state and action spaces. The
state space satisfies the Markov property, i.e. the statistics
of future states depend only on the current state. We denote
the underlying conditional transition probability density as p,
defined for the state s ∈ S ⊆ Rn and action a ∈ A ⊆ Rm.
The function p gives the probability density of transitioning
to state sk+1 given action ak in state sk i.e.

sk+1 ∼ p(·|sk, ak), (1)

where sk+1 denotes the next state and k denotes the physical
time of the system. We assume that a stage cost, L(sk, ak), is
provided. Our goal is to find the parameters θ of a determinis-
tic policy π(s), that maps from state to action i.e. πθ : S → A,
so as to minimize the sum of discounted cost

J(πθ) = E
s0∼p0,

s∼p(·|s,πθ(s))

[
K∑

k=0

γkL(sk, ak)

∣∣∣∣∣ ak = πθ(sk)

]
,

(2)
where p0 is the distribution of initial states and γ ∈ (0, 1] is a
discount factor used to establish the importance of future costs
over immediate costs. In the following, we will use Eπθ

[·] to
denote the expectation of the Markov chain in closed-loop with
policy πθ. The value function Vπθ

and action-value function
Qπθ

are defined as

Qπθ
(s, a) = L(s, a) + γEs+∼p(·|s,a)

[
Vπθ

(s+)
∣∣ s, a] , (3a)

Vπθ
(s) = Qπθ

(s, πθ(s)) (3b)

where s+ denotes the subsequent state.

A. MPC as a function approximator

As proposed by [6], we will use a parametric MPC scheme
as a function approximator in RL. A finite-horizon MPC
scheme parameterized by θ is formulated as

Vθ(s) = min
x,u,σ

− λθ(s) + γNTθ(xN ) +
N−1∑
i=0

γiℓθ(xi, ui)

(4a)
s.t ∀i ∈ I0:N−1 : xi+1 = fθ(xi, ui), (4b)

hθ(xi, ui) ≤ 0, hN
θ (xN ) ≤ 0, (4c)

ui ∈ A, x0 = s, (4d)

where x = {x0, . . . , xN} and u = {u0, . . . , uN−1}. We note
that we use x and u to distinguish the predicted state and
input sequences from the actual state and input, s and a.
The objective consists of a parameterized stage cost ℓθ(x, u),
a parameterized terminal cost Tθ(x), and a storage function
λθ(s). The terminal cost compensates for the fact that our
MPC scheme considers a finite horizon N , that may be shorter
than the (possibly infinite) horizon K in the performance mea-
sure (2). The storage function is primarily useful in the case
of learning stable policies for economic problems, for which
the economic stage cost in general is not positive definite.
For problems that are dissipative, the storage function allows
us to reformulate the cost, such that nominal stability can be
proved, while the solution to the MPC remains unchanged.
In this case, the learned stage cost ℓθ(x, u) is constrained
to be lower-bounded by K∞. For more details, the reader
is referred to e.g. [14]. The function fθ(x, u) models the
system dynamics. In case of model mismatch, the constraints
hθ(x, u) and hN

θ (x) may be complemented by slack variables,
or implemented as soft constraints in the stage cost. For robust
constraint satisfaction in the face of model error, see [7].

The deterministic policy is given by the first element in the
input sequence which is the solution to (4), i.e.

πθ(s) = u⋆
0(s, θ). (5)

In order to introduce exploration, we add a small disturbance
to the policy, i.e.

φθ(a|s) = πθ(s) + ζa, (6)

with ζa ∼ N (0, σ2
aIm), where σa is the standard deviation and

Im is the identity matrix. To ensure that the actions from (6)
respect the input constraints, we project violating actions back
to the feasible space. As shown in [15], this will only mildly
bias the policy gradient estimation when using DPG methods.
In the following, we will consider two types of methods that
can be used to adjust the parameters θ.

