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In this study, we address the problem of high-
dimensional binary classification. Our proposed
solution involves employing an aggregation tech-
nique founded on exponential weights and empirical
hinge loss. Through the employment of a suitable
sparsity-inducing prior distribution, we demonstrate
that our method yields favorable theoretical results
on prediction error. The efficiency of our procedure is
achieved through the utilization of Langevin Monte
Carlo, a gradient-based sampling approach. To illustrate
the effectiveness of our approach, we conduct compar-
isons with the logistic Lasso on simulated data and a real
dataset. Our method frequently demonstrates superior
performance compared to the logistic Lasso.
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1 INTRODUCTION

Classification in high-dimensional scenarios, where the number of potential explanatory vari-
ables (predictors) p significantly exceeds the sample size n, presents a fundamental challenge
that transcends disciplines such as statistics and machine learning (Bühlmann & Van De
Geer, 2011; Hastie, Tibshirani, Friedman, & Friedman, 2009; Fan, Fan, & Wu, 2010; Giraud, 2021).
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This issue holds considerable relevance across various domains, including applications such
as disease classification (Chung & Keles, 2010), document classification (Kotte, Rajavelu, &
Rajsingh, 2020), and image recognition (Li, Chai, Zhou, & Yin, 2021). The setting of large
p, small n introduces a significant challenge known as the “curse of dimensionality.” The
works in Bickel and Levina (2004) and Fan and Fan (2008) highlighted that, even in sim-
ple cases, high-dimensional classification without feature selection can perform as poorly as
random guessing. Consequently, the imperative arises to mitigate this issue by reducing fea-
ture space dimensionality through the judicious selection of a sparse subset of “meaningful”
features.

Numerous methodologies have been suggested to address the challenge of classification in
high-dimensional settings, as discussed in works such as Fan et al. (2010) and Giraud (2021). The
majority of these approaches center around penalized maximum likelihood estimation. Notably,
the statistical package “glmnet” (Friedman, Hastie, & Tibshirani, 2010) has successfully imple-
mented the Lasso and elastic net for generalized linear models, showcasing practical effectiveness.
In a more recent study of Abramovich and Grinshtein (2018), the authors establish nonasymptotic
bounds on misclassification excess risk for procedures based on penalized maximum likelihood.
However, probabilistic approaches have received comparatively less attention in tackling this
problem.

Diverging from traditional approaches centered on parametric models, we adopt an alter-
native strategy that involves considering a set of classifiers and selecting the one that yields
the best prediction error. This approach is rooted in the principles of statistical learning the-
ory Vapnik, 1998, where the zero-one loss is employed as a measure of prediction error, and
the classifier’s risk is governed by a PAC (probably approximately correct) bound. Our novel
approach combines elements from both Bayesian and machine learning methodologies. More
specifically, we consider a pseudo-Bayesian strategy that incorporates a risk concept based on
the hinge loss instead of relying on a likelihood function. Because of the computational chal-
lenges arising from the nonconvexity of the zero-one loss function, the hinge loss serves as a
suitable alternative Zhang, 2004. The hinge loss is well-known for its effectiveness in diverse
machine learning tasks and computational efficiency. It is noteworthy that the substitution of
loss functions for likelihood has gained popularity in Generalized Bayesian inference in recent
years, as evidenced by works such as Matsubara, Knoblauch, Briol, and Oates (2022), Jew-
son and Rossell (2022), Yonekura and Sugasawa (2023), Medina, Olea, Rush, and Velez (2022),
Grünwald and Van Ommen (2017), Bissiri, Holmes, and Walker (2016), Lyddon, Holmes,
and Walker (2019), Syring and Martin (2019), Knoblauch, Jewson, and Damoulas (2022), and
Hong and Martin (2020).

The foundation of our theoretical findings regarding prediction errors relies on the
PAC-Bayes bound technique. Initially introduced by McAllester (1998) and Shawe-Taylor and
Williamson (1997) to furnish numerical generalization certificates for Bayesian-flavored machine
learning algorithms, this technique took a broader applicability turn when Catoni (2004,
2007) realized its utility in proving oracle inequalities and rates of convergence for
(generalized)-Bayesian estimators in statistics. This methodology shares strong connections
with the “information bounds” presented by Zhang (2006) and Russo and Zou (2019). For an
in-depth exploration of this topic, we recommend referring to Guedj (2019) and Alquier (2024).
PAC-Bayes bounds have been instrumental in establishing oracle inequalities in various prob-
lems, as evidenced by works like Seeger (2002), Langford and Shawe-Taylor (2002), Herbrich and
Graepel (2002), Maurer (2004), Dalalyan and Tsybakov (2008), Seldin, Laviolette, Cesa-Bianchi,
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MAI 3

Shawe-Taylor, and Auer (2012), Alquier, Ridgway, and Chopin (2016), Seldin and Tishby (2010),
Germain, Lacasse, Laviolette, March, and Roy (2015), Mai and Alquier (2015, 2017), and Cottet
and Alquier (2018). Our methodology aligns with the principles of PAC-Bayesian theory, offering
robust theoretical assurances regarding prediction error for our proposed method.

Utilizing a loss function based on hinge loss offers a solution to overcome certain constraints
inherent in traditional likelihood-based Bayesian models, especially in the context of binary
response variables. The convex nature of the hinge loss function facilitates ease of optimization.
Additionally, our method incorporates a smooth sparsity-promoting prior, previously explored in
Dalalyan and Tsybakov (2012a, 2012b). These features enhance the efficiency of our approach,
making it amenable to implementation using Langevin Monte Carlo (LMC) method. We advo-
cate a LMC approach for the computation of our proposed method, an emerging technique
in high-dimensional Bayesian methods (Dalalyan, 2017; Dalalyan & Riou-Durand, 2020; Dur-
mus & Moulines, 2017, 2019). The LMC method originated in physics with Langevin diffusions
(Ermak, 1975) and gained popularity in statistics and machine learning after the seminal paper
by Roberts and Tweedie (1996).

Apart from a thorough theoretical investigation, we complement our study by undertak-
ing a comprehensive series of simulations to assess the numerical performance of the method
we propose. In the realm of numerical comparisons, our methodology demonstrates compara-
ble outcomes when contrasted with both the logistic Lasso and the Bayesian logistic approach.
The outcomes of our simulations reveal noteworthy insights. Notably, our proposed method
exhibits a heightened level of robustness in the face of varying sample sizes and sparsity lev-
els, outperforming the logistic Lasso in these scenarios. Furthermore, to validate the practical
utility of our method, we conduct an application using a real dataset. The results obtained
from this real data example align closely with those derived from the logistic Lasso, empha-
sizing the consistency and applicability of our proposed method across different datasets. This
multifaceted evaluation, on both simulated and real data, collectively underscores the effec-
tiveness and reliability of our proposed method in the realm of high-dimensional classification
problems.

The subsequent sections of this paper are structured as outlined below. Section 2 provides
an introduction to both the high-dimensional classification problem and the method we propose
to address it. In Section 3, we consolidate our theoretical analysis, specifically focusing on the
prediction error associated with our proposed method. Section 4 is dedicated to the presentation
and discussion of our simulation studies and a real data application. Our discussion on the find-
ings and conclusions of our work unfold in Section 5. For the technical proofs underpinning our
analyses, interested readers can refer to Appendix A.

2 PROBLEM AND METHOD

2.1 Problem statement

We formally consider the following general binary classification with a high-dimensional vector
of features x ∈ Rd and the outcome class label

Y |x =

{
1, with probability p(x),
− 1, with probability 1 − p(x)

.
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4 MAI

The accuracy of a classifier 𝜂 is defined by the prediction error, given as

R(𝜂) = P(Y ≠ 𝜂(x)).

It is well-known that R(𝜂) is minimized by the Bayes classifier 𝜂∗(x) = sign(p(x) − 1∕2) (Vap-
nik, 1998; Devroye, Györfi, & Lugosi, 1996), that is,

R(𝜂∗) = inf R(𝜂).

