
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Markus Wang Halvorsen

Delayed runahead exit policies

Master’s thesis in Computer Science (MTDT)
Supervisor: Rakesh Kumar
February 2024





Markus Wang Halvorsen

Delayed runahead exit policies

Master’s thesis in Computer Science (MTDT)
Supervisor: Rakesh Kumar
February 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





i 

 

Abstract 

The memory wall, a growing gap between processor and memory clock speeds, 

represents a major bottleneck for processor performance in memory-intensive programs. 

Long latency loads (LLLs), loads that miss in the last level of cache, have latencies up to 

hundreds of cycles, causing the processor to stall. Modern out-of-order (OoO) cores can 

tolerate some memory latency owing to their large re-order buffer (ROB) sizes but are 

still too small to handle LLLs. Hardware prefetchers cannot always hide these latencies as 

they are, by design, unable to perfectly predict the future demand accesses of 

processors. The result is that many loads still cause the ROB to fill up and subsequently 

the processor to stall. 

Runahead execution is a modern prefetching technique implemented in processor 

microarchitecture that utilizes cache miss stall cycles to execute the future instruction 

stream. Runahead prefetches critical loads with near-perfect accuracy, thus turning 

future cache misses into cache hits. However, previous works have found that the 

prefetching effect of runahead has limited coverage. This is partly because even though 

these stalls degrade performance in total, each individual stall period is too short for 

runahead to prefetch enough loads to achieve adequate coverage. 

In this thesis, I study the effect that delaying exit from runahead mode has on processor 

performance by implementing a traditional runahead scheme in the gem5 computer 

architecture simulator. By simulating three different exit policies I find that delaying exit 

from runahead can improve overall processor performance by 2.3% compared to a 

runahead processor that eagerly exits runahead.  



ii 

 

Sammendrag 

Spriket mellom klokkehastigheten til prosessorer og hovedminne utgjør en stor flaskehals 

i prosessorytelse for minneintensive programmer. Denne ytelsesbegrensningen skyldes 

langtidsinnlastere, innlastingsinstrukser som utfører minneaksesser som ikke treffer i 

siste nivå av prosessorens hurtigbufferhierarki. Disse instruksene har ofte ventetider på 

flere hundre sykluser. Moderne prosessorkjerner kan tolerere noe av ventetiden til 

innlastingsinstrukser ved å eksekvere instrukser utenfor rekkefølge (OoO) og spore 

rekkefølgen deres i store omordningsbuffere, men disse er fremdeles for små til å 

håndtere langtidsinnlastere. Maskinvarebasert forhåndsinnhenting av minneverdier kan 

ikke alltid skjule ventetiden for aksesser til hovedminne fordi slike teknikker ikke kan 

forutsi fremtidige minneaksesser med perfekt nøyaktighet. Sluttresultatet er at 

omordningsbufferen ofte fylles opp mens prosessoren venter på minne, og dermed at 

prosessoren blokkeres. 

Forutløpende eksekvering er en moderne teknikk for forhåndsinnhenting av 

minneverdier. Teknikken er implementert i prosessorens mikroarkitektur og tillater 

prosessorkjernen å utnytte sykluser hvor prosessoren venter på minne. Syklusene 

utnyttes for å eksekvere fremtidige instrukser som henter inn minneverdier på forhånd 

med svært høy nøyaktighet. På denne måten blir bom i hurtigbufferen omgjort til treff. 

Tidligere arbeider har funnet at minneinnhentingseffekten til forutløpende eksekvering 

dekker et begrenset antall innlastingsinstrukser. Dette skyldes delvis at selv om 

ventetidene for minne totalt sett skader prosessorytelsen, vil hvert individuelle 

minneaksess ta så kort til at forutløpende eksekvering ikke har nok tid til å hente inn 

mange nok minneverdier. 

I denne masteroppgaven undersøker jeg effekten av å forsinke byttet fra den 

forutløpende eksekveringsmodusen tilbake til normal modus. Dette gjøres ved å innføre 

tradisjonell forutløpende eksekvering i en OoO-prosessormodell i 

datamaskinarkitektursimulatoren gem5. Ved å simulere tre ulike modeller for forsinket 

modusbytte viser jeg at en prosessor med støtte for forutløpende eksekvering kan 

forbedre ytelsen med 2.3% hvis den forsinker byttet ut av forutløpende 

eksekveringsmodus. 
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1.1 The memory wall 

The clock speed of modern processors has increased at a rapid pace. Meanwhile, the 

speeds of memory systems have increased at a lesser pace, leading to the CPU cycle 

latency between the processor and main memory growing ever larger. This problem, 

known as the memory wall, significantly impacts the performance of most programs 

because memory accesses are frequent and can take hundreds of cycles to complete if 

they must be serviced by main memory. For example, approximately 50% of all dynamic 

instructions in the popular SPEC CPU2017 benchmarks[1] perform operations that either 

use or write to values located in memory[2]. 

Cache hierarchies, illustrated in Figure 1.1, allow processors to significantly reduce the 

latency of many memory accesses. These low-latency, on-chip data stores can serve 

memory accesses in a fraction of the cycles of a main memory access if the data is 

present in the caches, in other words if there is a cache hit. Hardware prefetchers (HWP) 

augment cache hierarchies with the ability to find patterns in memory accesses in an 

autonomous and transparent fashion. These access patterns can be used to prefetch data 

into cache ahead of their use. Combined, caches and prefetching exploit temporal and 

spatial locality, wherein code frequently accesses the same memory locations, or 

locations close together in memory. However, cache misses still occur frequently due to 

cold caches, cache mapping conflicts and insufficient capacity. Additionally, HWPs often 

struggle to prefetch complex or unpredictable memory access patterns such as 

indirections. 

 

Figure 1.1: A three-level cache hierarchy with a split L1 cache and unified L2 and L3 
caches. Memory access latency increases the further down the memory hierarchy a data 
packet must travel. 

Out-of-order (OoO) processor microarchitecture can hide some latency by continuing to 

queue and execute instructions as long as there is space in the re-order buffer (ROB). 

The ROB enables instructions to execute out of program order while committing their 

changes to architectural state in-order to support precise exceptions[3], but the structure 

is limited in size due to cost and space considerations. If the ROB fills up, the processor 

cannot track any new instructions, causing a stall. The processor is unblocked only when 

the oldest instruction is retired. This architecture is helpful in hiding execution latencies, 

including the lower latencies of memory accesses that hit in cache, but instructions that 

miss in the last level of cache have such long latencies that they frequently cause the 

ROB to fill completely[4], and therefore the processor to stall. 

1 Introduction 
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1.2 Runahead execution 

Runahead is a speculative execution technique which executes future loads, typically 

when the processor would otherwise be stalled on a last level cache miss. By executing 

the full dependency chain of load instructions, runahead prefetches future memory 

accesses with high accuracy. The function and effect of runahead is illustrated in Figure 

1.2. In a normal processor, loads that miss in the last level of cache typically cause the 

ROB to fill up, stalling the processor until the load returns. Instead of stalling, a runahead 

processor can decide to enter runahead mode, in which subsequent loads leading to 

cache misses are speculatively pre-executed, turning them into cache hits. 

 

Figure 1.2: Example of how runahead execution prefetches cache misses by pre-

executing future loads during cache misses. The pre-execution of the load prefetches the 
memory value, preventing a future cache miss that would have led to a stall. 

The term runahead was coined in 1996[5], but the technology did not see the beginning 

of its modern development until 2003[4]. Research in the early 2000s was mostly 

focused on efficiency improvements[6-9], but runahead has since seen major 

performance improvements[10-12] and even works that leverage hardware acceleration 

to perform runahead execution[13, 14]. 

Most existing runahead schemes attempt to minimize time spent in runahead while 

attempting to utilize the available time as efficiently as possible. Many efficiency 

improvements have focused on limiting entry into runahead where it is not predicted to 

be useful[6-8], and nearly all schemes will eagerly exit runahead as soon as the cache 

miss that caused runahead has returned[4, 9, 10, 12]. Intuitively, this makes sense. 

Runahead performs useful work by prefetching memory accesses, but it does not perform 

real work. However, eagerly exiting runahead comes at the cost of reduced prefetch 

coverage because fewer loads are executed. Recent works has discovered that runahead 

has poor coverage[14], and that delaying the exit of runahead execution can actually 

improve overall performance in vectorized runahead[11]. 

1.3 Delayed exit runahead 

Inspired by previous findings about runahead coverage[14] and performance 

improvements from delayed exits[11], this thesis studies if delayed exit policies from 

runahead may improve either the efficiency or performance of runahead schemes. A 

traditional runahead execution CPU model was implemented in the gem5 simulator and 

used to simulate the SPEC CPU2017 benchmarks[1] (SPEC2017). The implementation of 

the runahead model used in this thesis is open source and freely available on GitHub[15]. 

https://github.com/halworsen/gem5-runahead
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Figure 1.3 illustrates how a delayed exit may prefetch additional long latency loads, thus 

preventing repeated re-entry into runahead later. Loads executed in the delayed 

runahead period may increase runahead’s coverage, leading to improved processor 

performance. Additionally, if the additional prefetches prevent a runahead period and are 

performed by executing fewer instructions than said runahead period, efficiency is 

increased. Depending on how costly the overhead of entering and exiting runahead is, 

the saved overhead from reduced runahead may also provide performance benefits. 

In this thesis, I develop three delayed exit policies for runahead with the aim of 

improving a runahead processor’s performance. I find that delaying exit from runahead 

mode can improve performance by 2.3% over traditional runahead with an eager exit 

policy if the additional time is spent effectively to issue additional loads. This suggests 

that delayed exit policies have the potential to increase the performance of traditional 

runahead schemes. 

 

Figure 1.3: Example of how delayed exit from runahead may prefetch additional loads. 
The extra prefetch during the delayed exit prevents a re-entry into runahead. 

1.4 Structure of the thesis 

This thesis is divided into chapters roughly relating to the project background, 

motivation, simulator details, implementation of delayed exit runahead, evaluation 

methodology, experiment results, a discussion and finally recommendations for future 

work and a conclusion. 

First, chapter 2 explains the background for the project, beginning with the traditional 

measures taken against long latency loads. Runahead execution in its various forms is 

then explained. Select runahead schemes from literature are presented and explained. 

Chapter 3 discusses the motivation for the work done in this thesis, including evidence 

supporting delayed exit policies’ potential to improve performance. Chapter 4 briefly 

touches on the choice of simulator for the study. I then describe the gem5 simulator and 

its stock OoO CPU model, O3CPU. Each stage of the processor model’s pipeline is 

described in detail. Chapter 5 details how gem5’s O3CPU model was modified to support 

traditional runahead execution. It also describes some of the improvements from 

literature that were implemented with the model. The implementation of my delayed exit 

policies are also detailed here. Finally, it explains how the model was tested for 

functionality and correctness. Chapter 6 discusses the SPEC2017 benchmarks used to 

evaluate the CPU models in this project. It explains how gem5 was configured to use the 
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benchmarks as well as the base system configuration used. The process of tuning 

runahead parameters for the runahead baseline is then discussed. The method for 

evaluating system performance is also explained. Chapter 7 presents the simulation 

results of the runahead baseline model compared to the stock OoO CPU model. It also 

presents the simulation results for each delayed exit policy compared to an eager exit 

policy. Chapter 8 discusses the performance degradation seen in the runahead model. 

The results for each delayed exit policy are then discussed. Chapter 9 provides 

suggestions for improving the processor model and a potential avenue for future work on 

delayed exit policies. Finally, chapter 10 concludes the thesis by summarizing the work 

done, the experimental results and explanations for these. 
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2.1 Cache hierarchies and prefetching 

The main measure taken against long memory latencies is to structure memory 

hierarchically, with caches close to the CPU. Caches are small, on-chip memory units that 

have exceptionally low access latencies compared to main memory. Any memory 

operation executed by the CPU which hits in cache sees a dramatic speedup compared to 

a main memory access. Cache misses have become a bottleneck for modern processor 

performance as main memory accesses can take hundreds of cycles to resolve. 

Typically, caches are made using SRAM technology, which is costly in terms of both  

money and physical space, both of which are coveted resources in microarchitectural 

design. As such, designers must strike a balance between the performance benefit and 

overall cost of incorporating the caches. Much effort has also been put into hardware 

prefetching schemes as a method to increase cache hit rates and hide access latencies. 

The matrix multiplication algorithm shown in Figure 2.1 is a good example of how caches 

can improve performance while highlighting their limitations. Each matrix row and 

column are accessed repeatedly. The first accesses are not cached, and therefore end up 

being cold cache misses, incurring lengthy main memory accesses. Subsequent accesses 

to the same matrix rows and columns will hit in cache, speeding up execution. If the 

matrices are sufficiently large, the cache might not have sufficient capacity to store the 

full matrices, leading to capacity misses as older cache entries must be evicted to fit the 

data accessed in more recent accesses. Depending on how the cache blocks are indexed 

and how the matrix is laid out in memory, some matrix accesses may also map to the 

same cache blocks, leading to conflict misses. 

 

Figure 2.1: A simple 2D matrix multiplication algorithm for computing the matrix C = AB. 

In the example algorithm, cache exploits what is known as temporal locality, in which the 

algorithm accesses the same addresses repeatedly. The code (and indeed a very large 

amount of code in general) also accesses data in a predictable pattern. This phenomenon 

is known as spatial locality and can be exploited by hardware prefetchers to further 

increase performance. Figure 2.2 shows the intuition behind how a hardware prefetcher 

works. Because the processor is performing accesses to different addresses in a 

predictable pattern, a hardware prefetcher can issue prefetch requests down the memory 

2 Background 

for (int rA = 0; rA < numARows; rA++) 

for (int cB = 0; cB < numBCols; cB++) 

for (int cA = 0; cA < numACols; cA++) 

C[rA][cB] = A[rA][cA] * B[cA][cB] 
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hierarchy to begin loading data into cache before it is demanded by the CPU, thus hiding 

parts of or even the full latency of the access. 

 

Figure 2.2: Simplified example of how a hardware prefetcher might predict access 
patterns and move data up the memory hierarchy ahead of their use. 

Hardware prefetchers can dramatically increase processor performance. The winner of 

the 3rd data prefetching championship, the Instruction Pointer Classified based 

Prefetcher, improved single-core IPC by 43.75% over a CPU model without 

prefetching[16]. However, all prefetchers have an inherent limitation in that they can 

only base their prefetches on past and present data. This means there is an upper bound 

to their accuracy and coverage. 

2.2 Runahead execution schemes 

Runahead is a broad term that covers many different microarchitectural designs. Despite 

originally and typically being used to improve cache performance[4-12, 14, 17-20], 

runahead has been found to have more use cases[13, 21]. As such, this section begins 

with a broad description of runahead as a framework for generating side-effects. Select 

runahead schemes from published literature which are particularly relevant to the thesis 

are then presented and explained. Finally, the performance improvements of these 

schemes are summarized. 

