
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Markus Wang Halvorsen

Delayed runahead exit policies

Master’s thesis in Computer Science (MTDT)
Supervisor: Rakesh Kumar
February 2024

Markus Wang Halvorsen

Delayed runahead exit policies

Master’s thesis in Computer Science (MTDT)
Supervisor: Rakesh Kumar
February 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

i

Abstract

The memory wall, a growing gap between processor and memory clock speeds,

represents a major bottleneck for processor performance in memory-intensive programs.

Long latency loads (LLLs), loads that miss in the last level of cache, have latencies up to

hundreds of cycles, causing the processor to stall. Modern out-of-order (OoO) cores can

tolerate some memory latency owing to their large re-order buffer (ROB) sizes but are

still too small to handle LLLs. Hardware prefetchers cannot always hide these latencies as

they are, by design, unable to perfectly predict the future demand accesses of

processors. The result is that many loads still cause the ROB to fill up and subsequently

the processor to stall.

Runahead execution is a modern prefetching technique implemented in processor

microarchitecture that utilizes cache miss stall cycles to execute the future instruction

stream. Runahead prefetches critical loads with near-perfect accuracy, thus turning

future cache misses into cache hits. However, previous works have found that the

prefetching effect of runahead has limited coverage. This is partly because even though

these stalls degrade performance in total, each individual stall period is too short for

runahead to prefetch enough loads to achieve adequate coverage.

In this thesis, I study the effect that delaying exit from runahead mode has on processor

performance by implementing a traditional runahead scheme in the gem5 computer

architecture simulator. By simulating three different exit policies I find that delaying exit

from runahead can improve overall processor performance by 2.3% compared to a

runahead processor that eagerly exits runahead.

ii

Sammendrag

Spriket mellom klokkehastigheten til prosessorer og hovedminne utgjør en stor flaskehals

i prosessorytelse for minneintensive programmer. Denne ytelsesbegrensningen skyldes

langtidsinnlastere, innlastingsinstrukser som utfører minneaksesser som ikke treffer i

siste nivå av prosessorens hurtigbufferhierarki. Disse instruksene har ofte ventetider på

flere hundre sykluser. Moderne prosessorkjerner kan tolerere noe av ventetiden til

innlastingsinstrukser ved å eksekvere instrukser utenfor rekkefølge (OoO) og spore

rekkefølgen deres i store omordningsbuffere, men disse er fremdeles for små til å

håndtere langtidsinnlastere. Maskinvarebasert forhåndsinnhenting av minneverdier kan

ikke alltid skjule ventetiden for aksesser til hovedminne fordi slike teknikker ikke kan

forutsi fremtidige minneaksesser med perfekt nøyaktighet. Sluttresultatet er at

omordningsbufferen ofte fylles opp mens prosessoren venter på minne, og dermed at

prosessoren blokkeres.

Forutløpende eksekvering er en moderne teknikk for forhåndsinnhenting av

minneverdier. Teknikken er implementert i prosessorens mikroarkitektur og tillater

prosessorkjernen å utnytte sykluser hvor prosessoren venter på minne. Syklusene

utnyttes for å eksekvere fremtidige instrukser som henter inn minneverdier på forhånd

med svært høy nøyaktighet. På denne måten blir bom i hurtigbufferen omgjort til treff.

Tidligere arbeider har funnet at minneinnhentingseffekten til forutløpende eksekvering

dekker et begrenset antall innlastingsinstrukser. Dette skyldes delvis at selv om

ventetidene for minne totalt sett skader prosessorytelsen, vil hvert individuelle

minneaksess ta så kort til at forutløpende eksekvering ikke har nok tid til å hente inn

mange nok minneverdier.

I denne masteroppgaven undersøker jeg effekten av å forsinke byttet fra den

forutløpende eksekveringsmodusen tilbake til normal modus. Dette gjøres ved å innføre

tradisjonell forutløpende eksekvering i en OoO-prosessormodell i

datamaskinarkitektursimulatoren gem5. Ved å simulere tre ulike modeller for forsinket

modusbytte viser jeg at en prosessor med støtte for forutløpende eksekvering kan

forbedre ytelsen med 2.3% hvis den forsinker byttet ut av forutløpende

eksekveringsmodus.

iii

Preface
This thesis builds on the work done for TDT4501, my specialization project, during the

spring semester of 2023. I feel lucky to have been able to work on such an interesting

and modern development in processor microarchitecture that goes to the heart of one its

largest challenges.

I want to thank my supervisor, Rakesh, for his patience, understanding and assistance in

finding relevant literature, devising a plan, and asking critical questions of my work.

Runahead has been difficult to work with, and many meetings have ended in a-ha

moments and fresh insights without which I do not think I could have seen this project

through.

I would also like to thank Amund, a PhD student at the institute, for his assistance with

configuring gem5 to run the SPEC2017 benchmarks and profile them for regions of

interest. Working on setting these up entirely on my own would have taken a significant

amount of time.

iv

v

Table of Contents
List of Figures ... vii

List of Tables .. ix

List of Abbreviations .. ix

1 Introduction .. 1

1.1 The memory wall .. 1

1.2 Runahead execution .. 2

1.3 Delayed exit runahead ... 2

1.4 Structure of the thesis ... 3

2 Background ... 5

2.1 Cache hierarchies and prefetching ... 5

2.2 Runahead execution schemes ... 6

2.2.1 The runahead framework ... 6

2.2.2 Traditional runahead execution ... 8

2.2.3 Filtered runahead ...10

2.2.4 Precise runahead ...12

2.2.5 Continuous runahead ..13

2.2.6 Vector runahead ..13

2.2.7 Performance of previous runahead schemes ..14

3 Motivation for the thesis ..15

4 Simulation infrastructure ...18

4.1 Choice of simulator ...18

4.2 The gem5 simulator and the O3CPU model ..18

4.2.1 Fetch and time buffers ..19

4.2.2 Decode ...20

4.2.3 Rename, the RRT and free lists ..21

4.2.4 Issue, Execute, Writeback ...22

4.2.5 Commit ...25

5 Implementing delayed exit runahead ...26

5.1 Detecting LLLs and entering runahead ..26

5.2 Poison propagation ...27

5.3 Runahead cache and memory instructions ...27

5.4 Architectural state checkpointing ..28

5.5 Exiting runahead and exit policies ..28

5.5.1 Minimum work ...29

5.5.2 No Load Left Behind ...29

vi

5.5.3 Dynamic delayed ..29

5.6 Efficiency and performance improvements ...30

5.7 Miscellaneous modifications ...30

5.8 Testing the implementation ...31

6 Evaluation of delayed exit runahead ..32

6.1 Characteristics of the SPEC2017 benchmarks ...32

6.2 Configuring gem5 for the SPEC2017 benchmarks ...32

6.3 Finding representative regions ...35

6.4 Measuring performance ...36

6.5 Base system parameters ...37

6.6 Determining runahead baseline parameters ...38

7 Results ..41

7.1 The runahead baseline ..41

7.2 Minimum work and exit deadlines ...45

7.3 No Load Left Behind ...47

7.4 Dynamic delayed exit..49

7.5 Delayed runahead period metrics ...50

8 Discussion of runahead & delayed exit ...52

8.1 Runahead performance degradation ...52

8.2 Minimum work delayed exit ...54

8.3 NLLB delayed exit ...54

8.4 Dynamic delayed exit..55

9 Future work ...56

9.1 Improving the simulation model ...56

9.2 Delayed exit policies ...57

10 Conclusion ..58

References ..59

vii

List of Figures
Figure 1.1: A three-level cache hierarchy with a split L1 cache and unified L2 and L3

caches. Memory access latency increases the further down the memory hierarchy a data

packet must travel. .. 1

Figure 1.2: Example of how runahead execution prefetches cache misses by pre-

executing future loads during cache misses. The pre-execution of the load prefetches the

memory value, preventing a future cache miss that would have led to a stall. 2

Figure 1.3: Example of how delayed exit from runahead may prefetch additional loads.

The extra prefetch during the delayed exit prevents a re-entry into runahead. 3

Figure 2.1: A simple 2D matrix multiplication algorithm for computing the matrix C = AB.

 ... 5

Figure 2.2: Simplified example of how a hardware prefetcher might predict access

patterns and move data up the memory hierarchy ahead of their use. 6

Figure 2.3: A taxonomy of different published runahead schemes. The majority of

runahead schemes target cache, with most of those being based on the traditional

runahead scheme introduced by Mutlu et al.[4]. MLP-aware[8], RaT[9, 17, 18],

reliability-aware[21] and branch runahead[13] are not explained in this thesis. 7

Figure 2.4: Diagram of a runahead CPU pipeline. Modifications to allow for traditional

runahead execution are marked in gray. .. 8

Figure 2.5: Examples of how Mutlu’s efficiency improvements[6, 7] can prevent entry

into runahead, reducing the overall amount of instructions executed by the processor,

improving efficiency and reducing overhead. ..10

Figure 2.6: Diagram of a filtered runahead CPU pipeline. Modifications compared to

traditional runahead are marked in gray. The runahead buffer replaces the fetch-decode

frontend entirely during runahead, indicated by the hatching.11

Figure 2.7: Diagram of a precise runahead pipeline. Modifications compared to a

traditional runahead pipeline are marked in gray. The processor does not use the commit

stage for runahead work. Note that the runahead cache and poison bits are removed. ..12

Figure 3.1: Instructions retired in the interim period between two runahead periods.

Across all benchmarks, 34.2% of all interim periods retire less than 150 instructions

before re-entering runahead, 23.7% retire less than 100 and 12.8% less than 50.16

Figure 3.2: Example code of a loop accessing a buffer at a hashed index.16

Figure 3.3: Illustration of processor behavior when it experiences runahead stutter.17

Figure 4.1: Work done by fetch in a typical cycle. I-cache accesses and instruction

decoding are mutually exclusive, only one can be performed in a single cycle.19

Figure 4.2: Work done by decode in a typical cycle. ..20

Figure 4.3: Work done by rename in a typical cycle. ...21

Figure 4.4: The structure of the O3CPU’s register rename tables. Each RRT contains one

individual rename map for every type of register, which in turn contains a pointer to a

free list. ..21

Figure 4.5: Work done by IEW in a typical cycle. ..22

Figure 4.6: Structural diagram of the O3CPU model’s IEW stage. The IQ contains all

instructions due for execution and maintains multiple ready lists that use a dependency

graph and internal register scoreboard to determine instruction readiness. FU bandwidth

is modeled by a pool of available FUs for each opclass. IEW also features a memory

dependence unit[35] for predicting memory dependencies.24

Figure 4.7: Work done by commit in a typical cycle. ...25

viii

Figure 6.1: Weightings of all SimPoints extracted from the first 50 billion instructions of

each SPEC2017 benchmark used in the CPU model evaluation. For each benchmark, the

SimPoint with the largest weighting is colored blue. All other SimPoints are colored black.

 ..35

Figure 6.2: Comparison of relative NIPC and pseudoretired instructions between an eager

and lazy entry runahead CPU model. (Harmonic) means are across all benchmarks.38

Figure 6.3: Comparison of relative NIPC and pseudoretired instructions by a runahead

CPU model that allows overlapping runahead periods, and one that does not.39

Figure 6.4: Comparison of relative NIPC and number of pseudoretired instructions when

filtering the instruction stream to dependence chains. ...39

Figure 6.5: Sensitivity analysis of various in-flight thresholds (IFT) with regard to their

impact on NIPC and pseudoretired instructions. Exact NIPC is displayed above the bars

for IFT=350. ..40

Figure 7.1: IPC of the runahead baseline model relative to the stock OoO CPU model.

“all” is the sum number of instructions divided by the sum number of cycles across all

benchmarks. ..41

Figure 7.2: Mean load-to-use cycles for normal loads with the stock and runahead CPU

models. The error bars show one standard deviation from the mean.42

Figure 7.3: Cycle overhead of entering and exiting runahead mode (top) and the

runahead model’s adjusted IPC with overhead cycles removed (bottom).43

Figure 7.4: Fraction of all normal cycles in which the ROB is full.44

Figure 7.5: Number of times runahead was entered for each of the SPEC2017

benchmarks. Note the logarithmic scale. ...44

Figure 7.6: Number of normal cycles in which the runahead processor had a confirmed

LLL at the head of the ROB. ...45

Figure 7.7: Sensitivity analysis of exit deadlines (top) and minimum work (bottom) with

regard to relative IPC in a runahead model with a minimum work exit policy. The number

above the best configurations show the relative IPC to the runahead baseline.46

Figure 7.8: Number of instructions retired by the minimum work model relative to the

runahead baseline. ...46

Figure 7.9: Interim period length breakdown for a runahead processor with a 200-

instruction minimum work exit policy. ...47

Figure 7.10: Relative IPCs of the NLLB runahead model to the runahead baseline,

compared with the relative IPCs of the minimum work model.....................................47

Figure 7.11: Instructions retired by the NLLB exit model, relative to the minimum work

and eager exit policies. ...48

Figure 7.12: Interim period length breakdown for a runahead processor with a NLLB exit

policy. ...48

Figure 7.13: Relative IPCs of the dynamic exit runahead model to the runahead baseline,

compared to all other exit policies. ...49

Figure 7.14: Instructions retired by every exit policy, relative to the eager exit policy. ..49

Figure 7.15: Interim period length breakdown for a runahead model with a dynamic exit

policy. ...50

Figure 7.16: Cycles spent in delayed runahead for each exit policy. Note the log scale. .51

Figure 7.17: Instructions pseudoretired in delayed runahead by each exit policy. Note the

log scale. ...51

Figure 7.18: Percentage of pseudoretired instructions that were loads in delayed

runahead for each exit policy. ..51

Figure 8.1: IPC of the runahead model while it is in runahead mode for each of the exit

policies. ...53

ix

List of Tables

Table 6.1: A list of all SPEC2017 benchmarks present on the simulation disk image and

whether they were functional for the purpose of the project or not. Functional

benchmarks are marked in bold text. Benchmarks which were found to get OOM-killed or

crash when allowed to run for longer than 50B instructions are marked with *.34

Table 6.2: Base system configuration for stock, runahead baseline and delayed exit

CPUs. ..37

Table 6.3: Initial runahead parameters for baseline sensitivity analysis. Parameters

marked in bold were tested in the sensitivity analysis. ..38

List of Abbreviations

OoO

ROB

SPEC2017

HWP

LLL

RAS

R-cache

PRF

RRT

DC

SRSL

PRE

SST

PRDQ

CRE

VRE

ISA

PC

FTDQ

IEW

IQ

LSQ

Opclass

FU

AOL

Ln(-I/D) cache

RCL

NLLB

IFT

BTB

ROI

IPC

NIPC

L2U

Out-of-order execution

Reorder buffer

SPEC CPU2017 benchmarks

Hardware Prefetcher

Long latency load

Return address stack

Runahead cache

Physical register file

Register renaming table

Dependency chain

Source register search list

Precise runahead

Stalling slice table

Precise register deallocation queue

Continuous runahead

Vector runahead

Instruction set architecture

Program counter

Fetch-to-decode queue

Issue, execute, writeback

Issue queue

Load-store queue

Operation class

Functional unit

Age order list

Level n (instruction/data) cache

Runahead-causing load

No Load Left Behind

In-flight threshold

Branch target buffer

Region of interest

Instructions per cycle

Normal mode instructions per cycle

Load to use

1

1.1 The memory wall

The clock speed of modern processors has increased at a rapid pace. Meanwhile, the

speeds of memory systems have increased at a lesser pace, leading to the CPU cycle

latency between the processor and main memory growing ever larger. This problem,

known as the memory wall, significantly impacts the performance of most programs

because memory accesses are frequent and can take hundreds of cycles to complete if

they must be serviced by main memory. For example, approximately 50% of all dynamic

instructions in the popular SPEC CPU2017 benchmarks[1] perform operations that either

use or write to values located in memory[2].

Cache hierarchies, illustrated in Figure 1.1, allow processors to significantly reduce the

latency of many memory accesses. These low-latency, on-chip data stores can serve

memory accesses in a fraction of the cycles of a main memory access if the data is

present in the caches, in other words if there is a cache hit. Hardware prefetchers (HWP)

augment cache hierarchies with the ability to find patterns in memory accesses in an

autonomous and transparent fashion. These access patterns can be used to prefetch data

into cache ahead of their use. Combined, caches and prefetching exploit temporal and

spatial locality, wherein code frequently accesses the same memory locations, or

locations close together in memory. However, cache misses still occur frequently due to

cold caches, cache mapping conflicts and insufficient capacity. Additionally, HWPs often

struggle to prefetch complex or unpredictable memory access patterns such as

indirections.

Figure 1.1: A three-level cache hierarchy with a split L1 cache and unified L2 and L3
caches. Memory access latency increases the further down the memory hierarchy a data
packet must travel.

Out-of-order (OoO) processor microarchitecture can hide some latency by continuing to

queue and execute instructions as long as there is space in the re-order buffer (ROB).

The ROB enables instructions to execute out of program order while committing their

changes to architectural state in-order to support precise exceptions[3], but the structure

is limited in size due to cost and space considerations. If the ROB fills up, the processor

cannot track any new instructions, causing a stall. The processor is unblocked only when

the oldest instruction is retired. This architecture is helpful in hiding execution latencies,

including the lower latencies of memory accesses that hit in cache, but instructions that

miss in the last level of cache have such long latencies that they frequently cause the

ROB to fill completely[4], and therefore the processor to stall.