However, the probability function p(x) is unknown and the resulting classifier 𝜂̂(x) should be
designed from the data Dn: a random sample of n independent observations (x1,Y1), … , (xn,Yn),
with n < d. The design points xi may be considered as fixed or random. The corresponding
(conditional) prediction error of 𝜂̂ is

R(𝜂̂) = P(Y ≠ 𝜂̂(x) |Dn),

and the goodness of 𝜂̂ w.r.t. 𝜂∗ is measured by the excess risk, that is, E R(𝜂̂) − R(𝜂∗). One could
obtain 𝜂̂ by estimating p(x) from the data by some p̂(x) and use a plug-in classifier of the form
𝜂̂(x) = sign(p̂(x) − 1∕2). A standard approach is to consider one of the most commonly used
models—logistic regression, where it is assumed that p(x) = 1∕(1 + e−𝛽⊤x) and 𝛽 ∈ Rd is a vec-
tor of unknown regression coefficients. The corresponding Bayes classifier is a linear classifier,
𝜂

∗(x) = sign(𝛽∗⊤x). One then estimates 𝛽∗ from the data to get ̂
𝛽 (e.g., using maximum likeli-

hood), and the resulting linear classifier is 𝜂̂(x) = sign( ̂𝛽⊤x), see for example, Abramovich and
Grinshtein (2018).

Another common general (nonparametric) approach for finding a classifier 𝜂̂ from the data
is empirical risk minimization, where minimization of a true prediction error R(𝜂) is replaced by
minimization of the corresponding empirical risk over a given class of classifiers. Consider the
class of linear classifiers, the empirical risk is given by:

rn(𝛽) =
1
n

n∑

i=1
1{Yi(𝛽⊤xi) < 0}.

The ability of the classifier to predict a new label given feature x is then assessed by the prediction
error

R(𝛽) = E
[
1{Y (𝛽⊤x) < 0}

]
.

For the sake of simplicity, we put R∗ ∶= R(𝛽∗), where 𝛽∗ is the ideal Bayes classifier.
In this paper, we consider a sparse setting and thus we assume that s∗ < n where s∗ = ||𝛽∗||0

(the number of nonzero entries).
The main goal in this work is to develop a classifier ̂

𝛽 such that its prediction error will be
close the ideal Bayes error R∗.

2.2 The proposed method

The explanation of the prediction risk, represented by R(𝛽), is clear; however, managing its empir-
ical equivalent, rn(𝛽), presents computational challenges due to its nonsmooth and nonconvex
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MAI 5

characteristics. To tackle this issue, a frequently used approach is to replace the empirical risk
with an alternative convex surrogate, as proposed in earlier studies Zhang (2004) and Bartlett,
Jordan, and McAuliffe (2006).

In this paper, we primarily focus on the hinge loss, which results in the following hinge
empirical risk:

rh
n(𝛽) =

1
n

n∑

i=1
(1 − Yi (𝛽⊤xi))+ ,

where (a)+ ∶= max(a, 0),∀a ∈ R.
We consider an exponentially weighted aggregate (EWA) procedure and define the following

pseudo-posterior distribution:

𝜌̂
𝜆

(𝛽) ∝ exp[−𝜆rh
n(𝛽)]𝜋(𝛽), (1)

where 𝜆 > 0 is a tuning parameter that will be discussed later and 𝜋(𝛽) is a prior distribution,
given in (2), that promotes (approximately) sparsity on the parameter vector 𝛽.

The EWA procedure has found application in various contexts in prior works (Dalalyan, Grap-
pin, & Paris, 2018; Dalalyan and Tsybakov (2008, 2012b); Dalalyan (2020)). The term 𝜌̂

𝜆

is also
referred to as the Gibbs posterior (Alquier et al., 2016; Catoni, 2007). The incorporation of 𝜌̂

𝜆

is driven by the minimization problem presented in Lemma 1, rather than strictly adhering to
conventional Bayesian principles. Notably, there is no necessity for a likelihood function or a com-
plete model; only the empirical risk based on the hinge loss function is crucial. This approach
aligns with the evolving trend in the Generalized Bayesian method in contemporary literature,
where the likelihood is often replaced with a power version or a loss-based method, as seen in
works such as Bissiri et al. (2016), Knoblauch et al. (2022), Grünwald and Van Ommen (2017),
Hong and Martin (2020), and Matsubara et al. (2022).

However, in this manuscript, we consistently denote 𝜋 as the prior and 𝜌̂
𝜆

as the
pseudo-posterior. The rationale behind the EWA can be summarized as follows: when com-
paring two parameters, b1 and b2, if rh

n(b1) < rh
n(b2), then exp[−𝜆rh

n(b1)] > exp[−𝜆rh
n(b2)] for any

𝜆 > 0. This implies that, in comparison to 𝜋, 𝜌̂
𝜆

assigns more weight to the parameter with a
smaller hinge empirical risk. Consequently, the adjustment in the distribution favors the param-
eter value associated with a smaller in-sample hinge empirical risk. The tuning parameter 𝜆
dictates the degree of this adjustment, and its selection will be further investigated in subsequent
sections.

2.3 A sparsity-inducing prior

Given a positive number C1, for all 𝛽 ∈ B1(C1) ∶= {𝛽 ∈ Rd ∶ ||𝛽||1 ≤ C1}, we consider the follow-
ing prior,

𝜋(𝛽) ∝
d∏

i=1

1
(𝜏2 + 𝛽2

i )2
, (2)

where 𝜏 > 0 is a tuning parameter. For technical reason, we assume that C1 > 2d𝜏.

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12342 by N

tnu-H
else M

idt, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 MAI

Initially, it is noteworthy that C1 serves as a regularization constant, typically assumed to be
very large. Consequently, 𝜋 essentially takes the form of a product of d rescaled Student’s distri-
butions. To be more precise, the distribution of 𝜋 closely approximates that of S𝜏

√
2, where S

denotes a random vector with independent and identically distributed (i.i.d) components drawn
from the Student’s t-distribution with 3 degrees of freedom. One can choose a very small 𝜏, smaller
than 1∕n, resulting in the majority of components in 𝜏S being in close proximity to zero. How-
ever, owing to the heavy-tailed nature of the Student’s t-distribution, a few components of 𝜏S are
significantly distant from zero. This particular characteristic imparts the prior with the ability to
encourage sparsity.

It is worth noting that this type of prior has been previously examined in the context of
aggregating estimators Dalalyan and Tsybakov (2012a, 2012b). In this work, we further investi-
gate the applicability of this prior in sparse classification, specifically with hinge empirical loss.
Moreover, various authors have underscored the significance of heavy-tailed priors in address-
ing sparsity, see for example, Seeger (2008), Johnstone and Silverman (2004), Rivoirard (2006),
Abramovich, Grinshtein, and Pensky (2007), Carvalho, Polson, and Scott (2010), Castillo and van
der Vaart (2012), and Castillo and Mismer (2018).

3 THEORETICAL RESULTS

Let r∗n ∶= rn(𝛽∗). We will require the following assumptions in order to state our main results.

Assumption 1. We assume that there is a constant Cx > 0 such that
∑n

i=1||xi||2∕n ≤
Cx.

Assumption 2. We assume that there is a constant C′
> 0 such that rh

n(𝛽∗) ≤ (1 +
C′)r∗n.

Remark 1. Assumption 1 on the design matrix above is less stringent when con-
trasted with those outlined in the reference Abramovich and Grinshtein (2018). More
specifically, the Weighted Restricted Eigenvalue condition, a requirement concern-
ing the design matrix to obtain the result for the logistic Slope in Abramovich and
Grinshtein (2018), is not required for the results presented in our study. Conversely,
Assumption 2 may be regarded as analogous to conditions required in Abramovich
and Grinshtein (2018), where an upper bound on |𝛽∗⊤xi| for all i = 1, … ,n is
required.

3.1 Bounds on prediction risk

Theorem 1. Assume that Assumptions 1 and 2 hold. We have, for 𝜆 =
√

n log(nd),
𝜏 = 1∕(n

√
d) and with probability at least 1 − 2𝜖, 𝜖 ∈ (0, 1), that for all 𝛽∗ such that

||𝛽∗||1 ≤ C1 − 2d𝜏 and ||𝛽∗||0 ≤ s∗,

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + c
s∗
√

log(n
√

d∕s∗)
√

n
+

log(1∕𝜖)
√

n log(nd)
,
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MAI 7

where c is a universal constant depending only on C′
,C1,Cx.

The proof for the aforementioned theorem and subsequent results can be found in
Appendix A, where we employ the “PAC-Bayesian bounds” technique from Catoni (2007) as
our primary technical arguments. Initially introduced in Shawe-Taylor and Williamson (1997);
McAllester (1998), PAC-Bayesian bounds serve as a method to offer empirical bounds on the
prediction risk of Bayesian-type estimators. However, as extensively discussed in Catoni (2003,
2004, 2007), this technique also provides a set of powerful technical tools for establishing
nonasymptotic bounds. For a thorough exploration of PAC-Bayes bounds, along with recent sur-
veys and advancements, readers are encouraged to consult the following references: Guedj (2019);
Alquier (2024).

