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ABSTRACT

Simply by pressing a key to run Molecular Dynamics (MD) simulations, the dy-
namics of complex molecular systems play out as if seen by a powerful micro-
scope. From modeling chemical reactions to nucleation and protein folding, MD
is therefore a valuable tool that utilizes computer calculations to predict useful,
real-world information. Predicting certain properties like the reaction rate con-
stant, however, proves to be exceedingly difficult, as standard MD simulations
rarely undergo spontaneous reactions by themselves and often remain within one
stable state for insurmountable amounts of time instead.

One way to sample rare events more quickly could be to use the Monte Carlo
(MC) based Replica Exchange Transition Interface Sampling (RETIS) method. By
defining specific start and stop conditions, MC moves like shooting are employed
to efficiently generate statistically rare and unbiased MD trajectories. However,
due to also employing replica exchange moves, RETIS is most efficiently executed
sequentially. As a result, simulations may still take several months or even over
a year to converge. While significantly better than straightforward MD, the long
simulation times hinder widespread applicability. This thesis, therefore, presents
major enhancements to accelerate the RETIS convergence rate. Particularly, we
enhance RETIS with a new, highly decorrelative shooting-based move called Wire
Fencing, minimize rejection by applying the high-acceptance procedure, enable
the calculation of infinite replica exchange swaps without the factorial cost, and
derive a parallel RE scheme with linear MD scaling. Connecting these enhance-
ments together forms the ∞RETIS protocol, which enables the calculation of rate
constants in days or weeks instead. Finally, we apply the implemented ∞RETIS
software infretis to study the electron transfer reaction between two ruthenium
ions and the formation of carbonic acid from solvated carbon dioxide.
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CHAPTER

ONE

INTRODUCTION

Monte Carlo (MD) and Molecular Dynamics (MD) are two important simulation
techniques that allow for the modeling of physical systems at the molecular level,
such that information like temperature, pressure, energies, molecular geometries
and rates can be estimated by running simulations using a computer [1, 2]. While
both MC and MD-based methods are being heavily utilized today, they are dif-
ferent classes of methods and have their own strengths and weaknesses. MC deals
with using random numbers to obtain numerical results. While the name "The
Monte Carlo Method" was popularized by the seminal paper in 1947 of the same
name [3], random, stochastic methods have been in use far earlier, like for the
estimation of π using random numbers in the early 1800s [4]. The use of random
numbers to solve problems has only increased since then, where running MC-
based simulations is now an effective way to explore the vast configuration space
spanned by molecular systems. MD on the other hand solves Newton’s equations
of motion numerically to propagate the studied molecular system forward in time.
Many of the numerical solutions for these equations predate the existence of com-
puters, like in 1687, where the primary application was to understand the motions
of objects in outer space [2]. One of the first applications of these equations to
molecular systems was the study of hard spheres [5], a type of particle sibling to
the ideal gas particle, but with volume. The simulation of hard-sphere particles
using MD and MC is still of high-interest today and has been studied recently
for the development of a new thermodynamic state equation for small systems
[6]. Considerably more sophisticated molecular systems can also be simulated,
however, like the recent MD simulations of the SARS-CoV-2 spike protein that
were run to generate mechanistic understanding for the development of vaccines
and antiviral agents [7]. Depending on the studied molecular system and the
sought information, however, MC or MD simulations might have to be tailored in
some way in order to generate sufficiently accurate data that can be comparable
to experimental results. For example, if high statistical errors are present, then
running the simulation for a longer time could possibly solve the issue. Or if the
system must be studied at a certain temperature or pressure, then a thermostat
or a barostat should be applied. Or for simulations that require molecular bonds
to be broken, such as the deprotonation of hydrofluoric acid [8],

HF(aq) +H2O(aq) → F−
(aq) +H3O

+
(aq) (1.1)

2



CHAPTER 1. INTRODUCTION 3

then the desired bond-breaking event can only occur if MC or MD is run with
molecular force fields that include such occurrences, like ReaxFF [9, 10], or by
calculating forces from "the ground up" using more expensive ab initio-based
methods like Density Functional Theory [11]. Both of these molecular models can
be expensive in terms of computational power [12], however, and may demand
excessively more time to converge calculated results compared to simulations run-
ning classical molecular force fields, which are simple parameterized functions
describing the forces between atoms and molecules [13]. The drawback of classical
molecular force field simulations is that they cannot model bond breaking.

In addition to molecular simulations only being able to model a finite num-
ber of particles with high enough accuracy, a central property to be maximized is
the simulation efficiency. In the context of computer simulations, efficiency is the
time or computational power that is required to obtain results within a certain
range of accuracy, so an increase in efficiency means that equivalent results can be
generated by using less time or computational power. Historically, simulation effi-
ciency has continuously been increasing through the incessant hardware, software,
and algorithmic improvements over the years. One particular way to increase
the efficiency of MC simulations, for example, has been through the algorithmic
development of replica exchange (RE) moves, also called parallel tempering [14].
The idea of RE is to improve the sampling quality of MC simulations by run-
ning several MC simulations in parallel, with each simulation sampling its own
distinct distribution through varying a simulation variable like the temperature.
RE moves are then performed at certain points during this parallel simulation,
swapping the sampled molecular configurations between the simulations. This
enables configurations generated by high-temperature ensembles, that can more
easily traverse energy barriers, to be sampled by lower-temperature simulations.
Without RE, simulating only one low-temperature ensemble to sample configura-
tions separated by energetic barriers could prove to be exceedingly difficult. The
introduction of RE moves to MC simulations may not be straightforward, however,
as RE also introduces simulation parameters that can affect the simulation effi-
ciency. Examples include the frequency of performing RE moves and how large the
temperature differences should be between the parallel simulations [15]. Recent
focus has been on finding the optimal parameters that would maximize REMC
efficiency, like taking the RE limit of performing a (theoretical) infinite number of
RE moves between other types of MC moves [16, 17]. Other types of MC moves
to run alongside RE include running MD for a certain amount of time to obtain a
new configuration (also called Hybrid Monte Carlo) [18]. In terms of hardware and
software improvements, MD has particularly appreciated the recent advancements
to graphics processing units (GPU) pushed by the gaming and machine learning
communities [19]. These days, MD and MC simulations are often performed on
high-performance computing (HPC) clusters consisting of hundreds of nodes, with
many of them being equipped with several GPUs [20].

The work included in this thesis revolves around developing methods that solve
the rare event problem, which is often present when running MD simulations. For
example, if one were to study the pyramidal/umbrella inversion reaction of solvated
phosphine [21] using MD,

H3P(sol) → PH3(sol) (1.2)

then the presence of an energy barrier (Figure 1.0.1 Left) would minimize the
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umbrella inversion occurrences, generating perhaps zero inversions even if a rea-
sonably long simulation has been run. Additionally, compared to experiments, the
enforced small time step and simulated system size exacerbate the sampling rarity
due to numerical stability constraints and hardware limitations. This kind of sam-
pling problem is general and can affect any type of molecular system that exhibits
regions of local configuration minima separated by an energetic barrier. Typi-
cal solutions to this problem revolve around running MC that employ unphysical
moves, or biasing the system with additional force through running enhanced sam-
pling methods like umbrella sampling [22] or metadynamics [23]. While yielding
statistically correct data, none of the methods generate true dynamical trajectories
of the reaction, which can be important to understand initiation conditions and
for the calculation of rate constants. A way to circumvent bias while also allowing
for the effective sampling of dynamical rare events could be to employ so-called
path sampling simulations, like Transition Path Sampling (TPS) [24, 25], Transi-
tion Interface Sampling (TIS) [26, 27], or Replica Exchange Transition Interface
Sampling (RETIS) [28, 29, 30]. Building on the idea of MC schemes sampling MD
trajectories instead of configurations [31], path sampling simulations are a class
of MC methods that sample statistically rare MD trajectories as if they were cut
from a long MD simulation (see Figure 1.0.1 Right).

Order parameter

T
im

e

Figure 1.0.1: Left: A double-well potential modeling the umbrella inversion of
phosphine. Compared to equilibrium (standard) MD that mainly explore config-
urations at the two potential minima, path simulations utilize unbiased MD to
exclusively explore the more orange-based region. Right: The combined pale-
blue and colored trajectory shows the time evolution of the order parameter from
an equilibrium MD run. By separating stable states via specific order parameter
values (horizontal dotted lines), a path simulation (not necessarily in the form of
TPS or RETIS) would sample only the colored parts, reducing the total number
of force calculations in this example by 90%.

By defining an order parameter that enables the characterization of stable reactant
and product states, path simulations force the simulated system to always propa-
gate in between stable states by starting and stopping MD at certain conditions.
An essential benefit provided by path sampling methods is that no understanding
of the transition mechanism or the transition state is required before running the
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simulations. Rather, those properties are what one may obtain from analyzing
the data produced by the path simulations. While the experimentally comparable
rate constant kAB can be calculated through TPS, to do so can be cumbersome as
TPS only samples reactive trajectories. Instead, a more effective path sampling
method to calculate the rate was developed in the form of TIS, followed by the
more efficient RETIS method. Compared to TPS, TIS and RETIS can efficiently
calculate the rate constant through running a series of path sampling simulations,
each sampling their own distribution of rare, but not necessarily reactive MD tra-
jectories. Other flavors of path sampling simulations include multiple state TPS
[32] that directly sample the transitions between multiple stable states, and partial
path TIS/RETIS that enable efficient sampling of diffusive barriers [33, 34].

For the work presented in this thesis, I mainly focus on the RETIS method.
While exponentially more efficient than MD, RETIS simulations can still take
months to a year to converge [Paper C, Chapter 4.1]. A major objective of the
papers in this thesis has therefore been to accelerate RETIS convergence through
algorithmic improvements, like the implementation of the decorrelating subtra-
jectory MC move called Wire Fencing (paper B [35]), enabling the calculation of
infinite replica exchange, and asynchronous parallelization of RETIS (papers A
[36] and C [37]). As a side effect, I have also been involved in the development
of alternative path sampling schemes (paper II [34]) and the development of the
PyRETIS 3 software (paper III [38]). I also finalized an unrelated paper based on
my master’s thesis (paper I [6]). Of course, path sampling algorithms are only use-
ful when applied, so another part of my PhD has been to study the redox reaction
between solvated Ruthenium ions (Chapter 4.1) and the formation of carbonic
acid from carbon dioxide (Chapter 4.2).

In this chapter, I presented a short overview of the various methods to simulate
chemical systems at the molecular scale and introduced the rare event problem,
which is what the major algorithms TPS, TIS and RETIS have been designed to
solve. Chapter 2 of this thesis introduces the theoretical background for the main
tools utilized for my research: MD, MC, TPS and RETIS. These methods have
thoroughly been described in several textbooks [1, 2, 13, 39] and publications [24,
25, 26, 27, 29, 40, 41], so for this chapter only, the theoretical background will be
introduced through self-concocted analogies that I found useful when explaining
my research to students or non-specialists. Chapter 3 discusses the contents of
papers A, B and C, namely the algorithmic enhancements developed for RETIS.
Chapter 4 provides a preliminary discussion on the application of the ∞RETIS
protocol to two unpublished applications, and Chapter 5 provides concluding re-
marks and future outlooks.

Publications included in this thesis

Paper A:

Exchanging Replicas with Unequal Cost, Infinitely and Permanently
Sander Roet, Daniel Tianhou Zhang, Titus Sebastiaan van Erp
J. Phys. Chem. A 126, 8878–8886 (2022)
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Paper B:

Enhanced path sampling using subtrajectory Monte Carlo moves
Daniel Tianhou Zhang, Enrico Riccardi, Titus Sebastiaan van Erp
J. Chem. Phys. 158, 024113 (2023).

Paper C:

Highly Parallelizable Path Sampling with Minimal Rejections Using Asyn-
chronous Replica Exchange and Infinite Swaps
Daniel Tianhou Zhang; Lukas Baldauf, Anders Lervik, Sander Roet, Ti-
tus Sebastiaan van Erp
PNAS 121-7 (2024)

Publications in progress

• Electron Transfer Dynamics between Ruthenium Ions in Water (preliminary
results discussed in Chapter 4.1)

• Formation of Carbonic Acid from CO2 using ∞RETIS (preliminary results
discussed in Chapter 4.2)

Publications not discussed in this thesis

Paper I:

Equation of state for confined fluids
Vilde Bråten, Daniel Tianhou Zhang, Morten Hammer, Ailo Aasen, Son-
dre Kvalvåg Schnell, Øivind Wilhelmsen
J. Chem. Phys. 156, 244504 (2022)

Paper II:

Path sampling with memory reduction and replica exchange to reach long
permeation timescales.
Wouter Vervust, Daniel Tianhou Zhang; Titus Sebastiaan van Erp, An
Ghysels
J. Biophys. 122, 2960–2972 (2023)

Paper III:

PyRETIS 3: Conquering Rare and Slow Events Without Boundaries
Wouter Vervust, Daniel Tianhou Zhang, Titus Sebastiaan van Erp, An
Ghysels, Enrico Riccardi
J. Comput. Chem 2024, 1–11. (2024)



CHAPTER

TWO

THEORETICAL BACKGROUND

This chapter presents topics important for understanding the following chapters
3 and 4, and papers A, B and C. Here, molecular dynamics (MD), replica ex-
change Monte Carlo (REMC) [40] and the path sampling methods Transition Path
Sampling (TPS) [24, 25, 41] and Replica Exchange Transition Interface Sampling
(RETIS) [28, 29, 30] are introduced. For more in-depth discussions, I would look
into the cited papers and the following books [1, 2, 13, 39].

2.1 Molecular Dynamics
Say we are a big fan of the three-body problem book series by Cixin Liu [42],
which involves a story about a chaotic solar system containing three interacting
stars in space. Given that a humanoid species lives on a planet revolving around
this complex system, then they would want to predict the future positions of all
the celestial bodies. However, since no general analytic solution for the three-
body problem exists [43], they have to settle for approximate solutions involving
uncertainties, such as solving Newton’s equations of motion numerically,

f = m · a (2.1)

where the force f equals mass m times acceleration a. To do so using a computer,
a dynamics software can be written up to place balls within a 3D box representing
the stars and planets in the solar system. By defining some function u(r) that
determines the potential energy based on the positions r = (r1, r2, r3, . . . ) of the
various celestial bodies, then the force in a certain direction x can be calculated
as the negative derivative,

fx = −∂u (r)

∂x
(2.2)

With the addition of some initial velocities v, the equations of motion can be
integrated to obtain numerical solutions that predict the positions of the balls r
at a certain timestep ∆t in the future. With a numerical error of O(∆t2), one
solution is called the velocity-Verlet algorithm [1]:

r(t+∆t) = r(t) + v(t)∆t+
f(r (t))

2m
∆t2 (2.3)

7



8 CHAPTER 2. THEORETICAL BACKGROUND

v(t+∆t) = v(t) +
f(r (t+∆t)) + f(r (t))

2m
∆t (2.4)

By iteratively calculating the forces and updating the positions, frame-by-frame
trajectories describing the dynamical time evolution of the star system can be
generated. See Figure 2.1.1 for one "snapshot" of the star dynamics,

Figure 2.1.1: An illustration of three stars (in green) enclosed within a simulation
box.

With this newly developed cosmic simulation software, a humanoid graduate stu-
dent decides that a smart idea could be to increase the model predictability by
simulating the planets at the molecular level. Calling this simulation formalism
for Molecular Dynamics (MD), the fine dynamical details down to crystal cell
vibrations, chemical reactions, crystal nucleation, liquid-gas evaporation and pro-
tein folding can be described in great detail. To do so, the ball masses should be
scaled with respect to atomic weights while atomic forces can be modeled using
mathematical functions describing bonded, angle and torsion interactions. For
example, a bonded interaction can be modeled as a harmonic oscillator,

ubond (r) =
a

2
(l(r)− b)2 (2.5)

with l = |ri − rj| being the bond length between two particles ri and rj, and a
and b are parameterized coefficients. Other contributions can arise from angle,
dihedral, van der Waals and electrostatic interactions [13]. The combined set of
functions modelling the behavior of atoms and molecules can together be called
molecular force fields, which prove to be accurate for a range of conditions but
can be unreliable outside their parameterization. For example, complications can
occur when simulation occurs at conditions that favor chemical bond breaking or
when molecules cannot be assumed to behave classically, like during photochem-
ical reactions [44, 45]. A way to solve these issues could be to obtain molecular
forces from more costly quantum mechanical calculations instead. Solving the
Schrodinger equation requires no parameterized data, and various numerical solu-
tion schemes exist, such as Density Functional Theory [11] and Coupled Cluster
theory [46]. However, compared to force field-based MD that can now simulate
1.6 billion atoms [47], quantum-based MD are generally restricted to much smaller
system sizes due to steep compute scaling.
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To account for time-demanding calculations and other complexities that molecular
systems have to offer, the molecular dynamics formalism can be enhanced with
various algorithms and hardware. Apart from previously mentioned MD-related
methods and fundamental techniques like periodic boundary conditions and Ewald
summation [1, 39], here I mention two recent developments in the MD field:

• Hardware acceleration: The speed of (force field-based) MD simulations con-
tinuously increase with the development and demand of hardware, especially
in recent years due to GPU acceleration support available in many packages
like GROMACS [48] and LAMMPS [49]. Last year (2023) provided us with
GPU-accelerated, multi-node support for MD simulations that has scalabil-
ity for big particle systems, such as a factor of 21x in ns/day increase was
achieved for a 12 million particle system on a 256-GPU setup compared to
legacy code [50]. Here, ns/day stands for nanoseconds of simulation time
per wall time in days.

• Machine learning force fields: Recent advances in machine learning (ML)
extends to the field of molecular modeling, with one application being ML-
based force fields (MLFF) [51]. By learning the interactions between atoms
from ab initio calculations, the dynamics can be simulated at the same ac-
curacy but without the same costs. Consequently, the extra speedup has
already opened up the possibility to study various systems that have previ-
ously been too expensive [51, 52].

Connecting various algorithms, software, and hardware together, the dynamics
of complicated molecular systems can be simulated to predict useful real-world
information. For example, the dynamics of boiling water can be modelled [53, 54],
as shown in Figure 2.1.2,

Figure 2.1.2: A MD snapshot of 4055 water molecules simulated at 300 ◦C and
1 bar. The "bubbles" are illustrated as the yellow blobs, with the water in the
upper half of the simulation box hidden. Credit to Anders Lervik for generating
this (unused) figure (for Paper C).
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2.2 Replica Exchange Monte Carlo

Say one wishes to explore the equilibrium distribution of the body configurations
created by an immortal person called Bob living on a never changing planet α.
Since he is a human, he will likely spend large amounts of time in named local
minima states like standing, sitting, lying, and perhaps very infrequently visit
yoga poses like downward facing dog and happy baby (shown in Figure 2.2.1).
One way to sample this configuration distribution could be by running human
dynamics (HD), but then the dynamics of Bob have to be followed through time,
and depending on the personality of Bob (like if he is an introvert Norwegian),
sampling outlier configurations could take large amounts of time.

Figure 2.2.1: Left: The downward facing dog pose. Right: The happy baby
pose.

If one is indifferent to dynamics, then an alternative method to sample body
configurations could be through the use of random numbers. More specifically, one
can utilize the well-established Metropolis Monte Carlo algorithm [55] to explore
this configuration phase space by letting the configuration state x go to another
x′ via so-called MC moves. To enforce correct sampling, one could follow detailed
balance,

ρ(x)P (x′ | x) = ρ (x′)P (x | x′) (2.6)

where the statistical weight ρ(x) of state x multiplied by the transition probability
of generating state x′ from x, P (x′ | x), should be equal to the reverse at equilib-
rium. If the transition probability is now expressed as a product of generation and
acceptance probabilities, P (x′ | x) = Pgen (x

′ | x)Pacc (x
′ | x), then an expression

of the acceptance probability can be derived,

Pacc (x
′ | x) = min

(
1,

ρ (x′)Pgen (x | x′)

ρ (x)Pgen (x′ | x)

)
(2.7)

Examples of MC moves determining Pgen (x
′ | x) could be body-part displacement,

body-part rotation, and running a short HD simulation, where a general goal in
designing MC moves is that the acceptance rule, Equation 2.7, should be as simple
as possible to evaluate, which can be done by making the MC move symmetric,

Pgen (x
′ | x) = Pgen (x | x′) (2.8)

as symmetry would simplify the equation into only a calculation of weights. Using
body-part displacement as an example, Pgen (x

′|x) can be formulated as selecting
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a random body part (BP), then displacing the BP a certain random amount and
in a random direction to produce x′,

Pgen (x
′ | x) = Psel (BP|x)PBPD (x → x′|BP) (2.9)

Given that Bob remains whole, both the probability of selecting a BP, Psel (BP|x),
and the probability of BP displacement PBPD (x → x′|BP), can be designed to
be symmetric and canceled out in its acceptance rule. Other examples of MC
moves could be teleportation, time travel, and body rotation with respect to some
axis. While performing only the latter set of MC moves does not ensure ergodic
sampling, as they generate the same body configuration over and over again, they
may significantly boost the sampling of unique configurations in combination with
the first set of moves. For example, being teleported to a yoga studio would more
likely result in more yoga configurations to be sampled. The α distribution can
thus be sampled by repeating the following algorithmic (MC) loop,

1. Perform a MC move to generate a new configuration x′ from the old, last
accepted configuration x.

2. Accept or reject the new state according to Equation 2.7. If rejected, resam-
ple x, else sample x′ and set x′ as the last accepted state x → x′.

3. Exit loop if convergence has been met. Otherwise, go to step 1.

Averages and errors can thus be calculated from the sampled configurations gen-
erated through accepted and rejected MC moves,

{x0, x1, x1, x2, x3, x4, · · · } (2.10)

Obtaining good, converged statistics within a reasonable time frame can be dif-
ficult, however, depending on various factors like the studied system. Even if
arriving at a yoga session via a teleportation MC move, committing to perform
actual yoga poses can still be difficult due to the introvert Bob nature.

One way to solve this problem could be to introduce the concept of replica
exchange MC (REMC) [40], where a set of independent parallel Bob worlds β,
γ, δ, ϵ are additionally considered, but compared to the sober world α, the other
worlds continually influence their Bobs with factors like alcohol, cocaine, weed and
interest in golf. Through series of standard MC moves in each ensemble, the other
Bob distributions (ensembles) can also be sampled, which obviously differ from
the original α distribution. To enhance sampling, the so-called replica exchange
(RE) MC move can also be performed, which simply swaps the last sampled states
between two parallel worlds. For example, a RE move between ensembles α and
β would yield the general RE acceptance criteria of,

Pacc (x ∈ α ↔ x′ ∈ β) = min

[
1,

ρα (x
′) ρβ (x)

ρα (x) ρβ (x′)

]
(2.11)

where if accepted, the last accepted states between the two worlds are swapped
(and then sampled), allowing access to faster and direct sampling of other, more
rare configurations present in both α and β worlds. To maintain detailed balance,
the attempt to sample new states must occur concurrently for all the ensembles,
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usually in the form of performing either a set of standard MC moves or a set of
replica exchange moves such that the number of MC move attempts remains the
same for all ensembles. The probability of performing either of the move sets
should together sum to one,

PMC + PRE = 1 (2.12)

where PRE is generally set to a value of around 0.5 [16]. For example, if PMC is
selected, then a standard MC move must be run in each ensemble α-ϵ. Vice versa,
swapping must occur for all ensembles if PRE is chosen. For REMC simulations
with ensembles not being able to participate in the swap move (like simulations
with an odd number of ensembles), the zero-move can be performed instead (to
resample the old state). Even if only one distribution is of interest, like distribution
α, the convergence speed up can often be worth the extra computing cost in
running multiple ensembles [1]. The following Table 2.2.1 illustrates the concurrent
sampling of all ensembles α-ϵ, with cycles of body-part displacement (BPD) moves
and RE moves being performed with a probability of 50%,

Table 2.2.1: An REMC scheme illustrating the sampling development of states
a-e within ensembles α-ϵ with each cycle having a 50% chance to perform BPD/RE
moves. This diagram illustrates BPD acceptance a0 → a1 in α, rejection d0 → d0

in δ, the null move b1 → b1 in α, and RE acceptance between various ensembles.

BPD RE RE BPD
α a0 → a1 → b1 → b1 → b2

β b0 → b1 → a1 → d0 → d1

γ c0 → c1 → d0 → a1 → a2
δ d0 → d0 → c1 → e0 → e1
ϵ e0 → e0 → e0 → c1 → c1

Of course, the REMC idea is readily extended to other applications like sampling
the distributions of molecular systems and can outperform MD in situations with
various energy barriers between conformations, such as in the case of umbrella
inversion of phosphine [21]. Compared to MD, MC does not sample dynamics and
can easily employ non-physical MC moves to move between minima, like randomly
displacing one or multiple atoms.

2.3 Path Sampling
Say we’re writing a panda dynamics (PD) software to study the local initiation
conditions for the occurrence of the panda baby-making process. However, given
that the computer model yields realistic panda behaviour, then the generated
results will simply be the same as what is observed in real life, that the occurrence
of such events can be quite rare. Therefore, even when performing long, brute-
force panda dynamics simulations, most of the resulting data would simply be
useless and non-reactive in the form of pandas eating, sleeping, and rolling around
(see Figure 2.3.1). Additionally, since the dynamical trajectory leading up to the
rare event is of interest, applying schemes that only sample configurations, like
MC, umbrella sampling [22], or metadynamics [23] will not directly help.
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Figure 2.3.1: Left: A panda dynamics snapshot showing two pandas. Right:
The baby-making mood plotted against time.

2.3.1 Transition Path Sampling

As an alternative, reactive and unbiased PD trajectories can be sampled via the
MC-based Transition Path Sampling (TPS) [25] method. To do so, a viable TPS
state (path) can be defined to equal a set of consecutive PD phase points X =
{x0, x1, . . . , xM} describing a reactive event (the occurrence of a baby making
process). Paths can be determined to be reactive or not via an order parameter
function λ (x) that determines the progress of a phase point, like whether the
phase point is in state A, {x|λ(x) < λA}, state B, {x|λ(x) > λB}, or somewhere in
between, {x|λA < λ(x) < λB}. In the PD case, the order parameter function can
simply be the function that calculates the baby-making mood, with an educated
placement of λA = 0.2 and λB = 0.99. Thus, a reactive path can be defined as
having the first frame x0 ∈ A, the last frame x0 ∈ B, and frames {x1 . . . xM−1} /∈
(A ∪B). Based on these rules, the statistical weight of a trajectory X can equal,

ρTPS(X) = hTPS (X) ρ (x0)
M−1∏

i=0

p (xi → xi+1) = hTPS (X) ρ (x0)PPD(X|x0)

(2.13)
where hTPS (X) is an indicator function having a value of 0 or 1 depending on
whether path X is a valid TPS path or not,

hTPS (X) =

{
1 if x0 ∈ A and xM ∈ B and {x1 . . . xM−1} /∈ (A ∪ B)
0 otherwise (2.14)

ρ (x0) is the statistical weight of phase point xi, and PPD(X|x0) is the product
probability of generating path X from phase point x0 via steps of PD probabilities
p (xi → xj). Note here that this TPS derivation constitutes the flexible path ver-
sion of TPS, as no constant length constraints are applied to hTPS (X). Utilizing
the microscopic reversibility condition,

ρ (xi) p (xi → xj) = ρ (xj) p (x̄j → x̄i) (2.15)

where x̄i is xi with reversed velocities, allows the product ρ (x0)PPD (X | x0) in
Equation 2.13 to be rearranged to use any phase point xi of the path,

ρ (x0)PPD(X|x0) = ρ (xi)PPD(Xb|x̄i)PPD(Xf |xi) = ρ (xi)PPD(X|xi) (2.16)
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with Xb and Xf in this case being the backward and forward part of path X
from shooting point xi. A new path X(n) can be generated from an old path
X(o) via the so-called shooting MC move, which, excluding the first and last phase
points, selects an arbitrary point of the old path X(o), modifies the velocities, and
then propagates the new phase point backward and forward in time to hopefully
generate a new valid trajectory,

Pgen
(
X(o) → X(n)

)
= Psel

(
x(o) | X(o)

)
Pvel

(
x(o) → x(n)

)
PPD

(
X(n) | x(n)

)
(2.17)

where x(o) and x(n) are phase points that share system positions but differ in
velocities, and is somewhere in between the first and last phase points of both
paths, see Figure 2.3.2 left,

Figure 2.3.2: The shooting move to produce path blue from path light blue in
TPS (Left) and TIS (Right).

Again, to ensure correct sampling, the standard MC acceptance rule must be
followed,

Pacc = min

[
1,

ρTPS

(
X(n)

)
Pgen

(
X(n) → X(o)

)

ρTPS (X(o))Pgen (X(o) → X(n))

]
(2.18)

Inserting the TPS path weight from Equation 2.13 via Equation 2.16 and assuming
that the old path is valid, hTPS(X

(o)) = 1,

Pacc = hTPS

(
X(n)

)
min

[
1,

ρ
(
x(n)
)
PPD(X

(n)|x(n))Pgen
(
X(n) → X(o)

)

ρ (x(o))PPD(X(o)|x(o))Pgen (X(o) → X(n))

]
(2.19)

Inserting the shooting generation probabilities from Equation 2.17 and canceling
the PPD terms,

Pacc = hTPS

(
X(n)

)
min

[
1,

ρ
(
x(n)
)
Psel

(
x(n) | X(n)

)
Pvel

(
x(n) → x(o)

)

ρ (x(o))Psel (x(o) | X(o))Pvel (x(o) → x(n))

]
(2.20)

The common way to generate new velocities is through drawing from the Maxwellian
distribution,

Pvel

(
x(o) → x(n)

)
= ρ

(
v(n)
)

(2.21)
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and letting the phase point weight equal the product of the configuration and
velocity weights ρ(x) = ρ(r)ρ(v),

Pacc = hTPS

(
X(n)

)
min

[
1,

Psel

(
x(n) | X(n)

)
ρ
(
r(n)
)
ρ
(
v(n)
)
ρ
(
v(o)
)

Psel (x(o) | X(o)) ρ (r(o)) ρ (v(o)) ρ (v(n))

]
(2.22)

Cancelling all the weights (r(o) = r(n)) and also recognizing that Psel (x|X) is just
the probability of selecting one out of X’s phase points except for the first and
last (hence - 2),

Pacc
(
X(o) → X(n)

)
= hTPS

(
X(n)

)
min

[
1,

len
(
X(o)

)
− 2

len (X(n))− 2

]
(2.23)

According to this rule, X(n) will always accepted if valid and has a path length
that is equal or is less than X(o). Otherwise, the path will be accepted or rejected
based on a probability. Through cycles of shooting moves, a statistical ensemble
of reactive paths is obtained that obey the true dynamics arising from the studied
system.

2.3.2 Replica Exchange Transition Interface Sampling

While TPS manages to efficiently sample reactive paths that provide dynamical
insight, standard TPS (although versions exist) does not sample trajectories that
are interesting and transitionary, but also unreactive. To enable such possibilities,
a capable Dutch PhD student in the PD group cooks up the Replica Exchange
Transition Interface Sampling (RETIS) method. In comparison to TPS, (RE)TIS
defines a set of order parameter values {λ0 . . . λi . . . λN} called interfaces, and is
distributed between the space spanned by state A, λA = λ0 and state B, λB = λN

with λi < λi+1. Each interface λi, except λN , defines a path ensemble denoted
[i+] with an accompanying path weight,

ρ[i+](X) = h[i+] (X) ρ (x0)PPD(X|x0) (2.24)

with h[i+] (X),

h[i+] (X) =





1 if max(X) > λi and x0 ∈ A and xM ∈ (A ∪ B)
and {x1 . . . xM−1} /∈ (A ∪ B)

0 otherwise
(2.25)

with max(X) being the maximum order parameter reached by the path X. In
comparison to the valid paths sampled in the TPS ensemble, TIS allows for the
sampling of unreactive paths, paths that start and end in λ0, as long as λi is
crossed (see Figure 2.3.2 Right). The conditional crossing probability of the
sampled paths in ensemble [i+] that also cross the next interface λi+1, P (λi+1|λi),
can be estimated from running cycles of shooting moves in the TIS path ensemble
[i+],

P (λi+1|λi) =
1

L

L∑

j=1

h[(i+1)+] (Xj) (2.26)
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L is the number of sampled paths. In order to estimate the flux through interface
λ0, an additional path simulation denoted [0−] (zero minus) must be performed.
In contrast to the plus ensembles [i+], ensemble [0−] samples the inner state A
itself, with the following TIS indicator requirement,

h[0−] (X) =

{
1 if {x0, xM} /∈ A and {x1 . . . xM−1} ∈ A
0 otherwise (2.27)

Together with [0+], the flux can be estimated from the average time (path length)
spent on each side of λ0,

fA =
1

(⟨len ([0+])⟩+ ⟨len ([0−])⟩ − 4)∆t
(2.28)

with −4 accounting for overcounting the first and last frames for paths in both
ensembles. Finally, the rate constant can be estimated to equal

kAB = fAPA (λB | λA) = fA

N−1∏

i=0

PA (λi+1 | λi) (2.29)

The system and energy barrier (steepness) play a part in determining the number
of ensembles/λi interfaces required to discretize the space between states A and B,
where a higher number means more individual independent TIS simulations must
be run to eventually obtain converged results for the rate constant calculation.
A way to speed up the simulation is to employ replica exchange between two
ensembles [i+] and [(i+ 1)+],

Pacc

(
Xa ∈ [i+] ↔ Xb ∈ [(i+ 1)+]

)
= min

[
1,

ρ[i+] (Xb) ρ[(i+1)+] (Xa)

ρ[i+] (Xa) ρ[(i+1)+] (Xb)

]
(2.30)

By substituting in the path weight expressions, all terms except h[(i+1)+] (Xa)
cancel out, leaving,

Pacc

(
Xa ∈ [i+] ↔ Xb ∈ [(i+ 1)+]

)
= h[(i+1)+] (Xa) (2.31)

which means that the RE move would be accepted if path Xa crosses λi+1 (see
Figure 2.3.3 Left. Compared to the shooting move that require time to run the
PD simulations backwards and forward and forward in time, Equation 2.30 is the
only calculation required to complete a RE move as the paths to be swapped have
already been generated.

An alternative swapping scheme is required for the swap between ensembles
[0−] and [0+] as they sample paths in opposite directions of interface λ0. One way
is through the so-called point exchange move, illustrated in Figure 2.3.3 Right.
The move works by propagating the last and first point of [0−] and [0+] paths
forward and backward until the interface λi is hit again. In this formulation, all
point exchange moves should be accepted according to the standard acceptance
rule. Compared to the standard RE move, the point exchange move require the
running of PD to complete.
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Figure 2.3.3: Left: The last accepted paths for ensemble [i+] and [(i + 1)+],
with both paths being valid in both ensembles as both cross λi+1. Right: The
point exchange move for the ensembles [0+] and [0−]. Here the light blue and light
orange paths are integrated forward and backward to produce new orange and
blue for [0+] and [0−].

Of course, TPS, TIS and RETIS are readily applied to MD simulations in order
to study and calculate the rates of rare events occurring at the molecular scale.
While this panda dynamics example is fictive, and path simulation techniques were
originally derived for the rare event problem in molecular dynamics, a type of path
sampling algorithm has in fact been applied to sample the dynamical game space
spanned by chess [56]. Therefore, path sampling simulations may have its uses in
other fields as well.
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CHAPTER

THREE

ACCELERATING PATH SAMPLING CONVERGENCE

This chapter summarizes my main contributions to increasing the RETIS conver-
gence speed. While the previous chapter explained theory through fictive analo-
gies, the rest of this thesis, including this chapter and the included papers deals
with the rare event problem occurring in molecular dynamics simulations.

3.1 Subtrajectory Monte Carlo Moves

The new path produced by a successful shooting move is correlated with the old
path by sharing at least one common shooting/configuration point, as seen in
Figure 2.3.2. To increase convergence and efficiency, fast decorrelating shooting
moves called Stone Skipping (SS) and Web Throwing (WT) were introduced in
[57]. Through generating a series of subtrajectories, these moves produce a new
path that has no common configuration point with the old path. Alleviating the
SS and WT one-step crossing issue, a third subtrajectory based move called Wire
Fencing (WF) is introduced and detailed in paper B. The SS and WF moves are
shown in Figure 3.1.1,

Figure 3.1.1: The SS move (in blue) and WF move (in orange). The moves in
both cases have been run using a user-defined subtrajectory number of Ns = 2,
where the last accepted subtrajectory has been extended to produce path new. In
WF, an additional interface cap λcap ≤ λB can be defined to restrict the allowable
subtrajectory propagation and shooting selection region.

19
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One simple way to image the correlation reduction is to estimate each subtrajec-
tory to have been extended and produced by standard shooting. For example, a
WF move with Ns = 10 subtrajectory generations can be viewed as running 10
shooting moves, but with the benefit of not having to extend the 9 shooting moves
below λi and above λcap. To preserve correct statistical sampling, the SS/WT/WF
acceptance rules have been derived utilizing the super-detailed balance equation,

ρ[i+]

(
X(o)

)
Pgen

(
X(o) → X(n) via χ

)
Pacc

(
X(o) → X(n) via χ

)
=

ρ[i+]

(
X(n)

)
Pgen

(
X(n) → X(o) via χ̄

)
Pacc

(
X(n) → X(o) via χ̄

) (3.1)

With the following acceptance rule

Pacc = h[i+]

(
X(n)

)
min

[
1,

ρλi

(
X(n)

)
Pgen

(
X(n) → X(o) via χ̄

)

ρλi
(X(o))Pgen (X(o) → X(n) via χ)

]
(3.2)

where χ (and χ̄) denotes the specific (reverse) construction pathway from X(o) to
X(n). Specific SS/WT/WF acceptance rules can be derived by inserting their Pgen

equation. A simplified WF Pgen can be explained in words,

1. From path old, select a valid subpath s0, a subpath starting and ending in
interfaces λi → λi, λi → λcap or λcap → λi, but not λcap → λcap. λi < λcap ≤
λB is a user-defined variable.