1 Introduction

2

1.2 Runahead execution

Runahead is a speculative execution technique which executes future loads, typically

when the processor would otherwise be stalled on a last level cache miss. By executing

the full dependency chain of load instructions, runahead prefetches future memory

accesses with high accuracy. The function and effect of runahead is illustrated in Figure

1.2. In a normal processor, loads that miss in the last level of cache typically cause the

ROB to fill up, stalling the processor until the load returns. Instead of stalling, a runahead

processor can decide to enter runahead mode, in which subsequent loads leading to

cache misses are speculatively pre-executed, turning them into cache hits.

Figure 1.2: Example of how runahead execution prefetches cache misses by pre-

executing future loads during cache misses. The pre-execution of the load prefetches the
memory value, preventing a future cache miss that would have led to a stall.

The term runahead was coined in 1996[5], but the technology did not see the beginning

of its modern development until 2003[4]. Research in the early 2000s was mostly

focused on efficiency improvements[6-9], but runahead has since seen major

performance improvements[10-12] and even works that leverage hardware acceleration

to perform runahead execution[13, 14].

Most existing runahead schemes attempt to minimize time spent in runahead while

attempting to utilize the available time as efficiently as possible. Many efficiency

improvements have focused on limiting entry into runahead where it is not predicted to

be useful[6-8], and nearly all schemes will eagerly exit runahead as soon as the cache

miss that caused runahead has returned[4, 9, 10, 12]. Intuitively, this makes sense.

Runahead performs useful work by prefetching memory accesses, but it does not perform

real work. However, eagerly exiting runahead comes at the cost of reduced prefetch

coverage because fewer loads are executed. Recent works has discovered that runahead

has poor coverage[14], and that delaying the exit of runahead execution can actually

improve overall performance in vectorized runahead[11].

1.3 Delayed exit runahead

Inspired by previous findings about runahead coverage[14] and performance

improvements from delayed exits[11], this thesis studies if delayed exit policies from

runahead may improve either the efficiency or performance of runahead schemes. A

traditional runahead execution CPU model was implemented in the gem5 simulator and

used to simulate the SPEC CPU2017 benchmarks[1] (SPEC2017). The implementation of

the runahead model used in this thesis is open source and freely available on GitHub[15].

https://github.com/halworsen/gem5-runahead

3

Figure 1.3 illustrates how a delayed exit may prefetch additional long latency loads, thus

preventing repeated re-entry into runahead later. Loads executed in the delayed

runahead period may increase runahead’s coverage, leading to improved processor

performance. Additionally, if the additional prefetches prevent a runahead period and are

performed by executing fewer instructions than said runahead period, efficiency is

increased. Depending on how costly the overhead of entering and exiting runahead is,

the saved overhead from reduced runahead may also provide performance benefits.

In this thesis, I develop three delayed exit policies for runahead with the aim of

improving a runahead processor’s performance. I find that delaying exit from runahead

mode can improve performance by 2.3% over traditional runahead with an eager exit

policy if the additional time is spent effectively to issue additional loads. This suggests

that delayed exit policies have the potential to increase the performance of traditional

runahead schemes.

Figure 1.3: Example of how delayed exit from runahead may prefetch additional loads.
The extra prefetch during the delayed exit prevents a re-entry into runahead.

1.4 Structure of the thesis

This thesis is divided into chapters roughly relating to the project background,

motivation, simulator details, implementation of delayed exit runahead, evaluation

methodology, experiment results, a discussion and finally recommendations for future

work and a conclusion.

First, chapter 2 explains the background for the project, beginning with the traditional

measures taken against long latency loads. Runahead execution in its various forms is

then explained. Select runahead schemes from literature are presented and explained.

Chapter 3 discusses the motivation for the work done in this thesis, including evidence

supporting delayed exit policies’ potential to improve performance. Chapter 4 briefly

touches on the choice of simulator for the study. I then describe the gem5 simulator and

its stock OoO CPU model, O3CPU. Each stage of the processor model’s pipeline is

described in detail. Chapter 5 details how gem5’s O3CPU model was modified to support

traditional runahead execution. It also describes some of the improvements from

literature that were implemented with the model. The implementation of my delayed exit

policies are also detailed here. Finally, it explains how the model was tested for

functionality and correctness. Chapter 6 discusses the SPEC2017 benchmarks used to

evaluate the CPU models in this project. It explains how gem5 was configured to use the

4

benchmarks as well as the base system configuration used. The process of tuning

runahead parameters for the runahead baseline is then discussed. The method for

evaluating system performance is also explained. Chapter 7 presents the simulation

results of the runahead baseline model compared to the stock OoO CPU model. It also

presents the simulation results for each delayed exit policy compared to an eager exit

policy. Chapter 8 discusses the performance degradation seen in the runahead model.

The results for each delayed exit policy are then discussed. Chapter 9 provides

suggestions for improving the processor model and a potential avenue for future work on

delayed exit policies. Finally, chapter 10 concludes the thesis by summarizing the work

done, the experimental results and explanations for these.

5

2.1 Cache hierarchies and prefetching

The main measure taken against long memory latencies is to structure memory

hierarchically, with caches close to the CPU. Caches are small, on-chip memory units that

have exceptionally low access latencies compared to main memory. Any memory

operation executed by the CPU which hits in cache sees a dramatic speedup compared to

a main memory access. Cache misses have become a bottleneck for modern processor

performance as main memory accesses can take hundreds of cycles to resolve.

Typically, caches are made using SRAM technology, which is costly in terms of both

money and physical space, both of which are coveted resources in microarchitectural

design. As such, designers must strike a balance between the performance benefit and

overall cost of incorporating the caches. Much effort has also been put into hardware

prefetching schemes as a method to increase cache hit rates and hide access latencies.

The matrix multiplication algorithm shown in Figure 2.1 is a good example of how caches

can improve performance while highlighting their limitations. Each matrix row and

column are accessed repeatedly. The first accesses are not cached, and therefore end up

being cold cache misses, incurring lengthy main memory accesses. Subsequent accesses

to the same matrix rows and columns will hit in cache, speeding up execution. If the

matrices are sufficiently large, the cache might not have sufficient capacity to store the

full matrices, leading to capacity misses as older cache entries must be evicted to fit the

data accessed in more recent accesses. Depending on how the cache blocks are indexed

and how the matrix is laid out in memory, some matrix accesses may also map to the

same cache blocks, leading to conflict misses.

Figure 2.1: A simple 2D matrix multiplication algorithm for computing the matrix C = AB.

In the example algorithm, cache exploits what is known as temporal locality, in which the

algorithm accesses the same addresses repeatedly. The code (and indeed a very large

amount of code in general) also accesses data in a predictable pattern. This phenomenon

is known as spatial locality and can be exploited by hardware prefetchers to further

increase performance. Figure 2.2 shows the intuition behind how a hardware prefetcher

works. Because the processor is performing accesses to different addresses in a

predictable pattern, a hardware prefetcher can issue prefetch requests down the memory

2 Background

for (int rA = 0; rA < numARows; rA++)

for (int cB = 0; cB < numBCols; cB++)

for (int cA = 0; cA < numACols; cA++)

C[rA][cB] = A[rA][cA] * B[cA][cB]

6

hierarchy to begin loading data into cache before it is demanded by the CPU, thus hiding

parts of or even the full latency of the access.

Figure 2.2: Simplified example of how a hardware prefetcher might predict access
patterns and move data up the memory hierarchy ahead of their use.

Hardware prefetchers can dramatically increase processor performance. The winner of

the 3rd data prefetching championship, the Instruction Pointer Classified based

Prefetcher, improved single-core IPC by 43.75% over a CPU model without

prefetching[16]. However, all prefetchers have an inherent limitation in that they can

only base their prefetches on past and present data. This means there is an upper bound

to their accuracy and coverage.

2.2 Runahead execution schemes

Runahead is a broad term that covers many different microarchitectural designs. Despite

originally and typically being used to improve cache performance[4-12, 14, 17-20],

runahead has been found to have more use cases[13, 21]. As such, this section begins

with a broad description of runahead as a framework for generating side-effects. Select

runahead schemes from published literature which are particularly relevant to the thesis

are then presented and explained. Finally, the performance improvements of these

schemes are summarized.

2.2.1 The runahead framework

A normal out-of-order processor cannot process the instruction stream any farther than

the current committed instruction, plus the size of the ROB. When the ROB is full, the

program order of new instructions cannot be tracked, and the processor must stall.

Runahead processors can execute arbitrarily far into the instruction stream by

circumventing the usual limitations that ensure architectural state is observably correct

at any time. Runahead execution does not necessarily fundamentally differ from normal

execution, but any changes made to architectural state by runahead execution will

inevitably be undone such that the processor’s architectural state returns to the last point

7

at which it was executing normally. Therefore, runahead processors do not necessarily

have to stall when the ROB is full. Instead, blocking instructions can be removed to

resume execution. Free resources in the processor may also be used to continue

execution without utilizing the ROB. It is also possible to dedicate specialized hardware to

runahead while not using any of the CPU’s resources.

Because all the architectural effects of runahead are eventually discarded, runahead

mode can be thought of as a sandbox in which the processor’s main goal is to generate

as many beneficial side-effects as possible. In most work thus far, runahead has been

used to improve cache performance[4-12, 14, 17-20], but it can also be used to pre-

compute branch outcomes[13] and even improve soft error rates[21] to increase

processor reliability. Figure 2.3 shows a taxonomy of the goals of some runahead

schemes that have been published in literature.

Figure 2.3: A taxonomy of different published runahead schemes. The majority of
runahead schemes target cache, with most of those being based on the traditional
runahead scheme introduced by Mutlu et al.[4]. MLP-aware[8], RaT[9, 17, 18],
reliability-aware[21] and branch runahead[13] are not explained in this thesis.

In schemes that runahead in-processor, it is normal for runahead execution to begin

when a memory access misses in last level cache. Such long latency loads (LLLs) are

known to take a long time to resolve, and therefore typically cause the ROB to fill up and

the processor to stall. Since the processor is doing no useful work otherwise, these stalls

are an ideal time to use runahead mode. In truth, runahead can be entered at any time,

including all the time in specialized hardware acceleration units[13, 14]. To my

knowledge, however, when used in-processor runahead mode has only been used when

there is a LLL blocking retirement at the head of the ROB.

8

2.2.2 Traditional runahead execution

In this thesis, traditional runahead refers to the scheme proposed by Mutlu et al.[4],

optionally with the efficiency improvements later proposed in Mutlu’s dissertation[6, 7].

Figure 2.4 shows a simplified traditional runahead CPU pipeline. This is largely the

runahead scheme on which the runahead CPU model in this thesis is based, although

there are certain aspects to modelling a functional runahead CPU which are not discussed

in Mutlu et al.’s paper[22]. These nuances are discussed further in chapter 5.

Figure 2.4: Diagram of a runahead CPU pipeline. Modifications to allow for traditional

runahead execution are marked in gray.

Traditional runahead begins when a load misses in last level cache1, at which point the

processor stores a checkpoint of the architectural state. The checkpoint contains all

architectural register values as well as the branch predictor’s branch history and return

address stack (RAS). Of these, only the register values are critical to restoring the

architectural state and ensure program correctness. Once the checkpoint is taken, the

instruction at the head of the ROB (a LLL) is issued a forged result and its destination

register(s) are marked as poisoned before the instruction is pseudoretired, marking the

start of a runahead period.

Once in runahead, the CPU works as usual, but must track poisoned data along the way.

In the context of runahead, poison is equivalent to invalidity. An instruction using

poisoned data is operating on invalid operands, i.e., the source operands do not contain

data produced by valid program execution. In hardware, poison can be tracked by a bit

for each physical register. Poison bits are propagated when instruction writeback. An

instruction that sources poisoned registers will poison all its destination registers. Poison

can be cleared if an instruction writes to a register or memory location without sourcing

any poisoned operands, for example when writing or storing immediate values.

To handle memory instructions, the store buffer or LSQ (whichever is used for store-to-

load forwarding) is augmented with a poison bit for each entry, allowing forwarded loads

to become poisoned by stores in the buffer. Committed stores, however, are trickier.

Because runahead is speculative, stores cannot be allowed to reach cache since memory

1 The original paper specifies a miss in L2 cache, but L2 is last level cache in their system

configuration.

9

is part of the committed architectural state of the system. Previous works had simply

discarded these stores[5, 23], but one of Mutlu et al.’s major contributions is the addition

of a runahead cache (R-cache)[4]. R-cache is a very small, on-chip cache that acts as a

replacement for real cache during runahead. It exclusively stores the results of runahead

stores. This way committed runahead stores can communicate their data and, if needed,

propagate poison to dependent loads after they have exited the instruction window.

When a load executes, it accesses R-cache in parallel with real cache, prioritizing the use

of data returned by R-cache.

Any loads executed during runahead are prefetched if their address is valid. If the source

operands are poisoned, however, the address will be invalid, and the instruction is

guaranteed to produce a bogus result. This is true for any instruction that sources

poisoned operands, and so they can safely skip execution and be sent directly to commit

for pseudoretirement. The only exception is store instructions, which will write a poison

bit into R-cache if their address is valid. Control instructions pose an additional challenge,

as poisoned source operands cause their outcome to be impossible to determine. In

these cases, the processor must trust the branch predictor. If the branch predictor is

incorrect, it causes a divergence point[4] after which the processor is on the wrong

control path until runahead exits.

When the LLL that originally caused the processor to enter runahead gets a response

from cache, the processor begins to exit runahead. Mutlu et al. note that this can be

handled in the exact same way as a branch misprediction squash. Because the runahead-

causing LLL was the oldest instruction in the window at the time of entry into runahead,

squashing until that LLL will flush the entire pipeline. After the flush, the architectural

checkpoint is restored by copying every saved architectural register value into a specific

portion of the physical register file (PRF). The register renaming tables (RRTs) are then

repaired by overwriting both the front- and backend RRTs with a fixed rename table that

maps to the correct registers in the PRF. R-cache is invalidated entirely, and the

checkpointed branch history and RAS are restored. Fetch is then redirected to the LLL

that caused runahead, and the processor resumes execution in normal mode.

Some simple efficiency improvements to the scheme were proposed by Mutlu in his

dissertation[6, 7], and were motivated by the observation that the increase in processor

performance came at the cost of a large increase in executed instructions. Three of these

improvements are illustrated in Figure 2.5. To reduce the number of executed

instructions, the processor may eliminate short, overlapping, and useless runahead

periods. Short periods are eliminated by determining a cycle threshold after which in-

flight loads can no longer trigger runahead because they are expected to return soon.

Overlapping periods are eliminated by preventing re-entry into runahead until the

processor has fetched at least as many instructions as were pseudoretired in the last

runahead period. Eliminating useless runahead periods is a more open problem for which

Mutlu trained a usefulness predictor that determined whether a runahead period was

likely to generate useful prefetches, and preventing runahead when it was predicted not

to.

10

Figure 2.5: Examples of how Mutlu’s efficiency improvements[6, 7] can prevent entry
into runahead, reducing the overall amount of instructions executed by the processor,
improving efficiency and reducing overhead.

Mutlu et al. already mentioned in their paper on traditional runahead[4] that delayed

exits were being evaluated. To my knowledge, these results were never published.

However, Mutlu later evaluated and discussed briefly the feasibility of delaying exit from

runahead in his dissertation[6] and PhD defense[7]. He found that delaying exit after the

RCL returns may improve performance if the processor prefetches additional LLLs, but

that failing to do so degrades performance. Overall, they found it to degrade

performance[6].

2.2.3 Filtered runahead

Filtered runahead was proposed in 2015 by Hashemi and Patt[12]. They find that many

static LLLs are not distinct from one another, i.e., they share the same PC. Motivated by

this, they filter the runahead instruction stream to only the chain of instructions which

generates addresses for the LLL blocking the ROB. This dependency chain (DC) is then

stored in a runahead buffer which replaces the front-end entirely during runahead mode.

A small DC cache is added to skip chain generation for future instances of the same static

11

load instruction. Figure 2.6 shows how a traditional runahead CPU pipeline is altered

further to enable filtered runahead.

Figure 2.6: Diagram of a filtered runahead CPU pipeline. Modifications compared to
traditional runahead are marked in gray. The runahead buffer replaces the fetch-decode
frontend entirely during runahead, indicated by the hatching.

The core of filtered runahead are the dependence chains executed during runahead.

These chains are generated on entry into runahead, and generation begins by looking for

a younger instance of the LLL that is blocking the ROB. If one is found, the entire DC of

the LLL must be present in the ROB. The processor then enqueues the younger LLL’s

physical source registers in a source register search list (SRSL)[12]. It then iteratively

searches the ROB for producers of each register in the SRSL, enqueuing new source

registers for each producer found and adding them to the DC. Chain generation ends

when the SRSL is empty, or the chain exceeds a certain maximum length (32 instructions

in Hashemi and Patt’s paper[12]). Chains that exceed the maximum length are

discarded.

