
Evaluating Graphical User Interfaces for
Handling Latency in Remote Crane Operation

Theodor Fahlén
Mälardalen University

Västerås, Sweden
theodorfahlen@gmail.com

Taufik Akbar Sitompul
Norwegian University of Science & Technology

Trondheim, Norway
taufik.a.sitompul@ntnu.no

Rikard Lindell
Mälardalen University

Västerås, Sweden
rikard.lindell@mdu.se

Due to safety and productivity concerns, there are newer cranes that can be operated remotely from a
control room. As operators and their cranes are located separately, the communication between operators
and their cranes is not free from time delay or latency. The presence of high latency could not only affect
operators’ capability to work productively and safely, but could also affect their wellbeing due to the feeling
of discomfort. In this paper, we propose two types of graphical user interfaces (GUIs) that could support
operators to perform their work in the presence of latency. The first GUI visualizes how the crane will move
based on the user’s input as if the latency is not present, while the second GUI visualizes what kind of inputs
that are being executed. We involved 20 participants in an experiment, where they had to move containers
under conditions with three latency rates: 0 ms, 500 ms, and 800 ms, while using either of the proposed GUIs
and without having any additional support. However, the results suggest that none of the proposed GUIs
were significantly better in terms of performance and user experience than the condition without having any
additional support.

graphical user interface, time delay, latency, crane, remote operation

1. INTRODUCTION

Rubber-tired gantry (RTG) cranes or also known
as yard cranes (see the left image in Figure 1 for
an example) play an important role in the shipping
industry, as they are needed for efficient container
handling. Although the majority of RTG cranes is
still controlled by operators who work on-site from
inside the crane’s cabin, there are newer RTG cranes
that can be operated remotely by operators working
from a control room (Koskinen et al. 2013) (see
the right image in Figure 1 for an example of the
remote control station). The shift from on-site to
remote operation has been driven by the call for
higher safety and productivity, as working from the
control room protects operators from accidents that
may happen and they can also control any cranes
within the port from the same control room (Sitompul
2022b).

Despite its apparent benefits, remote crane oper-
ation also produces new challenges that do not
exist when operators work from inside the crane’s
cabin (Sitompul 2022a). One of the new challenges
is the presence of time delay or latency due to data
transmission between operators and their remote
cranes (Vaughan and Singhose 2014). Having an

acceptable latency is crucial in any kind of remote
operation, since high latency could affect operators’
capability to perform their work productively (Chen
et al. 2007). The presence of high latency could
increase the time needed to complete a task due to
the ”move-and-wait” situation, in which the operator
makes one input, and then wait for the feedback to
be visible before making another input (Bidwell et al.
2014). The presence of high latency could also affect
operators’ capability to work safely. For example,
Neumeier et al. (2019) reported that people’s capa-
bility to drive a car remotely started to deteriorate
when the latency reached 300 ms, as the deviation
from the planned path also increased. Moreover, the
presence of high latency could also harm operators’
wellbeing. In the study of remote operation of forest
machinery, Brunnström et al. (2019) reported that
the feeling of discomfort started appearing when the
latency exceeded 400 ms.

This paper proposes two graphical user interfaces
(GUIs) that could be used for operating remote RTG
cranes in the presence of latency. Since operators
are separated from their cranes, they have to rely
on the video stream and the GUIs shown on their
monitors (see the right image of Figure 1 for an
example) to perform their work (Karvonen et al.

http://dx.doi.org/10.14236/ewic/BCSHCI2023.21 

© Fahlén et al. Published by BCS 
Learning and Development Ltd. 
Proceedings of BCS HCI 2023, UK 

179



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

Figure 1: The left image shows the example of RTG cranes that can be operated remotely. The right image shows the remote
control station used by the operator to operate any RTG cranes within one port.

2012). Note that none of the GUI elements shown
in the right image of Figure 1 were designed
for handling latency. Considering this situation, we
assumed that it would be beneficial to have GUIs that
could help operators do their work in the presence of
latency.

2. RELATED WORK

As mentioned in Section 1, the data transmission be-
tween operators and their remote cranes produces
latency (Vaughan and Singhose 2014). There are
few prior studies that attempt to mitigate the pres-
ence of latency in remote crane operations (see Sit-
ompul (2022a) for the complete review). Since video
transmission usually consumes the highest network
bandwidth, Villaverde et al. (2012) and Major et al.
(2021) proposed to use virtual replicas (or digital
twins) of the remote cranes reconstructed based
on real-time data from on-site sensors, instead of
transmitting the videos. However, both studies did
not evaluate how the interaction with the digital twins
would support operators’ capability to perform their
work in the presence of high latency. He et al. (2021)
also proposed using a digital twin of a tower crane
reconstructed based on real-time data from on-site
sensors as an alternative to transmitting the videos.
However, the proposed digital twin was designed for
monitoring rather than active remote operations. The
results of their study suggest that the digital twin
enabled their participants to have a shorter response
time when detecting hazardous situations, but it is
unclear how the digital twin was applicable to active
remote operations.

