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Abstract:  

Modern instruments generate Big Data that require information extraction before they can be used. A 

hybrid modelling framework is presented and illustrated. Its purpose is to convert meaningless data to 

meaningful information and to contribute to a theoretical, practical, and democratic basis for 

tomorrow's handling of Big Data in science and technology.  

A call for causality 

Writing this essay in Analytica Chimica Acta feels like a homecoming for me, since my first data 

modelling paper, with the title ' Factor analysis of chemical mixtures. Non-negative factor solutions 

for spectra of cereal amino acids', was published here in ACA, in 1979 (REF01).  As biochemist, I 

combined slow chromatography, others' agronomic knowledge and my amateur multivariate data 

modelling. 

 Today, many instruments in chemistry generate information-rich BIG DATA, fast and cheaply. 

But high-speed measurements are often quite "dirty", even in chemistry.  Hyperspectral imaging of 

natural products in one example: Measurement noise is not the problem. We have to unmix 

overlapping absorbance signals from mixed chemical constituents and distinguish these from the 

effects of physical light scattering and measurement artifacts, e.g. due to illumination changes 

(REF02).  

 Purely data-driven modelling is in AI lingo called Machine Learning (ML). For BIG DATA from 
multi-channel spectrometers and imagers in systems with limited causal complexity, the use of 
complex black box AI-based deep learning is alienating, needlessly risky and a computational overkill.  
It is better to combine our prior knowledge and observation-based discoveries into improved causal 
insight.   
 A generic machine learning framework for handling both known and unknown causalities in 
technical BIG DATA will now be outlined and illustrated. The presentation is based on my personal 
experience, and thus highly subjective. 
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Machine learning with an eye for causalities 
 
Prior knowledge and empirical data may be combined in different ways, in multivariate hybrid 
modelling. A generic R&D framework is shown in Figure 1 for a continuous stream of high-
dimensional data, e.g. from hyperspectral or thermal video cameras. It has a deductive, an inductive 
and an abductive stage:  

 
Figure 1:   A framework for modelling technical BIG DATA on a small computer, for real-world problem solving and 
knowledge enhancement (REF03): 1) Deductive "expert system": Causal modelling of KNOWNS. 2) Inductive machine 
learning: Data driven modelling of systematic and – if needed, peculiar - UNKNOWNS (REF04). 3) Abductive deep learning: 
Machines learning to behave intelligently (REF05). 
 

  A statistically validated use of this hybrid modelling framework may help us generate value 
and maintain a chain of trust in R&D and industrial operation: Modelling our new Big Data 
measurements in terms of established causal theory, prior experience and available external 
descriptors reduces the cost of training data and the risk for spurious conclusions. And by only 
extracting new variations in our unmodelled residuals if they are clear and systematic, we continue 
learning, creatively and critically. By combining the known and unknown variation patterns, we can 
deliver reliable results and improve our causal understanding (REF06).  
 
Can we see how it feels to be a photon?   

Figure 2 shows a visual example of human "deep learning:  A herring-shape sugar candy, in the 

producer's identity-colors red, white and blue. Seen in reflectance, the middle part is the brightest, 

and in transmission it is the darkest.  Assuming a spatially constant light source and detector 

sensitivity across the image, the RGB values are, more or less, proportional to Reflectance and 

transmittance data. 
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Figure 2 How does it feel to be a photon here? A herring-shaped sugar candy, seen in reflection and transmission REF07.  

I was told by the factory that the red and blue colors were caused by light absorption of dyes from 

raspberries and blueberries, respectively, while the whiteness was caused by building in lots of tiny 

air bubbles, just like in whipped egg white.  

Conclusion: Because light absorption and light scattering affect photons very differently, we can 

understand what causes color- and whiteness variation, - if we so wish.  

 

Demo: Beer-Lambert's law hold also for NIR transmittance through powders  

With only 3 color channels – R, G and B, there are limits to what our cameras can detect, and to what 

we can distinguish by modelling.  And having to do both reflectance and transmittance 

measurements is cumbersome. What if we measure only transmitted light, but with many more 

wavelength channels instead? 

 Figure 3 illustrates the advantage of multichannel measurements and compares 

mathematical modelling based on a purely inductive method (top) and a combined inductive/ 

deductive method (bottom). It concerns high-speed near infrared spectroscopy through intact white-

looking powders (mixtures of pure wheat protein and wheat starch). They are expected to differ in 

both absorbance and scattering. But to generalize, we assume their pure spectra to be unknown.  

