
R E S E A R CH AR T I C L E

Building a metric of color reproduction difference
by combining multiple observers in a modular
online experiment

Gregory High | Peter Nussbaum | Phil Green

Norwegian Colour and Visual Computing
Laboratory, Norwegian University of
Science and Technology, Gjøvik, Norway

Correspondence
Gregory High, Norwegian Colour and
Visual Computing Laboratory, Norwegian
University of Science and Technology,
Postboks 191, Gjøvik NO-2802, Norway.
Email: gregory.high@ntnu.no

Funding information
Norges Teknisk-Naturvitenskapelige
Universitet

Abstract

A web-hosted online experiment was previously developed to find the visual

difference between four reproduction gamuts using direct magnitude estima-

tion (Proc. IS&T 29th Color and Imaging Conf, 2021:317–322). In order to

increase the size of the data set, but without overburdening observers, a

modular approach was adopted. The original methodology was therefore

extended across 10 linked sub-experiments to make comparisons between

some 36 gamuts, which were designed to exhibit a variety of different gamut

shapes, contrast ratios, and substrate colors within the constraints of a desk-

top display. In addition to each set of test images, a common normalization

set was included in all sub-experiments in order to adjust each observer's

choice of modulus to a global average observer, and thus combine the results

into a larger data set. Finally, an interval scale was inferred from the nor-

malized magnitude data using a categorical judgment approach to calculate

scale values. The fitted data revealed a power function close to a square-root

between the interval and magnitude scales.

KEYWORD S

cross media color reproduction, gamut mapping, online experiment, soft proofing, visual
difference

1 | INTRODUCTION

There is current interest and activity on the subject of
“consistent color appearance.” This has resulted in a CIE
Technical Committee on the subject, with coordinated
work between several research groups.1,2 Visual consis-
tency across a set of reproductions is desirable, but an
exact appearance or colorimetric match may not be possi-
ble due to differences in substrates, colorants, and view-
ing conditions. In particular, output media gamuts and

the gamut mapping strategies employed govern the color
differences between reproductions.

The concept of consistent color appearance has been
demonstrated to be valid,3 with some commercial gamut
mapping products shown to give more consistent sets of
reproductions when producing outputs across a wide
range of device gamuts.

Assessing visual similarity is problematic, since it is a
multi-dimensional problem. However, the overall magni-
tude of visual difference between pairs of reproductions
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is more practical to assess, and this is the motivation for
the present work.

1.1 | Motivation

The visual difference between color reproductions was
previously investigated by High et al.4 Whereas much
work exists in the field of image difference and image
quality, our previous study was motivated by differences
in color gamut volumes and the visual differences between
the resulting color reproductions.

The work started out as a lab-based experiment under
controlled viewing conditions. Reproduction images were
created by rendering reference images to a small number
of output print gamuts, including their various media
white points. The rendered images were prepared as sim-
ulated prints on a color managed display. Observers were
then asked to rate the visual difference between pairs of
reproductions using a method of direct magnitude
estimation.

In response to the global pandemic an online version
of the experiment was also developed. Following a similar
format, the color reproductions were prepared as soft-
proof images ready for use on an sRGB display. Online
observers then gave a numerical response to the visual dif-
ference between reproductions using a slider in a web-
based user interface (UI) (see Figure 1) for a visualization.

Results from the lab-based and online experiments,
which may be thought of as “controlled” and
“uncontrolled,” were in agreement following a “group
means scale normalization,” as outlined by Engel-
drum.5, p.148 For online participants, the normalization

also incorporated differences in their viewing conditions
and display specifications.

In both modes, observers were able to judge the
gamut mapped images in terms of “overall difference”
(rather than looking for small structural differences).
Analysis of the pilot confirmed a correlation between the
ratios of the gamut volumes and the resulting visual dif-
ferences between reproductions (where the larger differ-
ences in gamut volumes resulted in greater visual
differences).

It may therefore be possible to predict likely visual
difference based upon knowledge of two output gamuts.
However, for this to be modeled adequately it will first be
necessary to build a data set consisting of comparisons
between many gamuts which are different in terms of
size, shape and media white points (or paper colors in
the case of prints).

1.2 | Aims and objectives

In our pilot, just four gamuts led to six combinations of
gamut pairings, which were then multiplied by the num-
ber of test images. The challenge of building a larger
dataset lies in the potential number of comparisons to be
made, and the time required by observers to make them.
However, the online experiment, combined with the
group means scale normalization, offers the potential to
combine the efforts of many observers across different
blocks, in other words to create a modular online
experiment.

Our aim is therefore to generate a comprehensive set
of visual differences, which will result from the various
gamut volumes used to make the reproduction images.
Using the method described, these will fall along a com-
mon continuum, and are expected to form a ratio-like
magnitude scale. In practice, the resulting magnitude
scale is unlikely to be linear to an equal interval scale,
with the relationship between them expected to be close
to a power function.5, p.151 For use in further work, it will
be beneficial to convert the magnitude data to an interval
scale, prior to modeling visual difference from gamut vol-
ume metrics or comparing it to existing image difference
metrics.