Remark 2. Theorem 1 establishes a connection between the integrated prediction risk
of our approach and the minimum achievable risk, attained by the Bayes classifier
𝛽

∗. The assumption regarding the boundedness of the parameter significantly influ-
ences our technical proofs, a common feature in PAC-Bayes literature, but it could
potentially be mitigated through alternative methodologies as suggested by Alquier
and Ridgway (2020); Alquier (2024).

In addition to the outcome outlined in Theorem 1, we can derive a result for, ̂𝛽 ∼ 𝜌̂
𝜆

, a stochas-
tic classifier sampled from our suggested pseudo-posterior (1). The following result is occasionally
referred to as the contraction rate of the pseudo-posterior.

Theorem 2. Under the same assumptions for Theorem 1, and the same definition
for 𝜏 and 𝜆, let 𝜀n be any sequence in (0, 1) such that 𝜀n → 0 when n → ∞.
Define

Θn =
⎧
⎪
⎨
⎪
⎩

𝛽 ∈ R
d ∶ R ≤ (1 + 2C′)R∗ + c

s∗
√

log(n
√

d∕s∗)
√

n
+

log(1∕𝜀n)
√

n log(nd)

⎫
⎪
⎬
⎪
⎭

.

Then

E

[

P
̂
𝛽∼𝜌̂

𝜆

( ̂𝛽 ∈ Θn)
]

≥ 1 − 2𝜀n −−−−−→n→∞
1.

The primary challenges for any classifier manifest in the vicinity of the boundary {x ∶ p(x) =
1∕2}, or equivalently, a hyperplane 𝛽⊤x = 0 for the logistic regression model, where accurate pre-
diction of the class label becomes particularly challenging. However, in regions where p(x) is
sufficiently away from 1∕2, referred to as the margin or low-noise condition, there exists poten-
tial for improving the bounds on prediction risk. The improvement of the obtained risk bounds
is done under the additional low-noise or margin assumption.

3.2 Improved bounds under the margin condition

In this work, we make use of the following margin assumption as in Mammen and Tsy-
bakov (1999), see also Tsybakov (2004); Bartlett et al. (2006).
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8 MAI

Assumption 3 (Low-noise/Margin assumption). We assume that there is a constant
C ≥ 1 such that:

E

[(
1Y (𝛽⊤x)≤0 − 1Y (𝛽∗⊤x)≤0

)2
]

≤ C[R(𝛽) − R∗].

Theorem 3. Assume that Assumptions 1, 2, 3 hold. We have, for 𝜆 = 2n∕(3C + 2), 𝜏 =
1∕(n

√
d) and with probability at least 1 − 2𝜖, 𝜖 ∈ (0, 1), that for all 𝛽∗ such that ||𝛽∗||1 ≤

C1 − 2d𝜏 and ||𝛽∗||0 ≤ s∗,

∫
Rd𝜌̂

𝜆

≤ (1 + 3C′)R∗ + C,C1,C′,Cx

s∗ log(n
√

d∕s∗) + log(1∕𝜖)
n

,

where C,C1,C′,Cx is a universal constant depending only on C,C′
,C1,Cx.

The proof can be found in Appendix A.

Remark 3. The prediction bounds derived in Theorems 3 and 1 represent novel
contributions to the field. These bounds explicitly depend on s∗, signifying the adapt-
ability of our method in scenarios characterized by sparsity. It is crucial to highlight
that the outcomes of these main theorems exhibit adaptive characteristics, indicating
that the estimator’s performance is independent of s∗, the sparsity of 𝛽∗. In instances
where the true sparsity s∗ is very small, the prediction error aligns closely with the
Bayes error, denoted as R∗, even when dealing with a relatively small sample size. This
outcome is commonly denoted as an “oracle inequality,” suggesting that our estimator
performs comparably to a scenario where knowledge of the sparsity of 𝛽∗ is accessible
through an oracle.

Remark 4. Compared to Theorem 1, the bound in Theorem 3 is faster and of order
1∕n rather than 1∕

√
n. These bounds allow to compare the out-of-sample error of our

method to the optimal one, R∗.

Let us now consider the noiseless case where Y = sign(𝛽∗⊤x) almost surely. Then, R∗ = 0 and
we have that

E

[(
1Y (𝛽⊤x)≤0 − 1Y (𝛽∗⊤x)≤0

)2
]

= E

[

12
Y (𝛽⊤x)≤0

]

= E
[
1Y (𝛽⊤x)≤0

]
= R(𝛽) = R(𝛽) − R∗.

Thus, the margin assumption is satisfied with C = 1. We now state a corollary in the noiseless
case for Theorem 3.

Corollary 1. In the case of noiseless, that is, Y = sign(𝛽∗⊤x), we have, for 𝜆 = 2n∕5, 𝜏 =
1∕(nd) and with probability at least 1 − 2𝜖, 𝜖 ∈ (0, 1), that for all 𝛽∗ such that ||𝛽∗||1 ≤
C1 − 2d𝜏 and ||𝛽∗||0 ≤ s∗,

∫
Rd𝜌̂

𝜆

≤ ′
s∗ log

(
n
√

d
s∗

)

+ log(1∕𝜖)

n
,

where ′ ∶= 1,C1,C′,Cx is a universal constant depending only on C1,C′
,Cx.

Remark 5. According to Corollary 1, the bound on the misclassification excess risk
for our proposed method follows an order of s∗ log(de∕s∗)∕n. Meanwhile, under
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MAI 9

Assumption 3, the study in Abramovich and Grinshtein (2018) established a minimax
lower bound for the misclassification excess risk, which is of the order s∗ log(de∕s∗)∕n.
Notably, this lower bound is also achieved by the logistic Slope estimator in that
same paper under additional Weighted Restricted Eigenvalue condition. As a result,
in the noiseless case, our rate is demonstrated to be minimax-optimal in a setting that
n ≤ e

√
d, by noting that n

√
d

s∗
= n

e
√

d
de
s∗

.

In analogy to Theorem 2, given additional Assumption 3, we can establish that a stochastic
classifier, ̂𝛽 ∼ 𝜌̂

𝜆

, drawn from our proposed pseudo-posterior in Equation (1) exhibits a fast rate.
This particular finding is sometimes denominated as the contraction rate of the pseudo-posterior.

Theorem 4. Under the same assumptions for Theorem 3, and the same definition for
𝜏 and 𝜆, let 𝜀n be any sequence in (0, 1) such that 𝜀n → 0 when n →∞. Define

Ωn =

{

𝛽 ∈ R
d ∶ R ≤ (1 + 3C′)R∗ + C,C1,C′,Cx

s∗ log(n
√

d∕s∗) + log(1∕𝜀n)
n

}

.

Then

E

[

P
̂
𝛽∼𝜌̂

𝜆

( ̂𝛽 ∈ Ωn)
]

≥ 1 − 2𝜀n −−−−−→n→∞
1.

The results presented in Theorems 2 and 4 are also novel findings, to the best of our
knowledge.

Remark 6. In this section, we demonstrate the existence of specific values for the tun-
ing parameters 𝜆 and 𝜏 in our proposed method in theoretical results for prediction
errors. It is important to acknowledge, however, that these values may not be the most
suitable for practical applications. In practical applications, cross-validation can be
employed to appropriately fine-tune these parameters. Nevertheless, the theoretical
values identified in our analysis provide valuable insights into the expected magnitude
of these tuning parameters when applied in practical situations.

3.3 Sharp rates with known sparsity s∗

In the present section, we operate under the assumption that s∗, denoting the number of nonzero
coefficients in 𝛽∗, is a known quantity. This assumption allows us to obtain results that sharply
align with the rates established in Abramovich and Grinshtein (2018) (in the noiseless case). The
first refinement is observed in the context of Theorem 1, where the tuning parameters 𝜆 and 𝜏 are
intricately dependent on the specific value of s∗.

Proposition 1. Assume that Assumptions 1 and 2 hold. We have, for 𝜏 = s∗∕(n
√

d)
and 𝜆 =

√
ns∗ log(de∕s∗), with probability at least 1 − 2𝜖, 𝜖 ∈ (0, 1), that for all 𝛽∗ such

that ||𝛽∗||1 ≤ C1 − 2d𝜏 and ||𝛽∗||0 ≤ s∗,

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + c
√

s∗ log(de∕s∗)
√

n
+

log(1∕𝜖)
√

ns∗ log(de∕s∗)
,
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10 MAI

where c is a universal constant depending only on C1,C′
,Cx.