2.2.1 The runahead framework 

A normal out-of-order processor cannot process the instruction stream any farther than 

the current committed instruction, plus the size of the ROB. When the ROB is full, the 

program order of new instructions cannot be tracked, and the processor must stall. 

Runahead processors can execute arbitrarily far into the instruction stream by 

circumventing the usual limitations that ensure architectural state is observably correct 

at any time. Runahead execution does not necessarily fundamentally differ from normal 

execution, but any changes made to architectural state by runahead execution will 

inevitably be undone such that the processor’s architectural state returns to the last point 
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at which it was executing normally. Therefore, runahead processors do not necessarily 

have to stall when the ROB is full. Instead, blocking instructions can be removed to 

resume execution. Free resources in the processor may also be used to continue 

execution without utilizing the ROB. It is also possible to dedicate specialized hardware to 

runahead while not using any of the CPU’s resources. 

Because all the architectural effects of runahead are eventually discarded, runahead 

mode can be thought of as a sandbox in which the processor’s main goal is to generate 

as many beneficial side-effects as possible. In most work thus far, runahead has been 

used to improve cache performance[4-12, 14, 17-20], but it can also be used to pre-

compute branch outcomes[13] and even improve soft error rates[21] to increase 

processor reliability. Figure 2.3 shows a taxonomy of the goals of some runahead 

schemes that have been published in literature. 

 

Figure 2.3: A taxonomy of different published runahead schemes. The majority of 
runahead schemes target cache, with most of those being based on the traditional 
runahead scheme introduced by Mutlu et al.[4]. MLP-aware[8], RaT[9, 17, 18], 
reliability-aware[21] and branch runahead[13] are not explained in this thesis. 

In schemes that runahead in-processor, it is normal for runahead execution to begin 

when a memory access misses in last level cache. Such long latency loads (LLLs) are 

known to take a long time to resolve, and therefore typically cause the ROB to fill up and 

the processor to stall. Since the processor is doing no useful work otherwise, these stalls 

are an ideal time to use runahead mode. In truth, runahead can be entered at any time, 

including all the time in specialized hardware acceleration units[13, 14]. To my 

knowledge, however, when used in-processor runahead mode has only been used when 

there is a LLL blocking retirement at the head of the ROB. 
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2.2.2 Traditional runahead execution 

In this thesis, traditional runahead refers to the scheme proposed by Mutlu et al.[4], 

optionally with the efficiency improvements later proposed in Mutlu’s dissertation[6, 7]. 

Figure 2.4 shows a simplified traditional runahead CPU pipeline. This is largely the 

runahead scheme on which the runahead CPU model in this thesis is based, although 

there are certain aspects to modelling a functional runahead CPU which are not discussed 

in Mutlu et al.’s paper[22]. These nuances are discussed further in chapter 5. 

 

Figure 2.4: Diagram of a runahead CPU pipeline. Modifications to allow for traditional 

runahead execution are marked in gray. 

Traditional runahead begins when a load misses in last level cache1, at which point the 

processor stores a checkpoint of the architectural state. The checkpoint contains all 

architectural register values as well as the branch predictor’s branch history and return 

address stack (RAS). Of these, only the register values are critical to restoring the 

architectural state and ensure program correctness. Once the checkpoint is taken, the 

instruction at the head of the ROB (a LLL) is issued a forged result and its destination 

register(s) are marked as poisoned before the instruction is pseudoretired, marking the 

start of a runahead period. 

Once in runahead, the CPU works as usual, but must track poisoned data along the way. 

In the context of runahead, poison is equivalent to invalidity. An instruction using 

poisoned data is operating on invalid operands, i.e., the source operands do not contain 

data produced by valid program execution. In hardware, poison can be tracked by a bit 

for each physical register. Poison bits are propagated when instruction writeback. An 

instruction that sources poisoned registers will poison all its destination registers. Poison 

can be cleared if an instruction writes to a register or memory location without sourcing 

any poisoned operands, for example when writing or storing immediate values. 

To handle memory instructions, the store buffer or LSQ (whichever is used for store-to-

load forwarding) is augmented with a poison bit for each entry, allowing forwarded loads 

to become poisoned by stores in the buffer. Committed stores, however, are trickier. 

Because runahead is speculative, stores cannot be allowed to reach cache since memory 

 
1 The original paper specifies a miss in L2 cache, but L2 is last level cache in their system 

configuration. 
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is part of the committed architectural state of the system. Previous works had simply 

discarded these stores[5, 23], but one of Mutlu et al.’s major contributions is the addition 

of a runahead cache (R-cache)[4]. R-cache is a very small, on-chip cache that acts as a 

replacement for real cache during runahead. It exclusively stores the results of runahead 

stores. This way committed runahead stores can communicate their data and, if needed, 

propagate poison to dependent loads after they have exited the instruction window. 

When a load executes, it accesses R-cache in parallel with real cache, prioritizing the use 

of data returned by R-cache. 

Any loads executed during runahead are prefetched if their address is valid. If the source 

operands are poisoned, however, the address will be invalid, and the instruction is 

guaranteed to produce a bogus result. This is true for any instruction that sources 

poisoned operands, and so they can safely skip execution and be sent directly to commit 

for pseudoretirement. The only exception is store instructions, which will write a poison 

bit into R-cache if their address is valid. Control instructions pose an additional challenge, 

as poisoned source operands cause their outcome to be impossible to determine. In 

these cases, the processor must trust the branch predictor. If the branch predictor is 

incorrect, it causes a divergence point[4] after which the processor is on the wrong 

control path until runahead exits. 

When the LLL that originally caused the processor to enter runahead gets a response 

from cache, the processor begins to exit runahead. Mutlu et al. note that this can be 

handled in the exact same way as a branch misprediction squash. Because the runahead-

causing LLL was the oldest instruction in the window at the time of entry into runahead, 

squashing until that LLL will flush the entire pipeline. After the flush, the architectural 

checkpoint is restored by copying every saved architectural register value into a specific 

portion of the physical register file (PRF). The register renaming tables (RRTs) are then 

repaired by overwriting both the front- and backend RRTs with a fixed rename table that 

maps to the correct registers in the PRF. R-cache is invalidated entirely, and the 

checkpointed branch history and RAS are restored. Fetch is then redirected to the LLL 

that caused runahead, and the processor resumes execution in normal mode. 

Some simple efficiency improvements to the scheme were proposed by Mutlu in his 

dissertation[6, 7], and were motivated by the observation that the increase in processor 

performance came at the cost of a large increase in executed instructions. Three of these 

improvements are illustrated in Figure 2.5. To reduce the number of executed 

instructions, the processor may eliminate short, overlapping, and useless runahead 

periods. Short periods are eliminated by determining a cycle threshold after which in-

flight loads can no longer trigger runahead because they are expected to return soon. 

Overlapping periods are eliminated by preventing re-entry into runahead until the 

processor has fetched at least as many instructions as were pseudoretired in the last 

runahead period. Eliminating useless runahead periods is a more open problem for which 

Mutlu trained a usefulness predictor that determined whether a runahead period was 

likely to generate useful prefetches, and preventing runahead when it was predicted not 

to. 
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Figure 2.5: Examples of how Mutlu’s efficiency improvements[6, 7] can prevent entry 
into runahead, reducing the overall amount of instructions executed by the processor,  
improving efficiency and reducing overhead. 

Mutlu et al. already mentioned in their paper on traditional runahead[4] that delayed 

exits were being evaluated. To my knowledge, these results were never published. 

However, Mutlu later evaluated and discussed briefly the feasibility of delaying exit from 

runahead in his dissertation[6] and PhD defense[7]. He found that delaying exit after the 

RCL returns may improve performance if the processor prefetches additional LLLs, but 

that failing to do so degrades performance. Overall, they found it to degrade 

performance[6]. 

2.2.3 Filtered runahead 

Filtered runahead was proposed in 2015 by Hashemi and Patt[12]. They find that many 

static LLLs are not distinct from one another, i.e., they share the same PC. Motivated by 

this, they filter the runahead instruction stream to only the chain of instructions which 

generates addresses for the LLL blocking the ROB. This dependency chain (DC) is then 

stored in a runahead buffer which replaces the front-end entirely during runahead mode. 

A small DC cache is added to skip chain generation for future instances of the same static 
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load instruction. Figure 2.6 shows how a traditional runahead CPU pipeline is altered 

further to enable filtered runahead. 

 

Figure 2.6: Diagram of a filtered runahead CPU pipeline. Modifications compared to 
traditional runahead are marked in gray. The runahead buffer replaces the fetch-decode 
frontend entirely during runahead, indicated by the hatching. 

The core of filtered runahead are the dependence chains executed during runahead. 

These chains are generated on entry into runahead, and generation begins by looking for 

a younger instance of the LLL that is blocking the ROB. If one is found, the entire DC of 

the LLL must be present in the ROB. The processor then enqueues the younger LLL’s 

physical source registers in a source register search list (SRSL)[12]. It then iteratively 

searches the ROB for producers of each register in the SRSL, enqueuing new source 

registers for each producer found and adding them to the DC. Chain generation ends 

when the SRSL is empty, or the chain exceeds a certain maximum length (32 instructions 

in Hashemi and Patt’s paper[12]). Chains that exceed the maximum length are 

discarded. 

Generated DCs are stored in the DC cache, which contains the decoded microoperations 

(uops) of the DC. The chain cache is indexed by the PC of the LLLs and uses a LRU 

eviction policy. When the processor enters runahead, the chain cache is checked for a 

matching DC. If found, DC generation is skipped, and the stored chain is moved into the 

runahead buffer. 

While in runahead, the runahead buffer replaces the front-end entirely if it contains a 

dependence chain, meaning fetch and decode can safely be disabled through clock or 

power gating. The runahead buffer feeds decoded uops from the current DC directly into 

the rename stage, after which the uops flow through the pipeline as usual. Once the 

chain is exhausted, the buffer loops back to start and begins supplying uops from the 

beginning of the chain again. If the runahead buffer does not contain a chain at the start 

of runahead, the processor falls back to traditional runahead. 
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2.2.4 Precise runahead 

Precise runahead (PRE)[10] is a state-of-the-art runahead scheme for processors without 

vector hardware. The scheme was published in 2020 by Naithani et al. and greatly 

improves performance and efficiency through eliminating much of the entry and exit 

overhead of runahead. It does this with a novel instruction filtering and resource 

reclamation mechanism, and by using only free resources during runahead. Figure 2.7 

shows the pipeline modifications necessary to support precise runahead. 

 

Figure 2.7: Diagram of a precise runahead pipeline. Modifications compared to a 

traditional runahead pipeline are marked in gray. The processor does not use the commit 
stage for runahead work. Note that the runahead cache and poison bits are removed. 

PRE enters runahead once the ROB is full, and executes only the dependence chains of 

LLLs causing full-ROB stalls. These LLLs are called stalling loads, and PRE names their 

dependence chains stalling slices. Compared to filtered runahead the chains are not 

cached, and the frontend is not replaced during runahead. Instead, PRE introduces a 

stalling slice table (SST) between the decode and rename stages. The SST contains the 

PCs of instructions in stalling loads’ dependence chains. Slices are iteratively generated 

and placed in the SST through the decode and rename stage, whose RRT is modified to 

contain the PC of each register’s previous producer. Stalling loads are placed in the SST, 

and whenever an instruction is decoded, it checks the SST. If there is a hit, the frontend 

RRT is looked up to find the producer PC of each of the instruction’s source registers. This 

PC is added to the SST. The SST is limited in size and uses a LRU eviction policy, allowing 

new slices to populate the SST as the program progresses. SST entries do not associate 

with any instructions or slices, and multiple slices can fit in the SST at once. 

While in runahead, the processor uses the SST to filter incoming instructions after the 

decode stage. If the decoded instruction does not hit in the SST, it is not allowed to 

progress through the pipeline. Slice instructions that make it past decode only use 

unused registers for rename. Runahead instructions in PRE are discarded immediately 

after execution. PRE introduces a ROB-like structure, the precise register deallocation 

queue (PRDQ), to free registers after execution. The PRDQ stores information about old 

physical destination registers to be freed.  Instructions are inserted into the PRDQ in-

program-order and removed in-order when they have been executed and reach the head 

of the PRDQ. Any PRDQ entries are removed when the processor exits runahead. 
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One notable feature of PRE is that this scheme allows the processor to continue executing 

normal instructions while the processor is running ahead (if able). The ability for the SST 

to store multiple slices also means prefetch coverage is increased over the somewhat 

similar filtered runahead scheme. PRE also stores decoded runahead instructions in an 

extended uop queue between decode and rename, allowing for instruction reuse when 

the processor eventually exits runahead. 

As with traditional runahead, PRE exits runahead when the stalling load returns. Because 

resources were never deallocated for runahead execution, the frontend is simply 

redirected to the checkpointed PC, which is the instruction immediately past the full ROB. 

The RRT and RAS must still be restored from the checkpoint, however. Note that PRE 

does not touch the ROB, so the processor can simply retire the front of the ROB as usual 

to continue execution while the front-end catches up. 

2.2.5 Continuous runahead 

Continuous runahead (CRE)[14] will only be briefly explained as it is a hardware 

acceleration scheme, and its relevance to this thesis is limited to its findings about 

runahead’s coverage. The scheme was published by Hashemi et al. in 2016. The paper’s 

main contribution is moving the filtered runahead scheme to a dedicated hardware 

acceleration unit called the continuous runahead engine. The processor communicates 

dependency chains of LLLs to the runahead engine, which continuously executes the 

chains in a loop to prefetch loads. 

The development of CRE was motivated by the finding that traditional runahead has poor 

prefetch coverage, only reaching about 13% of runahead-reachable cache misses[14]. 

Hashemi et al. define runahead-reachable misses as those whose source data is available 

on-chip at issue. In other words, a runahead-reachable miss could have been prefetched 

if it had been executed in runahead. When the runahead engine is installed in the 

memory controller, prefetch coverage increases to 70% of reachable misses. They find 

that the low coverage of these misses is largely due to each traditional runahead interval 

lasting for a short time. CRE’s coverage improvement comes from its ability to run ahead 

constantly, something which is not reasonable to do in the processor core.  

2.2.6 Vector runahead 

Vector runahead (VRE)[11, 19, 20] is the current state-of-the-art runahead scheme for 

processors with vector hardware. Naithani et al. find that many indirections occur in 

loops with predictable outcomes for each iteration. They capitalize on this by unrolling 

loops into vector instructions (vectorizing) to simultaneously issue large amounts of loads 

during runahead. Doing this enables runahead to resolve indirections effectively, 

something previous schemes struggled with. 

The vectorization mechanism of VRE depends on stride detection to both determine when 

LLLs’ dependency chains can be vectorized, and what offset to use when vectorizing. To 

find this offset, a prediction table[24, 25] is used to track the delta between memory 

addresses of the same load PC. This detects strides and tracks the confidence that the 

stride is accurate. A prediction table entry with high confidence indicates a striding load, 

which allows VRE to vectorize the load chain in runahead. Lastly, a terminator PC[11] is 

stored to determine the end of the load chain. 