1.3 | Preparation of test gamuts, ICC
profiles and soft-proofing images

The content for this web-based experiment naturally has
to work within the color gamut constraints of a standard
RGB display. This means that the output gamuts used
here and test images rendered to them must fall within

FIGURE 1 Estimating visual difference between

reproductions – a visualization of the online experiment's user

interface on different devices.
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the boundary of the sRGB gamut.6 A brief description of
test gamuts and the image preparation methods is given
below in Section 4.2. However, for a more detailed
account of the preparation and rationale, we encourage
readers to view the online Supplementary material. In
particular, the generation of test gamuts, including choice
of gamut shapes and simulated paper colors, steps taken
to create ICC color profiles, gamut mapping strategy and
the preparation of test images, is described more fully.

2 | BACKGROUND

2.1 | Color differences in images

Color differences between reproduction images, or
between a reference and reproduction, can result from
the gamut mapping operations that are needed when two
imaging devices produce a different range of colors. The
primary constraint on color reproduction is the available
color gamut of each reproduction medium (where media
white, maximum available contrast, and maximum
chroma at each hue angle are some of the main limita-
tions). Given those limitations, the subjective accuracy or
pleasantness of the reproductions can be maximized
using an appropriate gamut mapping strategy, though
differences in their appearance will still remain apparent.

Previous work on color difference in images includes
a CIE technical report,7 which noted that whilst individ-
ual color differences can be measured and calculated, the
distribution of those differences between images is rarely
normal. Usually it is high chroma pixels which suffer the
greatest compression when being mapped to a smaller
gamut, with Uroz et al.8 finding that observers often
identified these worst-case color differences first, particu-
larly when they occurred in recognizable features within
the image.

Systematic differences (in lightness, chroma or hue)
were also found to be more perceptible than random
color changes. This was consistent with Hong and Luo,9

who illustrated the effect using reproductions where a
modification had been applied either globally or at selec-
tive hue angles. Though the two examples had similar
mean color differences from the reference image, the
selectively edited reproduction was perceived as having
far greater visual difference. These apparent chroma dif-
ferences at selective hue angles were also analogous to
the visual differences seen between reproductions when
their output gamuts differ in shape as well as volume.

Color image difference is also an important deter-
miner of image quality. Typically, objective image quality
metrics are developed to correlate with subjective data
which compare multiple different reproductions against

a reference image (a full-reference approach). Early
image quality metrics based on structural similarity, such
as SSIM,10 did not do particularly well at predicting dif-
ference between gamut mapped images (since the map-
ping is typically a monotonic compression in a uniform
color space, and does not result in strong structural dif-
ferences within the image). The SSIM approach has sub-
sequently been extended to include color difference
terms, with the aim of better predicting differences
between pixelwise gamut mapped images11 or to optimize
image-specific spatial gamut mapping operations.12

However, the reproduction-to-reference approach
does not consider the likely scenario of two reproductions
being viewed side-by-side, each of which could be judged
as having an equal magnitude of difference from the
source image, but in different aspects. The resulting dif-
ference between the two reproductions is therefore unre-
lated to the reference image, and is not well predicted by
the similarity metric.

Furthermore, the reproductions can appear on differ-
ent media with various white points (or paper colors in
the case of prints). In side-by-side viewing, the visual dif-
ference between reproductions is also a function of the
combination of media as well as differences between out-
put devices. It is therefore helpful to think of the result-
ing visual difference in terms of “color reproduction
difference” rather than image difference.

For a typical gamut mapping strategy (where the
same strategy may be used for multiple images), visual
difference between reproductions is primarily a function
of the gamut volumes' constraints, which in turn may be
more apparent in some images than others. As a metric,
color reproduction difference (the magnitude of overall
visual difference between gamut mapped images) offers
an alternative approach to quantifying the color image
differences that regularly occur in color imaging and
graphic arts applications.

2.2 | Magnitude estimation and observer
normalization

Direct magnitude estimation has long been used to estab-
lish scales based on physical stimulus intensities and
their perceived magnitude, with the relationship gener-
ally following a power function.13 When asking observers
to give a numerical response, the researcher typically
allows each participant to use their own range of magni-
tudes. This might be relative to a reference stimulus, to
which the participant will give an “anchor” value, result-
ing in magnitude data along a ratio scale.

A practical alternative is to ask participants to use a
generic scale, such a 0 to 100 (see Rowe in Pointer

HIGH ET AL. 3
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et al.).14 Depending on the nature of the stimulus, this
bounded scale has the disadvantage that observers might
commit to using the maximum response in a way that
leads to clipping or compression of response values.
Other researchers have therefore opted for a reference
stimulus with an observer-assigned value, and then using
an open-ended scale.15,16 It is also possible to use magni-
tude estimation without a reference (“absolute
scaling”),5, p.140 with each observer forming their own
internal reference, or modulus.

Each individual observer's scaling response will
therefore differ depending on their modulus and work-
ing range. The resulting data may be normalized by
adjusting each observer's choice of modulus using a
“group means scale normalization” (GMSN) procedure,
as outlined by Engeldrum,5, p.148 (A similar method was
previously used by Luo et al.,16, p.172 to normalize mag-
nitude data relating to the perception of colorfulness).
The normalization is performed in the log domain
(which assumes that the observers' sense of magnitude
follows a power function). The method consists of calcu-
lating the mean averages for the log scores of each stim-
ulus. The log responses of each observer are then
normalized to the mean log scores by applying an offset
and slope derived using a least squares fit. Post-
normalization, the resulting mean averages of the
stimuli's log scores are then exponentiated to give the nor-
malized scores (essentially a geometric mean approach).

In our pilot experiment,4 observers estimated the
visual difference between pairs on a nominal scale of 0 to
100 using an on-screen slider, with the resulting scale
value updated in real time. It was felt that this was an
intuitive approach, avoided lengthy explanation and
training, and helped keep visual attention on the display.