Remark 7. The proof of Proposition 1 is given in Appendix A.4. In the noise-
less case, i.e. R∗ = 0, the rate in Proposition 1 is exactly matched the result from
theorem 2 in Abramovich and Grinshtein (2018) that proved a lower bound of order√

s∗ log(de∕s∗)∕n.

The subsequent refinement becomes apparent within the framework of Theorem 3, wherein
the dependency on the value of s∗ is now explicitly confined to the tuning parameter 𝜏, while
other parameters remain unaffected.

Proposition 2. Assume that Assumptions 1, 2, and 3 hold. We have, for 𝜆 = 2n∕(3C +
2), 𝜏 = s∗∕(n

√
d) and with probability at least 1 − 2𝜖, 𝜖 ∈ (0, 1), that for all 𝛽∗ such that

||𝛽∗||1 ≤ C1 − 2d𝜏 and ||𝛽∗||0 ≤ s∗,

∫
Rd𝜌̂

𝜆

≤ (1 + 3C′)R∗ + C,C1,C′,Cx

s∗ log(de∕s∗) + log(1∕𝜖)
n

,

where C,C1,C′,Cx is a universal constant depending only on C,C1,C′
,Cx.

Remark 8. The proof of Proposition 2 is given in Appendix A.4. In the noiseless case,
i.e. R∗ = 0, the rate in Proposition 2 is exactly matched the result from Theorem 4 in
Abramovich and Grinshtein (2018), which is s∗ log(de∕s∗)∕n.

Remark 9. It is emphasized that all the oracle inequalities presented in the paper
are not sharp; in other words, instead of R( ̂𝛽) ≤ R∗ + … , we establish R( ̂𝛽) ≤ (1 +
𝛿)R∗ + … with 𝛿 > 0. Therefore, the pursuit of achieving sharp oracle inequalities
for our method remains a significant unresolved issue, which we defer to future
investigations.

4 NUMERICAL STUDIES

4.1 Implementation and comparison of methods

4.1.1 Implementation

In this section, we introduce the use of the LMC algorithm as a method for sampling from
the pseudo-posterior. The LMC algorithm is a gradient-based method for sampling from a
distribution.

First, a constant step-size unadjusted LMC algorithm, as described in Durmus and
Moulines (2019), is proposed. The algorithm starts with an initial matrix 𝛽0 and uses the recursion:

𝛽s+1 = 𝛽s − h∇ log 𝜌̂
𝜆

(𝛽s) +
√

2hEs s = 0, 1, … , (3)

where h > 0 is the step-size and E0,E1, … are independent random vectors with i.i.d stan-
dard Gaussian entries. It is essential to exercise caution when selecting the step size h, as an
insufficiently small value may lead to the summation exploding, as highlighted in Roberts and
Stramer (2002). As an alternative method to ensure convergence to the desired distribution,
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MAI 11

one can incorporate a Metropolis–Hastings (MH) correction into the algorithm. However, this
approach tends to slow down the algorithm due to the additional acceptance/rejection step
required at each iteration.

The updating rule presented in (3) is now regarded as a proposal for a new candidate.

̃
𝛽s+1 = 𝛽s − h∇ log 𝜌̂

𝜆

(𝛽s) +
√

2hEs, s = 0, 1, … ,

This proposal is accepted or rejected in accordance with the MH algorithm, with the following
probability:

min
{

1,
𝜌̂
𝜆

( ̃𝛽s+1)q(𝛽s| ̃𝛽s+1)
𝜌̂
𝜆

(𝛽s)q( ̃𝛽s+1|𝛽s)

}

,

where q(x′|x) ∝ exp
(
−||x′ − x + h∇ log 𝜌̂

𝜆

(x)||2∕(4h)
)

is the transition probability density from
x to x′. This is recognized as the Metropolis-adjusted Langevin algorithm (MALA), ensuring
convergence to the (pseudo) posterior. In contrast to the random-walk Metropolis-Hastings
(MH), MALA typically suggests moves toward regions with higher probability, enhancing
the likelihood of acceptance. The selection of the step-size h for MALA aims to achieve
an acceptance rate of approximately 0.5, as recommended by Roberts and Rosenthal (1998).
In the same configuration, the step-size for LMC is chosen to be smaller than those
for MALA.

4.1.2 Comparison of methods

We will evaluate the efficacy, in term of prediction error, of our proposed methodologies by com-
paring them to Bayesian approaches that utilize logistic regression, as elucidated in Section 2.1. In
this scenario, the pseudo-likelihood exp(−𝜆r𝓁(M)), with𝜆 = n, aligns precisely with the likelihood
of the logistic model. Here,

r𝓁(M) = 1
n

N∑

i=1
logit

(
Yi(𝛽⊤xi)

)
,

where logit(u) = log(1 + e−u) represents the logistic loss. It is important to note that the prior
distribution remains consistent with the previous sections. As investigated in Zhang (2004),
the logistic loss can function as a convex substitute for the hinge loss, providing an approx-
imation to the 0–1 loss. However, it is essential to highlight that utilizing the logistic
loss may result in a slower convergence rate compared to the hinge loss, as discussed in
Zhang (2004).

In this investigation, we assess the effectiveness of our suggested approaches using hinge loss,
identified as HLMC and HMALA for the LMC and MALA algorithms, respectively. We compare these
methods with three other alternatives: (1) LogitLMC , (2) LogitMALA , both based on Bayesian logis-
tic regression, and (3) the logistic Lasso, which represents a contemporary and highly regarded
method. The logistic Lasso is a frequentist technique, and its implementation is available in the
R package “glmnet” (Friedman et al., 2010).
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12 MAI

4.2 Simulation setup

We examine various scenarios for data generation to evaluate the performance of our approach.
Initially, we consider a small-scale setup with dimensions n = 50, p = 100. In this initial config-
uration, the sparsity, or the number of non-zero coefficients in the true parameter 𝛽∗, is set as
s0 = 10. Subsequently, we explore a larger setup with n = 200, p = 1,000. In this second configu-
ration, the sparsity of the true parameter 𝛽∗ is adjusted between s0 = 100 and s0 = 10, with the
latter denoting a highly sparse model. The entries of the covariate matrix X are generated from
a normal distribution (0, 1). In all instances, the non-zero coefficients of 𝛽∗ are independently
and identically drawn from (0, 102).

Next, we explore the following settings to obtain the responses:

• Setting I:

Y = sign(X𝛽∗ + N)Z.

• Setting II: with u = X𝛽∗ + N, put p = 1∕(1 + e−u):

Yi ∼ Binomial(pi)Z.

In this context, the variability in the noise term (N,Z) results in distinct scenarios, each
contributing to a different setup in every setting. A summary of these variations is provided in
Table 1.

The LMC, MALA are run with 30,000 iterations and the first 5,000 steps are discarded
as burn-in period. The LMC is initialized at the logistic Lasso while the MALA is initialized
at zero-vector. We set the values of tuning parameters 𝜆 and 𝜏 to 1 for all scenarios. It
is important to acknowledge that a better approach could be to tune these parameters
using cross validation, which could lead to improved results. The logistic Lasso method
is run with default options and that 10-fold cross validation is used to select the tuning
parameter.

T A B L E 1 Outline of simulation settings.

Setting Name Z N

I.1 Hinge Z = 1 N = 0

I.2 Hinge with noise Z = 1 N ∼ (0, 1)

I.3 Hinge with switch Z ∼ 0.9𝛿1 + 0.1𝛿−1 N = 0

I.4 Hinge with switch and noise Z ∼ 0.9𝛿1 + 0.1𝛿−1 N ∼ (0, 1)

II.1 Logistic Z = 1 N = 0

II.2 Logistic with switch Z ∼ 0.9𝛿1 + 0.1𝛿−1 N = 0

II.3 Logistic with noise Z = 1 N ∼ (0, 1)

II.4 Logistic with noise and switch Z ∼ 0.9𝛿1 + 0.1𝛿−1 N ∼ (0, 1)
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MAI 13

Each simulation setting is repeated 100 times and we report the averaged results for the mis-
classification rate. The results of the simulations study are detailed in Tables 2–4 and the values
within parentheses indicate the SDs associated with each misclassification rate percentage.