VRE enters runahead when the ROB is blocked by a load, and the ROB is full or the IQ is 

80% full. If the blocking load is not vectorizable, PRE[10] is used. Vectorization is done 
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by injecting 512-bit vector loads into the pipeline using the LLL’s memory address and 

the detected stride. Any arithmetic operations or producing loads in the LLL’s dependency 

chain are also vectorized. To handle poison, a taint vector[11] is used to track it and 

mask vector lanes during execution. Control flow instructions are vectorized once per 

iteration and actioned in the form of a lane mask where all lanes that take the same 

direction as the first lane are executed. Register resources are handled by a deallocation 

queue similar to the one used in PRE[10]. 

Unlike previous schemes, VRE does not exit runahead when the original LLL returns. It 

instead relies on four separate conditions which can terminate runahead. However, in 

some circumstances VRE can continue past these. VRE dynamically computes the amount 

of loop iterations to unroll and execute in a process called vector unrolling[11] which 

works like this: One iteration of the loop is executed first. Then, a vector load is issued 

for the next N=8 stride values in the sequence2. This process is then repeated a variable 

number of times, U. Ultimately, the loop is unrolled U times, each of which contains N 

values to load. This means that runahead issues N times U iterations worth of loads in 

one runahead period before the core is allowed to resume normal execution. If N=8 and 

U=8, VRE will unroll the loop into 8 vector lanes 8 times, totaling 64 loads in a runahead 

period. This exit policy is important for VRE’s performance. Compared to an eager exit 

policy, it allows VRE to achieve a speedup of x1.79 compared to x1.69[11]. They also 

note that a similar exit policy for PRE increased performance by a further 3.5%. The 

speedup that VRE gains from a delayed exit is therefore mostly due to the sheer scale of 

its increase in MLP. 

2.2.7 Performance of previous runahead schemes 

Traditional runahead execution achieved a 22% IPC improvement over a no-prefetching 

baseline, a similar performance to a machine with triple the ROB size[4]. A hybrid filtered 

runahead + traditional runahead policy managed a 21% IPC improvement over a more 

modern no-prefetching baseline[12]. PRE is simulated on a model based on the modern 

Intel Skylake processors and improves performance by 38.2% over a no-prefetching 

baseline[10]. VRE speeds up execution by 79% over an OoO core with a stride prefetcher 

and 49% over PRE[11]. Vector runahead is so effective that it sometimes closes in on full 

MSHR saturation, with x2.3 MSHR utilization over OoO and x1.2 over PRE. 

 

 
2 Assuming AVX-512. In general, N is the number of words that can fit in a vector. 
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Although Mutlu originally found that delayed exits degrade performance[6], the work 

done in this thesis is primarily inspired by later findings by Hashemi et al. that runahead 

achieves poor coverage due to its short time spent in runahead mode[14], and VRE’s 

performance gains from preventing exit until a predetermined amount of work is 

performed. These suggest that runahead, in general, may gain additional performance 

benefits from delaying exit when there is additional MLP to be extracted. 

Based on this, a traditional runahead scheme was implemented in the gem5 

simulator[15]. Multiple metrics were added to investigate whether a delayed exit policy 

could potentially improve performance. Initial experiments with the traditional runahead 

model revealed evidence of runahead stutter, in which the processor frequently switches 

in and out of runahead mode because it failed to prefetch critical loads in the previous 

runahead period. Figure 3.1 shows the distribution of lengths of interim periods in terms 

of retired instructions. An interim period is a normal mode period that begins after an 

exit from runahead and lasts until runahead is re-entered. The figure shows that in a 

traditional runahead processor, less than 150 instructions are retired in 34.2% of all 

interim periods, and less than 50 instructions are retired in 12.8% of all interim periods. 

The discovery of runahead stutter was the main motivation for the commitment to study 

runahead exit policies, with the goal to improve performance through developing a 

delayed exit policy capable of eliminating runahead stutter. 

3 Motivation for the thesis 
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Figure 3.1: Instructions retired in the interim period between two runahead periods. 
Across all benchmarks, 34.2% of all interim periods retire less than 150 instructions 
before re-entering runahead, 23.7% retire less than 100 and 12.8% less than 50. 

 

 

Figure 3.2: Example code of a loop accessing a buffer at a hashed index. 

Figure 3.2 shows example code that may experience runahead stutter. In this case, the 

same static load instruction produces multiple dynamic instances that miss in cache 

because the hash is unpredictable. Such situations have already been shown to be a 

leading cause of full-ROB stalls[10, 12, 14]. Hardware prefetchers struggle with such 

loops due to the unpredictability of the hash. Runahead, however, is well suited for these 

situations for two reasons. For one, no iteration depends on another, meaning runahead 

does not get stuck on dependency-related issues like poison or other cache misses to 

prefetch further into the future. Second, and most importantly, it has access to processor 

resources, allowing it to compute the hash and accurately prefetch the correct indices of 

the buffer. However, runahead’s usefulness is limited because it exits as soon as the first 

cache miss returns. The processor then catches up to the work done in runahead and 

promptly misses in cache again, re-entering runahead. This cycle repeats multiple times 

until the loop completes, as shown in Figure 3.3. The problem is exaggerated if the hash 

computation is expensive because runahead cannot quickly compute the indices. 

for (int i = 0; i < N; i++) 

 y += buffer[hash(i)]; 
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Figure 3.3: Illustration of processor behavior when it experiences runahead stutter. 

Naithani et al.[11] have, in essence, implemented a minimum work policy in which the 

processor is not allowed to exit runahead until a specific amount of work has been done. 

The question I would like to answer is if similar policy would have a positive performance 

impact on traditional runahead schemes, and if alternative delayed exit policies have the 

potential to increase processor performance. If so, similar ideas could be applied to other 

runahead schemes to improve their performance. 
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4.1 Choice of simulator 

The choice of simulator is justified in greater depth in the project report[22] preceding 

this thesis and submitted for TDT4501, but is summarized in short here. SMTSIM[26], 

Multi2Sim[27], Scarab[28], ChampSim[29], Sniper[30] and gem5[31] were evaluated as 

potential simulators for the project based on previous use in literature[8, 10-14, 21] or 

recommendations[32]. 

Of these, SMTSIM, Multi2Sim and Scarab were discarded as they were either outdated, 

had their development ceased, or both[22]. ChampSim is purpose built for championship 

prefetcher simulations, and therefore discarded as too simple for a core simulation. The 

quality of documentation and apparent ease of development was heavily weighed, and 

ultimately gem5 was chosen over Sniper due to its higher simulation fidelity and better 

documentation. 

4.2 The gem5 simulator and the O3CPU model 

The gem5 simulator[31] is a computer architecture simulator written in C++. The 

simulator has a modular design that allows mixing and matching various simulation 

components as defined by simulation configuration scripts written in Python. The 

simulator also has a powerful statistics engine that allows developers to rapidly 

implement new metrics in their models, including automatically computed histograms, 

averages, distributions, vector metrics and more. Powerful debugging tools are available, 

ranging from print traces to full debugger support for both the simulator and simulated 

programs. 

Everything in gem5 is executed in an event loop, which allows it to decouple simulated 

time from real time, maintain different clock domains, deschedule idle systems to speed 

up simulation, and easily model latencies. By default, the event loop runs at a frequency 

of 1THz, giving the simulation a picosecond resolution. For example, a 2GHz core 

schedules its cycles for execution once every 500 simulation ticks. 

Out of the box, gem5 features a variety of simple and complex core models that fit within 

various simulation paradigms. In this project, I used the O3CPU model[33] for baseline 

simulations, as well as a basis for the implementation of runahead. The following 

description of the O3CPU model is a direct quote from this thesis’s preceding 

specialization project report[22] (with fixed citations): 

“The out-of-order core model provided by gem5, the O3CPU, provides an 

execution-driven simulation ”loosely based on the Alpha 21264”[33] that uses 5 

pipeline stages - fetch, decode, rename, issue/execute/writeback (IEW) and 

commit. In contrast to many other simulators[27-30], gem5’s O3CPU model 

performs execute in the execute stage. The model is ISA agnostic and faithfully 

models many microarchitectural intricacies, such as pipeline stage bandwidth, 

functional unit contention and branch/memory order misspeculation.” [22] 

  

4 Simulation infrastructure 
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I now describe how the O3CPU model functions stage-by-stage. Although gem5 supports 

multiple hardware threads, only single-threaded workloads were used in this project. 

Therefore, mechanisms to handle multiple threads are not explained. Some minute 

details are skipped if not crucial to how the stage functions. 

4.2.1 Fetch and time buffers 

Figure 4.1 shows a simplified timeline of the work fetch performs in a single cycle. The 

fetch stage is responsible for fetching static instructions from the instruction cache (I-

cache) according to the PC. Although not accurate to real systems, fetch also decodes 

instructions and builds the dynamic instructions that are used in the remainder of the 

pipeline[33]. It does this using a decoder which is fed bytes from a fetch buffer 

containing un-decoded data from I-cache. 

 

Figure 4.1: Work done by fetch in a typical cycle. I-cache accesses and instruction 
decoding are mutually exclusive, only one can be performed in a single cycle. 

At the beginning of a cycle, fetch begins by reading any signals from later stages. If 

decode signals that fetch must block, it switches state and blocks until it reads an 

unblock signal later. Both commit and decode may also send a squash signal including 

information about the PC to reset to. If asked to squash, fetch clears a fetch-to-decode 

queue (FTDQ) containing instructions to be sent to decode and resumes fetching at the 

signaled PC on the next cycle. Any outstanding I-cache requests are dropped. At the end 

of the signal checks, fetch checks if there are any outstanding I-cache misses, and blocks 

if there are. 

After the signal check, if fetch is running, the stage will check if the fetch buffer is invalid 

or if the current fetch address has crossed an instruction boundary. If so, it issues a fetch 

to I-cache for the PC currently being processed. As with all gem5 memory requests, this 

requires address translation before the access can take place, so fetch will wait until 

translation is finished. Once finished, fetch sends the access packet to I-cache and waits 

for a response, which it copies into the fetch buffer. If the address translation faulted, 

fetch constructs and injects a no-op to carry the fault to commit where it will be handled. 

On cycles where the fetch buffer contains valid data, it attempts to build instructions 

while there is remaining fetch bandwidth and space in the FTDQ. This is done by feeding 

bytes from the fetch buffer into a static instruction decoder. These microoperations are 

then wrapped into dynamic instructions containing additional information used by the 

processor in the remainder of the pipeline such as a global, monotonically increasing 

sequence number, the associated macrooperation, instruction state, register information 

and memory request state. The branch predictor is then consulted to update the next PC 

of fetch. A predicted branch here may halt construction of additional instructions to allow 
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fetch to begin fetching from the new predicted PC. Note that because fetch decodes 

instructions before passing them over, the branch predictor has access to information it 

normally would not, such as instruction type. Certain branch predictor models utilize this 

information[34], although it is not clear to me exactly how this affects overall processor 

model performance. 

When instructions are built, they are placed in the FTDQ. At the end of the cycle, 

instructions are read out of the FTDQ queue with bandwidth equal to the decode width 

and placed in a time buffer[34] to decode. In gem5, time buffers are circular queues that 

are typically advanced at the start of each cycle. Placing an element at index 0 is 

equivalent to inserting data in the “present”. When the buffer advances, the data at each 

index moves back by one in practice. Accessing an element at index -N is therefore 

equivalent to reading data that was inserted N cycles “in the past”. Thus, time buffers 

enable latency-bound communication between pipeline stages. They are heavily used in 

the O3CPU model and are the core of all inter-stage communication. 

4.2.2 Decode 

Decode is a rather simple stage because instruction decoding is already done at fetch. Its 

function in the O3CPU is to perform simple preprocessing of certain instructions and to 

act as a bandwidth-restricted choke for instructions passing through the pipeline. Figure 

4.2 shows the work done by decode. 

 

Figure 4.2: Work done by decode in a typical cycle. 

Decode starts each cycle by reading instructions from the time buffer from fetch and 

placing them into instruction buffers. A signal read and state update is then performed. 

Rename may signal a block, and commit may signal a squash, which simply empties the 

instruction buffers. 

If decode was not blocked or set to squash, it reads instructions from its buffers up to 

the decode bandwidth. It then does some simple preprocessing. Instructions with no 

source operands are immediately flagged as issuable. PC-relative branches are also 

resolved at this stage and trigger a squash in fetch and decode on a mispredict. If a non-

branch instruction was predicted as a branch, this is detected here, triggering a squash. 

Any processed instructions are then placed in a time buffer to the rename stage. 
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4.2.3 Rename, the RRT and free lists 

Rename utilizes a frontend RRT to translate architectural source registers to their 

corresponding physical register, and, for each architectural destination register, renames 

it to an available physical register on a free list. A scoreboard[34] is used to mark 

registers that are known to be ready as such. Figure 4.3 shows the work done by 

rename. 

 

Figure 4.3: Work done by rename in a typical cycle. 

Each rename cycle begins by reading instructions from decode. Signals are then read 

from IEW and commit to determine if rename should block or squash. Squashes empty 

the instruction buffers and consults a rename history buffer to undo any changes to the 

RRT up to and possibly including the squashed instruction’s sequence number, depending 

on the nature of the squash. In addition, rename is signaled information about available 

issue queue (IQ), load-store queue (LSQ) and ROB slots. If the IQ or ROB are full, 

rename blocks as every instruction will be inserted into these. 

 

Figure 4.4: The structure of the O3CPU’s register rename tables. Each RRT contains one 
individual rename map for every type of register, which in turn contains a pointer to a 

free list. 

While there is available rename bandwidth and instructions to rename, instructions are 

read out of the incoming instruction buffers to rename their registers. Load and store 

instructions must additionally check if there is free space in the load/store queues before 

they are renamed. Architectural source registers are then renamed by a RRT lookup. The 

RRTs used by the O3CPU are structured as a unified map containing multiple rename 

maps for each register type, as shown in Figure 4.4. At the same time, rename performs 

a lookup in the register scoreboard, which stores information about register readiness. 

Registers are set in the scoreboard on writeback and unset when used in a renaming. 

Any source registers set in the scoreboard are immediately marked as ready in the 

dynamic instruction information. Destination registers are then renamed by asking the 

RRT for renames on the architectural destination registers. The RRT dequeues a free 

physical register, updates the corresponding rename map and returns the renamed 

register with which rename updates the dynamic instruction information and unsets the 

register on the scoreboard. Finally, a history entry containing the instruction’s sequence 

number, architectural register, its previous mapping, and new mapping are stored in the 

history buffer for use in squashes. 

At the end of the cycle, all renamed instructions are sent to IEW through a time buffer. 

Rename then reads a signal from commit containing the sequence number of the last 
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committed instruction’s sequence number. Any history buffer entries with a younger 

sequence number correspond to committed state and are therefore removed from the 

rename history. 