Looking at the studies from other domains, GUIs
are typically used for handling the presence of
latency by either visualizing the prediction of the
near-future state or exposing the latency (Liu et al.
2022). A notable example of predictive GUIs was

the ”phantom robot” proposed by Bejczy et al.
(1990), which visualizes the near-future position of
the robotic hand based on the latency. The phantom
robot was available in two versions: (1) shaped
with solid lines and (2) shaped with dotted lines.
In the context of virtual collaborative environments,
Chen et al. (2007) proposed the ”echo” concept,
which visualizes a copy of the object of interest and
the distance between the copy and the real object
indicates the magnitude of the latency. In the context
of lunar-roving vehicles, Matheson et al. (2013)
proposed to overlay graphical elements onto the
video stream to indicate the position of the vehicle
three seconds ahead in the future. In the context
of drone operations, Wilde et al. (2020) proposed
to overlay information about the drone’s flight path
and altitude onto the video stream. The overlaid
visual information was color-coded, where the green
one indicates the current position, while the red one
indicates the predicted position.

As mentioned earlier, GUIs can also be used
for handling the presence of latency by exposing
the latency. In the context of collaborative virtual
environments, Gutwin et al. (2004) proposed two
approaches to reveal the magnitude of the latency:
(1) changing the color gradually and (2) having a
”halo effect”. In the first approach, the color of the
pointer changes gradually from white to black as the
latency increases, while the halo effect is visualized
with a circle underneath the pointer and the size
of the circle gets bigger or smaller depending
on the latency. Similar to Gutwin et al. (2004),
Shirmohammadi et al. (2005) also proposed two
approaches that use different colors to visualize the
magnitude of the latency. The first approach was a
2-color scheme of red or black, which is respectively
shown whether the latency is present or absent. The
second approach was a multi-color approach, which
uses different colors ranging from green to red to
indicate low to high latency. In the context of virtual

180



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

Figure 2: An example of the default GUI shown in the simulator. There are four camera views that show different parts of
the crane, which also show an indicator of where the container should be stacked (only visible if the target location is within
the camera views). The bottom-left part visualizes the crane’s current position and the location where the container should
be stacked in the storage yard. The top-right part contains information about the buttons used for controlling the crane. The
default GUI is also referred to as the blank interface in this paper.

reality, Fraser et al. (2000) proposed to use a sphere
that surrounds the avatar to visualize the magnitude
of the latency. The size of the sphere increases as
the latency increases, and vice versa.

3. METHOD

This section describes the crane simulator that we
used to evaluate the proposed GUIs, the design
rationales behind the proposed GUIs, and the
procedure that we used for the experiment.

3.1. Overview of the Crane Simulator

The crane simulator used in this study was initially
a port simulator developed by Fahlén et al. (2022)
using the Unity game engine. The main function
of the port simulator was to simulate the workflow
of containers based on different port layouts. We
modified the port simulator, so that its main function
was to simulate the operation of an RTG crane
only. The simulator was programmed to simulate
the workflow of stacking containers in the yard, as
described below:

1. The trucks brought the containers to the yard,
one by one, and automatically stopped at the
designated place.

2. The user moved the RTG crane so that it
could grab and lift the container from the truck.
The truck immediately left the yard, and then
another truck would come automatically.

3. The user lifted and moved the container across
the yard, and stacked it at the designated
place.

4. After arriving at the designated place, the user
released the container and moved toward the
next truck.

5. The process was then repeated until the user
had lifted and stacked ten containers in the
yard. The simulator automatically stopped after
the tenth container has been stacked in the
yard.

We also modified the simulator to simulate three
different rates of latency: 0 ms (no latency), 500 ms,
and 800 ms. We simulated the latency by delaying
the execution of each input based on the latency
duration, since the outcome was the same as if we
delay the view of the camera.

The RTG crane in the simulator was controlled by
pressing seven different buttons on the keyboard.
The user could move the entire crane left and right by
respectively pressing the left and right buttons on the
keyboard. The user could move the crane’s spreader
forward and backward by respectively pressing the
up and down buttons on the keyboard. The user
could also raise and lower the crane’s spreader by
respectively pressing the ”W” and ”S” buttons on the
keyboard. Finally, the user could grab and release
the container by pressing the space bar on the
keyboard. To help the user remember the controls of
the crane, we also overlaid this information on the
user interface (see the top-right part in Figure 2).
Note that, to replicate the safety feature of real RTG
cranes, the simulator accepted only one input at a
time.

3.2. The Graphical User Interfaces

This section describes the three different GUIs that
we used in this study.