B. Q-learning

Q-learning is an RL method that aims to learn the optimal
action-value function in (3a). An estimate of the Q-function is
obtained by constraining the first action in the input sequence
in the MPC scheme, according to

Qθ(s, a) = min
x,u,σ

(4a), (7a)

s.t (4b)− (4d), (7b)
u0 = a. (7c)

It can be shown that the Q-function estimate from (7), the
value function estimate (4), and the policy (5) satisfies the
Bellman equations [6]. We make the following assumption
for our parameterization.

Assumption 1. The parameterization is rich, i.e. there exists
a parameter vector θ⋆ such that

Qθ⋆(s, a) = Q⋆(s, a). (8)



Remark 1. Assumption 1 is strong, although common in
theoretical RL that makes use of function approximators. Mak-
ing the parameterization rich, entails using universal function
approximators for the cost terms and constraints in the MPC
scheme. If the parameterization is not rich, RL will find the best
parameters among the set of functions provided by the selected
parameterization, see e.g. [16]. The need for using universal
function approximators such as NNs is arguably problem-
dependent, but as shown in [11], simpler parameterizations
such as e.g. a quadratic cost parametrization, may be sufficient
to improve closed-loop performance considerably.

In a Q-learning setting, the policy in (5), is obtained from
the action-value function according to

πθ(s) = argmin
a

Qθ(s, a). (9)

For a rich parameterization, we can characterize the optimal
parameters as those that minimize the following least-squares
problem

θ⋆ = argmin
θ

Eπθ

[
1

2
(Q⋆(s, a)−Qθ(s, a))

2

]
. (10)

As the optimal action-value function is in general unknown,
(10) cannot be solved directly. Next, we will discuss both
a first-order and second-order method for Q-learning. First-
order methods use gradient information, whereas second-order
methods in addition to the gradient also use second-order
information to converge faster to the optimum.

1) First-order Q-learning: A classical approach to Q-
learning is trying to achieve (10) by updating the parameters
using the temporal difference (TD) error defined as δk =
yk −Qθ(sk, ak) where yk = L(sk, ak) + γVθ(sk+1). Here y
can be construed as a fixed target, evaluated using a sampled
state transition and the cost. The parameter updates are driven
by minimizing the TD error, i.e.

min
θ

Eπθ

[
1

2
(y −Qθ(s, a))

2

]
, (11)

where y is considered independent of θ. To solve (11) in
practice, we need to collect data also when deviating from
policy πθ, i.e. explore, e.g. using the policy in (6). For the
minimization problem in (11), we define the following first-
order (semi)-gradient step [9]

∆θQ = αqδk∇θQθ(sk, ak), (12)

where ∆θQ = θk+1 − θk, ∇θQθ(sk, ak)|θ=θk and αq > 0 is
a scalar denoting the step size. The gradient ∇θQθ(sk, ak)
is obtained from sensitivity analysis. For more details on
sensitivity analysis of MPC for Q-learning, the reader is
referred to [6].

2) Second-order Q-learning: Rather than considering the
TD error at each step as in (12), we can consider the sum
of TD errors over a batch of state transitions, known as
a least-squares TD (LSTD) algorithm [17]. We formulate a
second-order LSTD algorithm for Q-learning (LSTDQ), by

considering a root-finding problem, using the gradient in (12),
i.e.

Eπθ
[δ∇θQθ(s, a)] = 0. (13)

For the root-finding problem in (13), we adopt the following
Newton step i.e.

∆θHQ = −αdA
−1b, (14)

using ∆θ and ∆θH to distinguish the first-order and second-
order steps, respectively, and αd > 0 to denote the learning
rate. The parameter update is given by

A = Eπθ

[
∇θδ∇θQθ(s, a)

⊤ + δ∇2
θQθ(s, a)

]
, (15a)

b = Eπθ

[
δ∇θQθ(s, a)

]
, (15b)

where
∇θδ = γ∇θVθ(s

+)−∇θQθ(s, a), (16)

with ∇θQθ(s, a) and ∇2
θQθ(s, a) obtained from sensitivity

analysis of the MPC in (7). We note that for a well-posed
update in (14), A is negative definite, and hence generalizes
to the first-order step in (12) by replacing A with negative
identity. The expectations in (15a) are evaluated in an episodic
manner, by considering m episodes of length K, i.e.