2. Perform Ns shooting moves starting with s0 in an alternative ensemble with
states A and B having interfaces λi and λcap and where only λcap-λcap sub-
paths are rejected. This does not imply a rejection of the overall MC move.

3. Extend the last accepted subtrajectory to end in interfaces λA and/or λB.
Select a time direction with a 50% probability to obtain path new.

4. In the case of path new starting and ending in λB-λB or λB-λA, the path is
automatically rejected. Otherwise, path new is accepted or rejected based
on the acceptance rule.

An expression common to SS/WT/WF is obtained when inserting their Pgen into
the super-detailed balance acceptance rule [35],

Pgen
(
X(n) → X(o) via χ̄

)

Pgen (X(o) → X(n) via χ)
=

ρ[i+]

(
X(o)

)
/M[i+](X

(n))

ρ[i+] (X(n)) /M[i+](X(o))
(3.3)

with M[i+](X) being a number dependent on the path, ensemble, and subtrajectory
move (SS/WT/WF). Common to all the moves, the M[i+](X) value is likely to
increase with path length. Inserting Equation 3.3 into the acceptance rule and
assuming h[i+]

(
X(n)

)
= 1,

Pacc = min

[
1,

ρ[i+]

(
X(n)

)
ρ[i+]

(
X(o)

)
M[i+](X

(o))

ρ[i+] (X(o)) ρ[i+] (X(n))M[i+](X(n))

]
= min

[
1,

M[i+](X
(o))

M[i+](X(n))

]
(3.4)

Detailed derivations for SS and WT are shown in the SI of [57], and for WF in
paper B [35].
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3.1.1 High Acceptance

Compared to regular shooting, the total number of MD steps required to complete
a SS/WT/WF path can possibly be much higher due to the generation of subtra-
jectories. While the compensation is higher decorrelation, a path rejection also
means wasting more MD steps. To maximize acceptance, rejected λB → λA paths
can instead be accepted by reversing the path velocities to form valid λA → λB

ensemble paths. The 50% probability in selecting time direction thus disappears
for reactive paths and Pgen must as a consequence be multiplied by a factor q(X),

q(X) =

{
1 if X ∈ {A → A}
2 if X ∈ {A → B} (3.5)

Additionally, paths can be sampled according to alternative ensemble definitions
that bring the acceptance probability in Equation 3.4 to equal unity. Again as-
suming h[i+]

(
X(n)

)
= 1,

Pacc = min

[
1,

˜ρ[i+]

(
X(n)

)
q
(
X(o)

)
Pgen

(
X(n) → X(o) via χ̄

)

˜ρ[i+] (X(o)) q (X(n))Pgen (X(o) → X(n) via χ)

]
(3.6)

with ρ̃[i+],
ρ̃[i+]( X ) = ρ[i+]( X )w[i+]( X ) (3.7)

and
w[i+](X) = q(X)M[i+](X) (3.8)

with Equation 3.3, Pacc becomes:

Pacc =min

[
1,

˜ρ[i+]

(
X(n)

)
q
(
X(o)

)
ρ[i+]

(
X(o)

)
Mλi

(X(o))

˜ρ[i+] (X(o)) q (X(n)) ρ[i+] (X(n))M[i+](X(n))

]

=min

[
1,

ρ[i+]

(
X(n)

)
M[i+](X

(n))q(X(n))q
(
X(o)

)
ρ[i+]

(
X(o)

)
M[i+](X

(o))

ρ[i+] (X(o))M[i+](X(o))q (X(o)) q (X(n)) ρ[i+] (X(n))M[i+](X(n))

]

=1
(3.9)

The only possibility of rejection will therefore be when a λB-λB path is generated,
as h[i+]

(
X(n)

)
= 0. This combination of methods to minimize rejection can be

called high acceptance (HA). To obtain correct statistics, the sampled paths can
be reweighed in the post-simulation analysis,

P (λi+1|λi) =

∑
j w

−1
[i+] (Xj)h[(i+1)+] (Xj)∑

j w
−1
[i+] (Xj)

(3.10)

A penalty for HA, however, is the reduction from 100% replica exchange accep-
tance,

Pacc = h[(i+1)+] (Xa)×min

[
1,

w[i+](Xb)w[(i+1)+](Xa)

w[i+](Xa)w[(i+1)+](Xb)

]
(3.11)

This is especially impactful if high acceptance is enabled for the zero ensembles
[0−] and [0+] as the point exchange move requires MD. However, since a subpath in



22 CHAPTER 3. ACCELERATING PATH SAMPLING CONVERGENCE

the zero ensembles has the same length as standard paths, running subtrajectory
moves does not provide much benefit in the first place. Rather, a general setup is to
run standard shooting moves in the zero ensembles and SS/WT/WF in the other
plus ensembles. Note that while the swapping acceptance probability is reduced
for HA ensembles, the reduction is partly migrated by HA also indiscriminately
accepting long paths. Since long paths contain more phase points, h[(i+1)+] can be
more likely to equal 1 with HA than without.

3.2 Infinite Replica Exchange

As mentioned previously, the general practice is to set the probability to perform
either a cycle of RE or a cycle of compute moves (CP) to around PRE = 0.5
for standard REMC simulations. A CP move here refers to one of the shoot-
ing/SS/WT/WF moves. This not-too-small, not-too-large PRE value allows fre-
quent replica exchange attempts to occur without too many that can possibly slow
down the overall sampling simulation. Recent developments [16, 17, 58, 59, 60],
however, show that excluding overhead time, the convergence rate theoretically
increases with increasing swapping probability, with the fastest convergence rate
occurring when the swapping probability approaches one (PRE → 1). This conver-
gence increase can be illustrated through the occurrence of two successive cycles
of CP moves in a REMC simulation with a finite swapping probability PRE = 0.5.
For example, given a RETIS path simulation with two high-acceptance ensembles
[1+] and [2+] having initial paths a0 and b0, then two cycles of successive CP moves
and two failed RE attempts would result in a sequence of paths {a0, a1, a2, a2, a2}
being sampled in [1+] and {b0, b1, b2, b2, b2} being sampled in [2+], as also shown
in Table 3.2.1,

Table 3.2.1: A REMC scheme illustrating the development of states a0 and b0 in
ensembles [1+] and [2+] with cycles of CP and RE moves. States a0 and b0 among
others are pushed out by CP moves, disabling the possibility of being sampled in
each other’s ensemble.

CP CP RE RE CP
[1+] a0 → a1 → a2 → a2 → a2 → a3
[2+] b0 → b1 → b2 → b2 → b2 → b3

Even with possibly high statistical weights in each other’s ensembles, the absence
of RE moves between the initial CP moves prevents the states {b0, b1} from also
being sampled in ensemble [1+] and vice versa, as the paths get immediately
pushed out by the CP moves generating paths b2 and b3. Additionally, in the
case where replica exchange moves do occur between two CP moves, then one or a
series of swapping attempts might not be enough to produce an accepted replica
exchange if a2 and b2 has low but nonzero statistical weights in the other ensemble.
Since RE moves are essentially cost-free compared to the expensive CP moves, a
high PRE value would allow access to additional, possibly unsampled paths for
free. Therefore, if the replica exchange probability is taken to the upper limit,
PRE → 1, then all active states in all ensembles will be perfectly sampled through
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an infinite number of replica exchange attempts between two cycles of CP moves.
For example, if two paths a0 and b0 are valid in ensemble [1+] but only b0 is valid
in ensemble [2+], then the RE swap will always fail as h[2+] (a0) = 0 resulting in
the following sampling pattern in ensembles [1+] and [2+],

[1+] : {a0, a0, a0, a0, a0, a0, . . . }
[2+] : {b0, b0, b0, b0, b0, b0, . . . }

(3.12)

After one infinite swap, the paths sampled by [1+] will 100% be a0 and b0 for [2+].
Given that the HA weights w for a0 and b0 both equal 1, then the non-converged
average of some property ⟨A⟩ can be initially estimated as

⟨A⟩[1+] =
M · A (a0)

M

⟨A⟩[2+] =
M · A (b0)

M

(3.13)

where M → ∞ is the number of sampled states from one infinity swap attempts.
Assuming we now perform one cycle of CP moves that result in acceptances a0 →
a1 and b0 → b1. Let paths a1 and b1 be valid in both ensembles and also have HA
weights equal 1, resulting in Pacc = 1 for both swapping directions a1∈[1+] ↔ b1∈[2+]

and b1∈[1+] ↔ a1∈[2+] so that the sampled paths follow the consequent sampling
pattern,

[1+] : {. . . , a1, b1, a1, b1, a1, b1, . . . }
[2+] : {. . . , b1, a1, b1, a1, b1, a1, . . . }

(3.14)

resulting in states a1 and b1 having a fraction of M/2 in both ensembles [1+] and
[2+] after one infinite swap,

⟨A⟩[1+] =
M · A (a0) +

M
2
· A (a1) +

M
2
· A (b1)

M +M

⟨A⟩[2+] =
M · A (b0) +

M
2
· A (a1) +

M
2
· A (b1)

M +M

(3.15)

Repeating the ∞RE and CP loop, the next step is to perform a set of CP moves
again. However, which of the two paths a1 and b1 is the last accepted path to be
used for the CP move in [1+]? The last sampled path now becomes probabilistic
and depends on the fraction of all the sampled paths in one infinity swap. In this
case, there is a equally likely chance to shoot from a1 and b1 for both ensembles.
Given that a1 is selected for ensemble [1+], then two successful CP moves gives
for [1+], a1 → a2 and for [2+], b1 → b2 where we again assume that paths a2
and b2 are both valid in both ensembles. In this case, the paths have a certain
ensemble w[i+](X) weight, which affects the swapping probability in Equation 3.11.
Let us assume path a2 has weights w[1+](a2) = 3 and w[2+](a2) = 2, and for b2,
w[1+](b2) = 4 and w[2+](b2) = 1. These weights can be arranged into a weight
matrix W form,

W =

[[1
+] [2+]

a2 3 2
b2 4 1

]
(3.16)
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letting the swapping yield the following acceptance probabilities,

Pacc

(
a2∈[1+] ↔ b2∈[2+]

)
= min

[
1,

w[1+] (b2)w[2+] (a2)

w[1+] (a2)w[2+] (b2)

]
= min

[
1,

4 · 2
3 · 1

]
= 1

(3.17)
and the reverse,

Pacc

(
b1∈[1+] ↔ a1∈[2+]

)
= min

[
1,

w[1+] (a2)w[2+] (b2)

w[1+] (b2)w[2+] (a2)

]
= min

[
1,

3 · 1
4 · 2

]
=

3

8
(3.18)

resulting into biased randomised sampling,

[1+] : {. . . , a2, b2, b2, b2, a2, b2, . . . }
[2+] : {. . . , b2, a2, a2, a2, b2, a2, . . . }

(3.19)

In this case, what would the fraction of sampled paths a2 and b2 be in ensembles
[1+] and [2+] after one infinite swap? This perhaps non-trivial solution can be
obtained through the combinatorics of possible path-ensemble permutations, with
permutations being denoted as σ forming a set C. In the case of two paths
and two ensembles, only two permutations are possible, σ1 : a2∈[1+], b2∈[2+] and
σ2 : b2∈[1+], a2∈[2+]. The statistical weight of a permutation is represented by the
product weights of its members,

ρ (σ1) =ρ
(
a2∈[1+], b2[2+]

)
= ρ[1+] (a2) ρ[2+] (b2) = 3 · 1 = 3

ρ (σ2) =ρ
(
b2∈[1+], a2[2+]

)
= ρ[1+] (b2) ρ[2+] (a2) = 4 · 2 = 8

(3.20)

The sampled fraction/probability of a2 in [1+] after an ∞RE can therefore be
expressed as σ, the weights of the possible permutations, with a2 in [1+], σ ∈
Ca2∈[1+] divided by all the permutations possible, σ ∈ C,

p11 =

∑
σ∈Ca2∈[1+]

ρ(σ)
∑

σ∈C ρ(σ)
=

3

3 + 8
=

3

11
(3.21)

resulting in the following probability matrix P ,

P =

[[1
+] [2+]

a1 3 8
b1 8 3

]
1

11

Now 5 unique paths are sampled in each ensemble after three infinite swaps sepa-
rated by shooting moves,

⟨A⟩[1+] =
M · A (a0) +

M
2
· A (a1) +

M
2
· A (b1) +

3M
11·3 · A (a2) +

8M
11·2 · A (b2)

M +M + 3M
11·3 +

8M
11·2

⟨A⟩[2+] =
M · A (b0) +

M
2
· A (a1) +

M
2
· A (b1) +

8M
11·4 · A (a2) +

3M
11·1 · A (b2)

M +M + 8M
11·4 +

3M
11·1

(3.22)
where the 1/w weights are applied to a2 and b2 to counteract the distorted HA
ensemble distribution. For the previous samples, 1/w = 1 in this hypothetical
simulation. As M gets canceled on both sides, the average becomes expressed
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through the probability coefficients pij of sampled paths produced per infinite
swap,

⟨A⟩[1+] =
A (a0) +

1
2
· A (a1) +

1
2
· A (b1) +

3
11·3 · A (a2) ,

8
11·2 · A (b2) + · · ·

1 + 1 + 3
11·3 +

8
11·2 · · ·

⟨A⟩[2+] =
A (b0) +

1
2
· A (a1) +

1
2
· A (b1) +

8
11·4 · A (a2) ,

3
11·1 · A (b2) + · · ·

1 + 1 + 8
11·4 +

3
11·1 + · · ·

(3.23)

Another possibility to occur if this example is to be continued, is that CP moves
can of course be rejected, a2 → a2, causing a2 to participate in multiple infinite
swaps and thus accumulate probabilities in the average calculation until the state
is eventually pushed out by a successful CP move a2 → a3. If the ∞REMC
example is instead extended to have 4 ensembles, then a resultant 4 dimensional
P matrix can be expressed in Table 3.2.2,

Table 3.2.2: An ∞REMC swapping scheme with four ensembles showing a cycle
of CP moves followed by infinite replica exchange for four ensembles and paths.
The samples are initially multiplied with zero because their "weight" in average
calculations reduces to zero as an additional "infinite" amount of samples are
added from an ∞RE move. Note here that all the p0j and pi0 coefficients except
p00 are zero as b0-d0 cannot be swapped into [0−] vice versa for a0.

CP ∞RE CP
[0−] → 0 · a0 → p00 · a0 + p01 · b0 + p02 · c0 + p03 · d0 →
[0+] → 0 · b0 → p10 · a0 + p11 · b0 + p12 · c0 + p13 · d0 →
[1+] → 0 · c0 → p20 · a0 + p21 · b0 + p22 · c0 + p23 · d0 →
[2+] → 0 · d0 → p30 · a0 + p31 · b0 + p32 · c0 + p33 · d0 →

The calculation of P from W enables an ∞REMC scheme without the overhead of
explicitly carrying out infinite swaps. A problem, however, is the factorial scaling
of the P calculation with the number of ensembles in the REMC simulation [16].
This harsh scaling generally prevents the application of ∞REMC with too many
ensembles as a high number can cause a P calculation to take up the majority of
the simulation time. Paper A, however, realizes that the problem of calculating
P can be reformulated into the calculation of permanents, where each P matrix
element pij can be calculated using Equation 3.24,

pij =
wij perm(w{ij})

perm(W )
(3.24)

where W{ij} is the W matrix without row i and column j. A permanent (of a
matrix) is the same as a determinant, except with only additions,

perm




A B C
D E F
G H I


 =

A · (E · I +H · F )+
B · (D · I + F ·G)+
C · (D ·H + E · I)

(3.25)

By the use of fast permanent algorithms [61, 62, 63], the scaling reduces from O(n!)
to O (2n × n2), which is enough to reduce a 20-dimensional P matrix calculation
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time from ∼ 15 · 106 years to ∼ 711 seconds using a certain standard computer
[36]. Often, however, ∞RETIS yield many zero elements in the W matrix due to
paths not being valid in certain ensembles. Therefore, depending on the system
studied, the permanent calculation of a big W matrix can be block diagonalized
into a product of smaller permanents. In the case where no paths crosses the next
interface, the W permanent can be expressed as the product of one-dimensional
diagonal elements,

perm




A 0 0
D E 0
G H I


 =

A · (E · I +H · 0)+
0 · (D · I + F ·G)+
0 · (D ·H + E · I)

= A · E · I (3.26)

Depending on the studied system, ensemble numbers higher than 20 can be ini-
tiated. For example, in Paper C, the rare event of bubble nucleation in water is
studied at boiling temperature with 80 ensembles. However, due to finite simu-
lation size and the lack of nucleation sites, the resulting energy barrier becomes
exceedingly steep and causes the paths sampled to rarely cross the next interface.
The resulting W consequently consists of many zero elements, regularly allow-
ing the W permanent calculation to be blocked down to a product of 1, 2 and
3-dimensional permanents. Note, however, that these simulations performed also
utilized asynchronous RE, as explained in the next section, reducing the maximum
possible W size to 41.

3.3 Asynchronous (Infinite) Replica Exchange

Introducing RE to TIS increases the convergence speed through higher sampling
efficiency. In other words, the (CPU/GPU) computing efficiency increases. How-
ever, the introduction of RE can also slow down the wall time (elapsed real-time)
efficiency. For example, say a certain RETIS simulation requires 4 ensembles to
be employed. One cycle of CP moves will consequently demand 4 CP moves to
be performed (and completed) in 4 ensembles before the next cycle of CP/RE
moves can be started. Practically, the simplest and most standard way to do so
would be to run the 4 CP moves sequentially, one after another using the hardware
available, like one single computer node (Figure 3.3.1 Top Right). On the other
hand for TIS simulations, each CP move can be run completely in parallel/inde-
pendently using individual hardware for each ensemble, since no communication
occurs between TIS ensembles (Figure 3.3.1 Top Left). Therefore, compared to
standard (sequential) RETIS, TIS is fully parallelizable and can complete many
more CP moves in the same amount of wall time. Of course, the 4 CP moves to
be run by RETIS can also be run in parallel using 4 nodes, reducing the total
wall time from the sum of 4 sequential CP moves to only the slowest completing
CP move, as all moves must be completed in order for the next cycle of CP/RE
to commence (Figure 3.3.1 Bottom Left). However, if the disparities in the CP
completion time between the ensembles are large, as is often the case for path
sampling simulations, then all but one of the nodes must remain idle for possibly
hours until the last ensemble is finished. RETIS is consequently not very efficiently
parallelizable, reducing the standard RETIS implementations (PyRETIS [64, 65],
OPS [66]) to run fully sequentially. Therefore, while sequential RETIS maximizes



CHAPTER 3. ACCELERATING PATH SAMPLING CONVERGENCE 27

compute efficiency, the "sequential lock" imposed by RE obfuscates the RETIS
method from being the undisputed "overall best" of the two. Instead, running TIS
over RETIS can be favorable in the case when hardware is of abundance, enabling
better wall time efficiency with the cost of lower compute efficiency.

Figure 3.3.1: The hardware utilization of TIS and various RETIS flavors are plot-
ted against time. Except for Asynchronous RETIS, all other simulations run four
ensembles (color-coded). Top Left: Embarrassingly parallel TIS. Top Right:
Parallel RETIS using only one worker, with the RE move occurring when the
colored sequence repeats. Bottom Left: Sequential RETIS using one worker per
ensemble. Due to the sequential lock, many of the workers have to remain idle
before allowing to work again. Bottom Right: Asynchronous RETIS running 8
ensembles with 4 workers. At the time a worker finishes a CP move, RE occurs
between the other free ensembles.

To keep the maximum compute efficiency from RE while allowing for high wall time
efficiency through parallelization, the main authors of paper A derive a paralleliz-
able RE scheme by utilizing an alternative, self-named "twisted" detailed balance
relation. The resulting asynchronous and infinite RETIS scheme, ∞RETIS, allows
for multiple standard MC moves to be run asynchronously in parallel while concur-
rently allowing for RE moves to occur between the other non-occupied ensembles
(Figure 3.3.1 Bottom Right). To start, a number of workers (one processor unit,
one node or a group of nodes) must be selected. The number of workers can be
manually chosen depending on the hardware available, but has to be restricted to
a number between 1 and the total number of defined ensembles. The algorithm
starts with an initialization phase,

1. Schedule each worker to perform either a CP move for a path and an ensem-
ble or a point exchange move if possible.

The ensembles and paths occupied by the workers are now unavailable for swap-
ping. Then for each time a worker is done,



28 CHAPTER 3. ACCELERATING PATH SAMPLING CONVERGENCE

2. The new path (or pair of paths in case of the point exchange move) gener-
ated by the finished worker is accepted or rejected based on the standard
acceptance rule. The ensemble(s) becomes unoccupied.

3. Calculate and record the probability P matrix from the resulting weight W
matrix consisting of only the unoccupied ensembles.

4. The worker is assigned to work on a random, available ensemble j and a
path i based on the probability pij. If j is either [0−] or [0+] and both
ensembles are free, then there is a probability (usually 50%) to perform a
point exchange move.

This loop continues until the results are converged. Since only free ensembles are
available for swap moves, the matrix size equals the difference between the number
of ensembles, Nens, and the number of workers, Nw, plus either zero or one,

size(W ) = Nens −Nw + (0 or 1) (3.27)

depending on whether a busy worker occupies two ensembles or not. Since CP
moves require variable time to complete, sampling is updated for all free ensembles
whenever a worker is finished with their CP move.

To show how this algorithm works in practice, an ∞RETIS simulation with
standard acceptance, two workers and 5 ensembles is now considered. To start, 5
valid paths have the following weights,

W =




[0−] [0+] [1+] [2+] [3+]
p0 1 0 0 0 0
p1 0 1 0 0 0
p2 0 1 1 0 0
p3 0 1 1 1 0
p4 0 1 1 1 1




(3.28)

As shown in W , p0 is only a valid path in [0−] and the other paths p1−4 are only
valid up till "its own" [i+] ensemble. All of the swapping attempts will be rejected,
so P consequently results in the identity matrix,

P =




[0−] [0+] [1+] [2+] [3+]
p0 1 0 0 0 0
p1 0 1 0 0 0
p2 0 0 1 0 0
p3 0 0 0 1 0
p4 0 0 0 0 1




(3.29)

reducing the possible paths to shoot from for a certain ensemble to one. The
simulation can now be initiated by assigning worker w0 to run a CP move with p2
in [1+] and p4 in [3+] for w1. Now entering the main ∞RETIS loop and waiting
until one of the workers has finished their CP move, the first worker to finish is w0

with an accepted CP move p2 → p5 in [1+]. Say p5 is valid up to ensemble [2+],
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then the W matrix can be expressed as,

W =




[0−] [0+] [1+] [2+] [3+]
p0 1 0 0 0 −
p1 0 1 0 0 −
p5 0 1 1 1 −
p3 0 1 1 1 −
p4 − − − − −




(3.30)

with the last row and column being blocked out by the busy worker w1. The
resulting P matrix can be calculated as,

P =




[0−] [0+] [1+] [2+] [3+]
p0 1 0 0 0 −
p1 0 1 0 0 −
p5 0 0 1

2
1
2

−
p3 0 0 1

2
1
2

−
p4 − − − − −




(3.31)

Since swapping is done, the free worker w0 can be reassigned to perform a new
task. In this case, a point exchange is to be run, requiring paths p0 and p1 in [0−]
and [0+]. After some time, w1 is done with a failed CP move p4 → p4 in [3+],

W =




[0−] [0+] [1+] [2+] [3+]
p0 − − − − −
p1 − − − − −
p5 − − 1 1 0
p3 − − 1 1 0
p4 − − 1 1 1




(3.32)

with the following P matrix,

P =




[0−] [0+] [1+] [2+] [3+]
p0 − − − − −
p1 − − − − −
p5 − − 1

2
1
2

0
p3 − − 1

2
1
2

0
p4 − − 0 0 1




(3.33)

While storing each iteration of the W and P matrices, the loop is continued until
results are converged. For the current W and P storage implementation, see
Section 3.4.4.

One may ask if the worker and ensemble ratio Nw : Nens matters for overall
performance, as ∞RETIS technically reduces to standard TIS when Nw = Nens,
and into a flavor of standard RETIS when Nw = 1. Through an investigation
using simple test systems, the optimal ratio appear to occur at around 1 : 2. See
paper A for the benchmark results and paper C for more realistic applications.

3.3.1 Interface Placement and Initialization

The maximum compute efficiency for TIS can be estimated to occur when the
conditional crossing probability P (λi+1|λi) ≈ 0.2 [29], with a slightly higher num-
ber (≈ 0.3) for RETIS. This thumb-rule number consequently estimates the ideal
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interface placement location and the total number Nens to be initiated, as one
would like both,

P (λi+1|λi)
Nens−1 ≈ P (λB|λA)

P (λi+1|λi) ≈ 0.2
(3.34)

For example, given the following P (λ|λA) curve shown in Figure 3.3.2 with,

P (λB|λA) = 5.89 · 10−7 (3.35)

then one solution results in Nens = 10 and P (λi+1|λi) = 0.203 as shown in Figure
3.3.2 Left. On the other hand, the ∞RETIS ensemble scalability with hardware
could result in P (λi+1 | λi) values being much higher than 0.2. To keep a set of
homogeneous P (λi+1 | λi) values, an alternative way of distributing interfaces for
∞RETIS could be to follow this simple equation,

PA (λi+1 | λi) ≈ PA (λB | λA)
1/(Nens−1) (3.36)

Resulting in P (λi+1|λi) = 0.630 with Nens = 32 using the previous example (Fig-
ure 3.3.2 Right).
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Figure 3.3.2: The (logarithmic) Pcross curve P (λ|λA) with interfaces from a
standard RETIS simulation (Left) and ∞RETIS (Right). The curve plotted is
for a double-well system.

Notice, however, that a P (λ|λA) curve is required to place interfaces at their ideal
positions, which is a property that is generally obtained at the end of a simulation.
Therefore, current practice is to perform an initial estimate of the interfaces and
then iterate until satisfactory placements,

1. Make educated interface placement guesses (including states A and B).

2. Create valid trajectories for each ensemble.

3. Run a "short" ∞RETIS simulation to estimate PA (λi+1 | λi). High vari-
ance and excessively high/low values could be a sign of bad placements, so
faster simulation convergence could be to return to step 1 with the current
information in mind. Otherwise, continue to a production run with current
interfaces.
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As step 1 requires the manual labor of an "educated guess", this current initial-
ization scheme is not automated and can be quite arduous, especially if we need
to keep creating valid load trajectories. A better method could possibly be to
devise an algorithm that fluidly goes from automatic initialization to a produc-
tion run within one simulation run. For example, the initialization phase could
possibly take care of both generating initial trajectories and optimizing interface
placements until some converge limit is reached, automatically switching the ini-
tialization phase to a production run. While devising such an algorithm is possible
for RETIS, ∞RETIS would again benefit from the ability to initiate many workers
in parallel to maximize throughput. Given that detailed balance is inconsequential
during initialization, such a strategy has been devised on paper (video [67]) by
Titus van Erp. Having such a smooth initialization phase in place would addition-
ally alleviate the problem of non-specialists running path sampling simulations, as
manual interface input and creating load trajectories would no longer be needed.

Note that in ∞RETIS, the bottle neck for maximum wall time convergence
becomes the size of the maximum permanent block in the weight matrix W . Hav-
ing more hardware available means that higher number of workers can be initiated
(and hence Nens can be increased), which results in larger W blocks as more paths
will cross the next interface. Permanent calculations could therefore occupy the
majority of the simulation time once the maximum W block is of a considerable
size. So far, this upper ensemble number limit has not been reached when running
the realistic ensembles listed in Paper C. However, even with many ensembles, hav-
ing a very large block is generally improbable. In the case big blocks do happen,
however, those permanents can be approximated by MC if needed.

3.4 ∞RETIS Software Implementation

The main ∞RETIS framework has been covered by the two previous chapters and
papers A and C, but details regarding software implementation have been absent.
Here I would like to highlight certain software matters that might not be obvious
from pen and paper equations. The current work-in-progress code can be found
in the following repository: https://github.com/infretis/infretis.

3.4.1 Scheduler and Workers: Dask Distributed

∞RETIS depends on a worker-scheduler functionally, a feature that the Python
package Dask distributed (v2023.3.0) [68] provides out of the box. Specifically, the
∞RETIS scheduler should receive results from workers in the order of completion.
If the scheduler has submitted certain tasks to be done to a number of workers,
then the first worker to complete the task should also report back first. That way,
the scheduler can immediately process the data (calculate W and P ) and submit
a new task to be done by the worker that just became available.

3.4.2 Hardware Handling

The ways to divide the allotted hardware to the number of initiated workers in an
∞RETIS simulation depends on various factors, like the MD program being run,
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if one or multiple nodes are used and whether or not simulations are run on high-
performance computing (HPC) clusters. One additional factor to be considered is
whether multiple GPU-acceleratable simulations can utilize the same GPU while
running in parallel. For example, depending on the simulated system size, the
total computing capability provided by a GPU might not be fully utilized by one
MD simulation. By enabling NVIDIA Multi-Process Service (MPS) [50], multiple
independent simulations can access compute resources provided by the same GPU
and hence maximize the total GPU utilization possible. As a consequence, ns/day
speedups from 1.3x (96K atoms) to 6.0x (6k atoms) can be achieved in comparison
to running one single simulation accessing all of the GPU by itself [50] [paper C].
In paper C, multiple ∞RETIS simulations utilized MPS to initiate 10-16 workers
while running on a single GPU-equipped node. To run 10 parallel workers using
a GPU node with 20 CPU threads, the following GROMACS commands should
be run 10 times

gmx mdrun -pin on -pinoffset X -pinstride 1 -ntomp 2 -ntmpi 1

with X being a multiple of 2 and the other settings are required to prevent multiple
simulations utilizing the same CPU resources. Based on personal experience,
however, the pinstride value (among other setttings) might have to be changed
to obtain optimal performance. Even higher throughput could possibly have been
achieved on the same GPU if the CPU provided 40 CPU threads instead of the 20,
allowing each worker to utilize a shared GPU and 4 individual compute threads.
Paper C also ran ∞RETIS on HPCs, accessing multiple GPU-equipped nodes per
simulation. The HPCs employ a scheduler program called SLURM [69, 70] that
provides a general way to allocate hardware to certain subjobs within one user-
submitted job. One of the paper C simulations requested 20 GPU nodes for 20
workers within one SLURM job, with each of the 20 workers running the following
command,

srun -n 1 -N 1 -G 1 --exact gmx mdrun

where -n is tasks, -N is nodes, -G is GPUs and --exact means no other tasks
can access the same compute resources. In this case, the hardware allocation
is bound to the SLURM utility srun and not to the specific MD command gmx
mdrun. Given the capability of requesting multiple GPU nodes, however, higher
throughput (ns/day) should be possible with MPS by for example initiating a to-
tal of 200 workers running 10 independent simulations per GPU node. Omitting
details, however, enabling such a MPS setup within one SLURM job has simply
put been unsuccessful for that HPC cluster accessed during this PhD. General
user support for running multiple independent GPU-accelerated simulations on
multiple nodes within one SLURM job is reasonably lacking. Any general user
that requires such setups would most likely just divide the simulations into mul-
tiple SLURM jobs, something that is not currently possible for ∞RETIS since
ensembles communicate with each other. Without MPS, however, running multi-
ple CPU-based simulations on multiple nodes (within one SLURM job) is trivial,
by simply setting the number of tasks (simulations) to be run in parallel per node
in the SLURM job script,

–ntasks-per-node=X
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3.4.3 Simulation Restart

Restarting a crashed MC or MD simulation is generally trivial, as one simply needs
to continue from the last calculated step. Restarting ∞RETIS is also technically
trivial, as one can simply just send the same number of workers to complete
the simulations left undone by the crash. Obtaining identical results to a non-
crashed simulation, however, can be non-trivial and possibly impossible. The
reinstated workers might be handed alternative hardware that reshuffles the order
of completion, causing different W and P matrices to be calculated. Stopping and
restarting ∞RETIS simulations therefore introduce perturbations to the Markov
chain. While the perturbation magnitude is currently unmeasured, the impact
assumed is assumed to be relatively insignificant as long as long, uninterrupted
simulations are run. In any case, the best practice would therefore be to minimize
the amounts of restarts being performed.

3.4.4 Simulation Output

The current simulation output from the ∞RETIS software has the same structure
and flow as the ∞RETIS example in Section 3.3, shown in Figure 3.4.1 Top Left
and Right. In addition to the general simulation output, each worker has an
individual worker.log shown in Figure 3.4.1 Bottom Left.

A source of user confusion can be the path naming in ∞RETIS, p0, p1, p2, · · · ,
as seen in Figure 3.4.1. Since paths now no longer "belong" to individual en-
sembles due to infinite swapping, identifying paths to specific ensembles does not
necessarily make sense. However, paths are regardless unique and should have an
easy user-readable "path number" identifier, so new paths are marked as the Nth
new produced path received by the scheduler, pN .

Another simple but practical consequence of ensemble independence is that all
accepted paths can now simply be stored in a single folder, traj/{path_number}
instead of in individual ensemble folders like 000/traj/{path_number} as is done
in PyRETIS.

In terms of calculating the rate, the path length, maximum order parameter,
accumulative probabilities, and ensemble weights are stored in one single line in
"infretis_data.txt" whenever a path is pushed out, see Figure 3.4.2. It is also
because of the pushed out feature that the vertical path numbers in 3.4.2 and 3.4.1
Right are not necessarily listed in numerical order.
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Figure 3.4.1: Current (edited) output from the "pre-release" ∞RETIS software
for a simulation with 4 workers and 8 ensembles. Top Left: The initialization
phase. Right: The output every time a worker finishes a CP move. In the
matrices, "x" denotes that the path 100% belongs to a certain ensemble. A number
denotes fractional occupancy. A complete row or column of "-" denotes that the
path and ensemble are busy. Bottom Left: The output by worker 0 performing
a Wire Fencing move. Here 000 is [0−], 001 is [0+], 002 is [1+] and so on.

Figure 3.4.2: The current "infretis_data.txt" file shows the path number,
path length, maximum order parameter, and accumulative swapping fractions.
The last 8 columns listing ensemble weight columns are not shown here. The
first number of paths (rows) appear to have zero accumulative probabilities in
any ensembles, as they are likely to have been immediately pushed out before any
swap could have occurred. Path number 8 (among other paths) appears to only
have integer weights in a single ensemble, which means that the path had no other
valid ensembles/paths to swap with, which is logical for a path in [0−].
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FOUR

APPLICATION AND ANALYSIS

A number of applications have been studied using path sampling methods in this
thesis, including the ruthenium redox reaction and thin film breakage described in
paper B, and water dissociation, water boiling and the unfolding of the chignolin
mini-protein described in paper C. Significant emphasis on data analysis has not
been performed in those papers, however, as the main focus has been on method
development. Additionally, many of these examples have previously been studied
before [53, 71, 72, 73, 74]. In this chapter, we will perform preliminary analysis
on the ruthenium redox reaction that was sampled using the WF move in Paper
B, in addition to the chemical reaction of carbon dioxide converting into carbonic
acid.

4.1 Electron Transfer Reactions

Electron transfer reactions lie at the core of reduction-oxidation reactions that
occur within systems like batteries [75], and also play a central role in photo-
chemical reactions involving the storage of solar energy [76] and within biological
phenomena like photosynthesis [77]. One of the fundamental types of electron
transfer reactions deals with the reduction-oxidation reaction between two metal
ions solvated in water,

Mn+
(aq) +M

′(n+1)+
(aq) → M

(n+1)+
(aq) +M

′n+
(aq) (4.1)

where, described by Marcus theory [78, 79], the occurrence of electron transfer is
largely influenced by the geometry and reorganization of the solvent. While Mar-
cus theory is inherently macroscopic [80], its major predictions have been verified
experimentally [81] and through running biased molecular dynamics simulations
[82, 83]. To obtain insight into the microscopic details of solvent dynamics, unbi-
ased MD simulations can be run to investigate collective variables related to the
occurrence of reactions, like the patterns and networks formed by the aqueous
hydrogen-bonded network. To actually observe reactions, however, may require
the application of path sampling simulations as observing electron transfer reac-
tions are inherently rare within MD simulations. Additionally, to avoid the difficult
problem of connecting the configurational state of the solvent to the progress of the
reaction, a qualitative TPS study has been performed [71] by running ab initio

35
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MD and defining an order parameter that depends on transforming the result-
ing molecular orbitals into Maximally Localized Wannier Functions (MLWF) [84].
With the collaboration of Prof. Ensing of the TPS study [71], we initially applied
RETIS to study the ruthenium self-exchange reaction, shown in Equation 4.2.

Ru2+
(aq) +Ru′3+

(aq) → Ru3+
(aq) +Ru′2+

(aq) (4.2)

With the establishment of the ∞RETIS protocol, however, we also applied it to
study this same system. The reaction progress can be tracked as done by the TPS
study, by following the MLWF orbital carrying the transferring electron from the
electron donor to the electron acceptor. For the MD setup, two ruthenium ions
are solvated in a periodic box of sides 12.4138 Å with 63 water molecules and a
hydroxyl ion, resulting in a system with 193 atoms having a total surplus charge
of 4+. The excess charge is neutralized through the introduction of a uniform
background charge distribution from Ewald summation of long-range interactions.
The system and molecular dynamics setup is also identical to the TPS study.
Notably, the MD is propagated at 300 K using Density Functional Theory (DFT)
where valence electrons are treated explicitly while core electrons are approximated
by pseudopotentials. As with a surplus charge of 4+, 513 unrestricted MLWF
orbitals thus result from the total number of ruthenium, oxygen and hydrogen
valence electrons in the system. To sample this reaction using (∞)RETIS, a simple
order parameter function can be defined based on the MLWF orbital centers,

λET =
(dRu−X − dRu′−X)

dRu−Ru′
(4.3)

where d is a distance function between two positions, Ru is the initial electron
donor, Ru2+, Ru′ is the initial electron acceptor, Ru3+, and X is the transferring
MLWF. The order parameter is illustrated in Figure 4.1.1.