3.2.1. Blank Interface
The first GUI was also the default GUI shown
in the simulator (see Figure 2). The default GUI
showed four camera views that show different parts

181



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

Figure 3: The left image shows an example of the ghost interface. The ghost interface shows the white semi-transparent
replica of the spreader (and also the replica of the container if the spreader grabs a container) in the camera views. The
semi-transparent replica moves immediately based on the user’s input, regardless of the latency. The right image shows an
example of the arrow interface. There are six arrows that correspond to the six possible movements of the crane. One of the
arrow is turned green to indicate that such input is currently being executed. Regardless which of the interfaces is used, there
is also information about the latency rate in the bottom right, so that the user understands why the inputs are not executed
immediately.

of the crane, information about the crane’s current
position in the storage yard, information about where
the container should be stacked, and information
about the buttons used for controlling the crane. As
shown in the right image in Figure 1, the GUI for
operating remote RTG cranes usually contains more
information than what was shown in the simulator.
However, we decided to stick with the minimum
amount of mandatory information shown in Figure 2,
since the focus of the study was evaluating the
GUIs for handling latency. The default GUI also
served as the baseline to compare with the two
proposed GUIs. The default GUI is hereinafter called
as the ”blank interface”, since it does not show
particular information that could be used to work in
the presence of latency.

3.2.2. Ghost Interface
The second GUI was basically the blank interface
that also showed a white semi-transparent replica of
the spreader (see the left image in Figure 3). The
semi-transparent replica (hereinafter referred to as
the ”ghost interface”) moved immediately based on
the user’s input, regardless of the latency rates. In
other words, the ghost interface provided a prediction
of where the spreader would precisely move if
there was no latency. Note that the semi-transparent
replica of the container was also shown when the
spreader grabbed a container. We decided to not
show the ”ghost” version of the entire RTG crane,
since only the spreader and the lifted container that
could possibly collide with trucks and containers
in the storage yard. Using the GUI classification
mentioned in Section 2, the ghost interface belongs
to the GUI that visualizes the prediction of the near-
future state.

3.2.3. Arrow Interface
The third GUI was basically the blank interface that
also visualized six arrows, which corresponded to
the possible movements of the crane (see the right
image in Figure 3), and thus hereinafter referred
to as the ”arrow interface”. We designed the arrow
interface for two purposes: (1) to give a visual cue to
the user that the input was not executed immediately
if there was latency and (2) to give a visual cue
which input that was currently being executed, since
one of the arrows would turn green (see the right
image in Figure 3 for an example). We decided to
place the arrows in the center between the right-side
camera views, since this position did not occlude the
spreader in any of the camera views. Moreover, by
presenting the arrows in the center, it would help
the user look at the arrows much easier. Using
the GUI classification mentioned in Section 2, the
arrow interface belongs to the GUI that visualizes
the magnitude of the latency, since one of the arrows
turned green according to the latency of the inputs.

3.3. Experimental Procedure

We conducted an experiment to evaluate the
proposed GUIs described in Section 3.2 to
determine which of them provided the most desirable
outcomes. The experiment setup consisted of a
desktop computer to run the crane simulator
described in Section 3.1, a stand-alone monitor,
and a dedicated keyboard to control the crane. This
setup was chosen due to its resemblance to typical
desktop workstations. Therefore, we assumed that
all the participants would be familiar with this kind
of setup. As shown in the right image of Figure 1,
real remote cranes are operated using joysticks. We
decided to use a keyboard instead of using joysticks

182



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

to operate the virtual crane, as we also expected all
the participants were familiar with using keyboards.

The experiment consisted of nine test scenarios,
since we wanted to evaluate the three different
GUIs with three different rates of latency. Every test
scenario contained the same task of stacking ten
containers in the storage yard, while using one of
the GUIs (blank, ghost, or arrow interfaces) and
having one of the latency rates (0 ms, 500 ms, or
800 ms). Note that the latency rate was constant in
each test scenario. To reduce the potential training
effect, we randomized the order of the test scenarios
that should be taken for each participant. In addition,
we also mirrored the container arrangement in
every scenario, to prevent the participants from
remembering the target locations but still keeping
the distance required to complete the scenario the
same.

Before starting the experiment, we explained to the
participants about the objective of this study, the
test scenarios that they had to complete, and what
kinds of data that we wanted to collect. After the
participants provided their informed consent, we
collected some background information, such as
their age, computer usage, experience with online
games, and experience with heavy machinery. After
that, we continued with a trial session to allow the
participants familiarize themselves with the controls
to operate the crane. During the trial session, every
participant was asked to stack ten containers while
using the blank interface and the latency was 0 ms.
The real experiment was started afterward.