A =
1

m

m∑
j=1

K∑
k=1

[
∇θδk∇θQθ(sk,j , ak,j)

⊤

+δk∇2
θQθ(sk,j , ak,j)

]
, (17)

b =
1

m

m∑
j=1

K∑
k=1

δk,j∇θQθ(sk,j , ak,j). (18)

For Q-learning techniques, it should be mentioned that there
is no guarantee to find the optimal policy. This is because the
parameter update of Q-learning methods is not designed to
optimize closed-loop performance directly. Instead, Q-learning
aims to fit Qθ as closely as possible to Q⋆, and assumes
that Qθ ≈ Q⋆ results in πθ ≈ π⋆. However, there are no
guarantees that the former approximation implies the latter,
and for certain shapes of Q-functions, it can be challenging to
determine the optimal policy, even with an almost correct Q-
function estimate. In this scenario, policy-based methods such
as DPG methods tend to be more suited.

C. Deterministic policy gradient

The lack of convergence guarantees for Q-learning methods
has motivated the need for alternatives such as policy gradient
methods with more formal (local) convergence guarantees
[18]. Using policy gradient methods, the parameters are up-
dated to directly improve the performance of the policy. In the
following, we focus on methods for deterministic policies.

For a rich parameterization, the optimal parameters θ⋆ are
characterized by

θ⋆ = argmin
θ

J(πθ). (19)



1) First-order DPG: Policy gradient methods typically
solve (19) using gradient descent, which results in the fol-
lowing first-order parameter update

∆θJ = −αp∇θJ(πθ), (20)

where αp > 0 is the learning rate and ∇θJ(πθ)|θ=θk . For a
DPG method, we use the following expression for the policy
gradient [19]

∇θJ(πθ) = Eπθ

[
∇θπθ(s)∇aQπθ

(s, a)|a=πθ(s)

]
, (21)

where Qπθ
(s, a) is the true action-value function for the policy

πθ as defined in (3a). Instead of using the true action-value
function, which is generally not known, we will replace it with
a function approximator Qw(s, a), with parameter vector w.
In general, assuming that Qπθ

(s, a) ≈ Qw(s, a) will introduce
a bias in the policy gradient estimate. However, under certain
conditions, as outlined in [19], this approximation can be made
without affecting the policy gradient, and in this case, we
denote the function approximator as compatible. The function
approximator of Qπθ

can e.g. take the form

Qw(s, a) = (a− πθ(s))
⊤∇θπθ(s)

⊤︸ ︷︷ ︸
Ψ(s,a)⊤

w + Vv(s), (22)

where Ψ(s, a) is a state-action feature vector, using the fol-
lowing value function approximation

Vv(s) = Φ(s)⊤v, (23)

where Φ(s) is a state feature vector to be selected and v is a
parameter vector. The gradient of the Q-function can then be
approximated as

∇aQπθ
(s, a) ≈ ∇aQw(s, a) = ∇θπθ(s)

⊤w. (24)

The parameters v and w are then found using an LSTD
approach [20], i.e.

v =
1

m

m∑
j=0

{[ K∑
k=0

[
Φ(sk,j)(Φsk,j − γΦ(sk+1,j))

⊤]]−1

K∑
k=1

[
Φ(sk,j)L(sk,j , ak,j)

]}
,

(25)

w =
1

m

m∑
j=0

{[ K∑
k=0

[
Ψ(sk,j , ak,j)Ψ(sk,j , ak,j)

⊤]]−1

K∑
k=1

[
(L(sk,j , ak,j) + γVv(sk+1,j)− Vv(sk,j))Ψ(sk,j , ak,j)

]}
.

(26)

2) Second-order DPG: For the policy gradient objective in
(19), we can also formulate a second-order Newton step i.e.