Figure 4.1.1: The two big balls represent the ruthenium ions and the small ball
represent the transferring MLWF orbital. The dotted lines represent the distances
used for the order parameter calculation in Equation 4.3.

X will initially reside within Ru, resulting in a reactant state value of λET ≈ −1.
After a successful electron transfer, λET ≈ 1 identifies the product state. To
identify X among all the 523 individual orbitals, a list of MLWFs and their closest
oxygen or ruthenium neighbours can be constructed. If either of the two ruthenium
ions has 6 closest MLWF neighbours, then the transferring orbital is simply the
one farthest away from that ruthenium ion. Otherwise, both ruthenium ions have
only 5 orbitals, so the transferring MLWF is one farthest away out of all the
MLWFs connected to the O with one in excess. While simple, this allows for a
robust characterization of the reaction progress.



CHAPTER 4. APPLICATION AND ANALYSIS 37

During the initial sampling process, however, intermediate hydronium (H3O+)
were observed to occasionally form. To avoid ending in the reactant or product
state while having hydronium present, we define an altered order parameter λHET,

λHET =





λB − 0.001 if λET > λB and hydronium is present
λA + 0.001 if λET < λA and hydronium is present

λET otherwise
(4.4)

that remains between λA < λHET < λB when hydronium ion(s) are present. Oth-
erwise, λHET = λET.

An initial, reactive trajectory was generated by the authors of the initial TPS
study, by running constrained MD. Given the TPS data, we performed a 238-day
RETIS simulation where all but the zero ensembles utilized the WF move with
high acceptance and with PRE = 0.5. 100 CPUs were allocated to run the DFT
MD via CP2K [85]. Later, when ∞RETIS was developed and hardware were
available, the resulting RETIS Pcross curve was utilized to estimate the interface
placements for a following 25-day ∞RETIS simulation with 20 workers and 41
ensembles (also with HA WF). Each worker was allocated 24 CPUs. Simulation
results are shown in Table 4.1.1 and visualized in Figure 4.1.2.

Table 4.1.1: The rate, flux and crossing probability for a 238-day RETIS simu-
lation and a 25-day ∞RETIS simulation are displayed.

Simulation Rate [s−1] Flux [s−1] PA(λB|λA)

RETIS 2.40 ×109 ± 146% 1.692 ×1013 ± 2% 1.421 ×10−4 ± 149.0%
∞RETIS 6.32 ×109 ± 31% 2.249 ×1013 ± 13.0% 2.811 ×10−4 ± 28%

As can be seen in Figure 4.1.2 Top Left (and Bottom Left), more paths have
been sampled by ∞RETIS while using a much shorter amount of wall time com-
pared to RETIS. Additionally, as one would expect, more paths are sampled in the
lower ensembles for ∞RETIS due to lower CP completion times. A deviation is
seen in the initial point/ensemble, however, which is understandable as [0+] runs
the shooting move without high acceptance. Consequently, "standard" acceptance
yields higher rejectance probabilities and a higher number of rejected swaps be-
tween other ensembles. The cause for the latter effect is due to not sampling a
"biased" path distribution that has a higher statistical average in maximum path
order parameter values (see Section 3.1.1).

The Pcross curves in Figure 4.1.2 Top Right appear to correspond well between
RETIS and ∞RETIS in the initial region between −1.0 and −0.75, where after-
wards the ∞RETIS curve flattens and then sharply drops at 0.75 and onwards.
The RETIS curve in comparison, appears to linearly decrease until arriving at
state B. Apart from ∞RETIS to likely converge faster, a possible cause for the
difference could lie in the sparseness of RETIS interfaces in comparison ∞RETIS,
shown visually by the colored vertical dotted lines (and in Figure 4.1.2 Top Left).
None of the RETIS ensemble interfaces λi lie between 0 and 1. Rather, only 2-3
ensembles sample trajectories that always start after the initial, steep electron
donor region between −1.0 and −0.75, causing possible high uncertainties in that
region. If we overlook the data discrepancy, however, the Pcross difference leads to
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Figure 4.1.2: Top Left: The total number of unique (accepted) paths sampled
for each ensemble, indicated by their λi placement on the order parameter x axis.
Note 1, a path can be valid and counted in multiple ensembles due to being
swapped around. Note 2, even if RETIS samples paths in cohort, rejectance in
shooting/WF/RE lead to uneven number of unique sampled paths in each RETIS
ensemble. Top Right: The crossing probability for the self-exchange reaction
between Ruthenium ions. The respective RETIS and ∞RETIS interfaces are
plotted as vertical dotted lines. Bottom Left: A scatter plot of the maximum
order parameter values for all the paths sampled in two ∞RETIS and RETIS
ensembles having similar λi values. Note that each path (scatter point) is counted
in according to its specific accumulated probability pij and high acceptance weight
wij values when calculating properties. Bottom Right: The running estimate
of the rate against the number of accepted paths. The reason why the curve(s)
starts after 0 can be due to having sampled zero reactive paths in the preceding
samples.

different physical interpretations of the ensuing developments after the transfer-
ring electron escapes the initial electron donor. For ∞RETIS, a path that crosses
−0.75 has a high probability to also cross 0.75 after the orbital initially "breaks
free" from the electron donor. To completely arrive at the electron acceptor, how-
ever, appears to be moderately difficult as the crossing probability drops quite
considerably close to λET = 1. The cause for this behaviour could be due to the
time difference that exists between transferring an electron and solvent reorganiza-
tion [86]. Even if an electron has quickly "travelled" close to the electron acceptor,
to remain there may require a reorganization in the solvent that does not always
occur within a short time frame. This interpretation may also make more "sense"
compared to the linear decrease in RETIS’s Pcross curve. In both Pcross curves,
however, there is an absence of a point of no return, a flat region leading towards
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state B. Therefore, even if "reactive" paths has been sampled, if the end point is
further propagated, there still exist a probability for the path to quickly end up
back in state A again, like if the solvent has not reorganized itself. So while the
order parameter faithfully indicate the progress of an electron transfer, additional
constraints / collective variables characterizing the solvent state may be required
in order to define the true stable product state, see a simple sketch in Figure 4.1.3
Left.

Figure 4.1.3: Left: Sketch of a possible reactive trajectory that reached state
B in one axis (order parameter) but not in other, important axes (collective vari-
ables). Right: Current and alternative ways of selecting the travelling X. The
order parameter values are calculated for a reactive electron transfer trajectory.

A specific issue or observation relating to the method of locating the transfer-
ring electron orbital X was detected when plotting the order parameter values of
sampled trajectories, as seen in Figure 4.1.3 Right. The original way of selecting
X, displayed in blue, does not follow one "specific" orbital from start to end, but
selects X per MD frame based on neighbour lists and distances between O and
Ru atoms. In the enclosed mini-figure, the blue curve form horizontal plateaus
that are incongruent to the prior and latter oscillating behaviour. The cause for
this behaviour appears to be due to X oscillating in close proximity to an O atom,
resulting in the X selection method selecting an X farther away that does not
represent the transferring electron orbital. While oscillating closely to an O atom
may perhaps be questionable (or interesting), plateaus can be observed in a num-
ber of the sampled trajectories. An alternative selection scheme may be designed
by simply following the index of the orbital leaving the electron donor, shown by
the pale orange curve that does not form plateaus. With this scheme, however, a
different issue can appear. At least for when the simulations were run (2021-2023),
there was no guarantee that the index list for the MLWFs would remain the same
throughout a MD trajectory. For example, the index list could possibly change, as
appeared to have happened by the early, light orange peak in Figure 4.1.3 Right.
A snapshot of the reactive trajectory shown in in Figure 4.1.3 Right is displayed
in Figure 4.1.4.



40 CHAPTER 4. APPLICATION AND ANALYSIS

Figure 4.1.4: A snapshot describing the transfer of X (the transferring electron
orbital) from the donor to the acceptor, with a Grotthuss mechanism between two
water molecules and one hydroxyl ion occurring at the same time. The blue-red
curve is the superimposed path of X (the orange curve in Figure 4.1.3, excluding
the spike), from all frames displayed together. Figure is made using VMD [87].

A recurrent characteristic of reactive sampled trajectories is the occurrence of pro-
ton transfer reactions during the electron transfer process. In the reactant state
(or in the product state for that matter), the sole hydroxyl ion is part of of the ini-
tial electron acceptor’s first solvation shell. As the electron transfers to the initial
electron acceptor, so does (usually) two successive proton transfer reactions also
occur, which leads to the formation of a hydroxyl ion close to the initial electron
donor at the end, as can be envisioned in Figure 4.1.4. The process of transfer-
ring one proton to another via water molecules is called the Grotthuss mechanism.
While the hydroxyl ion changed sides in the majority of the reactive trajectories, a
number of the trajectories only observed the transfer of an electron. Likely, either
the hydroxyl ion or the excess electron will quickly transfer if further propagated.
Extensive chemical knowledge can possibly be obtained from the large amount of
data generated from the RETIS and ∞RETIS simulations, by using algorithms
like chemistrees [88] or predictive power [89]. Due to time, however, we will end
this subchapter by plotting one simple collective variable, the average distance
between a ruthenium atom and the oxygen atoms of the first solvent shell over
time, as shown for two trajectories in Figure 4.1.5. The difference in equilibrium
distance between the two ruthenium ions is likely due to the difference in acceptor
and donor charge. While the trajectory’s solvent shell distances oscillate between
and under the equilibrium distance, the two Ru and Ru′ curves appear to be rela-
tively inversely related with start and end values becoming flipped and being close
to the equilibrium average. They also appear to be somewhat correlated with the
order parameter value, as the solvent shell distances should partly be determined
by the ruthenium charges and surrounding solvent molecules. Whether the trans-
fer of the hydroxyl ion is correlated to the order parameter or other collective
variables remains to be seen, however.
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Figure 4.1.5: Left: The order parameter values of two reactive trajectories.
Right: For the same trajectories, the average distance between the 6 inner-most
oxygen atoms and Ru/Ru′ is plotted per frame. Equilibrium averages are also
plotted as horizontal dotted grey lines.

4.2 Solvated Carbon Dioxide to Carbonic Acid
Solvated carbon dioxide (CO2) chemistry play a key role in major, ongoing chal-
lenges like carbon capture for the prevention of atmospheric CO2 release [90] and
the acidification of the ocean caused by the formation of carbonic acid (H2CO3)
from solvated CO2 in seawater [91]. Considerable attention has therefore been ded-
icated to develop effective amine-based solvents for CO2 capture [92], and more
recently ways to remove solvated CO2 from seawater [93]. While the two chal-
lenges may not appear to be directly related, bicarbonate (HCO−

3 ) is the most
common product observed in amine solutions [92], which is the same product that
is obtained from the deprotonation of carbonic acid in seawater,

H2CO3(aq) → HCO−
3(aq) +H+

(aq) (4.5)

Other, catalyzed chemical reactions related to solvated CO2 include the formation
of formic acid [94, 95], carbon monoxide [96, 97] and alcohols like methanol [96]
and ethanol [98]. Further study, through the application of sampling methods
like ∞RETIS would therefore be highly beneficial for providing insight into the
chemical and catalytic processes involving the reduction of CO2 into other species.
As a first step, we can apply ∞RETIS to study the CO2 reaction forming carbonic
acid in water,

CO2(aq) +H2O(aq) → H2CO3(aq) (4.6)

which occurs without the need of catalysts at various experimental conditions,
like in carbonated drinks and in the ocean. Similarly to the study of the water
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dissociation reaction in Paper C and the electron transfer reaction in the previous
section, this reaction can be modelled using ab initio DFT dynamics. To determine
the progress of this reaction, a simple order parameter can be the minimum angle
between the carbon atom and two connected oxygen atoms. Once arriving at
the product state, however, possibly three oxygen atoms will be bonded with
the carbon atom. We therefore impose a pre-defined cut-off value of 1.41 Å. If
three oxygen atoms exist within this radius, then the minimum out of the three
O-C-O angles becomes the order parameter angle. We define the reactant state
to be larger 173◦ degrees and the product state to be smaller than 114◦. We
additionally enforce the criteria of pure water at the product state, in addition to
C having three O neighbors within the cutoff radius. The former criteria confine
the product state to purely carbonic acid, as the product state might otherwise be
a combination of carbonic acid and bicarbonate (deprotoned carbonic acid). MD
snapshots are shown in Figure 4.2.1,

Figure 4.2.1: Snapshots of two reactive trajectories, with Left forming the cis-
trans and Right forming the cis-cis carbonic acid conformer. Left illustrates the
order parameter, and shows the beginnings of a water molecule nucleophillically
attacking the carbon atom. Right illustrates the ending of a Grotthuss chain,
with dotted lines showing the initial O-H pairs.

The MD was run with DFT MD (CP2K) at 300K, a cubic box with length 12.4138
Å and a system size of 64 water molecules and one carbon dioxide molecule. The
DFT functional used was revPBE-D3 [99]. An initial reactive trajectory was
speedily obtained by running a metadynamics simulation and having the O-C-O
angle as the sole collective variable. Similarly, after determining interfaces from
initial explorative ∞RETIS runs, a ∼2-day production simulation was run with
20 workers and 41 ensembles, with each worker utilizing 12 CPUs each. The
crossing probability and the running calculation of the rate constant are shown in
Figure 4.2.2. A point of no return can be observed in Figure 4.2.2 Left, where
once θ ∼ 130 is crossed, the system is almost guaranteed to arrive at the product
state. The calculated rate constant appears to converge towards a value that
is two order of magnitudes away from experimentally reported values, shown in
Figure 4.2.2 Right, which is quite impressive given the limited system size and
simulation time. A better match could be obtained by increasing the two factors,
and modifying the MD settings, like changing the DFT functional, basis sets and
DFT convergence limits. The order parameter values of three paths are shown in
Figure 4.2.3 Left,
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Figure 4.2.2: Left: The crossing probability of the reaction, with the interfaces
plotted as vertical dotted lines. A plateau is formed around θ ∼ 130. Right: The
running estimate of the rate against the number of accepted paths. The calculated
rate constant from the ∞RETIS simulation equals 0.00022 s−1 ± 68%, with the
flux and Pcross being 2.508×1013 ± 19% s−1 and 8.609 ×10−18 ± 62% respectively.
The plotted experimental value of 0.037 s−1 is from S. R. Emerson and J. I. Hedges
[100] at 25 ◦C. Two other experimentally similar values were reported to be 0.039
s−1 by ChemEurope [25 ◦C] [101] and 0.0371 s−1 by A. L. Soli and R. H. Byrne
also at 25 ◦C.

The primary observed carbonic acid formation mechanism occurs as illustrated in
Figure 4.2.1 Left, where 19 out of the 20 sampled reactive trajectories resulted in
the cis-trans carbonic acid conformer. Only one reactive trajectory formed the cis-
cis conformer as shown in Figure 4.2.1 Right. In both cases, a water molecule’s
oxygen atom appears to release a proton and concurrently attack the carbon atom.
The released proton then initiates the Grotthuss mechanism to deliver a proton to
one of the other carbon-bonded oxygen atoms. One possible reason for the 19:1
conformer disparity is a difference in the required path length for the Grotthuss
mechanism. As can be seen in Figure 4.2.1 Left, only two intermediate water
molecules were generally required to form the cis-trans conformer. The sole cis-
cis trajectory shown in Figure 4.2.1 Right, however, required three intermediate
water molecules, and a longer time to complete than most of the other reactive
paths, as seen in Figure 4.2.3 Right.
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In all three paths that exceed 500 fs, three or more hydronium ion intermediates
were formed throughout the reaction. In comparison, the shorter paths had only
time to form two hydronium ions before arriving at the cis-trans product state.
Therefore, as the cis-cis conformer potentially requiring longer time to form, the
chance of falling back towards the reactant state possibly also increases, resulting
in the observed conformer disparity. In fact, this result appears to well agree
with a theoretical paper published in 1997 [102], that predicted the formation
of carbonic acid via a "water chain mechanism" primarily involving the active
participation of two water molecules (excluding the attacking one). Additionally,
the illustrated geometries in the paper mainly show the formation of cis-trans
conformers. If the two conformers remain relatively stable in solution, then the
conformer formation disparity would also imply that most of the carbonic acid
would exist as cis-trans conformer in water solution. The experimental findings of
[103] possibly support this claim, as they managed to (only) detect the cis-trans
conformer via "a supersonic jet using a pulsed discharge nozzle" and Fourier-
transform microwave spectroscopy. For further work, more analysis and simulation
should be performed. For example, the conformerization reaction between cis-
trans and cis-cis, the stability of carbonic acid, and how various factors like box
size, DFT functionals and simulation time would affect the prediction of rate
constants.
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CONCLUSION AND OUTLOOK

Through a combination of various methods and enhancements, a method called
∞RETIS has been formulated to efficiently and quickly tackle the sampling of
rare events in MD simulations. From proof of concept papers A and B, a coded-
up ∞RETIS software is now available to quickly converge many realistic systems,
like the study of water boiling, water dissociation, protein unfolding (paper C),
redox reactions (Chapter 4.1) and carbonic acid formation (Chapter 4.2). Future
∞RETIS applications and developments will therefore be interesting to follow,
especially as they can make use of the excellent performance, parallelizability, and
accuracy provided by the algorithm. For example, ∞RETIS appears to be quite
compatible with current hardware, software and algorithmic advancements:

• The hardware available can be effectively utilized. For example, GPU and
CPU throughput can be maximized via MPS, and, for better or worse, stor-
age IO and RAM usage increases linearly per parallel worker. ∞RETIS
simulations can therefore expect to become faster with seemingly more and
faster hardware options by the day.

• Different parallel simulations can run different types of MD. For example,
various levels of theory could be run between the [0−] and [i+] ensembles,
which is the idea for Quantis [29]. One configuration would be to run force
field-based MD in [i−], and let [i+] run quantum mechanics/molecular me-
chanics [104] and/or pure quantum-based MD.

• As MLFF MD enables quantum accuracy with reduced costs, system sizes
that previously were not possible can now be studied. To do so, however, re-
quire access to quality data, especially when describing transitionary events.
Running ∞RETIS with MLFF would directly provide quality data in addi-
tion to sampling rare events at the same time.

Although ∞RETIS is highly adaptable and the major problem of wall time conver-
gence has been solved through parallelization, certain other problems still hinder
widespread applicability. A considerable issue is the fact that the term rare events
is not necessarily well defined, so ∞RETIS cannot straightforwardly be applied to
sample any type of rare event. Noticeably, a simulation will quickly break down in
the presence of meta-stable states between the more stable reactant and product
states, as shown in Figure 5.0.1,

45
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Figure 5.0.1: The potential energy curve of a system with two global minima
and one local minima in the center. The orange area marks the metastable region.

In these systems, a launched shooting move might end up propagating forever
within the orange region (in Figure 5.0.1). Additionally, areas where rare even sam-
pling could be useful, like drug discovery [105] or catalysis optimization [106], often
require the study of complicated systems that contain a plethora of metastable
states. One example is the ∞RETIS study of chignolin protein unfolding (paper
C), an artificial mini-protein [107] solvated in water. While the ∞RETIS simu-
lations managed to converge and predict accurate results, many excessively long
paths were also generated from the existence of a metastable state between states
A and B.

In the case of simulating more complicated systems than the mini-protein, how-
ever, the effectivity of ∞RETIS simulations may dramatically suffer. To resolve
this issue, one can perhaps use the lessons in this thesis, that problems can be re-
solved through the use of even more enhancements and algorithms. For example,
instead of only defining two stable states, A and B, ∞RETIS could possibly be ex-
tended to cover multiple states (MS) [32], and/or to utilize shorter path definitions,
like partial paths (PP) [34]. Other problems, like the current (arduous) initial-
ization phase and interface placement optimization, also seem solvable (Section
3.3.1). Therefore, having already enabled a new, wide region of studiable systems,
additional complications may be solved with more algorithmic enhancements. We
therefore expect ∞RETIS, and its possible siblings (∞MSRETIS, ∞REPPTIS),
to generate accurate results that help solve many of the current real-world issues
we are dealing with today.
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ABSTRACT: We developed a replica exchange method that is effectively parallelizable even
if the computational cost of the Monte Carlo moves in the parallel replicas are considerably
different, for instance, because the replicas run on different types of processor units or
because of the algorithmic complexity. To prove detailed-balance, we make a paradigm shift
from the common conceptual viewpoint in which the set of parallel replicas represents a
high-dimensional superstate, to an ensemble-based criterion in which the other ensembles
represent an environment that might or might not participate in the Monte Carlo move. In
addition, based on a recent algorithm for computing permanents, we effectively increase the
exchange rate to infinite without the steep factorial scaling as a function of the number of replicas. We illustrate the effectiveness of
this replica exchange methodology by combining it with a quantitative path sampling method, replica exchange transition interface
sampling (RETIS), in which the costs for a Monte Carlo move can vary enormously as paths in a RETIS algorithm do not have the
same length and the average path lengths tend to vary considerably for the different path ensembles that run in parallel. This
combination, coined ∞RETIS, was tested on three model systems.

1. INTRODUCTION
The Markov chain Monte Carlo (MC) method is one of the
most important numerical techniques for computing averages
in high-dimensional spaces, like the configuration space of a
many-particle system. The approach has applications in a wide
variety of fields ranging from computational physics,
theoretical chemistry, economics, and genetics. The MC
algorithm effectively generates a selective random walk through
state space in which the artificial steps are designed to ensure
that the frequency of visiting any particular state is propor-
tional to the equilibrium probability of that state. The
Metropolis1 or the more general Metropolis−Hastings2

algorithms are the most common approaches for designing
such random steps (MC moves) based on the detailed-balance
principle. That is, the MC moves should be constructed such
that the number of transitions from an old state so to a new
state sn is exactly balanced by the number of transitions from
the new to the old state: ρ(s(o))π(s(o) → s(n)) = ρ(s(n)) π(s(n) →
s(o)), where ρ(·) is the state space equilibrium probability
density and π(·) are the probabilities to make a transition
between the two states given the set of possible MC moves.
Further, the transition is split into a generation and an
acceptance/rejection step such that π(s → s′) = Pgen(s → s′)
Pacc(s → s′). In the case that the sampled state space is the
configuration space of a molecular system at constant
temperature, Pgen might relate to moving a randomly picked
particle in a random direction over a small random distance,
and ρ(s) is proportional to the Boltzmann weight e−βE(s), with
β = 1/kBT the inverse temperature, kB the Boltzmann constant,
and E(s) the state’s energy.
The Metropolis−Hastings algorithm takes a specific solution

for the acceptance probability
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The generation probabilities will cancel in the above
expression if they are symmetric, Pgen(s → s′) = Pgen(s′ → s)
as in the less generic Metropolis scheme. At each MC step, the
new state is either accepted or rejected based on the
probability above. In case of a rejection, the old state is
maintained and resampled. This scheme obeys detailed-
balance. In addition, if the set of MC moves are ergodic,
equilibrium sampling is guaranteed. When ergodic sampling,
even if mathematically obeyed, is slowed down by a rough
(free) energy landscape, replica exchange MC becomes useful.

Replica exchange MC (or replica exchange molecular
dynamics) is based on the idea to simulate several copies of
the system with different ensemble definitions,3−5 most
commonly ensembles with increasing temperature (parallel
tempering). By performing “swaps” between adjacent replicas,
the low-temperature replicas gain access to the broader space
region that are explored by the high-temperature replicas. The
detailed-balance and corresponding acceptance−rejection step
can be derived by viewing the set of states in the different
ensembles (replicas) as a single high-dimensional superstate S
= (s1, s2, ···, sN) representing the system in a set of N

Received: September 2, 2022
Revised: October 18, 2022
Published: November 17, 2022

Articlepubs.acs.org/JPCA

© 2022 The Authors. Published by
American Chemical Society

8878
https://doi.org/10.1021/acs.jpca.2c06004
J. Phys. Chem. A 2022, 126, 8878−8886

D
ow

nl
oa

de
d 

vi
a 

N
O

R
W

E
G

IA
N

 U
N

IV
 S

C
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

 o
n 

Ju
ly

 1
6,

 2
02

3 
at

 0
8:

57
:4

5 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.



independent “parallel universes”. The Metropolis scheme
applied to the superstate yields

=
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in which the probability of the superstate equals

= ··· =
=

S s s s s( ) ( , , , ) ( )N
i

N

i i1 2
1 (3)

where ρi(·) is the specific probability density of ensemble i. For
example, the move that attempts to swap the first two states,
implying So = (s1, s2, ···, sN) and Sn = (s2, s1, ···, sN), will be
accepted with a probability

=
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In a replica exchange simulation, swapping moves and
standard MC or MD steps are applied alternately. Parallel
computing will typically distribute the same number of
processing units per ensemble to carry out the computationally
intensive standard moves. The swapping move is cheap but
requires that the ensembles involved in the swap have
completed their previous move. If the standard moves in
each ensemble require different computing times, then several
processing units have to wait for the slow ones to finish.
If the disbalance per move is relatively constant, then the

replicas could effectively be made to progress in cohort by
trying to differentiate the number of processing units per
ensemble or the relative frequency of doing replica exchange
versus standard moves per ensemble. However, this disbalance
is not constant in several MC methods, such as with
configurational bias MC6−8 or path sampling.9 The number
of elementary steps to grow a polymer in configurational bias
MC obviously depends on the polymer’s length that is being
grown, but also early rejections lead to a broad distribution of
the time it takes to complete a single MC move even in
uniform polymer systems. Analogously, the time required to
complete an MC move in path sampling simulations will
depend on the length of the path being created. Other
examples of complex Monte Carlo methods with a fluctuating
CPU cost per move are cluster Monte Carlo algorithms10 and
event-chain Monte Carlo.11,12

We will show that the standard acceptance eqs 1 and 4 can
be applied in a parallel scheme in which ensembles are updated
irregularly in time and the average frequency of MC moves is
different for the ensembles. In addition, we show that we can
apply an infinite swapping13 scheme between the available
ensembles. For this, we develop a new protocol based on the
evaluation of permanents that circumvents the steep factorial
scaling. This last development is also useful for standard replica
exchange.

2. METHODS
2.1. Finite Swapping. In the following, we will assume

that we have two types of MC moves. One move that is CPU-
intensive and can be carried out within a single ensemble, and
replica exchange moves between ensembles which are
relatively cheap to execute. The CPU-intensive move will be
carried out by a single worker (one processor unit, one node,
or a group of nodes) and these workers perform their task in

parallel on the different ensembles. One essential part of our
algorithm is that we have less workers than ensembles such
that whenever the worker is finished and produced a new state
for one ensemble, this state can directly be swapped with the
states of any of the available ensembles (the ones not occupied
by a worker). After that, the worker will randomly switch to
another unoccupied ensemble for performing a CPU-intensive
move.

In its most basic form, the algorithm consists of the
following steps:

1. Define N ensembles and let ρi(·) be the probability
distribution of ensemble i. We also define PRE which is
the probability of doing a replica exchange move.

2. Assign K < N workers (processing units) to K of the N
ensembles for performing a CPU-intensive MC move.
Each ensemble is at all times occupied by either 1 or 0
workers. The following steps are identical for all of the
workers.

3. If the worker is finished with its MC move in ensemble i,
the new state is accepted or rejected according to eq 1
(with ρi for ρ). Ensemble i is updated with the new state
(or by resampling the old state in case of rejection) and
is then considered to be free.

4. Take a uniform random number ν between 0 and 1. If ν
> PRE, go to step 7.

5. Among the free ensembles, pick a random pair (i, j).
6. Try to swap the states of ensembles i and j using eq 4

(with labels i, j instead of 1, 2). Update ensembles i, j
with the swapped state or the old state in case of a
rejection. Return to step 4.

7. Select one of the free ensembles at random and assign
the worker to that ensemble for performing a new
standard move. Go to step 3.

In this algorithm, ensembles are not updated in cohort like
in standard replica exchange, but updates occur at irregular
intervals. In addition, the different ensemble conditions can
result in systematic differences in the number of states that are
being created over time. To prove that the above scheme
actually samples the correct distributions requires a funda-
mentally new conceptual view as the superstate picture is no
longer applicable. Despite that the algorithm uses the same
type of eqs 1 and 4, as one would use in standard replica
exchange, it does not rely on eqs 2 and 3 that are no longer
valid. In the SI, we provide a proof from the individual
ensemble’s perspective in which the other ensembles provide
an “environment” that might, or might not, participate in the
move of the ensemble considered. By doing so, we no longer
require that the number of transitions from old to new, S(o) →
S(n), is the same as from new to old, S(n) → S(o). Instead, by
writing =S s( , )1 , from ensemble 1’s perspective, we have
that the number of s s( , ) ( , )o o n na

1
( ) ( )

1
( ) ( ) transitions

should be equal to the number of s s( , ) ( , )n o o na
1
( ) ( )

1
( ) ( )

transitions when the standard move is applied where na ( )

refers to any new environment. In the SI, we show a similar
detailed-balance condition for the replica exchange moves. At
step 6 we sample only ensemble i and j or, alternatively, all free
ensembles get a sample update. This would mean resampling
the existing state of those not involved in a swap (“null move”).
This makes the approach more similar to the superstate
sampling albeit using only free ensembles, as described in the
SI. The null move does not reduce the statistical uncertainty,
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but we mention it here as it makes it easier to explain the
infinite swapping approach. But for the detailed-balance
conditions to be valid it is imperative that occupied ensembles
are not sampled.
An essential aspect of the efficiency of our algorithm is that

the number of workers K is less than the number of ensembles
N. The case K = N is valid but would reduce the number of
replica exchange moves to zero as only one ensemble is free at
the maximum. Reducing the K/N ratio will generally imply a
higher acceptance in the replica exchange moves as we can
expect a higher number of free ensembles whose distributions
have significant overlap. What gives the optimum number of
workers is therefore a nontrivial question that we will further
explore in Section 4. However, for case K < N we can
maximize the effect of the replica exchange moves by taking
the PRE parameter as high as possible. In fact, we can simulate
the effect of the limit PRE → 1 without having to do an infinite
number of replica exchange moves explicitly. This leads to an
infinite swapping13 version of our algorithm.

2.2. Infinite Swapping. If in the previously described
algorithm we take PRE = 1 − δ, we will loop through steps 4−6
for many iterations (nit = ∑n = 0

∞ n(1 − δ)nδ = 1/δ in the limit δ
→ 0) before getting to step 7. When δ vanishes and nit
becomes infinitely large, we expect that all possible swaps will
be executed an infinite number of times. Since the swaps obey
detailed-balance between unoccupied ensembles, these will
essentially sample the distribution of eq 3 (for the subset S* of
unoccupied ensembles). Hence, when the loop is exited, each
possible permutation σ ∈ S* has been sampled nit × ρ(σ)/
∑σρ(σ) times. By lumping all the times that the same
permutation was sampled and normalizing by division with nit,
we simply sample all of the possible permutations in one go
using fractional weights that sum up to 1. This is then the only
sampling step, as the single update in step 3 can be skipped due
to its negligible 1/nit weight.
The idea of doing an “infinite number” of swapping moves

has been proposed before,13−16 but here we give a different
flavor to this approach by a convenient reformulation of the
problem into permanents that allows us to beat the steep
factorial scaling reported in earlier works.13 The permanent
formulation goes as follows. Suppose that after step 3, there are
four free ensembles (we name them e1, e2, e3, e4) containing
four states (s1, s2, s3, s4). Which state is in which ensemble after
this step is irrelevant. We can now define a weight-matrix W

=
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where Wij ∝ ρj(si). Essential to our approach is the
computation of the permanent of the W-matrix, perm(W),
and that of the W{ij}-matrices in which the row i and column j
are removed.
The permanent of a matrix is similar to the determinant but

without alternating signs. We can, henceforth, write perm(W)
= ∑j=1

4 W1jperm(W{1j}). As the permanent of the 1 × 1 matrix
is obviously equal to the single matrix value, the permanent of
arbitrary dimension could in principle be solved recursively

using this relation. Based on the permanents of W, we will
construct a probability matrix P

=
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where Pij is the chance to find state si in ensemble ej. As for
each permutation each state is in one ensemble and each
ensemble contains one state, the P-matrix is bistochastic: both
the columns and the rows sum up to 1. If we consider Sij* the
set of permutations in which state si is in ej, we can write Pij =∑σ∈Sdij* ρ(σ)/∑σ′∈S*ρ(σ′). We can, however, also use the
permanent representation in which

=
{ }

P
W W ij

W

perm( )

perm( )ij
ij

(5)

So far we have not won anything as computing the permanent
via the recursive relation mentioned above has still the factorial
scaling. The Gaussian elimination approach, which allows an
order n( )3 computation for determinants of n × n matrices,
will not work for permanents as only some but not all row and
column operations have the same effect to a permanent as to a
determinant. One can for instance swap rows and columns
without changing the permanent. Multiplying a row by a
nonzero scalar multiplies the permanent by the same scalar.
Hence, this will not affect the P-matrix based on eq 5. Unlike
the determinant, adding or subtracting to a row a scalar
multiple of another row, an essential part of the Gaussian
elimination method, does change the permanent. This makes
the permanent computation of a large matrix excessively more
expensive than the computation of a determinant. Yet, recent
algorithms based on the Balasubramanian-Bax-Franklin-Glynn
(BBFG) formula17−20 scale as (2 )n . This means that the
computation of the full P-matrix scales as ×n(2 )n 2 , which
seems still steep but is nevertheless a dramatic improvement
compared to factorial scaling.

For our target time of 1 second, for instance, we could only
run the algorithm up to N = 7 in the factorial approach, while
we reach N = 12 in the BBFG method using a mid-to-high-end
laptop (DELL XPS 15 with an Intel Core i7-8750H). If matrix
size of N = 20 is the target, the BBFG method can perform a
full P-matrix determination in ∼711 s, while it would take
∼15.3 × 106 years in the factorial approach. The BBFG
method is the fastest completely general solution for the
problem of computing a P-matrix from any W-matrix. For
several algorithms, the W-matrix has special characteristics that
can be exploited to further increase efficiency. For instance, if
by shuffling the rows and columns the W-matrix can be made
into a block form, where squared blocks at the diagonal have
only zeros at their right and upper side, the permanent is equal
to the product of the block’s permanents. For instance, if W14 =
W24 = W34 = 0, we have two blocks, 3 × 3 and 1 × 1. If W13 =
W14 = W23 = W24 = 0, we can identify two blocks of 2 × 2, etc.
Identification of blocks can hugely decrease the computation of
a large permanent. Another speed-up can be made if all rows in
the W-matrix are a sequence of ones followed by all zeros, or
can be made into that form after the previously mentioned
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column and row operations. This makes an order n( )2

approach possible. We will further discuss this in Section 3.1.
The infinite swapping approach changes the aforementioned

algorithm from step 3:
3 If the worker is finished with its MC move in a specific
ensemble, the new state is accepted or rejected (but not
yet sampled) according to eq 1. The ensemble is free.

4 Determine the W-matrix based on all unoccupied
ensembles, calculate the P-matrix based on eq 5, and
update all of the unoccupied ensembles by sampling all
free states with the fractional probabilities corresponding
to the columns in the P-matrix.

5 Pick randomly one of the free ensembles ej.
6 Pick one of the available states (s1, s2, ···) based on a
weighted random selection in which state si has a
probability of Pij to be selected.

7 The worker is assigned to do a new standard move in
ensemble ej based on previous state si. Go to step 3.

3. APPLICATION: ∞RETIS
Replica Exchange Transition Interface Sampling (RETIS)21,22

is a quantitative path sampling algorithm in which the sampled
states are short molecular trajectories (paths) with certain start
and end conditions, and a minimal progress condition. New
paths are being generated by a Monte Carlo move in path
space, such as the shooting move23 in which a randomly
selected phase point of the previous path is randomly modified
and then integrated backward and forward in time by means of
molecular dynamics (MD). The required minimal progress
increases with the rank of the ensemble such that the final
ensemble contains a reasonable fraction of transition
trajectories. The start and end conditions, as well as the
minimal progress, are administered by the crossings of
interfaces (λ0, λ1, ···, λM) with λk+1 > λk, that can be viewed
as nonintersecting hypersurfaces in phase space having a fixed
value of the reaction coordinate. A MC move that generates a
trial path not fulfilling the path ensemble’s criteria is always
rejected. RETIS defines different path ensembles based on the
direction of the paths and the interface that has to be crossed,
but all paths start by crossing λ0 (near the reactant state/state
A) and they end by either crossing λ0 again or reaching the last
interface λM (near the product state/state B). There is one
special path ensemble, called [0−], that explores the left side of
λ0, the reactant well, while all other path ensembles, called [k+]
with k = 0, 1, ··· M − 1, start by moving to the right from λ0
reaching at least λk.
A central concept in RETIS is the so-called overall crossing

probability, the chance that a path that crosses λ0 in the
positive direction reaches λM without recrossing λ0. It provides
the rate of the process when multiplied with the flux through λ0
(obtained from the path lengths in [0−] and [0+]22) and is
usually an extremely small number. The chance that any of the
sampled paths in the [0+] path ensemble crosses λM is generally
negligible, but a decent fraction of those (∼0.1−0.5) will cross
λ1 and some even λ2. Likewise, paths in the [k+], k > 0, path
ensembles have a much higher chance to cross λk+1 than a [0+]-
path as they already cross λk. This leads to the calculation of M
local conditional crossing probabilities, the chance to cross λk+1
given λk was crossed for k = 0,1, ···, M − 1, whose product
gives an exact expression for the overall crossing probability
with an exponentially reduced CPU cost compared to MD.