4.2.4 Issue, Execute, Writeback 

Issue, Execute, Writeback (IEW) is the most complex stage of the O3CPU and is 

responsible for instruction scheduling, execution and writeback handling. As seen in 

Figure 4.5, the order of work is actually execute, writeback, issue. For the sake of clarity, 

I describe the stage in the same order as in the stage’s name. An in-depth overview of 

IEW’s structure is shown in Figure 4.6. 

 

Figure 4.5: Work done by IEW in a typical cycle.  

Before explaining the instruction flow through IEW, it’s helpful to know how gem5 

performs instruction execution. Every instruction in gem5 is responsible for its own 

execution, and has an associated operation class[34] (opclass). Each functional unit (FU) 

has a set of capabilities that describe which opclasses the FU can execute. FUs are 

grouped together into FU pools, which act as an interface through which the processor 

can utilize the FUs. The pool provides information on opclasses that can be executed, FU 

availability per opclass and their execution latencies. When an instruction is issued in the 

O3CPU, the processor grabs an available FU from the FU pool and schedules a FU 

completion event on the event loop. The event is processed after a time corresponding to 

the execution latency of the FU, in which the instruction is moved from the issue stage to 

the execute stage. Execute then invokes the execution routine of the instruction, 

including writing any results to the physical destination registers. 

As with previous stages, IEW begins its cycles by reading incoming instructions from 

rename. Signals are then read from commit. If a squash was signaled, all instruction 

buffers are emptied, and the signal is propagated to the IQ and LSQ. After checking 

signals, IEW dispatches any instructions in its incoming buffers to the IQ while there is 

remaining dispatch bandwidth and space in the IQ. If the IQ becomes full, IEW blocks 

and sends a block signal to rename. If the instruction being dispatched accesses 

memory, it is also added to the LSQ. When instructions enter the IQ, they update the 

dependency graph[34], which maps physical registers to their producing instruction and 

a list of dependents. The graph is used for wakeup. 

Issue is wholly handled by the IQ. IEW invokes the IQ to issue any ready instructions to 

the appropriate functional units. The IQ contains multiple ready lists, one for each of the 

operation classes that an instruction can have. An age order list[34] (AOL) is used to sort 

the individual ready lists according to the oldest instruction in each list. The head of the 

AOL contains the opclass for which the corresponding ready list has the oldest ready 

instruction in the entire IQ. When the IQ attempts to issue, it will grab an opclass off the 

AOL, then pop an instruction off the corresponding ready list and attempt to issue it to an 

available FU. In other words, the IQ always attempts to schedule the oldest instruction. 
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Once the FU completion event scheduled by the IQ is processed, the instruction is sent to 

execute through a time buffer with latency equal to the issue-to-execute latency. 

Instructions are read out of the time buffer from issue to execute and executed. Most 

instructions immediately complete execution here, but memory instructions are handed 

to the LSQ as they require additional handling compared to other instructions. The LSQ 

initiates the memory access for the instruction and returns any faults. If the translation is 

delayed due to a page table walk, or the instruction couldn’t execute due to a lack of 

available cache ports, the instruction is placed in a special deferred or blocked instruction 

queue and added back to the ready list later for re-execution. The LSQ may report a 

memory order violation, which also triggers a squash. Control instructions are resolved at 

this point and may trigger a squash if mispredicted. Because instructions are in the ROB 

at this point, they require extra handling. These squashes are therefore signaled to 

commit, which handles the squash. Executed non-memory instructions are immediately 

placed in a time buffer to commit but are inserted in “the future” if writeback bandwidth 

would be exceeded. This way, writeback handling is guaranteed to be performed before 

commit reads the instructions. 

The amount of time needed to complete a memory access depends on the simulated 

system’s memory configuration, which schedules relevant events as data packets travel 

through the memory hierarchy. Because of this, memory instructions can take a variable 

number of cycles to execute and are held in the LSQ until their memory accesses return. 

Once the LSQ is notified of a memory access completion, it finally invokes an access 

completion routine on the associated memory instruction using the data packet received 

from memory to writeback any results. The instruction is then placed in the time buffer 

to commit in the same way any other instruction would be. 

Stores are an exception to this instruction flow because stores cannot be allowed to write 

their data to memory before they are committed state. The LSQ will only initiate address 

translation when a store first goes through IEW. To write data, they must first propagate 

to the head of the ROB and become committed. Once they are, commit signals this 

information back to IEW, which prompts the LSQ to send the write packets to cache. 

Writeback to the register file happens on instruction execution, so the only function of 

IEW’s writeback mechanism is to update the register readiness state and to wake any 

dependent instructions. Writeback is performed after execute and reads outgoing 

instructions in the time buffer to commit. The IQ is notified of the instruction completion 

and wakes any dependents using the dependency graph, adding them to the ready list if 

all source registers are ready. All destination registers are then set on the register 

scoreboard, including the IQ’s internal scoreboard. 
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Figure 4.6: Structural diagram of the O3CPU model’s IEW stage. The IQ contains all 
instructions due for execution and maintains multiple ready lists that use a dependency 

graph and internal register scoreboard to determine instruction readiness. FU bandwidth 
is modeled by a pool of available FUs for each opclass. IEW also features a memory 
dependence unit[35] for predicting memory dependencies.
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4.2.5 Commit 

Commit is, in addition to instruction retirement, responsible for handling faults, interrupts 

and squashes that are detected after insertion into the ROB. Figure 4.7 shows the work 

done by commit. 

 

Figure 4.7: Work done by commit in a typical cycle. 

Before beginning to commit, the stage checks for any interrupts. If one is detected, it is 

processed at the end of the cycle while a trap squash is scheduled after a configurable 

latency. After the interrupt check, any squashes are handled, including scheduled trap 

squashes and branch mispredict or memory order violation squash signals from IEW. A 

squash causes commit to initiate a bandwidth-restricted squash in the ROB. At the same 

time, commit sends a squash signal to all previous stages through a time buffer 

containing information about how far back to squash. 

If the processor isn’t squashing, commit then considers the head of the ROB for 

retirement. If the instruction is flagged as committable, the dynamic instruction data is 

used to update the backend RRT containing architectural register mappings. The 

committed PC state is also updated, then the instruction is retired from the ROB, marking 

its completion. Instructions with a fault are handled here by invoking the fault, then 

scheduling a trap event for later which will drain the pipeline through a trap squash. This 

process repeats until commit’s bandwidth is exhausted, the ROB is empty, or the head of 

the ROB is not ready to commit. 

At the end of the cycle, commit reads incoming instructions from IEW and marks them as 

committable. This includes stores, which are later committed but sent back for writeback.  
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The runahead execution model used in this thesis is a traditional runahead execution 

model based on gem5’s O3CPU model. The source code is structured as an extension to 

gem5 version 20.0.0.2[34]. The code is open source and freely available on GitHub[15]. 

A major design decision was to keep the runahead CPU model decoupled from the base 

simulator code of gem5. This was done because in theory, the modifications required to 

support runahead schemes are typically confined to the CPU. I also hoped this would 

simplify any further work based on the model by confining all runahead-related code in 

one place. In the end, it turned out to be limiting as it became difficult to work with 

certain swappable components like the branch predictor without compromising the 

structure of the project. Suggestions to solve this issue are discussed in chapter 9. 

In general, attempts have been made to support hardware threads in the runahead code 

where possible. However, this implementation has not been tested with multiple 

hardware threads because all test programs and benchmarks utilize a single thread. To 

test the implementation before using it on the SPEC2017 benchmarks, a test benchmark 

performing matrix multiplication was written. The source code of this test program is 

attached in appendix A. 

This chapter details the modifications made to the O3CPU to support runahead execution, 

as well as the runahead optimizations that were implemented. I also explain the 

implementation of the four delayed exit policies used in this study. 

5.1 Detecting LLLs and entering runahead 

In gem5, every memory request associated with a dynamic load instruction tracks access 

depth[34]. This depth starts at zero and is incremented by one every time the request 

misses in cache. Access depth is used to determine when a load is considered to be a 

LLL. A configurable parameter called the LLL depth is added to the CPU model. If the 

access depth of a load instruction’s memory request equals or exceeds the LLL depth, it 

is considered a LLL. For example, a request with access depth 0 on completion is a hit in 

L1 cache. A request with access depth 2 has missed in L1 and L2 cache. By default, the 

LLL depth is set to 3 such that a miss in L3 cache qualifies as a LLL. Because the time 

taken by caches to process a request is modeled, access depth changes dynamically as 

the data packet travels down the memory hierarchy. Therefore, some time passes before 

the CPU can confirm that a load is a LLL. 

When commit inspects the ROB head and finds that it is not ready to commit, it checks if 

the instruction is a load with an active memory request. If so, the access depths of any 

associated memory requests are checked. When they exceed the LLL depth, the load is 

considered a LLL, and commit will attempt to enter runahead. Entry may be prevented by 

the CPU depending on certain conditions, as described later in section 5.6. 

If entry into runahead is allowed, the processor instantly checkpoints all architectural 

registers and the last committed PC. As noted by Mutlu et al.[4], performance loss due to 

checkpointing can, in theory, be avoided by incrementally updating the checkpoint when 

instructions are retired. For this reason, no checkpointing latency is modelled as it 

5 Implementing delayed exit runahead 

https://github.com/halworsen/gem5-runahead
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simplifies the implementation. The processor then flags itself as “in runahead” and marks 

every uncommitted instruction in the instruction window as runahead. Every line in the 

runahead cache is then invalidated, and the runahead-causing load (RCL) is marked as 

poisoned. The LSQ then schedules a fake writeback event typically used for store-to-load 

forwarding, which allows the RCL to drain from the pipeline and unblock the ROB. Once 

this is done, the processor is in runahead. 

5.2 Poison propagation 

As mentioned in section 5.1, the RCL is poisoned on entry into runahead. In my 

runahead model, poison is tracked as a flag on dynamic instructions as well as on every 

physical register. If a runahead instruction is flagged as poisoned during writeback, every 

physical destination register will be marked as poisoned. On the other hand, if it was not 

poisoned, the poison flag is cleared from the register. Instructions are marked as 

poisoned when they issue to a FU and any source register is poisoned. Waiting until issue 

to check for poison guarantees that any poison has been propagated to source operands 

by their producers. 

Poisoned instructions are skipped when encountered at execute. Stores are an exception 

to this rule because they need to propagate poison through the runahead cache. 

Therefore, they are allowed to initiate address translation. If this produces a fault, they 

are skipped like any other instruction. Otherwise, they are allowed to execute as detailed 

in section 5.3. 

5.3 Runahead cache and memory instructions 

Memory instructions are the only instruction type to receive special treatment in 

runahead. Load execution must be amended to perform R-cache accesses in parallel with 

real cache accesses, and stores cannot be allowed to write speculative data to real 

memory. Changes to instruction execution are largely confined to the LSQ and LSQ unit 

code, while the runahead cache is implemented as a separate structure. 

Runahead cache is implemented as a simplified direct mapped cache. The size of the full 

R-cache is configurable and specified in terms of usable storage. Cache blocks are stored 

in a C++ standard library vector. Each cache block contains a tag, valid bit, poison bit 

and a data field. Block size, index masks and tag extraction bit shifts are computed 

dynamically from the R-cache size. 

The way R-cache handles memory accesses is greatly simplified compared to gem5’s 

typical caches. Any lookups and accesses are processed immediately upon receiving the 

packet, leaving the LSQ to schedule any packet handling latency. When a packet is 

passed to R-cache, it constructs a copy of the incoming packet to update and send back, 

then uses it to perform either a read or write operation, depending on the packet type. 

On success, R-cache returns the copied packet, and on failure it returns a null pointer. To 

process packets, the index and tag are extracted from the packet’s address field and 

used to find the associated cache block. 

If the packet is a read, R-cache performs a lookup to check if the cache block’s tag 

matches, and if the valid bit is set. If either of these checks fail, the access immediately 

fails. If the packet reads a poisoned cache block, the memory request state associated 

with the packet is updated to indicate that the packet is poisoned. On success, the data 

is copied from the cache block into the data packet. 
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If the packet is a write, no lookup is required since R-cache is an isolated memory 

system. In addition to writing data, write packets always update the cache block tag and 

set the valid bit. The memory request state is then checked for a poison flag to 

determine if the cache block should be poisoned or if the poison bit should be cleared. 

Any write packets sent to R-cache are always successful. 

Load instructions are modified to access R-cache through the LSQ only when a packet 

was successfully sent to real cache. The success or failure of R-cache lookup resolves 

instantly and updates the load instruction’s memory request state to track any expected 

R-cache packets separately from real cache packets. If the access was successful, the 

LSQ schedules a cache response for one cycle later. If the memory request is tracking at 

least one R-cache packet, the instruction will only accept packets from the list of tracked 

R-cache packets. This causes loads to only use R-cache responses and discard any 

replies from real cache. If commit encounters a valid load at the head of the ROB, it will 

unblock the ROB the same way as with the RCL. Store instructions are never allowed to 

send data to real cache. Instead, they only send packets to R-cache, which always 

succeed. 

5.4 Architectural state checkpointing 

The architectural state checkpoint is maintained as a separate structure in code, and only 

stores checkpointed register values. On entry into runahead, every architectural register 

and any miscellaneous registers defined by the ISA are read and saved in the checkpoint. 

To repair the RRTs after runahead, both the front- and backend RRTs are restored to 

their default state after runahead exits. After reparation, the architectural checkpoint is 

used to copy checkpointed values into the register file using the repaired RRTs. This is 

functionally equivalent to the checkpoint restoration mechanism in Mutlu et al.’s 

traditional runahead scheme[4]. The free list and register scoreboard are also reset to 

make every physical register available and ready. 

A technical limitation of how the source code is structured turned out to be that accessing 

the branch predictor state is difficult. For these reasons, the branch predictor history and 

RAS are not checkpointed. 

5.5 Exiting runahead and exit policies 

Any time a data packet is received from real cache, the processor checks if the packet is 

intended for the RCL. If so, commit is immediately notified that runahead is safe to exit. 

Commit may then set a runahead exit flag depending on which exit policy the CPU model 

is configured to use. An alternative trigger for runahead exit is if a page fault occurs in 

fetch. Runahead mode does not handle faults, so this is an unrecoverable situation from 

which the CPU model simply exits runahead. 

Exit from runahead is triggered on the first cycle after commit’s runahead exit flag is set. 

A runahead exit is for the most part handled in the same way as a memory order 

violation squash, which squashes all instructions up to and including the RCL. Because 

the RCL was the oldest instruction in the instruction window when runahead was entered, 

this squash causes the entire pipeline to be drained and fetch to reset to the PC of the 

RCL. At the same time as the squash is started and signaled to preceding stages, the 

CPU flags itself as not in runahead. Commit then sends a signal to itself through a time 

buffer which will cause it to restore state from the architectural state on the next cycle. 

Architectural state is restored by resetting and repairing the RRTs, then restoring register 
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values, all as described in section 5.4. Finally, all poison is then cleared from the register 

file. 