We collected three types of data when the
participants were completing the test scenarios: (1)
completion time, (2) accuracy of container stacking,
and (3) number of collisions. The completion
time was automatically calculated by the crane
simulator from when the crane’s spreader touched
the first container until the tenth container has been
stacked in storage yard. The accuracy of container
stacking was defined as the distance between
the center of the lifted container and the center
of the container underneath. The distance was
automatically calculated by the crane simulator when
the lifted container touched the target location. The
number of collisions was defined as the frequency
that the lifted container hit other container(s). The
number of collisions was manually counted and
classified into three categories, i.e., minor, medium,
and severe, based on their severity. Minor collisions
were the collisions that happened when the lifted
container hit another container, but that container still
remained in its place. Medium collisions were the
collisions that happened when the lifted container
hit another container, and that container fell from

its place. Finally, severe collisions are the collisions
that happened when the lifted container hit multiple
containers simultaneously.

After completing all the test scenarios, we asked
the participants to fill in the System Usability Scale
(SUS) questionnaire, which is a commonly used
questionnaire to document the perceived usability
of a product (Lewis 2018). The participants had to
fill in the SUS questionnaire for each type of the
interfaces. In addition, we also asked the participants
about their personal preferences. The participants
had to rank the GUIs based from the one that they
preferred the most to the one that preferred the
least, as well as to describe the reasons behind their
decisions. Each participant received a gift card worth
around USD 15 for taking part in the experiment.

A total of 20 participants (17 males and 3 females)
completed all the test scenarios. The participants
were aged between 22 and 37 years old. All the
participants reported that they used computers on
daily basis. 18 out of 20 participants were familiar
with the latency issue due to their experience with
playing online games. Four of the participants had
experience with operating heavy machinery, such as
tractors and forklifts. Note that we did not use any
inclusion criteria when recruiting the participants,
and thus the participants were recruited based on
their availability when we conducted the experiment.

4. RESULTS

The section presents the results from the experiment
according to the types of data that were collected.

4.1. Completion Time

As mentioned in Section 3.3, the completion time
was automatically counted from when the crane’s
spreader touched the first container until the
participants placed the tenth container in the storage
yard. When the latency was 0 ms, the participants
required the shortest time to complete the test
scenarios when they used the blank interface (M =
314.5 s, SD = 74.2 s), and then followed by the
ghost interface (M = 319.2 s, SD = 75.1 s) and the
arrow interface (M = 320 s, SD = 68.1 s). A one-
way ANOVA suggested that there was no significant
difference in terms of completion time between the
three interfaces when the latency was 0 ms (F (2, 57)
= 0.033, p = .967).

The results changed when the latency was 500 ms,
since the arrow interface produced the shortest time
to complete the test scenarios (M = 422.5 s, SD =
75.7 s), followed by the blank interface (M = 424.7
s, SD = 86.8 s) and the ghost interface (M = 445.9
s, SD = 106.7 s). A one-way ANOVA still suggested

183 



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

that there was no significant difference in terms of
completion time between the three interfaces when
the latency was 500 ms (F (2, 57) = 0.407, p = .667).

When the latency was 800 ms, the blank interface
once again produced the shortest time to complete
the test scenarios (M = 494.8 s, SD = 100.5 s),
followed by the ghost interface (M = 495.6 s, SD =
110.6 s) and the arrow interface (M = 515.1 s, SD =
87.7 s). However, a one-way ANOVA still suggested
that there was no significant difference in terms of
completion time between the three interfaces when
the latency was 800 ms (F (2, 57) = 0.265, p = .768).

4.2. Stacking Accuracy

As described in Section 3.3, the accuracy of
container stacking is defined as the distance
between the center of the lifted container and the
center of the container underneath. The distance
was measured in the Unity scale, where 1 unit was
set to 1 m by default. Note that the accuracy values
presented here are for the combined accuracy for
stacking ten containers, and not the accuracy for
individual containers. In this context, lower numbers
represent higher accuracy, since the distance
between the center of the two containers is closer,
and vice versa.

When the latency was 0 ms, the participants had
the highest accuracy when they used the arrow
interface (M = 3.73 m, SD = 1.28 m), followed by the
blank interface (M = 3.75 m, SD = 1.63 m) and the
ghost interface (M = 3.79 m, SD = 1.83 m). A one-
way ANOVA suggested that there was no significant
difference in terms of accuracy between the three
interfaces when the latency was 0 ms (F (2, 57) =
0.006, p = .993).

The results changed when the latency was 500
ms, since the blank interface produced the highest
accuracy (M = 4.01 m, SD = 1.33 m), followed by
the arrow interface (M = 4.08 m, SD = 1.27 m) and
the ghost interface (M = 5.17 m, SD = 2.62 m). A
one-way ANOVA still suggested that there was no
significant difference in terms of accuracy between
the three interfaces when the latency was 500 ms
(F (2, 57) = 2.455, p = .094).