The efficiency is further hugely improved by executing
replica exchange moves between the path ensembles. These
swaps are essentially cost-free since there is no need to
simulate additional ensembles that are not already required. An
accepted swapping move in RETIS provides new paths in two
ensembles without the expense of having to do MD steps. The
enhancement in efficiency is generally even larger than one
would expect based on these arguments alone as path
ensembles higher-up the barrier provide a similar effect as
the high-temperature ensembles in parallel tempering. In
addition, point exchange moves between the [0−] and [0+]
ensembles are performed by exchanging the end and start
points of these paths that are then continued by MD at the
opposite site of the λ0 interface.

While TIS24 (without replica exchange) can run all path
ensembles embarrassingly parallel, the RETIS algorithm
increases the CPU-time efficiency but is difficult to parallelize
and open source path sampling codes, like OpenPathSam-
pling25 and PyRETIS,26 implement RETIS as a fully sequential
algorithm. The path length distributions are generally broad
with an increasing average path length as a function of the
ensemble’s rank. This becomes increasingly problematic the
more ensembles you have as they all have to wait for the
slowest ensemble. This means that while RETIS will give the
best statistics per CPU-hour, it might not give the best
statistics in wall-time. Our parallel scheme can effectively deal
with the unequal CPU cost of the replicas, which allows us to
increase the wall-time efficiency with no or minimal reduction
in CPU-time efficiency. On the contrary, our method does not
give an equal distribution of the CPU-time over the different
ensembles nor an equal number of samples per ensemble,
leading to a smarter distribution of CPU hours. The CPU
efficiency therefore even seems to improve slightly.

3.1. W-Matrix in RETIS. If there are M + 1 interfaces, λ0,
λ1, ···, λM, there are also N = M + 1 ensembles, [0−], [0+], [1+],
···, [(M − 1)+]. For K workers, the size of the W-matrix is,
hence, either (N − K + 1) × (N − K + 1) or (N − K) × (N −
K) as swappings are executed when 1 of the K workers is free,
while the remaining K − 1 workers occupy path ensembles that
are locked and do not participate in the swap. The smallest
matrix occurs when one worker is occupying both [0−] and
[0+] during the point exchange move, as described in the SI.

Paths can be represented by a sequence of time slices, the
phase points visited by the MD trajectory. For a path of length
L + 1, X = (x0, x1, ···, xL), the plain path probability density
ρ(X) is given by the probability of the initial phase point times
the dynamical transition probabilities to go from one phase
point to the next: ρ(X) = ρ(x0)ϕ(x0 → x1)ϕ(x1 → x2) ···
ϕ(xL−1 → xL). Here, the transition probabilities depend on the
type of dynamics (deterministic, Langevin, Nose-́Hoover
dynamics, etc). The weight of a path within a specific path
ensemble ρj(X) can be expressed as the plain path density
times the indicator function 1e dj

and possibly an additional
weight function wj(X): ρj(X) = ρ(X) × 1e dj

(X) × wj(X). The
indicator function equals 1 if path X belongs to ensemble ej.
Otherwise, it is 0. The additional weight function wj(X) is part
of the high-acceptance protocol that is used in combination
with the more recent path generation MC moves such as stone
skipping27 and wire fencing.28 Using these “high-acceptance
weights”, nearly all of the CPU-intensive moves can be
accepted as they are tuned to cancel the Pgen-terms in the
Metropolis−Hastings scheme, eq 1, and the effect of the
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nonphysical weights is undone in the analysis by weighting
each sampled path with the inverse of wj(X).
While the path probability ρ(si = X) is difficult to compute,

determining 1j(si) and wj(si) is trivial. It is therefore a fortunate
coincidence that we can replace Wij = ρj(si) with

=W s w s1 ( ) ( )ij e i j ij (6)

because the P-matrix does not change if we divide or multiply a
row by the same number, as mentioned in Section 2. Except
for [0−], all path ensembles have the same start and end
conditions and only differ with respect to the interface crossing
condition. A path that crosses interface λk automatically crosses
all lower interfaces λl<k. Reversely, if the path does not cross λk,
it will not cross any of the higher interfaces λl>k. This implies
that if the columns of Wij are ordered such that the first
column (e1) is the first available ensemble from the sequence
([0−], [0+], [1+], ···, [(M − 1)+]), the second column (e2) is
the second available ensemble, and so on, most rows will end
with a series of zeros.
Reordering the rows with respect to the number of trailing

zeros, almost always ensures that the W-matrix can be brought
into a block form such that the permanent can be computed
faster based on smaller matrices. In particular, if [0−] is part of
the free ensembles, it will always form a 1 × 1 block as there is
always one and no more than one available path that fits in this
ensemble.
If high acceptance is not applied, we have wj(X) = 1 and

each row in the W-matrix (after separating the [0−] ensemble if
it is part of the free ensembles) is a sequence of ones followed
by all zeros. The W-matrix can hence be represented by an
array (n1, n2, n3, ··· nn), where each integer ni indicates the
number of ones in row i. As we show in the SI, the permanent
of such a W-matrix is simply the product of (ni + 1 − i):
perm(W) = ∏i (ni + 1 − i). Further, the P-matrix can be
constructed from the following order n( )2 method.
The first step is to order the rows of the W-matrix such that

n1 ≤ n2 ≤ ··· ≤ nn. We then fill in the P-matrix from top to
bottom for each row using
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The approach is extremely fast and allows the computation of
P-matrices from a large W-matrix, up to several thousands,
within a second of CPU-time. The above method applies
whenever the rows of the W-matrix can be transformed into
sequence of ones followed by all zeros. Besides RETIS without
high acceptance, this would apply to other MC methods like
subset sampling29 or umbrella sampling30 with semi-infinite
rectangular windows.

4. RESULTS AND DISCUSSION
To test our algorithms we ran three types of ∞RETIS
simulations. First, a memoryless single variable stochastic
(MSVS) process was simulated to mimic a RETIS simulation
in which the average path length increases linearly with the
rank of the ensemble. A “path” is created by drawing 2 random
numbers where the first determines how much progress a path
makes and the second determines the path length. These two
outcomes are variable and depend on the rank of the ensemble
such that the fictitious path in ensemble [k+] has a 0.1
probability to cross λk+1 and has an average path length of
approximately k/10 seconds (see Section 2). The worker is
paused for a number of seconds equal to the path length before
it can participate in replica exchange moves to mimic the time
it would take to perform all of the necessary MD steps. While
this artificial simulation allows us to investigate the potential
strength of the method to tackle extremely rare events, it
cannot reveal the effect of correlations between accepted paths
when fast exploration of the reaction coordinate’s orthogonal
directions is crucial. To analyze this effect, we also ran a two-
dimensional (2D) membrane permeation system with two

Table 1. Results of the Three Model Systems Showing Crossing Probabilities (Pcross), Permeabilities (perm.), and Rates for
Different Number of Workers (K)a

MSVS two-channel system double well with wire fencing

K Pcross/10−50 K Pcross/ 10−5 perm./10−6 K Pcross/10−7 rate/10−7

1 0.61 ± 0.33 1 1.52 ± 0.17 1.28 ± 0.14 1 5.91 ± 0.18 2.59 ± 0.07
5 1.47 ± 1.04 2 1.63 ± 0.24 1.37 ± 0.20 2 5.70 ± 0.13 2.51 ± 0.06

10 0.86 ± 0.51 3 1.52 ± 0.07 1.28 ± 0.06 3 5.57 ± 0.19 2.45 ± 0.08
15 0.68 ± 0.08 4 1.42 ± 0.10 1.19 ± 0.08 4 5.20 ± 0.30 2.34 ± 0.12
20 1.02 ± 0.13 5 1.40 ± 0.12 1.18 ± 0.10 5 5.05 ± 0.41 2.23 ± 0.18
25 1.02 ± 0.17 6 1.54 ± 0.06 1.30 ± 0.05 6 5.49 ± 0.29 2.42 ± 0.13
30 1.26 ± 0.24 7 1.48 ± 0.08 1.24 ± 0.07 7 4.99 ± 0.39 2.21 ± 0.17
35 1.05 ± 0.15 8 1.46 ± 0.08 1.23 ± 0.06 8 4.88 ± 0.43 2.15 ± 0.19
40 1.05 ± 0.14 9 1.42 ± 0.10 1.20 ± 0.08
45 0.93 ± 0.09 10 1.44 ± 0.08 1.21 ± 0.07
50 1.00 ± 0.07 11 1.41 ± 0.09 1.19 ± 0.08

12 1.30 ± 0.15 1.09 ± 0.12
Literature/Theoretical Result

1.23 ± 0.16b 1.06 ± 0.14b 2.79 ± 0.70d

5.84 ± 0.13e 2.58 ± 0.06e

1.00a 1.61c 1.37c 5.83c 2.58c
aAll results are shown in dimensionless units. Errors are based on single standard deviations. Values shown in the lower part are a: exact result, b:
ref 31, c: approximated value based on Kramers’ theory (see the SI), d: ref 32, and e: ref 28.
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slightly asymmetric channels.31 Finally, to study our algorithm
with a more generic W-matrix that needs to be solved via the
BBFG formula, we also ran a set of underdamped Langevin
simulations of a particle in a double-well potential32 using the
recent wire fencing algorithm with the high-acceptance
protocol.28 All simulation results were performed using five
independent runs of 12 h. Errors were based on the standard
deviations from these five simulations, except for the MSVS
process, where a more reliable statistical error was desired for
the comparison with analytical results. Here, block errors were
determined on each of the five simulations based on the
running average of the overall crossing probability. The block
errors were finally combined to obtain the statistical error in
the average of the five simulations.

4.1. Memoryless Single Variable Stochastic (MSVS)
Process. Table 1 reports the overall crossing probabilities and
their statistical errors for a system with 50 interfaces and 1, 5,
10, 15, 20, 25, 30, 35, 40, 45, and 50 workers. All values are
within a 50% deviation from the true value of 10−50 with the
more accurate estimates for the simulations having a large
number of workers. Also, the true value is within one standard
deviation of the reported averages for 70% of the data points,
as is expected from the standard Gaussian confidence intervals.
Figure 1a shows the scaling of the MD time (solid lines) and
number of MC moves (dashed lines) of the MSVS simulations
(orange) compared to linear scaling (black) and the expected
scaling for standard replica exchange (REPEX) in which
ensembles are updated in cohort (purple).
Although the number of “MD steps” and MC moves quickly

levels off to a nearly flat plateau in the standard approach due
to workers being idle as they need to wait for the slowest
worker, the replica exchange approach developed in this article
shows a perfect linear scaling with respect to the MD time. The
number of MC moves in the new method shows an even better
than linear scaling due to the fact that the ensembles with

shorter “path lengths” get simulated relatively more often with
more workers, resulting in more MC moves per second. This
in itself does not necessarily mean that the simulations
converge much faster because the additional computational
effort may not be targeted to the sampling where it is needed.
If we neglect the fact that path ensemble simulations are
correlated via the replica exchange moves, we can write that
the relative error in overall crossing probability ϵ follows from
the relative errors in each path ensemble ϵi via: ϵ2 = ∑i ϵi2. It is
henceforth clear that additional computational power should
not aim to lower the error in a few path ensembles that were
already low compared to other path ensembles. We therefore
measure the effectiveness of the additional workers by
calculating computational efficiencies. The efficiency of a
specific computational method is here defined as the inverse
computer time, CPU- or wall-time, to obtain an overall relative
error equal to 1: ϵ = 1.

In Figure 1d, the efficiencies based on wall-time (solid) and
CPU-time (dashed) are plotted for the MSVS process. These
plots depend on the ability of computing reliable statistical
errors in the overall crossing probability that is an extremely
small number, 10−50. The somewhat fluctuating behavior of
these curves should hence be viewed as statistical noise as the
confidence interval of these efficiencies depends on the
statistical error of this error. Despite that, clear trends can be
observed in which the CPU-time efficiency is more or less
constant within statistical fluctuations, while the wall-time
efficiency shows an upward trend. If we neglect the effect of
replica exchange moves on the efficiency, we can relate these
numerical results with theoretical ones22,33 for any possible
division of a fixed total CPU-time over the different ensembles.
A common sense approach would be to aim for the same error
ϵi in each ensemble (which implies doing the same number of
MC moves per ensemble) or to divide the total CPU-time
evenly over the ensembles. These two strategies correspond to

Figure 1. Average scaling of total MD time (cumulative time spent by all of the workers) (solid) and MC moves (dashed) (a−c) and wall-time
(solid) and the CPU-time (dashed) efficiencies (d−f) for each number of workers. This is shown for the memoryless single variable stochastic
(MSVS) process (a, d, orange), the two-channel system (b, e, blue), and the double well with wire fencing (c, f, green) simulations. Each of the data
points is based on five independent simulations. For the scaling plots, the black lines are guides for linear scaling from the 1 worker data-point. The
purple lines in the scaling plot for the MSVS simulations (a) show what the scaling would be if we had to wait for the slowest ensemble to finish for
each MC move. The black line, purple line, purple dashed line, and points in the efficiency plot of the MSVS process (d) show the optimal, optimal
TIS/RETIS, hybrid CPU-time efficiency, and hybrid wall-time efficiency, respectively, as computed in the SI.
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the case K = 1 or standard RETIS and K = N or standard TIS,
respectively. Ref 33 showed that these two strategies provide
the same efficiency, and in the SI, we derive that this leads to a
wall-time efficiency as a function of the number of workers (K)
equal to K/56250, which is denoted by the continuous purple
line in Figure 1d (the hypothetical wall-time efficiency for a
parallel simulation that uses the CPU hours equally efficient as
TIS and serial RETIS, see eq 50 in the SI). The optimum
division, however, would give a slightly better wall-time
efficiency equal to K/50,000 which is the continuous black
line in this figure. Also shown in Figure 1d are the expected
theoretical efficiencies based on the numerical distribution of
MC moves in each ensemble. This hybrid numerical/
theoretical result is shown by the small purple dots and the
dashed purple line. This shows that ∞RETIS, at least for a
system in which the path length grows linearly with the
ensemble’s rank, naturally provides a division of the computa-
tional resources that is even better than TIS (K = N) or RETIS
(K = 1). Yet, due to statistical inaccuracies this is only evident
for the K = 15 case if we base our analysis on the numerical
block errors.
In any case, it shows that the possible concern that

additional CPU resources in parallel ∞RETIS runs may not
be properly targeted due to oversampling of the ensembles
with the shorter paths is unfounded. On the contrary, even the
CPU efficiency seems to improve slightly compared to TIS and
RETIS that have the same CPU efficiency. This is maybe not
so surprising since the division of CPU hours over the different
ensembles in ∞RETIS is somewhat in between the divisions
what one gets with TIS and RETIS, and the optimum33 is also
in between TIS and RETIS. In addition, we leave the number
of interfaces and their locations unchanged in our analysis.
However, the flexibility of ∞RETIS makes it very easy to add
additional interfaces. By placing a higher density of interfaces
high on the barrier, it is also possible to target more CPU to
the expensive ensembles. This higher density has the additional
benefit that the local crossing probabilities in this area are
increased so that fewer paths are needed to calculate them.
Coming back to Figure 1d, we see that the best wall-time

efficiency is obtained for the case K = N, which is essentially
equivalent of running independent TIS simulations (i.e.,
without doing any replica exchange moves). We do not expect
this to apply to more complex systems where the replica
exchange move is a proven weapon for efficient sampling.

4.2. Two-Channel Simulations. In the middle column of
Table 1, we report the calculated crossing probabilities and
permeabilities for five simulations for every number of workers.
All simulations are somewhat higher, though still in good
agreement with the previous simulation from ref 31. We also
evaluated the approximate result based on Kramers’ theory
(see the SI), which seems to confirm the results obtained in
this paper. Figure 1b shows the scaling of the MD time (solid
lines) and number of MC moves (dashed lines) of the two-
channel simulations (blue) compared to linear scaling (black).
We see a slightly worse than linear scaling of the MD time,
which might just be due to a small positive fluctuation of the 1
worker data-point. We also see a similar more than linear
scaling in the number of MC moves as with the MSVS
simulations, for the same reason. In Figure 1e, the efficiencies
based on wall-time (solid) and CPU-time (dashed) are plotted
for the two-channel system. The CPU-time efficiency is more
or less flat until 8 workers after which it starts to drop off. The
wall-time efficiency shows an upward trend until 10 workers

after which it starts to drop off as well. We assign this drop to
the reduction of replica exchange moves which is an essential
aspect for sampling this system efficiently.31 This is tangible
from Figure S1 in the SI where we plot fraction of trajectories,
passing through λM−1, that are in the lower barrier channel.
While from the average fraction it still looks like the
simulations sampled both channels for any number of workers,
4 out of the 5 simulations in the K = N = 12 case solely visited
one of the two channels. This is in agreement with previous
TIS results.31 The K = 11 case already provides a dramatic
improvement, but is still expected to be suboptimal due to the
relatively low frequency of replica exchange moves compared
to K < 11. From this 2D system, it would indicate that having
K ≈ N/2 is a safe bet for optimum efficiency.

4.3. Double-Well 1D Barrier Using Wire Fencing. In
the right column of Table 1, we report the calculated crossing
probabilities and rates for the underdamped Langevin particle
in the 1D double-well potential. All simulations are in
reasonable agreement with each other and the results of refs
28 and 32, as well as the approximate value based on Kramers’
theory. However, while these results confirm the soundness of
the method, the scaling and efficiency are less convincing.
Figure 1c shows a significantly worse than linear scaling. On
further inspection, we found the average time per MC move
was significantly smaller than our infinite swapping time (1 s)
when the simulation was run with more than two workers. This
results in a bottleneck on how many MC moves can be started
per second, which is the reason for the observed bad scaling. It
still is slightly positive instead of flat as the infinite swapping
procedure becomes quicker with more workers due to the
smaller W-matrix. The same bottleneck can be seen in Figure
1f where both efficiencies plummet with more than two
workers. The reported scaling deficiency is of little significance
for actual molecular systems where the creation of a full path
takes minutes to hours rather than subseconds.

5. CONCLUSIONS
We developed a new generic replica exchange method that is
able to effectively deal with MC moves with varying CPU
costs, for instance, due to the algorithmic complexity of the
MC moves. An essential aspect of the method is that the
number of workers, who execute the ensemble’s specific MC
moves in parallel, is less than the number of ensembles. Once a
worker is finished with its move, replica exchange moves are
carried out solely between those ensembles that are not
occupied by a worker. This implies that the ensembles are
updated at irregular intervals and a different number of MC
moves will be executed for each ensemble. As a result, the
conceptual viewpoint in which the set of replicas are viewed as
a single superstate is no longer valid and the existence of some
kind of detailed-balance relation is no longer trivial. To prove
the exactness of our approach, we introduced new conceptual
views on the replica exchange methodology that is different
from the common superstate principle. Instead, we show that
the distributions in the new approach are conserved for each
ensemble individually via a twisted detailed-balance relation in
which the other ensembles constitute an environment that is
potentially actively involved in the MC move of the considered
ensemble. In addition, the method can be combined with an
infinite swapping approach without factorial scaling based on a
mathematical reformulation using permanents.

We applied the novel replica exchange technique on a path
sampling algorithm, RETIS, which is a prototype of algorithm
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where the costs for a Monte Carlo move can vary enormously.
The resulting new path sampling algorithm, coined ∞RETIS,
was thereafter tested on three model systems. The results of
these simulations show that the number of MD steps increases
linearly with the number of workers invoked as long as the
ensemble’s MC move has a lower computational cost than the
replica exchange move carried out by the scheduler. The
number of executed MC moves shows an even better than
linear scaling. Moreover, the efficiency increases linearly with
the number of workers for a low-dimensional system in which
the replica exchange move has little effect, while it has an
optimum in more complex systems as the number of successful
replica exchange moves decreases when the number of workers
is close to the number of ensembles.
In summary, the replica exchange method discussed in this

paper has a clear potential to accelerate present path sampling
simulations, but can also be combined with many other
complex algorithms including those that are yet to be invented.
With the continuing trend to run progressively more massively
parallel computing jobs, our algorithm is likely to gain
importance. In the case of ∞RETIS, we envision many
applications in the fields of nucleation, self-assembly, chemical
reactions, enzymatic catalysis, membrane permeation, protein
folding, and other conformational changes in biomolecules.
The ∞RETIS method and the noncohort replica exchange
method, in general, are therefore expected to open up new
avenues in the field of molecular simulations and maybe even
beyond.
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1 Supporting Information Text

This Supplementary Information contains the following data, derivations, and numerical

examples. In Sec. 2, we describe the complete implementation details for all the ∞RETIS

simulations. In Sec. 3, we provide a proof that the replica exchange method with cost

unbalanced replicas conserves the equilibrium distribution at the individual ensemble level.

Instead of the superstate principle, the derivation is based on the individual ensemble’s

perspective where the other ensembles serve as an environment, which finally leads to a

twisted detailed-balance relation. In Sec.4, we show a O(n2) algorithm for computing the P -

matrix from a W -matrix for the case that the W -matrix consists of rows having a series with

ones, followed by zeros. This is the type of matrix that is relevant for RETIS simulations

based on the standard shooting move. Sec. 5 presents the derivations of the theoretical results

on the crossing probabilities, rate constant, and permeability via Kramers’ theory that are

shown in table 1 of the main article. In Sec. 6 the computational efficiencies, including the
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derivations for the most optimal efficiencies, are discussed. Finally, in Sec. 7 we provide

some additional simulation results on the relative transition probabilities through the lower

and higher barrier channel.

2 Simulation Methods

The implementation of ∞RETIS was structured as follows. We start 1 ≤ K ≤ N worker-

and 1 scheduler-process. Each of the worker-processes is going to process ensemble specific

MC moves while the scheduler-process will do all the replica exchange moves and submits

new jobs to the workers. All ensembles/trajectories that are currently being updated by a

worker-process are not considered for MC moves by the scheduler, essentially being ’locked’.

This means that no data is written for those ensembles and they are not valid targets for

swapping moves. After a worker is done, it submits the result to the scheduler, the scheduler

then unlocks the returned ensemble/trajectory and executes the replica exchange moves on

all ensembles/trajectories that that are not locked. It then submits a new job to the freed

worker for performing a new MC move in a randomly chosen free ensemble (or two ensembles

in case of a point exchange move) and locks the involved ensembles/trajectories.

In the∞RETIS method there are two kind of ensemble moves that involve MD steps. The

first one is the shooting move (either standard shooting1 or the more recent sub-trajectory

moves2,3) in which a new path is being generated from an old path within a single ensemble.

The second one is the point exchange move between [0−] and [0+]. If a worker is assigned

to this task, it means that both [0−] and [0+] are occupied by this worker. The scheduler

ensures that there is never more than 1 worker considered free at a given time. When the

free worker is assigned to perform a new MC move, each of the ensembles have an equal

probability to be selected. If [0+] or [0−] is selected and the other is also free, there is a

50% chance to perform a [0−] ↔ [0+] point exchange move instead of a shooting move in the

selected ensemble.
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Memoryless single variable stochastic (MSVS) process

No actual MD is run for the MSVS simulations. Instead, we directly sample two random

numbers, r1 and r2 from an uniform distribution ∈ [0, 1) to set the path’s progress and the

path length. A path in ensemble [k+] is assumed to cross interface λk+l if r1 < (0.1)l. After

this, we wait a random time, t = 0.2 r2 k + 0.1 in seconds. This was done to simulate both

the increasing average simulation time and variance for outer ensembles. This setup means

that we have no history dependence and allows us to compute the theoretical values shown

in figure 1. 5 independent ∞RETIS simulations were run with 1, 5, 10, 15, . . . , 45, 50 workers.

Two-channel simulations

In order to investigate the effect of our algorithm on the ergodicity of the sampling, a 2D two-

channel simulation was run as described in reference4. The new RETIS moves introduced in

that paper (mirror-move and target-swap move) were not used. Instead, MD was only run to

do shooting moves or the [0−] ↔ [0+] point exchanges. As the MD for this system completed

too fast, every worker was set to wait 9 times the time it took to run the MD before returning

the result. 5 independent ∞RETIS simulations were run with 1, 2, . . . , 11, 12 workers.

1D double well with wire fencing

In order to investigate the accuracy with a W matrix that contains more numbers than

0s or 1s we simulated a 1D double-well system5 together with the high-acceptance ver-

sion of a novel path-sampling algorithm, wire fencing. The algorithm is described in ref-

erence3, but for us the relevant part is that the high-acceptance weight is the number of

frames that a path has outside the interface for each ensemble times an extra factor 2 if

the path ends at the last interface. As for the two-channel system, a worker was set to

wait 9 times the time it took to complete the MD move before returning the result. 5 inde-

pendent ∞RETIS simulations were run with 1, 2, . . . , 7, 8 workers with interfaces placed at

S3



[−0.99,−0.8,−0.7,−0.6,−0.5,−0.4,−0.3, 1.0].

3 Detailed-balance relations

In this section, we will derive detailed-balance relations for parallel replica’s that are not

based on the common superstate viewpoint. These alternative relations can be used to

validate the replica exchange algorithm for replica’s with unequal CPU cost. Our deriva-

tion is based on the finite swapping approach, though the infinite swapping version follows

automatically from this when the probability to perform a swap goes to unity (PRE → 1)

as explained in the main text. To simplify matters, we assume that we have one type of

replica exchange move that is low in CPU cost and one type of ensemble move that operates

within one ensemble and has a high CPU cost. The relations that we derive are, however,

by no means limited to that. In fact, in the RETIS algorithm there is also a point exchange

move between the [0−] and [0+] ensemble. In previous publications this move, annotated

as [0−] ↔ [0+], was categorized as a special type of swapping/replica exchange move. In

this article we reserve the name swap or replica exchange to an operation that involves the

swapping of full paths, which does not require any MD steps. In contrast, the [0−] ↔ [0+]

point exchange implies the exchange of time slices at the end and start of the paths that are

then extended at the other side of the λ0 interface. In our implementation, this [0−] ↔ [0+]

move is carried out by a single worker that locks both the [0−] and [0+] ensembles during

this move. As the [0−] paths can never be swapped with any of the other paths, we can view

the point exchange move as an ensemble move in ensemble [0+].

As explained in the main article, the replica exchange algorithm that we propose is based

on a set of workers and a set of ensembles. The number of workers K is less than the

number of ensembles N . Most of the time the worker is performing a CPU intensive single-

ensemble move. The ensemble in which the worker operates is considered occupied/locked.

Once a worker has completed a CPU intensive move, the move will be accepted or rejected,
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after which either a replica exchange move will be carried out with any of the unoccupied

ensembles or the worker will be assigned to do a new single-ensemble move at a randomly

picked free ensemble.

In order to indicate the difference between occupied and unoccupied ensembles, we in-

troduce a new state vector that indicates both the available ensembles as in the main text

and the occupied ensembles with a bar, e. g: S = (s1, s2, s3, s4, s5) to show that there are

5 ensembles of which ensemble 3 and 5 are occupied by a worker. For both occupied and

unoccupied ensembles, the si-terms reflect the most recent state that was sampled in the ith

ensemble. Now our sole aim is to ensure that if we just count the instances that an ensemble

i is updated with a new sample (which could be a copy of the previous sample in case of a

rejected move), these should be distributed according the correct probability density ρi.

It is important to note that the time between two updates can vary and depends on the

state that was most recently sampled. However, the waiting time between an update of a

specific ensemble and the point in time that this ensemble gets occupied by a worker will

depend on the states of all other ensembles, but not on the state in the ensemble consid-

ered. Since the ensembles are independent, this waiting time will be the same on average

irrespective to this sampled state. This has as a consequence that if we take ”photographs”

of the state vector, at intervals or randomly, evenly distributed over time, we should again

obtain the correct distributions ρi, for all i, of the states in ensemble i as long as we ignore

the instances that this ensemble is occupied. In other words, we can write for the previous

example state vector

ρ(S) = ρ(s1, s2, s3, s4, s5) = ρ1(s1)ρ2(s2)ρ
u
3(s3)ρ4(s4)ρ

u
5(s5) (1)

where ρi(·) is the statistically correct distribution of ensemble i, and ρuj (·) an unknown

distribution for occupied ensemble j that has no clear physical interpretation. For instance,

it can happen that a state s is relatively unlikely to exist in ensemble i, low ρi(s), but that
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any MC move starting from that state takes a very long time, resulting in a high ρui (s).

Now, let’s consider the Markov chain from the perspective of ensemble 1 where we monitor

its state at the point that a new MC is initiated from an old state s1. From the viewpoint of

ensemble 1, the other ensembles are viewed as an ”environment” (E = (s2, s3, s4, s5) in the

aforementioned example), that might or might not influence the MC move. The probability

of state s1 in ensemble 1 can be written as an integral of the conditional probability given

an environment:

ρ1(s1) =

∫
ρ1(s1|E)ρ(E)dE . (2)

As the ensembles are independent we can write

ρ1(s1|E) = ρ1(s1), (3)

but we temporary keep the condition to clarify the logical structure of the upcoming deriva-

tion.

As stated, we assume that we employ two types of moves: 1) a CPU intensive move

that modifies s1 without using the environment E and 2) a swapping move. In addition,

the environment might influence the relative selection probabilities for choosing either 1) or

2). Typically, this selection probability will depend on Na(E), the number of unoccupied

ensembles in E . Further, we need to keep in mind that during the execution of the MC move

in ensemble 1, the environment changes. How much the environment changes will depend

on how long it takes to fully execute the move involving ensemble 1.

To derive detailed-balance relations for the replica exchange method for cost unbalanced

ensembles, we start with the more general balance concept; if we have an infinite number of

states distributed according to the equilibrium distribution, all of which make a MC move

at the same time, then we have to get the equilibrium distribution again. This means that
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the flux out off s1 should be equal to the flux into s1 which can be written as

∫
ρ1(s1|E)ρ(E)π(s1, E → s′1, E ′)dEdE ′ds′1 =

∫
ρ1(s

′′
1|E ′′)ρ(E ′′)π(s′′1, E ′′ → s1, E ′′′)dE ′′dE ′′′ds′′1

(4)

The transition probability π(·) can be split into the transitions via the different types moves

(that we will indicate with the Greek letter α) which will be selected with a probability

P sel
α (E) that can depend on the environment E :

π(s1, E → s′1, E ′) =
∑

α

P sel
α (E)πα(s1, E → s′1, E ′) (5)

This shows another complicating factor as in standard detailed-balance we need to consider

the probability that the exact reverse move will be executed once the new state has been

established. However, as the environment could have changed, the reverse move might

involve different selection probabilities.

By substituting Eq. 5 into Eq. 4, we get an extra summation over α in addition to the

integrals:

∑

α

∫
ρ1(s1|E)ρ(E)P sel

α (E)πα(s1, E → s′1, E ′)dEdE ′ds′1 =

∑

α

∫
ρ1(s

′′
1|E ′′)ρ(E ′′)P sel

α (E ′′)πα(s
′′
1, E ′′ → s1, E ′′′)dE ′′dE ′′′ds′′1 (6)

But at this point, we apply the first level of ”detailedness” by requiring the equation to hold

for each α:

∫
ρ1(s1|E)ρ(E)P sel

α (E)πα(s1, E → s′1, E ′)dEdE ′ds′1 =
∫

ρ1(s
′′
1|E ′′)ρ(E ′′)P sel

α (E ′′)πα(s
′′
1, E ′′ → s1, E ′′′)dE ′′dE ′′′ds′′1 (7)

So now we can evaluate the different moves separately. We further simplify this expression
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by integration out the variables E ′ and E ′′′ using the following relation:

∫
πα(s, E → s′, E ′)dE ′ = πα(s, E → s′, aE) (8)

where aE refers to any possible environment. Substitution of Eq. 8 in Eq. 7 gives:

∫
ρ1(s1|E)ρ(E)P sel

α (E)πα(s1, E → s′1,
aE)dEds′1 =

∫
ρ1(s

′′
1|E ′′)ρ(E ′′)P sel

α (E ′′)πα(s
′′
1, E ′′ → s1,

aE)dE ′′ds′′1

(9)

First, we consider α = 1 referring the CPU intensive move that only operates in ensemble

1. For this move we substitute α = 1 in Eq. 9 and replace E ′′ and s′′1 with respectively E and

s′1, which is allowed since these are dummy integration variables

∫
ρ1(s1|E)ρ(E)P sel

1 (E)π1(s1, E → s′1,
aE)dEds′1 =

∫
ρ1(s

′
1|E)ρ(E)P sel

1 (E)π1(s
′
1, E → s1,

aE)dEds′1

Then, we fix another level of detailedness by requiring that the integrands at the left and

right side of equality sign to be identical for any E and s′1. As a result, ρ(E)P sel
α (E) will

cancel out such that we can write

ρ(s1|E)π1(s1, E → s′1,
aE) = ρ(s′1|E)π1(s

′
1, E → s1,

aE) (10)

Since in move 1) the ensembles progress independently from each other, we have

π1(s1, E → s′1,
aE) = π1(s1 → s′1)π1(E → aE) (11)

The subscript ”1” in π1(E → aE) might seem contradictory to the previous statement on

independent progression, but it just indicates that the points in time at which the environ-

ment is evaluated relates the duration of the MC move in ensemble 1: E is the environment

at the start of the MC move in ensemble 1, and aE is that when the move is completed. As
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the time for a s1 → s′1 move is likely not the same as the time for a s′1 → s1 move, the final

environments are likely not the same. However, aE refers to any environment. Hence, by

substituting Eq. 11 into Eq. 10, π1(E → aE) does not only cancel as it appears at both sides

of the equals sign, it is also equal to one. We therefore have not just one, but two very good

reasons to eliminate this term such that:

ρ1(s1|E)π1(s1 → s′1) = ρ1(s
′
1|E)π1(s

′
1 → s1) (12)

or, via Eq. 3:

ρ1(s1)π1(s1 → s′1) = ρ1(s
′
1)π1(s

′
1 → s1) (13)

This equation essentially the same as the standard detailed balance equation such that we

can adapt our acceptance according to

Pacc(s1 → s′1) = min

[
1,

ρ1(s
′
1)Pgen(s

′
1 → s1)

ρ1(s1)Pgen(s1 → s′1)

]
(14)

which is exactly the same as in standard Metropolis-Hastings. Still, the underlying philos-

ophy is different from a super-state perspective as the number of transitions from old to

new, S(o) → S(n), is not the same as from new to old, S(n) → S(o). Instead, by writing

S = (s1, E) we have that the number of (s
(o)
1 , E (o)) → (s

(n)
1 , aE (n)) transitions should be equal

to the number of (s
(n)
1 , E (o)) → (s

(o)
1 , aE (n)) transitions. In addition, as at the end of the

move we only update ensemble 1, and not those that are here considered as environment,

the number of sampled states in the ensembles do not increase in cohort. Sampling all states

simultaneously like in a true superstate move would imply that distributions get mixed with

the unknown and unphysical ρui distributions.

For the swapping move we just consider the example of an attempted 1 ↔ 2 swap as all

other swaps i ↔ j are completely analogous. We start again at Eq. 7 with α = 1 ↔ 2, and
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further we split the environment E = {s2, E�2} into the part that participates in the swap

move, s2, and the rest, E
�2
:

∫
ρ1(s1|s2, E�2)ρ2(s2)ρ(E�2)P

sel
1↔2(E�2)× π1↔2(s1, s2, E�2 → s′1, s

′
2, E ′

�2
)ds2dE�2ds

′
2dE ′

�2
ds′1 =

∫
ρ1(s

′′
1|s′′2, E ′′

�2
)ρ2(s

′′
2)ρ(E ′′

�2
)P sel

1↔2(E ′′
�2
)× π1↔2(s

′′
1, s

′′
2, E ′′

�2
→ s1, s

′′′
2 , E ′′′

�2
)ds′′2dE ′′

�2
ds′′′2 dE ′′′

�2
ds′′1

(15)

Here, we assume that the selection probability P sel
1↔2 depends on E

�2
. The chance to do a

replica exchange move equals PRE, but once it is decided to perform a replica exchange

move, all possible swaps i ↔ j compete to be selected with an equal probability. Hence, the

probability for the 1 ↔ 2 swap to be selected depends on the number of available ensembles,

which is the total number of ensembles minus the number of occupied ones. This latter

information is contained in E
�2

The swapping transition probability π1↔2 relates to a move that has only one possible

outcome, namely the one in which the states in ensemble 1 and 2 are exchanged. Therefore,

π1↔2(s1, s2, E�2 → s′1, s
′
2, E ′

�2
) is vanishing if s′1 ̸= s2 and s′2 ̸= s1. Likewise, π1↔2(s

′′
1, s

′′
2, E ′′

�2
→

s1, s
′′′
2 , E ′′′

�2
) vanishes if s′′2 ̸= s1 and s′′1 ̸= s′′′2 . We can, therefore, write

π1↔2(s1, s2, E�2 → s′1, s
′
2, E ′

�2
) = π̂1↔2(s1, s2, E�2 → s2, s1, E ′

�2
)δ(s2 − s′1)δ(s1 − s′2)

π1↔2(s
′′
1, s

′′
2, E ′′

�2
→ s1, s

′′′
2 , E ′′′

�2
) = π̂1↔2(s

′′′
2 , s1, E ′′

�2
→ s1, s

′′′
2 , E ′′′

�2
)δ(s′′′2 − s′′1)δ(s1 − s′′2) (16)

where the transition probability with the hat, π̂1↔2, differs from transition probability with-

out the hat, π1↔2, by the fact that the latter considers any potential (even if impossible)

result of the swapping operation, while the former actually relates to the probability of

successfully executing the move in practice in which s1 and s2 change places. Substitution

of Eqs. 16 in Eq. 15 allows us to eliminate the integrals over s′1, s′2, s′′1, and s′′2 via the
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delta-function integration property.