In my runahead model, I have implemented four different exit policies, three of which 

are delayed exit policies: 

1. Eager exit – The traditional exit policy in which runahead exits immediately after 

the RCL receives a cache response. 

2. Minimum work – The processor is forced to pseudoretire a minimum number of 

instructions before it is allowed to exit runahead. 

3. No Load Left Behind (NLLB) – Runahead exit is delayed until all valid loads in 

the ROB are sent. 

4. Dynamic delayed exit – An exit policy that dynamically decides whether to 

delay exit based on the presence of nearby loads. 

Regardless of the runahead exit policy, commit checks if the runahead exit flag was set. 

If not, a runahead deadline event is scheduled for a configurable number of cycles later. 

When the deadline event is processed, it forces the processor to exit runahead, thereby 

acting as a dead man’s switch for delayed runahead periods which fail to exit within a 

reasonable amount of time. 

I now describe the implementation of each of the delayed exit policies. 

5.5.1 Minimum work 

The minimum work exit policy forces the processor to pseudoretire a minimum number of 

instructions before allowing the processor to exit runahead. This is implemented using a 

pseudoretired instruction counter which is compared to a minimum work parameter. 

Whenever commit pseudoretires an instruction in runahead mode, it increments the 

counter. Commit checks the number of pseudoretired instructions every cycle while in 

delayed runahead. If enough instructions have been pseudoretired, the runahead exit 

flag is set, causing runahead to exit on the next cycle. It is possible for the processor to 

have pseudoretired the minimum number of instructions before the RCL returns, in which 

case minimum work behaves the same as an eager exit. 

5.5.2 No Load Left Behind 

In the No Load Left Behind policy, the processor inspects the ROB for any unsent, valid 

loads. If one or more are found, the processor model stores the sequence number of the 

youngest such load and continues runahead execution until it detects that the load has 

been executed. If no such load is found, runahead is exited eagerly. Currently, one 

oversight in this policy is that if the ROB contains loads that have not yet been issued, 

NLLB will delay exit for these loads, even if they become poisoned once they issue. 

5.5.3 Dynamic delayed 

The dynamic delayed policy decides whether to delay exit from runahead based on 

whether there are unsent loads near the head of the ROB. When runahead is safe to exit, 

the dynamic exit policy inspects the ROB for any unsent, valid loads within a maximum 

number of instructions. This number is configurable through the same parameter used 

for the minimum work policy. If any loads are found, the processor continues runahead 

until the runahead deadline is met. If the CPU is configured to enable instruction stream 

filtering (explained in section 5.6), it will exit immediately if the processor couldn’t find a 

dependency chain for the runahead period. If the RCL returns and the processor has not 
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yet worked through the instructions that were in the ROB on entry into runahead, 

dynamic delayed also exits runahead eagerly. 

5.6 Efficiency and performance improvements 

Entry into runahead can be disallowed based on the configuration of the CPU model. 

Some schemes eagerly enter runahead[4, 6, 8, 9, 12, 17], while others wait for the ROB 

to fill[10, 11, 21]. In my runahead model, this is a configurable parameter that can block 

entry if the ROB is not full. Additionally, Mutlu’s short and overlapping period 

elimination[6, 7] are implemented with configurable parameters. The CPU model 

compares the cycles elapsed since the LLL was first issued against an in-flight threshold 

(IFT) to deny entry into potentially short runahead periods. Overlapping periods are 

prevented by tracking how many instructions are pseudoretired each runahead period, P, 

and how many instructions have been retired since the last runahead period, R. If R < P, 

the processor does not enter runahead. Note that this is a stricter requirement than 

Mutlu’s implementation, which compared the number of instructions fetched since the 

last runahead period. This change was made because retirement guarantees that the 

instruction has been executed. 

Filtered runahead[12] is partially implemented in the runahead CPU model. When 

runahead is entered, the ROB reads the head instruction and uses it to attempt chain 

generation as described by Hashemi and Patt. Due to time constraints, no runahead 

buffer is implemented. Therefore, the use of any discovered dependency chains is to filter 

the instruction stream at fetch. If the processor found a chain at the start of runahead, 

instructions not in the chain are simply discarded. If no dependency chain could be 

constructed on entry into runahead, traditional runahead is used. When fetch reaches the 

tail of the dependence chain, it resets its PC and begins fetching at the head of the chain 

again to execute the chain as a loop. 

5.7 Miscellaneous modifications 

Branch divergence[4] is detected at IEW when poisoned instructions are skipped by 

checking if the instruction was a control instruction. Since it is impossible to resolve the 

branch, and therefore determine if the branch was correctly predicted, the CPU simply 

flags that execution is possibly diverging. This flag is not currently used for any purpose 

other than statistics. 

Because branch predictor state is not checkpointed before runahead, fetch’s use of the 

branch predictor is modified in runahead. In normal mode, the branch predictor updates 

the next PC of fetch, including any state updates performed by the predictor. In 

runahead, fetch asks the branch predictor for a prediction, then performs a manual BTB 

lookup if the instruction is a predicted taken branch. The next PC is then updated with 

the address in the BTB, or the next PC if the instruction was not predicted as a taken 

branch. The aim of this is to use the branch predictor without updating its state. 

One issue that has, to my knowledge, been poorly documented by literature so far is how 

runahead should handle faults and interrupts. In my model, runahead faults are simply 

ignored as they are not architecturally real faults. Runahead page faults, if produced by 

valid instructions and occurring while the processor is on the correct path, could 

technically hide some latency if the processor had initiated paging early, but the latency 

of a paging operation is so large that even runahead would fail to make a notable impact. 

Interrupts are handled by postponing them until runahead exits. One alternative to 
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handle them earlier would have been to immediately exit runahead upon detecting an 

interrupt, but I found they happen so rarely that the additional technical complexity of 

doing this was not worth addressing. 

Various statistics were added to the runahead model both globally as well as to the 

individual stages of the processor. A list of all new statistics computed by the runahead 

model is attached in appendix B. 

5.8 Testing the implementation 

During early development, the runahead CPU model was tested with a simplified system 

configuration running a test matrix multiplication program in syscall emulation mode[33]. 

The test program source code is attached in appendix A. The program generates two 

square matrices and multiplies them together, storing the result in a new matrix. Before 

multiplication, the program outputs the matrices, and the product matrix is printed at the 

end of the program. Progress through the multiplication is printed regularly. The size of 

the matrix can be scaled at runtime, and the order in which the matrices are multiplied 

can be randomized. Both are controllable as input parameters to the program. 

Once the test program successfully ran with the runahead CPU model, the correctness of 

the model was tested by running the program with the stock O3CPU model and my 

runahead CPU model. The output of each run was compared and confirmed to match 1:1 

for a variety of different matrix sizes, both with and without multiplication order 

randomization. 

After validating the correctness of the CPU model with the test program, the model was 

promptly used with the final benchmarking configurations described in chapter 6. This 

revealed many new bugs which were dealt with as they were discovered. These include 

bugs that caused the simulator itself to crash, but also bugs that caused the program to 

behave incorrectly inside the simulated system, leading to in-system crashes, most often 

segmentation faults. Due to the complexity of the CPU model and the simulated system, 

it is difficult to judge which bugs, if any, remain in the model. However, the final 

runahead model used for evaluation has been confirmed to run crash-free with all 

benchmarks for the entire length of their respective regions of interest (ROIs). 
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I used a subset of the SPEC CPU 2017[1] (SPEC2017) benchmarks to evaluate and 

compare the performance of the baseline OoO model, the runahead baseline and the 

runahead models using the delayed exit policies. The x86 ISA is used with all the 

simulation models. This chapter details some characteristics of the benchmarks and how 

I found representative regions to simulate. The process for determining the parameters 

of the runahead model is also explained, along with how performance is measured in this 

thesis. 

6.1 Characteristics of the SPEC2017 benchmarks 

The SPEC2017 benchmarks[1] constitute multiple programs representing both compute 

and memory intensive real life workloads. While most of the benchmarks are unique 

programs, some are simply input variations on the same program. The benchmarks are 

split into two suites, SPECspeed and SPECrate. In this thesis, the SPECspeed suite is 

used. The benchmarks are designed to be a mix of both compute and memory intensive 

programs and are carefully chosen and configured to have predictable execution. 

An independent study focused on the memory characteristics of the SPEC2017 suite[2] 

found that it is incredibly memory intensive, with nearly 50% of all dynamic instructions 

referencing memory values through either source or destination operands. Certain 

benchmarks also have considerable memory footprints, using up to 16GB of main 

memory. The working set size of each benchmark varies greatly, but Singh and Awasthi 

find that the cache performance, measured in MPKI, of xalancbmk, nab, fotonik3d and 

lbm have high MPKI while being particularly invariant to increasing cache sizes. On 

average, the main memory footprint of the SPEC2017 benchmarks is only 1.82GB, but 

bwaves_s, roms_s, fotonik3d_s, cactuBSSN_s and xz_s were found to have very large 

memory footprints, ranging from roughly 7-16GB. Many of these benchmarks are also 

found to have high bandwidth traffic to off-chip memory. 

On average, the SPEC2017 SPECspeed suite of benchmarks runs for 22.19 trillion 

dynamic instructions[2], with most of these belonging to floating point workloads. Most 

benchmarks have a roughly 40-40-20% split of ALU-only, memory read and memory 

write instructions, respectively. Singh and Awasthi find that exchange2 and pop2 are an 

exception to this, where 79.6% and 73.5% of all dynamic instructions only use the ALU, 

respectively. Floating point benchmarks are notably more compute intensive than the 

integer ones, consisting of roughly 60% ALU-only instructions. 

6.2 Configuring gem5 for the SPEC2017 benchmarks 

Full system simulation is required to run the SPEC2017 benchmarks in gem5[33, 36]. 

When gem5 is configured for full system mode, the processor model boots an operating 

system and loads a disk image into the system. As in my preceding specialization 

project[22], I used Ubuntu 18.04 with a Linux 5.4.49 kernel and a disk image containing 

the SPEC2017 benchmarks, a boot shell script and a gem5 binary capable of emitting 

special pseudo-instructions recognized by the simulator. The kernel and disk image were 

provided by a PhD student at the department of computer science (IDI)[36]. 

6 Evaluation of delayed exit runahead 
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To run the benchmarks on the disk image, the configuration script must attach a 

runscript to the simulated system[33]. Once the simulator finishes booting the operating 

system, the runscript is read to determine commands to be run in a shell. In this project, 

each benchmark has a unique runscript which begins by invoking the gem5 binary to exit 

the simulation. The binary does this by emitting a special pseudo-instruction recognized 

by gem5. This allows the configuration script to discard metrics produced by boot and 

swap the simulation core model. The simulation is then restarted, and the runscript 

proceeds to launch the benchmark. If left to run on its own, the benchmark completes 

and the runscript emits another exit pseudo-instruction to end the simulation. As noted 

in section 6.1, the benchmarks contain on the order of trillions of dynamic 

instructions[2], and would take days or weeks to complete even on simplified core 

models. Because of this, the maximum number of executed instructions is restricted by 

the configuration script. 

One major problem with running the SPEC2017 benchmarks under the x86 ISA in gem5 

is their memory footprint. x86 systems in gem5 can only use 3GB of main memory[33], 

although the reason is poorly documented. Benchmarks with a larger footprint than this 

risk being OOM-killed by the simulated operating system. Many benchmarks did not work 

with my simulation configuration for exactly this reason, and certain benchmarks only 

appear to function because they do not run for long enough to allocate too much 

memory. cactuBSSN_s_0 is one such example, although there are more among the 

benchmarks used in this study. Some benchmarks also failed due to runtime errors such 

as segmentation faults in the simulated system. Table 6.1 lists all benchmarks and if they 

were functional for the purposes of runahead simulation. In total, 16 of the 28 

benchmarks on the SPEC2017 disk image were usable. 
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Table 6.1: A list of all SPEC2017 benchmarks present on the simulation disk image and 
whether they were functional for the purpose of the project or not. Functional 
benchmarks are marked in bold text. Benchmarks which were found to get OOM-killed or 
crash when allowed to run for longer than 50B instructions are marked with *. 

Benchmark Functional? 

bwaves_s_0 No 

bwaves_s_1 No 

cactuBSSN_s_0 Yes* 

cam4_s_0 No 

deepsjeng_s_0 No 

exchange2_s_0 Yes 

fotonik3d_s_0 Yes* 

gcc_s_0 No 

gcc_s_1 Yes* 

gcc_s_2 Yes* 

imagick_s_0 Yes* 

lbm_s_0 No 

leela_s_0 No 

mcf_s_0 Yes* 

nab_s_0 Yes 

omnetpp_s_0 Yes 

perlbench_s_0 Yes 

perlbench_s_1 Yes 

perlbench_s_2 Yes 

pop2_s_0 No 

roms_s_0 No 

wrf_s_0 Yes* 

x264_s_0 Yes 

x264_s_1 No 

x264_s_2 Yes 

xalancbmk_s_0 Yes 

xz_s_0 No 

xz_s_1 No 
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6.3 Finding representative regions 

To find representative simulation intervals of the benchmarks, I used SimPoint 

analysis[37] on the first 50 billion instructions of each benchmark with a SimPoint 

interval of 100 million instructions. A SimPoint probe is attached to a simplified CPU 

model in a profiling run of each benchmark. The SimPoint probe listens for instruction 

retirement to identify and count occurrences of unique basic blocks in the workload. At 

each SimPoint interval boundary, the collected information is stored as a basic block 

vector (BBV). The results of each profiling run are BBVs for each SimPoint interval. The 

BBVs are then fed into the SimPoint software to find intervals that are representative of 

the benchmark. For each interval, I generated SimPoint weightings which indicate how 

much time the program spends executing code similar to the interval. The most 

representative SimPoint intervals are then chosen as a ROIs. 

For example, SimPoint might find that interval #432 is a good representative of a given 

benchmark and assign it a weighting of 63%. This indicates that the benchmark spent 

roughly 63% of its time executing code similar to the interval between 43.2B-43.3B 

instructions. Note that since SimPoint profiling was only performed for the first 50 billion 

instructions, this weighting is only true for the first 50 billion instructions of the 

benchmark. 

 

Figure 6.1: Weightings of all SimPoints extracted from the first 50 billion instructions of 
each SPEC2017 benchmark used in the CPU model evaluation. For each benchmark, the 
SimPoint with the largest weighting is colored blue. All other SimPoints are colored 
black. 

Once representative ROIs were found, a second run of the benchmarks was performed to 

create checkpoints 1 million instructions before each ROI. The additional 1 million 

instructions are included to facilitate warmup of caches and processor buffers. The 

weighting of each ROI is shown in Figure 6.1. Seven benchmarks have overwhelmingly 

representative ROIs, although the remainder have multiple ROIs with similar weightings. 

For these benchmarks, it would have been ideal to simulate multiple intervals and 

aggregate their statistics, but the varied nature of gem5’s hundreds of statistics 

complicated the development of a statistics compilation tool to the point that it was 
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judged as too time consuming. For this reason, only the single most representative ROI 

is used for simulation. 