A reference difference was not provided during the
experiment, as this was deemed too prescriptive. How-
ever, prior to the experiment, training pages (containing
thumbnail scatter proofs arranged on a gray background)
were shown to give an overview of likely reproduction
differences. A live training session then followed, which
deliberately included pairs of reproductions with small,
medium and large differences. Within the experiment,
each observer formed their own modulus. Participants'
scaling responses also differed depending on their use of
an internal working range.

2.3 | Specific considerations for online
and uncontrolled experiments

Moving a visual study outside the controlled conditions
of the lab poses some additional problems. Whilst

participation may be increased by attracting a wider
range of observers, a primary concern is the contribution
of different and unknown viewing conditions and display
equipment, as well as the indirect relationship with the
observers, which might increase the overall variability in
the results.

2.3.1 | Controlled versus uncontrolled visual
experiments

In a print-based experiment Zuffi et al.17 ran a paired
comparison study in the lab and elsewhere using a porta-
ble ring-bound book of reproductions. They broadly con-
cluded that data collected in uncontrolled lighting
conditions could substitute lab-based data. However, it
was noted that there was a degree of image dependence,
with some print reproductions proving problematic
under artificial light sources.

By the late 2000s improvements in display technology
combined with near-universal web-access had facilitated
some high quality online visual studies. In 2009 Sprow
et al.18 produced an HTML-based image quality experi-
ment together with a hosted database of test images. Pairs
of reproduction images alongside an sRGB reference
were presented on-screen at a fixed pixel resolution.
Observers then selected the best reproduction with a
mouse click. The lab-based experiment was performed on
calibrated sRGB reference displays in standard viewing
conditions according to ISO 3664.19 By contrast,
observers in uncontrolled viewing conditions used their
own computer equipment, and researchers had little con-
trol over the display settings used. Much like the print-
based study, the display-based experiments revealed good
agreement between observer judgments on the web and
in the lab.

As noted elsewhere by Zuffi et al.,20 Katoh's 1998
conclusion that observers tend to be more adapted to
their CRT displays and less to the ambient light in the
room21 suggests that viewing environment plays less
of a role in online tasks compared to similar work
using hard copy reproductions. In the intervening
years displays have become far brighter, with many
now automatically adjusting their luminance to com-
pensate for ambient conditions. It follows that
observers' adaptation to their displays can remain
strong across a range of viewing conditions, and not
just in a dimly lit environment. A similar conclusion is
drawn by Sprow et al.,18 noting that for side-by-side
image comparison the visual differences remain rela-
tive across a wide range of display types, settings and
viewing conditions.

4 HIGH ET AL.
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2.3.2 | Increased observer variability in
uncontrolled studies

The increase in observer variability for online
studies means that a greater number of participants may
be needed to return data with similar uncertainty to a
lab-based experiment. Zuffi et al.20 found in their print-
based study that the ratio of uncontrolled to controlled
sample sizes needed to provide equivalent variance ran-
ged from 1.2 to 3.9, but that this ratio was very image
dependent. In our earlier pilot4 we found that in a study
using both lab-based displays and online displays an
average ratio of approximately 1.4 uncontrolled to con-
trolled observers resulted in the same uncertainty. That
would equate to a target of 21 uncontrolled observers
when compared to the classic minimum of 15 controlled
observers in Rec. ITU-R BT.500-1322 (though more
recently this ITU requirement has been increased to 24).

2.3.3 | Commercial observer recruitment
solutions and GDPR requirements

The move to online experiments has prompted the devel-
opment of commercial and academic solutions offering a
range of services which fall into three broad categories:
experiment builders (design and programming software);
observer recruitment and management platforms; and
online hosting platforms.23 Any combination of these
may be used, depending on the requirements and existing
in-house resources of the researchers. Clearly, one of the
advantages of an online study is that it can reach a global
audience, with many observers completing tasks in paral-
lel, and at times convenient to the participants. A corol-
lary to this is that the management of observers becomes
very complex. When personal data is captured, the Gen-
eral Data Protection Regulations (GDPR)24 add an extra
burden to researchers in terms of data security, informed
consent and the ability of individual participants to opt
out at a later date. This requires extra data management
in order to associate experimental results with specific
observers, and for that data to be held securely. Some
countries and institutions25 have a further requirement
to register studies with a central agency when they cap-
ture any personal data.

It is challenging to comply fully with these require-
ments in an online study. In a lab-based experiment the
researcher will typically present each observer with both
written and verbal information about the study, before
obtaining a signature on a consent form. However, for
casual online observers this administrative overhead can
become a barrier to participation, or take a disproportion-
ate amount of time compared to the experiment itself.

Anonymizing the data at the point of capture may be a
practical workaround.

Online visual experiments, such as paired compari-
sons, tend to be of a “short stimuli design,”26, p.20 with
observers cycling through a large number of stimuli. This
is usually self-paced, but a rule-of-thumb is that the dura-
tion should be about 20–30 min in total. In larger studies
this limitation either requires observers to return for mul-
tiple sessions, or else calls for a far greater total number
of participants.