∆θHJ = −αr∇2
θJ(πθ)

−1∇θJ(πθ), (27)

with learning rate αr > 0. An analytic expression of the
deterministic policy Hessian is derived in [21], revealing that it

is difficult to estimate from data. The Hessian can be replaced
by the Fisher information matrix, resulting in a parameter
update known as the natural policy gradient method [13]. The
Fisher information matrix for deterministic policies is defined
as

F (θ) = Eπθ

[
∇θπθ ∇θπ

⊤
θ

]
, (28)

and we note that this is only an approximation of the Hessian.
Because of the Hessian approximation, the natural policy
gradient method still has a linear rate of convergence, despite
being a second-order method [22]. This is the same rate of
convergence as the first-order DPG method.

III. COMBINING RL METHODS

In the following, we propose to combine Q-learning and
DPG methods, to learn a parameterization that optimizes both
the Q-learning objective (10) and policy gradient objective
(19) simultaneously. We propose to do so using multi-objective
optimization. Multi-objective optimization is applied in many
fields where optimal solutions are needed in the presence
of trade-offs between two or more conflicting objectives. As
opposed to most multi-objective problems, the objective of Q-
learning and policy gradient methods are not necessarily in
conflict. However, as we can not minimize the true action-
value error directly, and may suffer from limitations related
to the richness of our function approximator, the parameter
update resulting from each RL method may be in conflict.
This suggests that an alternative to the naive sum of update
laws is needed.

A. Multi-objective RL

With the purpose of combining Q-learning and DPG meth-
ods, we define the following multi-objective problem

min
θ

ω · Eπθ

[
1

2
(Q⋆(s, a)−Qθ(s, a))

2

]
+ J(πθ), (29)

where ω is a scalar that weighs the importance of the Q-
learning objective relative to the policy gradient objective. In
(29) we propose a weighted sum method in order to convert
the multi-objective problem to a single-objective problem. This
method is appealing because it is simple, with the disadvantage
that in practice we introduce an additional hyperparameter
that must be tuned. However, the richer the parameterization,
the less the tuning of ω will influence the solution to (29).
Alternative methods for solving the multi-objective problem
are discussed in e.g. [23].

Theorem 1. Under Assumption 1, and a stability condition for
the system under the optimal policy, there exists a parameter
vector θ⋆, such that the following holds for all s ∈ S and
a ∈ A:

1) Vθ⋆(s) = V ⋆(s)
2) πθ⋆(s) = π⋆(s)
3) Qθ⋆(s, a) = Q⋆(s, a)

Proof. See proof of Theorem 1 in [6].



Theorem 1 implies that for a given MDP, an MPC scheme
with a possibly inaccurate model can deliver the optimal value
function, action-value function, and policy for an appropriate
parameterization θ. Building on Theorem 1, we state the
following Corollary, which is an important statement for the
multi-objective RL approach.

Corollary 1. Under Assumption 1 there is no trade-off be-
tween the Q-learning and policy gradient objective in (29).
The minimum of the two objectives will coincide, independent
of the scalar value ω.

Proof. For a rich parameterization, we have for the optimal
parameters θ⋆ that Qθ⋆(s, a) = Q⋆(s, a), hence minimizing
the Q-learning objective. Moreover, the optimal parameters θ⋆

also minimize the performance J(πθ) as stated in (19).

As pointed out earlier, we can not directly address the Q-
learning objective in (29). We therefore adopt the TD approach
to Q-learning, as outlined in Section II-B. The multi-objective
problem is then

min
θ

ω · Eπθ

[
1

2
(y −Qθ(s, a))

2

]
+ J(πθ). (30)

The parameter updates as defined in Section II-B and II-C, can
then be used to define a Newton step towards the solution of
(30). The resulting parameter update is given as the solution
to

min
∆θH′

m

1

2
∆θH

′⊤
m (−ωA+ F (θ) + τI)∆θH

′

m

+αm(∇θJ(πθ)− ωb)⊤∆θH
′

m , (31)

where A and b are defined in (17) and (18) respectively. The
Newton step is regularized using a scalar τ > 0 and the
identity matrix I .