Generated DCs are stored in the DC cache, which contains the decoded microoperations

(uops) of the DC. The chain cache is indexed by the PC of the LLLs and uses a LRU

eviction policy. When the processor enters runahead, the chain cache is checked for a

matching DC. If found, DC generation is skipped, and the stored chain is moved into the

runahead buffer.

While in runahead, the runahead buffer replaces the front-end entirely if it contains a

dependence chain, meaning fetch and decode can safely be disabled through clock or

power gating. The runahead buffer feeds decoded uops from the current DC directly into

the rename stage, after which the uops flow through the pipeline as usual. Once the

chain is exhausted, the buffer loops back to start and begins supplying uops from the

beginning of the chain again. If the runahead buffer does not contain a chain at the start

of runahead, the processor falls back to traditional runahead.

12

2.2.4 Precise runahead

Precise runahead (PRE)[10] is a state-of-the-art runahead scheme for processors without

vector hardware. The scheme was published in 2020 by Naithani et al. and greatly

improves performance and efficiency through eliminating much of the entry and exit

overhead of runahead. It does this with a novel instruction filtering and resource

reclamation mechanism, and by using only free resources during runahead. Figure 2.7

shows the pipeline modifications necessary to support precise runahead.

Figure 2.7: Diagram of a precise runahead pipeline. Modifications compared to a

traditional runahead pipeline are marked in gray. The processor does not use the commit
stage for runahead work. Note that the runahead cache and poison bits are removed.

PRE enters runahead once the ROB is full, and executes only the dependence chains of

LLLs causing full-ROB stalls. These LLLs are called stalling loads, and PRE names their

dependence chains stalling slices. Compared to filtered runahead the chains are not

cached, and the frontend is not replaced during runahead. Instead, PRE introduces a

stalling slice table (SST) between the decode and rename stages. The SST contains the

PCs of instructions in stalling loads’ dependence chains. Slices are iteratively generated

and placed in the SST through the decode and rename stage, whose RRT is modified to

contain the PC of each register’s previous producer. Stalling loads are placed in the SST,

and whenever an instruction is decoded, it checks the SST. If there is a hit, the frontend

RRT is looked up to find the producer PC of each of the instruction’s source registers. This

PC is added to the SST. The SST is limited in size and uses a LRU eviction policy, allowing

new slices to populate the SST as the program progresses. SST entries do not associate

with any instructions or slices, and multiple slices can fit in the SST at once.

While in runahead, the processor uses the SST to filter incoming instructions after the

decode stage. If the decoded instruction does not hit in the SST, it is not allowed to

progress through the pipeline. Slice instructions that make it past decode only use

unused registers for rename. Runahead instructions in PRE are discarded immediately

after execution. PRE introduces a ROB-like structure, the precise register deallocation

queue (PRDQ), to free registers after execution. The PRDQ stores information about old

physical destination registers to be freed. Instructions are inserted into the PRDQ in-

program-order and removed in-order when they have been executed and reach the head

of the PRDQ. Any PRDQ entries are removed when the processor exits runahead.

13

One notable feature of PRE is that this scheme allows the processor to continue executing

normal instructions while the processor is running ahead (if able). The ability for the SST

to store multiple slices also means prefetch coverage is increased over the somewhat

similar filtered runahead scheme. PRE also stores decoded runahead instructions in an

extended uop queue between decode and rename, allowing for instruction reuse when

the processor eventually exits runahead.

As with traditional runahead, PRE exits runahead when the stalling load returns. Because

resources were never deallocated for runahead execution, the frontend is simply

redirected to the checkpointed PC, which is the instruction immediately past the full ROB.

The RRT and RAS must still be restored from the checkpoint, however. Note that PRE

does not touch the ROB, so the processor can simply retire the front of the ROB as usual

to continue execution while the front-end catches up.

2.2.5 Continuous runahead

Continuous runahead (CRE)[14] will only be briefly explained as it is a hardware

acceleration scheme, and its relevance to this thesis is limited to its findings about

runahead’s coverage. The scheme was published by Hashemi et al. in 2016. The paper’s

main contribution is moving the filtered runahead scheme to a dedicated hardware

acceleration unit called the continuous runahead engine. The processor communicates

dependency chains of LLLs to the runahead engine, which continuously executes the

chains in a loop to prefetch loads.

The development of CRE was motivated by the finding that traditional runahead has poor

prefetch coverage, only reaching about 13% of runahead-reachable cache misses[14].

Hashemi et al. define runahead-reachable misses as those whose source data is available

on-chip at issue. In other words, a runahead-reachable miss could have been prefetched

if it had been executed in runahead. When the runahead engine is installed in the

memory controller, prefetch coverage increases to 70% of reachable misses. They find

that the low coverage of these misses is largely due to each traditional runahead interval

lasting for a short time. CRE’s coverage improvement comes from its ability to run ahead

constantly, something which is not reasonable to do in the processor core.

2.2.6 Vector runahead

Vector runahead (VRE)[11, 19, 20] is the current state-of-the-art runahead scheme for

processors with vector hardware. Naithani et al. find that many indirections occur in

loops with predictable outcomes for each iteration. They capitalize on this by unrolling

loops into vector instructions (vectorizing) to simultaneously issue large amounts of loads

during runahead. Doing this enables runahead to resolve indirections effectively,

something previous schemes struggled with.

The vectorization mechanism of VRE depends on stride detection to both determine when

LLLs’ dependency chains can be vectorized, and what offset to use when vectorizing. To

find this offset, a prediction table[24, 25] is used to track the delta between memory

addresses of the same load PC. This detects strides and tracks the confidence that the

stride is accurate. A prediction table entry with high confidence indicates a striding load,

which allows VRE to vectorize the load chain in runahead. Lastly, a terminator PC[11] is

stored to determine the end of the load chain.

VRE enters runahead when the ROB is blocked by a load, and the ROB is full or the IQ is

80% full. If the blocking load is not vectorizable, PRE[10] is used. Vectorization is done

14

by injecting 512-bit vector loads into the pipeline using the LLL’s memory address and

the detected stride. Any arithmetic operations or producing loads in the LLL’s dependency

chain are also vectorized. To handle poison, a taint vector[11] is used to track it and

mask vector lanes during execution. Control flow instructions are vectorized once per

iteration and actioned in the form of a lane mask where all lanes that take the same

direction as the first lane are executed. Register resources are handled by a deallocation

queue similar to the one used in PRE[10].

Unlike previous schemes, VRE does not exit runahead when the original LLL returns. It

instead relies on four separate conditions which can terminate runahead. However, in

some circumstances VRE can continue past these. VRE dynamically computes the amount

of loop iterations to unroll and execute in a process called vector unrolling[11] which

works like this: One iteration of the loop is executed first. Then, a vector load is issued

for the next N=8 stride values in the sequence2. This process is then repeated a variable

number of times, U. Ultimately, the loop is unrolled U times, each of which contains N

values to load. This means that runahead issues N times U iterations worth of loads in

one runahead period before the core is allowed to resume normal execution. If N=8 and

U=8, VRE will unroll the loop into 8 vector lanes 8 times, totaling 64 loads in a runahead

period. This exit policy is important for VRE’s performance. Compared to an eager exit

policy, it allows VRE to achieve a speedup of x1.79 compared to x1.69[11]. They also

note that a similar exit policy for PRE increased performance by a further 3.5%. The

speedup that VRE gains from a delayed exit is therefore mostly due to the sheer scale of

its increase in MLP.

2.2.7 Performance of previous runahead schemes

Traditional runahead execution achieved a 22% IPC improvement over a no-prefetching

baseline, a similar performance to a machine with triple the ROB size[4]. A hybrid filtered

runahead + traditional runahead policy managed a 21% IPC improvement over a more

modern no-prefetching baseline[12]. PRE is simulated on a model based on the modern

Intel Skylake processors and improves performance by 38.2% over a no-prefetching

baseline[10]. VRE speeds up execution by 79% over an OoO core with a stride prefetcher

and 49% over PRE[11]. Vector runahead is so effective that it sometimes closes in on full

MSHR saturation, with x2.3 MSHR utilization over OoO and x1.2 over PRE.

2 Assuming AVX-512. In general, N is the number of words that can fit in a vector.

15

Although Mutlu originally found that delayed exits degrade performance[6], the work

done in this thesis is primarily inspired by later findings by Hashemi et al. that runahead

achieves poor coverage due to its short time spent in runahead mode[14], and VRE’s

performance gains from preventing exit until a predetermined amount of work is

performed. These suggest that runahead, in general, may gain additional performance

benefits from delaying exit when there is additional MLP to be extracted.

Based on this, a traditional runahead scheme was implemented in the gem5

simulator[15]. Multiple metrics were added to investigate whether a delayed exit policy

could potentially improve performance. Initial experiments with the traditional runahead

model revealed evidence of runahead stutter, in which the processor frequently switches

in and out of runahead mode because it failed to prefetch critical loads in the previous

runahead period. Figure 3.1 shows the distribution of lengths of interim periods in terms

of retired instructions. An interim period is a normal mode period that begins after an

exit from runahead and lasts until runahead is re-entered. The figure shows that in a

traditional runahead processor, less than 150 instructions are retired in 34.2% of all

interim periods, and less than 50 instructions are retired in 12.8% of all interim periods.

The discovery of runahead stutter was the main motivation for the commitment to study

runahead exit policies, with the goal to improve performance through developing a

delayed exit policy capable of eliminating runahead stutter.

3 Motivation for the thesis

16

Figure 3.1: Instructions retired in the interim period between two runahead periods.
Across all benchmarks, 34.2% of all interim periods retire less than 150 instructions
before re-entering runahead, 23.7% retire less than 100 and 12.8% less than 50.

Figure 3.2: Example code of a loop accessing a buffer at a hashed index.

Figure 3.2 shows example code that may experience runahead stutter. In this case, the

same static load instruction produces multiple dynamic instances that miss in cache

because the hash is unpredictable. Such situations have already been shown to be a

leading cause of full-ROB stalls[10, 12, 14]. Hardware prefetchers struggle with such

loops due to the unpredictability of the hash. Runahead, however, is well suited for these

situations for two reasons. For one, no iteration depends on another, meaning runahead

does not get stuck on dependency-related issues like poison or other cache misses to

prefetch further into the future. Second, and most importantly, it has access to processor

resources, allowing it to compute the hash and accurately prefetch the correct indices of

the buffer. However, runahead’s usefulness is limited because it exits as soon as the first

cache miss returns. The processor then catches up to the work done in runahead and

promptly misses in cache again, re-entering runahead. This cycle repeats multiple times

until the loop completes, as shown in Figure 3.3. The problem is exaggerated if the hash

computation is expensive because runahead cannot quickly compute the indices.

for (int i = 0; i < N; i++)

 y += buffer[hash(i)];

17

Figure 3.3: Illustration of processor behavior when it experiences runahead stutter.

Naithani et al.[11] have, in essence, implemented a minimum work policy in which the

processor is not allowed to exit runahead until a specific amount of work has been done.

The question I would like to answer is if similar policy would have a positive performance

impact on traditional runahead schemes, and if alternative delayed exit policies have the

potential to increase processor performance. If so, similar ideas could be applied to other

runahead schemes to improve their performance.

18

4.1 Choice of simulator

The choice of simulator is justified in greater depth in the project report[22] preceding

this thesis and submitted for TDT4501, but is summarized in short here. SMTSIM[26],

Multi2Sim[27], Scarab[28], ChampSim[29], Sniper[30] and gem5[31] were evaluated as

potential simulators for the project based on previous use in literature[8, 10-14, 21] or

recommendations[32].

Of these, SMTSIM, Multi2Sim and Scarab were discarded as they were either outdated,

had their development ceased, or both[22]. ChampSim is purpose built for championship

prefetcher simulations, and therefore discarded as too simple for a core simulation. The

quality of documentation and apparent ease of development was heavily weighed, and

ultimately gem5 was chosen over Sniper due to its higher simulation fidelity and better

documentation.

4.2 The gem5 simulator and the O3CPU model

The gem5 simulator[31] is a computer architecture simulator written in C++. The

simulator has a modular design that allows mixing and matching various simulation

components as defined by simulation configuration scripts written in Python. The

simulator also has a powerful statistics engine that allows developers to rapidly

implement new metrics in their models, including automatically computed histograms,

averages, distributions, vector metrics and more. Powerful debugging tools are available,

ranging from print traces to full debugger support for both the simulator and simulated

programs.

Everything in gem5 is executed in an event loop, which allows it to decouple simulated

time from real time, maintain different clock domains, deschedule idle systems to speed

up simulation, and easily model latencies. By default, the event loop runs at a frequency

of 1THz, giving the simulation a picosecond resolution. For example, a 2GHz core

schedules its cycles for execution once every 500 simulation ticks.

Out of the box, gem5 features a variety of simple and complex core models that fit within

various simulation paradigms. In this project, I used the O3CPU model[33] for baseline

simulations, as well as a basis for the implementation of runahead. The following

description of the O3CPU model is a direct quote from this thesis’s preceding

specialization project report[22] (with fixed citations):

“The out-of-order core model provided by gem5, the O3CPU, provides an

execution-driven simulation ”loosely based on the Alpha 21264”[33] that uses 5

pipeline stages - fetch, decode, rename, issue/execute/writeback (IEW) and

commit. In contrast to many other simulators[27-30], gem5’s O3CPU model

performs execute in the execute stage. The model is ISA agnostic and faithfully

models many microarchitectural intricacies, such as pipeline stage bandwidth,

functional unit contention and branch/memory order misspeculation.” [22]

4 Simulation infrastructure

19

I now describe how the O3CPU model functions stage-by-stage. Although gem5 supports

multiple hardware threads, only single-threaded workloads were used in this project.

Therefore, mechanisms to handle multiple threads are not explained. Some minute

details are skipped if not crucial to how the stage functions.

4.2.1 Fetch and time buffers

Figure 4.1 shows a simplified timeline of the work fetch performs in a single cycle. The

fetch stage is responsible for fetching static instructions from the instruction cache (I-

cache) according to the PC. Although not accurate to real systems, fetch also decodes

instructions and builds the dynamic instructions that are used in the remainder of the

pipeline[33]. It does this using a decoder which is fed bytes from a fetch buffer

containing un-decoded data from I-cache.

Figure 4.1: Work done by fetch in a typical cycle. I-cache accesses and instruction
decoding are mutually exclusive, only one can be performed in a single cycle.

At the beginning of a cycle, fetch begins by reading any signals from later stages. If

decode signals that fetch must block, it switches state and blocks until it reads an

unblock signal later. Both commit and decode may also send a squash signal including

information about the PC to reset to. If asked to squash, fetch clears a fetch-to-decode

queue (FTDQ) containing instructions to be sent to decode and resumes fetching at the

signaled PC on the next cycle. Any outstanding I-cache requests are dropped. At the end

of the signal checks, fetch checks if there are any outstanding I-cache misses, and blocks

if there are.

After the signal check, if fetch is running, the stage will check if the fetch buffer is invalid

or if the current fetch address has crossed an instruction boundary. If so, it issues a fetch

to I-cache for the PC currently being processed. As with all gem5 memory requests, this

requires address translation before the access can take place, so fetch will wait until

translation is finished. Once finished, fetch sends the access packet to I-cache and waits

for a response, which it copies into the fetch buffer. If the address translation faulted,

fetch constructs and injects a no-op to carry the fault to commit where it will be handled.

On cycles where the fetch buffer contains valid data, it attempts to build instructions

while there is remaining fetch bandwidth and space in the FTDQ. This is done by feeding

bytes from the fetch buffer into a static instruction decoder. These microoperations are

then wrapped into dynamic instructions containing additional information used by the

processor in the remainder of the pipeline such as a global, monotonically increasing

sequence number, the associated macrooperation, instruction state, register information

and memory request state. The branch predictor is then consulted to update the next PC

of fetch. A predicted branch here may halt construction of additional instructions to allow

20

fetch to begin fetching from the new predicted PC. Note that because fetch decodes

instructions before passing them over, the branch predictor has access to information it

normally would not, such as instruction type. Certain branch predictor models utilize this

information[34], although it is not clear to me exactly how this affects overall processor

model performance.

When instructions are built, they are placed in the FTDQ. At the end of the cycle,

instructions are read out of the FTDQ queue with bandwidth equal to the decode width

and placed in a time buffer[34] to decode. In gem5, time buffers are circular queues that

are typically advanced at the start of each cycle. Placing an element at index 0 is

equivalent to inserting data in the “present”. When the buffer advances, the data at each

index moves back by one in practice. Accessing an element at index -N is therefore

equivalent to reading data that was inserted N cycles “in the past”. Thus, time buffers

enable latency-bound communication between pipeline stages. They are heavily used in

the O3CPU model and are the core of all inter-stage communication.

4.2.2 Decode

Decode is a rather simple stage because instruction decoding is already done at fetch. Its

function in the O3CPU is to perform simple preprocessing of certain instructions and to

act as a bandwidth-restricted choke for instructions passing through the pipeline. Figure

4.2 shows the work done by decode.

Figure 4.2: Work done by decode in a typical cycle.

Decode starts each cycle by reading instructions from the time buffer from fetch and

placing them into instruction buffers. A signal read and state update is then performed.

Rename may signal a block, and commit may signal a squash, which simply empties the

instruction buffers.