Therefore, to fulfill an extended online study it is
important to remove the barriers to observer recruitment,
participation, completion, and retention. It may be that
commercial recruitment platforms such as MTurk27 and
Prolific28 will be required to manage a large number of
participants whilst remaining GDPR compliant.23

The unsupervised nature of online experiments
changes the relationship with the observer, but the use of
paid participants can also change the dynamic. There is
often a suspicion that paid workers will produce lower
quality results compared to volunteer observers (who are
typically students with an interest in the subject). How-
ever, for comparable unsupervised online experiments
(where paid and volunteer participants received the same
instructions, and also faced similar out-of-lab distrac-
tions) studies have shown that experienced MTurkers
demonstrate greater attentiveness than their unpaid
counterparts.29 What has changed over more recent years
is a broadening of the pool of available online workers,
whilst for text-based surveys the built-in attention checks
have become a less effective indicator of poor quality
data.30 For online surveys repeated from 2013 to 2020, it
was found that low levels of proficiency in the language
used within the study was the major source of increas-
ingly unusable responses.

Filtering observers by language fluency is a challenge,
particularly when recruiting and training a large number
of observers across many different countries. Even for
visual studies, the instructions and training are typically
text-based and are open to misinterpretation. There is
also a risk that a participant will simply proceed without
reading the instructions at all. Paid or unpaid, online
studies run the risk of observers misunderstanding the
task, a problem that would be recognized easily in a
supervised lab-based study.

2.3.4 | Pre- and post-screening of observers

The ITU documents Rec. ITU-R BT.50022 and Rec. ITU-T
P.91326 (subjective assessment of video quality) provide a
useful framework for preparing display-based experi-
ments with a large number of stimuli. There are many
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aspects analogous to running an online experiment,
including issues surrounding pre- and post-screening of
observers.

It is certainly acceptable to pre-screen observers26, p.18

for acuity, color vision deficiency, and so forth (though
this is difficult to implement in a remote setting). Post-
screening and the elimination of a subject's data is more
problematic.26, p.19 It may be appropriate to perform a
“soft rejection”26, p.27 by applying a weighting based on
an observer's bias and consistency. Alternatively, a rejec-
tion criteria may be based on a threshold value of linear
correlation to the mean observer26, Annex A. However,
both these methods are designed to sharpen discriminal
dispersion, and assume that an observer consensus is
inherent to the data.

For online studies (which are typically viewed
remotely and are unsupervised), there is also the chance
that observers perform differently to their peers in a
supervised experiment, or in a way that is not anticipated
by the designer of the experiment. In an earlier online
experiment Zuffi et al.31 noted the occurrence of errors
that did not happen in an equivalent supervised experi-
ment. These tended to be behavioral differences (such as
completing a task too quickly or too slowly) or else
returning spurious responses (null responses, or multiple
extreme responses). These indicated a lack of engage-
ment by the unsupervised observer, and were treated as
criteria for discarding those records post hoc.

3 | REFLECTIONS ON THE PILOT
ONLINE EXPERIMENT

The online version of the experiment was initially a
response to the global pandemic, with a web-hosted
application developed to deliver it for remote observers.
The experiment was created using the builder application
“PsychoPy,”32 and the UI was designed to scale to almost
any display size (see Figure 1). This was achieved by
specifying each element's size relative to the display's
pixel height (that is, the test images were knowingly re-
sampled). PsychoPy also generated a JavaScript version
of the experiment using the associated PsychoJS library,33

and this was then pushed to the pay-per-observer web
hosting solution “pavlovia.org.”34

3.1 | Extending the online experiment

In our pilot experiment4 only four industry-standard out-
put profiles were used to render the simulated output
images, which resulted in six permutations of gamut
comparisons using pairs of reproduction images.

Increasing the number of gamuts would mean that the
number of possible comparisons would increase expo-
nentially. It would therefore be necessary to make only
selective gamut comparisons in order to limit the number
made. There was the added challenge of recruiting and
retaining participants for a multi-part online experiment,
as well as a practical limit on the number of comparisons
an individual observer might be expected to make in a
single session without jeopardizing completion. There-
fore, in order to obtain a larger data set we developed an
extended modular version of the previous experiment
with a far greater number of observers.

4 | METHOD

4.1 | Recruitment of observers

Observers were recruited via email invitation from
groups of colleagues and students with a known interest
in color imaging. Ten different invitations with unique
URLs were issued ad hoc in order to achieve 20+
observers for each of the 10 sub-experiments. To comply
with local GDPR requirements each participant self-
generated a nickname, thereby pseudonymizing their
data. Further non-attributable information and feedback
was captured using a secure online form at the end of the
experiment.

4.2 | Choice of reproduction gamuts

A total of 36 test gamuts were prepared featuring 3 differ-
ent shapes, 3 contrast ratios, and 4 simulated media
white color centers. A matching set of ICC color profiles
was generated using ArgyllCMS35 with a compression-
type gamut mapping algorithm, optimized to reproduce
colors from an sRGB source. The perceptual rendering
intent transform within each profile was then used to
map source colors into an addressable reproduction
gamut which fell within the sRGB display gamut, suit-
able for our online experiment. Please see Figure 2 for a
visualization of the 36 addressable reproduction gamuts.
(Note: a very small number of colors around the display
blue primary could potentially be clipped when simulat-
ing the largest gamut with a bluish media white point
(see bottom of Figure 2A). All other addressable gamuts
fall entirely within sRGB.

The image set was limited to eight sRGB source
images (a mix of color pictorials, a grayscale portrait, and
a high chroma GBD image), each prepared with a white
border. These were then rendered to the 36 output
gamuts using the ICC profiles with the perceptual

6 HIGH ET AL.
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rendering intent. Lastly, the reproduction images were
converted to sRGB using a media-relative transform, with
the border appearing as a simulated substrate color

relative to the display white point. This resulted in
288 soft-proof images ready for use in the web-based
experiment.