Remark 2. As we replace the true action-value error with
the TD error in (29), Corollary 1 no longer holds, even
under Assumption 1. Generally, we cannot expect to achieve
an average TD error of zero. This is because the parameter
update in (14) involves taking the product of two expectations
including the next state s+. To obtain an unbiased sample
of this product, two independent samples of s+ are needed.
During normal interaction with a system, this is not possible.
However, we can expect to reduce the average TD errors
toward the true minimum.

The Fisher information matrix will be rank deficient in case
we include a storage function in the cost (4). Because the Q-
learning Hessian is not the Hessian of the true Q-learning
objective in (10), the matrix A can be ill-conditioned. The
regularization term in (31) is therefore added to prevent the
Hessian approximation from becoming singular. Regulariza-
tion may also be added to ensure positive definiteness.

Remark 3. The Fisher information matrix in (28) is positive
semi-definite by construction. A well-posed LSTDQ step is
characterized by a negative definite Hessian. We therefore

modify the signs of the LSTDQ update, such that the multi-
objective Hessian should be positive definite. Potentially in-
definite Hessian approximations can be tackled using regu-
larization, as proposed here, or trust-region methods, see e.g.
[24].

We note that the computation of the Q-learning Hessian is
based on a sensitivity analysis of (7), which is not computa-
tionally heavy, and much cheaper than solving the optimization
problem (7) itself. The Fisher information matrix (28) often
used as an approximation of the policy Hessian is rather crude,
and we therefore propose the alternative second-order update,
where the policy Hessian approximation is omitted, i.e.

min
∆θH

m

1

2
∆θHm

⊤
(−ωA+ τI)∆θHm + αm(∇θJ(πθ)− ωb)⊤∆θHm.

(32)
We can further simplify the step in (32), by replacing the multi-
objective Hessian approximation with the identity matrix, and
obtain the multi-objective first-order step as the solution to the
following

min
∆θm

1

2
∆θ⊤m∆θm + αv(∇θJ(πθ)− ωb)⊤∆θm. (33)

IV. SIMULATIONS

In this section, we consider two simulation examples.
The first simulation example is included as a motivating
example and is a seemingly simple case of the economic
linear quadratic regulator (ELQR), i.e. an LQR with weighting
matrices that are not positive definite. The example becomes
challenging due to the shape of the action-value function,
which calls for a combination of RL methods in order to
capture both the correct value function and policy. The second
example is a linear MPC (LMPC) that we use to benchmark
the convergence of the different parameter update regimes.

A. Economic LQR

We consider an ELQR for a system with dynamics

sk+1 = 0.1sk + ak, (34)

and stage cost
L(s, a) = −s2 + 10a2. (35)

We introduce the following artificial constraints, to work with
compact and bounded constraint sets and thereby comply with
dissipativity theory for economic problems [14]

−100 ≤ a ≤ 100, −100 ≤ s ≤ 100. (36)

For the set of states that never activate the constraints, we can
solve the Riccati equation for the discrete system, and obtain
the optimal value function and policy. For the dynamics (34)
and stage cost (35) in the unconstrained case, the optimal value
function and policy is

V ⋆(s) = −1.0113s2, π⋆(s) = 0.0113s. (37)
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Fig. 1: Economic LQR: Value function estimate (top) and
policy (bottom).