 There are five mixture ratios of protein and starch powders. Each mixture was measured in 

transmission at 10 different conditions to simulate real-world troubles: five powder thicknesses  

two powder compressions, in two technical replicates (REF08, REF09, REF10). The expected linearity 

of the spectral response to the analyte (protein) variation was optimized by converting the diffuse 

transmittance T into absorbance (A=log(1/T). The absorbance spectra show several broad peaks. 

Their partial overlap makes them unsuited for classical single-wavelength calibration.   
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 But multivariate calibration "machine learning" (REF06) has no problem with partially 

overlapping peaks. By cross-validated Partial Least Squares Regression based on three of the five 

mixtures yields reasonable prediction ability (C), even for the remaining independent test mixtures:   

 

 Figure 3 Demo experiment of linear hybrid subspace modelling: Top: Conventional calibration. A) Transmittance spectra T of 

powder mixtures (wheat protein: wheat starch in ratios 0:100, 25:75, 50:50, 75:25 and 100:0) measured under different 

conditions. B) Absorbance A=log10(1/ Transmittance).  C) Conventional multivariate calibration by PLSR.  

Bottom: Abductive calibration: D) Spectral OEMSC model, E) The 100 absorbance spectra in B) after OEMSC pre-processing. 

F) Multivariate calibration based on E).  Blue: calibration mixtures. Red: test mixtures.  

 But something was wrong: the machine learning model required three inductive model 

dimensions (PLS Components, PCs) in the calibration model, even though we only had one type of 

composition variation differing in two respects (absorption and scattering).  

 The bottom of Figure 3 shows results for the same 100 spectra after semi-causal pre-

processing by Optimized EMSC (OEMSC, REF09), which optimizes a Beer-Lambert-like bilinear model 

(Extended Multiplicative Signal Correction, EMSC REF11, REF08) wrt predictive ability.  The NIR 

spectra pre-treated by OEMSC gave excellent predictions, both for calibration and test samples (F). 

And only two inductive model dimensions were needed – one i OEMSC and one i PLSR.  

 Figure 4 explains why the semi-causal OEMSC pre-processing was developed: Contrary to e.g. 

ANN, CNN and traditional statistical regressions, the PLSR provides windows into the high-

dimensional space of the spectra:  
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Figure 4   A 2D window into the high-dimensional space of the powder absorbance spectra in Figure 3B): The PLS scores 

for 60 calibration samples (blue) and 40 test samples (red), plotted for PCs # 1 and # 2, along with the corresponding model 

center (the calibration mean spectrum), the PC loading spectra and the common extrapolation spectrum. 

  Here, the first two PLS PCs show that different sample thicknesses and sample compactions 

for the five chemical compositions form five straight lines, pointing towards a common, flat baseline 

(a multiplicative effect) but unevenly spaced (an additive curvature effect?). Like a curved 3D banana 

can be approximated by a flat 2D boomerang, the linear OEMSC model handled the curvature 

(REF06). And following Beer-Lambert's law mathematically, it also modelled both multiplicative and 

additive effects simultaneously. 

 Conclusion:  Multichannel diffuse NIR spectra with purely data driven PLSR machine learning 

worked reasonably, even for these "dirty" powder mixture spectra. But it worked far better after 

semi-causal OEMSC pre-processing.  

 Light absorbances from mixed chemical are approximately linear and additive, while effective 

optical path length changes, due to light scattering, is multiplicative. Combining multichannel spectra 

and simple linear algebra, we can therefore quantify what causes "color"- and "whiteness" changes, 

even in NIR spectra. So, Beer'-Lambert's law appears to hold even for diffuse transmission through 

powders. 

 

Beer-Lambert's law can also model hyperspectral video of changes in complex biological material  

Hyperspectral VNIR video with kinetic modelling: Reflection is usually easier to measure than 

transmission. Today's hyperspectral remote-sensing imaging give massive streams of spatiotemporal 

diffuse Reflectance (R) spectra, and hyperspectral video even more so. How to handle technical BIG 

DATA like this?  Just storing and transmitting them is a problem.  How to interpret them, in in terms 

of known and unknown chemical, physical and instrumental variations?   

 The top of Figure 5 shows a piece of wood (spruce) that was monitored over 21 hrs (REF12, 

REF03) from its wet to its dried state by hyperspectral VNIR (Visible and NIR) "video" (500- 1005 nm). 

Images with > 2.3 million pixels were taken repeatedly overnight. This resulted in > 350 million 
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reflectance spectra with 159 wavelength channels in each, for a single wood sample.  This is how the 

hyperspectral video was modelled: 

Following the steps in Figure 1: 

1. Modelling KNOWNS by deduction: Each absorbance spectrum log10(1/R) was submitted to a 

conventional EMSC with 5 spectral inputs (the mean, tap water, wood pigment, a flat and a 

slanted baseline). Each spectrum was dividing by the relative optical path length estimated 

from the mean spectrum, while the other relative contributions were estimated and 

subtracted. This semi-causal pre-processing accounted for 98.9 % of the variance in the input 

absorbances. 