If decode was not blocked or set to squash, it reads instructions from its buffers up to

the decode bandwidth. It then does some simple preprocessing. Instructions with no

source operands are immediately flagged as issuable. PC-relative branches are also

resolved at this stage and trigger a squash in fetch and decode on a mispredict. If a non-

branch instruction was predicted as a branch, this is detected here, triggering a squash.

Any processed instructions are then placed in a time buffer to the rename stage.

21

4.2.3 Rename, the RRT and free lists

Rename utilizes a frontend RRT to translate architectural source registers to their

corresponding physical register, and, for each architectural destination register, renames

it to an available physical register on a free list. A scoreboard[34] is used to mark

registers that are known to be ready as such. Figure 4.3 shows the work done by

rename.

Figure 4.3: Work done by rename in a typical cycle.

Each rename cycle begins by reading instructions from decode. Signals are then read

from IEW and commit to determine if rename should block or squash. Squashes empty

the instruction buffers and consults a rename history buffer to undo any changes to the

RRT up to and possibly including the squashed instruction’s sequence number, depending

on the nature of the squash. In addition, rename is signaled information about available

issue queue (IQ), load-store queue (LSQ) and ROB slots. If the IQ or ROB are full,

rename blocks as every instruction will be inserted into these.

Figure 4.4: The structure of the O3CPU’s register rename tables. Each RRT contains one
individual rename map for every type of register, which in turn contains a pointer to a

free list.

While there is available rename bandwidth and instructions to rename, instructions are

read out of the incoming instruction buffers to rename their registers. Load and store

instructions must additionally check if there is free space in the load/store queues before

they are renamed. Architectural source registers are then renamed by a RRT lookup. The

RRTs used by the O3CPU are structured as a unified map containing multiple rename

maps for each register type, as shown in Figure 4.4. At the same time, rename performs

a lookup in the register scoreboard, which stores information about register readiness.

Registers are set in the scoreboard on writeback and unset when used in a renaming.

Any source registers set in the scoreboard are immediately marked as ready in the

dynamic instruction information. Destination registers are then renamed by asking the

RRT for renames on the architectural destination registers. The RRT dequeues a free

physical register, updates the corresponding rename map and returns the renamed

register with which rename updates the dynamic instruction information and unsets the

register on the scoreboard. Finally, a history entry containing the instruction’s sequence

number, architectural register, its previous mapping, and new mapping are stored in the

history buffer for use in squashes.

At the end of the cycle, all renamed instructions are sent to IEW through a time buffer.

Rename then reads a signal from commit containing the sequence number of the last

22

committed instruction’s sequence number. Any history buffer entries with a younger

sequence number correspond to committed state and are therefore removed from the

rename history.

4.2.4 Issue, Execute, Writeback

Issue, Execute, Writeback (IEW) is the most complex stage of the O3CPU and is

responsible for instruction scheduling, execution and writeback handling. As seen in

Figure 4.5, the order of work is actually execute, writeback, issue. For the sake of clarity,

I describe the stage in the same order as in the stage’s name. An in-depth overview of

IEW’s structure is shown in Figure 4.6.

Figure 4.5: Work done by IEW in a typical cycle.

Before explaining the instruction flow through IEW, it’s helpful to know how gem5

performs instruction execution. Every instruction in gem5 is responsible for its own

execution, and has an associated operation class[34] (opclass). Each functional unit (FU)

has a set of capabilities that describe which opclasses the FU can execute. FUs are

grouped together into FU pools, which act as an interface through which the processor

can utilize the FUs. The pool provides information on opclasses that can be executed, FU

availability per opclass and their execution latencies. When an instruction is issued in the

O3CPU, the processor grabs an available FU from the FU pool and schedules a FU

completion event on the event loop. The event is processed after a time corresponding to

the execution latency of the FU, in which the instruction is moved from the issue stage to

the execute stage. Execute then invokes the execution routine of the instruction,

including writing any results to the physical destination registers.

As with previous stages, IEW begins its cycles by reading incoming instructions from

rename. Signals are then read from commit. If a squash was signaled, all instruction

buffers are emptied, and the signal is propagated to the IQ and LSQ. After checking

signals, IEW dispatches any instructions in its incoming buffers to the IQ while there is

remaining dispatch bandwidth and space in the IQ. If the IQ becomes full, IEW blocks

and sends a block signal to rename. If the instruction being dispatched accesses

memory, it is also added to the LSQ. When instructions enter the IQ, they update the

dependency graph[34], which maps physical registers to their producing instruction and

a list of dependents. The graph is used for wakeup.

Issue is wholly handled by the IQ. IEW invokes the IQ to issue any ready instructions to

the appropriate functional units. The IQ contains multiple ready lists, one for each of the

operation classes that an instruction can have. An age order list[34] (AOL) is used to sort

the individual ready lists according to the oldest instruction in each list. The head of the

AOL contains the opclass for which the corresponding ready list has the oldest ready

instruction in the entire IQ. When the IQ attempts to issue, it will grab an opclass off the

AOL, then pop an instruction off the corresponding ready list and attempt to issue it to an

available FU. In other words, the IQ always attempts to schedule the oldest instruction.

23

Once the FU completion event scheduled by the IQ is processed, the instruction is sent to

execute through a time buffer with latency equal to the issue-to-execute latency.

Instructions are read out of the time buffer from issue to execute and executed. Most

instructions immediately complete execution here, but memory instructions are handed

to the LSQ as they require additional handling compared to other instructions. The LSQ

initiates the memory access for the instruction and returns any faults. If the translation is

delayed due to a page table walk, or the instruction couldn’t execute due to a lack of

available cache ports, the instruction is placed in a special deferred or blocked instruction

queue and added back to the ready list later for re-execution. The LSQ may report a

memory order violation, which also triggers a squash. Control instructions are resolved at

this point and may trigger a squash if mispredicted. Because instructions are in the ROB

at this point, they require extra handling. These squashes are therefore signaled to

commit, which handles the squash. Executed non-memory instructions are immediately

placed in a time buffer to commit but are inserted in “the future” if writeback bandwidth

would be exceeded. This way, writeback handling is guaranteed to be performed before

commit reads the instructions.

The amount of time needed to complete a memory access depends on the simulated

system’s memory configuration, which schedules relevant events as data packets travel

through the memory hierarchy. Because of this, memory instructions can take a variable

number of cycles to execute and are held in the LSQ until their memory accesses return.

Once the LSQ is notified of a memory access completion, it finally invokes an access

completion routine on the associated memory instruction using the data packet received

from memory to writeback any results. The instruction is then placed in the time buffer

to commit in the same way any other instruction would be.

Stores are an exception to this instruction flow because stores cannot be allowed to write

their data to memory before they are committed state. The LSQ will only initiate address

translation when a store first goes through IEW. To write data, they must first propagate

to the head of the ROB and become committed. Once they are, commit signals this

information back to IEW, which prompts the LSQ to send the write packets to cache.

Writeback to the register file happens on instruction execution, so the only function of

IEW’s writeback mechanism is to update the register readiness state and to wake any

dependent instructions. Writeback is performed after execute and reads outgoing

instructions in the time buffer to commit. The IQ is notified of the instruction completion

and wakes any dependents using the dependency graph, adding them to the ready list if

all source registers are ready. All destination registers are then set on the register

scoreboard, including the IQ’s internal scoreboard.

24

Figure 4.6: Structural diagram of the O3CPU model’s IEW stage. The IQ contains all
instructions due for execution and maintains multiple ready lists that use a dependency

graph and internal register scoreboard to determine instruction readiness. FU bandwidth
is modeled by a pool of available FUs for each opclass. IEW also features a memory
dependence unit[35] for predicting memory dependencies.

25

4.2.5 Commit

Commit is, in addition to instruction retirement, responsible for handling faults, interrupts

and squashes that are detected after insertion into the ROB. Figure 4.7 shows the work

done by commit.

Figure 4.7: Work done by commit in a typical cycle.

Before beginning to commit, the stage checks for any interrupts. If one is detected, it is

processed at the end of the cycle while a trap squash is scheduled after a configurable

latency. After the interrupt check, any squashes are handled, including scheduled trap

squashes and branch mispredict or memory order violation squash signals from IEW. A

squash causes commit to initiate a bandwidth-restricted squash in the ROB. At the same

time, commit sends a squash signal to all previous stages through a time buffer

containing information about how far back to squash.

If the processor isn’t squashing, commit then considers the head of the ROB for

retirement. If the instruction is flagged as committable, the dynamic instruction data is

used to update the backend RRT containing architectural register mappings. The

committed PC state is also updated, then the instruction is retired from the ROB, marking

its completion. Instructions with a fault are handled here by invoking the fault, then

scheduling a trap event for later which will drain the pipeline through a trap squash. This

process repeats until commit’s bandwidth is exhausted, the ROB is empty, or the head of

the ROB is not ready to commit.

At the end of the cycle, commit reads incoming instructions from IEW and marks them as

committable. This includes stores, which are later committed but sent back for writeback.

26

The runahead execution model used in this thesis is a traditional runahead execution

model based on gem5’s O3CPU model. The source code is structured as an extension to

gem5 version 20.0.0.2[34]. The code is open source and freely available on GitHub[15].

A major design decision was to keep the runahead CPU model decoupled from the base

simulator code of gem5. This was done because in theory, the modifications required to

support runahead schemes are typically confined to the CPU. I also hoped this would

simplify any further work based on the model by confining all runahead-related code in

one place. In the end, it turned out to be limiting as it became difficult to work with

certain swappable components like the branch predictor without compromising the

structure of the project. Suggestions to solve this issue are discussed in chapter 9.

In general, attempts have been made to support hardware threads in the runahead code

where possible. However, this implementation has not been tested with multiple

hardware threads because all test programs and benchmarks utilize a single thread. To

test the implementation before using it on the SPEC2017 benchmarks, a test benchmark

performing matrix multiplication was written. The source code of this test program is

attached in appendix A.

This chapter details the modifications made to the O3CPU to support runahead execution,

as well as the runahead optimizations that were implemented. I also explain the

implementation of the four delayed exit policies used in this study.

5.1 Detecting LLLs and entering runahead

In gem5, every memory request associated with a dynamic load instruction tracks access

depth[34]. This depth starts at zero and is incremented by one every time the request

misses in cache. Access depth is used to determine when a load is considered to be a

LLL. A configurable parameter called the LLL depth is added to the CPU model. If the

access depth of a load instruction’s memory request equals or exceeds the LLL depth, it

is considered a LLL. For example, a request with access depth 0 on completion is a hit in

L1 cache. A request with access depth 2 has missed in L1 and L2 cache. By default, the

LLL depth is set to 3 such that a miss in L3 cache qualifies as a LLL. Because the time

taken by caches to process a request is modeled, access depth changes dynamically as

the data packet travels down the memory hierarchy. Therefore, some time passes before

the CPU can confirm that a load is a LLL.

When commit inspects the ROB head and finds that it is not ready to commit, it checks if

the instruction is a load with an active memory request. If so, the access depths of any

associated memory requests are checked. When they exceed the LLL depth, the load is

considered a LLL, and commit will attempt to enter runahead. Entry may be prevented by

the CPU depending on certain conditions, as described later in section 5.6.

If entry into runahead is allowed, the processor instantly checkpoints all architectural

registers and the last committed PC. As noted by Mutlu et al.[4], performance loss due to

checkpointing can, in theory, be avoided by incrementally updating the checkpoint when

instructions are retired. For this reason, no checkpointing latency is modelled as it

5 Implementing delayed exit runahead

https://github.com/halworsen/gem5-runahead

27

simplifies the implementation. The processor then flags itself as “in runahead” and marks

every uncommitted instruction in the instruction window as runahead. Every line in the

runahead cache is then invalidated, and the runahead-causing load (RCL) is marked as

poisoned. The LSQ then schedules a fake writeback event typically used for store-to-load

forwarding, which allows the RCL to drain from the pipeline and unblock the ROB. Once

this is done, the processor is in runahead.

5.2 Poison propagation

As mentioned in section 5.1, the RCL is poisoned on entry into runahead. In my

runahead model, poison is tracked as a flag on dynamic instructions as well as on every

physical register. If a runahead instruction is flagged as poisoned during writeback, every

physical destination register will be marked as poisoned. On the other hand, if it was not

poisoned, the poison flag is cleared from the register. Instructions are marked as

poisoned when they issue to a FU and any source register is poisoned. Waiting until issue

to check for poison guarantees that any poison has been propagated to source operands

by their producers.

Poisoned instructions are skipped when encountered at execute. Stores are an exception

to this rule because they need to propagate poison through the runahead cache.

Therefore, they are allowed to initiate address translation. If this produces a fault, they

are skipped like any other instruction. Otherwise, they are allowed to execute as detailed

in section 5.3.

5.3 Runahead cache and memory instructions

Memory instructions are the only instruction type to receive special treatment in

runahead. Load execution must be amended to perform R-cache accesses in parallel with

real cache accesses, and stores cannot be allowed to write speculative data to real

memory. Changes to instruction execution are largely confined to the LSQ and LSQ unit

code, while the runahead cache is implemented as a separate structure.

Runahead cache is implemented as a simplified direct mapped cache. The size of the full

R-cache is configurable and specified in terms of usable storage. Cache blocks are stored

in a C++ standard library vector. Each cache block contains a tag, valid bit, poison bit

and a data field. Block size, index masks and tag extraction bit shifts are computed

dynamically from the R-cache size.

The way R-cache handles memory accesses is greatly simplified compared to gem5’s

typical caches. Any lookups and accesses are processed immediately upon receiving the

packet, leaving the LSQ to schedule any packet handling latency. When a packet is

passed to R-cache, it constructs a copy of the incoming packet to update and send back,

then uses it to perform either a read or write operation, depending on the packet type.

On success, R-cache returns the copied packet, and on failure it returns a null pointer. To

process packets, the index and tag are extracted from the packet’s address field and

used to find the associated cache block.

If the packet is a read, R-cache performs a lookup to check if the cache block’s tag

matches, and if the valid bit is set. If either of these checks fail, the access immediately

fails. If the packet reads a poisoned cache block, the memory request state associated

with the packet is updated to indicate that the packet is poisoned. On success, the data

is copied from the cache block into the data packet.

28

If the packet is a write, no lookup is required since R-cache is an isolated memory

system. In addition to writing data, write packets always update the cache block tag and

set the valid bit. The memory request state is then checked for a poison flag to

determine if the cache block should be poisoned or if the poison bit should be cleared.

Any write packets sent to R-cache are always successful.

Load instructions are modified to access R-cache through the LSQ only when a packet

was successfully sent to real cache. The success or failure of R-cache lookup resolves

instantly and updates the load instruction’s memory request state to track any expected

R-cache packets separately from real cache packets. If the access was successful, the

LSQ schedules a cache response for one cycle later. If the memory request is tracking at

least one R-cache packet, the instruction will only accept packets from the list of tracked

R-cache packets. This causes loads to only use R-cache responses and discard any

replies from real cache. If commit encounters a valid load at the head of the ROB, it will

unblock the ROB the same way as with the RCL. Store instructions are never allowed to

send data to real cache. Instead, they only send packets to R-cache, which always

succeed.

5.4 Architectural state checkpointing

The architectural state checkpoint is maintained as a separate structure in code, and only

stores checkpointed register values. On entry into runahead, every architectural register

and any miscellaneous registers defined by the ISA are read and saved in the checkpoint.

To repair the RRTs after runahead, both the front- and backend RRTs are restored to

their default state after runahead exits. After reparation, the architectural checkpoint is

used to copy checkpointed values into the register file using the repaired RRTs. This is

functionally equivalent to the checkpoint restoration mechanism in Mutlu et al.’s

traditional runahead scheme[4]. The free list and register scoreboard are also reset to

make every physical register available and ready.

A technical limitation of how the source code is structured turned out to be that accessing

the branch predictor state is difficult. For these reasons, the branch predictor history and

RAS are not checkpointed.

5.5 Exiting runahead and exit policies

Any time a data packet is received from real cache, the processor checks if the packet is

intended for the RCL. If so, commit is immediately notified that runahead is safe to exit.

Commit may then set a runahead exit flag depending on which exit policy the CPU model

is configured to use. An alternative trigger for runahead exit is if a page fault occurs in

fetch. Runahead mode does not handle faults, so this is an unrecoverable situation from

which the CPU model simply exits runahead.

Exit from runahead is triggered on the first cycle after commit’s runahead exit flag is set.

A runahead exit is for the most part handled in the same way as a memory order

violation squash, which squashes all instructions up to and including the RCL. Because

the RCL was the oldest instruction in the instruction window when runahead was entered,

this squash causes the entire pipeline to be drained and fetch to reset to the PC of the

RCL. At the same time as the squash is started and signaled to preceding stages, the

CPU flags itself as not in runahead. Commit then sends a signal to itself through a time

buffer which will cause it to restore state from the architectural state on the next cycle.

Architectural state is restored by resetting and repairing the RRTs, then restoring register

29

values, all as described in section 5.4. Finally, all poison is then cleared from the register

file.

In my runahead model, I have implemented four different exit policies, three of which

are delayed exit policies:

1. Eager exit – The traditional exit policy in which runahead exits immediately after

the RCL receives a cache response.

2. Minimum work – The processor is forced to pseudoretire a minimum number of

instructions before it is allowed to exit runahead.