Given the number of possible permutations, it was
important to identify a sub-set of gamut comparisons that
could then be divided up across our modular experiment,
with the aim that observers could complete each session
in approximately 25 min.

4.2.1 | Main image set

The 36 gamuts were divided into nine groups of four
(with each four-group providing six possible compari-
sons). The gamuts in each group were selected at ran-
dom, but had to include at least one of each gamut
shape, contrast ratio and color center. A tenth group of
four was formed, providing six additional comparisons.

Using these gamut combinations with our eight test
images gave 480 image-pair reproduction differences,
which would divide neatly into 48 for each of the 10 sub-
experiments.

4.2.2 | Additional image set with specific
gamut differences

An additional set of gamut comparisons was made which
deliberately featured differences in one criteria only
(either contrast difference or media white difference).

Three of the 36 gamuts were again selected, but this
time differing only in contrast ratio, having the same
gamut shape, and media white points which shared a sim-
ilar chromaticity (CC02, CC06, and CC10 in Figure 2C).
This gave three gamut comparisons which represented dif-
ferences in contrast ratio only.

Additionally, four gamuts featuring the same shape
and contrast ratio, but differing in media whites (CC05,
CC06, CC07, and CC08 in Figure 2C), gave six possible
comparisons to represent differences in media whites only.

Using these extra gamut combinations with our eight
test images gave 72 image reproduction differences, or
approximately 8 per sub-experiment.

4.2.3 | Normalization image set

The present modular experiment extends the use of the
GMSN to normalize the magnitude data from different
image sets, in order to create a super-set of observer
visual differences. An added benefit is that each
observer session gets treated as a different participant,
and the effect of any differences in equipment and

(A)

(B)

(C)

FIGURE 2 36 test gamuts. These are the addressable gamut

volumes achieved using the perceptual rendering intents of 36 ICC

profiles, designed to fit within the sRGB display gamut. Media

white points, — � — � sRGB display gamut.
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viewing conditions between blocks is also normalized.
This also removes the need for each observer to complete
all image sets, which is very useful in a large scale online
experiment where observer retention cannot be guaranteed.

Based on experience gained from the pilot, a small
subset of stimuli was found to accurately predict the off-
set and slope of the normalization for a larger set. The
best predictors were pairs with either large or small dif-
ferences, toward both the extremes of the working range.

For the present modular study 15 reproduction image
pairs were selected, with 8 pairs exhibiting large visual dif-
ferences, and 7 pairs having quite small visual differences.
This normalization image set was then included in each of
the sub-experiments for the purpose of the GMSN, with
the resulting intercept and offset being calculated against a
global average observer before being applied to normalize
the observers' other data in each of the sub-experiments.

4.2.4 | Repeatability image set

In order to assess intra-observer variability, 6 image pairs
(approximately 10% of the main image set) were repeated
at the end of each sub-experiment.

4.3 | Hosted online experiment

All 10 standalone sub-experiments followed the same for-
mat, including introduction and training, and a main
body of stimuli that contained test images, the common
normalization set, and a repeatability check.

4.3.1 | Screening and introduction

The first few web pages were designed to introduce
observers to their task, and to provide the contact details
of the researchers. Observers were asked to self-declare
that they had color-normal vision, with a link provided to
an online CVD test for those in doubt.

It was expected that users' web browsers would color
manage the UI and image content to their displays, so that
it would appear consistent with an sRGB display. Partici-
pants were therefore asked to use Apple Safari, Microsoft
Edge or Google Chrome web browsers. (There are some
occasional issues with older versions of Mozilla Firefox,
whereby sRGB content is handled as device RGB, and this
lack of color management could cause images to appear
over-saturated on a WCG display. Therefore, observers
were asked not to use that platform).

Observers then confirmed their chosen nickname,
and were invited to take part in an online questionnaire
at the end of the session. Participants had to actively give

consent at this point in order to move forward. A flow-
chart of the introduction and the following training ses-
sion is included in Figure 3.

4.3.2 | Observer training

After obtaining the observer's consent to proceed an
image familiarization task took place. Four consecutive
web pages showed thumbnail scatter proofs arranged on
a gray background, giving a preview of likely reproduc-
tion differences. A live training session then followed,
which introduced the form of the main experiment.
Using the experiment's UI (see Figure 1) participants
were asked to rate the difference between pairs of repro-
duction images from 0 to 100, where “0” represented no
visual difference and “100” represented the maximum
visual difference. Six pairs of reproductions followed,
with the observer free to gain experience with the slider
control and progression tools. This phase of the training
deliberately included pairs with large, small, and medium
visual differences, to further inform the observer's inter-
nal scale. Finally, before the main experiment, the writ-
ten instructions were repeated.

Using your skill and judgment, please give
each pair a rating from 0 to 100 (where “0”
represents no visual difference, and “100”
represents the maximum visual difference).

4.3.3 | Main body of experiment

The main part of each sub-experiment contained 48 image
pairs from the main set, 8 image pairs from the specific-
difference set, and the 15 images of the normalization set.
This gave a total of 71 reproduction pairs. Images from
each group of four gamuts were kept together in the sub-
experiments and compared “in-the-round.” This meant
each image was downloaded once and used in at least
three comparisons per sub-experiment, and this greatly
reduced the memory footprint and download time of the
web application. For each sub-experiment the left–right
presentation and running order of pairs was randomized.