2. Modelling UNKNOWNS by induction: The pre-processed absorbance spectra were submitted 

to a principal component analysis (PCA). This revealed two unexpected but clear variation 

patterns, which explained another 0.7% of the variance.   Hence, with 5 known and 2 

unknown spectral components, 99.6% of the variance in the >350 million spectra was 

modelled. Since the unmodelled residuals appeared to represent mostly random noise, and 

no serious outliers had been found, there was no need for a final inductive, data-driven ANN 

clean-up stage. 

3. New causal insight by abduction: When the 7 model components were averaged in each 

image and modelled as functions of drying time, 4 of the 5 known and 1 of the 2 unknown 

components were found to follow first-order reaction kinetics.  

 

Hyperspectral SWIR video with two-domain IDLE modelling:  

Vitale et al. (REF13) applied the same modelling framework to another hyperspectral video 

of drying wood, in the SWIR wavelength range (930-2200 nm), again modelling its light 

absorption and light scattering developments by the hybrid modelling, using EMSC & PCA.  

 However, the drying also caused the wood to shrink, gradually. There was also some 

camera/object motion. This spatiotemporal motion was quantified by optical flow estimation 

and summarized into a PCA motion map by so-called dual-domain IDLE-modelling (REF14), 

illustrated at the bottom of Figure 5, and used for motion compensation. 

 Hence, the BIG hyperspectral video file was compressed into two SMALL subspace 

models with respect to all interesting changes in chemical composition, light scattering and 

spatial shrinkage, in the wavelength-, time- and space-domains, simultaneously. 
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Figure 5 Hyperspectral video monitoring of drying wood: 
Top:  A piece of spruce monitored by VNIR video with EMSC & PCA: 
Summary of how the input absorbance of its hyperspectral VNIR video was modelled, Absorbance before and after 
conventional knowledge-driven EMSC pre-processing, followed by data-driven PCA modelling,  
Bottom: Another piece of spruce monitored by SWIR video with EMSC, IDLE and PCA: 
The SWIR absorbance spectra (mean over each image in video) show variation due to light absorption (water) and light 
scattering (air replacing water). But comparing the first and last image in video also shows considerable optical flow (spatial 
shrinkage).   The main motion map (from PCA of all optical flow images) reveals two phases in the shrinkage process. 
 

 Conclusion: The hybrid modelling sequence  in Figure 1 can give fast, simple, understandable 
description of spatiotemporal processes from technical BIG DATA measurements, as shown for these 
two examples of Beer-Lambert modelling of hyperspectral video, at strongly reduced file size. 
 
Ahead, not headless 
Society is now at a crossroad wrt Big Data and Artificial Intelligence. Current AI developments for 
very complex problems are powerful and fascinating. But we don't see their societal consequences 
yet. So, we should tread with extreme care:  
 I don't need to understand how the breaks in my car's work, as long as I know that the breaks 
work and somebody else knows how it works. But I don't want to use a black box AI solution if I 
cannot know when it doesn't work, and nobody knows how it works.  
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 In this paper I have tried to demonstrate that faster, simpler, less data-demanding and more 
interpretable "deep learning " solutions are possible, at least for multichannel BIG DATA from 
chemical, physical or technical systems with limited causal complexity, known or unknown.  
 But the present hybrid deductive/inductive/abductive modelling framework needs further 
method improvements (REF24). That could include finding "unmixing end members" by "simplex 
intersect" (REF01, REF14, REF15), relevant-subspace modelling (REF16) in sparse versions (REF17), 
adaptive handling of strong heterogeneities (REF18, REF19) and simplified linear modelling of 
mechanistic causality equations by multivariate metamodeling (REF20).  
 On the other hand, there are fundamental mathematical modelling limitations:  The paradox 
of duality in linear mixture modelling (REF09), the subjectivity involved in choice of causal model 
(REF21) and the mathematical "sloppiness" of many non-linear causal models (REF22, REF23).  And 
we must never give up our strive to reduce the Math Gap in science and society (REF24, REF25). 
 

 In summary, I believe ANN-based black box machine learning represents needless, headless, 
alienating overkill for many types of chemical, physical, and technical Big Data. The explainable 
hybrid subspace framework (Figure 1) might be tried first, at least as pre-processing, under an old 
man's motto:   
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