3. No Load Left Behind (NLLB) – Runahead exit is delayed until all valid loads in

the ROB are sent.

4. Dynamic delayed exit – An exit policy that dynamically decides whether to

delay exit based on the presence of nearby loads.

Regardless of the runahead exit policy, commit checks if the runahead exit flag was set.

If not, a runahead deadline event is scheduled for a configurable number of cycles later.

When the deadline event is processed, it forces the processor to exit runahead, thereby

acting as a dead man’s switch for delayed runahead periods which fail to exit within a

reasonable amount of time.

I now describe the implementation of each of the delayed exit policies.

5.5.1 Minimum work

The minimum work exit policy forces the processor to pseudoretire a minimum number of

instructions before allowing the processor to exit runahead. This is implemented using a

pseudoretired instruction counter which is compared to a minimum work parameter.

Whenever commit pseudoretires an instruction in runahead mode, it increments the

counter. Commit checks the number of pseudoretired instructions every cycle while in

delayed runahead. If enough instructions have been pseudoretired, the runahead exit

flag is set, causing runahead to exit on the next cycle. It is possible for the processor to

have pseudoretired the minimum number of instructions before the RCL returns, in which

case minimum work behaves the same as an eager exit.

5.5.2 No Load Left Behind

In the No Load Left Behind policy, the processor inspects the ROB for any unsent, valid

loads. If one or more are found, the processor model stores the sequence number of the

youngest such load and continues runahead execution until it detects that the load has

been executed. If no such load is found, runahead is exited eagerly. Currently, one

oversight in this policy is that if the ROB contains loads that have not yet been issued,

NLLB will delay exit for these loads, even if they become poisoned once they issue.

5.5.3 Dynamic delayed

The dynamic delayed policy decides whether to delay exit from runahead based on

whether there are unsent loads near the head of the ROB. When runahead is safe to exit,

the dynamic exit policy inspects the ROB for any unsent, valid loads within a maximum

number of instructions. This number is configurable through the same parameter used

for the minimum work policy. If any loads are found, the processor continues runahead

until the runahead deadline is met. If the CPU is configured to enable instruction stream

filtering (explained in section 5.6), it will exit immediately if the processor couldn’t find a

dependency chain for the runahead period. If the RCL returns and the processor has not

30

yet worked through the instructions that were in the ROB on entry into runahead,

dynamic delayed also exits runahead eagerly.

5.6 Efficiency and performance improvements

Entry into runahead can be disallowed based on the configuration of the CPU model.

Some schemes eagerly enter runahead[4, 6, 8, 9, 12, 17], while others wait for the ROB

to fill[10, 11, 21]. In my runahead model, this is a configurable parameter that can block

entry if the ROB is not full. Additionally, Mutlu’s short and overlapping period

elimination[6, 7] are implemented with configurable parameters. The CPU model

compares the cycles elapsed since the LLL was first issued against an in-flight threshold

(IFT) to deny entry into potentially short runahead periods. Overlapping periods are

prevented by tracking how many instructions are pseudoretired each runahead period, P,

and how many instructions have been retired since the last runahead period, R. If R < P,

the processor does not enter runahead. Note that this is a stricter requirement than

Mutlu’s implementation, which compared the number of instructions fetched since the

last runahead period. This change was made because retirement guarantees that the

instruction has been executed.

Filtered runahead[12] is partially implemented in the runahead CPU model. When

runahead is entered, the ROB reads the head instruction and uses it to attempt chain

generation as described by Hashemi and Patt. Due to time constraints, no runahead

buffer is implemented. Therefore, the use of any discovered dependency chains is to filter

the instruction stream at fetch. If the processor found a chain at the start of runahead,

instructions not in the chain are simply discarded. If no dependency chain could be

constructed on entry into runahead, traditional runahead is used. When fetch reaches the

tail of the dependence chain, it resets its PC and begins fetching at the head of the chain

again to execute the chain as a loop.

5.7 Miscellaneous modifications

Branch divergence[4] is detected at IEW when poisoned instructions are skipped by

checking if the instruction was a control instruction. Since it is impossible to resolve the

branch, and therefore determine if the branch was correctly predicted, the CPU simply

flags that execution is possibly diverging. This flag is not currently used for any purpose

other than statistics.

Because branch predictor state is not checkpointed before runahead, fetch’s use of the

branch predictor is modified in runahead. In normal mode, the branch predictor updates

the next PC of fetch, including any state updates performed by the predictor. In

runahead, fetch asks the branch predictor for a prediction, then performs a manual BTB

lookup if the instruction is a predicted taken branch. The next PC is then updated with

the address in the BTB, or the next PC if the instruction was not predicted as a taken

branch. The aim of this is to use the branch predictor without updating its state.

One issue that has, to my knowledge, been poorly documented by literature so far is how

runahead should handle faults and interrupts. In my model, runahead faults are simply

ignored as they are not architecturally real faults. Runahead page faults, if produced by

valid instructions and occurring while the processor is on the correct path, could

technically hide some latency if the processor had initiated paging early, but the latency

of a paging operation is so large that even runahead would fail to make a notable impact.

Interrupts are handled by postponing them until runahead exits. One alternative to

31

handle them earlier would have been to immediately exit runahead upon detecting an

interrupt, but I found they happen so rarely that the additional technical complexity of

doing this was not worth addressing.

Various statistics were added to the runahead model both globally as well as to the

individual stages of the processor. A list of all new statistics computed by the runahead

model is attached in appendix B.

5.8 Testing the implementation

During early development, the runahead CPU model was tested with a simplified system

configuration running a test matrix multiplication program in syscall emulation mode[33].

The test program source code is attached in appendix A. The program generates two

square matrices and multiplies them together, storing the result in a new matrix. Before

multiplication, the program outputs the matrices, and the product matrix is printed at the

end of the program. Progress through the multiplication is printed regularly. The size of

the matrix can be scaled at runtime, and the order in which the matrices are multiplied

can be randomized. Both are controllable as input parameters to the program.

Once the test program successfully ran with the runahead CPU model, the correctness of

the model was tested by running the program with the stock O3CPU model and my

runahead CPU model. The output of each run was compared and confirmed to match 1:1

for a variety of different matrix sizes, both with and without multiplication order

randomization.

After validating the correctness of the CPU model with the test program, the model was

promptly used with the final benchmarking configurations described in chapter 6. This

revealed many new bugs which were dealt with as they were discovered. These include

bugs that caused the simulator itself to crash, but also bugs that caused the program to

behave incorrectly inside the simulated system, leading to in-system crashes, most often

segmentation faults. Due to the complexity of the CPU model and the simulated system,

it is difficult to judge which bugs, if any, remain in the model. However, the final

runahead model used for evaluation has been confirmed to run crash-free with all

benchmarks for the entire length of their respective regions of interest (ROIs).

32

I used a subset of the SPEC CPU 2017[1] (SPEC2017) benchmarks to evaluate and

compare the performance of the baseline OoO model, the runahead baseline and the

runahead models using the delayed exit policies. The x86 ISA is used with all the

simulation models. This chapter details some characteristics of the benchmarks and how

I found representative regions to simulate. The process for determining the parameters

of the runahead model is also explained, along with how performance is measured in this

thesis.

6.1 Characteristics of the SPEC2017 benchmarks

The SPEC2017 benchmarks[1] constitute multiple programs representing both compute

and memory intensive real life workloads. While most of the benchmarks are unique

programs, some are simply input variations on the same program. The benchmarks are

split into two suites, SPECspeed and SPECrate. In this thesis, the SPECspeed suite is

used. The benchmarks are designed to be a mix of both compute and memory intensive

programs and are carefully chosen and configured to have predictable execution.

An independent study focused on the memory characteristics of the SPEC2017 suite[2]

found that it is incredibly memory intensive, with nearly 50% of all dynamic instructions

referencing memory values through either source or destination operands. Certain

benchmarks also have considerable memory footprints, using up to 16GB of main

memory. The working set size of each benchmark varies greatly, but Singh and Awasthi

find that the cache performance, measured in MPKI, of xalancbmk, nab, fotonik3d and

lbm have high MPKI while being particularly invariant to increasing cache sizes. On

average, the main memory footprint of the SPEC2017 benchmarks is only 1.82GB, but

bwaves_s, roms_s, fotonik3d_s, cactuBSSN_s and xz_s were found to have very large

memory footprints, ranging from roughly 7-16GB. Many of these benchmarks are also

found to have high bandwidth traffic to off-chip memory.

On average, the SPEC2017 SPECspeed suite of benchmarks runs for 22.19 trillion

dynamic instructions[2], with most of these belonging to floating point workloads. Most

benchmarks have a roughly 40-40-20% split of ALU-only, memory read and memory

write instructions, respectively. Singh and Awasthi find that exchange2 and pop2 are an

exception to this, where 79.6% and 73.5% of all dynamic instructions only use the ALU,

respectively. Floating point benchmarks are notably more compute intensive than the

integer ones, consisting of roughly 60% ALU-only instructions.

6.2 Configuring gem5 for the SPEC2017 benchmarks

Full system simulation is required to run the SPEC2017 benchmarks in gem5[33, 36].

When gem5 is configured for full system mode, the processor model boots an operating

system and loads a disk image into the system. As in my preceding specialization

project[22], I used Ubuntu 18.04 with a Linux 5.4.49 kernel and a disk image containing

the SPEC2017 benchmarks, a boot shell script and a gem5 binary capable of emitting

special pseudo-instructions recognized by the simulator. The kernel and disk image were

provided by a PhD student at the department of computer science (IDI)[36].

6 Evaluation of delayed exit runahead

33

To run the benchmarks on the disk image, the configuration script must attach a

runscript to the simulated system[33]. Once the simulator finishes booting the operating

system, the runscript is read to determine commands to be run in a shell. In this project,

each benchmark has a unique runscript which begins by invoking the gem5 binary to exit

the simulation. The binary does this by emitting a special pseudo-instruction recognized

by gem5. This allows the configuration script to discard metrics produced by boot and

swap the simulation core model. The simulation is then restarted, and the runscript

proceeds to launch the benchmark. If left to run on its own, the benchmark completes

and the runscript emits another exit pseudo-instruction to end the simulation. As noted

in section 6.1, the benchmarks contain on the order of trillions of dynamic

instructions[2], and would take days or weeks to complete even on simplified core

models. Because of this, the maximum number of executed instructions is restricted by

the configuration script.

One major problem with running the SPEC2017 benchmarks under the x86 ISA in gem5

is their memory footprint. x86 systems in gem5 can only use 3GB of main memory[33],

although the reason is poorly documented. Benchmarks with a larger footprint than this

risk being OOM-killed by the simulated operating system. Many benchmarks did not work

with my simulation configuration for exactly this reason, and certain benchmarks only

appear to function because they do not run for long enough to allocate too much

memory. cactuBSSN_s_0 is one such example, although there are more among the

benchmarks used in this study. Some benchmarks also failed due to runtime errors such

as segmentation faults in the simulated system. Table 6.1 lists all benchmarks and if they

were functional for the purposes of runahead simulation. In total, 16 of the 28

benchmarks on the SPEC2017 disk image were usable.

34

Table 6.1: A list of all SPEC2017 benchmarks present on the simulation disk image and
whether they were functional for the purpose of the project or not. Functional
benchmarks are marked in bold text. Benchmarks which were found to get OOM-killed or
crash when allowed to run for longer than 50B instructions are marked with *.

Benchmark Functional?

bwaves_s_0 No

bwaves_s_1 No

cactuBSSN_s_0 Yes*

cam4_s_0 No

deepsjeng_s_0 No

exchange2_s_0 Yes

fotonik3d_s_0 Yes*

gcc_s_0 No

gcc_s_1 Yes*

gcc_s_2 Yes*

imagick_s_0 Yes*

lbm_s_0 No

leela_s_0 No

mcf_s_0 Yes*

nab_s_0 Yes

omnetpp_s_0 Yes

perlbench_s_0 Yes

perlbench_s_1 Yes

perlbench_s_2 Yes

pop2_s_0 No

roms_s_0 No

wrf_s_0 Yes*

x264_s_0 Yes

x264_s_1 No

x264_s_2 Yes

xalancbmk_s_0 Yes

xz_s_0 No

xz_s_1 No

35

6.3 Finding representative regions

To find representative simulation intervals of the benchmarks, I used SimPoint

analysis[37] on the first 50 billion instructions of each benchmark with a SimPoint

interval of 100 million instructions. A SimPoint probe is attached to a simplified CPU

model in a profiling run of each benchmark. The SimPoint probe listens for instruction

retirement to identify and count occurrences of unique basic blocks in the workload. At

each SimPoint interval boundary, the collected information is stored as a basic block

vector (BBV). The results of each profiling run are BBVs for each SimPoint interval. The

BBVs are then fed into the SimPoint software to find intervals that are representative of

the benchmark. For each interval, I generated SimPoint weightings which indicate how

much time the program spends executing code similar to the interval. The most

representative SimPoint intervals are then chosen as a ROIs.

For example, SimPoint might find that interval #432 is a good representative of a given

benchmark and assign it a weighting of 63%. This indicates that the benchmark spent

roughly 63% of its time executing code similar to the interval between 43.2B-43.3B

instructions. Note that since SimPoint profiling was only performed for the first 50 billion

instructions, this weighting is only true for the first 50 billion instructions of the

benchmark.

Figure 6.1: Weightings of all SimPoints extracted from the first 50 billion instructions of
each SPEC2017 benchmark used in the CPU model evaluation. For each benchmark, the
SimPoint with the largest weighting is colored blue. All other SimPoints are colored
black.

Once representative ROIs were found, a second run of the benchmarks was performed to

create checkpoints 1 million instructions before each ROI. The additional 1 million

instructions are included to facilitate warmup of caches and processor buffers. The

weighting of each ROI is shown in Figure 6.1. Seven benchmarks have overwhelmingly

representative ROIs, although the remainder have multiple ROIs with similar weightings.

For these benchmarks, it would have been ideal to simulate multiple intervals and

aggregate their statistics, but the varied nature of gem5’s hundreds of statistics

complicated the development of a statistics compilation tool to the point that it was

36

judged as too time consuming. For this reason, only the single most representative ROI

is used for simulation.

In a real simulation run, the simulation configuration script restores the checkpoint using

a simplified CPU model. The CPU is then swapped out for the detailed core model which is

supposed to be simulated. The simulation then runs for 1 million instructions, plus 100

million instructions in the ROI. As such, each benchmark runs for 101 million instructions

in the ROI which is most representative of that benchmark’s first 50 billion instructions.

One important thing to note is that runahead instructions do not contribute to the

executed instruction count. This ensures that the simulation always measures the actual

time and work taken to execute 101 million real instructions.

6.4 Measuring performance

As will be shown in section 7.1, my runahead experiments show that when compared to

the stock OoO CPU of the gem5 simulator, runahead performs worse in terms of IPC.

This is despite main target metrics such as load-to-use (L2U) cycles and overall cache hit

rates improving. Possible explanations for this are discussed further in section 8.1, but

there is overwhelming evidence that runahead improves processor performance[4-12,

17-21], so this is considered a performance bug/anomaly.

The problem with this anomaly is that configuring the system based on IPC will

encourage configuring the system in a manner that minimizes the amount of runahead

performed. In fact, judging by IPC, the optimal system configuration is to not use

runahead whatsoever. This is obviously not well suited for a study of runahead. To

mitigate this problem, I use an additional throughput metric in this study which I call

normal IPC (NIPC). In the context of this study, normal can be thought of as “not

runahead”. Therefore, NIPC is defined as the number of normal instructions executed by

the processor divided by the number of cycles the processor spent in normal mode. One

intuition for NIPC is to imagine that every load that misses in cache triggers a “magical”

pipeline flush. The flush instantly prefetches the load and possibly some additional future

loads (i.e., any loads prefetched by runahead). NIPC therefore mostly describes the

performance effect runahead has on normal execution. Any overhead related to filling

buffers and structures after runahead has exited is still represented in NIPC.

It is extremely important to note that NIPC is not a perfect solution to system

performance analysis in the face of the performance anomaly. While IPC encourages

minimizing runahead, NIPC can encourage maximizing runahead, particularly where

there are many independent loads, because the time cost of runahead execution is

nullified. For this reason, I use a mix of IPC, NIPC and other system metrics like L2U

cycles, pseudoretirement counts and cycle counts to analyze system performance.

Additionally, for the delayed exit models, I only compare their performance to the

runahead baseline with the understanding that while performance is degraded compared

to the stock CPU, it may still improve compared to the runahead baseline. If performance

improves relative to the runahead baseline, it should hopefully also improve performance

in a runahead processor which does not exhibit the performance anomaly.

To attempt to explain the performance anomaly, overhead metrics were added to

attempt to measure the number of cycles spent by the processor when entering and

exiting runahead mode before resuming work as usual. Entry overhead is defined as the

number of cycles from the processor flagging as being in runahead until the RCL is

pseudoretired from the ROB. Exit overhead is more complicated to measure because

37

snapshotting the full state of the processor for comparison is difficult. My implementation

of the metric snapshots the number of instructions present in the IQ on entry into

runahead. Exit overhead is then defined as the number of cycles from the processor

flagging as being back in normal mode until an equal number of instructions has been

inserted back into the IQ. The intent behind this is to capture a point in time at which the

processor has begun to process at least as many instructions as before runahead was

entered. This is still not entirely accurate because instruction readiness and the

contention state of various buffers are not entirely the same.