We formulate the following finite-horizon linear MPC scheme

min
x,u

− λθ(s) + Tθ(xN ) +
N−1∑
i=0

ℓθ(xi, ui) (38a)

s.t ∀i ∈ I0:N−1 : xi+1 = 0.1xi + ui, (38b)
− 100 ≤ xi ≤ 100, (38c)
− 100 ≤ ui ≤ 100, x0 = s. (38d)

We let λθ, Tθ and ℓθ be fully parameterized quadratic func-
tions. The parameter vector θ is then a vector containing
all elements in λθ, Tθ, ℓθ. All matrices were initialized with
the identity matrix. We learned in an episodic manner, using
trajectories of length K = 10 for initial condition s0 = 1.0
with learning rate α = 0.1 for all update schemes. For
exploration, we use the policy as defined in (6), with Gaussian
noise described by σp = 10−3. We tested learning using
standard first-order Q-learning (12), denoted ∆θQ, DPG (20)
denoted ∆θJ as well as first-order multi-objective combination
(33) using ω = 1, denoted ∆θm. For simplicity, we let
the feature vector in (23) be polynomials up to 2nd degree,
for both simulation examples. As the optimal Q-function for
this system is known, and this serves only as a motivational
example, we use the analytical gradient in the formulation
in (21). We saw convergence for all methods after 20 batches
consisting of m = 1 episodes. In Figure 1 we have plotted the
value function estimate and the policy using the final values of
the parameters. We see that the pure DPG method fails to learn
the value function, but estimates the true policy well. The pure
Q-learning step, on the other hand, learns the value function
well, but not the policy. The combination of methods using the
first-order multi-objective update, however, manages to learn
both the true value function and policy after 20 batches.

For economic problems, we can use Q-learning as a tool
to learn the storage function, needed to verify dissipativity
as detailed in [10]. Verification is done by checking that the

rotated cost, denoted by ℓ̄θ(s, a) and defined by the learned
storage function, λθ, according to

ℓ̄θ(s, a) = L(s, a)− λθ(s
+) + λθ(s), (39)

satisfies the following condition i.e.

ℓ̄θ(s, a) ≥ ρ(∥s∥), (40)

where ρ ∈ K∞. In Figure 2 we see that using DPG alone, the
resulting rotated cost is not lower-bounded in s, whereas for
the multi-objective combination, we obtain a rotated cost that
clearly satisfies this lower bound. In summary, we can verify
that this problem is dissipative, and also capture the optimal
policy, by using a combination of RL methods.

B. Linear MPC

We consider a discrete linear system of the form

sk+1 = Ask +Bak + n, (41)

where n describes Gaussian process noise i.e. n ∼ N (0, σ2
n

In), with standard deviation σn = 10−3 and where In is the
identity matrix. The system matrices are given as

A = κ

cosβ sinβ

sinβ cosβ

 , B =

1.1 0

0 0.9

 , (42)

where we use κ = 0.95, and β = 22 [deg]. The baseline stage
cost is selected as

L(s, a) =
1

20
∥s− sref∥2 +

1

2
∥a− aref∥2, (43)

where sref = [0.1, 0.1]⊤, and aref is found according to (41).
The parameterized MPC scheme reads as

min
x,u

V0 + γN∥xN − xref∥2P +
N−1∑
i=0

γif⊤

xi

ui


+

N−1∑
i=0

γi

∥∥∥∥
xi − xref

ui − uref

∥∥∥∥2 (44a)

s.t ∀i ∈ I0:N−1 : xi+1 =

θ1 θ2

θ3 θ4

xi +

θ5 0

0 θ6

ui,

(44b)−0.05

−0.05

 ≤ ui ≤

0.05
0.05

 , x0 = s, (44c)

using a prediction horizon of N = 10 and discount factor
γ = 0.99. The stage cost consists of a quadratic function of the
state and input and a linear term that can be used to shift the
minimum of the stage cost. We let xref = sref, but use the pre-
diction model to obtain the input reference, i.e. uref ̸= aref. The
linear term is defined by a vector f⊤ = [f1, f2, f3, f4]. The
parameter vector is θ = {V0, θ1, θ2, θ3, θ4, θ5, f1, f2, f3, f4}.
The prediction model is initialized with parameter values
θ1 = θ3 = cos β̂ and θ2 = θ4 = sin β̂, where β̂ = 30 [deg],
and θ5 = 1.3, θ6 = 0.7. We let f1 = f2 = f3 = f4 = 0.3
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Fig. 2: Economic LQR: The rotated cost (39) as defined by the learned storage function using multi-objective RL (left) and
using DPG (right).