The experiment was concluded with a repeatability
check consisting of 6 image pairs from the preceding
main image set. A flowchart of the experiment is
included in Figure 4.

5 | RESULTS

A total of 219 observer sessions were completed across
the 10 sub-experiments, each gaining at least

8 HIGH ET AL.
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20 participants. The pseudonymized nicknames used by
each participant allowed the cross-referencing of 134 sep-
arate observers who took part, with the vast majority of
participants completing either one or two sessions. The
average time taken to complete an experiment was
23 min 48 s, with the average response time for each
image comparison 9.41 s.

5.1 | Online questionnaire about
observers' equipment and viewing
conditions

A link to a separate secure online questionnaire was
provided upon completion of each experiment. A total
of 209 questionnaires were completed. The information
given reflected each session rather than each observer,
since some observers may have used different equip-
ment on each occasion. A breakdown of the partici-
pants' demographics and equipment used is given in
Table 1.

Participants were also asked about their viewing
conditions. Although categories were suggested the
responses were given as free text. The mix of lighting
types and lighting levels is visualized in Figure 5. We
see that dim lighting levels were provided mainly by
warm LED sources, mixed light sources often provided a
perceived medium level, whilst daylight and office fluo-
rescent sources tended to feature in brighter viewing
conditions.

5.2 | Unexpected observer behavior in
the online experiment

Although the online experiment contained written
instructions, training and on-screen reminders, it was
still possible for an observer to misinterpret the task. This
was in contrast to an in-person experiment, where any
such misunderstanding would likely be challenged by the
supervisor during the briefing and training sessions.

The initial responses of all observers were examined
for unusual behavior, and the general correlation
between each observer and the group mean was checked.
Out of the 219 observer sessions, four were found to have
a negative correlation with their peers, and this was also
expressed as a negative slope in the group means scale
normalization. A likely explanation was that these partic-
ipants inverted their working scale during some or all of
their responses.

A further behavioral trait was noticed in a small num-
ber of observers who appeared to rely heavily on giving
either minimum or maximum scores. The nominal avail-
able working range in the UI was 0 to 100, and so it was
expected that each observer would find their own modu-
lus and working range within that. Some participants
may have scored certain visual differences to be very high
or very low, and were therefore expected to return at least
some values of 0 or 100. This was reflected in most
observers' behavior (see Figure 6).

We see that the number of observers giving an
increasingly high proportion of 0 and 100 s approximates

FIGURE 3 Flowchart of website pages which contain the introduction and training sessions that precede the main body of the

experiment.

FIGURE 4 Flowchart of website pages containing the main experiment.

HIGH ET AL. 9
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a rapid decay function, with the majority of observers
returning very few minimum or maximum ratings. By
way of explanation, it is possible that a few observers mis-
interpreted the task as a binary test of acceptability rather
than a magnitude estimation of difference. Observers
within the 95th percentile used the 0 or 100 scores in less
than 17% of their responses. Excluding the four observers
identified previously for inverting the scale, 11 out of the
remaining 215 observers were found to exceed this limit,
and they may be thought of as having misunderstood
the task.

5.3 | Effect of internal inconsistency on
the normalization process

We utilized a common set of reproduction pairs to normal-
ize the modulus of individual observers across all 10 sub-
experiments. The efficacy of the normalization relies on
congruity between the common normalization set and
the main image set in each sub-experiment, both of
which should fall along the same continuum of visual
difference. However, when an individual observer is
internally inconsistent their responses to the normali-
zation set may not be characteristic of their responses
to the main image set. This results in a slope and offset
obtained from the normalization process which, when
applied to the main body of images, produces adverse
results. Since an inconsistent observer's slope and offset
is fitted and applied in the log domain, the normaliza-
tion could, in the antilog domain, create negative
values for low scores or high scores which are orders of
magnitude greater than the original 0 to 100 scale. Con-
versely, for observers who are consistent throughout
their experiment it may be assumed that the normaliza-
tion would have a beneficial effect, and that either the
mean difference from their peers would be reduced
(an improvement in inter-observer agreement) or else

TABLE 1 Responses to online questionnaire following each observer session.

Age group
(category)

Gender
(free text)

Imaging
professional
(Y/N) Device used (category)

Browser
(free text)

Display size
(free text)

18–24 59 M 124 Yes 123 Laptop 107 Edge 24 <1200 2

25–34 73 F 82 No 86 Laptop with External Display 39 Chrome 156 1200 to 1700 89

35–44 33 X 3 Desktop PC 60 Safari 26 >1700 to 2400 62

45–54 21 Mobile 3 Other 3 >2400 46

55–64 17 Do not know 10

65 and over 6

Total 209 Total 209 Total 209 Total 209 Total 209 Total 209

FIGURE 5 Participants' descriptions of lighting types and

lighting levels.

FIGURE 6 The proportion of responses scoring either 0 or 100.

Observers within the 95th percentile used the 0 or 100 scores in less

than 17% of their responses. A small number of observers were

found to rely on the minimum and maximum scale values.

10 HIGH ET AL.
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for those observers already close to the average, it
would have practically a null effect.