6.5 Base system parameters

The baseline system configuration is given in Table 6.2. The core and cache configuration

is largely based on the system configurations used in Naithani et al.’s paper on vector

runahead[11], whose core configuration is in turn based on the Intel Skylake

architecture[38].

Table 6.2: Base system configuration for stock, runahead baseline and delayed exit CPUs.

Parameter Value

Clock frequency

ROB size

IQ size

LQ size

SQ size

3.2GHz

224

96

64

60

Branch predictor 8KB TAGE-SC-L

Physical register file 180 integer registers

180 floating point registers

Pipeline widths 4 insts/cycle – fetch, decode, rename,

issue

8 insts/cycle – writeback, commit, squash

Functional units

Pipelined operations are marked in bold

3 int ALU (1 cycle)

1 int M/D (3 cycle mult, 20 cycle div)

1 FP ALU (2 cycles)

1 FP M/D (4 cycle mult, 12 cycle div)

2 mem R/W

L1-I cache

L1-D cache

L2 cache

L3 cache

32kB, 4-way assoc, 4-cycle lookup &

access latency, parallel lookup/access

32kB, 8-way assoc, 4-cycle lookup &

access, parallel lookup/access

256kB, 8-way assoc, 8-cycle lookup &

access, parallel lookup/access

6MB, 12-way assoc, 30 cycle lookup &

access, parallel lookup/access

Hardware Prefetcher Stride-based in all cache levels

Memory

Based on Micron MT41J512M8[39]

3GB, DDR3-1600, 2 channels

tRP-tCL-tRCD = 13.75-13.75-13.75ns

38

6.6 Determining runahead baseline parameters

To determine the parameters of the baseline runahead model, a series of sensitivity

analyses were performed on certain parameters that influence the CPU’s runahead

behavior. The parameter value with the best NIPC was chosen to encourage an

aggressive runahead configuration. For parameters where NIPC did not vary greatly, the

number of pseudoretired instructions also motivated the decision. The initial runahead

configuration of the system is given in Table 6.3.

Table 6.3: Initial runahead parameters for baseline sensitivity analysis. Parameters
marked in bold were tested in the sensitivity analysis.

Parameter Value

Runahead cache size 2kB

In-flight limit 250 cycles

Overlapping runahead Disallowed

Eager entry Yes

Fetch stream filtering No

The initial analysis investigated whether it is beneficial to immediately enter runahead

upon encountering a LLL at the head of the ROB (eager entry). The alternative is to wait

until the ROB fills (lazy entry), in which case the CPU would typically stall. The result of

this analysis is shown in Figure 6.2. Both models have a slight increase in relative NIPC,

with the eager entry model achieving a 4.8% higher NIPC compared to the baseline

model. In comparison, the lazy entry model improves NIPC by less than 1%. The eager

entry model not only enters runahead earlier, but more often, causing more instructions

to be executed and pseudoretired. Based on these results, an eager entry policy was

chosen for the runahead CPU model.

Figure 6.2: Comparison of relative NIPC and pseudoretired instructions between an
eager and lazy entry runahead CPU model. (Harmonic) means are across all benchmarks.

39

Next, the effect of allowing or disallowing overlapping runahead periods was analyzed.

Figure 6.3 Shows that NIPC is mostly invariant to overlapping periods, but disallowing

overlap slightly reduces the executed instruction count. Based on this, overlapping

periods are disallowed in the runahead model.

Figure 6.3: Comparison of relative NIPC and pseudoretired instructions by a runahead
CPU model that allows overlapping runahead periods, and one that does not.

The effect of fetch stream filtering is shown in Figure 6.4. Even without the runahead

buffer[12], filtering the instruction stream to LLL dependence chains seems to increase

both performance and efficiency. The difference in performance is negligible, but fewer

dynamic instructions are executed. Based on this, filtering is enabled.

Figure 6.4: Comparison of relative NIPC and number of pseudoretired instructions when
filtering the instruction stream to dependence chains.

40

Finally, the in-flight threshold (IFT) was determined by simulating with six different

values. The NIPC and pseudoretired instruction count of each model is shown in Figure

6.5. Across all benchmarks, the CPU model isn’t particularly sensitive to IFT. Higher IFTs

do lead to a slight increase in the amount of runahead work done, however, and so

increases NIPC and pseudoretired instruction count. An IFT of 350 provides the best

relative NIPC of 1.066, but an IFT of 300 provides a relative NIPC improvement of 1.065

while pseudoretiring about 110K fewer instructions. Because of this, an IFT of 300 is

chosen.

Figure 6.5: Sensitivity analysis of various in-flight thresholds (IFT) with regard to their
impact on NIPC and pseudoretired instructions. Exact NIPC is displayed above the bars
for IFT=350.

41

This chapter presents the system statistics for the runahead baseline compared to the

stock out-of-order CPU that comes with gem5. It also presents the results for the various

delayed runahead exit policies. The different models presented in this chapter are:

• O3 – The stock OoO CPU model provided by gem5. The runahead baseline is

compared to this.

• Runahead or Eager exit – The runahead baseline. All delayed exit models are

compared to this.

• Minimum Work – Minimum work runahead models with various exit deadlines

and minimum work values, as described in section 5.5.1.

• NLLB – The No Load Left Behind runahead model, as described in section 5.5.2.

Uses an exit deadline of 100 cycles.

• Dynamic Exit – The dynamic exit runahead model, as described in section 5.5.3.

Inspects a maximum of 25 ROB instructions and uses a 100-cycle exit deadline.

The performance of various runahead exit deadlines is also analyzed and presented in

this chapter in the context of a forced delayed exit with no clauses on what work is done

during these cycles. This is presented alongside the minimum work results.

7.1 The runahead baseline

Figure 7.1 shows the IPC of the runahead baseline model. Surprisingly, runahead

performs worse than the stock CPU in nearly every benchmark. exchange2_s_0 and

perlbench_s_2 have particularly striking performance degradations of 21.9% and 14.1%,

respectively. The only benchmark to gain performance from runahead is mcf_s_0, which

sees a 1.6% speedup. Combined across all benchmarks, IPC decreases by 3.8% because

runahead spends nearly 100 million additional cycles executing all the benchmarks.

Discarding all runahead cycles, NIPC increases by 4%.

Figure 7.1: IPC of the runahead baseline model relative to the stock OoO CPU model.

“all” is the sum number of instructions divided by the sum number of cycles across all
benchmarks.

7 Results

42

Despite IPC decreasing, the model improves load-to-use times significantly. Figure 7.2

shows that mean L2U for normal load instructions is decreased in all benchmarks.

cactuBSSN_s_0, exchange2_s_0 and fotonik3d_s_0 have particularly low L2U times to

begin with, indicating they should not be particularly affected by load-induced full-

window stalls. mcf_s_0, omnetpp_s_0 and xalancbmk_s_0 do not have excessive mean

L2U times, but their variance is large, meaning there are more loads which miss in

cache. Runahead’s most important contribution here is that L2U variance is greatly

reduced. The number of loads that exceed 300 cycles load-to-use is decreased by 73.8%

across all benchmarks, an entire order of magnitude less when compared to the stock

OoO model. This indicates that the runahead implementation is very effective at

prefetching LLLs.

Figure 7.2: Mean load-to-use cycles for normal loads with the stock and runahead CPU
models. The error bars show one standard deviation from the mean.

The overhead of entering and exiting runahead does not explain the performance

degradation. Figure 7.3 shows that even when removing all overhead cycles from the IPC

calculation, runahead causes a performance degradation. This could indicate that:

• The processor is entering runahead on loads that would not have stalled the ROB,

incurring unnecessary overhead penalties,

• The processor may be staying in runahead for longer than intended,

• Or runahead causes side-effects whose negative impact on performance is greater

than the positive impact of reduced load latencies.

Despite not checkpointing branch predictor state, branch mispredictions in normal mode

are reduced by 0.7% across all benchmarks, and infinite L1-I cache experiments still

showed a relative performance degradation.

43

Figure 7.3: Cycle overhead of entering and exiting runahead mode (top) and the
runahead model’s adjusted IPC with overhead cycles removed (bottom).

It turns out that the chosen ROIs were not particularly memory intensive, at least not to

the point that the processor spends a significant amount of time stalled due to the ROB

being full, as evidenced by Figure 7.4. In total, the stock CPU model spends only 1.4% of

its time with a full ROB, drastically lower than the >50% stall times seen in previous

publications[4, 10-12]. Some benchmarks enter runahead very few times, as shown in

Figure 7.5. The median number of times runahead is entered across all benchmarks is

only 7742, with exchange2_s_0 only entering runahead 106 times in 101M dynamic

instructions. Regardless, runahead does improve the fraction of normal cycles in which

the processor stalls on a full ROB. The fraction of runahead cycles with a full ROB is not

shown due to a bug in how these cycles are tracked while the processor is idling.

44

Figure 7.4: Fraction of all normal cycles in which the ROB is full.

Figure 7.5: Number of times runahead was entered for each of the SPEC2017
benchmarks. Note the logarithmic scale.

As shown in Figure 7.6, the runahead processor still spends many cycles with detected

LLLs at the head of the ROB without entering runahead. Across all benchmarks, roughly

67.9 million cycles are spent in this state, which is a 75.1% decrease compared to the

stock CPU (~272M cycles), although unlike the runahead CPU, the OoO CPU cannot do

anything to move these loads out of the ROB until they are completed. While a few of

these cycles can be attributed to entry overhead, the vast majority are caused by the

processor refusing to enter runahead to prevent short or overlapping periods, so these do

not necessarily represent cycles that the processor could have utilized effectively.

45

Figure 7.6: Number of normal cycles in which the runahead processor had a confirmed
LLL at the head of the ROB.

7.2 Minimum work and exit deadlines

When compared to the runahead baseline, the minimum work exit policy achieves a very

slight speedup in some configurations, as seen in Figure 7.7. In general, a small amount

of minimum work and a short exit deadline provide the best speedups, with performance

degradation occurring shortly after unrestricted minimum work exceeds 50 instructions

or the unrestricted work deadline exceeds 150 cycles. The best models were the one

which unconditionally delayed runahead by 25 cycles and the one which executed a

minimum of 25 instructions without a deadline. These achieved a relative IPC increase of

2% and 1.2%, respectively. Combining a minimum work of 25 instructions with a 25-

cycle deadline gives a 2.3% speedup compared to the runahead baseline. For NIPC, a

deadline of 25 or minimum work of 200 perform the best, with a 2.4% and 2.9% NIPC

increase, respectively. exchange2_s_0 achieves a surprisingly large improvement of

roughly 27.9% over the runahead baseline, but still represents a slight performance

degradation when compared to the stock OoO CPU model.

46

Figure 7.7: Sensitivity analysis of exit deadlines (top) and minimum work (bottom) with
regard to relative IPC in a runahead model with a minimum work exit policy. The number
above the best configurations show the relative IPC to the runahead baseline.

The remainder of the minimum work model results use a deadline of 25 cycles and a

minimum work of 25 instructions unless otherwise is stated. Figure 7.8 shows that

minimum work retires <0.1% additional instructions overall, which is expected but not a

noteworthy amount. imagick_s_0, omnetpp_s_0 and wrf_s_0 end up retiring fewer

instructions. The reduction is only on the order of 1000s of instructions but is still

interesting as it indicates that the model can reduce the number of times the processor

enters runahead. Indeed, the minimum work model enters runahead 2.5%, 3.5% and

4.3% fewer times, respectively, for these benchmarks than the runahead baseline.

Overall, minimum work causes runahead to trigger 3% fewer times.

Figure 7.8: Number of instructions retired by the minimum work model relative to the
runahead baseline.

47

The minimum work model also delivers on the target of reducing runahead stutter. The

runahead baseline has interim periods shorter than 150 instructions 33.6% of the time.

In the final minimum work model, this percentage is reduced to 31.7%. The most

aggressive 200-instruction minimum work model reduced it to only 9.7% of all interim

periods, showing that delayed exits are highly effective at reducing runahead stutter. The

interim period length breakdown for the aggressive minimum work model is shown in

Figure 7.9.

Figure 7.9: Interim period length breakdown for a runahead processor with a 200-
instruction minimum work exit policy.

7.3 No Load Left Behind

The relative IPC of the NLLB model with an exit deadline of 100 cycles is shown in Figure

7.10. Compared to the runahead baseline, NLLB improves IPC by 1.9%, which is 0.4%

less than the minimum work exit policy. NIPC is up by 2.2%, also less than minimum

work. In other words, NLLB decidedly performs worse than the minimum work policy.

exchange2_s_0 still exhibits a striking performance improvement.

Figure 7.10: Relative IPCs of the NLLB runahead model to the runahead baseline,
compared with the relative IPCs of the minimum work model.

48

NLLB also retires more instructions, as shown in Figure 7.11. Overall, NLLB increases the

retired instruction count by 0.8%. perlbench_s_2 sees the largest increase in retired

instructions, possibly because loads are frequent, but with large dependency chains,

meaning the distance between loads is large. No benchmarks retire fewer instructions

when using the NLLB exit policy.

Figure 7.11: Instructions retired by the NLLB exit model, relative to the minimum work
and eager exit policies.

NLLB is somewhat better at reducing runahead stutter than minimum work. Figure 7.12

shows the interim period breakdown for the NLLB exit policy. With NLLB, 25% of all

interim periods retire fewer than 150 instructions, and across all benchmarks NLLB

enters runahead 10.7% fewer times. In comparison, an unrestricted work policy with a

100-cycle deadline, the same as NLLB, entered runahead 19.1% times less, but this

configuration does not provide the best performance. The best performing minimum work

configuration only enters runahead 3% times less. Overall, NLLB is the best policy for

reducing the total number of times runahead is entered.

Figure 7.12: Interim period length breakdown for a runahead processor with a NLLB exit
policy.

49

7.4 Dynamic delayed exit

The dynamic exit policy has the best IPC of all exit policies, shown in Figure 7.13.

Compared to the eager exit policy, dynamic exit provides a 2.3% speedup that is within

0.01% of minimum work. The per-benchmark IPC trends are roughly the same as with

the other exit policies. In terms of NIPC, a dynamic exit policy gives the best result with

a 2.5% improvement over the baseline, 0.1% more than the minimum work policy.

Figure 7.13: Relative IPCs of the dynamic exit runahead model to the runahead baseline,
compared to all other exit policies.

Dynamic exit is also more efficient in terms of retired instruction counts, performing only

0.03% more retirements than an eager exit policy. These extra instructions number

roughly 494K and bring the total number of runahead instructions to 58.1M.

Figure 7.14: Instructions retired by every exit policy, relative to the eager exit policy.

34.3% of all interim periods retire fewer than 150 instructions with a dynamic exit policy,

which is worse when compared to the runahead baseline. Figure 7.15 shows the interim

period length breakdown for the dynamic exit policy. Compared to the runahead

baseline, dynamic exit enters runahead 0.2% more often. Many of these extra runahead

periods come from x264_s_2, which enters runahead 9.7% more often.

50

Figure 7.15: Interim period length breakdown for a runahead model with a dynamic exit
policy.

7.5 Delayed runahead period metrics

This chapter presents a few metrics exclusive to delayed runahead periods. First, Figure

7.16 shows the additional cycles spent in runahead mode due to the delayed exit. NLLB

clearly spends the most time, owing to its longer exit deadline and lack of restriction on

maximum work. Dynamic exit spends orders of magnitude fewer cycles in delayed

runahead than both minimum work and NLLB. cactuBSSN_s_0, fotonik3d_s_0 and

imagick_s_0 never delay exit under the dynamic policy. The amount of pseudoretired

instructions in delayed runahead follows the same trend, as shown in Figure 7.17, with

dynamic exit pseudoretiring orders of magnitude fewer instructions than the alternatives.

Figure 7.18 shows that compared to the minimum work and NLLB policies, the dynamic

exit policy significantly increases the relative number of loads executed in delayed

runahead. Across all benchmarks, the percentage of pseudoretired instructions that are

loads are 18.5%, 15.6% and 57.7% for minimum work, NLLB and dynamic exit,

respectively.

51

Figure 7.16: Cycles spent in delayed runahead for each exit policy. Note the log scale.

Figure 7.17: Instructions pseudoretired in delayed runahead by each exit policy. Note the
log scale.

Figure 7.18: Percentage of pseudoretired instructions that were loads in delayed
runahead for each exit policy.

52

8.1 Runahead performance degradation

As shown in section 7.1, my runahead model degrades performance compared to an out-

of-order processor. There is overwhelming evidence in previous publications that

runahead has major performance benefits[4-12, 17-21], which lends confidence to the

assertion that there must be a flaw in the runahead model. This chapter discusses flaws

in the ROIs, possible explanations for the performance degradation and what this means

for the results of this study.

A fundamental error in this study is that while many of the ROIs are highly

representative of their respective benchmarks, they are not representative of the

problem which runahead execution attempts to solve. To begin with, the ROIs were

extracted from the first 50B dynamic instructions of each benchmark even though they

last, on average, for over 22 trillion instructions[2]. Figure 7.4 showed that some

benchmarks practically do not struggle with full-ROB stalls whatsoever. With the baseline

runahead model, cactuBSSN_s_0, a benchmark found to be memory intensive by Sing

and Awasthi[2], only entered runahead 1206 times in the full ROI. In these cases, it can

be argued that runahead simply does not occur enough to reasonably conclude anything

about its actual impact on the performance of the benchmark.