When the latency was 800 ms, the arrow interface
once again produced the highest accuracy (M = 4.84
m, SD = 2.28 m), followed by the ghost interface
(M = 4.93 m, SD = 2.01 m) and the blank interface
(M = 5.11 m, SD = 2.56 m). However, a one-way
ANOVA still suggested that there was no significant
difference in accuracy between the three interfaces
when the latency was 800 ms (F (2, 57) = 0.067, p =
.934).

4.3. Number of Collisions

As described in Section 3.3, we manually counted
how many collisions that happened when the
participants were completing the scenarios. In
addition, we also classified the collisions based on
their severity into three categories: (1) minor, (2)
medium, and (3) severe (see Section 3.3 for the
description of the collision categories). Figure 4
shows the number of collisions based on their
severity, latency rates, and the types of GUIs being
used.

4.3.1. Collisions When the Latency Was 0 ms
The participants produced the lowest number of
minor collisions when they used the ghost interface
(M = 1.0, SD = 1.1) and the blank interface (M = 1.0,
SD = 1.3), and then followed by the arrow interface
(M = 1.1, SD = 1.3). A one-way ANOVA suggested
that there was no significant difference in terms of
minor collisions among the three interfaces when the
latency was 0 ms (F (2, 57) = 0.010, p = .989).

In terms of medium collisions, the blank interface
produced the lowest number of collisions (M =
0.5, SD = 0.8), followed by the ghost interface (M
= 0.6, SD = 0.7), and the arrow interface (M =
0.8, SD = 1.0). A one-way ANOVA still suggested
that there was no significant difference in terms of
medium collisions among the three interfaces when
the latency was 0 ms (F (2, 57) = 0.478, p = .622).

Regarding severe collisions, the blank interface once
again produced the lowest number of collisions (M
= 0.1, SD = 0.2), followed by the ghost interface
(M = 0.2, SD = 0.5) and the arrow interface (M =
0.5, SD = 0.9). A one-way ANOVA still suggested
that there was no significant difference in terms of
major collisions among the three interfaces when the
latency was 0 ms (F (2, 57) = 2.015, p = .142).

4.3.2. Collisions When the Latency Was 500 ms
The participants produced the lowest number of
minor collisions when they used the blank interface
(M = 1.3, SD = 1.5), followed by the arrow interface
(M = 1.4, SD = 1.4) and the ghost interface (M
= 1.5, SD = 1.1). A one-way ANOVA suggested
that there was no significant difference in terms of
minor collisions among the three interfaces when the
latency was 500 ms (F (2, 57) = 0.067, p = .934).

In terms of medium collisions, the participants made
the lowest number of medium collisions when they
used the arrow interface (M = 0.8, SD = 0.7) and
the ghost interface (M = 0.8, SD = 1.1), and then
the blank interface (M = 1.1, SD = 0.9), A one-way
ANOVA still suggested that there was no significant
difference in terms of medium collisions among the

184 



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

Figure 4: The collisions are categorized based on their severity and the different rates of latency. The solid lines indicate the
medians, while the dashed lines indicate the means. The dashed diamonds indicate the standard deviations and the dots
outside the boxes indicate the outliers.

three interfaces when the latency was 500 ms (F (2,
57) = 0.641, p = .530).

Regarding severe collisions, the participants also
made the lowest number of collisions when they
used the arrow interface (M = 0.2, SD = 0.4),
followed by the ghost interface (M = 0.4, SD =
0.6) and the blank interface (M = 0.4, SD = 0.7).
A one-way ANOVA still suggested that there was
no significant difference in terms of major collisions
among the three interfaces when the latency was
500 ms (F (2, 57) = 1.308, p = .278).

4.3.3. Collisions When the Latency Was 800 ms
The participants made the lowest number of minor
collisions when they used the arrow interface (M =
1.2, SD = 1.6), followed by the blank interface (M =
1.6, SD = 1.9) and the ghost interface (M = 1.9, SD
= 1.0) . A one-way ANOVA suggested that there was
no significant difference in terms of minor collisions
among the three interfaces when the latency was
800 ms (F (2, 57) = 1,048, p = .356).

Regarding medium collisions, the participants had
the lowest number of collisions when they used the
blank interface (M = 0.9, SD = 1.2), followed by
the ghost interface (M = 1.0, SD = 0.9), and the
arrow interface (M = 1.1, SD = 1.2). A one-way
ANOVA still suggested that there was no significant
difference in terms of medium collisions among the
three interfaces when the latency was 800 ms (F (2,
57) = 0.260, p = .771).