5.3.1 | Analyzing the effect of the group
means scale normalization

We therefore examine the effect of internal inconsistency
on the normalization of results in a modular experiment.
Using only the stimuli from the main image sets, we cal-
culate the mean difference between each individual
observer's responses and their sub-experiment's mean
observer. This is performed on the pre-normalized
magnitude data. A similar calculation is made on the
post-normalized magnitude data, where each observer's
log-normalized scores are exponentiated for the purpose
of comparison. It is expected that the GMSN should
improve inter-observer agreement, and therefore reduce
this difference. The reduction or increase in mean differ-
ence is visualized in Figure 7.

We see that, in the antilog domain, the plot of changes
in mean difference between individual observers and the
mean observer in their sub-experiment as a result of the
GMSN appears normally distributed. For the majority of
observers the GMSN does indeed produce a reduction or
close to a null effect. For a small number of observers we
see that the GMSN has increased the mean difference
between them and their sub-experiment's group average.

5.3.2 | Comparison of normalization
performance with inter-observer variability

Excluding those participants who exhibited unusual
behavior (see Subsection 5.2), we hypothesize that those

observers outside the 95th percentile in Figure 7 (13 out
of the remaining 204 observers for whom the GMSN did
not work well) are internally inconsistent. We therefore
use the six reproduction pairs repeated at the end of each
experiment in a test of observer repeatability, and their
intra-observer STRESS is calculated according to Melgosa
et al.36, p.73 Observers are divided into two groups based
on the 95th percentile of normalization performance in
Figure 7, and a one-tail Welch's t-test (a two sample t-test
assuming unequal variance) is used to compare their
STRESS scores. We find a significant difference in intra-
observer STRESS between the consistent grouping within
the 95th percentile (mean STRESS 31.6) and the inconsis-
tent grouping above the 95th percentile (mean STRESS
49.1); t(17)=7.55, p = 3.999E-07.

The STRESS results of the two groups are visualized
as a boxplot in Figure 8. We conclude that the perfor-
mance of the GMSN for each participant is determined
by their intra-observer variability. Since our repeatability
image set contains just six pairs it may be thought of as a
limited snapshot of intra-observer variability. However,
the GMSN performance, which is based on a larger num-
ber of stimuli, acts as an alternative indicator of observer
internal consistency.

5.4 | Filtered versus unfiltered
magnitude data

We compare results for two versions of the observer data.
We first consider the combined data from all 219 observers
across the 10 sub-experiments. We then exclude observers
who exhibited unusual behavior (inverted the scale, or
exceeded the 95th percentile in usage of 0 and 100 scores)
or who were deemed to be internally inconsistent

FIGURE 7 Effect of internal inconsistency on the

normalization process.

FIGURE 8 Intra-observer STRESS of participants considered

consistent (below the 95%tile of normalization performance) or

inconsistent (above the 95%tile of normalization performance).

HIGH ET AL. 11
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(exceeded the 95th percentile of improvement as a result
of the GMSN). One hundred ninety-one observers remain.
As an additional step following normalization, any spuri-
ous individual observer scores are, in the antilog domain,
clipped to the working range of 0 to 100. The exclusion of
some observers means that the GMSN used by each ver-
sion will be fitted to a slightly different mean observer,
resulting in two different normalized magnitude scales.
Across the 552 reproduction image pairs there is a mean
difference between the two scales of 2.14, with a maxi-
mum difference of 15.36. More interesting is the reduction
in standard deviation. The unfiltered version has a mean
SD of 19.87 (max SD = 50.56) whereas the filtered version
has a lower mean SD of 16.86 (max SD = 41.27).

The filtered results, based on 191 observers, and with
a minimum of 16 observers in any one sub-experiment,
are therefore taken forward for the creation of an interval
scale.

5.5 | Test of bimodality

The normalized observer magnitude data, in the antilog
domain, is expected to be approximately normally distrib-
uted with a discriminal dispersion around a mean for
each image comparison. We perform a test of bimodality
on the filtered dataset to confirm this behavior. The log-
normalized observer data is therefore exponentiated, and
for each reproduction pair we calculate a bimodality coef-
ficient (BC) using the bimodalitycoeff.m37 Matlab func-
tion. Based on the skewness and kurtosis of the data a BC
is calculated in the range of 0 to 1, where a threshold
value of 0.555 represents the value for a uniform distribu-
tion, and a BC >0.555 indicates bimodality. Of the
552 image comparisons, only 25 exceed this threshold.
Upon visual inspection of their histograms, those distri-
butions with a BC >0.555 tend to be data clustered
around a low mean magnitude, with one or two outliers
at higher magnitudes. The mean BC for the dataset is
0.3981 (min = 0.1594, max = 0.7501). We conclude that
the data is not bimodal in nature.

6 | ESTIMATING AN INTERVAL
SCALE FROM THE NORMALIZED
MAGNITUDE DATA

The normalized magnitude data cannot be assumed to
behave in a way consistent with an interval scale (since a
set increment of the magnitude scale may not represent
an equal visual difference throughout the range).

Whereas a true ratio scale would exhibit an increase
in observer uncertainty proportional to the increase in

stimulus magnitude, an interval scale would exhibit
approximately constant uncertainty throughout its range.
Magnitude estimation is expected to produce a ratio
scale, but a real-world experiment may produce a magni-
tude scale that behaves somewhere between the two defi-
nitions described above.

Engeldrum5, p.151 suggests using a category judgment
approach to confirm the relationship between the magni-
tude and interval scales. This assumes Condition D of
Torgerson's Law of Categorical Judgment (that is, for an
interval scale the discriminal dispersion, or observer

FIGURE 9 Standard deviation increases with magnitude of

response, consistent with a ratio scale.