In a real simulation run, the simulation configuration script restores the checkpoint using 

a simplified CPU model. The CPU is then swapped out for the detailed core model which is 

supposed to be simulated. The simulation then runs for 1 million instructions, plus 100 

million instructions in the ROI. As such, each benchmark runs for 101 million instructions 

in the ROI which is most representative of that benchmark’s first 50 billion instructions. 

One important thing to note is that runahead instructions do not contribute to the 

executed instruction count. This ensures that the simulation always measures the actual 

time and work taken to execute 101 million real instructions. 

6.4 Measuring performance 

As will be shown in section 7.1, my runahead experiments show that when compared to 

the stock OoO CPU of the gem5 simulator, runahead performs worse in terms of IPC. 

This is despite main target metrics such as load-to-use (L2U) cycles and overall cache hit 

rates improving. Possible explanations for this are discussed further in section 8.1, but 

there is overwhelming evidence that runahead improves processor performance[4-12, 

17-21], so this is considered a performance bug/anomaly. 

The problem with this anomaly is that configuring the system based on IPC will 

encourage configuring the system in a manner that minimizes the amount of runahead 

performed. In fact, judging by IPC, the optimal system configuration is to not use 

runahead whatsoever. This is obviously not well suited for a study of runahead. To 

mitigate this problem, I use an additional throughput metric in this study which I call 

normal IPC (NIPC). In the context of this study, normal can be thought of as “not 

runahead”. Therefore, NIPC is defined as the number of normal instructions executed by 

the processor divided by the number of cycles the processor spent in normal mode. One 

intuition for NIPC is to imagine that every load that misses in cache triggers a “magical” 

pipeline flush. The flush instantly prefetches the load and possibly some additional future 

loads (i.e., any loads prefetched by runahead). NIPC therefore mostly describes the 

performance effect runahead has on normal execution. Any overhead related to filling 

buffers and structures after runahead has exited is still represented in NIPC. 

It is extremely important to note that NIPC is not a perfect solution to system 

performance analysis in the face of the performance anomaly. While IPC encourages 

minimizing runahead, NIPC can encourage maximizing runahead, particularly where 

there are many independent loads, because the time cost of runahead execution is 

nullified. For this reason, I use a mix of IPC, NIPC and other system metrics like L2U 

cycles, pseudoretirement counts and cycle counts to analyze system performance. 

Additionally, for the delayed exit models, I only compare their performance to the 

runahead baseline with the understanding that while performance is degraded compared 

to the stock CPU, it may still improve compared to the runahead baseline. If performance 

improves relative to the runahead baseline, it should hopefully also improve performance 

in a runahead processor which does not exhibit the performance anomaly. 

To attempt to explain the performance anomaly, overhead metrics were added to 

attempt to measure the number of cycles spent by the processor when entering and 

exiting runahead mode before resuming work as usual. Entry overhead is defined as the 

number of cycles from the processor flagging as being in runahead until the RCL is 

pseudoretired from the ROB. Exit overhead is more complicated to measure because 
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snapshotting the full state of the processor for comparison is difficult. My implementation 

of the metric snapshots the number of instructions present in the IQ on entry into 

runahead. Exit overhead is then defined as the number of cycles from the processor 

flagging as being back in normal mode until an equal number of instructions has been 

inserted back into the IQ. The intent behind this is to capture a point in time at which the 

processor has begun to process at least as many instructions as before runahead was 

entered. This is still not entirely accurate because instruction readiness and the 

contention state of various buffers are not entirely the same. 

6.5 Base system parameters 

The baseline system configuration is given in Table 6.2. The core and cache configuration 

is largely based on the system configurations used in Naithani et al.’s paper on vector 

runahead[11], whose core configuration is in turn based on the Intel Skylake 

architecture[38]. 

Table 6.2: Base system configuration for stock, runahead baseline and delayed exit CPUs. 

Parameter Value 

Clock frequency 

ROB size 

IQ size 

LQ size 

SQ size 

3.2GHz 

224 

96 

64 

60 

Branch predictor 8KB TAGE-SC-L 

Physical register file 180 integer registers 

180 floating point registers 

Pipeline widths 4 insts/cycle – fetch, decode, rename, 

issue 

8 insts/cycle – writeback, commit, squash 

Functional units 

Pipelined operations are marked in bold 

3 int ALU (1 cycle) 

1 int M/D (3 cycle mult, 20 cycle div) 

1 FP ALU (2 cycles) 

1 FP M/D (4 cycle mult, 12 cycle div) 

2 mem R/W 

L1-I cache 

 

L1-D cache 

 

L2 cache 

 

L3 cache  

32kB, 4-way assoc, 4-cycle lookup & 

access latency, parallel lookup/access 

32kB, 8-way assoc, 4-cycle lookup & 

access, parallel lookup/access 

256kB, 8-way assoc, 8-cycle lookup & 

access, parallel lookup/access 

6MB, 12-way assoc, 30 cycle lookup & 

access, parallel lookup/access  

Hardware Prefetcher Stride-based in all cache levels 

Memory 

Based on Micron MT41J512M8[39] 

3GB, DDR3-1600, 2 channels 

tRP-tCL-tRCD = 13.75-13.75-13.75ns 
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6.6 Determining runahead baseline parameters 

To determine the parameters of the baseline runahead model, a series of sensitivity 

analyses were performed on certain parameters that influence the CPU’s runahead 

behavior. The parameter value with the best NIPC was chosen to encourage an 

aggressive runahead configuration. For parameters where NIPC did not vary greatly, the 

number of pseudoretired instructions also motivated the decision. The initial runahead 

configuration of the system is given in Table 6.3. 

Table 6.3: Initial runahead parameters for baseline sensitivity analysis. Parameters 
marked in bold were tested in the sensitivity analysis. 

Parameter Value 

Runahead cache size 2kB 

In-flight limit 250 cycles 

Overlapping runahead Disallowed 

Eager entry Yes 

Fetch stream filtering No 

 

The initial analysis investigated whether it is beneficial to immediately enter runahead 

upon encountering a LLL at the head of the ROB (eager entry). The alternative is to wait 

until the ROB fills (lazy entry), in which case the CPU would typically stall. The result of 

this analysis is shown in Figure 6.2. Both models have a slight increase in relative NIPC, 

with the eager entry model achieving a 4.8% higher NIPC compared to the baseline 

model. In comparison, the lazy entry model improves NIPC by less than 1%. The eager 

entry model not only enters runahead earlier, but more often, causing more instructions 

to be executed and pseudoretired. Based on these results, an eager entry policy was 

chosen for the runahead CPU model. 

 

Figure 6.2: Comparison of relative NIPC and pseudoretired instructions between an 
eager and lazy entry runahead CPU model. (Harmonic) means are across all benchmarks. 
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Next, the effect of allowing or disallowing overlapping runahead periods was analyzed. 

Figure 6.3 Shows that NIPC is mostly invariant to overlapping periods, but disallowing 

overlap slightly reduces the executed instruction count. Based on this, overlapping 

periods are disallowed in the runahead model. 

 

Figure 6.3: Comparison of relative NIPC and pseudoretired instructions by a runahead 
CPU model that allows overlapping runahead periods, and one that does not. 

The effect of fetch stream filtering is shown in Figure 6.4. Even without the runahead 

buffer[12], filtering the instruction stream to LLL dependence chains seems to increase 

both performance and efficiency. The difference in performance is negligible, but fewer 

dynamic instructions are executed. Based on this, filtering is enabled. 

 

Figure 6.4: Comparison of relative NIPC and number of pseudoretired instructions when 
filtering the instruction stream to dependence chains. 
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Finally, the in-flight threshold (IFT) was determined by simulating with six different 

values. The NIPC and pseudoretired instruction count of each model is shown in Figure 

6.5. Across all benchmarks, the CPU model isn’t particularly sensitive to IFT. Higher IFTs 

do lead to a slight increase in the amount of runahead work done, however, and so 

increases NIPC and pseudoretired instruction count. An IFT of 350 provides the best 

relative NIPC of 1.066, but an IFT of 300 provides a relative NIPC improvement of 1.065 

while pseudoretiring about 110K fewer instructions. Because of this, an IFT of 300 is 

chosen. 

 

Figure 6.5: Sensitivity analysis of various in-flight thresholds (IFT) with regard to their 
impact on NIPC and pseudoretired instructions. Exact NIPC is displayed above the bars 
for IFT=350. 
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This chapter presents the system statistics for the runahead baseline compared to the 

stock out-of-order CPU that comes with gem5. It also presents the results for the various 

delayed runahead exit policies. The different models presented in this chapter are: 

• O3 – The stock OoO CPU model provided by gem5. The runahead baseline is 

compared to this. 

• Runahead or Eager exit – The runahead baseline. All delayed exit models are 

compared to this. 

• Minimum Work – Minimum work runahead models with various exit deadlines 

and minimum work values, as described in section 5.5.1. 

• NLLB – The No Load Left Behind runahead model, as described in section 5.5.2. 

Uses an exit deadline of 100 cycles. 

• Dynamic Exit – The dynamic exit runahead model, as described in section 5.5.3. 

Inspects a maximum of 25 ROB instructions and uses a 100-cycle exit deadline. 

The performance of various runahead exit deadlines is also analyzed and presented in 

this chapter in the context of a forced delayed exit with no clauses on what work is done 

during these cycles. This is presented alongside the minimum work results. 

7.1 The runahead baseline 

Figure 7.1 shows the IPC of the runahead baseline model. Surprisingly, runahead 

performs worse than the stock CPU in nearly every benchmark. exchange2_s_0 and 

perlbench_s_2 have particularly striking performance degradations of 21.9% and 14.1%, 

respectively. The only benchmark to gain performance from runahead is mcf_s_0, which 

sees a 1.6% speedup. Combined across all benchmarks, IPC decreases by 3.8% because  

runahead spends nearly 100 million additional cycles executing all the benchmarks. 

Discarding all runahead cycles, NIPC increases by 4%. 

 

Figure 7.1: IPC of the runahead baseline model relative to the stock OoO CPU model. 

“all” is the sum number of instructions divided by the sum number of cycles across all 
benchmarks. 

7 Results 
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Despite IPC decreasing, the model improves load-to-use times significantly. Figure 7.2 

shows that mean L2U for normal load instructions is decreased in all benchmarks. 

cactuBSSN_s_0, exchange2_s_0 and fotonik3d_s_0 have particularly low L2U times to 

begin with, indicating they should not be particularly affected by load-induced full-

window stalls. mcf_s_0, omnetpp_s_0 and xalancbmk_s_0 do not have excessive mean 

L2U times, but their variance is large, meaning there are more loads which miss in 

cache. Runahead’s most important contribution here is that L2U variance is greatly 

reduced. The number of loads that exceed 300 cycles load-to-use is decreased by 73.8% 

across all benchmarks, an entire order of magnitude less when compared to the stock 

OoO model. This indicates that the runahead implementation is very effective at 

prefetching LLLs. 

 

Figure 7.2: Mean load-to-use cycles for normal loads with the stock and runahead CPU 
models. The error bars show one standard deviation from the mean. 

The overhead of entering and exiting runahead does not explain the performance 

degradation. Figure 7.3 shows that even when removing all overhead cycles from the IPC 

calculation, runahead causes a performance degradation. This could indicate that: 

• The processor is entering runahead on loads that would not have stalled the ROB, 

incurring unnecessary overhead penalties, 

• The processor may be staying in runahead for longer than intended, 

• Or runahead causes side-effects whose negative impact on performance is greater 

than the positive impact of reduced load latencies. 

Despite not checkpointing branch predictor state, branch mispredictions in normal mode 

are reduced by 0.7% across all benchmarks, and infinite L1-I cache experiments still 

showed a relative performance degradation. 
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Figure 7.3: Cycle overhead of entering and exiting runahead mode (top) and the 
runahead model’s adjusted IPC with overhead cycles removed (bottom). 

It turns out that the chosen ROIs were not particularly memory intensive, at least not to 

the point that the processor spends a significant amount of time stalled due to the ROB 

being full, as evidenced by Figure 7.4. In total, the stock CPU model spends only 1.4% of 

its time with a full ROB, drastically lower than the >50% stall times seen in previous 

publications[4, 10-12]. Some benchmarks enter runahead very few times, as shown in 

Figure 7.5. The median number of times runahead is entered across all benchmarks is 

only 7742, with exchange2_s_0 only entering runahead 106 times in 101M dynamic 

instructions. Regardless, runahead does improve the fraction of normal cycles in which 

the processor stalls on a full ROB. The fraction of runahead cycles with a full ROB is not 

shown due to a bug in how these cycles are tracked while the processor is idling. 
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Figure 7.4: Fraction of all normal cycles in which the ROB is full. 

 

 

 

Figure 7.5: Number of times runahead was entered for each of the SPEC2017 
benchmarks. Note the logarithmic scale. 

As shown in Figure 7.6, the runahead processor still spends many cycles with detected 

LLLs at the head of the ROB without entering runahead. Across all benchmarks, roughly 

67.9 million cycles are spent in this state, which is a 75.1% decrease compared to the 

stock CPU (~272M cycles), although unlike the runahead CPU, the OoO CPU cannot do 

anything to move these loads out of the ROB until they are completed. While a few of 

these cycles can be attributed to entry overhead, the vast majority are caused by the 

processor refusing to enter runahead to prevent short or overlapping periods, so these do 

not necessarily represent cycles that the processor could have utilized effectively. 
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Figure 7.6: Number of normal cycles in which the runahead processor had a confirmed 
LLL at the head of the ROB. 

7.2 Minimum work and exit deadlines 

When compared to the runahead baseline, the minimum work exit policy achieves a very 

slight speedup in some configurations, as seen in Figure 7.7. In general, a small amount 

of minimum work and a short exit deadline provide the best speedups, with performance 

degradation occurring shortly after unrestricted minimum work exceeds 50 instructions 

or the unrestricted work deadline exceeds 150 cycles. The best models were the one 

which unconditionally delayed runahead by 25 cycles and the one which executed a 

minimum of 25 instructions without a deadline. These achieved a relative IPC increase of 

2% and 1.2%, respectively. Combining a minimum work of 25 instructions with a 25-

cycle deadline gives a 2.3% speedup compared to the runahead baseline. For NIPC, a 

deadline of 25 or minimum work of 200 perform the best, with a 2.4% and 2.9% NIPC 

increase, respectively. exchange2_s_0 achieves a surprisingly large improvement of 

roughly 27.9% over the runahead baseline, but still represents a slight performance 

degradation when compared to the stock OoO CPU model. 
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Figure 7.7: Sensitivity analysis of exit deadlines (top) and minimum work (bottom) with 
regard to relative IPC in a runahead model with a minimum work exit policy. The number 
above the best configurations show the relative IPC to the runahead baseline. 