Lastly, the participants produced the least number of
severe collisions when they used the ghost interface
(M = 0.2, SD = 0.4), followed by the blank interface

(M = 0.4, SD = 0.7) and the arrow interface (M =
0.6, SD = 1.0). However, a one-way ANOVA still
suggested that there was no significant difference in
terms of major collisions among the three interfaces
when the latency was 800 ms (F (2, 57) = 1.896, p =
.159).

4.4. System Usability Scale Scores

After completing all the scenarios, we also asked
the participants to fill in the System Usability Scale
(SUS) questionnaire to document the perceived
usability of the different GUIs. The blank interface
received the highest SUS score (M = 79.5, SD =
13.5), followed by the arrow interface (M = 75.9, SD
= 15.9) and the ghost interface (M = 70.5, SD = 20).
However, a one-way ANOVA suggested there was
no significant difference in terms of the SUS scores
between the three interfaces (F (2, 57) = 1.47, p =
.238).

4.5. Personal Preferences

As described in Section 3.3, we also asked the
participants to rank the different GUIs based on their
preferences and describe the reason behind their
decisions. As shown in Figure 5, the blank interface
was the most preferred one, as 9 out 20 participants
chose the blank interface as their first choice. Those
participants chose the blank interface as their first
choice because they could see the camera views
without any obstructions, as indicated by the quote
below:

In my opinion, this one was better. I don’t know why,
but maybe because I could see all the camera views
without any hindrance.

185



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

Figure 5: The ranks of the different GUIs based on the
participant’s personal preferences.

As shown in Figure 5, there were 3 out of 20
participants who selected the blank interface as
their third choice, which is also the lowest vote for
the third choice. The three participants disliked the
blank interface because the lack of support made
them less confident in the presence of latency, as
expressed by the quote below:

A little bit awkward to use, actually, because you
don’t have any support. I felt less confident than
before.

The ghost interface received the lowest vote as the
first choice, since only 5 out of 20 participants chose
it as their first choice (see Figure 5). The participants,
who selected the ghost interface as their first choice,
did so because the ghost interface allowed them to
operate the crane without having to wait all the time,
as suggested by the quote below:

I think I would use it frequently. It helps find the
direction instead of waiting all the time. So I guess
it’s good that you have something like a hint or like a
direction where the crane is moving.

As shown in Figure 5, there were 7 out of 20
participants who selected the ghost interface as
their third choice. Those participants disliked the
ghost interface because the presence of the semi-
transparent replica of the spreader obstructed their
views and they were not able to distinguish the
real spreader and its semi-transparent replica, as
indicated by the quote below:

The ghost kind of blocked my view. When I used
it, I became confused. When I was focusing on the
ghost, I really got confused, mixed up between the
ghost and the real spreader, and did wrong things.
For me it was a really bad experience to use it.

Regarding the arrow interface, there were 6 out of
21 participants who selected it as their first choice
(see Figure 5). Those participants selected the

arrow interface as their first choice, since the arrows
provided an indication whether their inputs are being
executed or still on the way due to the latency, as
expressed by the quote below:

The arrows were, kind of, very necessary to have
because otherwise I think I would have made more
mistakes because it’s difficult to figure out in your
head how much delay was 800 milliseconds, for
instance. So some kind of feedback on that is useful.

Lastly, as shown in Figure 5, there were 10 out
of 20 participants who selected the arrow interface
as their third choice, which is also the highest
vote for the third choice. Those participants disliked
the arrow interface because they did not perceive
any advantages from using the arrow interface, as
highlighted by the quote below:

I don’t know what I am supposed to use the arrows
for. Because what the arrows are showing is already
happening. If the crane was going the wrong way, it
was already too late, usually, to change the direction.
So I couldn’t really do anything about what they were
showing. So I consider them not important to keep
an eye on.

5. DISCUSSION

Based on the results presented from Section 4.1
to Section 4.3, none of the GUIs were significantly
better over the others in terms of completion time,
stacking accuracy, and number of collisions. In
terms of completion time (see Section 4.1), the
blank interface produced the shortest time when
the latency was 0 ms, but the arrow interface
produced the shortest time when the latency was
500 ms. However, When the latency was 800 ms,
the blank interface produced the shortest time again.
Similar patterns were also found in terms of stacking
accuracy (see Section 4.2), since the participants
were the most accurate when they used the arrow
interface when the latency was 0 ms, the blank
interface when the latency was 500 ms, and then the
arrow interface again when the latency was 800 ms.
Similar patterns can also be observed in terms of the
number of collisions. When the latency was 0 ms,
the ghost interface caused the least minor collisions,
but the blank interface caused the least medium and
severe collisions. When the latency was 500 ms, the
blank interface produced the least minor collisions,
but the arrow interface produced the least medium
and major collisions. Lastly, when the latency was
800 ms, the blank interface produced the least minor
collisions, the arrow interface produced the least
medium collisions, and the ghost interface produced
the least severe collisions.