∫
ρ1(s1|s2, E�2)ρ2(s2)ρ(E�2)P

sel
1↔2(E�2)π̂1↔2(s1, s2, E�2 → s2, s1, E ′

�2
)ds2dE�2dE

′
�2
=

∫
ρ1(s

′′′
2 |s1, E ′′

�2
)ρ2(s1)ρ(E ′′

�2
)P sel

1↔2(E ′′
�2
)π̂1↔2(s

′′′
2 , s1, E ′′

�2
→ s1, s

′′′
2 , E ′′′

�2
)dE ′′

�2
ds′′′2 dE ′′′

�2
(17)

We then eliminate the integrals over E ′
�2
and E ′′′

�2
using a similar expression as Eq. 8.

∫
ρ1(s1|s2, E�2)ρ2(s2)ρ(E�2)P

sel
1↔2(E�2)π̂1↔2(s1, s2, E�2 → s2, s1,

aE
�2
)ds2dE�2 =∫

ρ1(s
′′′
2 |s1, E ′′

�2
)ρ2(s1)ρ(E ′′

�2
)P sel

1↔2(E ′′
�2
)π̂1↔2(s

′′′
2 , s1, E ′′

�2
→ s1, s

′′′
2 ,

aE
�2
)dE ′′

�2
ds′′′2 (18)

In the next step, we change some of the dummy integration variable names: s′′′2 to s2 and

E ′′
�2
to E

�2
.

∫
ρ1(s1|s2, E�2)ρ2(s2)ρ(E�2)P

sel
1↔2(E�2)π̂1↔2(s1, s2, E�2 → s2, s1,

aE
�2
)ds2dE�2 =∫

ρ1(s2|s1, E�2)ρ2(s1)ρ(E�2)P
sel
1↔2(E�2)π̂1↔2(s2, s1, E�2 → s1, s2,

aE
�2
)dE

�2
ds2 (19)

and use a detailed-balance principle by stating that the equality does not only hold when

integrated, but is true for any pair s2, E�2.

ρ1(s1|s2, E�2)ρ2(s2)π̂1↔2(s1, s2, E�2 → s2, s1,
aE
�2
) = ρ1(s2|s1, E�2)ρ2(s1)π̂1↔2(s2, s1, E�2 → s1, s2,

aE
�2
)

(20)

We further simplify ρ1(s1|s2, E�2) by ρ1(s1) using Eq. 3, and split π̂1↔2(s1, s2, E�2 → s2, s1,
aE
�2
)

into π̂1↔2(s1, s2 → s2, s1)× π1↔2(E�2 →
aE
�2
) where the latter term cancels like before:

ρ1(s1)ρ2(s2)π̂1↔2(s1, s2 → s2, s1) = ρ1(s2)ρ2(s1)π̂1↔2(s2, s1 → s1, s2) (21)

Since π̂1↔2(s2, s1 → s1, s2) is the transition probability from (s1, s2) to (s2, s1) in the first two
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ensembles given that the 1 ↔ 2 swap move was selected, and given that there are no other

possible outcomes of this swap (Pgen = 1), the transition probability equals the acceptance

probability:

ρ1(s1)ρ2(s2)Pacc(s1, s2 → s2, s1) = ρ1(s2)ρ2(s1)Pacc(s2, s1 → s1, s2) (22)

To satisfy this relation, Eq. (4) of the main article suffices.

Pacc = min

[
1,

ρ1(s2)ρ2(s1)

ρ1(s1)ρ2(s2)

]
(23)

So also here, the standard replica exchange acceptance rule applies. The main difference

is that ensembles are not updated in cohort. After the 1 ↔ 2 swap move we only update

ensembles 1 and 2. Alternatively, after the 1 ↔ 2 swap all other free ensembles will be

updated as well with ”null moves”. In the example of Eq. 1 this would mean that besides,

ensemble 1 and 2, also ensemble 4 would be updated. As the state in this ensemble is not

changing in a 1 ↔ 2 swap, this would imply recounting the existing s4 state. Hence, this

could be viewed as a superstate move, but then without the occupied states. Resampling s4

is allowed as the chance for resampling is independent of the content of ensemble 4. However,

the sampling of the ensembles 3 and 5 should, while occupied, at all cost be avoided since

the time that ensembles 3 and 5 remain occupied can correlate with the values of s3 and s5,

respectively.

Like in Eq. 14, the acceptance rule of Eq. 23 is based on a twisted detailed balance re-

lation: we require that, given an equilibrium distribution, the number of (s
(o)
1 , s

(o)
2 , E (o)

�2
) →

(s
(n)
1 , s

(n)
2 , aE

�2
(n)) transitions should be equal to the number of (s

(n)
1 , s

(n)
2 , E (o)

�2
) → (s

(o)
1 , s

(o)
2 , aE

�2
(n))

transitions, where s
(o)
1 = s

(n)
2 = s1 and s

(o)
2 = s

(n)
1 = s2. So in this section, we proved that

standard acceptance-rejection rules can be applied in a parallel scheme in which replica

exchange moves occur only between unoccupied ensembles, such that ensembles are not

updated in cohort.
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4 Matrices with consecutive ones and zeros

If the high-acceptance approach is not applied, wi(X) = 1 in Eq. (6) of the main article

and the W -matrix has rows consisting of a sequence of ones, followed a sequence of zeros.

The P -matrix can then be determined from Eq. (7) of the main article which has an O(n2)

scaling. In this section we provide the proof of this equation.

Let ni be the number of ones in row i. The first step to order the rows with increasing

order of ni. For instance in the following 5× 5 matrix

W =




e1 e2 e3 e4 e5

s1 1 1 0 0 0

s2 1 1 1 1 0

s3 1 1 1 0 0

s4 1 1 1 1 0

s5 1 1 1 1 1




we see that s2, originating from an MC move in ensemble e2, is also valid for e3 and e4.

State s3 that was created in e3 only reaches the minimal condition for that ensemble. In

path sampling, where s2 and s3 are paths and e2, e3 and e4 refer to path ensembles [k+], [l+]

and [m+] with m > l > k, it would mean that path s3 crosses λl, but not λm, while path

s2 crosses at least m − k more additional interfaces than strictly needed for being a valid

trajectory in e2 = [k+]. As a result, the third row has fewer ones than the second row. After
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reordering, the W -matrix looks as follows:

W =




e1 e2 e3 e4 e5

s′1 = s1 1 1 0 0 0

s′2 = s3 1 1 1 0 0

s3 = s2 1 1 1 1 0

s′4 = s4 1 1 1 1 0

s′5 = s5 1 1 1 1 1




= W [n1, n2, n3, n4, n5] = W [2, 3, 4, 4, 5]

where we introduced the bracket notation W [·] indicating the number of ones in each row in

which 1 ≤ n1 ≤ n2 ≤ n3 . . . ≤ nn = n. Likewise, we always have ni ≥ i.

Based on the recursive relation, perm(W ) =
∑

j W1jperm(W{1j}), and the fact that the

matrix after removing row 1 and column j, W{1j}, is identical for any j ≤ n1, we can write

perm(W [n1, n2, n3, . . . , nn]) = n1 × perm(W [n2 − 1, n3 − 1, . . . , nn − 1]) (24)

The permanent of the remaining matrix W [n2 − 1, n3 − 1, . . . , nn − 1] can again be written

as (n2 − 1)× perm(W [n3 − 2, . . . , nn − 2]) and so on. The permanent is, hence, equal to

perm(W [n1, n2, . . . , nn]) =
n∏

i=1

(ni + 1− i) (25)

The P -matrix follows from Eq. (5) of the main article: Pij = Wijperm(W{ij})/perm(W ).

This means that Pij = 0 whenever Wij = 0. If Wij = 1, and ni−1 < j or i = 1, we have that

for a matrix W [n1, n2, . . . , ni−1, ni, ni+1, . . . , nn] the following matrix remains after removal

of row i and column j:

W{ij} = W [n1, n2, . . . , ni−1, ni+1 − 1, . . . , nn − 1] (26)
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and the permanent

perm(W{ij}) =
(

i−1∏

i′=1

(ni′ + 1− i′)

)(
n∏

i′=i+1

(ni′ − 1 + 1− (i′ − 1))

)

=

(
i−1∏

i′=1

(ni′ + 1− i′)

)(
n∏

i′=i+1

(ni′ + 1− i′)

)
=

perm(W )

(ni + 1− i)
(27)

and, therefore, for this case we have

Pij =
1× perm(W{ij})

perm(W )
=

1

(ni + 1− i)
. (28)

If for some k < i, nk ≥ j, while nk−1 < j or k = 1, we have that for a matrix

W [n1, n2, . . . , nk−1, nk, . . . , ni, ni+1, . . . , nn] the following matrix remains after removal of row

i and column j:

W{ij} = W [n1, n2, . . . , nk−1, nk − 1, nk+1 − 1, . . . , ni−1 − 1, ni+1 − 1, . . . , nn − 1] (29)

Therefore, the permanent of W{ij} can be written as

perm(W{ij}) =
(

k−1∏

i′=1

(ni′ + 1− i′)

)(
i−1∏

i′=k

(ni′ − 1 + 1− i′)

)(
n∏

i′=i+1

(ni′ + 1− 1− (i′ − 1))

)

=

(
k−1∏

i′=1

(ni′ + 1− i′)

)(
i−1∏

i′=k

(ni′ − i′)

)(
n∏

i′=i+1

(ni′ + 1− i′)

)

=
perm(W )

(ni + 1− i)

i−1∏

i′=k

(ni′ − i′)

ni′ + 1− i′
(30)

This gives for Pij:

Pij =
1

(ni + 1− i)

i−1∏

i′=k

(ni′ − i′)

ni′ + 1− i′
(31)
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We can compare this result with that of one row below (row i+ 1):

P(i+1)j =
1

(ni+1 + 1− (i+ 1))

i∏

i′=k

(ni′ − i′)

ni′ + 1− i′
=

Pij(ni + 1− i)

(ni+1 − i)

(ni − i)

ni + 1− i
= Pij

ni − i

(ni+1 − i)

(32)

Therefore, we have following recursive relations

Pij =





0, if Wij = 0

1
ni+1−i

, if Wij = 1 and [W(i−1)j = 0 or i = 1]

(
ni−1+1−i
ni+1−i

)
P(i−1)j, otherwise

(33)

For the example given above, this relation gives the following P -matrix:

P =




e1 e2 e3 e4 e5

s′1 = s1
1
2

1
2

0 0 0

s′2 = s3
1
4

1
4

1
2

0 0

s3 = s2
1
8

1
8

1
4

1
2

0

s′4 = s4
1
8

1
8

1
4

1
2

0

s′5 = s5 0 0 0 0 1




This O(n2) algorithm can be done within a second for n ≤ 3500, bigger than any foreseeable

RETIS simulation, without even leveraging the block-diagonalization. One could swap again

the second and third row to get them ordered according to the original si-states, though there

is in principle no need for this. This is because it is irrelevant to connect the existing states

to the ensembles in which they were originally created.
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5 Kramers’ theory

For Langevin dynamics, Kramers’ relation provides a way to improve upon transition state

theory via an approximate expression for the transmission coefficient:

κ = (1/ωb)

(
−γ/2 +

√
γ2/4 + w2

b

)
(34)

Here, γ is the friction coefficient of the Langevin dynamics and ωb =
√

k/m with m the

particle’s mass and k the curvature along the reaction coordinate at the transition state.

The rate constant is then the product of the transmission coefficient times the transition

state theory expression for the rate:

k = κkTST (35)

For a one-dimensional motion along a coordinate z, the transition state theory expression

can be expressed as:6

kTST =

√
kBT

2πm

e−βV (0)

∫ 0

−∞ e−βV (z)dz
(36)

where V (·) is the underlying potential, T the temperature, kB the Boltzmann constant, and

β = 1/kBT . The transition state is here assumed to be located at z = 0 and the system is

in state A, the reactant state, if z < 0.

The Kramers’ approximation for the rate constant k follows from Eqs. 34-36. However,

other properties like crossing probabilities and the permeability through a membrane can be

derived from the transmission coefficient as well.

The crossing probability PA(λB|λA) from interface λA to interface λB follows from the
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main TIS/RETIS rate equation:

k = fAPA(λB|λA) (37)

where fA is the conditional flux through λA given the system is in state A. Here, λA and

λB correspond to the first, λ0, and last interface, λM , respectively. The flux fA through λA

is similar to kTST, the flux through the transition state without recrossing correction, as it

counts all positive crossings and is based on the same normalization (integration over state

A):

fA =

√
kBT

2πm

e−βV (λA)

∫ 0

−∞ e−βV (z)dz
(38)

From Eqs. 34-38 we end up with an equation for the crossing probability:

PA(λB|λA) =
κe−βV (0)

e−βV (λA)
(39)

Hence, based on the underlying potential and Kramers’ expression, Eq. 34, one can obtain

an approximate value for the crossing probability. Likewise, for a membrane system we can

derive a Kramers’ expression for the permeability P starting from Eq. 18 in Ref. 4:

P =
k

(ρref)A
=

fAPA(λB|λA)

(ρref)A
(40)

where ρref refers to the probability density for a permeant at a location away from the

membrane, zref , where V (·) is considered to be flat, and the subscript (·)A indicates that it

is normalized over the reactant state region A:

(ρref)A =
e−βV (zref)

∫ 0

−∞ e−βV (z)dz
(41)

Note that the integral in the denominator of Eqs. 38 and 41 is usually diverging since the
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underlying potential V (·) is generally flat away from the barrier in a membrane system.

Fortunately, this integral term cancels in Eq. 40:

P =

√
kBT

2πm

(
e−βV (λA)

e−βV (zref)

)
PA(λB|λA) =

√
kBT

2πm

(
κe−βV (0)

e−βV (zref)

)
(42)

where in the second equality we substituted PA(λB|λA) using Eq. 39. Hence, based on Eq. 34

and Eq. 42, we can obtain a value for the permeability based on Kramers’ theory.

The aforementioned equations can be generalized for multidimensional systems by re-

placing the V (z) terms with the Landau free energy F (z). That is, for one additional degree

of freedom y:

F (z) = −kBT ln

(∫
e−βV (y,z)dy

)
(43)

In addition, if multiple reaction channels yield competing parallel saddle points in the po-

tential energy surface, these need to summed up as we will do in the next section.

5.1 Kramers’ relation for crossing probability of a two-channel

system

The potential energy surface described in Ref. 4 is the following

V (y, z) = e−cz2
(
V1 + A+ A sin

(
2πy

Ly

)
+B +B cos

(
4πy

Ly

))
with

A = (V2 − V1)/2, B = Vmax/2− V1/4− V2/4,

V1 = 10, V2 = 11, Vmax = 20, c = 1, Ly = 6 (44)

Note that the potential is periodic along the y-direction such that V (y, z) = V (y+Ly, z) and

that it is zero in the limit |z| → ∞. Further, the following mass, Langevin friction coefficient

and thermodynamic parameters were set in dimensionless reduced units: γ = 5, T = m =
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kB = β = 1. The first and last interfaces were set at: λA = −1.5 and λB = 1.2. In this case,

we have two saddle points at (−Ly/4, 0) and at (+Ly/4, 0) where the former is slightly lower

in potential energy by 1kBT (V1 and V2, respectively). The curvatures can be obtained by

applying a second order Taylor expansion around z = 0:

V (−Ly/4, z) ≈ V1 − cV1z
2 ⇒ k1 = 2cV1

V (+Ly/4, z) ≈ V2 − cV2z
2 ⇒ k2 = 2cV2

which gives wb,1 =
√
20 and wb,2 =

√
22. As a result κ1 = 0.5866, κ2 = 0.6002 via Eq. 34.

From this we can compute the crossing probability based on essentially Eq. 39, but using

the Landau free energy, F (·), by Eq. 43, instead of the potential energy, V (·), and using

both transmission coefficients for the parts along the orthogonal coordinate, y, where they

are relevant:

PA(λB|λA) ≈
κ1

∫ 0

−3
e−βV (y,0)dy + κ2

∫ 3

0
e−βV (y,0)dy

∫ 3

−3
e−βV (y,λA)dy

= 1.61 · 10−5 (45)

where the integrals over y are taken over one period. Note that the system in Ref. 4 actually

contains 3 particles that move in this 2D potential energy surface such that the dimension

of the system is actually 6. However, since we follow one single target permeant and the

other particles are assumed to have no influence on the target (the interparticle interaction

was set to 04), the effective dimension for our analysis is 2 with coordinates y and z.

The permeability then follows from Eq. 42 with V (·) replaced by F (·), where we used

the expression based on the crossing probability to have the effect of the two different trans-

mission coefficients directly included:

P =

√
kBT

2πm

( ∫ 3

−3
e−βV (y,λA)dy

∫ 3

−3
e−βV (y,zref)dy

)
PA(λB|λA) =

1

6

√
kBT

2πm

(∫ 3

−3

e−βV (y,λA)dy

)
PA(λB|λA) = 1.37 · 10−6

(46)
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where we assumed that zref is taken far away from the membrane at z = 0 such that zref ≪ 0

and V (y, zref) ≈ 0.

5.2 Kramers’ relation for crossing probability of double well po-

tential

The double well potential is given by5

V (z) = k1z
4 − k2z

2 with k1 = 1, k2 = 2 (47)

which has a transition state at z = 0 and minima at z = −1 and z = 1. Further is given

that T = 0.07 and kB = m = 1 such that the transition state theory expression for the rate,

Eq. 36, equals:5 kTST = 2.776 · 10−7.

The curvature at the transition state equals 2k2 = 4 such that wb = 2. Together with the

friction coefficient of γ = 0.3, Kramers’ relation, Eq. 34, provides a transmission coefficient:

κ = 0.9278. Henceforth, by Eq. 35 the rate constant based on Kramers’ theory equals:

k = 2.58 · 10−7.

The crossing probability follows from Eq. 39 where in this case λA = −0.99.3 From the

previously determined value for κ, we get: PA(λB|λA) = 5.83 · 10−7

6 Computational efficiencies

In this paper, the computational efficiency is defined as

efficiency =
1

τ eff
(48)

where τ eff is the efficiency time,7 which is equal to the computational cost that is needed to

get a statistical relative error equal to 1 for the property that is computed. Here, τ eff could

be expressed as the number of MD steps in path sampling simulations of large systems or
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path sampling simulations based on Ab Initio MD where the number of force calculations

completely determines the total CPU cost. Expressing the efficiency time is this way has the

advantage that it is hardware independent. In this article, however, we express the efficiency

time in actual CPU- or wall-time seconds in order to include also the computational cost for

calculating the permanents in the replica exchange move.

When a simulation is completed after a certain time τ and the relative error ϵ has been

obtained via, e.g. independent runs, block averaging or bootstrapping, the efficiency time is

estimated by

τ eff = ϵ2τ (49)

Note that for serial simulations this property is in principle independent of the simulation

length τ . If we run the simulation longer by a certain factor, the error should reduce by the

square root of this factor such that τ eff remains unchanged. However, we should realize that

there is a rather large statistical uncertainty in the estimated values for τ eff due the fact that

the statistical error in the error is generally large.

In the following, unless stated otherwise, we will refer to the CPU-time and CPU-based

efficiency time when referring to τ and τ eff . However, let us shortly discuss the wall-time

efficiency that follows from the same equation, Eq. 49, but with τ being the wall-time instead

of CPU-time. In all our simulations, we fixed the wall-time to 5×12 hours with 5 independent

runs. So the wall-time is constant and independent to the number of workers that is used.

However, with K workers instead of 1, the CPU-time increases by a factor K. This means

that if the error would follow the same trend as in a serial run, the use of K instead of 1

worker would result in a
√
K reduction of the error. Yet, with τ in Eq. 49 being the wall-time

instead of CPU-time, the reduction in the error is not canceled by an increase in τ and the
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efficiency, Eq. 48, would increase linearly with K. This would mean that we can write:

efficiency(wall-time) = K × efficiency(CPU-time) (50)

if the parallel run uses the total CPU-time as effectively as a serial simulation that runs

K×5×12 hours long. However, our parallel algorithm will introduce changes in the relative

CPU-time that is used for MC moves in the different ensembles. This effect was investigated

for the memoryless single variable stochastic (MSVS) process. In the next subsection, we

give the meaning and derivation of the continuous curves shown in Fig. 1 of the main article.

6.1 Theoretical efficiencies for the MSVS process

The efficiency time can also be calculated for for specific parts of the calculation. In specific,

TIS/RETIS consists of different path ensemble simulations that compute a local crossing

probability. In the path ensemble [k+] which consists of paths that at least cross λk, this

local crossing probability equals the fraction of paths that cross λk+1 as well. Based on the

expected error in the local crossing probability, the CPU-based efficiency time of ensemble

[k+] can be expressed as:7

τ effk =
1− pk
pk

NkξkLk (51)

where pk is the local crossing probability of ensemble [k+], Lk is the average path length

(expressed in MD steps or CPU seconds), and ξk is the ratio of the average cost of a MC

move to Lk. In other words, ξkLk is the average computational cost for doing a MC move

(creation of a trial path that might then be accepted or rejected). Finally, Nk is a measure of

the effective correlations between MC moves also called the ”statistical inefficiency”. Paths

can be correlated due to rejections, which implies that the old path is recounted, or because

of similarities between accepted paths. In practice, Nk tends to be significantly larger than

1 while ξk is often smaller than 1 as many rejections occur without that a trial path needs
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to be fully completed. In addition, some MC moves like the replica exchange move or the

time-reversal move do not require any MD steps.

In the following, we will neglect the effect that the replica exchange moves have on the

errors and on the CPU-time. Under this assumption, the successive MCmoves are completely

independent. In addition, the ensemble moves are memoryless (hence N = 1). The overall

error can thus be computed from the errors in the individual ensembles using standard error

propagation rules for independent estimates. Except for the replica exchange part, the MSVS

simulation is rejection-free such that we also have ξ = 1. In addition, the random artificial

MD time for a path in ensemble in ensemble [k+] was on average 0.1 k + 0.1 seconds. To

simplify our analysis, we neglect the final 0.1 addition, and state that Lk = ak with a = 0.1.

Finally, we fixed the local crossing probability to pk = p = 1/10 for all ensembles [k+] such

that

τ effk = a
1− p

p
k (52)

The relative error in estimate of the local crossing probability of ensemble [k+] follows

from Eq. 49:

ϵk =

√
τ effk
τk

(53)

with τk the CPU-time that is spend to ensemble [k+]. Given a certain division of the total

simulation time τ into the times (τ0, τ1, . . . , τN−1), we can compute the total efficiency time

by Eq. 49 with

ϵ2 =
N−1∑

k=0

ϵ2k =
N−1∑

k=0

τ effk
τk

and τ =
N−1∑

k=0

τk (54)

The first expression is the standard error propagation rule for the error in a final estimate

that is obtained from a product of independent estimates.
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Now let us first consider standard TIS or the N = K case. In this simulation we would

have an equal number of workers as ensembles. Each worker is solely designated to a single

ensemble such that an equal amount of CPU-time is spend per ensemble when the simulation

is stopped. So we can simply put τk = 1 such that τ = N and

ϵ2 =
N−1∑

k=0

τ effk = a
1− p

p

N−1∑

k=0

k = a
1− p

p

1

2
(N − 1)N ≈ a

2

1− p

p
N2 (55)

where in the last equality we assumed N ≫ 1. The efficiency time for TIS is hence

τ eff ≈ 1

2
a
1− p

p
N3, for TIS or K = N (56)

For serial RETIS, each ensemble is updated by a MC move before a next cycle of moves is

started. As a result, in each ensemble the same number of MC moves are carried out such

that τk ∝ Lk ∝ k. By taking τk = k, we get that τ = (N − 1)N/2 ≈ N2/2 and

ϵ2 =
N−1∑

k=0

τ effk
τk

= aN
1− p

p
(57)

and the CPU-based efficiency time is exactly the same

τ eff ≈ 1

2
a
1− p

p
N3, for RETIS or K = 1 (58)

This is in agreement with Ref. 7 which stated that an equal division of CPU-time or aiming

for the same error in each ensemble gives the same efficiency. Since the local crossing prob-

ability is the same for each ensemble, pk = p, aiming for the same error in each ensemble is

equivalent to having the same number of MC moves per ensemble (if the statistical ineffi-

ciencies, Nk, are the same). The optimal division of CPU-time over the different ensembles
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is, however, τk ∝
√

τ effk .7 By taking τk =
√
k, the total CPU-time becomes

τ =
N−1∑

k=0

√
k ≈

∫ N

0

√
xdx =

2

3
N3/2 (59)

and the total error

ϵ2 =
N−1∑

k=0

τ effk
τk

= a
1− p

p

N−1∑

k=0

√
k ≈ a

1− p

p

2

3
N3/2 (60)

which by Eq. 49 results in a slightly lower efficiency time than for TIS/RETIS:

τ eff ≈ 4

9
a
1− p

p
N3, for an optimal division (61)

Based on a = p = 0.1 and N = 50, the efficiency times are τ eff = 56250 for TIS/RETIS and

τ eff = 50000 for the optimal division. Naturally, the corresponding CPU-time efficiencies

by Eq. 48 are 1/56250 and 1/50000. Furthermore, based on Eq. 50, the optimal wall-

time efficiency and the optimal TIS/RETIS wall-time efficiency are given by K/50000 and

K/56250, respectively. These are the continuous black and purple curves in Fig.1d of the

main article.

It is interesting to observe that the optimal TIS/RETIS CPU-time efficiency is only

12.5% lower than the optimal CPU-time efficiency. This seems to suggest that it is difficult

to improve the CPU-time efficiency of TIS and RETIS unless the division of CPU-time is

exactly targeted to do so. On the other hand, one can easily get a much worse CPU-time

efficiency when errors in some ensembles are reduced to unnecessary small values while the

other ensemble errors are ignored. Based on the fact that τk ∝
√

τ effk gives the optimum, the

optimum division of MC moves is obtained when in ensembles [k+] the number of MC moves

is proportional to
√

τ effk /Lk. For the MSVS system this means that the number of executed

MC moves in each ensemble should optimally be taken as ∝ 1/
√
k for k = 1, 2, . . . ,M − 1

(to account for k = 0 we should have kept the neglected 0.1 addition in the path length
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to avoid divergence). This means that it is actually good to execute more MC moves at

the lower rank ensembles (low k) than at the higher rank (high k). However, this should

not be exaggerated since too many MC moves in the low ranked ensembles will just result

in inefficient use of CPU-time as discussed above. Based on the numerical sampling ratios,

we determined the CPU-time spend in each ensemble, τk, by multiplying these ratios by

Lk = ak. We then estimated the error based on Eqs. 54 and 52. The resulting efficiency,

based on the actual sampling ratios of ∞RETIS, turned out to give a slightly better CPU-

time efficiency than that of TIS/RETIS for 15 ≤ K ≤ 45, shown by the purple dashed line

in Fig. 1d. The resulting wall-time efficiencies of this hybrid theoretical/numerical result is

shown by the purple dots if Fig.1d as well. This shows that ∞RETIS can actually improve

both the CPU- and wall-time efficiency compared to TIS/RETIS. The latter is expected

based on the brute force principle that more CPU power is used per second. The former is

more subtle and related to the fact that ∞RETIS leads to a more efficient distribution of

the CPU-time among the different ensembles compared to TIS or RETIS.

7 Additional simulation results

7.1 Ratios of channels crossings
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Figure 1: The ratio of first crossings points for the last ensemble in the more favorable
channel. The blue icons shows the sampled ratio for each simulation, the blue line is the
average of 5 simulations for each amount of workers and the black line is the expected value
from direct integration of exp(−βV (y, z)) over y with z fixed at z = λ10 = −0.2. This gives
an approximate theoretical value of 0.71. The exact value is probably slightly less as the
integrated probability density does not correct for phase points that should not be counted
as they are actually lying on a path coming from state B rather than A. Still, a majority of
simulations provide a fraction that is slightly too low, which is likely an effect of the initial
conditions. As reported in Ref. 4, this ratio requires many MC moves to converge without
the added MC moves introduced in that paper (mirror-move and target-swap move). These
added moves are in principle perfectly compatible with the new replica exchange method, but
those were not implemented yet in this work. Therefore, we see the same slow convergence
for all of our simulations. Still, the K < N simulations are strikingly better than the
K = N = 12 case where no replica exchange moves were performed. For 12 workers, the 3
icons overlapping at 0.0 and another simulation showing a fraction equal to 1.0 are the result
of the known ergodicity issues of the TIS algorithm due to the lack of swapping moves.

8 Code availability

All simulation code for this paper is publicly available at doi.org/10.5281/zenodo.6977013.

Fair warning; this code is not user-friendly and highly optimized for our specific hardware

and output requirements. Instead we would advice everyone to instead use the examples of

the infretis github (https://github.com/infretis/infretis).
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This code was purely developed to verify the soundness and performance of the algorithm.

It uses python multiprocessing with a custom communication code, mimicking MPI, to let

the workers run arbitrary python code. It is limited to running on a single machine as no

network interface was written for the communication layer and it assumes all files to be

accessible by all processes. It uses internal calls to PyRETIS8 to run the MD for the two-

channel and 1D-wirefencing simulations and no current support is present for dealing with

external MD engines as with more mature path-sampling codes, like OPS9 and PyRETIS.8

It also does not write any data, which means the simulation can not be reanalyzed after it

has completed.

A new project has started at https://github.com/infretis/infretis, which will rewrite this

custom code to a more user-friendly software. It will add the file handling, use Dask10 to

manage the parallelization which allows for out-of-machine scaling, and will include external

MD packages as is common in path sampling codes. Initial examples of the Dask integration

can be found in the example directory of that git repository.
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ABSTRACT

Path sampling allows the study of rare events, such as chemical reactions, nucleation, and protein folding, via a Monte Carlo (MC) exploration
in path space. Instead of configuration points, this method samples short molecular dynamics (MD) trajectories with specific start- and end-
conditions. As in configuration MC, its efficiency highly depends on the types of MC moves. Since the last two decades, the central MC move
for path sampling has been the so-called shooting move in which a perturbed phase point of the old path is propagated backward and forward
in time to generate a new path. Recently, we proposed the subtrajectory moves, stone-skipping (SS) and web-throwing, that are demonstrably
more efficient. However, the one-step crossing requirement makes them somewhat more difficult to implement in combination with external
MD programs or when the order parameter determination is expensive. In this article, we present strategies to address the issue. The most
generic solution is a new member of subtrajectory moves, wire fencing (WF), that is less thrifty than the SS but more versatile. This makes it
easier to link path sampling codes with external MD packages and provides a practical solution for cases where the calculation of the order
parameter is expensive or not a simple function of geometry. We demonstrate the WF move in a double-well Langevin model, a thin film
breaking transition based on classical force fields, and a smaller ruthenium redox reaction at the ab initio level in which the order parameter
explicitly depends on the electron density.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127249

I. INTRODUCTION

Rare event simulation techniques aim to sample events that
require an exceedingly long central processing unit (CPU)/wall time
to be simulated with standard molecular dynamics (MD). In classi-
cal full atom simulations of protein folding, for example, the longest
reported1 MD runs generated by the special-purpose molecular
dynamics Anton 1 supercomputer are around 1 ms, allowing the
study of fast-folding proteins. The most recently released Anton 3
supercomputer is even able to generate 100 μs/day for a million-
atom system.2 Despite this remarkable speed, it is still not fast
enough to study the folding of all proteins. For instance, the trypto-
phan synthase β2 subunit has an experimentally measured3 folding
rate of k f = 0.001 s−1. Hence, the protein needs on average 1000 s
to fold. The Anton 3 computer would thus need 27 379 wall time
years to generate one single transition. For ab initio MD (AIMD),
the situation is even worse as the quantum mechanical force evalua-
tion is orders of magnitude slower than computing the gradient of a

classical force field potential. In addition, no special purpose AIMD
computers exist today.

Yet, rare event simulations allow the calculation of rate con-
stants and the study reaction mechanisms orders of magnitude
faster than MD, oftentimes without sacrificing any molecular-
level resolution.4 (Replica exchange) transition interface sampling
(RE)TIS5,6 is such a method that exploits the idea of transition
path sampling (TPS)7 to focus the CPU time on the actual bar-
rier crossing event via a Monte Carlo (MC) sampling of MD
paths.

RETIS and TIS employ a series of path sampling simulations,
each sampling a different path ensemble. The path ensembles differ
with respect to a minimal progress requirement, i.e., the number of
interfaces (defined by fixed values of the reaction coordinate/order
parameter) that has to be crossed.8 Combining the results of all path
ensembles allows the computation of rate constants and other prop-
erties with an exponentially reduced CPU time compared to a single
MD simulation.
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For instance, a classical simulation study on methane hydrate
formation9 using TIS and RETIS reports on a crystallization rate of
10−17 nuclei per second per simulation volume. In other words, in
a system as small as those used in atomistic simulations, the pro-
cess for forming a single critical nucleus takes physically 3 years.
Naturally, the hypothetical wall time for reaching this with MD is
astronomical for any supercomputer. Likewise, RETIS simulations10

reproduced the rate constant of water dissociation at the AIMD level
in reasonable agreement with experiments, suggesting it happens
once per 11 h for each water molecule.11,12 As it required 30 min to
produce 1 ps MD time in the 32 water molecules system, a naive
straightforward AIMD approach would need 0.7 × 109 centuries of
wall time to generate a single dissociation.

Despite being orders of magnitude times faster than plain MD,
simulations such as the above are still computationally expensive
and can require months to years to obtain satisfactory statistical
accuracy. A further increase in efficiency is therefore desirable.
There are essentially three approaches to achieve this: (i) reducing
the cost of the MC moves, (ii) reducing the number of required
trajectories, and (iii) parallelization of the algorithms. Partial path
sampling (PPTIS)13 and milestoning14 can be viewed as realiza-
tions of (i) by sampling more restrictive path ensembles with a
reduced average path length. Unfortunately, this introduces addi-
tional approximations. Strategies (ii) and (iii), on the other hand,
allow for a speed-up while still producing exact results, identical
to those from hypothetical unattainably long MD simulations. In
fact, RETIS successfully employs strategy (ii) by complementing the
shooting moves with replica exchange moves between path ensem-
bles. RETIS is thus more CPU efficient compared to TIS. However,
regarding strategy (iii), TIS has the advantage that path ensem-
bles can be run in parallel completely independently, while replica
exchange moves require the progress of the sampling in the path
ensembles to be synchronized such that processing units do not
have to wait for each other. As a result, RETIS might not always
outperform TIS based on wall time, which is the reason why the
previously mentioned hydrate formation study was partly based on
TIS.9 The recently introduced ∞RETIS algorithm15 is expected to
solve this issue for future studies based on a fundamentally new
replica exchange technique for cost-unbalanced replicas.

In fact, ∞RETIS implicitly applies the cost-free replica
exchange moves an infinite number of times after each shoot-
ing move. Still, replica exchange moves alone are not ergodic and
should, therefore, only be used in combination with another MC
move like shooting.16 To further push strategy (ii), the principle MC
move should be changed to reduce both the rejection rate and the
resemblance between accepted paths. This is exactly what subtra-
jectory moves aim to establish. These MC moves resemble PPTIS13

and milestoning14 in the sense that they evolve via series of shorter
paths (subtrajectories/subpaths), but differently to those methods,
these subpaths are just intermediates between sampled paths that
are extended to their full lengths. Sampled paths, therefore, have
no configuration point in common with the previous path, and the
statistical inefficiency is typically reduced by a factor equal to the
number of intermediate subtrajectories. Hence, while the creation
of a full new path becomes more expensive, this is more than offset
by the fact that far fewer trajectories are needed to achieve a cer-
tain statistical accuracy. In addition, the approach can be combined
with a high-acceptance protocol, which minimizes the number of

rejections. As a result, most path ensembles obtain a nearly 100%
acceptance.17

The two moves presented in Ref. 17, stone skipping (SS) and
web throwing (WT), however, have one element, the one-step cross-
ing condition, which can hinder the practical implementation with
external MD programs or when the calculation of the order para-
meter is computationally expensive. In SS and WT, the subtrajec-
tories are launched from a configuration point of a previous (sub)
path that is just before or after the path ensemble’s interface. At this
configuration point, velocities are generated such that the interface
is crossed again within a single time step. The velocity randomiza-
tion and one-step crossing test is reiterated several times until the
condition is fulfilled. The procedure is based on the idea that gener-
ation of new random velocities followed by a one-step crossing test is
relatively cheap compared to generating MD steps, especially if the
test can be performed without new force calculations. This might
not always be the case. Present path sampling codes18–21 use exter-
nal MD codes for performing the MD steps. PyRETIS version 2 has,
for instance, couplings to Gromacs,22 Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS),23 openmm,24 and CP2K.25

In order to reduce the number of stop/restart calls to these pro-
grams, a “time step” in the RETIS program is often several (10–1000)
MD steps by the external MD engine. This complicates the one-step
crossing condition as it actually involves not one but several steps,
which is costly and not easy to predict without actually performing
these steps. Another issue arises when the calculation of the order
parameter is expensive, such as those used in nucleation studies.26,27

In this article, we discuss several approaches to tackle this issue.
The most generically applicable solution is a new member of the sub-
trajectory family called wire fencing (WF). The approach is slightly
more wasteful with respect to the number of MD steps compared
to SS but very versatile and does not require any code modifica-
tions of the external engines. We illustrate the WF move on three
model systems, a simple 1D double-well potential, a Gromacs thin
film breakage application, and a CP2K study on ruthenium redox
reactions.