The remainder of the minimum work model results use a deadline of 25 cycles and a 

minimum work of 25 instructions unless otherwise is stated. Figure 7.8 shows that 

minimum work retires <0.1% additional instructions overall, which is expected but not a 

noteworthy amount. imagick_s_0, omnetpp_s_0 and wrf_s_0 end up retiring fewer 

instructions. The reduction is only on the order of 1000s of instructions but is still 

interesting as it indicates that the model can reduce the number of times the processor 

enters runahead. Indeed, the minimum work model enters runahead 2.5%, 3.5% and 

4.3% fewer times, respectively, for these benchmarks than the runahead baseline. 

Overall, minimum work causes runahead to trigger 3% fewer times. 

 

Figure 7.8: Number of instructions retired by the minimum work model relative to the 
runahead baseline. 
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The minimum work model also delivers on the target of reducing runahead stutter. The 

runahead baseline has interim periods shorter than 150 instructions 33.6% of the time. 

In the final minimum work model, this percentage is reduced to 31.7%. The most 

aggressive 200-instruction minimum work model reduced it to only 9.7% of all interim 

periods, showing that delayed exits are highly effective at reducing runahead stutter. The 

interim period length breakdown for the aggressive minimum work model is shown in 

Figure 7.9. 

 

Figure 7.9: Interim period length breakdown for a runahead processor with a 200-
instruction minimum work exit policy. 

7.3 No Load Left Behind 

The relative IPC of the NLLB model with an exit deadline of 100 cycles is shown in Figure 

7.10. Compared to the runahead baseline, NLLB improves IPC by 1.9%, which is 0.4% 

less than the minimum work exit policy. NIPC is up by 2.2%, also less than minimum 

work. In other words, NLLB decidedly performs worse than the minimum work policy. 

exchange2_s_0 still exhibits a striking performance improvement. 

 

Figure 7.10: Relative IPCs of the NLLB runahead model to the runahead baseline, 
compared with the relative IPCs of the minimum work model. 
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NLLB also retires more instructions, as shown in Figure 7.11. Overall, NLLB increases the 

retired instruction count by 0.8%. perlbench_s_2 sees the largest increase in retired 

instructions, possibly because loads are frequent, but with large dependency chains, 

meaning the distance between loads is large. No benchmarks retire fewer instructions 

when using the NLLB exit policy. 

 

 

Figure 7.11: Instructions retired by the NLLB exit model, relative to the minimum work 
and eager exit policies. 

NLLB is somewhat better at reducing runahead stutter than minimum work. Figure 7.12 

shows the interim period breakdown for the NLLB exit policy. With NLLB, 25% of all 

interim periods retire fewer than 150 instructions, and across all benchmarks NLLB 

enters runahead 10.7% fewer times. In comparison, an unrestricted work policy with a 

100-cycle deadline, the same as NLLB, entered runahead 19.1% times less, but this 

configuration does not provide the best performance. The best performing minimum work 

configuration only enters runahead 3% times less. Overall, NLLB is the best policy for 

reducing the total number of times runahead is entered. 

 

Figure 7.12: Interim period length breakdown for a runahead processor with a NLLB exit 
policy. 
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7.4 Dynamic delayed exit 

The dynamic exit policy has the best IPC of all exit policies, shown in Figure 7.13. 

Compared to the eager exit policy, dynamic exit provides a 2.3% speedup that is within 

0.01% of minimum work. The per-benchmark IPC trends are roughly the same as with 

the other exit policies. In terms of NIPC, a dynamic exit policy gives the best result with 

a 2.5% improvement over the baseline, 0.1% more than the minimum work policy. 

 

Figure 7.13: Relative IPCs of the dynamic exit runahead model to the runahead baseline, 
compared to all other exit policies. 

Dynamic exit is also more efficient in terms of retired instruction counts, performing only 

0.03% more retirements than an eager exit policy. These extra instructions number 

roughly 494K and bring the total number of runahead instructions to 58.1M. 

 

Figure 7.14: Instructions retired by every exit policy, relative to the eager exit policy. 

34.3% of all interim periods retire fewer than 150 instructions with a dynamic exit policy, 

which is worse when compared to the runahead baseline. Figure 7.15 shows the interim 

period length breakdown for the dynamic exit policy. Compared to the runahead 

baseline, dynamic exit enters runahead 0.2% more often. Many of these extra runahead 

periods come from x264_s_2, which enters runahead 9.7% more often. 
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Figure 7.15: Interim period length breakdown for a runahead model with a dynamic exit 
policy. 

7.5 Delayed runahead period metrics 

This chapter presents a few metrics exclusive to delayed runahead periods. First, Figure 

7.16 shows the additional cycles spent in runahead mode due to the delayed exit. NLLB 

clearly spends the most time, owing to its longer exit deadline and lack of restriction on 

maximum work. Dynamic exit spends orders of magnitude fewer cycles in delayed 

runahead than both minimum work and NLLB. cactuBSSN_s_0, fotonik3d_s_0 and 

imagick_s_0 never delay exit under the dynamic policy. The amount of pseudoretired 

instructions in delayed runahead follows the same trend, as shown in Figure 7.17, with 

dynamic exit pseudoretiring orders of magnitude fewer instructions than the alternatives. 

Figure 7.18 shows that compared to the minimum work and NLLB policies, the dynamic 

exit policy significantly increases the relative number of loads executed in delayed 

runahead. Across all benchmarks, the percentage of pseudoretired instructions that are 

loads are 18.5%, 15.6% and 57.7% for minimum work, NLLB and dynamic exit, 

respectively. 
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Figure 7.16: Cycles spent in delayed runahead for each exit policy. Note the log scale. 

 

Figure 7.17: Instructions pseudoretired in delayed runahead by each exit policy. Note the 
log scale. 

 

Figure 7.18: Percentage of pseudoretired instructions that were loads in delayed 
runahead for each exit policy. 
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8.1 Runahead performance degradation 

As shown in section 7.1, my runahead model degrades performance compared to an out-

of-order processor. There is overwhelming evidence in previous publications that 

runahead has major performance benefits[4-12, 17-21], which lends confidence to the 

assertion that there must be a flaw in the runahead model. This chapter discusses flaws 

in the ROIs, possible explanations for the performance degradation and what this means 

for the results of this study. 

A fundamental error in this study is that while many of the ROIs are highly 

representative of their respective benchmarks, they are not representative of the 

problem which runahead execution attempts to solve. To begin with, the ROIs were 

extracted from the first 50B dynamic instructions of each benchmark even though they 

last, on average, for over 22 trillion instructions[2]. Figure 7.4 showed that some 

benchmarks practically do not struggle with full-ROB stalls whatsoever. With the baseline 

runahead model, cactuBSSN_s_0, a benchmark found to be memory intensive by Sing 

and Awasthi[2], only entered runahead 1206 times in the full ROI. In these cases, it can 

be argued that runahead simply does not occur enough to reasonably conclude anything 

about its actual impact on the performance of the benchmark. 

However, there are benchmarks which do enter runahead an appreciable number of 

times. omnetpp_s_0 entered runahead mode nearly 300K times, perlbench_s_2 about 

130K times and xalancbmk_s_0 around 159K times. Arguably, this should be enough to 

showcase the effect runahead can have, yet omnetpp_s_0 and perlbench_s_2 

experienced some of the worst performance degradations out of all the benchmarks, 

even when adjusting for overhead. Meanwhile, xalancbmk_s_0 has a lesser true 

performance degradation, yet a performance improvement when adjusting for overhead. 

These benchmarks also show the largest improvements in load-to-use cycles for normal 

mode loads and reduce the number of cycles the processor is stalled when using 

runahead. 

If the overhead metrics were perfect, they would, in theory, capture all cycles lost to 

entering and exiting runahead. Adjusting IPC by removing these cycles should then show 

a performance gain. If the processor were not capable of runahead, any remaining cycles 

would be either productive normal cycles (including those in which there is a blocking 

LLL, but the ROB is filling) or cycles which the processor would have been stalled on. 

Assuming the overhead metrics are accurate, this shows that runahead may be misusing 

productive normal mode cycles. The overhead is also likely overestimated because the 

first instruction to go back through the pipeline after runahead is the RCL, which has now 

been prefetched. Thus, when the exit overhead period is considered to end, the readiness 

state of instructions in the IQ is improved compared to before runahead. 

I also found that when using a dynamic delayed exit policy, simulation statistics differed 

from the runahead baselines in the benchmarks that never delayed exit. It’s difficult to 

tell if this is due to the benchmarks being non-deterministic, but it may be evidence of a 

correctness bug in the runahead implementation. As mentioned in section 5.8, the 

8 Discussion of runahead & delayed exit 
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implementation was tested with a comparatively simple program in syscall emulation 

mode. While the full system SPEC2017 benchmarks run until the end of their ROIs 

without crashing, this is not a guarantee of correctness. 

Side-effects to the frontend is likely not the cause for the performance degradation. As 

was mentioned in section 7.1, the processor experiences slightly fewer branch 

mispredictions outside of runahead. Additionally, infinite instruction cache experiments 

still show a performance degradation, so the instructions fetched during runahead should 

not be causing significant L1-I cache pollution. Runahead mode does not action any 

faults, and so it should not incur any costly paging operations either. 

 

Figure 8.1: IPC of the runahead model while it is in runahead mode for each of the exit 
policies. 

One aspect of the runahead model that has not been thoroughly inspected is its behavior 

while in runahead mode. In all benchmarks, the CPU model exhibits uncharacteristically 

low IPCs while in runahead mode. It’s rare for the model to breach 0.4 IPC in runahead 

and it hovers around 0.3 across all benchmarks, which is a little less than half of the 

overall IPC of the model. In other words, the processor tends to slow down drastically 

when it enters runahead. The reason for this is not entirely clear, but it could be that 

runahead instructions are not properly handled, causing them to fill pipeline structures 

and block execution until runahead is exited. If this is the case, runahead performs little 

to no useful work while incurring overhead penalties. This would not necessarily be 

visible in the load-to-use results presented in chapter 7 because many LLLs are replaced 

by their prefetched instance once runahead exits. 

I believe that the performance degradation can mostly be explained by the fact that the 

processor often enters runahead when it normally would not have stalled on a full ROB. 

In fact, some benchmarks never entered runahead when the processor was configured to 

use a lazy entry policy that waits for the ROB to fill completely before entering runahead. 

In cases where the processor enters runahead, but would not have stalled otherwise, 

runahead incurs an overhead penalty consisting of cycles which a normal OoO CPU would 

simply have used for normal execution. In other words, such runahead periods are 

speculating purely at the cost of normal execution cycles, not stall cycles. This increases 

the number of cycles taken to execute the program and the number of instructions 

processed, leading to both a performance and efficiency degradation. 
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The performance bug makes it difficult to compare runahead to the stock OoO CPU, but 

since all delayed exit models use the same base mechanism, it should be appropriate to 

compare results among them. The results presented in this thesis are not well suited to 

conclude anything about runahead or any of the delayed exit policies when compared to 

non-runahead out-of-order cores. However, the results should still indicate whether 

delaying runahead can be a performance-improving modification to runahead schemes. 

8.2 Minimum work delayed exit 

The minimum work policy is successful in increasing the performance of the runahead 

model, although this is not necessarily due to any conscious efforts to do so in the design 

of the policy. The performance benefit comes from an increase in prefetched loads, but 

since the policy does not account for the types of instructions being executed in delayed 

runahead, the policy is wholly reliant on a high density of loads in the instruction stream. 

If delayed runahead takes place during a compute intensive portion of the program, the 

minimum work exit policy only wastes cycles doing compute work that will be discarded. 

For each such isolated case, delayed runahead through minimum work causes a 

performance degradation when compared to an eager exit policy. 

A large minimum work was also shown to severely reduce runahead stutter, although 

performance is also degraded for those configurations. At the same time, NIPC increases 

the most for these configurations. This means that while the additional time spent in 

runahead does prefetch additional loads, the prefetches do not adequately make up for 

the time spent issuing these prefetches. This is supported by Figure 7.17 and Figure 

7.18, confirming that extra loads are indeed issued in delayed runahead, but at a low 

rate. 

8.3 NLLB delayed exit 

The “No Load Left Behind” policy was the second iteration on delayed exit policies and 

was motivated by the fact that the minimum work policy does not guarantee execution of 

loads. By design, NLLB guarantees that, if exit from runahead is delayed, at least one 

load is pseudoretired unless the exit deadline expires. 

This approach is still flawed, because NLLB does not consider how many instructions it 

must execute to reach the youngest load in the ROB. In the system configuration used in 

this study, NLLB could be asked to execute over 200 instructions before reaching the 

youngest load if the ROB is near full. With tight exit deadlines, the processor is not even 

likely to make it to the target load. Thus, NLLB struggles with the same issue as 

minimum work - there is no guarantee that it performs useful work. 

In NLLB’s case, however, the issue is exaggerated because the exit policy is more 

ambitious. In my simulations, it was given a longer exit deadline, meaning NLLB 

potentially does even more useless work than the minimum work policy was allowed to. 

Additionally, because NLLB does not care about the instructions before the youngest load 

in the ROB, it risks executing many long-latency instructions (of any type) in delayed 

runahead. In these cases, NLLB exhausts the deadline while issuing few to no useful 

prefetches, effectively wasting cycles. In the worst case, the processor could be on the 

wrong control path and execute a halt instruction. This is exceedingly rare, but it does 

happen in the benchmarks and was the cause of a soft-lock bug during development. 

NLLB also does not address one of the core issues of minimum work, namely being 

overly reliant on a high load density in the instruction stream. As shown in section 7.5, 
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NLLB pseudoretires a smaller fraction of loads when compared to minimum work. This is 

because it typically attempts to execute more instructions than minimum work while 

having a longer deadline near-indiscriminately. 

8.4 Dynamic delayed exit 

Taking lessons from the failings of the minimum work and NLLB policies, the dynamic 

delayed exit policy is designed to guarantee that delayed time is spent more effectively. 

This is done through two measures. First, the dynamic exit policy only enters runahead if 

the instruction stream is filtered to a load chain. Second, runahead is only delayed if 

there are loads close by. Combined, these conditions often ensure that the processor will 

execute a prefetch soon after delayed runahead begins, and that the upcoming 

instruction stream has a reasonably high load density. 

While the dynamic exit policy improves performance by a nearly unnoticeable amount 

over minimum work, it achieves this speedup in orders of magnitude fewer cycles and 

with fewer instructions retired. This can be explained by the 57.7% load rate in delayed 

runahead. The dynamic exit policy’s performance improvement comes from guaranteeing 

that the load density in the delayed instruction stream is high. 

Despite the initial assumption that runahead stutter is a cause of poor runahead 

performance, the dynamic exit policy increased stutter by a very slight amount. This 

indicates that while the dynamic policy prefetches additional loads, it doesn’t necessarily 

prefetch those loads which are critical to prevent stutter. It also shows that delaying exit 

from runahead can be positive for performance even without improving runahead stutter. 