However, there are benchmarks which do enter runahead an appreciable number of

times. omnetpp_s_0 entered runahead mode nearly 300K times, perlbench_s_2 about

130K times and xalancbmk_s_0 around 159K times. Arguably, this should be enough to

showcase the effect runahead can have, yet omnetpp_s_0 and perlbench_s_2

experienced some of the worst performance degradations out of all the benchmarks,

even when adjusting for overhead. Meanwhile, xalancbmk_s_0 has a lesser true

performance degradation, yet a performance improvement when adjusting for overhead.

These benchmarks also show the largest improvements in load-to-use cycles for normal

mode loads and reduce the number of cycles the processor is stalled when using

runahead.

If the overhead metrics were perfect, they would, in theory, capture all cycles lost to

entering and exiting runahead. Adjusting IPC by removing these cycles should then show

a performance gain. If the processor were not capable of runahead, any remaining cycles

would be either productive normal cycles (including those in which there is a blocking

LLL, but the ROB is filling) or cycles which the processor would have been stalled on.

Assuming the overhead metrics are accurate, this shows that runahead may be misusing

productive normal mode cycles. The overhead is also likely overestimated because the

first instruction to go back through the pipeline after runahead is the RCL, which has now

been prefetched. Thus, when the exit overhead period is considered to end, the readiness

state of instructions in the IQ is improved compared to before runahead.

I also found that when using a dynamic delayed exit policy, simulation statistics differed

from the runahead baselines in the benchmarks that never delayed exit. It’s difficult to

tell if this is due to the benchmarks being non-deterministic, but it may be evidence of a

correctness bug in the runahead implementation. As mentioned in section 5.8, the

8 Discussion of runahead & delayed exit

53

implementation was tested with a comparatively simple program in syscall emulation

mode. While the full system SPEC2017 benchmarks run until the end of their ROIs

without crashing, this is not a guarantee of correctness.

Side-effects to the frontend is likely not the cause for the performance degradation. As

was mentioned in section 7.1, the processor experiences slightly fewer branch

mispredictions outside of runahead. Additionally, infinite instruction cache experiments

still show a performance degradation, so the instructions fetched during runahead should

not be causing significant L1-I cache pollution. Runahead mode does not action any

faults, and so it should not incur any costly paging operations either.

Figure 8.1: IPC of the runahead model while it is in runahead mode for each of the exit
policies.

One aspect of the runahead model that has not been thoroughly inspected is its behavior

while in runahead mode. In all benchmarks, the CPU model exhibits uncharacteristically

low IPCs while in runahead mode. It’s rare for the model to breach 0.4 IPC in runahead

and it hovers around 0.3 across all benchmarks, which is a little less than half of the

overall IPC of the model. In other words, the processor tends to slow down drastically

when it enters runahead. The reason for this is not entirely clear, but it could be that

runahead instructions are not properly handled, causing them to fill pipeline structures

and block execution until runahead is exited. If this is the case, runahead performs little

to no useful work while incurring overhead penalties. This would not necessarily be

visible in the load-to-use results presented in chapter 7 because many LLLs are replaced

by their prefetched instance once runahead exits.

I believe that the performance degradation can mostly be explained by the fact that the

processor often enters runahead when it normally would not have stalled on a full ROB.

In fact, some benchmarks never entered runahead when the processor was configured to

use a lazy entry policy that waits for the ROB to fill completely before entering runahead.

In cases where the processor enters runahead, but would not have stalled otherwise,

runahead incurs an overhead penalty consisting of cycles which a normal OoO CPU would

simply have used for normal execution. In other words, such runahead periods are

speculating purely at the cost of normal execution cycles, not stall cycles. This increases

the number of cycles taken to execute the program and the number of instructions

processed, leading to both a performance and efficiency degradation.

54

The performance bug makes it difficult to compare runahead to the stock OoO CPU, but

since all delayed exit models use the same base mechanism, it should be appropriate to

compare results among them. The results presented in this thesis are not well suited to

conclude anything about runahead or any of the delayed exit policies when compared to

non-runahead out-of-order cores. However, the results should still indicate whether

delaying runahead can be a performance-improving modification to runahead schemes.

8.2 Minimum work delayed exit

The minimum work policy is successful in increasing the performance of the runahead

model, although this is not necessarily due to any conscious efforts to do so in the design

of the policy. The performance benefit comes from an increase in prefetched loads, but

since the policy does not account for the types of instructions being executed in delayed

runahead, the policy is wholly reliant on a high density of loads in the instruction stream.

If delayed runahead takes place during a compute intensive portion of the program, the

minimum work exit policy only wastes cycles doing compute work that will be discarded.

For each such isolated case, delayed runahead through minimum work causes a

performance degradation when compared to an eager exit policy.

A large minimum work was also shown to severely reduce runahead stutter, although

performance is also degraded for those configurations. At the same time, NIPC increases

the most for these configurations. This means that while the additional time spent in

runahead does prefetch additional loads, the prefetches do not adequately make up for

the time spent issuing these prefetches. This is supported by Figure 7.17 and Figure

7.18, confirming that extra loads are indeed issued in delayed runahead, but at a low

rate.

8.3 NLLB delayed exit

The “No Load Left Behind” policy was the second iteration on delayed exit policies and

was motivated by the fact that the minimum work policy does not guarantee execution of

loads. By design, NLLB guarantees that, if exit from runahead is delayed, at least one

load is pseudoretired unless the exit deadline expires.

This approach is still flawed, because NLLB does not consider how many instructions it

must execute to reach the youngest load in the ROB. In the system configuration used in

this study, NLLB could be asked to execute over 200 instructions before reaching the

youngest load if the ROB is near full. With tight exit deadlines, the processor is not even

likely to make it to the target load. Thus, NLLB struggles with the same issue as

minimum work - there is no guarantee that it performs useful work.

In NLLB’s case, however, the issue is exaggerated because the exit policy is more

ambitious. In my simulations, it was given a longer exit deadline, meaning NLLB

potentially does even more useless work than the minimum work policy was allowed to.

Additionally, because NLLB does not care about the instructions before the youngest load

in the ROB, it risks executing many long-latency instructions (of any type) in delayed

runahead. In these cases, NLLB exhausts the deadline while issuing few to no useful

prefetches, effectively wasting cycles. In the worst case, the processor could be on the

wrong control path and execute a halt instruction. This is exceedingly rare, but it does

happen in the benchmarks and was the cause of a soft-lock bug during development.

NLLB also does not address one of the core issues of minimum work, namely being

overly reliant on a high load density in the instruction stream. As shown in section 7.5,

55

NLLB pseudoretires a smaller fraction of loads when compared to minimum work. This is

because it typically attempts to execute more instructions than minimum work while

having a longer deadline near-indiscriminately.

8.4 Dynamic delayed exit

Taking lessons from the failings of the minimum work and NLLB policies, the dynamic

delayed exit policy is designed to guarantee that delayed time is spent more effectively.

This is done through two measures. First, the dynamic exit policy only enters runahead if

the instruction stream is filtered to a load chain. Second, runahead is only delayed if

there are loads close by. Combined, these conditions often ensure that the processor will

execute a prefetch soon after delayed runahead begins, and that the upcoming

instruction stream has a reasonably high load density.

While the dynamic exit policy improves performance by a nearly unnoticeable amount

over minimum work, it achieves this speedup in orders of magnitude fewer cycles and

with fewer instructions retired. This can be explained by the 57.7% load rate in delayed

runahead. The dynamic exit policy’s performance improvement comes from guaranteeing

that the load density in the delayed instruction stream is high.

Despite the initial assumption that runahead stutter is a cause of poor runahead

performance, the dynamic exit policy increased stutter by a very slight amount. This

indicates that while the dynamic policy prefetches additional loads, it doesn’t necessarily

prefetch those loads which are critical to prevent stutter. It also shows that delaying exit

from runahead can be positive for performance even without improving runahead stutter.

The exact reason why stutter increases is not clear to me but may be because critical

cache blocks are evicted by the delayed runahead prefetches.

56

9.1 Improving the simulation model

As discussed in section 8.1, the performance degradation of the runahead model brings

the correctness of the model into question. The gem5 source code includes a checker

CPU[34] which, while mostly undocumented, seems to execute instructions

independently to verify the results of the simulation model. It is unclear to me whether it

is currently functional as related source code lines have been commented out of the

O3CPU model’s parameter configurations. If functional, however, this could be used to

verify the correctness of the runahead model. An alternative is to continue debugging the

model by inspecting its behavior. For instance, it would be good to verify that the

runahead model does not stay in runahead for much longer than the corresponding RCL

would have stalled the processor for if it did not use runahead. Debugging the

processor’s behavior in runahead mode could also be insightful as it currently has

uncharacteristically poor performance in runahead.

Certain parts of the runahead implementation are currently unfinished. Particularly,

vector operations are not supported by the runahead model because vector registers are

not checkpointed. This is due to gem5 implementing variably sized vector registers,

complicating their checkpointing when compared to other register types. It should be

noted that this was not a problem in this study because none of the benchmarks used

vector instructions. While gem5 supports multiple hardware threads, support for them

was not a priority during development of the runahead model and it is likely that it will

misbehave or crash if multiple hardware threads are used. Again, the lack of hardware

thread support is because none of the benchmarks use more than one hardware thread.

The current instruction stream filtering is somewhat limited compared to the one

proposed by Hashemi and Patt[12], who additionally introduced a runahead buffer to

replace the fetch-decode frontend during runahead. Implementing such a buffer should

speed up the runahead frontend and amplify its prefetching effect, also increasing the

effect of delayed runahead. Alternatively, introducing something like a stalling slice

table[10] could increase runahead’s coverage even further.

As mentioned in chapter 5, the current structure of the source code makes it difficult to

make changes to core gem5 features. This is because any such changes would impact

the traceability offered by source control. Currently, to track and apply any changes to

gem5, patch files need to be generated and applied to the gem5 source code. To fix this,

I would suggest moving the runahead CPU model directly inside a fork of the gem5

source code[34].

To facilitate further development of the model, the source code is published openly on

GitHub[15]. The code repository includes instructions on how to setup the project and

build gem5 with the runahead model extension. There are also instructions and

guidelines for working with the source code, particularly how to setup debugging.

9 Future work

57

9.2 Delayed exit policies

The current dynamic delayed exit policy shows that delaying exit from runahead has the

potential to improve performance for traditional runahead schemes. However, the policy

can be improved. Currently, loads close to the head of the ROB are used as evidence of

high load density, but this is not a guarantee. Long dependence chains for which delaying

runahead is not worth it can still trigger a delayed exit if the load happens to be close to

the head of the ROB by pure chance. One way to fix this is to simply check the length of

the dependence chain, although an appropriate cutoff length would have to be

determined.

Alternative load-density based approaches to delayed exits could also be explored. Such

policies would determine if and how long to delay runahead for based on the density of

loads in the instruction stream. For example, the processor can compute the fraction of

loads present in the ROB to estimate load density once the RCL returns. If load density is

high, it might be a good idea to delay runahead for a long time, a short time if load

density is medium with nearby loads and to eagerly exit if the load density is low. MLP

distance prediction[8] could also be used to determine when and how long to delay

runahead for.

58

This thesis has found that traditional runahead execution schemes experience runahead

stutter, in which the processor rapidly re-enters runahead after exiting it. This motivated

a study of the effect of delaying exit from runahead execution in a traditional runahead

execution scheme. The hope was that delayed exits from runahead would prefetch

additional loads that allow the processor to continue execution for longer before

encountering new runahead-triggering cache misses. An out-of-order CPU model in the

gem5 simulator was modified to support traditional runahead and three different delayed

exit policies were implemented. When used to simulate 16 of the SPEC CPU2017

benchmarks, the runahead baseline was found to degrade performance compared to the

stock out-of-order CPU. This is assumed to be due to an implementation bug or flawed

selection of benchmark ROIs. Benchmarking the delayed exit policies against a runahead

baseline showed that they improve performance, making up for the delayed cycles with

additional prefetches. The experiments show that delayed runahead can be effective at

reducing runahead stutter, but that this is not critical to performance. Instead, ensuring

that the instruction stream has a high density of loads is found to be important as it

allows the processor to make effective use of the delayed cycles.

10 Conclusion

59

[1] J. Bucek, K.-D. Lange, and J. v. Kistowski, "SPEC CPU2017: Next-Generation

Compute Benchmark," presented at the Companion of the 2018 ACM/SPEC

International Conference on Performance Engineering, Berlin, Germany, 2018.

[Online]. Available: https://doi.org/10.1145/3185768.3185771.

[2] S. Singh and M. Awasthi, "Memory Centric Characterization and Analysis of SPEC

CPU2017 Suite," p. arXiv:1910.00651doi: 10.48550/arXiv.1910.00651.

[3] J. E. Smith and A. R. Pleszkun, "Implementing Precise Interrupts in Pipelined

Processors," IEEE Transactions on Computers, vol. 37, no. 5, pp. 562-573, May

1988.

[4] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, "Runahead execution: an

alternative to very large instruction windows for out-of-order processors," in The

Ninth International Symposium on High-Performance Computer Architecture,

2003. HPCA-9 2003. Proceedings., 12-12 Feb. 2003 2003, pp. 129-140, doi:

10.1109/HPCA.2003.1183532.

[5] J. D. Dundas and T. N. Mudge, "Using Stall Cycles to Improve Microprocessor

Performance," Advanced Computer Architecture Laboratory, Ann Arbor, Michigan,

USA, Technical Report CSE-TR-301-96, September 1996. Accessed: 02.06.2023.

[Online]. Available: https://tnm.engin.umich.edu/wp-

content/uploads/sites/353/2019/04/1996-Using-Stall-Cycles-to-Improve-

Microprocessor-Performance.pdf

[6] O. Mutlu, "Efficient runahead execution processors," PhD Dissertation, Electrical

and Computer Engineering, The University of Texas at Austin, Austin, Texas,

2006. [Online]. Available: https://repositories.lib.utexas.edu/handle/2152/2778

[7] O. Mutlu, "Efficient runahead execution processors: A power-efficient processing

paradigm for tolerating long main memory latencies," ed: ETH Zurich, 2006.

[8] K. Van Craeynest, S. Eyerman, and L. Eeckhout, "MLP-Aware Runahead Threads

in a Simultaneous Multithreading Processor," Berlin, Heidelberg, 2009: Springer

Berlin Heidelberg, in High Performance Embedded Architectures and Compilers,

pp. 110-124.

[9] T. Ramírez, A. Pajuelo, O. J. Santana, O. Mutlu, and M. Valero, "Efficient

Runahead Threads," in 2010 19th International Conference on Parallel

Architectures and Compilation Techniques (PACT), 11-15 Sept. 2010 2010, pp.

443-452.

[10] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout, "Precise Runahead Execution," in

2020 IEEE International Symposium on High Performance Computer Architecture

(HPCA), 22-26 Feb. 2020 2020, pp. 397-410, doi:

10.1109/HPCA47549.2020.00040.

[11] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout, "Vector Runahead," in

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture

(ISCA), 14-18 June 2021 2021, pp. 195-208, doi:

10.1109/ISCA52012.2021.00024.

[12] M. Hashemi and Y. N. Patt, "Filtered runahead execution with a runahead buffer,"

in 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 5-9 Dec. 2015 2015, pp. 358-369, doi: 10.1145/2830772.2830812.

[13] S. Pruett and Y. Patt, "Branch Runahead: An Alternative to Branch Prediction for

Impossible to Predict Branches," presented at the MICRO-54: 54th Annual

IEEE/ACM International Symposium on Microarchitecture, Virtual Event, Greece,

2021. [Online]. Available: https://doi.org/10.1145/3466752.3480053.

References

https://doi.org/10.1145/3185768.3185771
https://tnm.engin.umich.edu/wp-content/uploads/sites/353/2019/04/1996-Using-Stall-Cycles-to-Improve-Microprocessor-Performance.pdf
https://tnm.engin.umich.edu/wp-content/uploads/sites/353/2019/04/1996-Using-Stall-Cycles-to-Improve-Microprocessor-Performance.pdf
https://tnm.engin.umich.edu/wp-content/uploads/sites/353/2019/04/1996-Using-Stall-Cycles-to-Improve-Microprocessor-Performance.pdf
https://repositories.lib.utexas.edu/handle/2152/2778
https://doi.org/10.1145/3466752.3480053

60

[14] M. Hashemi, O. Mutlu, and Y. N. Patt, "Continuous runahead: Transparent

hardware acceleration for memory intensive workloads," in 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 15-19 Oct.

2016 2016, pp. 1-12, doi: 10.1109/MICRO.2016.7783764.

[15] gem5-runahead. (2023). GitHub. [Online]. Available:

https://github.com/halworsen/gem5-runahead

[16] S. Pakalapati and B. Panda, "Bouquet of Instruction Pointers: Instruction Pointer

Classifier based Hardware Prefetching," presented at the ISCA 2019: The 46th

International Symposium on Computer Architecture, June 2019, 2019. [Online].