II. SUBTRAJECTORY MOVES

The schematic main idea of the three subtrajectory moves is
shown in Fig. 1. These are the stone skipping (SS), web throwing
(WT), and the new wire fencing (WF) move. The commonality
is that an arbitrary number of partial trajectories (subtrajecto-
ries/subpaths) are generated before the completion of a new full tra-
jectory. The subtrajectories obey different start- and end-conditions
and are, due to this, considerably shorter than full trajectories. The
subtrajectories are not part of the sampling but are just intermediate
steps between one full trajectory to another. The [i+] path ensemble
that is being sampled in Fig. 1 consists of paths starting at λA, cross-
ing λi at least once, and ending at either λA or λB. In Fig. 1, the old
full trajectory is colored blue. In the example, the new trajectory is
generated via four subtrajectories. The first subtrajectory is obtained
from a shooting move from the old trajectory. Then, the next sub-
trajectory is generated from the previous one until the number of
predetermined subtrajectories (4 in this case, colored in orange) is
reached. The final subtrajectory is extended backward and forward
in time until reaching a stable state. The new full trajectory com-
prises the last subtrajectory and the extensions colored in green. The
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FIG. 1. Cartoon representation of the three subtrajectory moves: stone skipping,
web throwing, and wire fencing. The old path is shown in blue. Four subtrajectories
are shown in orange. The final new path consists of the fourth subtrajectory and
its extensions colored in green.

difference between the three moves lies in the way the shooting of
subpaths is executed.

The SS move resembles a flat stone that collides with the water’s
surface after a skillful throw. The move starts by selecting randomly
any of the crossing points of the old path with λi, generates new
velocities that also establish a crossing, and then proceeds until λB
is crossed or λi is crossed again. The process is then repeated by
selecting the subpath’s last crossing with λi for shooting off the next
subpath. Finally, the last subpath is extended and possibly accepted
or rejected.17

The WT move has been named after a gesture of the famous
Marvel character swinging between skyscrapers. Here, an additional
interface needs to be defined, the surface of unlikely return (SOUR),
at the state A side of the λi interface. If this interface, λsour, is crossed
toward the direction of state A, it is assumed to be highly unlikely
that the MD trajectory will end up in state B rather than A (defined
by the last interface, λB, and the first interface, λA, respectively). The
first subpath is then shot from a random crossing point with either
λi or λsour at a path segment of the old path that connects these two
interfaces. After the velocities of the system’s atoms are re-set, like
in the SS move, the subpath is continued until λsour or λi is crossed
but is only kept if the subpath connects λsour and λi again like the

segment of the old path. If not, the subpath is rejected and a new
crossing point is taken randomly from the same segment. If both
λsour and λi are crossed, the subpath replaces the segment. The pro-
cess is repeated until the selected number of subpaths, accepted or
rejected, has been completed. The final accepted subpath is extended
in both time-directions to make a full new path. Note that a rejection
of a subpath does not imply a rejection of the MC move itself but just
redirects the process of achieving a new path from an old path. The
time-direction is chosen such that from λsour, the trajectory is prop-
agated backward in time and from λi forward in time. Due to the
placement of λsour, it is nearly guaranteed that the backward exten-
sion reaches state A. As λi is also crossed, it is ensured that the path
is valid for the [i+] ensemble, though it might still be rejected due to
a final acceptance/rejection step, as required by detailed balance.28

The WF move, further discussed in Sec. VII, differs with the
other moves by its location of the shooting points. In the WF move,
these might be any point with a corresponding value of the reaction
coordinate that is larger than λi and lower than λB (or λcap if a so-
called cap interface is set, see Sec. VII). From this point, no specific
requirements are needed for the velocities so that they are most con-
veniently generated from a Maxwell–Boltzmann distribution for the
temperature of interest. From the new phase point, MD steps are
generated forward and backward in time until λB (or λcap) or λi is
crossed. The subpath is accepted unless it reaches λB (or λcap) in both
time-directions. In that case, it would be rejected and the next shot is
taken again from the latest accepted subpath or the previous segment
of the old path if no accepted subpaths yet exist. After finishing the
number of desired subpaths, the last accepted one is extended to the
stable states, like in SS and WT. While the WF move is slightly more
wasteful with respect to the MD moves compared to SS, the veloc-
ity generation is much simpler, which can have both practical and
fundamental advantages compared to SS and WT. These are further
discussed in Sec. VI. The name of the WF move is derived from the
visual resemblance between the set of full paths and subpaths and
the top of a wire fence.

The subtrajectory moves go against strategy (i) as these MC
moves require more MD steps than just the number of MD steps
for generating a new path. These moves are nevertheless more effi-
cient because they utilize strategy (ii): the statistical inefficiency of
the sampling is reduced, and therefore, fewer trajectories are needed
to achieve a desired statistical error. Like with the standard shooting
move, a final acceptance/rejection step should ensure that the cor-
rect statistical distribution of paths is sampled. However, due to the
complexity of the subtrajectory move, the design and mathematical
validation of the acceptance rule is substantially more complex and
is derived from the so-called superdetailed balance29 principle.

III. SUPERDETAILED BALANCE

The term superdetailed balance was first introduced within the
context of configurational bias MC (CBMC),29–31 which is an effec-
tive method to study the adsorption of polymers in nanoporous
materials, such as zeolites. In this algorithm, polymers are removed
and then regrown atom by atom such that any overlap between the
polymer and the zeolite’s walls and other polymers is avoided. In
this growth process, several attempted branch formations are tested
and potentially rejected. Therefore, a specific final accepted configu-
ration could, in principle, be obtained from the old configuration
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via an infinite number of ways (construction paths). As a result,
the Metropolis–Hastings32 rule for deriving acceptance probabilities
becomes impractical as it requires the knowledge on the genera-
tion probabilities of all these branches, accepted and rejected, that
need to be summed up. This issue is overcome in CBMC using the
superdetailed balance principle, which can be formulated in terms of
a construction path χ and its inverse χ.17 That is, we not only require
detailed balance between any possible old state and new state, but we
require this for any specific route that connects these two states,

Pacc = min[1,
P(path(n))Pgen(path(n) → path(o) via χ)
P(path(o))Pgen(path(o) → path(n) via χ) ], (1)

where Pgen(path(o) → path(n) via χ) is the generation probability to
generate the new state (path in our case) from the old state via con-
struction path χ and Pgen(path(n) → path(o) via χ) is the generation
probability to generate the old state from the new state via the reverse
construction path χ.

In subtrajectory moves, the “construction” path does not only
describe the MD extensions of the final path but also the sequence of
subtrajectories, including the failed ones. For SS and WT, the unsuc-
cessful velocity generations, that do not obey the one-step crossing
condition, should also be considered as part of the construction path
χ. In other words, χ consists of several steps, and the generation
probability “via χ” is given by the product of generation probabilities
of each step.

For each construction path χ, there should exist an unique
reverse construction path χ. Roughly said, when χ represents a
sequence of algorithmic steps, χ will typically consist of the reverse
steps in reverse order. However, some groups of consecutive steps
might actually happen in the same order. In fact, there is no unique
way to define “a reverse,” but for a given definition, there will be
a one-to-one relation between any possible χ and its reverse χ and
with that, valid acceptance/rejection rules can be derived based on
the superdetailed balance [Eq. (1)].

Yet, the definition of the reverse should be chosen such that
the acceptance probability is computable and not negligibly small
in the majority of cases. Therefore, the mathematical definition for
the inverse is taken such that the probabilities of most of the algo-
rithmic steps in the expressions for Pgen(path(o) → path(n) via χ) and
Pgen(path(n) → path(o) via χ) will cancel.

For instance, if we represent the construction path as a vector
containing the different steps in chronological order, χ could look
like

χ = [s0, t1, t2, s3, s4, t5, s6], (2)

which shows that there were six subtrajectories generated of which
there were three failed trials t1, t2, and t5. The initial step involves
cutting out the very first subtrajectory s0 from the old path, while the
final step implies not only the generation of the last subtrajectory s6

but also its extension to a full trajectory. The reverse construction
path in this case is conveniently defined as

χ = [s6, s4, t5, s3, s0, t1, t2]. (3)

Hence, the order of the steps is not completely reversed, but the
reverse order takes place on groups of consecutive steps, a group

being a successful subtrajectory with all its failed trials that follow.
The reason for this inverse is that Eq. (2) shows that trial trajectory
t5 can be generated starting from s4, but this is not necessarily the
case from s6. Reversely, as s6 was generated from s4, they share a
common configuration point, which makes it possible to generate s4

from s6. There is, however, no reason whatsoever that s6 and t5 share
a common configuration point. Hence, if we would consider the
reverse to be χ = [s6, t5, s4, . . .], Pgen(path(n) → path(o) via χ) would
most likely be zero as χ itself cannot be generated. In contrast, the
inverse based on the grouped reordering, Eq. (3), contains gener-
ation probabilities, such as the probability to generate t5, given s4,
which appear both in χ and χ. Therefore, all the generation probabili-
ties of failed trajectories cancel in Eq. (1). Likewise, all failed velocity
generations in SS and WT that do not obey the one-step crossing
condition cancel out for the same reason, as shown in Ref. 17.

Excluding all the failed steps that will cancel in Eq. (1), we can
write for Pgen(path(o) → path(n) via χ),

Pgen(path(o) → path(n) via χ)∝ Psel(s0∣path(o))
× Psel(r0,3∣s0)Pgen(v0,3)PMD(s3∣x0,3)
× Psel(r3,4∣s3)Pgen(v3,4)PMD(s4∣x3,4)
× Psel(r4,6∣s4)Pgen(v4,6)PMD(s6∣x4,6)
× Psel(td)PMD(path(n)∣s6). (4)

Here, Psel(s0∣path(o)) is the probability for selecting s0 from the
old path(o) and Psel(r0,3∣s0) is the selection probability of choosing
point r0,3 from the subpath s0 as the shooting point. Since r0,3 is a
shooting point to go from s0 to s3, it is a configuration point that s0

and s3 have in common. Pgen(v0,3) is the probability for generating
the velocities v0,3, which are the velocities of s3 at the corresponding
configuration point r0,3. PMD(s3∣x0,3) is the chance that starting from
phase point x0,3 = (r0,3, v0,3), the MD integrator produces subpath
s3 by integrating the equations of motion forward and backward in
time. The MD integrator can be based on actual Newtonian MD,
Langevin, Brownian, etc. Likewise, PMD(path(n)∣s6) is the chance
that the new path(n) is produced by extending the final subpath s6.
Finally, Psel(td) is the selection probability for the time-direction
along the new path. Note that the time-direction along the sub-
paths is irrelevant in WT and WF. In SS, subpaths do have a sort
of direction as the next shooting always takes place at the last λi
crossing.17

For the reverse construction path [Eq. (3)], we can write

Pgen(path(n) → path(o) via χ)∝ Psel(s6∣path(n))
× Psel(r6,4∣s6)Pgen(v6,4)PMD(s4∣x6,4)
× Psel(r4,3∣s4)Pgen(v4,3)PMD(s3∣x4,3)
× Psel(r3,0∣s3)Pgen(v3,0)PMD(s0∣x3,0)
× Psel(td)PMD(path(o)∣s0). (5)

Now, it becomes apparent that most terms will cancel out in
Eq. (1) when we take the ratio between Eqs. (5) and (4). First of
all, the time-direction is chosen with a 50% probability such that
Psel(td) = 0.5. Then, we can use the fact that a path probability
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can be written in terms of a phase point probability times the MD
generation probability,

P(path) = ρ(x)PMD(path∣x), (6)

where ρ(x) is the phase space equilibrium density for any phase
point x that is part of the path.17 For a phase point x = (r, v), this
can be split into

ρ(x) = ρr(r)ρv(v), (7)

where ρr and ρv are, respectively, the configuration (Boltzmann)
distribution and the velocity Maxwell–Boltzmann distribution (pos-
sibly subjected to bond- and angle constraints if applicable). Fur-
thermore, as generating new velocities in Eqs. (4) and (5) is based on
the velocity distribution, Pgen(v) = ρv(v), we can substitute all PMD
terms in Eqs. (4) and (5), e.g.,

Pgen(v4,6)PMD(s6∣x4,6) = Pgen(v4,6)P(s6)
ρ(x4,6)

= ρv(v4,6)P(s6)
ρ(x4,6) = P(s6)

ρr(r4,6) ,

P(s6)PMD(path(n)∣s6) = P(path(n)).
(8)

Applying these operations to Eqs. (4) and (5), we get

Pgen(path(o) → path(n) via χ)∝ Psel(s0∣path(o))Psel(td)
× Psel(r0,3∣s0)Psel(r3,4∣s3)Psel(r4,6∣s4)
× P(s3)P(s4)P(path(n))/[ρr(r0,3)ρr(r3,4)ρr(r4,6)],

Pgen(path(n) → path(o) via χ)∝ Psel(s6∣path(n))Psel(td)
× Psel(r6,4∣s6)Psel(r4,3∣s4)Psel(r3,0∣s3)
× P(s4)P(s3)P(path(o))/[ρr(r6,4)ρr(r4,3)ρr(r3,0)].

(9)

In the ratio of these two equations, more terms will cancel out
as rα,β = rβ,α. Furthermore, Psel(td) = 0.5 as stated before. In all sub-
trajectory moves, Psel(r∣sα) is either a fixed number (SS and WT)
or it depends on sα, but not on r (WF). In SS, the shooting point
is selected from the last crossing with λi, and therefore, Psel(r∣sα) = 2
(the phase point just before or after λi). In WT, it is randomly chosen
from a crossing with either λi or λsour, and therefore, Psel(r∣sα) = 4.
With stochastic dynamics, one can also opt to choose only the inner
points17 such that Psel(r∣sα) = 2. In WF, any point of the subpath that
lies between λi and λB (or λcap) can be chosen. In all these cases, the
Psel(r∣sα) terms with identical sα cancel out in the ratio. That means
that the only terms that remain depend on the first and last subpath
(s0 and s6) or on the full paths (path(o) and path(n)),

Pgen(path(n) → path(o) via χ)
Pgen(path(o) → path(n) via χ)

= Psel(s6∣path(n))Psel(r6,4∣s6)P(path(o))
Psel(s0∣path(o))Psel(r0,3∣s0)P(path(n))
= Psel(r6,4∣path(n))P(path(o))

Psel(r0,3∣path(o))P(path(n)) = P(path(o))/M(n)
P(path(n))/M(o) , (10)

where in the third expression, we contracted the selection prob-
abilities involving the two-steps (first selecting s0 or s6 and then
selecting r0,3 or r6,4) to the chance of selecting the very first success-
ful crossing point from the existing full path. Finally, the latter was
replaced by 1/M(n) and 1/M(o), where M(n) and M(o) are the num-
bers of different equally probable possibilities to select a shooting
point for generating a subtrajectory from the new and old full path,
respectively.

If we substitute Eq. (10) into Eq. (1), we obtain a rather simple
expression for the acceptance,

Pacc = min[1,
M(o)
M(n) ]. (11)

In SS, M(o) and M(n) are simply proportional to the number of cross-
ing points of the old and new paths with λi, while for WT, these are
proportional to the number segments that can be cut out of these
trajectories that connect λsour and λi.17 In WF, these relate to the
number of points between λi and λB. If a so-called cap-interface is
defined, M(o) and M(n) relate to the number of points between λi
and λcap excluding any points lying on a segment λcap → λcap without
crossing λi.

Equation (11) can also be combined with an early rejection
scheme as was introduced in Ref. 5. In the standard approach, one
would complete the MC move, compute the acceptance probabil-
ity [Eq. (11)], take a uniform random number α between 0 and 1,
and then accept if α < Pacc and reject otherwise. In the early rejection
scheme, the random number α is taken first and the move is rejected
as soon as M(n) >M(o)/α. In normal shooting, this provides a consid-
erable speed up since long paths have a high chance to get rejected.
Using the early rejection scheme, a lot of unnecessary MD steps can
be avoided as these paths can be stopped whenever they exceed the
predetermined maximum length. Yet, for the subtrajectory moves,
the high-acceptance scheme is preferable as we discuss in Sec. V. In
Sec. IV, we show why the subtrajectory moves allow us to sample
fewer trajectories than with standard shooting via a reduction of the
statistical inefficiency.

IV. STATISTICAL INEFFICIENCY

The principal property that is computed in the [i+] ensem-
ble is the local crossing probability PA(λi+1∣λi). This is the history
dependent conditional probability that the system, given it crosses
λA and then crosses λi, crosses λi+1 before λA. In the post hoc anal-
ysis, this local crossing probability is simply the fraction of sampled
path in the [i+] ensemble that happen to cross λi+1 in addition to
λi. Once these are accurately enough determined, the global crossing
probability PA(λB∣λA) is obtained from5,8

PA(λB∣λA) = n−1∏
i=0

PA(λi+1∣λi), (12)

where λ0 = λA and λn = λB. The above expression is exact since
the local crossing probabilities include the full history dependence(λA → λi) in their condition.33 An alternative approximate expres-
sion for the global crossing probability is used in partial path TIS13
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in which the amount of spatial memory is reduced though not set
to zero, as in milestoning.14 The global crossing probability gives the
rate of the transition when multiplied with fA, the conditional flux
through λA.

In TIS, the flux is calculated by straightforward MD where the
system is prepared in state A and then the number of crossings with
λA per time unit is computed. If a spontaneous transition to state
B takes place, which is unlikely for a rare event, the simulation is
paused, reinitiated in state A and then continued. RETIS computes
the flux term differently as it does not use a single continuous MD
simulation. Instead, the [0−] path ensemble is introduced to explore
the A state, and the flux is derived from the average path lengths in[0−] and [0+].6 In addition to rate constants, the overall crossing
probability can also be used to compute permeability coefficients34

and activation energies.35,36

Considering the jth path in the simulation for path ensemble[i+], the main output of sample j (the generated path) that is rel-
evant for the computation of the crossing probability is simply the
observation of whether it crosses λi+1 or not. We can describe this
by a characteristic function hj, which equals 1 if λi+1 is crossed and 0
otherwise. The simulation estimate of the local crossing probability,
p(m), after m MC moves is then expressed as

p(m) = 1
m

m−1∑
j=0

hj ≈ PA(λi+1∣λi), (13)

where the index counter starts from zero for mathematical
convenience.

For finite m, the value of p(m) will not be exact, and the abso-
lute error, ϵa, is defined as the standard deviation of the mean σp(m).
This is essentially the standard deviation in possible p(m) results
if the simulation experiment would be carried out multiple times.
Mathematically, we can write this as

ϵa = σp(m) =√⟨(p(m) − p)2⟩, (14)

where p = p(∞) = PA(λi+1∣λi) and the brackets ⟨⋅⟩ refer to the per-
fect ensemble sampling average. This can be viewed as the hypotheti-
cal average that is obtained after repeating the simulation an infinite
number of times starting with initial conditions that are randomly
drawn form a perfect statistical equilibrium distribution. In other
words, we have ⟨p(1)⟩ = ⟨p(m)⟩ = p. Furthermore, since detailed
balance MC moves conserve the equilibrium distribution,29 the
absolute value of the index j is irrelevant and ⟨h0⟩ = ⟨h1⟩ = ⟨hj⟩ = p
and ⟨hjhk⟩ = ⟨h0hk−j⟩ for any j, k. Using this, one can show that37

σ2
p(m) = σ2

p(1)
m

N , N = [1 + 2nc], (15)

where N is called the statistical inefficiency and nc is the correlation
number, which is the integral of the correlation function C( j),

nc = ∞∑
j=1

C( j), C( j) = ⟨(h0 − p)(hj − p)⟩⟨(h0 − p)2⟩ . (16)

As the output hj of a single sample is either 1 with a probability p or
0 with a probability (1 − p), the sample standard deviation σp(1) can
be simplified as

σ2
p(1) = ⟨(p(1) − p)2⟩ = ⟨(h0 − p)2⟩
= p(1 − p)2 + (1 − p)(0 − p)2 = p(1 − p). (17)

Using Eqs. (15)–(17), we can write for the relative error,

ϵr = ϵa

p
=√1 − p

p
N
m

. (18)

Equation (18) shows that for a fixed number of MC moves m, the
larger the local crossing probability p = PA(λi+1∣λi), the lower the
relative error. Hence, the result in simulation [i+] converges faster
when the difference between λi and λi+1 is small, but this will obvi-
ously increase the number of path ensembles needed. Analytical
results on model systems suggest that the optimum placement of
interfaces in TIS is achieved when p ≈ 0.2 for all ensembles.37 In
RETIS, the optimum is expected to be slightly higher as this would
lead to more successful swaps. Likewise, the optimum is also slightly
higher if the weighted histogram analysis method (WHAM)38 is
used instead of single-point matching to determine the total cross-
ing probability. In this approach, the crossing statistics of the path
ensemble [i+] is not limited to the fraction of paths crossing λi+1,
but also the fractions for crossing λi+2, λi+3, etc., are used to get a
slightly more accurate estimate of Eq. (12).39,40

If the sampling between successive MC moves is com-
pletely uncorrelated, we have that ⟨(h0 − p)(hj − p)⟩ = ⟨(h0 − p)⟩⋅ ⟨(hj − p)⟩ = 0 ⋅ 0 = 0. This would imply that C( j) = nc = 0 and
N = 1. In this case, if p = 0.2, there are about m = 400 trajecto-
ries required to obtain an ϵr = 10% error. For N > 1, one would
need m/N = mu = 400 to get the same error. Here, mu is called the
number of effectively uncorrelated samples.

In general, C( j) ≠ 0 except for the limit j→∞ as correlation
decays. If a MC move is rejected at step j, then the previous sample
is kept and recounted such that sample j is identical to sample j −1.
Hence, if there are j consecutive rejections, sample j is identical to
sample 0 causing correlation over multiple steps. Even if the jth step
is accepted, it tends to have some similarity with the previous sam-
ple. Therefore, there is a high probability for hj = hj−1, even if the
samples are not identical. The correlations lead to a sampling output(h0, h1, h2, . . .) with long rows of consecutive zeros and consecutive
ones.

To illustrate this effect with a mathematical example, suppose
that the MC move has a probability πR to remain unchanged such
that hj = hj−1 and a probability πM = 1 − πR to actually make a move
that potentially (but not necessarily) changes the output: the new
sample yields hj = 1 with a probability p and hj = 0 with a probability(1 − p). As shown in the Appendix, for this mathematical model, the
statistical inefficiency equals

N = 2 − πM

πM
. (19)

This shows that for a typical MC acceptance probability of 50%, the
effect of rejections alone causes the statistical inefficiency to be equal
to 3. The situation is usually worse in complex systems and also more
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difficult to identify than merely by the presence of rows of consec-
utive ones or zeros. For instance, inter- and intramolecular changes
of reactants could temporarily boost or reduce the probability of a
transition. The same kind of fluctuations in the temporary transition
probability can be caused by the local solvent structure and the posi-
tion and orientation of catalytic molecules. These describe degrees
of freedom that are orthogonal to the reaction coordinate.

We can examine this by a slightly more complex model where
we assume that there are two phases α and β, described by the
orthogonal degrees of freedom, which occur with probabilities Pα
and Pβ = 1 − Pα. Let pα and pβ be the corresponding local crossing
probabilities along the reaction coordinate for these phases such that
p = Pαpα + Pβpβ. Analogous to the above, let πρ be the chance to not
update the phase, and πμ = 1 − πρ be the chance to freshly choose
between phase α or β with respective probabilities Pα and Pβ. As
shown in the Appendix, in this case, the statistical inefficiency equals

N = 2Ks − πμ(2Ks − 1)
πμ

, (20)

where Ks is a system parameter that does not depend on the type of
MC move,

Ks = PαPβ(pα − pβ)2

p(1 − p) = (p − pα)(pβ − p)
p(1 − p) . (21)

Note that Ks = 0 whenever pα = pβ, which gives N = 1. This would
be the case if all TIS interfaces are placed at isocommittor surfaces,
which partly supports the hypothesis of Ref. 41 that stated that path
sampling simulations are most efficient if the reaction coordinate λ
equals the committor. However, although this surely minimizes the
statistical inefficiencies, the mean path lengths in the path ensem-
bles also depend on the choice of the reaction coordinate λ. If this
is included in the analysis, the hypothesis is at least not generally
true.33

Now, assume that not all generated paths are saved and ana-
lyzed, but instead only every Nsth path is kept. While this will cause
a reduction in the number of samples from m to m/Ns, it does
not necessarily reduce the number of uncorrelated samples mu as
the statistical inefficiency between saved samples is also reduced. In
particular, the “remain” probability between saved samples changes
from πρ to πNs

ρ and, therefore, the “move” probability changes from
πμ to 1 − πNs

ρ = 1 − (1 − πμ)Ns . The statistical inefficiency between
saved samples is henceforth

N (Ns) = 2Ks − (1 − (1 − πμ)Ns)(2Ks − 1)
1 − (1 − πμ)Ns

. (22)

Equation (22) shows that the statistical efficiency indeed goes down
with increasing Ns up to an asymptote equal to 1. Taking the power
series up to first order in πμ, we see that the initial downfall is
inversely linear,

N (Ns) ≈ 2Ks −Nsπμ(2Ks − 1)
Nsπμ

≈ N (1)
Ns

, (23)

where we assumed Nsπμ ≪ 1. As a result, saving every Nsth path
instead of all paths will not affect much the post-simulation anal-
ysis in terms of accuracy. The reduction in the number of data

points from m to m/Ns is compensated by a lower statistical inef-
ficiency such that the number of uncorrelated samples mu remains
nearly unchanged. While this allows for obvious data storage sav-
ings, reducing both the memory and time for writing to disk, it also
paves the way to reduce MD steps, as shown in Fig. 2. The figure

FIG. 2. Illustration of wasted MD steps in shooting and WF. (a) shows six con-
secutive paths being generated by the shooting move where only the solid golden
paths, with index 0 and 5, are being saved. (b) gives an equivalent scenario in the
WF algorithm showing that considerably fewer MD steps are needed to obtain the
same paths 0 and 5 via Ns = 5 subtrajectories. Still, WF is not as thrifty as SS and
WT since only parts of the subtrajectories, shown in (c), actually contribute to the
sampling progress to get from path 0–5. The additional steps in (b) are seemingly
“wasted” but still needed for the superdetailed balance relation. SS and WT do not
generate wasted MD steps but rely on a one-step crossing condition as discussed
in the main text.
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illustrates a hypothetical MC sequence in path sampling of six con-
secutive paths, labeled 0–5, where the shooting point has an order
parameter larger than λi. If only every fifth path is saved, only paths 0
and 5 are considered as in Fig. 2(a). Although the intermediate paths
contribute for their decorrelation, it is clear that many MD steps
can be omitted, as exploited by the subtrajectory moves. Figure 2(b)
shows a scenario where the same final path is being generated with a
set of hypothetical WF subtrajectories resembling the top scenario.
Instead of five full trajectories, only four short subtrajectories and
one full trajectory are needed to establish a new full path (path 5)
from the old one (path 0). Based on this principle alone, the rela-
tive efficiency gain η of subtrajectory moves compared to standard
shooting is expected to be

η(Ns) = NsLp

Lp + (Ns − 1)Ls
, (24)

where Lp and Ls are, respectively, the average length of a full path and
a subpath. Still, if we purely focus on the MD steps that are required
to allow for the progression from path 0 to path 5, even fewer MD
steps are needed, as shown in Fig. 2(c). Yet, the “extra” (wasted)
MD steps in panel (b) are required for the superdetailed balance,
as discussed in Sec. III. Wasted MD steps are avoided in SS and WT
where the shooting always happens at an interface [see Figs. 1(a) and
1(b)]. The price to be paid for this is the additional complication
with regard to the one-step crossing condition (see Sec. VI). How-
ever, even with a slightly higher MD waste, the WF move requires
considerably fewer MD steps than standard shooting.

Equation (24) levels off to a constant Lp/Ls for increasing Ns.
Likewise, Eqs. (22) and (23) show that the trend N (Ns) = N (1)/Ns
is not sustained for increasing Ns as N ultimately levels off to 1. It
is henceforth assumed that while efficiency initially increases quite
rapidly as a function of Ns, it cannot surpass Lp/Ls and ultimately
even decreases when N (Ns) levels off. Clearly, for the [0−] and[0+] ensemble where Lp = Ls, no gain is expected, and one could
set Ns = 1 if data storage latency would not be an issue. Therefore,
as a rule of thumb, Ns can be set approximately equal to Lp/Ls
such that for Lp > Ls, the cost of the MC move is less than doubled,
while Eq. (24) reaches more than 50% of its anyways unattainable
maximum of Lp/Ls.

Although the essence of the above analysis is correct, there
is, however, a caveat: rejections leave a much heavier mark on the
subtrajectory move than on standard shooting. If, for instance, the
extension of the fifth and last subpath in Fig. 2(b) is rejected, it would
imply a complete reset to the latest accepted full path (path 0) since
subpath 4 is not a valid trajectory and extending subpath 4 after the
rejection would violate detailed balance. As a result, all MD steps of
subpaths 1–5 are trashed as the next move starts from path 0 again.
Instead, the MC chain will only fall back to path 4 (assuming path
4 was accepted) in standard shooting. It is therefore clear that rejec-
tions in the subtrajectory move approach should be avoided even
more than in the shooting method. This can be achieved with the
high-acceptance procedure that is discussed in Sec. V.

V. HIGH-ACCEPTANCE PROCEDURE

As discussed in Sec. IV, a rejection in the subtrajectory moves
implies a large amount of wasted MD steps. An early rejection

scheme, such as the one used in TIS and RETIS with standard shoot-
ing (see Sec. III), is also not so helpful as a rejection cannot be made
until the generation of the last subtrajectory has been initiated. It
is, therefore, preferable to combine the subtrajectory moves with
the high-acceptance scheme.17 The approach uses the following two
tricks. First, if the final subtrajectory has a backward extension end-
ing in state B, the MC move is not directly rejected. Instead, the
extension forward in time is completed, and if it ends in state A, the
path is time-reversed, providing an A→ B path. The consequence is
that the time-direction selection probability Psel(td) in Eq. (4) is no
longer 0.5 for all paths as an A→ B path can be generated in two
ways: either by choosing the correct time-direction immediately or
in reverse. This implies an extra factor two in the generation prob-
abilities Pgen, in Eqs. (1) and (10), of the A→ B paths compared to
A→ A paths. We henceforth write

Pgen(path(n) → path(o) via χ)
Pgen(path(o) → path(n) via χ) = P(path(o))q(path(o))/M(n)

P(path(n))q(path(n))/M(o) , (25)

where

q(path) = ⎧⎪⎪⎨⎪⎪⎩
1 if path ∈ {A→ A},
2 if path ∈ {A→ B}. (26)

The second trick is to slightly change the sampling distribu-
tion. Instead of sampling the correct physical path distribution,
P(path), restrained to the path ensemble’s requirements, an alter-
native path distribution P̃(path) is sampled. From Eqs. (1) and (25),
the acceptance probability thus becomes

Pacc = min[1,
P̃(path(n))P(path(o))q(path(o))M(o)
P̃(path(o))P(path(n))q(path(n))M(n) ], (27)

and to maximize the acceptance, we choose the sampling distribu-
tion in ensemble [i+] as

P̃(path) = P(path)wi(path)1[i+](path)
with

wi(path) = q(path)Mλi(path), (28)

where 1C(x) is the indicator function that equals 1 if x is part of set C
and 0 otherwise. A subscript λi was added to the last term M, as the
number of equal probable possibilities for a first shooting, generally
depends on the interface λi. Substituting Eq. (28) in Eq. (27) implies
that with high-acceptance,

Pacc = 1[i+](path(n)). (29)

In other words, the new path will always be accepted unless the MC
move led to a path not obeying the ensemble’s definition: starting
at λA, ending at λA or λB, and having at least one crossing with λi.
By construction, the crossing of λi is always achieved in the sub-
trajectory moves if the starting condition at λA is met. Hence, the
only necessary rejection is when the extension of the final successful
subtrajectory ends at λB in both time-directions.

If no successful subtrajectories were generated after Ns
attempts, s0 could be extended. However, since this would regen-
erate the old trajectory in deterministic dynamics and otherwise a
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trajectory that is highly correlated with the old one, it is preferable to
reject the move. Other potential reasons for rejections could be due
to non-convergence of the atomistic forces in AIMD level calcula-
tions. Another potential issue is jumpy order parameters42 such that
Mλi can be zero even if the path is actually valid. This issue is further
discussed in Sec. VII.

Exact natural averages can still be obtained by weighting each
sample j with the inverse of wi( j). For instance, the estimated local
crossing probability, previously defined by Eq. (13), can now be
expressed as

p(m) = ∑m−1
j=0 wi( j)−1hj∑m−1

j=0 wi( j)−1 ≈ PA(λi+1∣λi). (30)

The effect of the weighting implies that different samples have dif-
ferent contribution. If a sample j′ has a much lower than average
w−1

i factor, the sample could essentially be removed from Eq. (30)
without significantly affecting the estimate p(m). Yet, thanks to this
sample not being rejected, sample j′ + 1 is more different than j′ − 1
than it would be in the case that j′ was rejected. This shows the power
of the high-acceptance approach.

The improved acceptance in the subtrajectory move will slightly
reduce the acceptance in the replica exchange move. For instance, if
a path j from ensemble [i+] will be exchanged with a path k from
ensemble [(i + 1)+], the acceptance becomes17

Pacc = 1[(i+1)+]( j) ×min[1,
wi(k)w(i+1)( j)
wi( j)w(i+1)(k)]. (31)

Without high-acceptance, the factor in Eq. (31) after the multiplica-
tion sign equals 1. This means that whenever j, the path originating
from [i+] is valid for [(i + 1)+], the swap will be accepted. Note that
any path in [(i + 1)+] is also valid in [i+]. This lower acceptance
is not dramatic since replica exchange moves do not require any
MD steps. Therefore, replica exchange moves have negligible CPU
cost. The only exception is the [0−]↔ [0+] swap in which two new
paths are generated. Without high-acceptance, this move is always
accepted. For SS and WT, the acceptance remains 100%, but this is
not the case for WF. We can solve this problem for WF in RETIS
by sampling the [0−] and [0+] ensembles with the standard shoot-
ing method without high acceptance. Due to this w0+ and w0− equal
1 irrespective to the paths and swapping between these two ensem-
bles will always be accepted. The absence of high-acceptance is partly
compensated by early rejection (see Sec. III). Moreover, in these
ensembles, there is no difference between the average path length of
a subpath and a full path, making the subtrajectory moves anyways
not so effective for these ensembles.

The high-acceptance protocol eliminates the more serious
drawbacks of rejections in the subtrajectory moves compared to
shooting. In Sec. VI, we discuss how the one-step crossing condition
can be met.

VI. ONE-STEP CROSSING CONDITION

As discussed above, SS and WT are very thrifty algorithms with
respect to the number of generated MD steps. Yet, the one-step
crossing condition puts a challenge to the implementation. One can
eliminate the one-step crossing condition via the new but less thrifty

WF algorithm that is further discussed in Sec. VII. In this section, we
discuss a few algorithmic solutions to overcome the one-step cross-
ing condition in SS and WT. These two approaches assume that one
time step in (RE)TIS is effectively also one MD step.

The one-step crossing can be achieved in different ways.
The most straightforward way is to generate velocities from a
Maxwell–Boltzmann distribution, execute an MD step, and calculate
the new order parameter, and if the crossing is established, then the
two frames comprising the crossing are extended at the side above λi
to create a new subpath. The problem with this approach is that after
each velocity generation, an MD step, and therefore a force calcula-
tion, is required. In particular, if λi is at a steep slope of the potential
energy surface, the two trajectory frames forming the crossing of a
given interface might be rather far apart in λ-space. In such cases, if
one of the two frames is located in the very proximity of the inter-
face, it might be extremely unlikely to re-generate a new one-step
crossing from the configuration furthest to the λi interface, given a
random approach to generate velocities.

There are essentially two strategies to reduce the cost for ful-
filling the one-step criterion: (i) generate atom velocities from a
Maxwell–Boltzmann distribution and predict the next step’s order
parameter without performing an actual MD step and (ii) gener-
ate velocities in a way such that the crossing is likely achieved after
very few attempts. Strategy (i) assumes that generating new veloc-
ities is rather computationally inexpensive, and the expense of the
one-step crossing condition is mostly provided by the force calcu-
lation. This is the case for AIMD level simulations as these typically
consist of just a few (hundreds of) atoms while requiring a high CPU
demand for the force calculation. In large classical MD systems with
a significant number of atoms, the velocity generation might actually
be equally expensive as a force calculation. In that case, strategy (ii)
might be preferable.

A. Prediction strategy
The velocity-Verlet29 MD integrator propagates a phase point

x(t) = (r(t), v(t)) deterministically to a next phase point x(t+ Δt) = (r(t + Δt), v(t + Δt)). The integrator is most conveniently
expressed via “intermediate velocities” at t + Δt/2,

v(t + Δt/2) = v(t) + f (t)Δt/(2m),
r(t + Δt) = r(t) + v(t + Δt/2)Δt,

v(t + Δt) = v(t + Δt/2) + f (t + Δt)Δt/(2m), (32)

where m is the mass and f are the forces. We used a simplified nota-
tion here, but one should realize that for an N particle system, both
r, v, and f are 3N-dimensional vectors and m is actual a 3N × 3N
diagonal mass matrix. Furthermore, the forces are determined from
the positions: f (t) = f (r(t)).