The exact reason why stutter increases is not clear to me but may be because critical 

cache blocks are evicted by the delayed runahead prefetches. 
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9.1 Improving the simulation model 

As discussed in section 8.1, the performance degradation of the runahead model brings 

the correctness of the model into question. The gem5 source code includes a checker 

CPU[34] which, while mostly undocumented, seems to execute instructions 

independently to verify the results of the simulation model. It is unclear to me whether it 

is currently functional as related source code lines have been commented out of the 

O3CPU model’s parameter configurations. If functional, however, this could be used to 

verify the correctness of the runahead model. An alternative is to continue debugging the 

model by inspecting its behavior. For instance, it would be good to verify that the 

runahead model does not stay in runahead for much longer than the corresponding RCL 

would have stalled the processor for if it did not use runahead. Debugging the 

processor’s behavior in runahead mode could also be insightful as it currently has 

uncharacteristically poor performance in runahead. 

Certain parts of the runahead implementation are currently unfinished. Particularly, 

vector operations are not supported by the runahead model because vector registers are 

not checkpointed. This is due to gem5 implementing variably sized vector registers, 

complicating their checkpointing when compared to other register types. It should be 

noted that this was not a problem in this study because none of the benchmarks used 

vector instructions. While gem5 supports multiple hardware threads, support for them 

was not a priority during development of the runahead model and it is likely that it will 

misbehave or crash if multiple hardware threads are used. Again, the lack of hardware 

thread support is because none of the benchmarks use more than one hardware thread. 

The current instruction stream filtering is somewhat limited compared to the one 

proposed by Hashemi and Patt[12], who additionally introduced a runahead buffer to 

replace the fetch-decode frontend during runahead. Implementing such a buffer should 

speed up the runahead frontend and amplify its prefetching effect, also increasing the 

effect of delayed runahead. Alternatively, introducing something like a stalling slice 

table[10] could increase runahead’s coverage even further. 

As mentioned in chapter 5, the current structure of the source code makes it difficult to 

make changes to core gem5 features. This is because any such changes would impact 

the traceability offered by source control. Currently, to track and apply any changes to 

gem5, patch files need to be generated and applied to the gem5 source code. To fix this, 

I would suggest moving the runahead CPU model directly inside a fork of the gem5 

source code[34]. 

To facilitate further development of the model, the source code is published openly on 

GitHub[15]. The code repository includes instructions on how to setup the project and 

build gem5 with the runahead model extension. There are also instructions and 

guidelines for working with the source code, particularly how to setup debugging. 

9 Future work 
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9.2 Delayed exit policies 

The current dynamic delayed exit policy shows that delaying exit from runahead has the 

potential to improve performance for traditional runahead schemes. However, the policy 

can be improved. Currently, loads close to the head of the ROB are used as evidence of 

high load density, but this is not a guarantee. Long dependence chains for which delaying 

runahead is not worth it can still trigger a delayed exit if the load happens to be close to 

the head of the ROB by pure chance. One way to fix this is to simply check the length of 

the dependence chain, although an appropriate cutoff length would have to be 

determined. 

Alternative load-density based approaches to delayed exits could also be explored. Such 

policies would determine if and how long to delay runahead for based on the density of 

loads in the instruction stream. For example, the processor can compute the fraction of 

loads present in the ROB to estimate load density once the RCL returns. If load density is 

high, it might be a good idea to delay runahead for a long time, a short time if load 

density is medium with nearby loads and to eagerly exit if the load density is low. MLP 

distance prediction[8] could also be used to determine when and how long to delay 

runahead for. 
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This thesis has found that traditional runahead execution schemes experience runahead 

stutter, in which the processor rapidly re-enters runahead after exiting it. This motivated 

a study of the effect of delaying exit from runahead execution in a traditional runahead 

execution scheme. The hope was that delayed exits from runahead would prefetch 

additional loads that allow the processor to continue execution for longer before 

encountering new runahead-triggering cache misses. An out-of-order CPU model in the 

gem5 simulator was modified to support traditional runahead and three different delayed 

exit policies were implemented. When used to simulate 16 of the SPEC CPU2017 

benchmarks, the runahead baseline was found to degrade performance compared to the 

stock out-of-order CPU. This is assumed to be due to an implementation bug or flawed 

selection of benchmark ROIs. Benchmarking the delayed exit policies against a runahead 

baseline showed that they improve performance, making up for the delayed cycles with 

additional prefetches. The experiments show that delayed runahead can be effective at 

reducing runahead stutter, but that this is not critical to performance. Instead, ensuring 

that the instruction stream has a high density of loads is found to be important as it 

allows the processor to make effective use of the delayed cycles. 

10 Conclusion  
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Appendix A 
Matrix multiplication test program 

This source code is also available on GitHub: https://github.com/halworsen/gem5-

runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-

extensions/configs/test/matmul.cc  

#include <iostream> 
#include <cstdlib> 
#include <string> 
#include <cassert> 
#include <vector> 
#include <random> 
#include <algorithm> 
 
struct Matrix { 
private: 
    size_t rows; 
    size_t columns; 
    bool dataAllocated = false; 
    long long int *data; 
public: 
    Matrix(size_t rows, size_t cols) : rows(rows), columns(cols) { 
        data = (long long int*) calloc(rows * cols, sizeof(long long int)); 
        dataAllocated = true; 
    } 
 
    ~Matrix() { 
        if (dataAllocated) 
            free(data); 
    } 
 
    size_t getRows() { return rows; } 
    size_t getCols() { return columns; } 
    long long int get(size_t x, size_t y) { return data[rows * x + y]; } 
    void set(size_t x, size_t y, long long int element) { data[rows * x + y] 
= element; } 
 
    void print() { 
        for (int r = 0; r < rows; r++) { 
            printf("[ "); 
            for (int c = 0; c < columns; c++) { 
                printf("%li ", get(r, c)); 
            } 
            printf("]\n"); 
        } 
    } 
}; 

https://github.com/halworsen/gem5-runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-extensions/configs/test/matmul.cc
https://github.com/halworsen/gem5-runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-extensions/configs/test/matmul.cc
https://github.com/halworsen/gem5-runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-extensions/configs/test/matmul.cc


 

// Populate a matrix with random values 
void populateMatrix(Matrix *matrix) { 
    for (int r = 0; r < matrix->getRows(); r++) { 
        for (int c = 0; c < matrix->getCols(); c++) { 
            matrix->set(r, c, (std::rand() % 1000000) - 500000); 
        } 
    } 
} 
 
void multiplyMatrices(Matrix *a, Matrix *b, Matrix *out) { 
    assert(a->getCols() == b->getRows()); 
 
    for (int rA = 0; rA < a->getRows(); rA++) { 
        float progress = ((float)rA / (float)a->getRows()) * 100.0f; 
        printf("Progress: %f%\n", progress); 
 
        for (int cB = 0; cB < b->getCols(); cB++) { 
            for (int cA = 0; cA < a->getCols(); cA++) { 
                long long int cell = out->get(rA, cB); 
                cell += a->get(rA, cA) * b->get(cA, cB); 
                out->set(rA, cB, cell); 
            } 
        } 
    } 
} 
  



 

void multiplyMatricesRandom(Matrix *a, Matrix *b, Matrix *out, unsigned int 
seed) { 
    assert(a->getCols() == b->getRows()); 
 
    // make a vector of indices for matrix A's rows/columns 
    std::vector<int> aRowIdxs; 
    std::vector<int> aColIdxs; 
    std::vector<int> bColIdxs; 
 
    for (int rA = 0; rA < a->getRows(); rA++) 
        aRowIdxs.push_back(rA); 
    for (int cA = 0; cA < b->getCols(); cA++) 
        aColIdxs.push_back(cA); 
    for (int cB = 0; cB < b->getCols(); cB++) 
        bColIdxs.push_back(cB); 
 
    // shuffle 
    auto rng = std::default_random_engine(seed); 
    std::shuffle(aRowIdxs.begin(), aRowIdxs.end(), rng); 
    std::shuffle(aColIdxs.begin(), aColIdxs.end(), rng); 
    std::shuffle(bColIdxs.begin(), bColIdxs.end(), rng); 
 
    int prog = 0; 
    for (auto i = aRowIdxs.begin(); i != aRowIdxs.end(); i++) { 
        int rA = *i; 
 
        float progress = ((float)(prog++) / (float)a->getRows()) * 100.0f; 
        printf("Progress: %f%\n", progress); 
 
        for (auto j = bColIdxs.begin(); j != bColIdxs.end(); j++) { 
            int cB = *j; 
            for (auto k = aColIdxs.begin(); k != aColIdxs.end(); k++) { 
                int cA = *k; 
                long long int cell = out->get(rA, cB); 
                cell += a->get(rA, cA) * b->get(cA, cB); 
                out->set(rA, cB, cell); 
            } 
        } 
    } 
} 
  



 

int main(int argc, char *argv[]) { 
    if (argc != 3) { 
        printf("Usage: matmul MATRIX_SIZE RANDOM\n"); 
        return 1; 
    } 
 
    int matrixSize = std::stoi(std::string(argv[1])); 
    printf("Matrix size: %ix%i\n", matrixSize, matrixSize); 
 
    bool random = (bool) std::stoi(std::string(argv[2])); 
    printf("Random: %s\n", random ? "yes" : "no"); 
 
    unsigned int seed = 85354712; 
    std::srand(seed); 
 
    Matrix matrixA = Matrix(matrixSize, matrixSize); 
    Matrix matrixB = Matrix(matrixSize, matrixSize); 
    populateMatrix(&matrixA); 
    populateMatrix(&matrixB); 
 
    printf("Matrix A:\n"); 
    matrixA.print(); 
    printf("Matrix B:\n"); 
    matrixB.print(); 
 
    Matrix matrixC = Matrix(matrixA.getRows(), matrixB.getCols()); 
    if (random) 
        multiplyMatricesRandom(&matrixA, &matrixB, &matrixC, seed); 
    else 
        multiplyMatrices(&matrixA, &matrixB, &matrixC); 
 
    printf("Result:\n"); 
    matrixC.print(); 
 
    return 0; 
} 
 

  



 

Appendix B 
List of additional statistics in the runahead CPU mod el 

CPU statistics 

runaheadCycles 

realCycles 

numROBFullCycles 

numRealROBFullCycles 

pseudoRetiredInsts 

runaheadCpi 

runaheadIpc 

realCpi 

realIpc 

runaheadPeriods 

runaheadCycleDist 

refusedRunaheadEntries 

 

instsPseudoRetiredPerPeriod 

instsFetchedBetweenRunahead 

 

instsRetiredBetweenRunahead 

 

triggerLLLinFlightCycles 

 

dependenceChainLength 

intRegPoisoned 

intRegCured 

floatRegPoisoned 

floatRegCured 

vecRegPoisoned 

vecRegCured 

vecPredRegPoisoned 

vecPredRegCured 

ccRegPoisoned 

ccRegCured 

miscRegPoisoned 

miscRegCured 

Total cycles spent in runahead 

Total cycles spent in normal mode 

Number of cycles starting with a full ROB 

Number of normal mode cycles starting with a full ROB 

Number of pseudoretired instructions 

CPI in runahead mode 

IPC in runahead mode 

CPI in normal mode 

IPC in normal mode 

Total number of runahead periods 

Distribution of cycles spent in runahead periods 

Number of times the CPU refused to enter runahead, 

by cause 

Histogram of instructions retired in runahead 

Distribution of instructions fetched in the interim 

period between two runahead periods 

Distribution of instructions retired in the interim period 

between two runahead periods 

Histogram of number of cycles a load has been in-

flight when it triggered runahead 

Distribution of identified dependence chain lengths 

Number of times an integer reg was poisoned 

Number of times an integer reg had poison cleared 

Number of times a float reg was poisoned 

Number of times a float reg had poison cleared 

Number of times a vector reg was poisoned 

Number of times a vector reg had poison cleared 

Number of times a predicate reg was poisoned 

Number of times a predicate reg had poison cleared 

Number of times a CC reg was poisoned 

Number of times a CC reg had poison cleared 

Number of times a miscellaneous reg was poisoned 

Number of times a miscellaneous reg had poison 

cleared 

  
 

  



 

Fetch statistics 

icacheStallRealCycles 

 

tlbRealCycles 

 

pendingTrapRealStallCycles 

 

runaheadInsts 

discardedRunaheadInsts 

 

 

runaheadInstsToDecode 

 

runaheadChainLoops 

Total number of normal mode cycles in which fetch 

stalled due to an I-cache miss 

Total number of normal mode cycles in which fetch 

was waiting for address translation 

Total number of normal mode cycles in which fetch 

stalled due to waiting for a pending trap 

Total number of instructions fetched in runahead 

Total number of instructions that were discarded in 

runahead because they did not belong to the active 

runahead chain 

Total number of instructions that were sent to decode 

in runahead 

Total number of times fetch reset to the start of the 

active runahead chain  
Decode statistics 

realBranchMispred Total number of times decode detected a branch 

misprediction in normal mode  
IEW statistics 

divergentFaults 

 

numPoisonedInsts 

numNonSpecRunaheadInsts 

 

numPoisonedBranches 

Total number of times a memory uOp caused a fault 

after a divergence point in runahead mode 

Total number of poisoned instructions skipped by IEW 

Total number of non-speculative instructions 

encountered in runahead mode 

Total number of poisoned branches skipped by IEW 

 

  



 

Commit statistics 

realBranchMispredicts 

 

runaheadBranchMispredicts 

 

loadsAtROBHead 

 

lllAtROBHead 

 

normalLLLAtROBHead 

 

instsPseudoretired 

loadsPseudoretired 

validLoadsPseudoretired 

commitPoisonedInsts 

 

runaheadEnterOverhead 

 

runaheadExitOverhead 

 

 

totalRunaheadEnterOverhead 

totalRunaheadExitOverhead 

totalRunaheadOverhead 

 

runaheadDelayedCycles 

 

runaheadDelayedInsts 

 

runaheadDelayedLoads 

 

fullROBLoads 

runaheadExitCause 

Total number of times a branch misprediction occurred 

in normal mode 

Total number of times a branch misprediction occurred 

in runahead mode 

Total number of cycles with loads at the head of the 

ROB 

Total number of cycles with a LLL at the head of the 

ROB 

Total number of normal cycles with a LLL at the head 

of the ROB 

Total number of pseudoretired instructions 

Total number of loads pseudoretired 

Total number of non-poisoned loads pseudoretired 

Total number of pseudoretired instructions that were 

poisoned 

Histogram of cycles spent from runahead entry until 

the RCL is pseudoretired, per period 

Histogram of cycles spent from runahead exit until the 

youngest instruction in the IQ at the start of runahead 

re-enters the IQ, per period 

Total number of cycles spent entering runahead 

Total number of cycles spent exiting runahead 

Total number of cycles spent entering and exiting 

runahead 

Total number of runahead cycles in which it was safe 

to exit runahead (delayed runahead) 

Total number of instructions pseudoretired in delayed 

runahead 

Total number of loads pseudoretired in delayed 

runahead 

Total number of times a load caused a full ROB stall 

Number of times runahead exited, by exit cause 
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