4.3 Results from simulations

The exhaustive analysis of results extracted from Tables 2–4 provides a thorough insight into the
robust performance of our proposed methods when compared to the Lasso and Bayesian logistic
approaches. Significantly, throughout all simulated scenarios, the HLMC method, implemented via
the LMC algorithm, consistently showcases the smallest misclassification rate. This substantiates
the efficacy of our approach across a diverse array of settings, spanning variations in sample size,
sparsity levels, and distinct noise settings.

A noteworthy aspect is the exceptional performance highlighted in Table 2, where HLMC out-
performs the Lasso method by nearly 10-fold. This pronounced superiority is particularly evident
in scenarios characterized by small sample sizes, reinforcing the robustness of our proposed HLMC

T A B L E 2 Misclassification rate.

Setting LogitLMC(%) HLMC(%) LogitMALA(%) HMALA (%) Lasso (%)

I.1 4.30 (2.93) 1.36 (1.63) 6.74 (3.80) 2.92 (2.30) 5.76 (7.38)

I.2 4.36 (3.20) 1.26 (1.52) 6.40 (3.67) 2.38 (2.14) 7.02 (6.75)

I.3 13.9 (5.54) 11.1 (4.59) 15.0 (5.18) 12.0 (4.90) 15.6 (8.09)

I.4 13.7 (5.44) 11.4 (5.17) 15.9 (5.68) 12.0 (4.97) 16.3 (12.1)

II.1 2.16 (2.60) 0.66 (1.14) 5.82 (3.71) 2.42 (2.47) 3.60 (11.1)

II.2 2.08 (2.14) 0.54 (0.98) 6.40 (3.49) 3.08 (2.21) 6.58 (7.00)

II.3 11.2 (4.27) 10.0 (4.09) 14.3 (5.05) 11.6 (4.10) 14.6 (7.90)

II.4 12.0 (4.89) 10.3 (4.17) 15.2 (5.56) 12.5 (4.90) 17.7 (14.5)

Note: n = 50, p = 100, s0 = 10.

T A B L E 3 Misclassification rate.

Setting LogitLMC (%) HLMC(%) LogitMALA (%) HMALA (%) Lasso (%)

I.1 4.60 (1.99) 1.26 (0.91) 7.52 (2.29) 3.04 (1.22) 8.21 (11.4)

I.2 4.76 (2.20) 1.40 (0.90) 7.93 (2.67) 3.00 (1.18) 12.4 (12.2)

I.3 14.1 (2.84) 10.8 (2.14) 16.2 (3.10) 12.2 (2.23) 21.8 (11.2)

I.4 14.1 (262) 10.9 (2.10) 16.4 (2.50) 12.7 (2.08) 20.5 (15.2)

II.1 4.97 (1.91) 1.27 (0.82) 7.90 (2.68) 3.02 (1.33) 9.26 (10.0)

II.2 5.19 (2.12) 1.26 (0.79) 7.48 (2.44) 2.96 (1.25) 10.2 (11.9)

II.3 13.8 (2.56) 11.1 (2.34) 16.5 (3.01) 12.7 (2.41) 20.3 (11.2)

II.4 14.3 (3.26) 11.3 (2.50) 16.2 (3.63) 12.7 (2.43) 19.7 (10.7)

Note: n = 200, p = 1,000, s0 = 100.
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T A B L E 4 Misclassification rate.

Setting LogitLMC (%) HLMC(%) LogitMALA (%) HMALA (%) Lasso (%)

I.1 4.50 (1.68) 1.22 (0.81) 7.20 (2.21) 2.91 (1.22) 4.25 (3.56)

I.2 4.34 (1.71) 1.20 (0.79) 7.34 (2.25) 3.11 (1.21) 3.84 (3.35)

I.3 14.0 (2.34) 10.7 (2.36) 16.0 (2.98) 11.8 (2.48) 12.7 (4.41)

I.4 14.1 (2.62) 10.9 (2.46) 16.4 (2.97) 12.4 (2.36) 12.8 (4.77)

II.1 4.16 (1.68) 1.04 (0.77) 7.13 (2.36) 2.78 (1.17) 3.75 (3.51)

II.2 4.33 (1.47) 1.10 (0.83) 7.12 (2.02) 2.82 (1.16) 4.04 (3.74)

II.3 14.6 (2.91) 11.1 (2.31) 16.9 (2.59) 12.4 (2.24) 13.2 (4.74)

II.4 14.7 (2.77) 11.2 (2.26) 16.8 (2.71) 12.7 (2.33) 13.1 (4.96)

Note: n = 200, p = 1,000, s0 = 10.

method under challenging conditions. This outcome underscores the method’s ability to navigate
challenges related to limited data, emphasizing its potential applicability in practice where small
sample sizes are prevalent.

The second most effective strategy emerges from our proposed method implemented using
the MALA, referred to as HMALA. It consistently secures the second-best position across vari-
ous scenarios. Notably, in almost all cases, except for the logistic model scenario in Table 2,
where LogitLMC exhibits a slight advantage, HMALA stands out as the runner-up. Even in scenarios
where other methods show slight advantages, HLMC maintains dominance. Comparing LogitMALA
with the logistic Lasso reveals nuanced results. In less sparse situations, exemplified by Table 3,
LogitMALA demonstrates a slight performance edge. However, in the case of highly sparse models,
as exemplified in Table 4, the logistic Lasso emerges as the more efficient choice.

Generally, as observed from Tables 3 and 4, there is a tendency for all considered methods to
reduce the misclassification rate as the sparsity level increases. This trend is particularly notable
for the logistic Lasso. However, the enhancements in performance for our methods (HLMC and
HMALA) are modest, indicating their adaptability to varying levels of sparsity. Similarly, with an
increase in both dimension and sample size, as demonstrated from Tables 2 to 4, there are also
noticeable performance improvements in our methods (HLMC and HMALA), as well as the logistic
Lasso. These findings offer valuable insights into the strengths and limitations of each method,
facilitating informed decision-making based on the specific characteristics of the dataset under
consideration.

4.4 An application: Prostate tumor classification with microarray
gene expression data

In this section, we evaluate the performance of our proposed methods on a real data.
The “prostate” dataset is accessible through the R package “spls” (Chung, Chun, &

Keles, 2019). It comprises 52 samples corresponding to prostate tumors and 50 samples cor-
responding to normal tissue. The response variable Y encodes normal and tumor classes as 0
and 1, respectively. The covariates matrix X , with dimensions 102 rows by 6,033 columns, rep-
resents gene expression data. Preprocessing steps, including normalization, log transformation,
and standardization to achieve zero mean and unit variance across genes, were applied to the
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T A B L E 5 Misclassification rate for real prostate data.

LogitLMC (%) HLMC(%) LogitMALA (%) HMALA (%) Lasso (%)

9.71 (4.41) 9.58 (4.31) 9.74 (4.47) 9.55 (4.42) 9.77 (4.31)

arrays, following the procedures outlined in Dettling (2004) and Dettling and Bühlmann (2002).
Additional details can be found in Chung and Keles (2010).

The dataset is randomly partitioned into two subsets: a training set comprising 71 samples
and a test set comprising 31 samples, roughly representing 70/30 percent of the total samples. The
training data is utilized for running the methods, and their prediction accuracy is assessed based
on the test data. This process is repeated 100 times, each instance involving a distinct random
partition of the training and test data. The outcomes of this iterative procedure are depicted in
Table 5. This strategy enables us to accommodate potential fluctuations in the data and gain a
more thorough comprehension of the methods’ performance.

The findings presented in Table 5 indicate that all the methods under consideration exhibit
effective performance, yielding comparable results. Specifically, HMALA demonstrates an error
rate of 9.55%, showcasing proficiency; however, this improvement is marginal when compared
to the 9.77% error rate achieved by Lasso. The similarity in the outcomes suggests that, in this
context, the performance distinctions between HMALA and Lasso are relatively small.

5 DISCUSSION AND CONCLUSION

In this work, we present an innovative probabilistic framework designed to address the chal-
lenges associated with high-dimensional sparse classification problems. Our approach involves
the utilization of exponential weights associated with the empirical hinge loss, leading to the
establishment of a pseudo-posterior distribution within a class of sparse linear classifiers. Notably,
we introduce a sparsity-inducing prior distribution over this class, utilizing a scaled Student’s
t-distribution with 3 degrees of freedom.