Equation (32) suggests that one MD step requires two force
evaluations, but this is not the case when the steps of Eq. (32) are
called repeatedly in a loop. After the force calculation at the third
step, required to determine v(t + Δt), the forces are stored such
that these can be used at the first step of the next cycle. With the
same reasoning, if the forces are known already at time t from its
previous step, a new force evaluation is only needed to determine
v(t + Δt), but not r(t + Δt). This means that if the order parameter
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only depends on geometry, λ = λ(r), its value at t + Δt can also be
determined without the need of doing an actual force calculation.

When testing the one-step crossing for the selected configura-
tion with randomized velocities, a new (single step) MD trajectory is
started with no information available from the previous MD step.
However, the selected configuration is also part of the previous
subpath, so the corresponding forces could have been known, in
principle. When not available, the forces can be reobtained from
the trajectory data without further electronic structure calculation in
AIMD or from the gradient of force field potential in classical MD.
In particular, let x1 = (r1, v1) and x2 = (r2, v2) be two consecutive
phase points of the latest subpath that define a crossing. This means
that x2 follows from x1 through a single MD step and both points are
at opposite sides of the interface. Therefore, both points are viable
points for shooting off the next subpath. By inverting Eq. (32), we
can derive

f1 = 2 m (r2 − r1 − Δt v1)
Δt2 , f2 = 2 m (r1 − r2 + Δt v2)

Δt2 . (33)

Hence, Eq. (33) directly provides the forces on the two potential
shooting points by reading the trajectory data from the subpath.
Given that one of these two points is selected as a shooting point
and new randomized velocities are generated, the coordinates after
one MD step can be determined without any additional force calcu-
lation but using just the first two steps of Eq. (32). Hence, the value
of the order parameter after one step can be asserted.

If the prediction suggests that a crossing might be achieved, the
MD step is completed and then the next subtrajectory is generated.
If the velocities do not lead to a crossing, a new velocity random-
ization is attempted until the crossing condition is met. As in SS,
the shooting point selection has to be maintained, and the compu-
tation of Eq. (33) only needs to be done once for the generation
of each subpath. Naturally, if the MD step integrator is more com-
plex than velocity-Verlet (due to thermostats, barostats, constraints,
and stochasticity), then the prediction becomes more difficult. The
method also works best if a MD step is computationally expen-
sive while regenerating velocities is relatively cheap. This method
is therefore more suitable for simulations with the AIMD level. The
approach has been implemented in the PyRETIS software, and it can
be directly used with the CP2K25 external MD engine. Note that the
use of the plain velocity-Verlet MD integrator is rather common in
path sampling since the generation of paths is already thermostated
via the shooting move that allows a change of energy, while the
individual paths have NVE dynamics.

B. Alternative velocity generation
The mathematically simple form of Eq. (10) is due to the

many terms conveniently canceling out. For instance, the terms in
Eq. (9), ρr(r0,3), ρr(r4,3), and ρr(r4,6) in Pgen(path(o) → path(n) via χ)
cancel out with, respectively, ρr(r3,0), ρr(r4,3), and ρr(r6,4) in
Pgen(path(n) → path(o) via χ) because rα,β = rβ,α. However, whereas
consecutive (accepted) subtrajectories share a common configura-
tion point, they do not necessarily share of common phase point as
vα,β ≠ vβ,α. Here, vα,β refers to the velocities of sβ at the configura-
tion point rα,β, and vβ,α refers to the velocities of sα at an identical

configuration point. These velocities have typically not the same ori-
entation nor amplitude. Luckily, the ρv(vα,β) terms still cancel out
via Pgen(vα,β) = ρv(vα,β) and ρ(xα,β) = ρr(rα,β)ρv(vα,β) in Eq. (8).

Now, suppose that in a N particle system not all 3N velocity
components are regenerated from a Maxwell–Boltzmann distribu-
tion, but some velocities components are kept and some others are
inverted (multiplied with −1). These two velocity groups do not can-
cel out in Eq. (8) as they are not part of Pgen, which implies that the
final results changes from P(s6)/ρr(r4,6) to P(s6)/[ρr(r4,6)ρv(u4,6)],
where u4,6 are the velocity components that are either unchanged
or inverted. Since the equilibrium velocity distribution is symmetric
ρv(v) = ρv(−v) and u4,6 is identical to u6,4 except for some compo-
nents having different sign, all the ρv(uα,β) terms cancel in the ratio,
Eq. (10), just like the ρr(rα,β) terms.

This allows for different strategies. For instance, if the dynam-
ics is stochastic, all velocities can simply be inverted. This option was
used for WT in Ref. 17. Inverting the velocities of specific atoms or
molecules whose coordinates determine the order parameter could
also be effective. The other velocities could be either kept unchanged,
randomized, or a combination. For instance, in protein folding, sim-
ulations inverting the velocities of all protein atoms while leaving the
velocities of the solvent molecules (partly) unchanged would make
the sampling less diffusive. Reinspection of Eq. (32) shows that the
coordinates of the atoms with the inverted velocities are mapped
exactly back after 1 MD step to the previous coordinates regardless
of the velocities of the other atoms. As a result, the one-step crossing
condition is automatically fulfilled.

This approach requires, however, a single MD step resolution at
the interface crossing. In large molecular systems, it is not desirable
to save trajectory coordinates every MD step as it could overwhelm
hard disk capacity and will result in a loss of effective CPU efficiency
due to the time that is spent writing to disk. An adaptive scheme
could be adopted when the frequency of order parameter determi-
nation and the data retention is intensified whenever the system
approaches an interface. Since trajectories can later be swapped in
a replica exchange move, this adaptive approach would have to be
carried out for all interfaces or, at least, in the proximity of neigh-
boring interfaces. The latter choice might still lead to path ensembles
receiving a trajectory missing the right resolution at the relevant
interface. That part of the trajectory would then have to be rein-
tegrated by MD. While all these issues can be solved in theory, it
puts quite some challenges to the implementation. Moreover, if the
integrator is not deterministic but involves a thermostat or barostat,
the one-step crossing might still not be guaranteed. Several veloc-
ity generation steps might still be needed. These challenges lead us
to derive the WF move that straightforwardly can be implemented
in present path sampling codes, such as OpenPathSampling18,19 and
PyRETIS,20,21 with, potentially, any MD engine.

VII. WIRE FENCING

Compared to the SS and WT moves, the shooting point selec-
tion of the WF move is constructed to avoid the one-step crossing
issue altogether. Instead of restricting the shooting point to sets of
crossing points at an interface, WF allows any phase point between
the path ensemble’s specific ensemble interface, λi, and interface λB
to be picked. To increase the efficiency of the WF move in systems
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with asymmetric free energy barriers (see Fig. 3), the selection range
and the boundaries of the subtrajectories can be changed by replac-
ing λB with a user-defined cap-interface, λcap with λi < λcap ≤ λB
value.

The presence of a relatively flat downhill region after the
barrier’s maximum and before a stable product state implies that
transition paths can become very long. If accepted, the paths will
have a large fraction of points at the right side of the free energy
barrier from which shooting has a very high chance to generate a
failed λB → λB trajectory. This problem was also addressed by the
spring-shooting method.43

In an AIMD level simulation of aqueous silicate condensa-
tion,44 this issue was solved by defining λB in the RETIS algorithm
at the position of λcap in the figure. After the simulation was com-
pleted, all paths reaching λB were extended in a straightforward
MD simulation. The introduction of the λcap interface makes these
post-simulation MD extensions redundant.

We will first outline the WF algorithm without a cap-interface
(or λcap = λB) using the high-acceptance protocol. The introduction
of λcap only requires a few modifications that we discuss afterward.

1. From the old path, count the number of frames M(o)λi
between

λi and λB. If M(o)λi
= 0, we immediately reject the full MC move.

Otherwise, continue with the next step.
2. Subdivide the M(o)λi

points into groups where each group are
the points lying on a segment connecting λi with λB or a
segment connecting λi with itself.

3. Select one segment as s0 based on a weighted random selec-
tion such that each segment has a chance to be selected
proportional to the number of points it has.

4. Set two counters ns and na equal to zero: ns = na = 0. Then,
start the following loop: steps 5–12.

5. Select at random one of the configuration points of the last
subpath, sns , as the new shooting point.

6. Generate random velocities from a Maxwell–Boltzmann
distribution.

FIG. 3. Illustration of an asymmetric barrier where the placement of a cap-interface,
λcap, in WF can avoid the generation of long subtrajectories and too many shooting
points being in the basin of attraction of state B.

7. Starting from the configuration point with the new velocities,
apply the MD integrator to go backward and forward in time
until λi or λB is crossed.

8. Increase the ns counter by one: ns = ns + 1.
9. If both time-directions crosses λB, the trial subpath is rejected.

In that case, the previous successful subpath is kept, sns = sns−1.
Go to step 12. Otherwise, continue with the next step.

10. Increase the na counter by one: na = na + 1.
11. Accept the trial subpath such that it becomes sns .
12. If ns < Ns, go to step 5. Otherwise, continue with next step.
13. If no accepted subpaths have been generated, na = 0, stop and

reject the move. Otherwise, continue with the next step.
14. Extend the last subpath sNs in both time-directions with

MD until λA or λB is hit. If the path ends at λB at both
time-directions, the whole MC move is rejected. Otherwise,
continue to the next step.

15. If the path is λB → λA, reverse the time-direction of the path.
16. Now, a new full path has successfully been established. Let q(n)

be 2 if it is a λA → λB path. Otherwise, it is 1. Let M(n)λi
be the

number of frames between λi and λB. The weight-factor of the
path is w(n) = q(n)M(n)λi

that is needed for computing proper
path ensemble averages, Eq. (30), and for a possible swap move
via Eq. (31).

The scenario of the potential rejection at step 1 is shown in
Fig. 4(a), which can occur due to a jumpy character of the order
parameter.42 A typical example is nucleation where the time steps
in path sampling is usually chosen to consist of many MD steps45 for
the reason that computing order parameters for nucleation is rather
costly. As a result, occasionally the order parameter, defined by the
size of the largest cluster, can make sudden jumps such that more
than one interface is crossed in a single RETIS time step.

The path shown in Fig. 4(a) is a valid path in [i+] such that
1[i+] = 1, but wi = 0 since Mλi = 0. In a WF move, such a path has
zero probability to be generated. Yet, its contribution in Eq. (30)
to the average, if hypothetically sampled, would be w−1

i =∞, and
therefore, the sampling average becomes ill-defined. This can be
solved by not allowing w = 0 weights,

wi(path) = min[1, q(path)Mλi(path)]. (34)

FIG. 4. Illustration of the s0 selection from the old path. Selectable shooting points
are shown in green, end-points by open black circles, and all other points in red.
(a) shows the “jumpy order parameter” case that leads to an immediate rejection
as no selectable points are present. (b) and (c) show the selectable points without
and with cap-interface, respectively.
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Introducing this small modification of Eq. (28) solves the “division
by zero” problem and has further no impact of the implementation
nor on the robustness of the algorithm. The existence of jumpy tra-
jectories implies that a pure WF simulation is no longer ergodic. A
path like the one in Fig. 4(a) can never be made from a WF move,
and vice versa, it cannot be destroyed by the WF move if it is fed as
the initial path to the algorithm. However, the full sampling remains
ergodic due to the replica exchange moves.

Step 2 is further illustrated in Fig. 4(b). We can identify two
groups of selectable shooting points (in green), one group of seven
points lying on a λi → λi segment and one group of nine points on
a λi → λB segment. Hence, these segments are selected as s0 with a
7/16 and 9/16 probability, respectively. In the next step, the points
of the selected segment have an equal probability to be selected for
the first shooting.

Despite that all the green points have the same 1/16 probability
to be selected for shooting off the first subpath, the two-step selec-
tion process is needed to fix s0. With a single step selection, it could
be possible to first obtain a failed trial path t1 that starts from a
point at the first group, followed by a successful subtrajectory that
is launched from a point of the second group. This will break the
superdetailed balance as it would not be possible to generate t1 from
s0 in the reverse path [see the example construction paths in Eqs. (2)
and (3)].

The introduction of the cap-interface changes the initial s0

selection, as is shown in Fig. 4(c), where, for the same path as panel
(b), there are now three groups of two points that can be chosen.
Note that not all the points between λi and λcap are selectable as the
points on a λcap → λcap segment should be excluded. The algorithm
is further identical as described above with λcap instead of λB in the
main loop (steps 5–12). Outside the main loop (step 13–15), λB is not
replaced by λcap since the final extension always shall reach the A or
B states. In the final step (16), M(n)λi

is replaced with the number of
frames between λi and λcap excluding those on λcap → λcap segments.

VIII. NUMERICAL RESULTS

We tested the WF algorithm on three model systems: a sim-
ple one-dimensional system for which we can perform full RETIS
simulations with high convergence and two challenging complex
systems based on classical MD and AIMD, where our analysis is
more qualitative based on a single path ensemble simulation. The
one-dimensional system describes a single particle in a double-
well potential that is moving following the underdamped Langevin
equation as previously described in Ref. 33. The purpose of these
simulations is to show numerically that the WF method leads indeed
to exact results. In addition, due to the high degree of convergence
that can be reached, we also draw some conclusions on the effi-
ciency compared to standard shooting. However, it should be taken
into account that a larger boost factor is expected for more complex
high-dimensional systems.

The other two systems are part of ongoing projects on which
we plan to report extensively in later publications. The classical
MD system describes the thin film breakage in oil–water mixtures
based on the studies Refs. 46–49. The system size of this simulation
is over 100 000 atoms, making the one-step crossing impractica-
ble as it requires a stop/restart at every MD step. Instead, in our

single path ensemble simulation, the coordinates were recorded
every 50 MD steps. The AIMD system describes the electron trans-
fer between ruthenium ions in a redox reaction taking place in
liquid water. To determine the relative position of the moving elec-
tron, the Kohn–Sham orbitals are projected on maximally localized
Wannier Functions50 whose centers can be viewed as “electron
positions.” This implies that in order to compute the order para-
meter from a configuration point, a full electronic structure calcula-
tion is required. A cheap prediction scheme as described in Sec. VI
is therefore not suitable. For both systems, we show the usefulness of
the cap-interface in practical simulations.

A. Double-well 1D barrier
Despite the model’s simplicity, several popular rare event sim-

ulation methods, such as forward flux sampling (FFS)51,52 and other
splitting based methods,53–55 have shown that they can easily fall into
a kind of sampling trap when applied to this system, yielding a too
low rate and non-time-symmetric transition paths.33

The double-well barrier system consists of a one-dimensional
particle moving in the following potential:33

V(z) = z4 − 2z2, (35)

with underdamped Langevin dynamics. In reduced units, the Boltz-
mann constant and mass are set to unity, kB = m = 1, while the
temperature and friction coefficient are set equal to T = 0.07 and
γ = 0.3. The equations of motion are propagated using an MD time
step equal to dt = 0.025. In a straightforward MD run, the particle
will mostly oscillate within one of the potential minima at z = −1 and
z = 1 but also (very) infrequently cross the transition state at z = 0.
During the oscillatory movement, the total energy of the particle will
fluctuate by the random force of the Langevin dynamics. As a result,
the system is effectively two-dimensional in phase space where the
velocity can be considered as an orthogonal degree of freedom. The
reason that FFS and other splitting type methods underestimate the
crossing rate is due to an insufficient sampling of the tail in the veloc-
ity distribution.33 Path sampling methods, such as RETIS, which are
based on both forward and backward in time propagation, do not
have this issue.

We defined eight RETIS interfaces: λA = λ0 = −0.99, λ1 = −0.8,
λ2 = −0.7, λ3 = −0.6, λ4 = −0.5, λ5 = −0.4, λ6 = −0.3, and λB = λ7= 1.0 and ran four RETIS simulations using the PyRETIS code20,21

consisting of 200 000 cycles. In all simulations (Shooting, WF,
WF∗, and WF-cap), each path ensemble either employs only shoot-
ing or only WF as the main MC move in addition to replica
exchange moves. In the simulation “Shooting,” all path ensem-
bles employ the shooting move. In the other simulations, the
WF move is used for most path ensembles. However, simulation
WF∗ uses normal shooting in the [0−] ensemble, while simula-
tions WF and WF-cap use the shooting move in both the [0−]
and [0+] ensemble as was suggested in Sec. III. The WF-cap sim-
ulation uses a cap-interface at λcap = 0.1. At each cycle, all path
ensembles are updated with an ensemble move (shooting or WF)
or with replica exchange moves with a 50%–50% probability. In
case that a replica exchange move is selected, another 50%–50%
probability determines whether the [0−]↔ [0+], [1+]↔ [2+],
. . ., [5+]↔ [6+] swaps will be attempted or the [0+]↔ [1+],[2+]↔ [3+], . . ., [4+]↔ [5+] swaps. In the latter case, the [0−] and
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[6+] ensembles simply duplicate the previous path (null move). In
the WF simulations, the number of subpaths was arbitrarily set equal
to Ns = 6 for all path ensembles.

The results are shown in Fig. 5 and in Table I where they are
compared with Kramers’ theory,56 which, for this system, can be
considered as a nearly exact reference. Figure 5 shows that the WF
based simulations rapidly converge close to the Kramers’ value of
the rate, confirming the exactness of the superdetailed balance rela-
tions and the correct implementation in the PyRETIS code. The
results based on shooting are further off but have a significantly
lower computational cost per RETIS cycle (see Table I).

Based on the relative errors from the block averaging analysis
and the cost per cycle, we can compute the CPU efficiency time for
each method, shown in the last column. Based on these numbers, we
can see that the WF, WF∗ and WF-cap simulations are 2.5, 2.4, and
2.7 times more efficient than the simulation in which all path ensem-
bles use the standard shooting move as their main MC move. Note

FIG. 5. Total running average of the computed rate as function of RETIS cycles.

TABLE I. Simulation data for the double-well 1D barrier system. The cost column
describes the total number of calculated MD steps. The errors are based on block
averaging using single standard deviations. The final column shows the CPU effi-
ciency times37 corresponding to the number of required MD steps for obtaining a
relative error equal to 1. Simulation “Shooting” uses the standard shooting move as
the main MC move in all path ensembles. The other simulations use the WF move in
all ensembles except for [0−] (WF, WF∗, and WF-cap) and [0+] (WF and WF-cap).
WF-cap uses a cap-interface at λcap = 0.1.

Simulation Rate/10−7 ϵr (%) Cost/107 Cost⋅ϵ2
r /1011

Shooting 2.30 6.46 5.32 222.0
WF 2.69 2.28 16.98 88.3
WF∗ 2.58 2.19 19.56 93.9
WF-cap 2.54 2.29 15.72 82.4
Kramers 2.58

that an improvement of more than a factor 2 is rather remarkable,
given the low dimensionality of the system.

In Table II, we further examine the acceptance probabilities of
the different moves. It is apparent that in all simulations, the main
MC move has a nearly 100% acceptance in the path ensembles where
the WF move is employed, thanks to the high-acceptance proto-
col. The acceptance is marginally lower at the last path ensembles[5+] and [6+] from which there is a higher probability to gener-
ate λB → λB paths. The shooting move has a lower acceptance but
has the advantage that all swapping moves with the [0−] ensemble
are accepted if shooting is the main move in both [0−] and [0+].
Since [0−] can only swap with [0+], these are the computationally
expensive [0−]↔ [0+] swaps.

The other swapping moves are inexpensive as they do not
require any MD steps. Therefore, an anticipated lower acceptance
for these swapping moves in the WF simulations would not be dra-
matic. However, even this is not always the case. At first sight, this
appears counter-intuitive. Given a pair of paths in two neighbor-
ing ensembles, the standard swap should always have an acceptance
probability that is equal to or higher than the acceptance based
on Eq. (31). However, this effect can be canceled by the path dis-
tributions not being the same. Since the altered path distribution
in the high-acceptance scheme, Eq. (28), overrepresents paths with
many points between λi and λB or λcap, the [i+] path ensemble is
likely to contain a higher fraction of paths crossing λi+1. From the
data of Table II, this seems indeed the case in the majority of path
ensembles.

B. Thin film breakage
A system of 1100 dodecane molecules layered on a slab of

23 936 water molecules is studied in the NPT ensemble via full atom
TIS simulations using the GROMACS 2020.1 simulation package22

as the external engine. The dodecane molecules are simulated
according to the OPLS-AA force field57 and the water molecules with
the TIP4p/2005 model.58 The preparation of the initial equilibrated
system is explained in detail by Ref. 46. The temperature is set to
300 K and is controlled with a velocity rescaling method,59 employ-
ing a coupling time of 0.1 ps. Pressure is controlled by the Berendsen
barostat, and its normal component is maintained constant at 1 bar,

TABLE II. Acceptance ratio (%). Simulation “Shooting” uses the standard shooting
move as main MC move in all path ensembles. The other simulations use the WF
move in all ensembles except for [0−] (WF, WF∗, and WF-cap) and [0+] (WF and
WF-cap).

Shooting WF WF∗ WF-cap

Ens. Main Swap Main Swap Main Swap Main Swap

[0−] 84.6 100.0 84.3 100.0 84.5 83.9 84.3 100.0[0+] 84.2 57.8 84.0 55.6 100.0 49.0 84.0 55.8[1+] 48.8 15.5 100.0 16.3 100.0 17.9 100.0 16.8[2+] 37.8 13.4 100.0 19.9 100.0 19.7 100.0 20.2[3+] 32.2 11.5 100.0 18.5 100.0 18.0 100.0 18.4[4+] 30.1 12.2 100.0 20.6 100.0 20.3 100.0 20.4[5+] 30.0 14.7 99.8 28.2 99.9 28.3 100.0 26.6[6+] 29.1 16.7 99.2 33.9 99.2 34.2 100.0 30.8
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with a time constant of 1.0 ps and a compressibility coefficient of
4.7 ⋅ 10−5 bar−1. The velocity-Verlet algorithm is used to solve the
Newton equations of motion with a timestep of 0.002 ps. Periodic
boundary conditions are applied in all directions, with the z direc-
tion being perpendicular to the 2D film. The box size is set to equal
a box size of 15 × 15 × 5.1983 nm3.

The order parameter of the system is calculated by discretiz-
ing the system into 85 × 85 tiles in the x and y direction such that
the order parameter value becomes the number of empty dode-
cane tiles that also have empty neighbors in the x and y direction.
Such a definition provides a way to measure the presence of low-
density regions, in addition to any breakage or “hole” formation
that occurs within a trajectory. The sensitivity of the order para-
meter is determined by the specified discretizing size. In our case, the
order parameter values fluctuated between 0 and 5 during an equi-
librium run at T = 300 K. Based on this, we set λA = 5. We further
defined λB = 100 as preliminary analysis showed that from this point
on the hole tends to grow further with a negligible chance to close
again.

To obtain an initial reactive trajectory, we ran an equilibrium
run at T = 375 K until the thin film broke down. For our single path
ensemble analysis, we further defined λi = 10.0 as the interface that
has to be crossed. In addition, we set the cap-interface λcap = 15.0.
We then created 1000 trajectories using standard shooting and WF
with Ns = 10. Three exemplary trajectories from the WF simulation
are shown in Fig. 6(a).

From the sample size of 1000 MC moves, the acceptance in WF
was equal to 73.4% and 35.0% for standard shooting. The limited
sample size prohibits accurate CPU efficiency analysis, but a qualita-
tive assertion of the sampling effectivity can be obtained by viewing
the simulated path lengths as function of the MC step.

Figure 7(a) shows that the WF sampling has much more fre-
quent transitions between long and short paths, whereas shooting
is mostly stuck in the short path domain. Once the shooting move
manages to produce a long path, the path remains in the MC chain
due to a long series of rejections (e.g., around step 500 where the
same path length remains for a number of steps due to rejections).
This indicates that the shooting move is struggling to properly sam-
ple path space. Even if the acceptance is not extremely low for the
short paths, it fails to make regular switches to the longer paths.
Moreover, if a long path is generated, the subsequent moves are
likely rejected such that other longer paths are not likely found.

C. Ruthenium–ruthenium self-exchange reaction
We studied the self-exchange reaction between two ruthe-

nium ions in aqueous solution described by the following chemical
reaction:

Ru2+ + Ru3+ → Ru3+ + Ru2+. (36)

The simulation system consisted of two ruthenium ions, 63 H2O
molecules and one OH− ion. The dynamics were propagated using
NVE velocity-Verlet and the CP2K25 simulation package. The effect
of temperature was introduced via the randomization of velocities
from a Maxwell–Boltzmann distribution at a temperature of 300 K.
We used a time step of 0.5 fs, and periodic boundary conditions
were applied to a cubic box with an edge length of 12.4138 Å.

FIG. 6. Exemplary trajectories from the WF algorithm in the [i+] path ensemble
showing the progress of the order parameter vs time. The stable state interfaces
λA, λB, the cap-interface λcap, and the ensemble interface λi are shown as well.
The two different panels represent the (a) classical MD level simulation of the thin
film breakage and (b) the AIMD level simulations of the ruthenium self-exchange
reaction.

Further simulation details on functional and basis sets are explained
in Ref. 60.

To monitor the reaction progress, the electron transfer has been
“followed” by transforming the occupied Kohn–Sham orbitals61 into
maximally localized Wannier functions (MLWFs)50 and comput-
ing the distance between the center of these localized functions (X)
describing the moving electron to each of the ruthenium ions. The
order parameter of the system is then defined as

λ = (dRu−X − dRu′−X)
dRu−Ru′

, (37)

where dRu−X is the distance between X and the initial ruthenium
electron donor, dRu′−X is the distance between X and the initial
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FIG. 7. Path length vs MC move for WF and standard shooting for (a) classical MD
system of thin film breakage and (b) AIMD system of the ruthenium self-exchange
reaction.

ruthenium electron acceptor, and dRu−Ru′ is the distance between
the two ruthenium ions in the system. In this formulation, λ = −1
and λ = +1 define the reactant state and product state, respectively.
Ru2+/Ru3+ have 5/6 d-electrons and H2O/OH− have eight valence
electrons. This means there are a total of 523 MLWFs in the system.
The order parameter, Eq. (37), requires the location X of the trans-
ferring electron, which is one of the centers of these 523 MLWFs. To
identify which is X, each Wannier center is linked to either a ruthe-
nium or oxygen atom that is closest. Then, if one ruthenium ion has
six associated MLWFs, X is set to be the one that is the farthest away
from this ruthenium ion. In the case that both ruthenium ions have
five associated MLWFs, one of the oxygens has an excess MLWF (9
instead of 8), and the center that is farthest away from this oxygen is
set as X.

To qualitatively compare standard shooting and WF for this
system, we run two single path ensemble simulations represent-
ing [i+] with λi = −0.736, λA = −0.99, and λB = +0.99. The value for
λi = −0.736 was chosen from preliminary runs where we aimed for a
20% probability that a path ends up at state B. In the WF simulation,

an additional λcap = +0.95 was set to avoid λB → λB rejections due to
the selection of shooting points lying within the basin of attraction of
state B. Here, we only applied a rather modest number of subtrajec-
tories Ns = 2. Higher performances might be obtained with a larger
number of subpaths. Exemplary trajectories of the WF simulation
are shown in Fig. 6(b).

Due to the relatively low value of Ns, the subpath contribu-
tion to the total WF computational cost is only 15%. The acceptance
probability increased from the shooting move’s 48% to WF’s 96%.
Similar to the classical MD system, the WF simulation seems to show
a better sample exploration when we look at the path length as func-
tion of the MC step [Fig. 7(b)]. The standard shooting algorithm
seems not to be able to produce any paths larger than 300 fs. The WF
algorithm, however, started with a short initial path but was able to
quickly move up to the 600 fs range and making regular transitions
between the shorter and longer paths. Hence, also here, the sampling
quality of the WF algorithm appears substantially superior to the one
of standard shooting.

IX. CONCLUDING REMARKS

We reviewed the recently developed subtrajectory moves stone
skipping (SS) and web throwing (WT) and added a new member
to this group: wire fencing (WF). These moves are more efficient
than the standard shooting move, which has been the main MC
move for path sampling simulations during the last two decades.
The subtrajectory moves proceed from a complete old path to a
complete new path via a series of intermediate short paths (sub-
paths/subtrajectories). While this increases the average cost of a
MC step, the correlations between paths are substantially reduced
leading to a lower statistical inefficiency. The use of shorter paths
resembles approximate path sampling methods, such as PPTIS or
milestoning. However, the subtrajectory moves are still exact like
standard shooting as they are based on mathematically rigorous
superdetailed balance relations. The approach is preferably com-
bined with a high-acceptance protocol in which the sampling distri-
bution of the paths is adjusted in order to maximize the acceptance
of newly generated trajectories. The effect of the biased distribu-
tion is undone in the post-simulation analysis using appropriate
reweighting. The SS and WT move, however, require a one-step
crossing condition, which complicates their implementation, and we
discussed several solutions for this issue. The new WF does not rely
on the one-step crossing condition and is, therefore, the most prac-
tical solution to the aforementioned problem even if it is slightly
more wasteful than SS and WT. The WF move is, in particular,
useful when the path sampling code uses an external MD engine
and/or when the computation of the order parameter is costly. We
showed the exactness and the efficiency gain of the WF approach
in a RETIS simulation where the transition rate of an underdamped
Langevin particle in a double-well potential has been computed and
compared with the analytical Kramers’ expression. Thereafter, we
showed qualitatively how the WF move performs in a classical MD
system, describing the thin film breaking process, and in an AIMD
level system, describing an electron transfer process between ruthe-
nium ions in aqueous solution. In both cases, the WF move seems
to allow a faster sampling through path space than standard shoot-
ing, which was concluded from the rapid switches that WF made
between the shorter and longer paths.
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APPENDIX: ANALYTICAL EXPRESSIONS FOR THE
STATISTICAL INEFFICIENCY IN MODEL SYSTEMS

Section IV introduces a model where at each MC move j, there
is a chance of πR that the state of the system remains essentially
unchanged and a chance of πM = 1 − πR to “throw a dice.” The latter
implies that at step j, the output value of hj equals 1 with a probability
p and 0 with a probability 1 − p. Let us consider the conditional
probability that hj = 0, given that h0 = 0: P(hj = 0∣h0 = 0). We can
distinguish two scenarios. Scenario 1 relates to the case that all j
moves implied a “remain,” and therefore, hj = h0 = 0. Scenario 2 is
related to the situation that at least once the dice was thrown. In this
scenario, we have that hj is either 1 or 0 with respective probabilities
p and 1 − p. The probability of having scenario 1 equals πj

R and that
of scenario 2 equals 1 − πj

R. Therefore,

P(hj = 0∣h0 = 0) = πj
R + (1 − πj

R)(1 − p)
= (1 − p) + pπj

R. (A1)

Likewise, we can derive all the other conditional probabilities,

P(hj = 1∣h0 = 0) = (1 − πj
R)p = p − pπj

R,

P(hj = 0∣h0 = 1) = (1 − πj
R)(1 − p) = (1 − p) + (1 − p)πj

R,

P(hj = 1∣h0 = 1) = πj
R + (1 − πj

R)p = p + (1 − p)πj
R.

(A2)

Let us call pkl = P(hj = k ∧ h0 = l) = P(hj = k∣h0 = l)P(h0 = l). From
Eqs. (A1) and (A2), we can derive

p00 = (1 − p)2 + p(1 − p)πj
R,

p10 = p(1 − p) − p(1 − p)πj
R = p01,

p11 = p2 + p(1 − p)πj
R,

(A3)

and from this, we can compute

⟨(h0 − p)(hj − p)⟩ = p00p2 − p10(1 − p)p
− p01(1 − p)p + p11(1 − p)2. (A4)

In the above expression, all the πR-independent terms cancel. This is
expected since we know the result equals 0 if πR = 0. The remaining
πR-dependent terms sum up to

p(1 − p)πj
R[p2 + 2p(1 − p) + (1 − p)2]

= p(1 − p)πj
R[p + (1 − p)]2 = p(1 − p)πj

R. (A5)

From Eqs. (16), (17), and (A5), we derive that

C( j) = πj
R ⇒ nc = πR

1 − πR
, (A6)

and via Eq. (15),

N = 1 + 2
πR

1 − πR
= 1 + πR

1 − πR
. (A7)

As πM = 1 − πR, (A7) is equivalent to Eq. (19) of Sec. IV.
In the second model, we assume πR = 0, but there are two

phases x = α, β that have, respectively, probabilities Pα and Pβ and
local crossing probabilities pα and pβ. Let πρ = 1 − πμ be the prob-
ability that the MC maintains the previous phase. The inverse
probability πμ implies throwing the dice to determine the phase
x such that the selection probability for x corresponds to Pα and
Pβ = 1 − Pα. After the phase x is set, hj will be set to 1 or 0 with
respective probabilities px and (1 − px). Given that the phase of
the first sample equals x0 = x, the chance that the jth sample has
the same or opposite phase equals, respectively, πj

ρ + (1 − πj
ρ)Px

and (1 − πj
ρ)(1 − Px). This leads to the following conditional

probabilities akin Eqs. (A1) and (A2),

P(hj = 0∣x0 = x) = πj
ρ(1 − px) + (1 − πj

ρ)(1 − p)
= πj

ρ(p − px) + (1 − p)
= πj

ρPy(py − px) + (1 − p),
P(hj = 1∣x0 = x) = πj

ρpx + (1 − πj
ρ)p

= πj
ρ(px − p) + p

= πj
ρPy(px − py) + p, (A8)

where y ∈ (α, β) and y ≠ x. Hence, analogous to Eq. (A3),

pk0 = ∑
x=α,β

Px(1 − px)P(hj = k∣x0 = x),
pk1 = ∑

x=α,β
PxpxP(hj = k∣x0 = x), (A9)
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which leads to

p00 = (1 − p)2 + πj
ρ∑

x
PxPy(1 − px)(py − px)

= (1 − p)2 + πj
ρPαPβ(pα − pβ)2,

p10 = p(1 − p) + πj
ρ∑

x
PxPy(1 − px)(px − py)

= p(1 − p) − πj
ρPαPβ(pα − pβ)2 = p01,

p11 = p2 + πj
ρ∑

x
PxPypx(px − py)

= p2 + πj
ρPαPβ(pα − pβ)2. (A10)

Analogous to Eqs. (A4) and (A5), we find that

⟨(h0 − p)(hj − p)⟩ = πj
ρPαPβ(pα − pβ)2, (A11)

and like Eq. (A6),

C( j) = PαPβ(pα − pβ)2

p(1 − p) πj
ρ = Ksπj

ρ

⇒ nc = Ks
πρ

1 − πρ
= Ks

1 − πμ

πμ
, (A12)

where we used πμ = 1 − πρ and Eq. (21). Substitution of Eq. (A12) in
Eq. (15) leads to Eq. (20).
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Highly parallelizable path sampling with minimal rejections
using asynchronous replica exchange and infinite swaps
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Capturing rare yet pivotal events poses a significant challenge for molecular simulations.
Path sampling provides a unique approach to tackle this issue without altering the
potential energy landscape or dynamics, enabling recovery of both thermodynamic
and kinetic information. However, despite its exponential acceleration compared to
standard molecular dynamics, generating numerous trajectories can still require a long
time. By harnessing our recent algorithmic innovations—particularly subtrajectory
moves with high acceptance, coupled with asynchronous replica exchange featuring
infinite swaps—we establish a highly parallelizable and rapidly converging path
sampling protocol, compatible with diverse high-performance computing architectures.
We demonstrate our approach on the liquid–vapor phase transition in superheated
water, the unfolding of the chignolin protein, and water dissociation. The latter,
performed at the ab initio level, achieves comparable statistical accuracy within days,
in contrast to a previous study requiring over a year.

rare events | path sampling | asynchronous replica exchange | infinite swapping |Markov-chain Monte Carlo
The capacity to rapidly and accurately simulate molecular transition phenomena holds
the potential to significantly enhance chemical discoveries, thereby advancing catalytic
processes (1), optimizing drug molecule design (2), and guiding self-assembly for various
applications, such as organic photovoltaics (3). However, dynamic processes like chemical
reactions, nucleation, or protein (un)folding usually hinge on rare molecular events,
rendering direct molecular dynamics (MD) simulations ineffective (4). A way to bridge
the time gap is to use rare event sampling techniques like the Markov chain Monte Carlo
(MC)-based transition path sampling (TPS) method, which involves the collection of
numerous short MD trajectories (5).

Transition interface sampling (TIS) (6) and, even more efficiently, replica exchange
TIS (RETIS) (7) build upon this idea to calculate quantitative dynamical properties
through a series of path sampling simulations, each targeting a distinct path ensemble
reflecting different stages of the transition. Each trajectory evolves on the true potential
energy surface, and the sampling of trajectories follows the same distributions as what
would result if the relevant trajectories were extracted from a hypothetically long MD
run. Yet, the distinctive feature of path sampling simulations lies in their computational
emphasis on actual barrier-crossing events, which stands in contrast to plain MD where
the computational effort is primarily directed toward explorations within stable states.
Despite exponential speedup compared to direct MD, the study of complex systems
can still require months of simulation time due to the necessity of generating numerous
trajectories for achieving the required statistical precision.

In this paper, we leverage recent algorithmic innovations that achieve such results in a
matter of days or weeks. This transformative progress is driven by harnessing four recent
algorithmic innovations delineated in refs. 8 and 9. Initially, we improve the core MC
path generation move, opting for a sequence of intermediate short subtrajectories, yielding
enhanced decorrelation from the preceding trajectory upon acceptance. Subsequently,
by slightly adjusting the sampling distribution and compensating through reweighting,
we maximize the acceptance. Third, the integration of an asynchronous replica exchange
scheme facilitates seamless swapping between path ensemble simulations, tackling the
challenge of RETIS parallelization attributed to varying central processing unit (CPU)
costs in path-generating MC moves. Last, we amplify the impact of computationally
efficient replica exchange moves through the embrace of the infinite swapping limit (10),
all while circumventing the need for combinatorially explosive computations.