FIGURE 10 Scale values are plotted against magnitude data,

and fitted with a power function.
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uncertainties, would be expected to be equal across all
categories). Typically, category judgment data would be
used to create a frequency matrix (the number of times a
stimulus is placed in each category), with z-score scale
values calculated from the cumulative proportions using
a least squares fit matrix operation.5, p.133 For the present
experiment, since the GMSN returns a geometric mean
together with a standard deviation, a cumulative propor-
tion matrix can be calculated from the magnitude data,
with the number of categories determined by the level of
precision required. The estimated scale values are not a
perfect monotonic transformation of the magnitude data,
but the underlying relationship may be used to derive a
fitting function. Engeldrum5, p.151 suggests using a power
function to fit the interval scale to the magnitude scale,
with the exponent set to one or less. Bartleson38 suggests
an approximation using a square root function for magni-
tude data that are prothetic (that is, the standard devia-
tions increase in proportion to the magnitude of the

data). A visualization of our normalized magnitude data
reveals that the uncertainty does generally increase with
the magnitude (see Figure 9).

Our magnitude data is then fitted to an interval scale
using the category-derived estimated scale values. The
exponent and the intercept of the power function are cal-
culated by finding an optimal linear fit in the log–log
space. The category-derived estimated scale values are
plotted against the magnitude data in Figure 10, together
with the fitted power function. An exponent of 0.45 is
found to give the best fit, which is consistent with Bartle-
son's generalized square root and other examples cited by
Engeldrum. In addition, a constant is applied to scale the
highest used value on the interval scale value to 70, which
is approximately the same as the highest used value on
the magnitude scale. Each unit of the resulting interval
scale does not represent an attribute JND39 (representing
a threshold of perceptibility in a single visual attribute)
though the scale itself may prove to be a useful tool in
determining a quality JND in terms of multi-dimensional
differences between reproductions.

7 | DISCUSSION

The combined data set includes visual difference scores
for 552 side-by-side reproduction comparisons. On the
resulting interval scale these data range from approxi-
mately 20 to 70 (see Figure 10). The zero point on the
interval scale is arbitrary, but we keep all scale values
positive in order to avoid negative values of difference.

Our experiment did not include any null-difference
pairs (two instances of the same reproduction). Every
pair had at least some image-difference, and this was
done to keep the experiment as simple as possible and
avoid any “trick” pairings. That could have complicated
the training and briefing phases, and potentially under-
mined online observer confidence. There was also con-
cern that very small differences could become
meaningless when viewed in uncontrolled conditions.

It is therefore possible that a similar experiment with
small and null differences conducted under controlled
viewing conditions could establish an indicative zero

FIGURE 11 Observer visual difference using the interval scale

is plotted against the average image color difference between pairs

of reproductions.

TABLE 2 Coefficient of determination between interval scale of observer visual difference and calculated color differences.

Image comparison Excl. paper colored border Inc. paper colored border

Color difference calculation Mean ΔE00 95%tile ΔE00 Mean ΔE00 95%tile ΔE00

R2 R2 R2 R2

All images 0.70 0.54 0.65 0.51

High chroma image (example) 0.81 0.69 0.67 0.53

HIGH ET AL. 13
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point, but great care would have to be taken to normalize
this with the present data set.

It is interesting to compare the resulting interval scale
of reproduction difference with the mean color

differences calculated between the pairs of reproductions.
In Figure 11 we see that increasing visual difference
approximately correlates with larger mean color differ-
ences. Across all images (with the exception of grayscale
images) the mean color difference provides a better corre-
lation than higher percentiles (where the higher percen-
tiles represent larger color differences between any two
reproductions). We also see that including the paper-
colored border in the calculation reduces the correlation,
though its presence in the experiment clearly has an
impact on visual difference (see Table 2) for summary
statistics.

In this study, we attracted participants by email for
over 200 observer sessions. However, for any greater
number it would have been more practical to use an
online recruiting platform to manage observers. In this
study, we targeted observers with a known interest in
color imaging, and who were expected to understand the
concepts presented in the training phase. However, there
was still the challenge of unexpected observer behavior
that differed from what would be accepted in the lab.

For illustrative purposes, Figure 12 visualizes three
example image pairs at interval scale values of 30, 45,
and 60. These examples include pairs with known differ-
ences in contrast ratio and substrate color, though by its
nature, the reproduction here lacks the scale and the
extended gray background of the experiment's UI.

8 | CONCLUSIONS

Within the constraints associated with web-based soft-
proofing it was possible to gather magnitude estimation
data based on overall visual difference between simulated
color reproductions. We presented a method whereby a
group means scale normalization was used to normalize
observer modulus across several linked experiments by
way of a common normalization image set. However, the
success of the normalization process was found to be reli-
ant on the observers' internal consistency (that is, low
intra-observer variability). It was also found that a categor-
ical judgment approach could be used to compare the dis-
tribution of the magnitude data with an interval scale, and
provide a fitting function. In this experiment the relation-
ship between the scales was close to a square root.

9 | FUTURE WORK

The reproduction gamuts, created with characterization
data and ICC profiles, will allow a range of gamut com-
parison metrics to be calculated, including differences in
gamut volume, shape, contrast and substrate color
difference.

(A)

(B)

(C)

FIGURE 12 Examples of small, medium, and large visual

differences between color reproductions.
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When used in conjunction with the present interval
scale we expect these metrics to provide a means of
modeling the systematic causes of visual difference in the
side-by-side comparison of color reproductions.
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