By employing the PAC-Bayesian bound technique, we derive comprehensive theoretical
insights into our proposed methodology, particularly focusing on prediction errors. Specifi-
cally, under the low-noise condition, we demonstrate that our approach exhibits a fast rate of
convergence of order n−1. Importantly, in the noiseless case, our analysis reveals that the predic-
tion error achieved is minimax-optimal. Furthermore, we establish the contraction rate of our
pseudo-posterior, presenting novel findings in the current literature.

Beyond the robust theoretical foundation, our approach facilitates practical implementation
insights. We leverage the LMC method, a gradient-based sampling approach, to demonstrate
the applicability of our framework. Through extensive simulations and a real data application,
our method showcases enhanced robustness across various scenarios, such as varying sample
sizes and sparsity levels. Numerical results highlight the superior performance of our approach
compared to the logistic Lasso, a widely recognized state-of-the-art method.

Looking ahead, future investigations could delve into the estimation challenges posed by
our methodology. Additionally, a crucial aspect not addressed in this paper pertains to variable
selection, a topic of paramount importance in practical applications. This opens avenues for
further research and exploration in enhancing the versatility and applicability of our proposed
approach.
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APPENDIX A. PROOFS

For any Θ ⊂ Rd, let (Θ) denote the set of all probability distributions on Θ equipped with
the Borel 𝜎-algebra. For (𝜇, 𝜈) ∈ (Θ)2, (𝜈, 𝜇) denotes the Kullback–Leibler divergence. The
following Donsker and Varadhan’s lemma is an important key to establish our results.

Lemma 1 (Catoni (2007), lemma 1.1.3). Let 𝜇 ∈ (Θ). For any measurable, bounded
function h ∶ Θ → R we have:

log
∫

eh(𝜃)
𝜇(d𝜃) = sup

𝜌∈(Θ)

[

∫
h(𝜃)𝜌(d𝜃) −(𝜌, 𝜇)

]

.

Moreover, the supremum w.r.t 𝜌 in the right-hand side is reached for the Gibbs distribu-
tion, 𝜌̂(d𝜃) ∝ exp(h(𝜃))𝜋(d𝜃).

A.1 Proof for slow rate
We remind that R∗ = R(𝛽∗), r∗n = rn(𝛽∗). We remind here a version of Hoeffding’s inequality for
bounded random variables.

Lemma 2. Let Ui, i = 1, … ,n be n independent random variables with a ≤ Ui ≤ b
a.s., and E(Ui) = 0. Then, for any 𝜆 > 0,

E exp

(

𝜆

n

n∑

i=1
Ui

)

≤ exp
(
𝜆

2(b − a)2

8n

)

.

Proof of Theorem 1. Step 1:
Put

Ui = 1Yi(𝛽⊤xi)≤0 − 1Yi(𝛽∗⊤xi)≤0.

Then, −1 ≤ Ui ≤ 1 a.s., we apply the Hoeffding’s Lemma 2 to get

E exp {𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n]} ≤ exp
{
𝜆

2

2n

}

.

We obtain, for any 𝜆 ∈ (0,n),

∫
E exp

{

𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] −
𝜆

2

2n

}

d𝜋(𝛽) ≤ 1,
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and, using the Fubini’s theorem, we get that

E
∫

exp
{

𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] −
𝜆

2

2n

}

d𝜋(𝛽) ≤ 1, (A1)

Consequently, using Lemma 1,

E exp
{

sup
𝜌
∫

{

𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] −
𝜆

2

2n

}

𝜌(d𝛽) −(𝜌, 𝜋)
}

≤ 1.

Using Markov’s inequality, for 𝜖 ∈ (0, 1),

P

(

sup
𝜌
∫

{

𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] −
𝜆

2

2n

}

𝜌(d𝛽) −(𝜌, 𝜋) + log 𝜖 > 0
)

≤ 𝜖.

Then taking the complementary and we obtain with probability at least 1 − 𝜖 that:

∀𝜌, 𝜆

∫
[R(𝛽) − R∗]𝜌(d𝛽) ≤ 𝜆

∫
[rn(𝛽) − r∗n]𝜌(d𝛽) +(𝜌, 𝜋) +

𝜆

2

2n
+ log 1

𝜖

.

Now, note that as rh
n ≥ rn and as it stands for all 𝜌 then the right-hand side can be

minimized and, from Lemma 1, the minimizer over (Rd) is 𝜌̂
𝜆

. Thus we get, when
𝜆 > 0,

∫
Rd𝜌̂

𝜆

≤ R∗ + inf
𝜌∈(Rd)

[

∫
rh

nd𝜌 + 1
𝜆

(𝜌, 𝜋)
]

− r∗n +
𝜆

2n
+ 1
𝜆

log 1
𝜖

.

Step 2:
First, we have that,

∫
rh

n(𝛽)𝜌(d𝛽) =
1
n ∫

n∑

i=1
(1 − Yi(𝛽⊤xi))+ 𝜌(d𝛽)

≤
1
n

[ n∑

i=1
(1 − Yi(𝛽∗⊤xi))+ +

∫

n∑

i=1

|
|
|
(𝛽 − 𝛽∗)⊤xi

|
|
|
𝜌(d𝛽)

]

≤ rh
n(𝛽∗) +

1
n

n∑

i=1
∫
||𝛽 − 𝛽∗||2||xi||2𝜌(d𝛽)

≤ rh
n(𝛽∗) + Cx

∫
||𝛽 − 𝛽∗||2𝜌(d𝛽).

(A2)

And for 𝜌 = p0, as in (A6), and using Lemma 5,

∫
||𝛽 − 𝛽∗||2p0(d𝛽) ≤

(

∫
||𝛽 − 𝛽∗||22p0(d𝛽)

)1∕2

≤ 2𝜏
√

d.

From Lemma 6, we have that

(p0, 𝜋) ≤ 4s∗ log
(

C1

𝜏s∗

)

+ log(2).
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From Assumption 2, we have rh
n(𝛽∗) ≤ (1 + C′)r∗n, we obtain

∫
Rd𝜌̂

𝜆

≤ R∗ + C′r∗n + Cx2𝜏
√

d +
4s∗ log

(
C1
𝜏s∗

)

+ log(2)

𝜆

+ 𝜆

2n
+ 1
𝜆

log
(1
𝜖

)

.

Then, we use Lemma 4, with probability at least 1 − 2𝜖, to obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + C′ 1
n𝜍

log 1
𝜖

+ Cx2𝜏
√

d +
4s∗ log

(
C1
𝜏s∗

)

+ log(2)

𝜆

+ 𝜆

2n
+ 1
𝜆

log
(1
𝜖

)

.

(A3)
By taking 𝜏 = 1∕(n

√
d), we obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + C′ 1
n𝜍

log 1
𝜖

+ Cx

4s∗ log
(

n
√

dC1
s∗

)

+ log(2)

𝜆

+ 𝜆

2n
+ 1
𝜆

log
(1
𝜖

)

.

By taking 𝜆 =
√

n log(nd), we can obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + Cx

4s∗ log
(

n
√

dC1
s∗

)

√
n log(nd)

+
√

log(nd)

2
√

n
+

(

1
√

n log(nd)
+ C′

n𝜍

)

log(1∕𝜖).

Therefore, we can obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + c
s∗
√

log
(

n
√

d∕s∗
)

√
n

+ c
log(1∕𝜖)
√

n log(nd)
,

where c is a universal constant depending only on C′
,C1,Cx. The proof is

completed. ▪

Proof of Theorem 2. Let 𝜀n be any sequence in (0, 1) such that 𝜀n → 0 when n → ∞.
From (A1), we have that

E

[

∫
exp

{

𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] − log
[

d𝜌̂
𝜆

d𝜋
(𝛽)
]

− 𝜆

2

2n
− log 1

𝜀n

}

𝜌̂
𝜆

(d𝛽)
]

≤ 𝜀n.