While the mathematical proofs establishing the exactness of these algorithms were
published in refs. 8 and 9, this article demonstrates their first implementation and
efficient management of numerous realistic molecular processes in parallel, leveraging
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both classical and ab initio dynamics on high-performance
computing (HPC) systems. Notably, the article showcases a large-
scale simulation utilizing 40 graphics processing units (GPUs)
in parallel— overcoming the challenge of effectively utilizing
multiple GPUs for parallel molecular simulations.

Results
Path Sampling and RETIS Path Ensembles. MC techniques are
valuable in various fields like statistical physics, finance, and
artificial intelligence, where the common goal is to sample states
following specific probability distributions. Within molecular
simulations, MC is generally used to sample configuration space
following the Boltzmann distribution. By an original insight
from Pratt (11), the concept emerged that MC sampling could
be applied to target the sampling of dynamic trajectories. In
this framework, a trajectory referred to as X is depicted as
a discrete sequence of phase points, called time slices X =
[x0, x1, . . . xL]. Each time slice xi encapsulates the coordinates
and velocities of atoms at a specific time t = iΔt. Here,
L denotes the trajectory’s length, and Δt represents a small
time step. The path probability distribution equals �(X ) ∝
�(x0)p(x0 → x1)p(x1 → x2) . . . p(xL−1 → xL), where �(x0)
is the equilibrium (Boltzmann) distribution of the first phase
point and p(x→ y) is the probability that the system’s dynamics
produces y after a Δt time step from x.

Applying this within an MC algorithm does not yet yield
advantages over MD. However, the approach enables focusing
on specific path ensembles defined by initial and terminal
conditions, and/or reaction progress through sampling from a
truncated distribution �E(X ) = �(X ) · 1E(X ), where 1E(X )
equals 1 if the path adheres to the ensemble E conditions, and
0 otherwise. To obtain dynamical quantitative results such as
rates, a series of overlapping path ensemble simulations is needed.
The RETIS ensembles possess both initial and final conditions,
as well as a minimum progress requirement, that is gauged
through a series of nonintersecting interfaces: �0, �1, . . . , �n
(Fig. 1A). These interfaces are hypersurfaces within phase space,
often characterized by an order parameter �(x) that assigns a
progress value to the reaction. The ith interface corresponds to
the collection of phase points {x|�(x) = �i}. The first and last
interfaces define the reactant state A, {x|�(x) < �A = �0},
and the product state B, {x|�(x) > �B = �n}, respectively. The
RETIS path ensemble [i+] encompasses all paths that commence
by crossing �A toward the barrier region and conclude by either
re-entering A or entering B. Moreover, each path within the
ensemble is required to cross �i. This implies that the value of
L is not fixed but varies for each path and the average path
length typically increases with i. Alongside the [i+] ensembles,
there exists an additional [0−] ensemble that explores the internal
realm of state A (Fig. 1B).

Subtrajectory Moves. The primary MC move for generating
paths has been the shooting move (12). It evolves by modifying
the velocities of a random time slice of the old path, which
is then propagated forward and backward in time using the
MD time step integrator. Fine-tuning the shooting move
necessitates a delicate balance between maximizing decorrelation
and maintaining a satisfactory acceptance. When the adjustment
to the shooting point is minimal, the resulting path often
closely resembles its predecessor. Although this enhances the
chance of the trial path being valid for the considered path
ensemble, the substantial correlation among sampled paths

necessitates a large number of trajectories to achieve low statistical
errors. In subtrajectory moves, the creation of complete trial
trajectories involves preceding them with several intermediate
short subtrajectories. This ensures that successive accepted full
trajectories do not share any configuration points and exhibit
a greater degree of distinctiveness compared to shooting. The
subtrajectories are only part of the inner workings of the MC
move and are not stored or used for statistical analysis.

The initial subtrajectory moves (13) encountered certain
implementation challenges which led to the development of the
more flexible wire-fencing (WF) (8). The WF move involves
a parameter Ns, representing the number of subtrajectories,
and potentially a cap interface (Fig. 1C ). Within the ensemble
[i+], the WF move entails releasing a sequence of Ns short
subtrajectories with termination criteria at �i or �cap (or �n if
no cap is set). The first subtrajectory originates from a time slice
of the previous full path with randomized Maxwell–Boltzmann
velocities. Subsequent subtrajectories are generated from the
previous successful subtrajectory until Ns attempts have been
made. A subtrajectory ending at �cap in both time directions is
classified as unsuccessful. After the completion ofNs subtrajectory
trials, the last successful subtrajectory is integrated forward and
backward in time until reaching either �0 or �n, resulting in
the formation of a new full trajectory. Based on a Metropolis–
Hastings acceptance/rejection scheme (14, 15), this new path can
be accepted with a probability equal to

Pacc = 1[i+](X
(n))×min

[
1,

M�i(X (o))

M�i(X (n))

]
, [1]

where X (o) and X (n) are, respectively, the old and new paths, and
M�i(X ) is the number of possible shooting points for releasing a
first subtrajectory from X . It was found that subtrajectory moves
(with high acceptance) have the potential to improve RETIS’
CPU efficiency by a factor of twelve compared to shooting (13).

High Acceptance. The high acceptance technique represents
a significant enhancement for advanced shooting moves by
introducing two algorithmic modifications: i) Reverse the time
direction of the full trial path if it starts at �n and ends at �0
(Fig. 1C ). ii) Modify the targeted sampling distribution from
�[i+](X ) to �̃[i+](X ) = �[i+](X ) · wi(X ), where wi(X ) denotes
the high-acceptance weight defined as:

wi(X ) = M�i(X )q(X ) with [2]

q(X ) =
{

1 if X is of the type �0 → �0
2 if X is of the type �0 → �n

.

These two actions culminate in the outcome that nearly all
trajectories become viable for acceptance as Pacc of Eq. 1 becomes
identical to the indicator function, Pacc = 1[i+](X (n)), which is
always 1 for any trial trajectory within this scheme except for
those ending at �n in both time directions. That chance is mostly
negligible for all [i+] path ensembles except where �i is near
the peak of the barrier or beyond. The only other reason for a
rejection is when all Ns subtrajectories reach the cap-interface
in both temporal directions. In that case, the “last successful”
subtrajectory essentially comprises the path segment of the old
path from which the initial shooting occurred. Extending this
path segment likely generates a highly similar path to the old
one, leading us to reject it in our WF implementation instead of
investing CPU time in producing a significantly correlated path.

2 of 9 https://doi.org/10.1073/pnas.2318731121 pnas.org
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A

C D

B

Fig. 1. RETIS path ensembles and path sampling methodology. (A) Concept of interfaces and states based on an order parameter � (reaction coordinate). Thehorizontal axis represents an arbitrary additional order parameter. In this example, four interfaces are defined: �0, �1, �2, and �3. The first and last interfacesdefine the reactant and product states, respectively. (B) RETIS path ensembles. The minimal progress interface is highlighted in green. Two representativetrajectories are shown for each ensemble. Two trajectories in [0+] and [1+] are identical, illustrating that ensembles overlap and paths may be sampled inseveral ensembles via a swapping move. (C) Demonstration of the WF move with Ns = 6. The fourth subtrajectory is unsuccessful and subsequently dismissed.Shooting points are indicated as orange circles and additional potential shooting points on both the old (Xo) and new (Xn) paths are represented by whitecircles. Shooting from a �cap → �cap segment is disallowed. With the extension of the last subtrajectory, a time direction is randomly chosen, which is flippedin the high-acceptance scheme if the resulting path is of the type �B → �A. The resulting high-acceptance weights for the old and new paths are, respectively,
10 and 12, based on M�i (X(0)) = 10, q(X(0)) = 1, M�i (X(n)) = 6, and q(X(n)) = 2. (D) Time spent per ensemble per worker in an actual asynchronous replica
exchange simulation double-well system (9). Arrows denote the moments when a worker completes a path to initiate the exchange of replicas between freeensembles. Minimal computational time is consumed during this process and concludes when the worker is randomly reassigned to another (or the same)free ensemble for a new path generation move. When both [0+] and [0−] ensembles are free, a point-exchange move is also incorporated into the randomreassignment. In this move, the worker creates two new paths: one in [0+] by extending the endpoint of the [0−]-path forward in time and another in [0−] byextending the starting point of the [0+]-path backward in time (7).

The post-simulation analysis counteracts the impact of the
distorted distribution by employing weighted averages for the
sampled paths, assigning each path X a weight proportional to
1/wi(X ). In a simple one-dimensional double-well potential,
the acceptance rate of the WF move stood at 100% for the
path ensembles [i+] when �i was near state A and only slightly
decreased to 99.2% in the ensemble closest to state B (8).

AsynchronousReplicaExchange. Despite TIS being significantly
less efficient than RETIS, it has the advantage that its separate
path ensembles can be simulated entirely autonomously, allowing
parallel execution without communication overhead. In RETIS,
however, path-generating MC moves within a single ensemble are
alternatively succeeded by replica exchange moves between en-
semble simulations. The irregular CPU costs of path-generating
MC moves, stemming from the diverse path lengths, introduce
synchronization challenges within a parallel RETIS simulation
setup.

Assigning individual path ensembles with their own hard-
ware setup leads to instances where hardware managing faster

ensembles frequently remain idle, awaiting the completion of
MC moves by their slower counterparts. For this reason, open-
source path-sampling codes (16, 17) have implemented RETIS
as a fully sequential algorithm. However, this design choice limits
its potential to run simulations in a massively parallel manner.

In ref. 9, this challenge was addressed through an asynchronous
replica exchange approach, where the number of path ensembles
is set to be approximately double the number of hardware groups
(referred to as “workers”) that are assigned to execute path
generation moves. This design ensures that, at any given moment,
about half of the ensembles are “busily” engaged in path creation,
while the other half is labeled as “free.” Following the completion
of an MC move by a worker, the ensemble it was assigned to and
the newly formed path change status to free. Before the worker is
randomly reassigned to one of the free ensembles for performing a
new path generation move, a series of swapping moves take place
between randomly selected pairs of free ensembles in which they
attempt to exchange their current paths (Fig. 1D). For a selected
ensemble pair, [i+] and [j+] with j > i and, respectively, current
paths Xi and Xj are swapped with an acceptance probability:

PNAS 2024 Vol. 121 No. 7 e2318731121 https://doi.org/10.1073/pnas.2318731121 3 of 9
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Pacc = 1[j+](Xi)×min
[

1,
wi(Xj)wj(Xi)
wi(Xi)wj(Xj)

]
, [3]

where term 1[i+](Xj) is omitted as Xj ∈ [j+] is always a valid
trajectory for ensemble [i+] if �j ≥ �i.

Ref. 9 demonstrated that asynchronous replica exchange
significantly enhances wall time efficiency while minimally
impacting CPU efficiency. Surprisingly, it even led to occasional
improvements in CPU efficiency due to a more efficient distri-
bution of CPU resources among different path ensembles. The
algorithm tends to generate more trajectories in path ensembles
with shorter average path lengths, which contributes positively
to the overall efficiency.

Infinite Swapping. Generating a complete path may span min-
utes or hours, while evaluating Eq. 3 takes sub-seconds. This
allows for numerous swap moves, but when does it become
excessive? Plattner et al. (10) showed the feasibility of replicating
the impact of executing an infinite number of swaps within finite
CPU time, potentially maximizing the benefit of each swapping
opportunity. To determine the frequency of sampling a specific
state (path) in a particular ensemble after an infinite number
of swaps, one only needs to sum over the probabilities of all
permutations in which the considered state and ensemble are
linked. While this method is efficient for a modest number
of participating ensembles (≲10), computational costs increase
dramatically, transitioning from approximately a single second of
wall time to millions of years as the number of ensembles grows
from 7 to 20 (9).

Remarkably, this factorial scaling obstacle can be addressed by
employing an expression based on weight matrices’ permanents,
which is equivalent to the summation of permutations (9).
Despite being similar to the determinant, commonly taught in
high school mathematics textbooks, the permanent is relatively
unfamiliar among scientific researchers, potentially contributing
to the lack of prior discovery of this relationship.

Like determinants, a matrix’s permanent is recursively defined
as the sum of permanents of reduced matrices with a row and
column removed, but unlike determinants, it lacks alternating
plus and minus signs. Recursive relations also involve factorial
scaling, but faster methods exist for large matrices, such as
Gaussian elimination for determinants, leading to third-order
scaling.

Unfortunately, this technique does not extend to the compu-
tation of permanents, for which more complex approaches are
necessary, characterized by steeper scaling (18, 19). Nonethe-
less, these methods are still considerably faster than factorial
computations. Furthermore, since many elements of the weight
matrices are zero, permanents only need to be computed for
a limited number of low-dimensional sub-blocks of the weight
matrix. As demonstrated in this paper, this enables us to conduct
infinite swapping replica exchanges involving 80 ensembles and
40 workers, with the infinite swaps constituting only a minor
portion of the CPU cost compared to that of path creation.

Application I: (Superheated) Water Boiling. We employ RETIS
with the aforementioned algorithmic advancements, hereafter
referred to as ∞RETIS (9), to study the liquid–vapor phase
transition. Boiling phenomena have previously been explored
using TPS (20, 21). However, the ∞RETIS approach offers a
notable advantage in quantification, enabling the calculation of
rates– a feat not easily achieved with the previous TPS method,
even for the more common occurrence of surface boiling. Hence,
the previous TPS studies were more qualitative than our current
investigation and did not provide information on transition
rates.

In the first boiling study, we aimed to compute the boiling
rate in superheated water at 573.15 K. Superheated liquid is
produced by gently heating a liquid beyond its boiling point
(22). While establishing superheated water at this temperature
is difficult experimentally, in our nano-sized simulation system
devoid of nucleation sites like walls or impurities, the metastable
liquid has a long lifetime. Consequently, this transition to vapor
serves as a unique test for assessing our path sampling protocol’s
hardware scaling capabilities.

We conduct two simulations using different numbers of
identical, GPU-equipped nodes. In the first simulation i), 20
interfaces and 10 workers run on one node, utilizing the
NVIDIA Multi-Process Service (MPS) feature, which enables
multiple compute unified device architecture (CUDA) processes
or applications to share and utilize a single GPU. The other
simulation ii) involves 40 interfaces and 20 workers, each
operating on their exclusive nodes without MPS.

Fig. 2A illustrates the crossing probabilities, PA(�|�A), of
these simulations. This is the probability that the system’s order
parameter function �(x) reaches the order parameter value

A B

Fig. 2. The crossing probability for density reduction, with the snapshot in (A) describing the system at 0.40 g/cm3. The legend acronyms represent (N)odes,(W)orkers, and (D)ays. The vertical dashed lines indicate the interface placements. (A) Metastable liquid water at 573.15 K. Two∞RETIS simulations are performedon identical, GPU-equipped nodes, where the single node simulation utilizes MPS (Optimizing GPU Utilization and Fig. 5) while the multi-node simulation doesnot. The 30-d plot is the continuation of the 7-d plot. (B) The results of a 1-d∞RETIS simulation of liquid water at the SPC/E boiling temperature equal to 396.0 Kbased on 40 workers each utilizing their own individual nodes. Based on equilibrium MD runs, an average density of 0.57 g/cm3 is obtained for A and 0.92g/cm3 for (B).
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� > �A after crossing �A in the positive direction without
recrossing �A (6). In our case, the order parameter was defined
as minus the density of the system (the minus signs are omitted
in Fig. 2). Hence, the computed probability is reflecting the
likelihood of a small density fluctuation below the metastable
density of 0.55 g/cm3 causing the density to continue decreasing
until reaching the point of no return. At this point, the system
transitions to the gas phase with minimal probability of returning
to the metastable liquid state, which occurs when the density falls
below 0.45 g/cm3. This trend is evident as the crossing probability
converges to a consistent horizontal plateau beyond this density
threshold.

Simulation (ii) requires just 7 d to generate the same total
MD steps as simulation (i) would in 59 d. Additionally, from
the graph, it is evident that simulation (ii) achieves excellent
convergence, with minimal differences in the crossing probability
observed after continuing the 7-d simulation up to 30 d.
However, simulation (i) benefits from MPS utility, enabling it
to run with 10 workers in parallel on a single GPU, maximizing
output per node.

To explore the transformative potential of our methodology,
we also assessed∞RETIS’s capability in investigating the liquid-
to-vapor transition at the actual SPC/E boiling temperature of
396.0 K (23). At the phase transition temperature, the critical
nucleus size for the vapor bubble diverges, leading to a vanishingly
small rate in the thermodynamic limit. We therefore examined
exceedingly rare density fluctuations that do not yet indicate an
irreversible transition to the vapor phase, akin to a point of no
return. Although these fluctuations are likely to be dependent
on system size, their occurrence rate presents an exceptional
computational challenge. In this work, we have used this as
a litmus test for ∞RETIS, probing its ability to converge
calculations of exceedingly small probabilities within a short
wall time period when operating on a massively parallel GPU
computer.

By employing 40 workers on 40 individual nodes and 80
interfaces for 1 d, ∞RETIS manages to compute the crossing
probability and the corresponding rate for the scenario in which
random fluctuations lead the system to reach a density below 80%
of the stable liquid phase, see Fig. 2B and Table 1. To the best
of our knowledge, the final value of the crossing probability,
astonishingly low in the order of 10−86, represents a world
record for the lowest computed crossing probability in a realistic
molecular system.

Application II: Chignolin Unfolding. The CLN025 mutant of
chignolin is a popular test system for rare event methods, and
we examine the unfolding of this mini protein with two different
order parameters. The first-order parameter is the RMSD of the
protein backbone from the folded state. During this simulation,
the system quickly began exploring a set of long-lived misfolded
states.

Paths going through these misfolded states were characterized
by low weights in their corresponding path ensembles due to
their length. In addition, an actual experiment will hardly be
able to discriminate between the misfolded and native states,
and grouping them into an ensemble of folded structures is
more meaningful (28). Based on these arguments, we include the
misfolded structures in the folded state definitions and perform
an additional simulation with a second-order parameter; a neural
network trained on a diffusion map created from a couple of
reactive trajectories from previous simulation data, an approach
we denote Deep-DM. In Fig. 3A, we illustrate the conditional
free energy from the first simulation mapped onto the two deep-
DM coordinates, in which the misfolded states are apparent.

Fig. 3A sheds light on the vast conformational landscape that
even a mini protein like chignolin covers during its transition to
the unfolded state and illustrates the extensive sampling enabled
by our rare event protocol. Notably, we observe a total of 1,000
and 1,600 reactive trajectories during the RMSD and deep-DM
simulations, respectively, which allows us to sample a wide range
of transition paths. In comparison, brute force Anton simulations
of almost twice the length observed around 30 to 40 transitions
(24), and we observed 14 transitions in the course of an 80 μs
equilibrium simulation.

We also see that instead of a single unfolding route, the
protein explores a variety of configurations during the unfolding
process, which is not characterized by a single well-defined free
energy barrier. This gives rise to the complex kinetic behavior
reported previously in long unbiased simulations (24). Such
processes can be challenging to model with other methods
that rely on assumptions regarding the transition state and the
reaction coordinate, which in our protocol can be obtained post-
simulation (29).

It is interesting to note the resemblance of the D state to
an �-helical structure even though chignolin is a �-hairpin in
its native state. Experimental evidence suggests that �-hairpin
formation may occur competitively with �-helical formation
(30). Fig. 3C presents the running averages of the rates for both

Table 1. The results and setup for all the simulations ran in this paper
Simulation Rate Flux PA(�B|�A) Nodes Workers Days
Boiling573.15K 4.73e+06 s−1

± 102% 8.05e+09 s−1
± 71% 5.88e−04 ± 45% 1 10 59Boiling573.15K 4.76e+06 s−1

± 54% 5.59e+09 s−1
± 52% 8.51e−04 ± 14% 20 20 30Boiling396.0K 4.03e−75 s−1

± 61% 5.33e+10 s−1
± 13% 7.56e−86 ± 64% 40 40 1

ChignolinRMSD 0.17 μs−1
± 59% 14,000 μs−1

± 19% 1.2e−05 ± 50% 1 16 19ChignolinDeep-DM 0.17 μs−1
± 29% 17,000 μs−1

± 6 % 9.9e−06 ± 32% 1 10 15Eq. sim. 0.18 μs−1
Anton (24) 0.45 μs−1
Deep-TICA (27) 0.31 μs−1
HLDA (27) 0.16 μs−1
Dissociation* 1.17e−01 s−1

± 92% 2.22e+12 s−1
± 13% 5.28e−14 ± 90% 20 40 10Ref. (25)* 1.29e−01 s−1 2.92e+12 s−1 4.40e−14

The number of ensembles for each reported simulation is twice the number of workers. *The reported rate, flux, and crossing probability for the dissociation simulation and ref. 25 inthis table is for �B = 5.0, which is different from the results reported in ref. 25. Additionally, due to a difference in subcycles (26), the flux and crossing probability between the simulationdata and ref. are not directly comparable, but the rate is. Reported errors are estimated based on block-averaging procedures using single SDs.
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B

C D

A

Fig. 3. (A) The conditional free energy (i.e., based on phasepoints lying on paths coming from the folded state) mapped onto the deep-DM coordinates, wherea set of metastable states is apparent. These results correspond to the simulation with the RMSD order parameter. We do not see a minimum in the path freeenergy around the unfolded region because of the decreasing probability of reaching such high-order parameter values, given that the path starts in A. Wealso plot the final phasepoint of each reactive path in orange, which corresponds to a backbone RMSD ≥ 6.0 Å from the folded structure. The curved black linesrepresent the interface positions of a second set of path simulations with another order parameter, which is a combination of the two deep-DM coordinates. Inthis second simulation, �A′ refers to the folded state interface, which is now a collection of three structures, and �B′ refers to the unfolded state. (B) Chignolinconformations illustrating the native state, a set of misfolded states (B, C1, C2), a metastable state (D), and a representative sample of the unfolded state thatwas observed during our simulations. For each metastable state, we also annotate the difference in amino acid conformations compared to the native state.(C) The running average of the unfolding rates using the two order parameters, and comparisons with rates obtained from unbiased simulations with Anton(24) and our own equilibrium simulation (Eq. sim.). The legend gives the total simulation time used in the running averages. (D) The crossing probabilities fromthe two simulations and the corresponding interface locations. The order parameter is scaled for comparability.

simulations, while Fig. 3D displays the crossing probabilities and
interface locations. The calculated rates are in good agreement
with those obtained from extensive unbiased simulations and
enhanced sampling simulations, even when one of the order
parameters incorporates two misfolded states, underscoring the
robustness of our approach. A summary of the results can be
found in Table 1.

Application III: Ab Initio Water Dissociation. We replicate the
RETIS study (25) of calculating the water dissociation reaction
rate at 300 K using ab initio MD with the CP2K (31) engine.
Satisfactory agreement with the RETIS simulation is obtained
from a 10-d ∞RETIS simulation using 40 workers and 80
ensembles, as shown in Fig. 4. A subtle qualitative difference
becomes evident within the 3.0 to 4.0 Å shoulder region. The
presence of intermediate horizontal plateaus can be attributed
to the Grotthuss mechanism, involving a simultaneous double
proton transfer (25). This leads to the excess proton residing
at an oxygen atom not in direct proximity to the hydroxyl
group. Notably, while the original RETIS results suggest that
this subprocess consistently reaches completion once initiated,
the new∞RETIS findings paint a more nuanced picture. They
reveal a slightly shorter plateau, implying that some double
proton transfers may fail and reverse, despite being nearly
completed. In terms of wall time, over 1 y was spent running

the RETIS simulation, so a rough estimate of the increased
wall time efficiency when using ∞RETIS would be 365/10 =
36.5. A considerable contributor to this difference lies in the
sequentiality of the RETIS algorithm. As the average path length
generally increases with the ensembles number [i+], the wall time
required to generate new paths increases as well. For this system,
trajectories generated by ensembles in the gradual 3.0 to 5.0 Å
range can be up to 100 times longer than those from ensembles
in the steeper 1.0 to 1.5 Å region (Fig. 4). Consequently, in the
context of RETIS, even though the lower ensembles hold the
potential for rapid sampling due to their shorter average path
lengths, the sequential sampling of higher ensembles leads to
extended periods between each ensemble update, as these higher
ensembles demand significantly more wall time to generate new
trajectories. This sequential challenge is circumvented in the
∞RETIS simulation, where any of the participating workers
can initiate MC moves in the lower ensembles whenever they
are available. In addition to these algorithmic enhancements,
other factors may have contributed to the performance increase,
including hardware and software advancements since the original
study in 2018.

Optimizing GPU Utilization. Asynchronous replica exchange ef-
fectively harnesses the benefits of current and future develop-
ments of HPC by allowing the initialization of high worker

6 of 9 https://doi.org/10.1073/pnas.2318731121 pnas.org
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Fig. 4. The rate of water dissociation (crossing probability multiplied bythe flux) is compared between the previously reported result, ref. 25, andthe result generated from a 10 d ∞RETIS simulation using 20 (N)odes,40 (W)orkers and 80 ensembles, where each node employs two workerseach. The x-axis is the composite order parameter described in ref. 25and in Materials and Methods. While the MD time step is identical for bothsimulations, there is a slight variation in the time between frames, Δt,caused by differences in the frame-saving rate. Although this discrepancymay influence factors like flux and crossing probability, the product remainsindependent of it (26), allowing for a direct comparison.

numbers to the high amounts of compute hardware (CPU,
GPU, and nodes) available on HPCs. However, an additional
benefit is also the effective utilization of NVIDIA MPS (32)
when running GPU-accelerated MD, as MPS allows multiple
independent processes to concurrently run on the same GPU.
For our GPU acceleratable application examples, we observe a
2.4-fold increase in the effective throughput (total ns/day) when
running a 12,165 particle boiling system on a node with a 12-
core Intel Xeon E5-2690 v3 CPU and an NVIDIA Tesla P100 16
GB GPU, as seen in Fig. 5. With even better scaling, we observe
a 6.0-fold increase for a 5,889 particle Chignolin system on a
node with a 16-core Intel Xeon E5-2687W CPU and NVIDIA
GeForce RTX 3090 GPU. Therefore, large worker numbers (i.e.,
10 to 16 in our case) can be readily initialized without necessarily

Fig. 5. Total relative throughput (ns/day) for the studied water boilingand chignolin systems running on one GPU-equipped node, with a varyingnumber of concurrently running simulations. At zero parallelization, i.e., whenone simulation employs all of the hardware resources of one node, MDthroughput averages at 75.0 and 646.2 ns/day. Optimally, with the use ofNVIDIA’s MPS service, throughputs of 178.8 ns/day (14.9 ns/day× 12 parallels)and 3896.0 ns/day (243.5 ns/day × 16 parallels) are achieved. The irregularspacing between the data points is due to the sharing of CPU cores (constant)between the number of workers (variable). The hardware specification foreach system is detailed inMaterials andMethods. The data points are averagesbased on 10 repeated trials per data point, with a low to insignificant SD.

requiring multi-node hardware. MPS on multiple parallel nodes
would be even more powerful but was not feasible on the available
computing resources.

Discussion
Utilizing the power of recent path sampling innovations, we
have developed an efficient path sampling protocol referred to
as ∞RETIS. In challenging realistic applications, our protocol
demonstrated outstanding scalability across diverse GPU and
CPU computing platforms using both classical and Ab Initio
dynamics. Its remarkable sampling efficiency enabled swift
convergence of transition rates within high-dimensional systems
that previously would require months to years for convergence.
With the∞RETIS algorithm deployed on potent HPC systems,
they now succumb within mere days or weeks. This is a significant
advancement, as path sampling offers a distinct advantage over
other rare event techniques, such as metadynamics (33) and
steered MD (34), by enabling the study of completely unbiased
dynamics. However, its computational costs have slowed down
the widespread adoption of quantitative path sampling simula-
tions in large molecular systems. The algorithmic innovations
detailed in this paper are poised to revolutionize this landscape,
making previously unattainable systems accessible and potentially
guiding experimental discoveries.

Materials and Methods
Rate Calculation. Rates were computed from the RETIS ensembles by writing
kAB = fAPA(�B|�A) where fA is the frequency for the system to exit state A,
and PA(�B|�A) is the crossing probability, the very small chance that after an
exit, the system manages to reach state Bwithout revisiting state A. In RETIS, the
flux is determined from the average path lengths in the [0−] and [0+] path
ensembles. The total crossing probability is obtained from the product of local
crossing probabilities,PA(�B|�A) =

∏n−1
i=0 PA(�i+1|�i)wherePA(�i+1|�i)

is estimated from the fraction of sampled paths in the [i+] ensemble that cross
the next interface �i+1. Further improvement in the statistical analysis (29, 35)
has been obtained using the weighted histogram analysis method (WHAM)
(36). All estimated errors on computed properties have been based on a block-
averaging procedure. Additional properties like the conditional free energy
(Fig. 3A) were obtained using a WHAM (36) reweighting procedure on the
collective phase points of the trajectories of all RETIS ensembles (29, 35).

Initialization. Like in standard RETIS and TIS, the interface positions in∞RETIS
are initially configured so that PA(�i+1|�i) is approximately the same across
different i values, a tuning process conducted during preliminary initialization
runs. However,∞RETIS does not aim for a specific target value like the rule of
thumb value of 0.2 (37), which fixes the number of required interfaces. Instead,
the number of interfaces (n + 1) is based on the available hardware, i.e., the
number of workers that can be launched. To ensure plenty availability of free
ensembles with sufficient overlap at each infinite swapping step, n is set to be
twice the number of workers. Once n is fixed, we aim to place the interfaces
such that PA(�i+1|�i) ≈ PA(�B|�A)(1/n) for all i using an estimation for
PA(�B|�A) from the short initialization run.

Sampling. The WF move was employed in all [i+] ensemble simulations for
0 < i < n. We determined the parameters Ns and �cap without conducting
an extensive optimization analysis; instead, we chose values that appeared
reasonable. This approach led us to use the same Ns value for all ensembles,
rather than aiming for ensemble-specific values based on the ratio of each
ensemble’s average path length to the average path length of the subtrajectories
(8). While significantly enhancing the efficiency compared to standard shooting,
moreefficientparametersets likelyexist.Weplantoexploreautomaticparameter
adjustment and initialization in the future. The [0−] and [0+] ensembles
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employed normal shooting without high acceptance. In these ensembles, where
the path length of subtrajectories matches that of full paths, the WF move has
a reduced impact. Furthermore, the absence of high acceptance implies that
the MD-intensive point exchange move [0−]↔ [0+] can always be accepted.
Instead of high acceptance, these ensembles use an early rejection scheme (6)
that allows for the interruption and rejection of the generation of excessively
long paths, which would have been rejected anyway in the Metropolis–Hastings
step.

In quantitative terms, the acceptance of the WF in the boiling simulation
at 396.0 K reached 100% due to the absence of a stable B state attainable
from A. Likewise, in the water dissociation study, the WF move demonstrated a
similarly remarkable acceptance rate of 98.9%. However, in boiling simulations
conducted at the higher temperature of 573.15 K, the WF move exhibited lower
acceptances of 74.1% and 84.9% for the simulations utilizing 10 workers (21
interfaces) and 20 workers (41 interfaces) respectively. Rejections predominantly
occurred within the last set of easily converging path ensembles, where the �i
interface required for crossing is already proximate to state B. Focusing on the
challenging part wherein the system ascends in free energy, disregarding the
latter path ensembles where paths have over a 50% likelihood of reaching state
B, the WF acceptance escalates to, respectively, 89.3% and 94.2%. This hints
at the potential for even greater efficiency by adhering to a slightly modified
protocol than the one described in the previous section, aligning the (n− 1)th
interface such that PA(�n|�n−1) < 0.5.

The protein unfolding study exhibited a similar trend in the acceptance
rate of the WF move, demonstrating nearly 100% acceptance in the initial
path ensembles before decreasing for interfaces closer to state B. Across the
simulations shown in Fig. 3, the overall WF acceptance rates were 73.8% (RMSD)
and 45.3% (Deep-DM). The relatively lower acceptance observed in the latter
case is attributed not only to the suboptimal positioning of �n−1, but also
arises from the asymmetric shape of the free energy landscape, requiring �cap
to be placed farther from state B, closer to the peak of the barrier. With the
current interfaces, the generation of a single A→ B trajectory tends to provide
shooting points predominantly within the basin of attraction of state B, which
can lead to dramatically low shooting acceptance (38). Consequently, there is
a high likelihood that all Ns subtrajectories become unsuccessful. This shows
that the very high acceptance and optimal efficiency is achieved with fine tuning
of the method’s parameters, but even with suboptimal WF parameters, both
acceptance and decorrelation are still superior to those achieved with standard
shooting especially for the asymmetric barrier case (38).

Code Implementation and Availability. We run an in-house∞RETIS Python
code which mainly consists of PyRETIS (17) function imports together with the
use of the Dask (39) package which handles scheduling worker tasks. To start
a simulation, the user determines the number of workers to be employed
based on the hardware available and the type of system to be simulated. An
additional user variable is subcycles, which controls the number of frames to be
saved between the number of generated MD steps. For instance, if a trajectory
comprises 200,000 MD steps, the trajectory in the path ensemble is delineated
by 200 time slices, each corresponding to every 1,000th MD frame when
subcycles is set to 1,000. Once the setup is completed, the Python code schedules
available workers to perform MD-based MC moves. The running of MD, engine
input/output, and data storage are mainly handled by the PyRETIS functions that
externally start and stop GROMACS/CP2K simulations. The code used to generate
the paper data is available at https://doi.org/10.5281/zenodo.8380343, but
an updated code that is under development is accessible via GitHub
https://github.com/infretis/.

Simulation Details on Superheated Water Boiling. Superheated liquid
water in the form of 4055 H2O water molecules is simulated with periodic
boundary conditions and a timestep of 0.5 fs in the NPT ensemble at 1 bar
and the two temperatures 396.0 and 573.15 K using Gromacs 2021.5 (40). The
temperature and pressure are kept constant by applying a V-rescale thermostat
(41) of 2.5 ps relaxation time and a C-rescale barostat (42) with a relaxation time
of 10 ps. As with the previous TPS studies (20, 21), the SPC/E water model (43)
is also used. The order parameter is simply the water density, and the initial
reactive trajectories are obtained by quickly heating an equilibrated system.
The∞RETIS simulation ran with a subcycle of 1,000 and the number of WF

subtrajectories equals 4. The simulations were run on HPC nodes consisting of
12 core Intel Xeon E5-2690 v3 CPU and NVIDIA Tesla P100 16 GB GPU.

Simulation Details on Chignolin Unfolding. The simulations of the CLN025
mutant of chignolin are performed with the setup described by Bonatti (44),
using their provided input files available online. The mini protein is modeled
with the CHARMM22* force field and solvated with TIP3P water molecules at
340 K. The terminal amino acids and the ASP and GLU amino acids are modeled
in their charged states, and the system is neutralized by adding two sodium
ions. The equations of motion are integrated with a timestep of 2 fs using the
velocity Verlet scheme, and canonical sampling is achieved with the V-rescale
thermostat (41).

The first path sampling simulation is performed with an order parameter
defined as the RMSD between the protein backbone and the folded structure
(the average structure from a long simulation, not the crystal structure). The
folded and unfolded interfaces were given by an RMSD of 0.6 and 6.0 Å,
respectively, and we used an interface cap at 4.0 Å. Multiple misfolded states
were observed during this simulation. We train a neural network that includes
the B and C1 states as part of the folded ensemble in the following manner;
we first construct a diffusion map with the approach outlined in ref. 45 using
chignolin configurations representing the native folded state, the misfolded
states observed in the first path simulations, unfolded configurations, and a
set of configurations from the transition path ensemble. The protein backbone
RMSD is used as a distance metric to construct the diffusion map. We then train
the neural network directly on the two leading eigenvectors of the diffusion
map. We use the 741 interatomic distances between backbone atoms as input
features for the network, with architecture 741-50(ReLu)-25(ReLu)-12(ReLu)-2.
This is motivated and similar in spirit to the approach described in ref. 46, except
that we do not fit the network to pre-assigned positions, but rather on the output
of the diffusion map. Using this approach, we can discriminate between the
folded, misfolded, and unfolded states as well as some other metastable states.
The A and B interfaces were given by an order parameter of −0.85 and 1.5,
respectively, and we used an interface cap of 1.2.

For all systems, we use 16 Intel Xeon E5-2687W CPUs and partition 1
NVIDIA447 GeForce RTX 3090 GPU among the workers using MPS. For the
RMSD, we use 16 workers, and for the deep-DM system, we use 10 workers. The
∞RETIS timestep was 4 ps (2000 MD integration steps with a 2 fs timestep),
and the number of WF subtrajectories was 3.

Simulation Details on Ab Initio Water Dissociation. We replicate the
previous RETIS study (25), i.e., 32 water molecules are simulated in a periodic
9.85 Å cubic box with ab initio DFT MD using CP2K 9.1 (31). The DFT calculations
use Becke–Lee–Yang–Parr functional (47, 48) with a DZVP-MOLOPT (49) basis
set and a plane-wave cutoff of 280 Ry. The MD simulations were run with a
timestep of 0.5 fs, the number of subcycles is set to 5 for the∞RETIS simulation
and the number of WF subtrajectories is set to 2. The new velocities generated
by the shooting/WF move are drawn from a Maxwell–Boltzmann distribution
corresponding to an average temperature of 300 K. The order parameter is the
longest O-H distance in the case where no dissociated species exist in the system.
When OH− + H3O+ pair(s) are detected, the order parameter becomes the
shortest distance between the oxygen in OH− and hydrogens in H3O+. The
∞RETIS simulation was run on the Sigma2 HPC system Saga with 20 nodes
equipped with Intel Xeon-Gold 6138 CPUs, where two workers were run on each
node.

Data, Materials, and Software Availability. All study data are included in
the main text.
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