TABLE I: LMPC: Update schemes tested in simulation.

Label Name (eq. reference) Learning rate Ltot

∆θQ Q-learning (12) αq = 0.01 19.69

∆θHQ LSTDQ (14) αd = 0.5 18.63

∆θHm Second-order multi-objective (32) αm = 0.5 4.63

∆θH
′

m Second-order multi-objective (31) αm = 0.5 6.64

∆θHJ Natural policy gradient (27) αr = 0.5 5.12

∆θm First-order multi-objective (33) αv = 0.5 12.46

∆θJ DPG (20) αp = 0.5 12.37

and V0 = 0. We use a quadratic terminal cost, for which P is
found solving the discrete Riccati equation for the prediction
model, using the initial values of the parameters.

We learned in an episodic manner, simulating the system
from initial condition s0 = [0, 0]⊤, for a total of 25 batches,
consisting of m = 10 episodes of length K = 50. To explore,
the policy was perturbed as defined in (6), with σa = 5 ·10−3.
For this example, we tested both first- and second-order multi-
objective RL as described in Section III-A. We compared their
performance with both the second-order and first-order policy
gradient methods, as well as classical Q-learning and LSTDQ.
For the Q-learning Hessian and Fisher information matrix, we
regularized using τ = 10−1 and τ = 10−2 respectively, at all
time steps. The learning rates were selected by testing each
method for an interval of learning rates and selecting the best-
performing one. The sum of costs was evaluated for the best-
performing case, reported in Table I, evaluated according to

Ltot =

m∑
j=1

K∑
k=1

γkL(sk,j , ak,j). (45)

All plotting labels are also listed and explained in Table I.
In Figure 3, we see the closed-loop performance during

learning for each of the parameter update schemes. Because
the RL cost in (43) is rather flat in s-direction, this is
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Fig. 3: LMPC: Mean closed-loop performance over learning
batches.
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typically a challenge for Q-learning alone, and hence we
see both classical TD-learning and LSTD-learning achiev-
ing the poorest performance. First-order DPG and the first-
order multi-objective approach achieve more or less the same
closed-loop performance. Moreover, we see that the closed-
loop performance obtained using the natural policy gradient
method converges faster than both first-order methods. The
second-order multi-objective approach performs better without
the Fisher information matrix in the Hessian, as given in
(32), and speeds up convergence further. The aforementioned
observations align also with the calculated sum of discounted
costs during learning for the different update schemes as listed
in Table I. For the selected learning rates, we obtained the best
closed-loop performance for the multi-objective approach by
using ω = 0.1 in (32), (31) and (33).

In Figure 4 we have plotted the states and inputs resulting
from the learned parameters in exploitation, i.e. without ex-
ploration noise. We note that the upper bounds on the inputs
become active constraints as we approach the optimal policy,
which is the case for the second-order multi-objective and
natural policy gradient method.

For the second-order multi-objective approach, we saw that
the Q-learning gradient part caused learning to converge to a
closed-loop behavior with a small steady-state error. This is
likely caused by the same effect as addressed in Remark 2.
We therefore removed the first-order Q-learning contribution
to produce the results shown in Figures 3 and 4, at the cost
of some reduction in convergence rate. Ideally, ω could be
gradually reduced, to gain the full increase in convergence
rate, while still converging towards the optimum.

V. CONCLUSION

In this paper, we proposed a multi-objective approach for
combining RL methods, in order to fully exploit the param-
eterization provided by the MPC scheme and increase the
convergence rate of learning. The first simulation example
illustrates that we need a combination of Q-learning and
policy gradient methods for certain economic policies to verify
dissipativity and learn both the optimal value function and
policy. The second simulation example demonstrates that the
proposed multi-objective second-order step, combining Q-
learning and policy gradient methods, speeds up convergence
in learning compared to both a second-order policy gradient
method and a second-order Q-learning method.
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