We now use the Chernoff’s trick, that is, using exp(x) ≥ 1R+(x), this yields:

E
[
P
𝛽∼𝜌̂

𝜆

(𝛽 ∈ Θn)
]
≥ 1 − 𝜀n,

where

Θn =
{

𝛽 ∶ 𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] ≤ log
[

d𝜌̂
𝜆

d𝜋
(𝛽)
]

+ 𝜆

2

2n
+ log 2

𝜀n

}

.
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Using the definition of 𝜌̂
𝜆

and noting that as rn ≤ rh
n, for 𝛽 ∈ Θn we have

𝜆[R(𝛽) − R∗] ≤ 𝜆(r(𝛽) − r∗n) + log
[

d𝜌̂
𝜆

d𝜋
(𝛽)
]

+ 𝜆

2

2n
+ log 2

𝜀n

≤ 𝜆
(

rh
n(𝛽) − r∗n

)
+ log

[
d𝜌̂

𝜆

d𝜋
(𝛽)
]

+ 𝜆

2

2n
+ log 2

𝜀n

≤ − log
∫

exp
[
−𝜆rh

n(𝛽)
]
𝜋(d𝛽) − 𝜆r∗n +

𝜆

2

2n
+ log 2

𝜀n

= 𝜆
(

∫
rh

n(𝛽)𝜌̂𝜆(d𝛽) − r∗n
)

+(𝜌̂
𝜆

, 𝜋) + 𝜆

2

2n
+ log 2

𝜀n

= inf
𝜌

{

𝜆

(

∫
rh

n(𝛽)𝜌(d𝛽) − r∗n
)

+(𝜌, 𝜋) + 𝜆

2

2n
+ log 2

𝜀n

}

.

We upper-bound the right-hand side exactly as Step 2 in the proof of Theorem 1 (with
Lemma 4). The result of the theorem is followed. ▪

A.2 Proof for fast rate
We will make use of the following version of the Bernstein’s lemma taken from Massart (2007,
p. 24).

Lemma 3. Let U1, … , Un be independent real valued random variables. Let us assume
that there are two constants v and w such that

∑n
i=1E[U2

i ] ≤ v and that for all integers
k ≥ 3,

∑n
i=1E

[
(Ui)k+

]
≤ vk!wk−2∕2. Then, for any 𝜁 ∈ (0, 1∕w),

E exp

[

𝜁

n∑

i=1

[
Ui − EUi

]
]

≤ exp
(

v𝜁2

2(1 − w𝜁)

)

.

Proof of Theorem 3. Step 1:
Fix any 𝛽 and put

Ui = 1Yi(𝛽⊤xi)≤0 − 1Yi(𝛽∗⊤xi)≤0.

Under Assumption 3, we have that
∑

i E[U2
i ] ≤ nC[R(𝛽) − R∗]. Now, for any integer

k ≥ 3, as the 0-1 loss is bounded, we have that

∑

i
E
[
(Ui)k+

]
≤
∑

i
E
[
|Ui|

k−2|Ui|
2] ≤

∑

i
E
[
|Ui|

2]
.

Thus, we can apply Lemma 3 with v ∶= nC[R(𝛽) − R∗], w ∶= 1 and 𝜁 ∶= 𝜆∕n. We
obtain, for any 𝜆 ∈ (0,n),

E exp{𝜆([R(𝛽) − R∗] − [rn(𝛽) − r∗n])} ≤ exp
{

C𝜆2[R(𝛽) − R∗]
2n(1 − 𝜆∕n)

}

,

and

∫
E exp

{

𝜆[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] −
C𝜆2[R(𝛽) − R∗]

2n(1 − 𝜆∕n)

}

d𝜋(𝛽) ≤ 1.
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Them, using Fubini’s theorem, we get:

E
∫

exp
{

(𝜆 − C𝜆2

2n(1 − 𝜆∕n)
)[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n]

}

𝜋(d𝛽) ≤ 1. (A4)

Consequently, using Lemma 1,

E exp
{

sup
𝜌
∫

{

(𝜆 − C𝜆2

2n(1 − 𝜆∕n)
)[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n]

}

𝜌(dM) −(𝜌, 𝜋)
}

≤ 1.

Using Markov’s inequality,

P

(

sup
𝜌
∫

{

(𝜆 − C𝜆2

2n(1 − 𝜆∕n)
)[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n]

}

𝜌(d𝛽) −(𝜌, 𝜋) + log 𝜖 > 0
)

≤ 𝜖.

Then taking the complementary and we obtain with probability at least 1 − 𝜖 that:

∀𝜌, (𝜆 − C𝜆2

2n(1 − 𝜆∕n)
)
∫
[R(𝛽) − R∗]𝜌(d𝛽) ≤ 𝜆

∫
[rn(𝛽) − r∗n]𝜌(d𝛽) +(𝜌, 𝜋) + log 1

𝜖

.

Now, note that as rh
n ≥ rn,

𝜆

[

∫
rnd𝜌 − r∗n

]

+(𝜌, 𝜋) + log 1
𝜖

≤ 𝜆

[

∫
rh

nd𝜌 + 1
𝜆

(𝜌, 𝜋)
]

− 𝜆r∗n + log 1
𝜖

.

As it stands for all 𝜌 then the right-hand side can be minimized and, from Lemma 1,
the minimizer over (Rd) is 𝜌̂

𝜆

. Thus we get, when 𝜆 < 2n∕(C + 2),

∫
Rd𝜌̂

𝜆

≤ R∗ + 1
1 − C𝜆

2n(1−𝜆∕n)

{

inf
𝜌∈(Rd)

[

∫
rh

nd𝜌 + 1
𝜆

(𝜌, 𝜋)
]

− r∗n +
1
𝜆

log 1
𝜖

}

.

Step 2:
From (A2), we have that,

∫
rh

n(𝛽)𝜌(d𝛽) ≤ rh
n(𝛽∗) + Cx

∫
||𝛽 − 𝛽∗||2𝜌(d𝛽).

And for 𝜌 = p0, as in (A2), and using Lemma 5,

∫
||𝛽 − 𝛽∗||2p0(d𝛽) ≤ 2𝜏

√
d.

From Lemma 6, we have that

(p0, 𝜋) ≤ 4||𝛽∗||0 log
(

C1

𝜏||𝛽∗||0

)

+ log(2).
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24 MAI

From Assumption 2, as rh
n(𝛽∗) ≤ (1 + C′)r∗n, we have that

∫
Rd𝜌̂

𝜆

≤ R∗ + 1
1 − C𝜆

2n(1−𝜆∕n)

⎧
⎪
⎨
⎪
⎩

C′r∗n + Cx2𝜏
√

d +
4||𝛽∗||0 log

(
C1

𝜏||𝛽∗||0

)

+ log(2)

𝜆

+ 1
𝜆

log
(1
𝜖

)
⎫
⎪
⎬
⎪
⎭

.

Taking 𝜆 = 2n∕(3C + 2), we obtain:

∫
Rd𝜌̂

𝜆

≤ R∗+

3
2

⎧
⎪
⎨
⎪
⎩

C′r∗n + Cx2𝜏
√

d +
(3C + 2)

[

4||𝛽∗||0 log
(

C1
𝜏||𝛽∗||0

)

+ log(2)
]

2n
+
(3C + 2) log(1∕𝜖)

2n

⎫
⎪
⎬
⎪
⎭

.

Then, we use Lemma 4, with probability at least 1 − 2𝜖, to obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 3C′)R∗+

3
2

⎧
⎪
⎨
⎪
⎩

C′ 1
n𝜍

log 1
𝜖

+ Cx2𝜏
√

d +
(3C + 2)

[

4||𝛽∗||0 log
(

C1
𝜏||𝛽∗||0

)

+ log(2)
]

2n
+
(3C + 2) log(1∕𝜖)

2n

⎫
⎪
⎬
⎪
⎭

.

(A5)
By taking 𝜏 = 1∕(n

√
d), we can obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 3C′)R∗ + C,C′,Cx

||𝛽∗||0 log
(

n
√

dC1
||𝛽∗||0

)

+ log(1∕𝜖)

n
,

where C,C′,Cx is a universal constant depending only on C,C′
,C1,Cx. The proof is

completed. ▪

Proof of Theorem 4. Let 𝜀n be any sequence in (0, 1) such that 𝜀n → 0 when n → ∞.
From (A4), we have that

E

[

∫
exp

{

(𝜆 − C𝜆2

2n(1 − 𝜆∕n)
)[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] − log

[
d𝜌̂

𝜆

d𝜋
(𝛽)
]

− log 1
𝜀n

}

𝜌̂
𝜆

(d𝛽)
]

≤ 𝜀n.