Available: https://dpc3.compas.cs.stonybrook.edu/pdfs/Bouquet.pdf.

[17] T. Ramirez, A. Pajuelo, O. J. Santana, and M. Valero, "Runahead Threads to

improve SMT performance," in 2008 IEEE 14th International Symposium on High

Performance Computer Architecture, 16-20 Feb. 2008, pp. 149-158, doi:

10.1109/HPCA.2008.4658635.

[18] T. Ramirez, A. Pajuelo, O. J. Santana, and M. Valero, "Code Semantic-Aware

Runahead Threads," in 2009 International Conference on Parallel Processing, 22-

25 Sept. 2009 2009, pp. 437-444, doi: 10.1109/ICPP.2009.17.

[19] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout, "Vector Runahead for

Indirect Memory Accesses," IEEE Micro, vol. 42, no. 4, pp. 116-123, 2022, doi:

10.1109/MM.2022.3163132.

[20] A. Naithani, J. Roelandts, S. Ainsworth, T. M. Jones, and L. Eeckhout, "Decoupled

Vector Runahead," presented at the Proceedings of the 56th Annual IEEE/ACM

International Symposium on Microarchitecture, Toronto, ON, Canada, 2023.

[Online]. Available: https://doi.org/10.1145/3613424.3614255.

[21] A. Naithani and L. Eeckhout, "Reliability-Aware Runahead," in 2022 IEEE

International Symposium on High-Performance Computer Architecture (HPCA), 2-

6 April 2022 2022, pp. 772-785, doi: 10.1109/HPCA53966.2022.00062.

[22] M. W. Halvorsen, "Exploring Runahead Execution in gem5," Norwegian University

of Science and Technology, June 2023.

[23] J. Dundas and T. Mudge, "Improving data cache performance by pre-executing

instructions under a cache miss," presented at the Proceedings of the 11th

international conference on Supercomputing, Vienna, Austria, 1997. [Online].

Available: https://doi.org/10.1145/263580.263597.

[24] O. Mutlu, K. Hyesoon, and Y. N. Patt, "Address-Value Delta (AVD) Prediction: A

Hardware Technique for Efficiently Parallelizing Dependent Cache Misses," IEEE

Transactions on Computers, vol. 55, no. 12, pp. 1491-1508, 2006, doi:

10.1109/TC.2006.191.

[25] T.-F. Chen and J.-L. Baer, "Reducing memory latency via non-blocking and

prefetching caches," presented at the Proceedings of the fifth international

conference on Architectural support for programming languages and operating

systems, Boston, Massachusetts, USA, 1992. [Online]. Available:

https://doi.org/10.1145/143365.143486.

[26] D. M. Tullsen, "Simulation and Modeling of a Simultaneous Multithreading

Processor," presented at the 22nd Annual Computer Measurement Group

Conference, December, 1996.

[27] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, "Multi2Sim: a simulation

framework for CPU-GPU computing," presented at the Proceedings of the 21st

international conference on Parallel architectures and compilation techniques,

Minneapolis, Minnesota, USA, 2012. [Online]. Available:

https://doi.org/10.1145/2370816.2370865.

[28] hpsresearchgroup. "Scarab: Joint HPS and ETH Repository to work towards open

sourcing Scarab and Ramulator." https://github.com/hpsresearchgroup/scarab

(accessed June 1, 2023.

[29] N. Gober et al., "The Championship Simulator: Architectural Simulation for

Education and Competition," 2022, doi: 10.48550/arXiv.2210.14324.

[30] T. E. Carlson, W. Heirman, and L. Eeckhout, "Sniper: Exploring the Level of

Abstraction for Scalable and Accurate Parallel Multi-Core Simulations," presented

https://github.com/halworsen/gem5-runahead
https://dpc3.compas.cs.stonybrook.edu/pdfs/Bouquet.pdf
https://doi.org/10.1145/3613424.3614255
https://doi.org/10.1145/263580.263597
https://doi.org/10.1145/143365.143486
https://doi.org/10.1145/2370816.2370865
https://github.com/hpsresearchgroup/scarab

61

at the International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), November, 2011.

[31] J. Lowe-Power et al., "The gem5 Simulator: Version 20.0+," p.

arXiv:2007.03152doi: 10.48550/arXiv.2007.03152.

[32] R. Kumar, "Simulator recommendations," private communication. February, 2023.

[33] J. Lowe-Power. "gem5 documentation." https://www.gem5.org/documentation/

(accessed 06.06, 2023).

[34] gem5 v22.0.0.2. (2022). GitHub. [Online]. Available:

https://github.com/gem5/gem5/tree/v22.0.0.2

[35] G. Z. Chrysos and J. S. Emer, "Memory dependence prediction using store sets,"

presented at the Proceedings of the 25th annual international symposium on

Computer architecture, Barcelona, Spain, 1998. [Online]. Available:

https://doi.org/10.1145/279358.279378.

[36] A. B. Kvalsvik, "Assistance with setting up SPEC2017 benchmarks in gem5,"

private communication. March, 2023.

[37] G. Hamerly, E. Perelman, J. Lau, and B. Calder, "SimPoint 3.0: Faster and More

Flexible Program Analysis," Journal of Instruction Level Parallelism, vol. 7,

September 2005.

[38] J. Doweck et al., "Inside 6th-Generation Intel Core: New Microarchitecture Code-

Named Skylake," IEEE Micro, vol. 37, no. 2, pp. 52-62, 2017, doi:

10.1109/MM.2017.38.

[39] Micron, "Micron MT41J512M8," MT41J512M8 datasheet. 2009.

https://www.gem5.org/documentation/
https://github.com/gem5/gem5/tree/v22.0.0.2
https://doi.org/10.1145/279358.279378

Appendix A
Matrix multiplication test program

This source code is also available on GitHub: https://github.com/halworsen/gem5-

runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-

extensions/configs/test/matmul.cc

#include <iostream>
#include <cstdlib>
#include <string>
#include <cassert>
#include <vector>
#include <random>
#include <algorithm>

struct Matrix {
private:
 size_t rows;
 size_t columns;
 bool dataAllocated = false;
 long long int *data;
public:
 Matrix(size_t rows, size_t cols) : rows(rows), columns(cols) {
 data = (long long int*) calloc(rows * cols, sizeof(long long int));
 dataAllocated = true;
 }

 ~Matrix() {
 if (dataAllocated)
 free(data);
 }

 size_t getRows() { return rows; }
 size_t getCols() { return columns; }
 long long int get(size_t x, size_t y) { return data[rows * x + y]; }
 void set(size_t x, size_t y, long long int element) { data[rows * x + y]
= element; }

 void print() {
 for (int r = 0; r < rows; r++) {
 printf("[");
 for (int c = 0; c < columns; c++) {
 printf("%li ", get(r, c));
 }
 printf("]\n");
 }
 }
};

https://github.com/halworsen/gem5-runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-extensions/configs/test/matmul.cc
https://github.com/halworsen/gem5-runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-extensions/configs/test/matmul.cc
https://github.com/halworsen/gem5-runahead/blob/d01b53017ad37bc140e6597fde2483d9964696ae/gem5-extensions/configs/test/matmul.cc

// Populate a matrix with random values
void populateMatrix(Matrix *matrix) {
 for (int r = 0; r < matrix->getRows(); r++) {
 for (int c = 0; c < matrix->getCols(); c++) {
 matrix->set(r, c, (std::rand() % 1000000) - 500000);
 }
 }
}

void multiplyMatrices(Matrix *a, Matrix *b, Matrix *out) {
 assert(a->getCols() == b->getRows());

 for (int rA = 0; rA < a->getRows(); rA++) {
 float progress = ((float)rA / (float)a->getRows()) * 100.0f;
 printf("Progress: %f%\n", progress);

 for (int cB = 0; cB < b->getCols(); cB++) {
 for (int cA = 0; cA < a->getCols(); cA++) {
 long long int cell = out->get(rA, cB);
 cell += a->get(rA, cA) * b->get(cA, cB);
 out->set(rA, cB, cell);
 }
 }
 }
}

void multiplyMatricesRandom(Matrix *a, Matrix *b, Matrix *out, unsigned int
seed) {
 assert(a->getCols() == b->getRows());

 // make a vector of indices for matrix A's rows/columns
 std::vector<int> aRowIdxs;
 std::vector<int> aColIdxs;
 std::vector<int> bColIdxs;

 for (int rA = 0; rA < a->getRows(); rA++)
 aRowIdxs.push_back(rA);
 for (int cA = 0; cA < b->getCols(); cA++)
 aColIdxs.push_back(cA);
 for (int cB = 0; cB < b->getCols(); cB++)
 bColIdxs.push_back(cB);

 // shuffle
 auto rng = std::default_random_engine(seed);
 std::shuffle(aRowIdxs.begin(), aRowIdxs.end(), rng);
 std::shuffle(aColIdxs.begin(), aColIdxs.end(), rng);
 std::shuffle(bColIdxs.begin(), bColIdxs.end(), rng);

 int prog = 0;
 for (auto i = aRowIdxs.begin(); i != aRowIdxs.end(); i++) {
 int rA = *i;

 float progress = ((float)(prog++) / (float)a->getRows()) * 100.0f;
 printf("Progress: %f%\n", progress);

 for (auto j = bColIdxs.begin(); j != bColIdxs.end(); j++) {
 int cB = *j;
 for (auto k = aColIdxs.begin(); k != aColIdxs.end(); k++) {
 int cA = *k;
 long long int cell = out->get(rA, cB);
 cell += a->get(rA, cA) * b->get(cA, cB);
 out->set(rA, cB, cell);
 }
 }
 }
}

int main(int argc, char *argv[]) {
 if (argc != 3) {
 printf("Usage: matmul MATRIX_SIZE RANDOM\n");
 return 1;
 }

 int matrixSize = std::stoi(std::string(argv[1]));
 printf("Matrix size: %ix%i\n", matrixSize, matrixSize);

 bool random = (bool) std::stoi(std::string(argv[2]));
 printf("Random: %s\n", random ? "yes" : "no");

 unsigned int seed = 85354712;
 std::srand(seed);

 Matrix matrixA = Matrix(matrixSize, matrixSize);
 Matrix matrixB = Matrix(matrixSize, matrixSize);
 populateMatrix(&matrixA);
 populateMatrix(&matrixB);

 printf("Matrix A:\n");
 matrixA.print();
 printf("Matrix B:\n");
 matrixB.print();

 Matrix matrixC = Matrix(matrixA.getRows(), matrixB.getCols());
 if (random)
 multiplyMatricesRandom(&matrixA, &matrixB, &matrixC, seed);
 else
 multiplyMatrices(&matrixA, &matrixB, &matrixC);

 printf("Result:\n");
 matrixC.print();

 return 0;
}

Appendix B
List of additional statistics in the runahead CPU mod el

CPU statistics

runaheadCycles

realCycles

numROBFullCycles

numRealROBFullCycles

pseudoRetiredInsts

runaheadCpi

runaheadIpc

realCpi

realIpc

runaheadPeriods

runaheadCycleDist

refusedRunaheadEntries

instsPseudoRetiredPerPeriod

instsFetchedBetweenRunahead

instsRetiredBetweenRunahead

triggerLLLinFlightCycles

dependenceChainLength

intRegPoisoned

intRegCured

floatRegPoisoned

floatRegCured

vecRegPoisoned

vecRegCured

vecPredRegPoisoned

vecPredRegCured

ccRegPoisoned

ccRegCured

miscRegPoisoned

miscRegCured

Total cycles spent in runahead

Total cycles spent in normal mode

Number of cycles starting with a full ROB

Number of normal mode cycles starting with a full ROB

Number of pseudoretired instructions

CPI in runahead mode

IPC in runahead mode

CPI in normal mode

IPC in normal mode

Total number of runahead periods

Distribution of cycles spent in runahead periods

Number of times the CPU refused to enter runahead,

by cause

Histogram of instructions retired in runahead

Distribution of instructions fetched in the interim

period between two runahead periods

Distribution of instructions retired in the interim period

between two runahead periods

Histogram of number of cycles a load has been in-

flight when it triggered runahead

Distribution of identified dependence chain lengths

Number of times an integer reg was poisoned

Number of times an integer reg had poison cleared

Number of times a float reg was poisoned

Number of times a float reg had poison cleared

Number of times a vector reg was poisoned

Number of times a vector reg had poison cleared

Number of times a predicate reg was poisoned

Number of times a predicate reg had poison cleared

Number of times a CC reg was poisoned

Number of times a CC reg had poison cleared

Number of times a miscellaneous reg was poisoned

Number of times a miscellaneous reg had poison

cleared

Fetch statistics

icacheStallRealCycles

tlbRealCycles

pendingTrapRealStallCycles

runaheadInsts

discardedRunaheadInsts

runaheadInstsToDecode

runaheadChainLoops

Total number of normal mode cycles in which fetch

stalled due to an I-cache miss

Total number of normal mode cycles in which fetch

was waiting for address translation

Total number of normal mode cycles in which fetch

stalled due to waiting for a pending trap

Total number of instructions fetched in runahead

Total number of instructions that were discarded in

runahead because they did not belong to the active

runahead chain

Total number of instructions that were sent to decode

in runahead

Total number of times fetch reset to the start of the

active runahead chain
Decode statistics

realBranchMispred Total number of times decode detected a branch

misprediction in normal mode
IEW statistics

divergentFaults

numPoisonedInsts

numNonSpecRunaheadInsts

numPoisonedBranches

Total number of times a memory uOp caused a fault

after a divergence point in runahead mode

Total number of poisoned instructions skipped by IEW

Total number of non-speculative instructions

encountered in runahead mode

Total number of poisoned branches skipped by IEW

Commit statistics

realBranchMispredicts

runaheadBranchMispredicts

loadsAtROBHead

lllAtROBHead

normalLLLAtROBHead

instsPseudoretired

loadsPseudoretired

validLoadsPseudoretired

commitPoisonedInsts

runaheadEnterOverhead

runaheadExitOverhead

totalRunaheadEnterOverhead

totalRunaheadExitOverhead

totalRunaheadOverhead

runaheadDelayedCycles

runaheadDelayedInsts

runaheadDelayedLoads

fullROBLoads

runaheadExitCause

Total number of times a branch misprediction occurred

in normal mode

Total number of times a branch misprediction occurred

in runahead mode

Total number of cycles with loads at the head of the

ROB

Total number of cycles with a LLL at the head of the

ROB

Total number of normal cycles with a LLL at the head

of the ROB

Total number of pseudoretired instructions

Total number of loads pseudoretired

Total number of non-poisoned loads pseudoretired

Total number of pseudoretired instructions that were

poisoned

Histogram of cycles spent from runahead entry until

the RCL is pseudoretired, per period

Histogram of cycles spent from runahead exit until the

youngest instruction in the IQ at the start of runahead

re-enters the IQ, per period

Total number of cycles spent entering runahead

Total number of cycles spent exiting runahead

Total number of cycles spent entering and exiting

runahead

Total number of runahead cycles in which it was safe

to exit runahead (delayed runahead)

Total number of instructions pseudoretired in delayed

runahead

Total number of loads pseudoretired in delayed

runahead

Total number of times a load caused a full ROB stall

Number of times runahead exited, by exit cause

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 The memory wall
	1.2 Runahead execution
	1.3 Delayed exit runahead
	1.4 Structure of the thesis

	2 Background
	2.1 Cache hierarchies and prefetching
	2.2 Runahead execution schemes
	2.2.1 The runahead framework
	2.2.2 Traditional runahead execution
	2.2.3 Filtered runahead
	2.2.4 Precise runahead
	2.2.5 Continuous runahead
	2.2.6 Vector runahead
	2.2.7 Performance of previous runahead schemes

	3 Motivation for the thesis
	4 Simulation infrastructure
	4.1 Choice of simulator
	4.2 The gem5 simulator and the O3CPU model
	4.2.1 Fetch and time buffers
	4.2.2 Decode
	4.2.3 Rename, the RRT and free lists
	4.2.4 Issue, Execute, Writeback
	4.2.5 Commit

	5 Implementing delayed exit runahead
	5.1 Detecting LLLs and entering runahead
	5.2 Poison propagation
	5.3 Runahead cache and memory instructions
	5.4 Architectural state checkpointing
	5.5 Exiting runahead and exit policies
	5.5.1 Minimum work
	5.5.2 No Load Left Behind
	5.5.3 Dynamic delayed

	5.6 Efficiency and performance improvements
	5.7 Miscellaneous modifications
	5.8 Testing the implementation

	6 Evaluation of delayed exit runahead
	6.1 Characteristics of the SPEC2017 benchmarks
	6.2 Configuring gem5 for the SPEC2017 benchmarks
	6.3 Finding representative regions
	6.4 Measuring performance
	6.5 Base system parameters
	6.6 Determining runahead baseline parameters

	7 Results
	7.1 The runahead baseline
	7.2 Minimum work and exit deadlines
	7.3 No Load Left Behind
	7.4 Dynamic delayed exit
	7.5 Delayed runahead period metrics

	8 Discussion of runahead & delayed exit
	8.1 Runahead performance degradation
	8.2 Minimum work delayed exit
	8.3 NLLB delayed exit
	8.4 Dynamic delayed exit

	9 Future work
	9.1 Improving the simulation model
	9.2 Delayed exit policies

	10 Conclusion
	References