We were surprised with the results of the SUS scores
(see Section 4.4) and the personal preferences

186 



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

(see Section 4.5), since the participants did not
perceive the presence of the ghost interface
positively. Although we did not expect that the ghost
interface would produce better results in terms of
performance, such as completion time, accuracy,
and collisions, we initially assumed that the ghost
interface would at least be perceived as more usable
and preferred by the majority of the participants.
As described in Section 3.2.2, we designed the
ghost interface so that the user would be able to
predict the crane movement as if there was no
latency, since they could continuously operate the
crane without having to wait every time they made
an input. However, having both the real spreader
and its semi-transparent replica was not perceived
positively by the participants, since they felt confused
with having to focus on two things simultaneously
and the presence of the semi-transparent replica
also obstructed their views.

6. LIMITATIONS AND FUTURE WORK

As described in Section 3.3, each test scenario in
the experiment had a constant latency rate, i.e, 0
ms, 500 ms, or 800 ms. We decided to use constant
latency rates, since it enabled us to easily distinguish
how specific latency rates affected the participants’
performance. However, in practice, the latency in
remote crane operation is not constant. Luck et al.
(2006) found that people perform differently under
conditions with constant and varying latencies. They
also found that it is easier for people to adapt
when the latency is constant than when the latency
is changing continuously. Therefore, it would be
interesting to replicate the study presented in this
paper under conditions with varying latency.

As mentioned in Section 3.3, none of the participants
who took part in the experiment worked as crane
operators. In the review of crane-related studies,
Sitompul (2022a) notes that the majority of crane-
related studies involved non-operators as their
participants due to the difficulty in recruiting crane
operators. However, in few studies that involved
both operators and non-operators, there are some
differences in the results between the two groups of
participants. However, the results presented in this
paper still provide insights into how the different GUIs
could affect people’s performance and experience
under different latency rates. Nevertheless, it would
be interesting to replicate this study by involving
crane operators to determine to what extent the
results presented in this paper remain applicable. In
addition, involving crane operators would also help
us determine to what extent the ghost interface and
the arrow interface are appropriate for remote crane
operation.

7. CONCLUSION

This study proposes two types of GUIs that could
support crane operators perform their work in the
presence of latency. The first GUI provides prediction
on how the crane would move based on the real-
time input made by the user, while the second GUI
visualizes what kind of inputs that are currently being
executed. To evaluate both GUIs, we involved 20
participants in an experiment, where they had to
move and stack containers while using either of
the proposed GUIs and without using any of our
GUIs under three different rates of latency, i.e.,
0 ms, 500 ms, and 800 ms. The results suggest
that none of the proposed GUIs were significantly
better than the others in terms of performance and
user experience. However, this finding should not
be used to diminish the potential of using GUIs
to help crane operators perform their work in the
presence of latency. Instead, it should be seen that
further research is needed to explore how GUIs
could help crane operators handle latency in their
remote operations.

ACKNOWLEDGMENTS

This research was partially funded by the Depart-
ment of Design at NTNU and the SFI AutoShip Cen-
tre (the Research Council of Norway under project
number 309230).

REFERENCES

Bejczy, A., W. Kim, and S. Venema (1990).
The phantom robot: predictive displays for
teleoperation with time delay. In Proceedings.,
IEEE International Conference on Robotics and
Automation, pp. 546–551 vol.1. IEEE.

Bidwell, J., A. Holloway, and S. Davidoff (2014). Mea-
suring operator anticipatory inputs in response
to time-delay for teleoperated human-robot inter-
faces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI
’14, New York, NY, USA, pp. 1467–1470. ACM.

Brunnström, K., E. Dima, M. Andersson,
M. Sjöström, T. Qureshi, and M. Johanson
(2019). Quality of experience of hand controller
latency in a virtual reality simulator. Electronic
Imaging 2019(12), 218:1–218:9.

Chen, J. Y. C., E. C. Haas, and M. J. Barnes
(2007). Human performance issues and user
interface design for teleoperated robots. IEEE
Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 37 (6), 1231–
1245.

187



Evaluating Graphical User Interfaces for Handling Latency in Remote Crane Operation
Fahlén • Sitompul • Lindell

Chen, L., G.-C. Chen, H. Chen, J. March, S. Benford,
and Z.-G. Pan (2007). An hci method to improve
the human performance reduced by local-lag
mechanism. Interacting with Computers 19(2),
215–224.

Fahlén, T., M. Drobnjak, J. Finn, I. Hutchings,
V. Jakovljevic, R. Nilsson, J. Oyola, and M. Savic
(2022). Graphical port simulator. Technical
report, Mälardalen University, Västerås, Sweden.
Unpublished.