Using Chernoff’s trick, that is, using exp(x) ≥ 1R+(x), this gives:

E
[
P
𝛽∼𝜌̂

𝜆

(𝛽 ∈ Ωn)
]
≥ 1 − 𝜀n,

where

Ωn =
{

𝛽 ∶ (𝜆 − C𝜆2

2n(1 − 𝜆∕n)
)[R(𝛽) − R∗] − 𝜆[rn(𝛽) − r∗n] ≤ log

[
d𝜌̂

𝜆

d𝜋
(𝛽)
]

+ log 2
𝜀n

}

.
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Using the definition of 𝜌̂
𝜆

and noting that rn ≤ rh
n, for 𝛽 ∈ Ωn we have

(

𝜆 − C𝜆2

2n(1 − 𝜆∕n)

)
[
R(𝛽) − R∗

]
≤ 𝜆(rn(𝛽) − r∗n) + log

[
d𝜌̂

𝜆

d𝜋
(𝛽)
]

+ log 2
𝜀n

≤ 𝜆
(

rh
n(𝛽) − r∗n

)
+ log

[
d𝜌̂

𝜆

d𝜋
(𝛽)
]

+ log 2
𝜀n

≤ − log
∫

exp
[
−𝜆rh

n(𝛽)
]
𝜋(d𝛽) − 𝜆r∗n + log 2

𝜀n

= 𝜆
(

∫
rh

n(𝛽)𝜌̂𝜆(d𝛽) − r∗n
)

+(𝜌̂
𝜆

, 𝜋) + log 2
𝜀n

= inf
𝜌

{

𝜆

(

∫
rh

n(𝛽)𝜌(d𝛽) − r∗n
)

+(𝜌, 𝜋) + log 2
𝜀n

}

.

We upper-bound the right-hand side exactly as Step 2 in the proof of Theorem 3 (with
Lemma 4). The result of the theorem is followed. ▪

A.3 Proof of auxiliary lemmas

Lemma 4. For 𝜖 ∈ (0, 1), with probability at least 1 − 𝜖, we have, for every 𝜍 ∈ (0, 1),
that

r∗n ≤ (1 + 𝜍)R∗ +
1

n𝜍
log 1

𝜖

.

or we can have r∗n ≤ 2R∗ + 1
n𝜍

log 1
𝜖

.

Proof. Let 𝜍 ∈ (0, 1), we have that

E(exp[𝜍nr∗n]) =
n∏

i=1
E
(
exp

[
𝜍1(Yi(𝛽∗⊤xi)<0)

])

=
n∏

i=1
E
{

exp
[
𝜍1(Yi(𝛽∗⊤xi)<0) + 0(1 − 1(Yi(𝛽∗⊤xi)<0))

]}

≤

n∏

i=1

{
e𝜍E
[
1(Yi(𝛽∗⊤xi)<0)

]
+
(
1 − E

[
1(Yi(𝛽∗⊤xi)<0)

])}

≤

n∏

i=1
(e𝜍R∗ + 1 − R∗) =

n∏

i=1
(R∗(e𝜍 − 1) + 1)

≤

n∏

i=1
exp(R∗(e𝜍 − 1)) = exp(nR∗(e𝜍 − 1)).

Thus we obtain, for 𝜖 ∈ (0, 1):

E

[

exp
(

𝜍nr∗n − nR∗(e𝜍 − 1) − log 1
𝜖

)]

≤ 𝜖.

Now, using Markov’s inequality that P(W > 0) ≤ E[eW ] for any W , we get that

𝜍nr∗n − (e𝜍 − 1)nR∗ − log 1
𝜖

≤ 0,
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with probability at least 1 − 𝜖. Thus, the result of the lemma is obtained by noting that
e𝜍 ≤ 1 + 𝜍 + 𝜍2

, 𝜍 ∈ (0, 1). ▪

Definition 1. We define the following distribution as a translation of the prior 𝜋,

p0(𝛽) ∝ 𝜋(𝛽 − 𝛽∗)1B1(2d𝜏)(𝛽 − 𝛽∗). (A6)

It is worth highlighting that given ||𝛽∗||1 ≤ C1 − 2d𝜏, when the condition 𝛽 − 𝛽∗ ∈ B1(2d𝜏)
holds, it implies that 𝛽 ∈ B1(C1). Consequently, the distribution p0 is absolutely continuous with
respect to the prior distribution 𝜋.

Lemma 5. Let p0 be the probability measure defined by (A6). If d ≥ 2 then

∫Λ
||𝛽 − 𝛽∗||2p0(d𝛽) ≤ 4d𝜏2

.

Proof. First, we have that

∫Λ
||𝛽 − 𝛽∗||2p0(d𝛽) = d

∫Λ
(𝛽1 − 𝛽∗1 )

2p0(d𝛽).

Using lemma 2 from Dalalyan and Tsybakov (2012a) we get

∫Λ
(𝛽1 − 𝛽∗1 )

2p0(d𝛽) ≤ 4𝜏2
,

and the desired inequality follows. ▪

Lemma 6. Let p0 be the probability measure defined by (A6). Then

KL(p0, 𝜋) ≤ 4s∗ log
(

C1

𝜏s∗

)

+ log(2).

Proof. From lemma 3 in Dalalyan and Tsybakov (2012a), we have that

KL(p0, 𝜋) ≤ 4
d∑

j=1
log(1 + |𝛽∗j |∕𝜏) + log(2).

Then, from corollary 1 in Dalalyan and Tsybakov (2012a) (that using Jensen’s inequal-
ity), we have that

1
s∗

d∑

j=1
log(1 + |𝛽∗j |∕𝜏) ≤ log

(

1 + ||𝛽
∗||1

𝜏s∗

)

.

As ||𝛽∗||1 ≤ C1 − 2d𝜏, we then have that

log
(

1 + ||𝛽
∗||1

𝜏s∗

)

≤ log
(

1 + C1 − 2d𝜏
𝜏s∗

)

≤ log
(

C1

𝜏s∗
− 1
)

≤ log
(

C1

𝜏s∗

)

,

by noting that ||𝛽∗||0 ≤ s∗ ≤ n < d. Thus, we obtain the desired result. ▪
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A.4 Proofs for Section 3.3

Proof of Proposition 1. From the proof of Theorem 1, inequality (A3), with probability
at least 1 − 2𝜖, we have that

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + C′ 1
n𝜍

log 1
𝜖

+ Cx2𝜏
√

d +
4s∗ log

(
C1
𝜏s∗

)

+ log(2)

𝜆

+ 𝜆

2n
+ 1
𝜆

log
(1
𝜖

)

.

By taking now 𝜏 = s∗∕(n
√

d) and 𝜆 =
√

ns∗ log(de∕s∗), we obtain that

∫
Rd𝜌̂

𝜆

≤

(1 + 2C′)R∗ + Cx
2s∗
n
+

4s∗ log
(

n
√

dC1
s∗s∗

)

√
ns∗ log(de∕s∗)

+
√

s∗ log(de∕s∗)

2
√

n

+

(

1
√

ns∗ log(de∕s∗)
+ C′

n𝜍

)

log
(
𝜖

−1)
.

By noting that

n
√

d
s∗s∗

= n

s∗e
√

d

de
s∗
≤

(
de
s∗

)2

. (A7)

Therefore, we can obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 2C′)R∗ + c
√

s∗ log(de∕s∗)
√

n
+ c

log(1∕𝜖)
√

ns∗ log(de∕s∗)
,

where c is a universal constant depending only on C1,C′
,Cx. The proof is

completed. ▪

Proof of Proposition 2. From the proof of Theorem 3, inequality (A5), with probability
at least 1 − 2𝜖, we have that

∫
Rd𝜌̂

𝜆

≤ (1 + 3C′)R∗+

3
2

⎧
⎪
⎨
⎪
⎩

C′

n𝜍
log 1

𝜖

+ Cx2𝜏
√

d +
(3C + 2)

[

4s∗ log
(

C1
𝜏s∗

)

+ log(2)
]

2n
+
(3C + 2) log(1∕𝜖)

2n

⎫
⎪
⎬
⎪
⎭

.

By taking now 𝜏 = s∗∕(n
√

d), we obtain that

∫
Rd𝜌̂

𝜆

≤ (1 + 3C′)R∗ + C,C′,Cx

s∗ log
(

n
√

dC1
s∗s∗

)

+ log(1∕𝜖)

n
,
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and using the notice in (A7), we obtain

∫
Rd𝜌̂

𝜆

≤ (1 + 3C′)R∗ + C,C′,Cx

s∗ log
(

de
s∗

)

+ log(1∕𝜖)

n
,

where C,C′,Cx is a universal constant depending only on C,C1,C′
,Cx. The proof is

completed. ▪
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