Fraser, M., T. Glover, I. Vaghi, S. Benford,
C. Greenhalgh, J. Hindmarsh, and C. Heath
(2000). Revealing the realities of collaborative
virtual reality. In Proceedings of the Third
International Conference on Collaborative Virtual
Environments, CVE ’00, New York, NY, USA, pp.
29–37. Association for Computing Machinery.

Gutwin, C., S. Benford, J. Dyck, M. Fraser, I. Vaghi,
and C. Greenhalgh (2004). Revealing delay in
collaborative environments. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’04, New York, NY, USA,
pp. 503–510. ACM.

He, F., S. K. Ong, and A. Y. C. Nee (2021). An
integrated mobile augmented reality digital twin
monitoring system. Computers 10(8), 99.

Karvonen, H., H. Koskinen, and J. Haggrén (2012).
Enhancing the user experience of the crane
operator: Comparing work demands in two
operational settings. In Proceedings of the 30th
European Conference on Cognitive Ergonomics,
ECCE ’12, New York, NY, USA, pp. 37–44. ACM.

Koskinen, H., H. Karvonen, and H. Tokkonen (2013).
User experience targets as design drivers: A case
study on the development of a remote crane
operator station. In Proceedings of the 31st
European Conference on Cognitive Ergonomics,
ECCE ’13, New York, NY, USA. ACM.

Lewis, J. R. (2018). The system usability scale:
Past, present, and future. International Journal of
Human–Computer Interaction 34(7), 577–590.

Liu, S., X. Xu, and M. Claypool (2022). A survey and
taxonomy of latency compensation techniques
for network computer games. ACM Computing
Surveys 54(11s), 1–34.

Luck, J. P., P. L. McDermott, L. Allender, and D. C.
Russell (2006). An investigation of real world
control of robotic assets under communication
latency. In Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-Robot
Interaction, HRI ’06, New York, NY, USA, pp.
202–209. ACM.

Major, P., G. Li, H. Zhang, and H. P. Hildre (2021).
Real-time digital twin of research vessel for remote
monitoring. In Proceedings of the 35th European
Council for Modeling and Simulation. ECMS.

Matheson, A., B. Donmez, F. Rehmatullah, P. Ja-
siobedzki, H.-K. Ng, V. Panwar, and M. Li (2013).
The effects of predictive displays on performance
in driving tasks with multi-second latency: Aiding
tele-operation of lunar rovers. Proceedings of the
Human Factors and Ergonomics Society Annual
Meeting 57 (1), 21–25.

Neumeier, S., P. Wintersberger, A.-K. Frison,
A. Becher, C. Facchi, and A. Riener (2019).
Teleoperation: The holy grail to solve problems of
automated driving? Sure, but latency matters. In
Proceedings of the 11th International Conference
on Automotive User Interfaces and Interactive
Vehicular Applications, AutomotiveUI ’19, New
York, NY, USA, pp. 186–197. ACM.

Shirmohammadi, S., N. Woo, and S. Alavi (2005).
Network lag mitigation methods in collaborative
distributed simulations. In Proceedings of the
2005 International Symposium on Collaborative
Technologies and Systems, 2005., pp. 244–250.

Sitompul, T. A. (2022a). Human–machine interface
for remote crane operation: A review. Multimodal
Technologies and Interaction 6(6), 45.

Sitompul, T. A. (2022b). The impacts of different
work locations and levels of automation on crane
operators’ experiences: A study in a container
terminal in Indonesia. In Proceedings of the
34th Australian Conference on Human-Computer
Interaction, OzCHI ’22, New York, NY, USA, pp.
193–198. ACM.

Vaughan, J. and W. Singhose (2014). The influence
of time delay on crane operator performance.
In T. Vyhlı́dal, J.-F. Lafay, and R. Sipahi (Eds.),
Delay Systems: From Theory to Numerics and
Applications, pp. 329–342. Cham, Switzerland:
Springer.

Villaverde, A. F., C. Raimúndez, and A. Barreiro
(2012). Passive internet-based crane teleoper-
ation with haptic aids. International Journal of
Control, Automation and Systems 10, 78–87.

Wilde, M., M. Chan, and B. Kish (2020). Predictive
human-machine interface for teleoperation of air
and space vehicles over time delay. In Proceed-
ings of the 2020 IEEE Aerospace Conference, pp.
1–14. IEEE.

188 


	Introduction
	Related Work
	Method
	Overview of the Crane Simulator
	The Graphical User Interfaces
	Blank Interface
	Ghost Interface
	Arrow Interface

	Experimental Procedure

	Results
	Completion Time
	Stacking Accuracy
	Number of Collisions
	Collisions When the Latency Was 0 ms
	Collisions When the Latency Was 500 ms
	Collisions When the Latency Was 800 ms

	System Usability Scale Scores
	Personal Preferences

	Discussion
	Limitations and Future Work
	Conclusion

